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EXPONENTIALLY-IMPROVED ASYMPTOTICS AND NUMERICS FOR

THE (UN)PERTURBED FIRST PAINLEVÉ EQUATION

ADRI B. OLDE DAALHUIS

Dedicated to Sir Michael V. Berry on the occasion of his 80th birthday.

Abstract. The solutions of the perturbed first Painlevé equation y′′ = 6y2−xµ, µ > −4, are

uniquely determined by the free constant C multiplying the exponentially small terms in the
complete large x asymptotic expansions. Full details are given, including the nonlinear Stokes

phenomenon, and the computation of the relevant Stokes multipliers. We derive asymptotic

approximations, depending on C, for the locations of the singularities that appear on the
boundary of the sectors of validity of these exponentially-improved asymptotic expansions.

Several numerical examples illustrate the power of the approximations. For the tri-tronquée
solution of the unperturbed first Painlevé equation we give highly accurate numerics for the

values at the origin and the locations of the zeros and poles.

1. Introduction

The perturbed first Painlevé equation

(1.1) y′′ = 6y2 − xµ, µ ∈ R, µ > −4,

was discussed in [5]. In the case µ = 0 the solutions are just Weierstrass ℘ functions, the
case µ = 1 is the unperturbed first Painlevé equation, and in the case µ = 2 two solutions are
y(x) = ±x/

√
6, and no asymptotics is needed, although the transseries solutions below are still

valid.
Before we start discussing the asymptotics of the solutions of (1.1) we first briefly discuss the

possible singularities in the complex x plane. Obviously there could be a complicated branch-
point at x = 0. The other singularities seem to be double poles, but a local analysis shows that
the local behaviour near such a point is of the form

y(x) =
1

(x− xj)2 +
1

10
xµj (x− xj)2

+
µ

6
xµ−1
j (x− xj)3

+

(
hj −

µ(µ− 1)

14
xµ−2
j ln(x− xj)

)
(x− xj)4

(1.2)

− µ(µ− 1)(µ− 2)

48
xµ−3
j (x− xj)5

+ . . . ,

in which the only free constants are the location xj and the coefficient hj . Note that the

coefficient of (x− xj)4
does contain a logarithm. This logarithm is absent in the known cases

µ = 0 (Weierstrass ℘), µ = 1 (first Painlevé equation). In all other case these ‘poles’ are actually
branch-points. Similar observations have been made before. For example in [13] and [7] it is
shown that for all of the solutions of y′′(x) = 6y(x)2−f(x) to be single-valued about all movable
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2 ADRI B. OLDE DAALHUIS

singularities we need f ′′(x) = 0. In expansion (1.2) the next logarithm will appear in front of

(x− xj)8
, and even higher powers of ln(x− xj) will appear in the tail of this expansion.

The dominant behaviours of the solutions that we will consider is y±(x) ∼ ±
√

xµ

6 . In the

next section we consider both behaviours, but in the remainder we will focus on y−(x). Note
that we have

(1.3) y+(x) = e
4πi
µ+4 y−

(
xe

2πi
µ+4

)
.

Hence, our results for y−(x) can be translated to y+(x) via a rotation and a multiplication.
Rigorous results for the case µ = 1 are given in [6]. Some of their techniques can also be

applied in the case µ 6= 1. Proposition 2 of that paper gives us that for any sector of angle less

than 4π
µ+4 , there exist a solution y(x) of (1.1) such that y(x) ∼ −

√
xµ

6 as |x| → ∞ in this sector.

More importantly, their Theorem 3 shows us that there exist a unique solution y−(x) of (1.1)

such that y−(x) ∼ −
√

xµ

6 as |x| → ∞ in the sector | arg x| < 4π
µ+4 . For this solution the constant

beyond all orders C = 0. It can also be labelled as being the Borel-Laplace transform of its
asymptotic expansion.

Once we have chosen the first term in the asymptotic expansion, the remaining terms are
fixed, and the free constant, say C, multiplies exponentially-small terms. In §2 we discuss the
formal series solutions including all the exponentially small terms in so-called transseries. We
will determine the sector of validity of these transseries. The free constant C will determine the
location of the singularities that will appear on the boundary of the sector of validity. At the
end of §2 we will give asymptotic approximations for the locations of these singularities. In the
numerical sections of this paper it will be demonstrated that these approximations are very good
even for the singularities that are closest to the origin.

In §3 we discuss the special solution y−(x), including the computation of its Stokes multipliers,
the level 1 hyperasymptotic approximation, which will include the Stokes-smoothing of the Stokes
phenomenon, and the location of its singularities. In the numerical illustrations it seems to be
the case that this special solution has no singularities on the positive real x-axis. This is known
to be the case when µ = 0 and µ = 1. As far as we can see the techniques of [6] can not be used
for µ 6= 1. The Borel transform of this formal series is discussed in §7, and it follows that this
Borel-Laplace transform y−(x) is well defined for x > σ̃(µ). For σ̃(µ) see Figure 3.

The numerical tools are introduced in §4. They are analytical continuation via the Taylor-
series method for analytic differential equations, and contour integral representations for the
locations of the singularities. These integrals are evaluated via the trapezoidal rule. Note that
once we have a reasonable guess for the location of a singularity, say xj , and we can evaluate
y(x) near that point, then (1.2) can also be used to obtain a much better approximation for xj .
These methods are used in §5 for the cases µ = 15

7 and µ = 4. Finally, in §6 we illustrate the
power of these simple methods by obtaining approximations to a precision of 60 significant digits
for the unperturbed first Painlevé equation, µ = 1, and in this way check some of the results in
the recent literature.

The change of variable z = λx
µ
4 +1 and y(x) =

√
xµ

6 u(z), with λ = 8·6− 1
4

µ+4 , will give us the

differential equation

(1.4) u′′(z) + 2ν
u′(z)

z
+ 4

5ν
(

6
5ν − 1

) u(z)

z2
= 3

2

(
u2(z)− 1

)
,

in which we use the notation ν = 5µ
2(µ+4) . From an asymptotics point of view this differential

equation is slightly simpler than (1.1). Note that because we take µ > −4 we will have ν < 5
2 .
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2. Formal series solutions

Differential equation (1.4) has formal solutions of the form

(2.1) u0(z) ∼
∞∑
n=0

an,0
zn

,

with
(2.2)
a0,0 = ±1, a2n+1,0 = 0, a2,0 = 4

15ν
(

6
5ν − 1

)
, a4,0 = 2

(
2
15ν − 1

) (
3
5ν − 1

)
a0,0a2,0,

and the recurrence relation

(2.3) 3a0,0an,0 = (n− 2) (n− 1− 2ν) an−2,0 − 3
2

n−3∑
m=3

am,0an−m,0, n = 5, 6, 7, . . . .

This recurrence relation is consistent with a2n+1,0 = 0. We do give a4,0 explicitly. It does not
follow from the recurrence relation (2.3).

Our formal solution (2.1) has no free constants. For the free constants we have to start
considering exponentially small perturbations for our solution, that is, solutions of the form
u(z) = u0(z) + Cu1(z), in which u1(z) is exponentially small compared to u0(z). However, our
differential equations (1.1) and (1.4) are nonlinear and once we start considering exponentially
small terms we will immediately obtain terms that are double-, triple-, ... exponentially small.
Hence, we will end up with a transseries

(2.4) u(z) =

∞∑
k=0

Ckuk(z),

in which the uk are solutions of the linear differential equations

(2.5) u′′k(z) + 2ν
u′k(z)

z
+ 3

(a2,0

z2
− u0(z)

)
uk(z) = 3

2

k−1∑
`=1

u`(z)uk−`(z), k ≥ 1,

with formal solutions

(2.6) uk(z) ∼ e−k
√

3a0,0z
∞∑
n=0

an,k
zn+kν

.

In the case k = 1 differential equation (2.5) is linear and homogeneous, and hence, there are no
restrictions on a0,1. We put that freedom in C and fix a0,1 = 1. For the other coefficients we
have

(2.7) 2
√

3a0,0nan,1 = (n− 1 + ν)(ν − n)an−1,1 + 3

n+1∑
m=4

am,0an−m+1,1, n = 1, 2, 3, . . . .

The remaining coefficients are determined by

(2.8) (k2 − 1)a0,0a0,k = 1
2

k−1∑
`=1

a0,`a0,k−`, =⇒ a0,k =
k

(12a0,0)
k−1

, k = 1, 2, 3, . . . ,
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and

3(k2 − 1)a0,0an,k + 2k
√

3a0,0 (n− 1 + (k − 1)ν) an−1,k

+ (n− 2 + kν) (n− 1 + (k − 2)ν) an−2,k − 3

n∑
m=4

am,0an−m,k

= 3
2

k−1∑
`=1

n∑
m=0

am,`an−m,k−`.(2.9)

Transseries expansion (2.4) lives in the half-plane <(
√

3a0,0z) > 0. In this half-plane the terms
decay exponentially, compare (2.6). Below we will resum the transseries, and this is especially
interesting on the boundary of this sector. In the opposite half-plane <(

√
3a0,0z) < 0 we have

the transseries

(2.10) u(z) =

∞∑
k=0

Cku−k(z),

in which

(2.11) u−k(z) ∼ ek
√

3a0,0z
∞∑
n=0

(−1)
n
an,k

zn+kν
.

When we combine (2.4) with (2.6) we obtain a double sum which can be resummed as

(2.12) u(z) ∼
∞∑
n=0

Gn(X(z))

zn
,

in which X(z) = Ce−
√

3a0,0zz−ν and

(2.13) Gn(X) =

∞∑
k=0

an,kX
k.

In the case of n = 0 we can use (2.8) to determine G0(X). However, we can also substitute (2.12)
into (1.4) and use X ′(z) = −

(√
3a0,0 + ν

z

)
X(z). This will give us a power series expansion.

The coefficient of z0 can be evaluated as

(2.14) 3a0,0

(
X2G′′0(X) +XG′0(X)

)
= 3

2

(
G2

0(X)− 1
)
,

and the coefficient of z−1 can be evaluated as

(2.15) 3a0,0

(
X2G′′1(X) +XG′1(X)

)
+ 2ν

√
3a0,0X

2G′′0(X) = 3G0(X)G1(X).

Recall that a2
0,0 = 1. We combine (2.14) with the initial data G0(0) = a0,0, G′0(0) = a0,1 = 1

and obtain

(2.16) G0(X) = a0,0 +
144X

(X − 12a0,0)
2 .

Similarly, we combine (2.15) with the initial data G1(0) = 0, G′0(0) = a1,1 = ν(ν − 1)/(2
√

3a0,0)
and obtain

(2.17) G1(X) =
ν
√

3a0,0X
(
288(1− ν)− 8(3ν − 19)a0,0X + 2X2 − a0,0

90 X
3
)

(X − 12a0,0)
3 .

We already know from (1.2) that our solution can have double pole type singularities. For a
fixed C we can use (2.16) to obtain a first approximation. The double poles should satisfy the
approximation X(z) ≈ 12a0,0.
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To obtain an extra term X(z) ≈ 12a0,0 + α
z in this approximation we will look for double poles

of G0(X) + z−1G1(X), that is, we determine constant α such that G0(X) + z−1G1(X) does not
have a triple pole at level z−1. We expand

G0(X) = a0,0 +
144X(

X − 12a0,0 − α
z + α

z

)2
= a0,0 +

144X(
X − 12a0,0 − α

z

)2 − 288Xαz−1(
X − 12a0,0 − α

z

)3 +O
(
z−2
)
,(2.18)

and determine α such that the triple pole in (2.18) cancels the triple pole in z−1G1(X). The
solution will be a function of z−1, but we are only interested in the constant part: α =
−
√

3a0,0ν
(
2ν − 124

15

)
. Hence, we expect double pole type singularities near solutions of

(2.19) Ce−
√

3a0,0zz−ν = 12a0,0 −
√

3a0,0ν
(
2ν − 124

15

)
z−1.

The analysis above is similar to the one in [1, §6.6a].

3. The case y ∼ −xµ/2/
√

6

With the notation of the previous section we have a0,0 = −1, and we take
√

3a0,0 = i
√

3. Our
starting point will be the positive real axis and we consider the Borel-Laplace transform of the
formal series

(3.1) y−(x) ∼
√
xµ

6

∞∑
n=0

an,0λ
n

x(µ+4)n/4
,

that is, the free constant C = 0 when x → ∞ along the positive real axis. According to (2.6)
the ‘exponentially-small’ terms are oscillatory on the positive real axis, that is, the positive real
axis is an anti-Stokes line. In the z-plane the imaginary axes will be active Stokes lines and the
negative real axis will be the boundary for the sector of validity of asymptotic expansion (2.1).
Hence, the sector of validity is |arg z| < π, that is, |arg x| < 4π

µ+4 .

The nonlinear Stokes phenomenon is the switching on of the exponentially small terms when
the imaginary axes are crossed, that is, in the transseries (2.4) the constant C switches from
C = 0 to C = K± when we cross the positive/negative imaginary axis, respectively. The
constants K± are the Stokes multipliers. The details are very similar to the special case µ = 1
which is discussed in [9]. Hence, the transseries expansions for this function are

(3.2) y−(x) ∼



√
xµ

6

∞∑
k=0

Kk
−uk(z), −4π

µ+4 < arg x < −2π
µ+4 ,√

xµ

6
u0(z), −2π

µ+4 < arg x < 2π
µ+4 ,√

xµ

6

∞∑
k=0

Kk
+u−k(z), 2π

µ+4 < arg x < 4π
µ+4 .

Near the boundaries of the sector of validity |arg x| = 4π
µ+4 the uk(z) are not exponential small

anymore and it makes sense to resum the transseries. Taking only the first term (2.6) and using
(2.8) we obtain for x near the boundary arg x = 4π

µ+4 that

(3.3) y−(x) ∼
√
xµ

6

∞∑
k=0

a0,kK
k
+eik

√
3z

zkν
=

√
xµ

6

−1 +
K+ei

√
3zz−ν(

1 + 1
12K+ei

√
3zz−ν

)2 .
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Hence, the transseries contain information about singularities near the boundary of the sector
of validity. In this case we can see that we expect a double poles near the solutions of 12 +

K+ei
√

3zz−ν = 0. We know already from (1.2) that in the case µ 6= 0, 1 these singularities are
actually log singularities, but the dominant term is a double pole. We will verify all of this in
the numerical sections below.

To determine the Stokes multipliers K± we can use the asymptotic formula

(3.4) an,0 ∼
K+

2πi

∞∑
m=0

(−1)
m
am,1

Γ(n−m− ν)(
−i
√

3
)n−m−ν − K−

2πi

∞∑
m=0

am,1
Γ(n−m− ν)(

i
√

3
)n−m−ν ,

as n→∞. Compare [9, (4.3)]. Since a2n+1,0 = 0 it follows that

(3.5) K+ = K−,

and hence,

(3.6) a2n,0 ∼
−K−
πi

∞∑
m=0

am,1
Γ(2n−m− ν)(

i
√

3
)2n−m−ν ,

as n → ∞. In this final result the optimal number of terms is n, and this formula can be used
to compute the Stokes multipliers numerically to any precision.

The details for the first hyperasymptotic re-expansion are very similar to the case µ = 1
discussed in [9]. The optimal number of terms of expansions (2.1) and (3.1) is N such that

N −
√

3 |z| = O(1) as z →∞. With this N we have

(3.7)

√
6

xµ
y−(x) =

N−1∑
n=0

an,0
zn

+O
(

e−
√

3|z| |z|1/2
)
,

as z →∞ in the sector |arg z| < 1
2π. The level 1 re-expansion will be√

6

xµ
y−(x) =

2N−1∑
n=0

an,0
zn

+ z1−2NK+

2πi

N−1∑
n=0

(−1)
n
an,1F

(1)

(
z;

2N − n− ν
i
√

3

)

− z1−2NK−
2πi

N−1∑
n=0

an,1F
(1)

(
z;

2N − n− ν
−i
√

3

)
+O

(
e−2
√

3|z| |z|1
)
,(3.8)

as z →∞ again in the sector |arg z| < 1
2π. Compare [9, (5.3)]. The first hyperterminant function

can be expressed in terms of the incomplete gamma function F (1)
(
z; N+1

σ

)
= −eσz (−z)N Γ(N+

1)Γ(−N, σz). It is the simplest function with a Stokes phenomenon. For more details see [8].
The level 1 expansion (3.8) can be used to determine solution y−(x) uniquely. The order

estimate in (3.8) is double exponentially small. Hence, the term Cu1(z) is clearly not present in
the transseries expansion for y−(x), that is, C = 0.

The first array of poles in the lower half-plane are located near solutions of

(3.9) K−
e−i
√

3λx(µ+4)/4

λνxν(µ+4)/4
= −12−

i
√

3ν
(
2ν − 124

15

)
λx(µ+4)/4

,

and the first array of poles in the upper half-plane are located near solutions of

(3.10) K+
ei
√

3λx(µ+4)/4

λνxν(µ+4)/4
= −12 +

i
√

3ν
(
2ν − 124

15

)
λx(µ+4)/4

.

Note that the sign in front of the second term on the right-hand sides of (3.9) and (3.10) are
different. This is a consequence of the (−1)

n
, with n = 1, in (2.11).
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4. The numerics.

To obtain very accurate numerical approximations we start with a large x0 on an anti-Stokes
line and use an optimally truncated asymptotic expansion. In the case of y ∼ −xµ/2/

√
6 we will

start on the positive real x-axis and use (3.1) to determine y−(x) and its derivative, and in the

case y ∼ +xµ/2/
√

6 we will start with a x such that arg x = 2π
µ+4 . Once we have determined

the function and its first derivative we can combine the original differential equation (1.1) with
the Taylor-series method (see [4, §3.7(ii)]) and ‘walk’ in the direction of the origin along the
anti-Stokes line. Thus initially we compute the first 2 Taylor coefficients in

(4.1) y(x) =

∞∑
m=0

bm (x− x0)
m
,

via an optimally truncated asymptotic expansion, and the higher coefficients via

(4.2) (m+ 2)(m+ 1)bm+2 = 6

m∑
`=0

b`bm−` − (−1)
m
xµ−m0

(−µ)m
m!

, m = 0, 1, 2, . . . .

We do control the step-size step and the number of Taylor coefficients that we use in (4.1). At
each step we take x1 = x0 + step and compute y(x1) and y′(x1) via (4.1) and take x0 = x1 in
(4.2) to compute the higher coefficients.

To study the numerical stability of this process we can linearise (1.1) near x0 and in that way
we observe that the worst that can happen is that the numerics is polluted with a little bit of a
solution of (2.5) (k = 1). However, the solutions of that equation will be oscillatory along the
anti-Stokes line. Hence, the numerical integration should be stable.

However, we are dealing with a nonlinear differential equation and do not control the locations
of the singularities. Note that in the previous sections we did note that the origin can be a
complicated branch-point and we did make predictions of the locations of possible double ‘poles’.
Remarkably these predictions seem to be good even for small values of x.

In the case that µ = 1 we obtain from (1.2) that the residue at x = xj of − 1
2xy

′(x)/y(x) is

xj , and the reader can verify that the residue at x = xj of 1
56y
′(x)3/y(x) is hj . Hence, we can

use loop integrals to evaluate the position of the pole and the constant hj . We do not know the
exact location of the poles, but we will need only reasonably good predictions, say x̃j , which we
do obtain from Padé approximants, or from the solutions of (3.9) and (3.10). Our loops will be
circles |x− x̃j | = r because we are going to use the trapezoidal rule, and according to [12] the
right-hand side of

(4.3)
1

2πi

∮
|τ |=r

F (τ) dτ ≈ 1

2M

2M−1∑
m=0

wmF (wm), where wm = reπim/M ,

converges exponentially fast to the left-hand side as M →∞, as long as (τ − a)F (τ) is analytic
in a disc |τ | ≤ r̃, with r < r̃ and |a| < r. Once we know y(x) and y′(x) at, say, x = x̃j + w0

then we use (4.2) again to compute many Taylor coefficients, and use them in (4.1) to evaluate
y(x) and y′(x) at x = x̃j + w1. We can continue this process to evaluate y(x) and y′(x) at all
x = x̃j + wm.

In the case that µ 6= 0, 1 this method to determine xj does not work, because y(x) will have
a logarithmic singularity at xj . However, from (1.2) we obtain the local expansion

(4.4)
−xy′(x)

2y(x)
=

xj
x− xj

+ 3
14µ(µ− 1)xµ−1

j (x− xj)5
ln(x− xj) + · · ·+ reg(x− xj),

in which reg(x − xj) denotes a function that is analytic at x = xj . Let x̃j be a reasonable
approximation for xj and let r > 0 be small enough such that x = xj is the only singularity

http://dlmf.nist.gov/3.7.ii
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contained in the disk |x− x̃j | ≤ r then we can approximate the integral

(4.5)
1

2πi

∮
−xy′(x)

2y(x)
dx ≈ xj + 1

28µ(µ− 1)xµ−1
j (r + x̃j − xj)6

,

where we integrate along the contour x = x̃j + re2πiθ, θ ∈ [0, 1]. Hence, the closer we are at
xj the smaller the impact of this logarithm. We will use (4.3) with F (τ) = − 1

2xy
′(x)/y(x), in

which x = τ + x̃j , and decreasing values of r.
Note that we will ignore the second term on the right-hand side of (4.5). However, the only

unknown on the right-hand side of (4.5) is xj . Hence, we can also evaluate the left-hand side of
(4.5) numerically, and use the full approximation (4.5) to compute xj . This will result in slightly
better approximations.

5. Example 1: µ = 15
7 and µ = 4

In the first example we take µ = 15
7 , a non-integer. We will have ν = 75

86 . In this section we
will aim to obtain approximations to a precision of 10 significant digits. As a check we will do the
same calculations with larger starting points and considerably more steps and Taylor coefficients.
In this way we can check that the digits that we give below are actually correct.

To determine the Stokes multipliers we use (3.6) with n = 15 and 15 terms on its right-hand
side. We obtain

(5.1) K− = 0.07069725039 + 0.01439846034i.

For the remaining numerics in this section we use x = 6 as our starting point. The optimal
number of terms in asymptotic approximation (3.1) is approximately 11. We obtain

(5.2) b0 = y−(6) = −2.7837507946, b1 = y′−(6) = −0.4971881751.

The Taylor-series method is described in the previous section. We will take 20 Taylor coefficients
in (4.1) and ‘walk’ in 100 steps to x = 2. We obtain

(5.3) y−(2) = −0.8564979712, y′−(2) = −0.4608802105.

We compute the first 200 Taylor coefficients at x = 2 via (4.2) and use this Taylor series to
compute a Padé approximant of order [99, 100] about the point x = 2. In Figure 1 (left) we can
see the distribution of the poles of this Padé approximant. The accumulation of poles near the
origin clearly indicates that the origin is a branch-point (see [10]), but we can also see that there
are poles at approximately p1 ≈ −2.75 + 1.7i and at p2 ≈ −3.2 + 3.05i.

To obtain better numerical approximations for these poles we will ‘walk’ along a straight line
from x = 2 to x = pj + r, with r = 1

2 , and use the contour integral method described at the end
of §4.

In the case j = 1, using 20 Taylor coefficients we ‘walk’ in 1000 steps to the first pole and
obtain

(5.4) y−(p1 + 1
2 ) = 4.261757203 + 0.011948086i, y′−(p1 + 1

2 ) = −16.66671859− 1.52622461i.

The size of these values indicates that we are close to the singularity. The location of the pole
is determined via (4.3) in which we take F (τ) = − 1

2xy
′(x)/y′(x), with x = τ + p1, r = 1

2 and
M = 1000. We will need y(p1 + wm). Again, we will use the Taylor-series method with 20
coefficients and step wm − wm−1. We obtain the approximation

(5.5) r = 1
2 , p1 = −2.743854960 + 1.711273828i.

We repeat this process, starting at x = 2, with this better guess for p1 and r = 1
10

(5.6) r = 1
10 , p1 = −2.740061378 + 1.709843142i,
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Figure 1. The poles of the Padé approximants of y−(x) in the cases µ = 15
7

(left) and µ = 4 (right).

and again

(5.7) r = 1
100 , p1 = −2.740061121 + 1.709843110i,

At the end of §3 we did mention that the poles should approximately satisfy (3.10). This
approximation was constructed for the large poles. When we solve (3.10) for x near p1 we obtain
the solution x = −2.736 + 1.705i, with relative error 0.002. Hence, even for the small poles we
obtain reasonable approximations via (3.10).

In a similar manner we can obtain a numerical approximation for the second pole

r = 1
2 , p2 = −3.206143009 + 3.079481200i,

r = 1
10 , p2 = −3.200868582 + 3.074868336i,(5.8)

r = 1
100 , p2 = −3.200868242 + 3.074868282i,

and when we solve (3.10) for x near p2 we obtain the solution x = −3.199 + 3.074i, with relative
error 0.0004.

In the introduction we do mention that the double pole expansion (1.2) can also be used to
obtain a very good approximation for the location of the pole. Say that we start for the second
pole with the approximation originating from (3.10), that is p2 ≈ −3.199 + 3.074i and with the
Taylor series method, mentioned above, we evaluate y−(p2 + 1

100 ) = 6986.503356 + 1027.767205i.
Then we can use the approximation

(5.9) y−(x) ≈ 1

(x− xj)2 +
1

10
xµj (x− xj)2

+
µ

6
xµ−1
j (x− xj)3

,

with x = p2 + 1
100 and solve for xj near p2. We obtain xj = −3.200868241 + 3.074868282i. Note

that compared with the final result in (5.8) only the final digit is different.
We did mention above that in Figure 1 (left) it is clearly visible that the origin is a branch-

point, but it is not obvious that the other poles are actually also (weak) branch-points. For that
reason we do include some details for the case µ = 4, that is ν = 5

4 . In that case the origin is a
regular point. We compute the first 120 Taylor coefficients at x = 0 via (4.2) and use this Taylor
series to compute a Padé approximant of order [59, 60] about the origin. In Figure 1 (right) we can
see the distribution of the poles of this Padé approximant. The poles start to accumulate at p0 and
p1, indicating that these are branch-points. With the same numerical steps as described above we
obtain that K− = 0.5297382962−0.2194247868i, and that there are ‘poles’ at p0 = −1.182001651,
p1 = −0.895391503 + 2.352132859i, and p2 = −0.745388754 + 3.344311527i.
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Figure 2. The zeros (blue) and poles (red) of the Padé approximants of y−(x)
in the case µ = 1.

6. Example 2: The unperturbed first Painlevé equation

In this section we will aim to obtain approximations to a precision of 60 significant digits. The
main reason for this is that we want to check some of the results in the recent literature. The
unperturbed first Painlevé equation is the case µ = 1, ν = 1

2 . In this case the singularities in
the complex plane are double poles. Hence, they are not branch-points and the contour integral
method to determine the locations of the poles and zeros will be much more efficient. The Stokes

multiplier is known to be K− = − 31/4
√

5π
(1 + i), see [11]. Taking n = 100 in (3.6) and 100 terms

on its right-hand side we would obtain an approximation for K− to a precision of 63 significant
digits.

For the remaining numerics in this section we use x = 33 as our starting point. The optimal
number of terms in asymptotic approximation (3.1) is approximately 70. We obtain

b0 = y−(33) = −2.345227006792405252263591282624246998603914831899264653960958,(6.1)

b1 = y′−(33) = −0.035532293810222842527936052573825449588186033237794348317154.

We will take 40 Taylor coefficients in (4.1) and ‘walk’ in 1000 steps to the origin. We obtain

y−(0) = −0.187554308340494893838681757595444367707042203291560247736544,(6.2)

y′−(0) = −0.304905560261228856534104124988845544022671489625676976089364.

Accurate values for this tri-tronquée solution at the origin are also given in [2]. They claim
64 digit precision, but comparing their results with (6.2) we see that they did obtain 30 digit
precision.

We compute the first 100 Taylor coefficients at x = 0 via (4.2) and use this Taylor series to
compute a Padé approximant of order [49, 50] about the point x = 0. In Figure 2 we can see the
distribution of the zeros and poles of this Padé approximant.

The location of the first zero, which is approximately at z1 ≈ − 1
2 , is determined via (4.3)

in which we take F (τ) = 1
2xy

′(x)/y′(x), with x = τ − 1
2 , r = 1

2 and M = 60. We will need

y(wm− 1
2 ). Again, we will use the Taylor-series method with 40 coefficients and step wm−wm−1.

We obtain the approximation

z1 = −0.499912553551334521451561845356016137446077785951448892634807,(6.3)

y′(z1) = −0.468865514339593121531937054555736186201504711389139130341116,

in which we did obtain y′(z1) by walking in 10 steps from the origin to z1, taking 40 Taylor
coefficients. Note that with a relatively small M = 60 we do already obtain more than 60 digits
precision.
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To approximate the first real pole we first walk to x = −2 in 300 steps, taking 40 Taylor
coefficients and obtain

y−(−2) = 6.74868071988330557708652890818896015343487191457022993535053,(6.4)

y′−(−2) = −35.3975621098672136235306591226332932218101982620590565238107.

The location of the first pole p1 and the corresponding h1 (see (1.2)), is determined via (4.3) in
which we take F (τ) = − 1

2xy
′(x)/y′(x) and 1

56y
′(x)3/y(x), respectively, with x = τ − 5

2 , r = 1
2

and M = 200. We obtain

p1 = −2.38416876956881663929914585244876719041040881473785051267724,(6.5)

h1 = 0.0621357392261776408964901416400624601977407713738296636635327,

verifying the results in [3], except the final digits. When we solve (3.10) for x near p1 we obtain
the solution x = −2.365 + 0.002i, with relative error 0.008.

Finally we compute also the location of the first complex pole. The details are the same as
above, the same number of steps, the same M , and the centre for the circle will be −4.0 + 1.3i.
The result is

p2 =− 4.07105552317228805392886956167452318934557741897847147742812(6.6)

+ 1.33555121517567079951876062434077312552294901369825871527178i,

and when we solve (3.10) for x near p2 we obtain the solution x = −4.068 + 1.337i, with relative
error 0.0007.

7. The Borel transform on the positive real line

In this section we will study the Borel transform via

(7.1) u(z) = −1 +

∫ ∞
0

e−ztb(t) dt.

When we start with differential equation (1.4) and multiply each term by z2 then we obtain for
the Borel transform b(t) the differential-integral equation

(7.2)
(
t2 + 3

)
b′′(t) + (2− ν)2tb′(t) + 2

(
4
5ν − 1

) (
3
5ν − 1

)
b(t) = 3

2

∫ t

0

b′(τ)b′(t− τ) dτ.

It can be checked that

(7.3) b(t) =

∞∑
n=0

an+1,0

n!
tn, |t| <

√
3,

with a0,0 = −1 and an+1,0 defined in (2.2) and (2.3), is a solution of (7.2). In this section we will

show that this solution is well defined and has a bound of the form |b(t)| ≤ ceσ(ν)t, t ≥ 0. Hence,
our Borel-Laplace transform u(z), defined in (7.1), is well-defined for <(z) > σ(ν). Our original
perturbed first Painlevé equation is in terms of x and µ, and we obtain that the corresponding

solution is well defined for x > σ̃(µ) =
(

61/4

8 (µ+ 4)σ
)1/(1+µ/4)

. For σ(ν) and σ̃(µ) see Figure 3.

To obtain a more convenient integral equation we use (1.4) directly in (7.1) and obtain

(7.4)
(
t2 + 3

)
b(t) = 2ν

∫ t

0

τb(τ) dτ + 3a2,0t− 3a2,0

∫ t

0

(t− τ)b(τ) dτ + 3
2

∫ t

0

b(τ)b(t− τ) dτ.

Dividing both sides by t2 + 3 we have b(t) = T b(t) with

(7.5) T b(t) =
2ν

t2 + 3

∫ t

0

τb(τ) dτ +
3a2,0t

t2 + 3
− 3a2,0

t2 + 3

∫ t

0

(t− τ)b(τ) dτ +
3
2

t2 + 3

∫ t

0

b(τ)b(t− τ) dτ.
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Figure 3. σ as a function of ν (left) and σ̃ as a function of µ (right).

We are going to show that this is a contraction mapping. Let c and σ be positive constants and
define the norm

(7.6) ‖h‖ = inf
{
M | |h(t)| ≤Mceσt for all t ≥ 0

}
.

Denote by Bσ the complex vector space of analytic function h(t) on [0,∞) such that ‖h‖ is
bounded. Equipped with this norm, Bσ becomes a Banach space.

For the terms on the right-hand side of (7.5) we have in the case t ≥ 0 that

(7.7)

∣∣∣∣ 2ν

t2 + 3

∫ t

0

τh(τ) dτ

∣∣∣∣ ≤ 2|ν|c‖h‖
t2 + 3

∫ t

0

τeστ dτ ≤ 2|ν|c‖h‖t
t2 + 3

∫ t

0

eστ dτ ≤ |ν|‖h‖
σ
√

3
ceσt,

(7.8)

∣∣∣∣3a2,0t

t2 + 3

∣∣∣∣ ≤ |a2,0|
(
te−σt

)
eσt ≤ |a2,0|

cσ
ceσt,

(7.9)

∣∣∣∣ 3a2,0

t2 + 3

∫ t

0

(t− τ)h(τ) dτ

∣∣∣∣ ≤ 3|a2,0|t
t2 + 3

∫ t

0

|h(τ)|dτ ≤
√

3|a2,0|‖h‖
2σ

ceσt,

(7.10)

∣∣∣∣ 3
2

t2 + 3

∫ t

0

h1(τ)h2(t− τ) dτ

∣∣∣∣ ≤ 3
2 t‖h1‖‖h2‖
t2 + 3

c2eσt ≤
√

3‖h1‖‖h2‖c
4

ceσt,

in which we have used several times t
t2+3 ≤

√
3

6 .
Combining the inequalities above we obtain

(7.11) ‖T h‖ ≤ |a2,0|
cσ

+
√

3
4 c‖h‖

2 +
|ν|+ 3

2 |a2,0|
σ
√

3
‖h‖,

and using the convolution identity h1 ∗ h1 − h2 ∗ h2 = (h1 + h2) ∗ (h1 − h2) we have

(7.12) ‖T h1 − T h2‖ ≤
(√

3
4 c‖h1 + h2‖+

|ν|+ 3
2 |a2,0|

σ
√

3

)
‖h1 − h2‖.

Recall that a2,0 = 4
15ν

(
6
5ν − 1

)
. It is now possible to choose c and σ such that when ‖h‖ ≤ 1

we will have from (7.11) that ‖T h‖ ≤ 1, and taking ‖hj‖ ≤ 1 we will have in (7.12) that the
multiplier of ‖h1 − h2‖ will be less than 1. Hence, we want to find a pair c, σ such that both

(7.13)
|a2,0|
cσ

+
√

3
4 c+

|ν|+ 3
2 |a2,0|

σ
√

3
≤ 1,

√
3

2 c+
|ν|+ 3

2 |a2,0|
σ
√

3
≤ 1.

Once we have such a pair we have shown that b(t) = T b(t) has a unique solution with the bound

|b(t)| ≤ ceσt for all t ≥ 0. We want σ as small as possible, but σ ∼ 4
25

(√
3 + 2

c

)
ν2 as ν → −∞.

A reasonable choice seems to be c = 7
10 . It is also possible to use the optimal c =

√
3
α2 + 4

α −
√

3
α ,

with α =
∣∣∣ ν
a2,0

∣∣∣+ 3
2 . The corresponding σ as a function of ν is displayed in Figure 3.
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