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Abstract 

Quantifying the sources of genetic change is essential for optimising breeding programmes. 
However, breeding programmes are often complex because many breeding groups are subject 
to different breeding actions. Understanding the contribution of these groups to changes in 
genetic mean and variance is essential to understanding genetic change in breeding 
programmes. Here we extend the previously developed method for analysing the contribution 
of groups to changes in genetic mean to analysing changes in genetic variance. We, expectedly, 
show that the contribution of females and males to change in genetic variance can differ and 
are not independent, indicating we should not look at the contributions in isolation. 

 

Introduction 

Quantifying sources of genetic change is essential for identifying key breeding actions and 
optimising breeding programmes. Due to the complexity of many breeding programmes, the 
observed genetic change is a sum of contributions from different groups of individuals (often 
referred to as selection pathways). These groups vary in their contribution due to different 
selection intensity, accuracy, genetic variation, generation interval, and dissemination. At the 
individual level, the breeding value of an individual can be partitioned as 𝑎! =

"
#
𝑎$ +	

"
#
𝑎% +

𝑤!, where 𝑎! is the breeding values of the individual, 𝑎$ and 𝑎% are breeding values of sire and 
dam, and 𝑤! is the Mendelian sampling term. García-Cortés et al. (2008) provided a 
methodology to allocate these partitions of breeding values into group-specific contributions to 
the change in genetic mean. To gain insight into time-trends or other data partitions, they 
summarised group-specific contributions by a variable such as year, gender, population, etc. 
While García-Cortés et al. (2008) addressed the contribution of different groups to changes in 
genetic mean, breeding programmes should also consider the contribution of different groups 
to changes in genetic variance to fully understand drivers of genetic change in a population 
(Sorensen et al., 2001; Lara et al., 2021). Here we extend the method of García-Cortés et al. 
(2008) to analyse changes in genetic variance. We develop the method and demonstrate it with 
a simulation. We assume throughout we know the true breeding value. Future work will extend 
the method to estimated breeding values by applying the method on posterior samples of 
breeding values following the work of Sorensen et al. (1994; 2001) and Lara et al. (2021). 
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Material and Methods 

Statistical Framework. Let 𝐚 be a vector of breeding values from a normal distribution with 
mean 0 and covariance 𝐀𝜎&#. 𝐚 can be written as a linear combination of breeding values from 
ancestors and individual’s deviation from the ancestral expectation 𝐚 = 𝐓𝐰, where 𝐓 is a 
triangular matrix of expected gene flow between ancestors and individuals and 𝐰	~	N(𝟎,𝐖𝜎&#) 
are Mendelian sampling terms representing deviations, with	𝑾 being a diagonal matrix of 
variance coefficients and 𝜎&# the base population additive genetic variance (Henderson, 1976). 

Assuming a factor with 𝑝 groups and for any set ∑ 𝐏'
(
')" = 𝐈, García-Cortés et al. (2008) 

partitioned the gene flow into contributions of each group by defining 𝐓' = 𝐓𝐏' , and further 
partitioned the contribution of each group to breeding values a priori using the equality 𝐚	 =
7𝐓" + 𝐓# +⋯+ 𝐓(9𝐰 = 𝐚" + 𝐚# +⋯+ 𝐚(. They further showed that these partitions can be 
estimated from data collected in breeding programmes (posteriori) by first estimating breeding 
values 𝒂; = 𝐸(𝒂|𝒚) from phenotype data (𝒚) and then partitioning 𝐚? 	= 7𝐓" + 𝐓# +⋯+
𝐓(9𝐰; = 𝐚?" + 𝐚?# +⋯+ 𝐚?(. By summarising these partitions, they quantified the contribution 
of each group (for example, males vs. females) to the time-trend in genetic mean, where time-
trend represents a change in genetic mean over time. This method has been implemented in the 
AlphaPart R package (Obšteter et al., 2021), which efficiently calculates (via 𝑻*") and 
summarises such partitions by one or more variables, such as generation, selection status, etc. 
AlphaPart enables use of any function for the summarisation, that is, 𝑓7𝒂'9. 

Here we extend the partitioning method to analyse the contribution of groups to genetic 
variance. Variance of breeding values is, a priori, 𝑉𝑎𝑟(𝒂) = 𝑉𝑎𝑟(𝑻𝒘) = 𝑻𝑾𝑻+𝜎&#. Using the 
equality 𝐚	 = 7𝐓" + 𝐓# +⋯+ 𝐓(9𝐰 = 𝐚" + 𝐚# +⋯+ 𝐚(, we can partition genetic variance 

as 𝑉𝑎𝑟(𝒂) = 𝑉𝑎𝑟 E7𝐓" + 𝐓# +⋯+ 𝐓(9𝒘F 	= 𝑉𝑎𝑟(𝐓"𝒘) + 𝑉𝑎𝑟(𝐓#𝒘) +⋯+ 𝑉𝑎𝑟7𝐓(𝒘9 +
2𝐶𝑜𝑣(𝐓"𝒘,𝐓#𝒘) +⋯+ 2𝐶𝑜𝑣7𝐓(𝒘,𝐓(*"𝒘9 = ∑ 𝐓'𝑾𝑻'+𝜎&#

(
')" +

2∑ ∑ 𝐓'𝑾𝑻'!
+𝜎&#

(
'!)',"

(*"
')" = ∑ 𝜎&"

#(
')" + 2∑ ∑ 𝜎&",&"!

(
'!)',"

(*"
')" . While this “theoretical” 

partitioning involves matrix products, we can also summarise partitions 𝐚" + 𝐚# +⋯+ 𝐚( 
(calculated via 𝑻*") by calculating variance of each partition 𝑓7𝒂'9 = 𝑉𝑎𝑟7𝒂'9 and covariance 
of each pair of partitions 𝑓7𝒂' , 𝒂'!9 = 𝐶𝑜𝑣7𝒂' , 𝒂'!9. The partitions can be summarised in many 
ways, for example, to quantify the contribution of males and females to change in genetic 
variance over time. We implemented this method in the AlphaPart R package (Obšteter et al., 
2021) with the summary method: summary(part, by = 'time', FUN = var), 
where part is an object with group-partitioned breeding values. This partitioning is for a priori 
or true breeding values. To estimate partitions of genetic variance from data collected in a 
breeding programme (posteriori) we would have to use methods from Sorensen et al. (2001) 
and Lara et al. (2021). While this is straightforward, we left this to future work. 

Simulation. To illustrate the method, we have simulated a breeding programme with 1,000 
individuals over 40 generations. For the burning phase, generations -20 to 0, we selected the 
best 5 males (out of 500) as sires based on their phenotype and mated them with all 500 females 
from the previous generation and all 500 females from the current generation. These matings 
produced 1,000 selection candidates for the next generation. After the burning phase, we tested 
two selection scenarios over additional 20 generations: we selected 5 best males from 500 male 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.10.475603doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475603
http://creativecommons.org/licenses/by-nd/4.0/


candidates based on their phenotypes (scenario “phenotype”) or true breeding values (scenario 
“TBV”). The simulation was done with AlphaSimR version 1.0 (Gaynor et al., 2020) using 
cattle genome, where we assumed 30,000 quantitative trait loci (QTL) with additive effects 
sampled from a normal distribution, and phenotype with heritability 0.3. With this simulation, 
we aimed to show how trends in genetic mean and variance come about due to the selection of 
males. We split 𝐓 by using 𝐏% + 𝐏. = 𝐈 and 𝐏%$ + 𝐏%/ = 𝐏%, where 𝐏% is a diagonal matrix 
with ones in rows for males and zeros otherwise; 𝐏. = 𝐈 − 𝐏%; 𝐏%$  is a diagonal matrix with 
ones in rows for selected males, and 𝐏%/ = 𝐏% − 𝐏%$ is a diagonal matrix with ones in rows for 
non-selected males. 

 

Results 

Figure 1A shows time-trends in the genetic mean and variance and its partitioning by males and 
females, while Figure 1B represents trends partitions by selected males, non-selected males, 
and females. We scaled the genetic mean and variance of the base population respectively to 
zero and one to facilitate interpretation. 

 

Figure 1 Partitioning of the total genetic mean and variance (Sum) over generation by (A) 
gender (male (M) and female (F)) and (B) gender and status (selected males (S) and non-
selected males (N)). Each sub-figure shows the scenario with selection on phenotype 
(Phenotype, left) and selection on true breeding value (TBV, right). 

Figure 1A shows that selection of males contributed almost twice as much as females, which 
contributed only via dissemination of past male selection. However, if only sex is used to 
investigate the contribution of the males and females to the genetic variance, we can see that 
the contributions of males and females are very similar for both selection scenarios. In fact, 
males seem to be contributing a bit more to genetic variance than females in the phenotypic 
selection scenario. This observation raises a question, how can males contribute similar 
proportions to the genetic variance as females if we are selecting among males? The answer to 
this question is demonstrated in Figure 1B. Although non-selected sires do not contribute to the 
change in the genetic mean, they still contribute to the genetic variance. Selection on true 
breeding values clearly showed that the contribution of groups to genetic variance is a function 
of the intensity of selection. Selected males contributed least to genetic variance, followed by 
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non-selected males and females. Partitioning in the scenarios with phenotype selection showed 
a similar result, but surprisingly selected males had a higher or comparable contribution to 
genetic variance as non-selected males. 

Splitting the male contribution into selected and non-selected also shows that the negative 
covariance between male and female contributions in Figure 1A is driven by the covariance 
between female and selected male contributions (F:M(S)). The latter was consistently negative 
from generation 2 to 20 in the scenario with selection on true breeding values, resulting in a 
mean correlation of -0.52 (±0.12). This negative correlation means that the contribution of 
females and selected males to the genetic variance are not independent. That is, the total genetic 
variance is smaller than the sum of individual contributions. 

 

Discussion 

We presented a simple method for partitioning the trends in genetic mean and variance into 
contributions from different groups as an extension of the work of García-Cortés et al. (2008). 
We implement this method in the AlphaPart R package available from CRAN. This method can 
be a powerful and valuable tool to understand how different breeding groups contribute to 
genetic mean and variance change. We demonstrated that the choice of groups is essential and 
that contributions are not independent. Hence, they should not be analysed in isolation from 
each other. Future work will apply the method to estimate trends in the genetic mean and 
variance following the work of Sorensen et al. (2001) and Lara et al. (2021). 
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