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Graph-based Thermal-Inertial SLAM with
Probabilistic Neural Networks

Muhamad Risqi U. Saputra, Chris Xiaoxuan Lu, Pedro Porto B. de Gusmao, Bing Wang, Andrew Markham,
and Niki Trigoni

Abstract—Simultaneous Localization and Mapping (SLAM)
system typically employ vision-based sensors to observe the
surrounding environment. However, the performance of such
systems highly depends on the ambient illumination conditions.
In scenarios with adverse visibility or in the presence of airborne
particulates (e.g. smoke, dust, etc.), alternative modalities such
as those based on thermal imaging and inertial sensors are more
promising. In this paper, we propose the first complete thermal-
inertial SLAM system which combines neural abstraction in
the SLAM front end with robust pose graph optimization in
the SLAM back end. We model the sensor abstraction in the
front end by employing probabilistic deep learning parameterized
by Mixture Density Networks (MDN). Our key strategies to
successfully model this encoding from thermal imagery are the
usage of normalized 14-bit radiometric data, the incorporation of
hallucinated visual (RGB) features, and the inclusion of feature
selection to estimate the MDN parameters. To enable a full SLAM
system, we also design an efficient global image descriptor which
is able to detect loop closures from thermal embedding vectors.
We performed extensive experiments and analysis using three
datasets, namely self-collected ground robot and handheld data
taken in indoor environment, and one public dataset (SubT-
tunnel) collected in underground tunnel. Finally, we demonstrate
that an accurate thermal-inertial SLAM system can be realized
in conditions of both benign and adverse visibility.

Index Terms—Thermal-inertial SLAM, loop closure detection,
probabilistic deep neural networks, pose graph optimization.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) is
an important task in robotics and autonomous systems. It

enables a mobile agent to explore an unknown environment
by simultaneously estimating the position of the agent whilst
constructing a representation of the environment, termed a
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map. This task is a precursor to many other robotic tasks such
as navigation, exploration, or manipulation, making accurate
SLAM estimation a fundamental need for autonomous sys-
tems.

A SLAM framework typically consists of a front end and a
back end. The front end acquires sensor data and transforms
it into an abstraction that is more amenable for inference,
while the back end estimates the states of the agent given
the abstracted data from the front-end. The back end is also
responsible for optimizing the agent states and generating a
globally consistent representation of the environment [1], [2].

Most front ends in SLAM systems utilize range (e.g. depth,
Lidar) or vision (RGB) sensors to sense the surrounding
environment. Notable examples include ORB-SLAM [3] and
LOAM [4] which employ RGB and Lidar sensors respectively
for their SLAM front end. While these range- and vision-
based SLAM systems can generally work well in a wide
range of applications, their performance largely depends on the
benign visibility. When it comes to the adverse illumination
conditions and/or in the presence of airborne particulates (e.g.
dust, soot, smoke, etc.), using existing range and vision sensors
for SLAM estimation is problematic. For instance, it is widely
known that RGB cameras cannot operate in darkness while
depth cameras are sensitive to glare and strong illumination
[5]–[7]. The same visibility issues also applies to RGB, depth,
and even Lidar sensors when operating in environments with
airborne particulates [8] or thick fog/mist. In contrast, thermal
imaging cameras are not affected by illumination conditions
and the presence of most airborne particulates [9]. Instead,
they capture the Long Wave Infrared (LWIR) data emitted
from objects in the environment. These advantages make
thermal imaging cameras a viable alternative modality for
SLAM application in visually-denied environments.

However, realizing a full thermal SLAM system comes with
a set of challenging tasks. One of the most fundamental is how
to abstract or encode the thermal data so as to maximally
aid the graph optimization process. This is an intrinsically
challenging task as thermal cameras capture the temperature
profile of the environment instead of environmental appearance
and geometry. The problem is even more pronounced with
the fact that the re-scaled 8-bit resolution of thermal data has
lower contrast, making standard feature matching and data
association difficult. Moreover, thermal cameras periodically
require suspension of camera operation for approximately 0.5-
1 second to perform Non-Uniformity Correction (NUC) (also

0000–0000/00$00.00 © 2021 IEEE
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known as Flat Field Correction (FFC) in other literature [10],
[11]) in which a uniform temperature is presented to the sen-
sor to estimate the fixed-pattern noise correction parameters.
Together, these issues mean that traditional methods developed
for other optical sensors fall short in the typical front-end
abstraction pipeline (e.g. feature extraction, data association,
estimating an odometry prior, etc.).

The past decade has witnessed the rapid development of
Deep Neural Networks (DNN) as a strong non-linear function
approximator. It has been seen in the recent works that DNNs
can be successfully used in visual odometry [12]–[15] and (re-
) localization estimation [16]–[18]. We therefore hypothesize
that one can model the abstraction or encoding of thermal
data for a SLAM front end using DNN. In particular, by
employing a type of probabilistic neural network, i.e. Mixture
Density Networks (MDN), we can fully model the front end
by constructing both odometry and loop closure constraints
along with their covariance as a metric of uncertainty. In this
way a more traditional back end graph-based optimizer can be
used to generate a global trajectory. In a nutshell, our key and
novel insights in building a reliable pose graph from thermal
imagery include the usage of normalized radiometric (14-bit
resolution) thermal data to avoid re-scaling, the incorporation
of hallucination networks as complementary information [19],
the inclusion of selective fusion module [20] which filters out
reliable features, and the use of a probabilistic DNN. We also
present a novel approach to neural loop closure estimation.
Combined with outlier rejection in the back end to filter
noisy loop closure constraints, we demonstrate that is possible
to achieve a complete thermal-inertial SLAM system which
produces globally consistent trajectory estimation, in spite of
the above mentioned challenges.

The work described in this article builds on our previous
work in [19] which presented the first system for deep thermal-
inertial odometry. The new contributions here can be summa-
rized as follows:

• We demonstrate the first complete thermal-inertial SLAM
(TI-SLAM) system in the literature, which combines ro-
bust pose graph optimization in the back end with neural
abstraction in the front end generated by probabilistic
neural networks.

• We construct odometry and loop closure constraints in the
pose graph by using a Mixture Density Network (MDN)
parameterized through hallucination and feature selection
network given normalized 14-bit radiometric thermal data
as the input. We also combine the odometry network with
IMU measurements to increase robustness in unknown
scenes or when the thermal imaging is performing NUC
calibration.

• We present an efficient global descriptor-based neural
loop closure detection based on thermal embedding vec-
tors output by a DNN.

• We perform extensive experiments and analysis under
both benign and poorly-illuminated conditions on in-
house ground robot and handheld data (self-collected),
and on a public ground robot data (SubT-tunnel) taken in
underground tunnel. The code and in-house datasets are

released to the community.1

II. RELATED WORK

A. Conventional Visual SLAM

Visual SLAM was originally solved by filtering algorithm
[21]. Notable examples include MonoSLAM [21] and its
variants [22]–[24], in which every frame is processed by
Extended Kalman Filter (EKF) to jointly estimate the camera
pose and landmark locations. However, due to the nature of
EKF algorithm which accumulates linearization errors across
multiple frames, keyframe-based Bundle Adjustment (BA)
approach is more widely used in the past decade since it
has been shown to be more accurate than filtering [25].
Prominent examples from this category include PTAM [26]
and ORB-SLAM [3] which employ point-based features in
the front end or PL-SLAM [27] which utilizes line segment as
the front end abstraction. These keyframe-based BA methods
typically integrate hardware and algorithmic advances in the
past decade by incorporating parallel computing, statistical
model selection, loop closures detection based on bag-of-
words place recognition, local BA, or other graph optimization
approaches. However, despite their great performances in
particular scenarios, these model based approaches are very
sensitive to outliers (e.g. spurious correspondences, dynamic
objects, etc.) [28] and easily lose tracks when the environment
has limited hand-engineered features [29].

B. Deep Networks in the Context of SLAM

In the last couple of years, there are many works that aim to
replace the SLAM front end with learning-based approaches.
The learning-based approaches, especially based on DNN, are
typically more robust as it does not rely on point or line
features, but directly learn to solve the task from abundant
data. Among these approaches, some deals with feature cor-
respondences [30], [31], some with odometry [13], [15], [32],
[33], global re-localization [17], [34], and place recognition
[35], [36] or loop closure detection [37]. Nevertheless, the
developed system is secluded from each other and is not trivial
to be combined together as a single SLAM system.

1) Odometry Estimation: The first work on DNN based
approach for Visual Odometry (VO) is pioneered by DeepVO
[12] which models the camera pose estimation as an end-
to-end pose regression problem. This was then followed by
incorporating inertial (e.g. VINet [38], SelectFusion [20]),
training the network by self-supervision (e.g. SfMLearner
[32], GANVO [33], etc.), or combining together model-based
and deep learning-based approaches (e.g. SalientDSO [15]).
However, none of them address thermal camera system except
our work in [19].

2) Place Recognition: NetVLAD [35] is a prominent place
recognition algorithm which aggregates the statistics of local
descriptors by computing the sum of residuals for each visual
word. This approach was then typically improved by making
it more robust across different environmental conditions by
learning condition- and viewpoint-invariant features [36] or

1https://github.com/risqiutama/ti-slam
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learning geometric features through depth generation [39].
Existing work on loop closure detection or place recognition
using thermal camera is typically performed by using standard
feature-based approaches (e.g. FAB-MAP [40]) and is aided
by other modalities such as RGB camera [41].

3) Global Relocalization: In the context of SLAM, global
relocalization can be used to construct loop closure constraints.
PoseNet [34] is a pioneer work in this category which regresses
the global camera pose given a single image as the input. This
was then followed by incorporating an attention mechanism
[17], enforcing temporal information [16], or fusing it with
an additional sensor through variational inference [42]. While
deep global relocalization can be used as loop closure con-
straints, recent work [43] observes that it cannot generalize
in unseen scenario as they implicitly save the ‘map’ of the
environment within the network. Different from the previous
absolute pose regression methods, relative pose regression
methods identifies the nearest neighbours in database images
to the query image and recovers the relative pose between
the reference images and the query. Specifically, NN-Net [44]
utilises a neural network to estimate the pairwise relative
poses between the query and the top N-ranked references. A
triangulation-based fusion algorithm coalesces the predicted N
relative poses and the ground truth of 3D geometry poses, and
the absolute query pose can be naturally calculated. Further-
more, RelocNet [45] additionally exploits a frustum overlap
loss to assist the learning of global descriptors that are suitable
for camera localization. Motivated by these, CamNet [46]
applies a two-stage retrieval, image-based coarse retrieval and
pose-based fine retrieval, to select the most similar reference
images for the finally precise relative pose estimation. We take
this approach to construct loop closure constraints by first
finding similar images in the sequence and then extracting
relative poses between detected loop pair.

4) SLAM: Recently, researchers have started to combine
existing works on odometry, relocalization, and loop closure
detection in a complete SLAM system. DeepSLAM [47],
for example, combines self-supervised deep learning based
monocular visual odometry with pose graph optimization. The
system consists of three main modules in which each of
them deals with odometry (Tracking-Net), mapping (Mapping-
Net), and loop closure detection (Loop-Net). Despite their
great performances in public visual odometry benchmark,
there is no uncertainty estimation in the odometry and loop
closure constraints, making it less flexible to balancing the
constraints or inspecting failure modes. DeepFactors [48] is
another example which tries to combine deep learning and
factor graph optimization. The system was trained to learn
a compact depth map representation for dense visual SLAM
system. However, they only demonstrate the system in a small
indoor environment (e.g. ScanNet dataset). Finally, despite
some emerging works on combining model-based and deep
learning-based approaches, none of them address thermal
camera system.

C. Thermal Odometry and SLAM
Realizing odometry and SLAM estimation using thermal

imaging system remains a challenging problem due to the

I
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Fig. 1. Factor graph representation of TI-SLAM.

nature of thermal cameras which capture the heat distribution
from the observed environment instead of the appearance
and geometry. Nevertheless, some efforts have been made to
construct thermal odometry, although it has been used for
relatively short distances or yields sub-optimal performance
compared to RGB-based odometry. Mouats et al. [10] utilized
a Fast-Hessian feature extractor to estimate stereo thermal
odometry for UAV tracking. Borges and Vidas [49] designed
a practical thermal odometry by employing an automatic
procedure to determine the correct time to perform the NUC
operation. Nevertheless, the system can only work in outdoor
scenario as it requires road lane estimation to compute the
scale of the prediction.

Recent work on thermal odometry typically fused together
thermal imaging systems with other modalities. Delaune et al.
[11] combined thermal and inertial sensors for UAV tracking
by using an EKF algorithm. They showed that by employing
FAST and KLT tracker, the thermal-inertial odometry can
work well during day and night. Similarly, Khattak et al. [7],
[50] also construct thermal-inertial odometry for UAV tracking
by using keyframe-based direct approach which minimizes
radiometric error between two adjacent frames. They used
raw radiometric data instead of the normalized grayscale data
to avoid difficult data association as the scene dynamically
changes based on the environment temperature.

Despite some work on thermal-inertial odometry estimation,
to the best of our knowledge, there is no published work
on thermal-inertial SLAM to date. Vidas and Sridharan [51]
realized a hand-held thermal SLAM by employing FAST-
based feature tracking in the front end and bundle adjustment-
based optimization in the back end. However, despite the claim
of being a SLAM system, it is not a full SLAM system in
a sense that there is no loop closure module which is used
in state-of-the-art SLAM frameworks to generate a consistent
trajectory and map (e.g. ORB-SLAM [3], LSD-SLAM [52]).
Moreover, without an environment agnostic sensor like IMU,
it is difficult to achieve robust estimation in an arbitrary
environment. Shin and Kim [53] recently proposed feature-
based lidar-thermal SLAM. They enhanced thermal data with
sparse range measurement from lidar to improve the scale
estimation of the system. However, they demonstrated their
system for operation in an autonomous car which typically has
more thermal gradients than in indoor scenario (e.g. corridor
with planar walls). Furthermore, all these works utilize a
hand-engineered feature extractor which may lose track in
environments with limited thermal gradients.
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III. SLAM PROBLEM FORMULATION

A. Maximum a Posteriori (MAP) with Probabilistic Neural
Networks

It is widely known in the robotic community that we can
solve the SLAM problem using a graph-based formulation. In
this formulation, the SLAM estimation problem is simplified
by abstracting the raw sensor measurements into edges in
the graph [54]. To solve a graph-based SLAM problem, a
Maximum a Posteriori (MAP) approach is typically employed.
Let X = {xi : i = 1, ...,m} be an unknown variable (e.g. tra-
jectory of the agent as discrete poses) that we want to estimate.
Given a set of sensor measurements Z = {zi : i = 1, ...,m}
such that zi can be expressed as zi = hi(xi) + εi where
hi(.) and εi are measurement model and measurement noise
respectively, we can compute X by estimating the assignment
variables of X ∗ that yields the maximum of the posterior
p(X|Z) as in the following equation [1] when the probability
of each measurement is the same

X ∗ .= argmax
X

p(X|Z) = argmax
X

p(Z|X )p(X ). (1)

Note that the equality in Eq. (1) follows the rule in the Bayes
theorem. Eq. (1) can then be factorized into the following form
by assuming that the measurement Z are independent

X ∗ = argmax
X

p(X )

m∏
i=1

p(zi|X ), (2)

while both p(X ) and p(zi|X ) are the factors in the factor graph
representation which encodes the probabilistic constraints
among the nodes. In order to make Eq. (2) more explicit,
we can assume that the measurement follows a Gaussian
distribution with a zero-mean ε and information matrix Ω (the
inverse of covariance matrix). Then, the likelihood function
p(zi|X ) will have the following form

p(zi|X ) ∝ exp
(
−1

2
‖hi(xi)− zi‖2Ωi

)
, (3)

where ‖e‖2Ω = eᵀΩe. Since maximizing the posterior is
essentially the same as minimizing the negative log likelihood,
then the MAP estimation in Eq. (2) becomes

X ∗ = argmin
X

−log

(
p(X )

m∏
i=1

p(zi|X )

)
(4)

= argmin
X

m∑
i=1

‖hi(Xi)− zi‖2Ωi
, (5)

where hi(.) represents a non-linear function. Eq. (5) is widely
known as a non-linear least square optimization problem
and can be solved by using Gauss-Newton or Levenberg-
Marquardt algorithm. Note that we omit p(X ) in Eq. (5) since
it is usually uninformative (e.g. modeled as uniform distribu-
tion) or does not contribute in determining the optimized value.

To minimize Eq. (5), in our formulation, we encode hi(.)
with a deep, probabilistic neural network that estimates both
mean and covariance. Then, from the perspective of the
MAP estimator, our approach can be viewed as replacing the
likelihood estimation with an abstraction from a deep neural

network. From the optimization perspective, our deep network
can also be viewed as the initial guess for the optimization. In
this sense, we could combine the well-established formulation
of SLAM problem with recent advances in DNNs as a strong
non-linear function estimator to model a better abstraction of
the sensor measurement.

To model the likelihood estimation with a deep neural
network, we employ a Mixture Density Network (MDN) [55]
which has been shown to work well for the camera (RGB)
re-localization problem [16]. MDN allows the network to es-
timate a multi-modal posterior distribution which maps well to
our problem of estimating a SLAM posterior from multi-modal
sensor data. In MDN, the output is composed of a Gaussian
Mixture Model (GMM) and the networks predict the GMM
parameters mean µk and variance σk where k = 1, ...,K are
indices of each Gaussian component N (µk, σ

2
k). Then, given

sensor measurement Z, the posterior p(X|Z) becomes

p(X|Z) =

K∑
k=1

αk(Z)N (X|µk(Z), σ2
k(Z)), (6)

where αk are mixing coefficients constrained by
∑

k=1 αk = 1
which is typically achieved by using a softmax function
and learnt during training. Note that for training, we mini-
mize the negative log-likehood of Eq. (6) such that X ∗ =
argminX −log (p(X|Z)). As we only estimate the variance
instead of the full covariance, we assume that the output
prediction (6-DoF poses) is independent of each other. This
assumption has been used in [29], [56] as well.

B. SLAM Optimization Objectives

Eq. (5) can be interpreted as a general optimization objective
for graph-based SLAM. In our implementation, we use a
variant of this version which is called pose-graph SLAM. In
pose-graph SLAM, the variables to be inferred are the agent
poses (positions and orientations) and each factor in the factor
graph imposes a constraint between two poses (e.g. relative
estimate between a pair of poses). In our SLAM problem,
we define two factors, i.e. an odometry factor and a loop
closure factor, both of which are inferred from a DNN. Fig. 1
represents the factor graph representation of our problem. The
odometry factor ui imposes constraints between consecutive
positions xi and xi+1, while the loop closure factor imposes
constraints between two distant poses that have a large portion
of image or feature correspondence (e.g. x1 and x4), but
not necessarily obtained at the exact same location. These
definitions refers those used by feature-based visual SLAM
in a sense that as long as we have sufficient correspondence,
although not exactly at the same location, we can estimate
the relative pose between those two locations and use it as an
additional constraint. These loop closure pairs are detected
via observing similar measurements (e.g. z1 and z4) and
also encoded with a further neural network. Then, given the
odometry and the loop closure factors, our SLAM optimization
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Fig. 2. The high-level architecture of TI-SLAM. The front end is abstracted by probabilistic neural networks while the back end employs robust second
order-based graph optimization.

objective is described as follows

X ∗ = argmin
x

∑
i

‖hu(xi, ui)− xi+1‖2Σ̂i︸ ︷︷ ︸
odometry constraints

+

∑
<i,j>

‖hc(xi, cij)− xj‖2Λ̂ij︸ ︷︷ ︸
loop closure constraints

,
(7)

where hu(xi, ui) represents the estimated agent position at
i+ 1 after composing the previous position xi with odometry
estimation ui from deep neural network. Note that we use the
covariance matrix Σ̂i = %Σi to characterize the uncertainty of
the odometry estimates where % is a scale factor. hc(xi, cij)
models the estimated position of the corresponding loop pair
xj after composing xi with the relative poses between xi and
xj (cij) with Λ̂ij = ρΛij as the covariance and ρ as the scale
factor. Note that we use % and ρ to balance the contribution of
the covariance in odometry and loop closure constraints during
optimization.

IV. OVERVIEW OF THE THERMAL-INERTIAL SLAM
SYSTEM

Fig. 2 depicts the high-level architecture of our thermal-
inertial SLAM system. As can be seen, the SLAM front end
consists of three neural network branches to generate odometry
and loop closure constraints. Odometry constraints (6-DoF
relative camera poses and its variances) are estimated by a
neural odometry network given consecutive normalized 14-
bit thermal images and IMU sequences. To generate loop
closure constraints, we first extract an embedding feature for
each normalized 8-bit thermal image via a neural embedding
network. These embedding vectors summarize the salient
features that best describes a thermal image. By comparing
these embedding features against all other embeddings, we
can detect an image pair with sufficient correspondence and
identify it as a potential loop pair. Lastly, the relative poses
between these loop pairs are estimated by a neural loop
closure network - these are then regarded as the loop closure
constraints. Note that as we do not have IMU data to generate
robust loop closure constraints in the SLAM back end, we

perform outlier rejection to discard noisy loop closure pose
estimations and only keep the inliers. Finally, given both
odometry and (inlier) loop closure constraints, the back end
optimizer will optimize the entire pose-graph using Eq. (7) to
generate an optimized trajectory.

V. SLAM FRONT END

The SLAM front end is responsible for constructing the pose
graph by abstracting the input from the thermal and inertial
data using an MDN. In this section, we will detail the network
structure and the training procedure for each neural network.

A. Neural Thermal-Inertial Odometry

1) Network Architecture: Fig. 3 depicts the architecture of
our neural thermal-inertial odometry subsystem. This consists
of three main parts, namely the feature extractor, the feature
selector, and the pose regressor. The first part is the feature
extractor, which is designed to distill geometrically meaningful
features for odometry estimation. For images, this is typically
implemented as optical flow estimation which captures the
movement of pixels e.g. from edges of an object. However,
since thermal images are inherently lacking in sufficient fea-
tures to estimate dense optical flow (e.g. they are textureless),
we follow the practice of [19] which not only extract features
from the thermal images, but also hallucinates visual fea-
tures, simulating the ones extracted from a DNN-based visual
odometry [12], [13]. Given thermal images as the input, the
hallucinated visual features will act as auxiliary information
for the thermal features such that an accurate odometry can
be inferred from textureless thermal sequences.

The second part is the feature selection module, which aims
to select the most useful feature combination for odometry
estimation. To this end, we follow the deterministic soft fusion
structure in [20] to construct our feature selection. This feature
selection is necessary because not all features are equally
important at all times for accurate odometry estimation, e.g.
each sensor comes with intrinsic noise. In particular, thermal
data are plagued by fixed-pattern noise [57], while white
random noise and sensor bias affect IMU data. Given these
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noisy features, the feature selection module will generate
masks to re-weigh each feature by conditioning these over
all input channels. The concatenated, re-weighted features,
are then fed to the pose regressor network to estimate the
parameters of the MDN which will be described in detail in
the following section.

2) Probabilistic Pose Regressor: Instead of directly predict-
ing 6-DoF agent poses as in the previous work [12], [13], the
probabilistic pose regressor estimates the parameters of MDN:
mean (µ), variance (σ), and the mixing coefficients (α) as
seen in Eq. (6). To this end, we construct our pose regressor
by stacking two LSTM layers followed by Fully Connected
(FC) layers that decouple MDN parameters for translation and
rotation. We employed LSTM since odometry is considered as
a sequential motion estimation problem, in which implicitly
modelling the temporal dependencies within the network is
important. The two stacked LSTM layers will encapsulate the
dependencies between the current and the previous frame in
the latent states as described in [12], [29]. For this purpose,
we keep a one history of the previous hidden state in the
LSTM although longer history is possible (yet it requires more
computational time).

To derive both the camera poses (6-DoF) and its uncertainty
estimation (covariance matrix) through MDN, we model each
component of the poses (e.g. translation in x direction) as
a mixture of Gaussian. The number of mixing coefficients
(K) stated in Eq. (6) are determined empirically and will
be discussed in Section VII-B4. The selection of K also
determines the total paramaters of the MDN layer which are
typically estimated via FC layers with (3 ∗ K) hidden units
for the mean and the variances and (K) hidden units for
the mixing coefficients. At test time, we can extract the 6-
DoF poses together with the variances by sampling from the
Gaussian mixture models.

3) Learning Mechanism: The neural odometry network
is trained in two stages. In the first stage, we train the
hallucination network and in the second stage, we train the

remaining networks. As the visual hallucination network ΨH

is intended to imitate the visual features aV from real RGB
images encoded by a visual encoder ΨV , we employ a deep
Visual-Inertial Odometry (VIO) model as a pseudo ground
truth to train ΨH . In particular, we use a VINet architecture
[38] to generate aV such that it can be used to train ΨH .
Following [19], we employ the Huber loss [58] to train ΨH to
avoid the catastrophic impact of outliers due to periodic NUC
operation in thermal camera. Then, by trying to minimize the
discrepancy ξ between the output activation from ΨH and ΨV ,
our objective function LH is defined as

LH =
1

n

n∑
i=1

Hi(ξ)

H(ξ) =

{
1
2 ‖ξ‖

2 for ‖ξ‖ ≤ δ,
δ(‖ξ‖ − 1

2δ) otherwise

ξ = ΨH(XT ; WH)−ΨV (XV ; WV ),

(8)

where δ is a threshold, n is the batch size during training, WV

and WH are the weights for ΨV and ΨH respectively. Note
that during this training process, we have previously trained
VINet and freeze its weights.

In the second stage, we train the remaining part of the
networks to estimate the parameter of MDN. As this is a
supervised learning, we will provide the ground truth poses for
the training. Then, the objective function is defined as follows

LMDN =

n∑
i=1

p(t|Z)−i + β

n∑
i=1

p(r|Z)−i , (9)

where p(t|Z)−i and p(r|Z)−i are the negative log likelihood
of Eq. (6) for each translation and rotation component respec-
tively, with t ∈ IR3 and r ∈ IR3 are predicted translation and
rotation. Note that we use Euler angle to represent rotation
r as it is free from constraints and easier to converge as
described by [12]. Note that the odometry motion is usually
also constrained (e.g. the ground robot only perform rotation
in yaw axis) which makes the usage of Euler angle safe from
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gimbal lock problem. We use β to balance the loss between
translation and rotation component as seen in [12], [59]. Note
that in this stage, we freeze the hallucination network ΨH to
avoid altering the learnt hallucination weights that have been
trained in the first stage.

B. Neural Embedding and Loop Closure Detection

In the context of SLAM, the aim of loop closure detection
is to identify whether the mobile agent has revisited a place.
This information can then be used to constrain the odometry
estimation and optimize the overall pose graph.

Following the taxonomy described in [60], loop closure
detection can be achieved through local or global image
descriptors. Global descriptors represents an image in a holistic
manner without the need to extract local features like SIFT
[61] or SURF [62]. Typical example includes representing the
image as a colour intensity histogram as described in [63]
or other image statistics described in GIST [64]. On the other
hand, local descriptor-based approaches extract keypoints (e.g.
corners, blobs, or regions) and their corresponding descriptor
vectors in which the measurements are typically taken from
the vicinity of each keypoint. Then, aggregation methods such
as those based on Bag-of-visual-words (BoW) [65], Vector of
Locally Aggregated Descriptors (VLAD) [66], MAC [67], or
NetVLAD [35] can be used to summarize the descriptors.

Our neural embedding model follows the global descrip-
tor approach as we do not rely on local features extracted
from hand-engineered keypoints or aggregation methods, but
directly generate a global descriptor from a thermal image
through a neural network. We employ a global descriptor based
approach due to the textureless nature of thermal images, in
which two different features from an equivalent RGB image
might be merged in a thermal image as they may have the same
temperature. Thus, instead of focusing on clustering these
ambiguous features (as been done by BoW or NetVLAD),
we instead rely on global image information extracted by the
deep network to improve the generalization.

1) Network Structure: Fig. 4 depicts the structure of our
neural embedding network. The network consists of Truncated
ResNet, followed by global average pooling and fully con-
nected layers. For the Truncated ResNet, we use ResNet50
structure [69] up to the 49th layer to remove the classification
part of the network and obtain a large spatial output dimension.
The global max pooling layer is then used on top of ResNet50
to filter the most important part of the output vectors. We
project this output embedding to a lower dimensional space
by applying 3 FC layers. The number of hidden states in FC
layers follows this decreasing rule FC1(γ ∗ 4), FC2(γ ∗ 2),
FC3(γ), where γ is the total output of the embedding vectors.
In practice, we use γ = 128 to construct an efficient embed-
ding vectors, following the practice in face recognition [70].
We presume that a small number of embedding vectors are
sufficient to describe a thermal image since it has much less
feature variation compared to the RGB images. Then, similar
to the last layer in NetVLAD, we perform L2 normalization
such that the entries of the embedding vectors will be sum to
1. To avoid training the entire network structure from scratch,
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Fig. 4. The network structure of neural embedding during training, which
generates 128-D global descriptor for a single thermal image. For training,
we obtain the list of anchor and positive examples from BoTW [68] applied
on simultaneously captured RGB images such that our network can emulate
BoTW performances on RGB.

we initialize the ResNet50 weights from ImageNet model
and fine-tune all layers when training the network using our
thermal data.

2) Learning Procedure: To train the network, we follow
the standard learning procedure to train a place recognition
network based on triplet margin losses. A triplet {IT , I+

T , I
−
T }

consists of an anchor image IT , a positive example I+
T , which

represents a similar scene with sufficient correspondence with
respect to the anchor (loop pair), and a negative example
I−T , which represents an unrelated scene with no or minimum
image correspondences with respect to the anchor. Given the
triplet information, our triplet loss is defined as

L(IT , I+
T , I
−
T ) = max(λ+

∥∥dWT
(IT )− dWT

(I+
T )
∥∥2−∥∥dWT

(IT )− dWT
(I−T )

∥∥2
, 0),

(10)

where dWT
(.) is the neural embedding network, dWT

(IT ) is
an embedding vector defining the global image descriptor
of image IT , WT is a shared trainable weights for the
network, and λ is a hyper-parameter to control the margin
between positive and negative examples. By training the neural
embedding network using Eq. (10), the network is expected
to produce similar embedding vectors when the mobile agent
re-visits a place.

In order to provide the data for training the embedding net-
work, we have to identify positive loop pairs amongst thermal
image sequences. To avoid a manually laborious annotation
task, we instead use the loop pair detected from a state-of-
the-art place recognition algorithm applied on simultaneously
captured RGB images as pseudo ground truth. In this sense,
the embedding network can imitate how loop closures are
formed from RGB correspondences, given thermal images
as the input. Note that this is possible as both thermal and
RGB cameras are placed in the same mobile agent with
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sufficient spatial correspondence. Then, to detect loop pairs
amongst RGB images, we employ the state-of-the-art Bag-
of-Tracked-Words (BoTW) [68], an improved version of the
standard Bag-of-Words (BoW) algorithm. The main difference
between BoTW and Bow is that BoTW utilizes “Tracked
Words” among successive images rather than the standard
histogram-based visual words in a single image, yielding more
robust recognition performance. Nevertheless, despite its great
performances on RGB images, BoTW performs very poor
on thermal images (see the results in Section VII). This
is most likely because it relies heavily on point features,
which are typically much scarcer on thermal images than in
RGB images, especially when the images are captured in an
uncluttered indoor environment. Hence, we use BoTW as our
pseudo ground truth by applying it on RGB images rather
than directly utilizing it to detect loops on thermal images. To
improve the number of data during training, we interchange
the anchor and the positive loop pair in a triplet and choose a
random negative example that does not belong to the anchor
and to the positive examples, nor is within adjacent frames
with respect to the anchor and the positive examples (see
illustration in Fig. 4). This was done with expectation that
the network should produce a similar embedding vector for
adjacent frames, although these will not be considered as a
loop pair.

3) Loop Closure Detection: After correctly training the
embedding network, we can generate the embedding vectors
for each thermal image. To detect a loop pair, we compute the
discrepancy between each pair of embedding vectors i and j
using cosine distance as follows

Sij =
dWT

(IiT ).dWT
(IjT )∥∥dWT

(IiT )
∥∥∥∥∥dWT

(IjT )
∥∥∥ , (11)

where ‖.‖ is the magnitude of the embedding vectors. If
Sij < ζ, where ζ is a threshold, then the embedding pair is
regarded as a loop closure pair. The selection of ζ is important
as it determines the trade-off between the number of true
positive and false positive pairs. In practice, we set ζ = 0.045
to generate around 85% true positive loop pair although some
false positive pair will also be detected (as depicted in ROC
curve in Fig. 15). Nevertheless, in offline operation, ζ can be
tuned individually for different sequences as necessary.

C. Neural Loop Closure

Given a loop pair, we need to extract the relative poses
between them such that we can inject it into the SLAM back
end as loop closure constraints. To this end, we construct
another deep network, termed Neural Loop Closure, that can
estimate relative poses (and uncertainty) using MDN only from
a pair of thermal images. Fig. 5 depicts the architecture of the
network which resembles the neural thermal-inertial odometry
network. The main difference is that the input thermal pair
does not come from consecutive images, but instead from a
loop closure pair i and j. Note that we do not have IMU
data between them, making the training process even more
challenging.

Hallucination
Network

Thermal
Network

Initialized from 
Neural Odometry

Image i

Image j

Feature 
Selection

Pose 
Regressor

30

10

30

30

10

30

Mean

Var

K

Mean

Var

K

Output 
Translation

Output 
Rotation

Feature Extractor

Normalized Thermal 
14-bit Data

Following the structure of 
neural odometry

Average
Pooling

Neural Embedding

BoTW

Loop 
Detection ...

...

Loop pairs index

Loop pairs index

1 m

1 m

Fig. 5. The network structure of neural loop closure during training. This
network is used to estimate the relative poses (and uncertainty) between a loop
pair by using MDN. The structure resembles neural thermal-inertial odometry
except that it does not have an IMU and the input from thermal images comes
from frames i and j instead of successive frames. For training, the input loop
pairs are obtained from both BoTW applied on RGB images and the neural
embedding network applied on thermal images.

For training, we provide the network with the list of loop
pairs together with the ground truth poses. We utilize the
list of loop pair generated by both BoTW applied on RGB
images and Neural Embedding network applied on thermal
images to provide more data during training. We initialize
both thermal and hallucination network with the weights
from neural thermal-inertial odometry to ease the optimization
process. For testing, we sample from the mixture models to
obtain 6-DoF relative poses between loop pairs. Given both
odometry and loop closure constraints, now we can finally
construct a complete pose graph to be optimized by the SLAM
back end.

VI. SLAM BACK END

The SLAM back end is responsible for optimizing the whole
trajectory given the pose graph constructed by the front end.
However, the pose graph built by the front end is often subject
to noise. For example, the odometry prior can be inaccurate
and largely drift, or the loop closure constraints are erroneous
as the poses are generated only from a pair of thermal images
without the assistance of IMU. To mitigate such noise, we
incorporate an outlier rejection module to filter and feed only
the reliable ones to the subsequent graph-based optimization.

1) Outlier Rejection: The outlier rejection module extends
GraphTinker [71] to our 6-DoF context, which is essentially
based on the geometric consistency of loop closure constraints.
Specifically, consider two loop closure proposals detected by
the front end, if these two loop closure proposals are both true,
then within any reference frame, the two trajectory segments
defined by them will form a sub-loop. If the two segments are
geometrically consistent (e.g., validated through the reverse
odometry method as described in [71]), one can confirm
that both loop closure proposals are true, and mark them
as valid (ready to be used by the later graph optimization).
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Fig. 6. Sample images from the in-house dataset. The top and bottom images are from RGB and thermal camera respectively. For clarity, we display the
rescaled (normalized) radiometric data instead of the 14-bit raw radiometric data.

Fig. 7. Sample images from Subt-tunnel dataset [73].

Otherwise, at least one of the two loop closure proposals is
false positive. In that case we will not push any of them to later
optimization, but temporarily keep them in the proposal set for
next validation. After all sampled loop closure proposals are
examined, the closures with pass rate less than a threshold
will be rejected as outliers. In practice, we typically set the
threshold less than 1. However, the best setting are varied for
different environments as it also highly depend on the accuracy
of the individual loop closure constraints.

2) Optimization: Given the pose graph with odometry
constraints and selected (filtered) loop closure constraints, the
back end optimizer will minimize Eq. (7) using Levenberg-
Marquardt algorithm (i.e., g2o [72]). To generate optimal
solution, the balancing coefficients between odometry and loop
closure constraints have to be selected with care. From our
experiments, the weight for loop closure constraints is usually
set higher than the weight for odometry constraints. For online
operation, we typically set % = 0.01 and ρ = 3. However, the
optimized solution might be obtained by setting different %
and ρ for different sequences and environment. This might be
the right choice if online operation is not required, e.g. the
pose graph optimization can be done in offline fashion as in
the Structure from Motion (SfM) works.

VII. EXPERIMENTS

A. Dataset

We use multiple datasets to test our model, including self-
collected and public datasets. For the self-collected dataset, we
conducted experiments on ground robot and handheld data in
indoor environment with around 8 km total trajectory length.
For the public dataset, we used SubT-tunnel dataset [73]. Each
dataset is described as follows.

1) Indoor Ground Robot Data: We collected our data with
Turtlebot 2. We use a Flir Boson 640 thermal camera to
capture raw radiometric (14-bit) thermal data at 30 fps with
640 × 512 resolution. For the IMU, we utilize XSens MTI-
1 Series running at 100 Hz. We also equip the robot with
a Velodyne HDL-32E Lidar running at 10 Hz and an Intel
Real Sense Depth camera with 680 × 480 RGB resolution
(rolling shutter) running at 30 fps. These RGB data are
used for training the hallucination network and assisting loop
closure detection during training. Note that there are at least

2/3 spatial correspondences between both RGB and thermal
images, enabling the training of hallucination network. In
total, we have 36 sequences collected in different type of
environments (e.g. hall, canteen, office, corridor, etc.), in
which we use 23 sequences for training and 13 sequences
for testing. For odometry training, we employ inertial-assisted
wheel odometry provided by the Turtlebot 2 as the pseudo
ground truth. For evaluation, following the practice in [19], we
utilize VICON Motion Capture system and Lidar Gmapping2

to generate the ground truth poses. Lidar is particularly used
when we do not have VICON as we collected some of our
data in public space. To examine system robustness against
different visibility conditions, we collect the data with suffi-
cient illumination (bright), dim, or in darkness. Fig. 6 shows
the example images for both RGB and thermal cameras.

2) Indoor Handheld Data: For the handheld data, we built
a 3D printed model that utilizes the same set of sensors as with
the indoor ground robot data. The only difference is, instead of
using Velodyne HDL-32E Lidar, we replaced it with a more
lightweight Velodyne Ultra Puck. We collected data in ten
distinct floors from 6 different multistorey buildings including
hallways, canteen, common room, building junction, atrium,
office, and cluttered store rooms. The smallest floor has an
area around 205m2 while the largest one reaches 1500m2.
For quantitative evaluation, we used lidar SLAM generated
by ALOAM 3 as the (pseudo) ground truth. To test the system
robustness in adverse lighting condition, we also collected
data in a smoke-filled environment firefighter training facility,
which is located at Washington DC Fire and EMS Training
Academy, United States.

3) SubT-tunnel Data: SubT-tunnel dataset [73] is a public
dataset collected by a participant of DARPA subterranean
challenge from CCDC Army Research Laboratory (ARL).
The dataset contains synchronized lidar, RGB (stereo), depth,
thermal, and IMU, taken from a ground robot moving in a long
trajectory in an underground tunnel. The dataset is divided into
2 categories, namely urban circuit and tunnel circuit dataset.
Sample images can be seen in Fig. 7. For this experiment, we
only used the tunnel circuit as this data contains usable 14-
bit thermal data (10 Hz) captured from Flir Boson camera. In
particular, we utilized ex_B_route1 sequence (54 minutes)
for testing while the remaining are used for fine-tuning (re-
training with a lower learning rate). The (pseudo) ground truth
for this experiment was provided by Lidar OmniMapper [74].

2https://openslam-org.github.io/gmapping.html
3https://github.com/HKUST-Aerial-Robotics/A-LOAM



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE I
RMS RELATIVE POSE ERRORS (RPE) IN INDOOR GROUND ROBOT DATA

Seq Lighting Length VINet [38] TI odometry TI odometry TI odometry VINet [38] VINS-Mono Inertial+Wheel(Thermal 14-bit) 8-bit (ours) w/o hallu. (ours) 14-bit (ours) (RGB) (RGB)
(m) t (m) r (◦) t (m) r (◦) t (m) r (◦) t (m) r (◦) t (m) r (◦) t (m) r (◦) t (m) r (◦)

32 Bright 31.4 0.049 2.543 0.047 2.496 0.048 2.514 0.039 2.431 2.613 0.044 - - 0.029 2.426
33 Dim 22.5 0.027 1.440 0.038 1.366 0.019 1.218 0.019 1.208 1.341 0.029 - - 0.017 1.294
34 Dim 20.7 0.023 1.406 0.044 1.358 0.022 1.344 0.021 1.263 1.653 0.028 - - 0.017 1.531
37 Dark 71.1 0.031 1.374 0.042 1.284 0.023 1.306 0.021 1.233 1.809 0.033 - - 0.017 1.386
39 Bright 16.8 0.029 1.696 0.044 1.586 0.029 1.645 0.028 1.579 1.679 0.034 - - 0.022 1.550
42 Dim 65.1 0.029 1.714 0.049 1.755 0.028 1.618 0.028 1.570 1.773 0.035 0.144 0.816 0.026 1.676
43 Dim 66.5 0.029 1.713 0.039 1.727 0.027 1.614 0.025 1.571 1.670 0.033 0.166 0.799 0.023 1.651
44 Dim 71.1 0.035 1.727 0.048 1.685 0.031 1.763 0.029 1.676 1.839 0.038 0.190 0.859 0.026 1.758
45 Bright 61.3 0.034 1.674 0.046 1.633 0.030 1.655 0.027 1.557 1.870 0.037 0.173 0.848 0.024 1.641
46 Bright 21.7 0.032 1.517 0.052 1.516 0.028 1.430 0.028 1.353 1.518 0.038 0.150 0.695 0.038 1.452
47 Bright 22.2 0.033 1.779 0.045 1.753 0.028 1.644 0.027 1.577 1.756 0.035 0.173 0.859 0.018 1.808
48 Bright 42.1 0.032 1.557 0.047 1.605 0.025 1.525 0.025 1.462 1.655 0.036 0.205 0.787 0.022 1.623
49 Bright 81.1 0.025 0.766 0.043 0.705 0.019 0.695 0.022 0.679 0.737 0.032 0.166 0.474 0.025 0.745

Mean 0.034 1.608 0.044 1.575 0.028 1.536 0.026 1.473 0.031 1.686 0.171 0.767 0.023 1.580

*The bold indicates the most accurate method among algorithms with thermal and inertial data as the input.
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Fig. 8. Comparison between RGB features produced by VINet and fake RGB features produced by the hallucination network. Top: example of accurate
hallucination, showing generalization in the test data. Bottom: example of erroneous hallucination due to limited thermal features. In this scenario, selective
fusion produces less dense fusion mask, relying more on other modality like IMU. From left to right: RGB image, thermal image, original RGB features,
hallucinated RGB features, fusion mask for the hallucination features, and the output attended hallucination features.

B. Odometry Evaluation in Ground Robot Data

Odometry constraints is an important factor to yield accurate
thermal-inertial SLAM because it is utilized as the initial
estimation in the pose graph optimization. In this section,
we study the influence of thermal representation, measure
the accuracy and the timing of the odometry factor, and
validate the estimated variances. To measure the quality of
the odometry estimation, we measure the Root Mean Square
(RMS) of Relative Pose Errors (RPE) and Absolute Trajectory
Errors (ATE) against ground truth provided by VICON and
Lidar Gmapping.

1) The Influence of Thermal Representation: In this section,
we investigate the choice of the thermal input by comparing
the normalized 8-bit and 14-bit representation. As one can see
in Table I, the 14-bit TI odometry produces more accurate
results than the 8-bit TI odometry for all sequences. Hypo-
thetically this is because our odometry network is devised
based on the optical flow network (i.e. FlowNet [75]) which
extracts pixel displacement features rather than image appear-
ance features. By using the 14-bit representation, it is easier
to retain similar gradient information between consecutive

frames such that consistent pixel displacement distribution in
a short period of time can be extracted, even when frames
sub-sampling is performed. On the other hand, the re-scaling
process in the 8-bit representation might (slightly) alter the
weak gradient information, making it more difficult to extract
consistent pixel displacement distribution for the network to
learn. Nevertheless, the accuracy differences between 8-bit and
14-bit are marginal, indicating that the 8-bit representation is
also usable for deep odometry estimation.

2) The Importance of Hallucination and Selective Fusion:
To understand the importance of hallucination network and
the selective fusion mechanism, we plot the output feature
representation, comparing RGB features, hallucination fea-
tures, fusion mask, and attended hallucination features as seen
in Fig. 8. Fig. 8 (top) shows the hallucinated RGB features
generated from the test data in the canteen sequence (Seq 39),
which is the only canteen sequence we have (no other indoor
structure that replicate this environment). It shows that the
hallucination network produces accurate fake RGB features in
this new environment, showing the generalization capability.
We believe that as long as there are enough thermal features
as the starting information, the hallucination network can
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Fig. 9. Selective fusion mask for mobile robot data in (a) Seq 39 and (b)
poster data. We plot the total number of masks for each feature modality with
value higher than 0.9, indicating the importance of the features.

perform meaningful hallucination by interpolating the RGB
features. It can be seen as well from Fig. 9 (a) that in Seq 39,
there are many cases when the selective fusion network used
more hallucination features than other features (thermal and
IMU), showing the importance of hallucination to improve the
odometry accuracy. This is also supported by the quantitative
results in terms of RPE as shown in Table I.

However, there is always a case that hallucination network
produce erroneous results. The example is shown in Fig. 8
(bottom) when there is not enough thermal gradient informa-
tion to hallucinate rich RGB features. This happens when the
camera faces a poster that has a similar temperature with the
wall. In this case, selective fusion module will rely on the other
modalities, i.e. IMU, in order to produce meaningful odometry.
As we can see from Fig. 9 (b), in poster data, selective fusion
utilizes more IMU features than other modalities and places
the hallucination as the least useful features.

3) Accuracy: To measure the quantitative performance of
our odometry model, we report both RPE and ATE in Table
I and Table IV respectively. We also compare our model
with VINet [38] applied on RGB and thermal, VINS-Mono
[76] applied on RGB, and IMU assisted wheel odometry.
As shown in Table I, our neural odometry produces more
accurate results compared to VINet. VINet applied on RGB
falls short possibly due to the variation in lighting condition
(e.g. dim and darkness), yielding sub-optimal performances.
VINet applied on thermal generates less accurate estimation
due to the difficulty of abstracting thermal data without
the help from hallucination network. Our neural thermal-
inertial odometry produces consistent results either from the
perspective of RPE or ATE, and comparable to IMU assisted
wheel odometry and VINS-Mono RGB (SLAM), showing the
importance of hallucination network and feature selection in
multi modal sensor fusion. Note that in scenarios with benign
lighting, VINS-Mono typically yield more accurate rotation
as it exploits the RGB images which have richer features for
accurate rotation estimation. Nevertheless, VINS-Mono fails
to initialize or loses tracks due to unstable frame rate, abrupt
motion, and the presence of dynamic objects (people) in front
of the RGB camera, particularly in Seq 32, 33, 34, 37 and
39. We also tried to run VINS-Mono with thermal camera
(14-bit) but it lose tracks after couple of seconds to a minute
due to abrupt motion and lack of features in the corridor. To
investigate further the difficulty of tracking thermal features
in our data, we tried to perform odometry estimation using

Feature 
Correspondences

Fig. 10. Feature-based approach (SURF) using standard descriptors loses
tracks on scenes with poor thermal gradients. In this example not enough
correspondences are matched between consecutive images.
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Fig. 11. Translational errors (in X axis) and rotational errors (w.r.t Z axis)
against uncertainty (standard deviation).

strong feature matching algorithm like SURF [62] instead
of using KLT tracker as demonstrated by VINS-Mono. The
pose is then estimated by using five-point algorithm [77]
and bundle adjustment based on Computer Vision Toolbox
applied in Matlab. For this purpose, we normalized 14-bit
images by re-scaling it into 256 intensity around the median
of thermal value. As we can see from Fig. 10, SURF-based
monocular thermal odometry loses tracks, specially following
large changes in viewpoint and poor thermal gradients.

4) Probabilistic Estimates: To validate the proposed prob-
abilistic approach, we first analyse the importance of mod-
elling the odometry output through a mixture of Gaussian,
followed by interpreting the output variances. Table II shows
the influence of the number of Gaussian (indicated by the
number mixing coefficients K) on accuracy. As it can be seen,
by increasing the number of K, the accuracy also increases,
showing that the network models the 6-DoF pose distribution
more accurately by using a mixture of Gaussian instead of
a single Gaussian (K = 1). Nevertheless, at some point, the
accuracy saturates or even degrades.

Fig. 11 plots the uncertainty (variance) estimate against
translational and rotational errors. We show the comparison for
rotation in Z axis as the other axes (X and Y) mostly remain
unchanged during operation. For translation, most changes
happen in X and Y directions while translation in Z axis are
almost zero since the robot moves in flat surface. The figure
shows that the approximate uncertainty is correlated with the
odometry error, validating our approach.

To have a better understanding in which condition the
network produces larger uncertainty, we plot the rotational
uncertainty in X, Y, and Z direction for Seq 46 and Seq 49 in
Fig. 12. Following the practice in [29], for better visualization,
we draw the rotational errors against 3σ variance interval.
As one can see, the rotational errors are located within the
variance intervals, verifying the meaningful of uncertainty
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TABLE II
THE INFLUENCE OF THE NUMBER OF MIXING COEFFICIENTS

(K) ON ACCURACY (ATE)

ATE The Number of K
1 5 10 15 20

Mean (m) 0.793 0.725 0.609 1.051 0.862
Std (m) 0.449 0.435 0.357 0.441 0.606

(a) Seq 46

(b) Seq 49
Fig. 12. Relative pose errors from the neural odometry networks against 3σ
variances interval.

estimation using MDN. In Seq 46, we can see that the network
yields larger variance when the mobile agents perform large
rotation (around 90 degree rotation in Z axis). In Seq 49,
we can also observe that the largest uncertainty takes place
when the robot performs U-turn, which typically generates
the largest error in odometry estimation. This is interesting
since this ability to approximate the variance is learnt during
training without supervision on uncertainty. In this sense, we
can validate that the uncertainty estimation can be used as a
valid constraint for SLAM optimization.

5) Computation Cost: The neural odometry model was
trained on an NVIDIA TITAN V GPU. It required approx-
imately 6-18 hours for training the hallucination network and
around 6-20 hours for training the remaining networks. The
model contains 273 millions of parameters, requiring 547 MB
of disk space. To generate a single prediction, the model
requires approximately 0.5s in a standard CPU, which is
typically slower than the real-time implementation of visual-
inertial odometry (e.g., VINS-Mono [76]) which can produce
the camera pose between 0.05-0.1s. Nevertheless, our model
can be executed for up to 26 Hz (0.039s required for a single
inference) in a powerful GPU like NVIDIA TITAN V.

C. Validating Loop Closure Detection and Loop Closure Con-
straints in Indoor Ground Robot Data

1) Qualitative and Quantitative Results for Loop Closure
Detection: We perform qualitative validation of our loop
closure detection by plotting the detected loop pair on top
of the output odometry. For comparison, we also show the
loop closure detection from state-of-the-art feature-based ap-
proach (i.e. BoTW [68]) and deep learning approach for place
recognition (i.e. NetVLAD [35]). For NetVLAD, we generate
the results from the pre-trained model from Pittsburgh dataset
(RGB images) and also from the re-trained weights on our
thermal images.

Before plotting the output loop closure pair, we inspect
what the neural embedding network learn during training
and compare it with NetVLAD, either applied on RGB (pre-
trained) or applied on thermal (re-trained). Fig. 13 depicts the
similarity matrix generated by measuring the cosine distance
between embedding vectors on Seq 33. When we compare few
images in the beginning of sequence with all other images
in the whole sequence (red square area in Fig. 13), our
neural embedding network identifies two areas with the highest
similarity (excluding the adjacent frames). If we look at the
ground truth trajectory, those two areas belong to the same
place when the mobile agent re-visit the starting point. This
indicates that our network can produce meaningful and distinct
embedding vectors, identifying loop closure by clustering the
same places into similar embedding. While NetVLAD can also
identify two similar regions, they are less distinctive (fewer
area with strong dissimilarity/yellow colored). We presume
that this is because the performance of NetVLAD largely
depends on the clustering algorithm. If the algorithm wrongly
clusters local features due to the similar characteristic of
particular thermal features (two different RGB patches might
look similar on thermal as it lacks texture), it might classify
two different scenes as an identical ones (with some degree
of certainty).

Fig. 14 depicts the detected loop pair on the output odom-
etry given by BoTW (on RGB and on thermal), NetVLAD
(on thermal), and our loop closure detection. As it can be
seen, BoTW clearly produces robust performance on RGB.
However, it performs badly on thermal imagery, yielding a
very small number of correctly detected loop. This emphasizes
the difficulty of performing data association on thermal images
due to the lack of robust features. Our model, as expected,
can perform very well, detecting large number of positive
loop pairs. Nevertheless, by carefully setting the threshold,
NetVLAD (thermal) can also produce a similar number of
positive loop pair. However, this is done with the cost of large
space requirement and slow computation time as described in
Section VII-C3.

For quantitative experiments, we compare our loop closure
detection with respect to BoTW applied on RGB. We plot
a Receiver Operating Characteristic (ROC) curve to measure
the trade-off between sensitivity (true positive rate-TPR) and
specificity (false positive rate-FPR) for every possible cut-off
as it has been used by previous work on place recognition
[78]–[80]. As it can be seen from Fig. 15, our model (nor-
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Trained NetVLADOur Neural Embedding NetworkGround Truth Trajectory Pre-trained NetVLAD

Fig. 13. Similarity matrix produced by our neural embedding network on Seq 2, compared to NetVLAD pre-trained on RGB and re-trained on thermal. Blue
and yellow color indicates the most similar and the most dissimilar pair. Note that our model can produce distinct embedding to identify loop closure.
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(a) BoTW [68] on RGB
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(b) BoTW [68] on Thermal
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(c) Trained NetVLAD (14-bit) [35]
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(d) Trained NetVLAD (8-bit) [35]
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(e) Our model (14-bit)
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(f) Our model (8-bit)

Fig. 14. Loop closure detection on Seq 33 from BoTW (applied on
RGB and thermal imagery), trained NetVLAD (on thermal), and our neural
embedding networks (either using 14-bit or 8-bit representation). Our model
can produce similar performance to NetVLAD (8-bit) but with only 0.4%
space requirement to store the embedding features.

malized 8-bit) produces slightly better performance than the
NetVLAD (normalized 8-bit). Given 20% FPR, our model
obtains around 82% TPR, showing a good trade-off between
TPR and FPR.

2) The Impact of Thermal Representation for Loop Closure
Detection: In Fig. 14 (c) and (e), we also display the loop
pair detected from both NetVLAD and our embedding model
by using normalized (between 0 and 1) 14-bit representation.
For this purpose, we alter the discrepancy threshold Sij such
that we can obtain a similar amount of loop pair compared
to the normalized 8-bit representation. As it can be seen,
either by using NetVLAD or our embedding model, training
loop closure detection by using normalized 14-bit thermal
representation produces many wrong loop pair and becomes

Fig. 15. ROC curves between Neural Embedding (our model) and trained
NetVLAD applied on thermal data for all sequences in ground robot data.

unusable. This happens most likely because both models
utilize the pre-trained ResNet as the feature extractor which
relies heavily on the image appearance properties depicted
by 8-bit RGB images. Quantitative measures shown by ROC
curves in Fig. 15 also indicate that 14-bit models produce very
bad performance (close to random guess), further reinforcing
the qualitative results in Fig. 14 (c) and (e).

3) Efficiency of Neural Embedding Network: Table III
shows the disk space required (MB) to save the embedding
vectors from NetVLAD compared to our model. Our model
requires much less space as it can represents a thermal image
by using only 128 vectors. On the other hand, NetVLAD
needs to produce 32768-dimensional VLAD vectors, which
requires almost 7 GB disk space to save embedding vectors
for all sequences. On the other hand, our model only need
27.3 M, 0.4% from what NetVLAD requires. In terms of
runtime efficiency, NetVLAD takes 2.12 second (in CPU) to
generate the embedding vectors from a single image, while our
model takes only 0.63 second (3.4× faster). However, this is
again slower than the real time implementation of loop closure
detection in VINS-Mono (15-25Hz), although our model can
also reach real time performance (27Hz, 0.037s per single
inference) when it was tested in powerful TITAN V GPU.

4) Validating Loop Closure Constraints: Being able to
correctly detect loop pair is indeed an important stage in
SLAM pipeline. However, estimating accurate poses between
the loop closure constraints is actually more important. Even
if we have large number of true positive loop pair, if the
majority of relative poses among them are largely erroneous,
it will badly impact the back end optimization, making the
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TABLE III
SPACE REQUIREMENT (MB) TO SAVE EMBEDDING

FEATURES IN GROUND ROBOT DATA

Seq Files NetVLAD Our
32 2019-10-24-18-22-33 248 1.1
33 2019-11-23-15-54-25 266 1
34 2019-11-23-15-52-53 244 0.9
37 2019-11-23-15-59-12 362 1.4
39 2019-11-04-20-29-51 855 3.3
42 2019-11-22-10-10-00 789 3.1
43 2019-11-22-10-14-01 782 3.2
44 2019-11-22-10-22-48 829 3.2
45 2019-11-22-10-26-42 728 2.8
46 2019-11-22-10-34-57 252 1
47 2019-11-22-10-37-42 263 1
48 2019-11-22-10-38-47 472 1.8
49 2019-11-28-15-40-10 895 3.5

Total 6985 27.3

trajectory estimation even worse. To this end, we will validate
the accuracy of our neural loop closure network. To have
a better perspective on the accuracy, we compare our result
with the standard feature-based pose estimation. Note that we
have to re-scale the pose estimation generated by feature-based
approach by using ground truth pose, since the estimation is
correct only up to a scale. On the other hand, our model learns
to implicitly estimate the scale by learning it from the ground
truth during training.

Fig. 16 (a) and (b) describes the error distribution for
translation and rotation component for all ground robot se-
quences generated by feature-based approach (SURF and 5-
point algorithm) and neural loop closure respectively. Note
that the translation estimation for SURF-based pose estima-
tion is scaled with the ground truth. As one can see, our
model produces robust and accurate results compared to the
feature-based approach with around 0.344 m and 4.581 degree
translation and rotation error respectively. However, there are
conditions when the network produces large error possibly
when it faces with NUC, large baseline scenario, or heavily
featureless scene, in which hallucination network cannot even
help. This is why outlier rejection in the back end becomes
important component to generate accurate SLAM estimation.

D. SLAM Performance in Ground Robot Data

1) Accuracy: Table IV lists the ATE of TI-SLAM for all
test sequences. It can be seen that the complete SLAM system
produces much better accuracy than the output trajectory
from neural thermal-inertial odometry, showing an increase
of 53.9%. In some sequences, the loop closure constraints can
even improve the accuracy more than 70%, especially for a
long trajectory that contains many loop pair (Seq 42, Seq 43,
and Seq 46). On average, it yields 0.281 m errors, an order of
magnitude smaller than VINet applied on thermal and better
than VINS-Mono (RGB). Note that we even align VINS-Mono
trajectory with the ground truth using [81]. In some sequences,
TI-SLAM even generates more accurate performance than the
IMU assisted wheel odometry (e.g. Seq 39, Seq 42, Seq 46 and
Seq 48), showing the efficacy of our thermal-inertial SLAM
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(b) Neural loop closure
Fig. 16. Comparison of error distribution between neural loop closure and
SURF-based pose estimation approach for all ground robot sequences. Note
that the translation estimation of SURF-based approach are scaled using the
ground truth and only 89% of error data are displayed as the remaining fail
to obtain sufficient correspondences.

TABLE IV
RMS ABSOLUTE TRAJECTORY ERRORS (M) IN INDOOR GROUND

ROBOT DATA

Seq VINet VINet TI TI-SLAM Gain VINS* IMU+
(RGB) (Thermal) odometry (RGB) Wheel

32 1.453 2.195 0.308 0.240 22.1% - 0.123
33 0.565 2.032 0.289 0.182 37% - 0.067
34 1.583 0.804 0.364 0.275 24.5% - 0.073
37 1.931 2.309 0.249 0.164 33.9% - 0.076
39 5.309 5.975 0.916 0.448 51% - 0.546
42 2.670 1.880 1.257 0.141 88.8% 0.351 0.270
43 1.543 2.819 0.592 0.121 79.5% 0.531 0.109
44 2.478 2.498 0.813 0.419 48.5% 0.691 0.188
45 2.022 2.329 0.526 0.352 33.1% 0.620 0.328
46 1.424 0.713 0.478 0.143 70.1% 0.240 0.160
47 1.182 1.348 0.393 0.246 37.5% 0.260 0.238
48 1.542 1.925 0.423 0.369 12.5% 0.783 0.505
49 3.218 10.47 1.311 0.550 58% 1.324 0.428

Mean 2.071 2.869 0.609 0.281 53.9% 0.600 0.239
*The trajectory is aligned with GT using [81].

system. To have better qualitative perspective, Fig. 17 shows
some output trajectories.

2) The importance of uncertainty estimates: In this section,
we inspect the importance of incorporating uncertainty using
our MDN model. We take Seq 43 for instance and replace
the uncertainty estimation on that sequence with a simple
identity matrix, either applied on the odometry or the loop
closure constraints. Note that all other setting remain the same.
Table V shows the output from this experiment. As expected,
employing MDN covariance on both odometry and loop
closure constraints can significantly increase the performance
gain. This happens as our model estimates the uncertainty
according to the input images and motion dynamics, which
better reflects the actual condition compared to fix (identity)
covariance. We can also observe that injecting covariance on
the odometry produces better performance than injecting it
on the loop constraints. This is possibly because odometry
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Fig. 17. Qualitative result of TI-SLAM system in some ground robot data.
Both odometry and optimized odometry are generated from thermal-inertial
data.

TABLE V
THE IMPACT OF INCORPORATING COVARIANCE FROM MDN

Applying MDN covariance on Odometry SLAM GainOdometry Loop ATE ATE
- - 0.592 0.348 41.3%

- 0.592 0.172 71.1%
- 0.592 0.221 62.2%

0.592 0.121 79.5%

constraints are much denser than the loop closure constraints,
in which a better uncertainty estimation on the denser data
might lead to easier optimization.

3) The impact of uncertainty weight and scale: To un-
derstand the importance of balancing the weight between
odometry and loop closure constraints by scaling the covari-
ance, we measure the ATE of our model while changing the
covariance scale from loop closure constraints ρ and fixing
other parameters. Fig. 18 shows the result of this study. As we
have discussed in Section VI, in general, we have to set larger
weight in loop closure constraints to make the pose graph
optimization work and improve the accuracy of odometry
estimation. This reflects in Fig. 18 that the error typically
lower when we set ρ > 2 and larger when we set ρ < 2.
However, if we set ρ too large, this also generates sub-optimal
performance as the effect of loop closure constraints becomes
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Fig. 18. The impact of uncertainty weights on Seq 33, 37, 39, 42, and 46. In
this experiment, we fix every other parameters except the covariance weight
ρ in loop closure constraints.

TABLE VI
RMS ABSOLUTE TRAJECTORY ERRORS (M) IN HANDHELD DATA

Seq Length VINet VINet TI TI-SLAM Gain
(m) (RGB) (Thermal) odometry (%)

35 142 10.964 6.999 3.272 1.033 68.43
36 62 2.866 2.727 1.076 0.661 38.64
37 37 7.602 4.166 1.527 0.538 64.76
38 104 7.788 4.754 1.641 0.444 72.90
39 76 5.062 1.933 2.075 0.921 55.57
40 182 64.195 26.725 17.544 4.175 76.20
42 115 12.815 17.696 5.472 1.859 66.03
43 314 9.355 11.522 2.569 1.038 59.58

Mean 15.081 9.565 4.397 1.334 62.76

too dominant (as seen in Seq 39 in Fig. 18). Nevertheless, the
impact on ATE is not as bad as setting small ρ.

E. SLAM Performance in Handheld Data

1) SLAM Accuracy: For the evaluation in the handheld
data, we fine-tune our neural odometry and neural loop closure
in the handheld data and keep the neural embedding network
as it is. We need to fine-tune the neural odometry and neural
loop closure as the dataset was collected with different sensor
placement which impacts the pose estimation accuracy as the
extrinsic parameters change. Table VI lists the ATE of TI-
SLAM for all test sequences in handheld data. As we can
see, our TI-SLAM produces the most accurate trajectories
compared to VINet (RGB), VINet (Thermal), and TI-SLAM.
Overall, by incorporating loop closure detection and robust
pose graph optimization, we can improve the accuracy of
TI odometry for up to 62.76%. Fig. 19 (a)-(c) show some
qualitative results from the handheld evaluation.

2) Test in Smoke-filled Environment: For the evaluation in
smoke-filled environment, we compare our approach with a
zero-velocity-aided (ZUPT) Inertial Navigation System (INS)
[82] as none of RGB- and Lidar-based odometry/SLAM can
work [8]. As can be seen from Fig. 20 (a) and (b), the
smoke blocks the lidar signal, creating a half-sphere barrier in
front of the device and degrading the lidar odometry/SLAM
algorithm4. In that sense, without the availability of (pseudo)
ground truth, only qualitative results are provided. Neverthe-
less, we can see from Fig. 19 (d) that our TI-SLAM produces

4https://www.youtube.com/watch?v=EZ1gpetEN8c
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Fig. 19. (a)-(c) Qualitative result of TI-SLAM system in the large scale handheld data. Both odometry and optimized odometry are generated from thermal-
inertial data. (d) Test in real emergency scenario with smoke-filled environment. We qualitatively compared TI-SLAM with ZUPT aided INS as RGB, depth,
or lidar-based odometry/SLAM system does not work. Note that the floor plan was generated with Lidar SLAM prior to the testing.
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Fig. 20. Lidar point cloud (a) before and (b) after the environment is filled
with smoke. As can be observed from (b) that the smoke blocks the lidar
signal, creating barrier in front of the device.

similar trajectory with ZUPT aided INS. It is good to note that
the loop closure detection plays important roles of correcting
the drift of TI odometry.

F. SLAM Performance in SubT-tunnel Data

For the experiment in SubT-tunnel dataset, we use our in-
house ground robot as the base model and fine tune the SLAM
front end in sequences sr_B_route1 and sr_B_route2.
The output trajectory and the ATE can be seen from Fig. 21
and Table VII. For comparison, we provide the result from
IMU assisted wheel odometry, VINet (thermal), VINS-Mono
(RGB) [76], and our TI odometry. Despite the fact that in some
areas the tunnel has no illumination (complete darkness), we
still can utilize VINS-Mono (RGB) as the robot is equipped
with four LED illuminators. On the other hand, VINS-Mono
(thermal), either using 8-bit or 14-bit representation, loses
tracks after running for about a minute or two due to abrupt
motion, the lack of thermal features, and low frame rate
(10Hz).

As you can see in Table VII, compared to the state-of-the-art
visual-inertial odometry and SLAM algorithms (e.g., VINet,
VINS-Mono), TI-SLAM produces more consistent trajectory
for a long mission (54 minutes) in poorly illuminated scene
with diverse motion types (e.g., U-turn, stop motion, etc.). TI-
SLAM is even much better than IMU assisted wheel odometry
which typically performs better than our model in shorter
indoor mission as can be seen in Table IV. Our loop closure
detection and loop closure constraints estimation again provide
an important role as TI odometry drift significantly in the long

TABLE VII
RMS ABSOLUTE TRAJECTORY ERRORS (M) IN A LONG MISSION

IN SUBT-TUNNEL DATA

VINet IMU+ VINS-Mono TI TI-SLAM
(thermal) Wheel (RGB) Odometry

Mean 156.41 42.276 30.242 32.048 19.277
Std. Dev. 88.948 48.315 20.723 17.184 10.909

mission. By closing the loop, the accuracy can be improved
by around 40% in ex_B_route1 sequence. Nevertheless,
it is good to note that our approach is running offline while
VINS-Mono has to respect realtime constraints.

VIII. LESSON LEARNT, LIMITATIONS, AND FUTURE
WORK

Despite the fact that TI-SLAM can work well in our
test scenarios, there are limitations and lessons learnt that
can be used as a ground for future exploration. First, for
thermal-inertial odometry, accurate scale estimation remains
a challenge in some scenarios and pose graph SLAM cannot
completely fix it. This problem becomes apparent especially in
longer mission as depicted in hand-held (Fig. 19 (c)) and SubT-
tunnel experiment (Fig. 21). Incorporating range sensor like
millimeter wave radar [83] can be potentially used to alleviate
this problem.

Second, the framework currently operates in offline fashion
as real-time performance remain an open problem for deep
networks, especially when it is executed in standard CPU. In
real-time scenarios, deep network compression and accelera-
tion [84], [85] can be used in the future investigation.

Third, as TI-SLAM brings together deep learning approach
and conventional pose graph optimization, tuning hand-crafted
parameters are required in the SLAM back end, e.g., scaling
covariance between odometry and loop closure constraints,
choosing a threshold to reject false positive loop constraints,
etc. In this case, typically, there are no general hand-crafted
parameters that can maximally perform for individual se-
quence. For online operation, parameters that generate the best
average result are usually used while for offline operation,
these parameters can be tuned individually for each sequence.
In that sense, training a model that can automatically predict
the back end parameters would be a viable future direction.
Finally, domain adaptation also remains a challenge for deep
odometry network. While the embedding network is usually
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Fig. 21. Test in a long mission (54 minutes) in ex_B_route1 sequence from SubT-tunnel dataset. The trajectory generated by inertial+wheel, VINS-Mono
(RGB), TI-odometry (ours), and TI-SLAM (ours) are depicted.

more generalized in cross domain scenarios (e.g., the neural
embedding network trained in ground robot data can be
directly used for testing in handheld data), odometry and loop
closure network need to be tuned for different domain as
the intrinsic and extrinsic parameters between sensors might
change. Designing a DNN model that can learn to estimate
these intrinsic and extrinsic parameters during operation can
be an interesting topic for future research direction.

IX. CONCLUSION

In this paper, we have demonstrated the first complete
thermal-inertial SLAM system. Our key approach enabling
full thermal-inertial SLAM is the usage of probabilistic neural
networks to abstract noisy sensor data such that it will be
more amenable for SLAM inference. By combining this neural
abstraction in the SLAM front end with a robust graph-based
optimization in the SLAM back end, we can generate an
accurate trajectory estimation for different scenarios including
handheld (firefighting) and ground robot motion in indoor
and underground tunnel. Future research directions include
designing online thermal-inertial SLAM system such that
it can work within real time constraints and incorporating
a range-based sensor to produce more accurate results in
arbitrary environments.

APPENDIX
TRAINING DETAILS

A. Neural Thermal-Inertial Odometry

As we have mentioned in Sec. V-A3, to train neural thermal-
inertial odometry, we use Eq. (8) as the objective function
in the first stage of training. Adam optimizer with a 0.0001
learning rate is used for maximum of 200 epochs during this
training process. Before training, we normalize the input 14-
bit radiometric data (into between 0 and 1) by using the
maximum and minimum radiometric value extracted from the
training dataset. We then subtract it with the mean over the
training dataset. We randomly cut the training sequence into
small batches of consecutive pair (n = 8) to obtain better
generalization. We also sub-sample the input such that we
operate on around 5 fps to provide sufficient parallax between
consecutive frames. In the second stage, we continue to train
the network by using Eq. (9) for 200 epochs with RMSProp.
We set 0.001 for the initial learning rate and then drop it by
25% after every 25 epochs. We also follow this procedure to
train neural loop closure network.

B. Neural Embedding Network

For the neural embedding network, we train the network
using Eq. 10 as the objective for a maximum of 200 epochs
using Adam optimizer with 0.0001 initial learning rate. We
set the threshold of adjacent frames empirically as 18. Before
training, we normalize the raw 14-bit radiometric data (into be-
tween 0 and 1) using the maximum and minimum radiometric
value extracted from the training dataset. We then convert back
the normalized radiometric data into a grayscale image (8-bit)
and copy the channels into three such that it can replicate the
standard RGB images consumed by the ResNet50. We only
use a batch size of 3 during training to fit it in our GPU.
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