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ARTICLE

Loss-of-function, gain-of-function and dominant-
negative mutations have profoundly different
effects on protein structure
Lukas Gerasimavicius 1, Benjamin J. Livesey 1 & Joseph A. Marsh 1✉

Most known pathogenic mutations occur in protein-coding regions of DNA and change the

way proteins are made. Taking protein structure into account has therefore provided great

insight into the molecular mechanisms underlying human genetic disease. While there has

been much focus on how mutations can disrupt protein structure and thus cause a loss of

function (LOF), alternative mechanisms, specifically dominant-negative (DN) and gain-of-

function (GOF) effects, are less understood. Here, we investigate the protein-level effects of

pathogenic missense mutations associated with different molecular mechanisms. We

observe striking differences between recessive vs dominant, and LOF vs non-LOF mutations,

with dominant, non-LOF disease mutations having much milder effects on protein structure,

and DN mutations being highly enriched at protein interfaces. We also find that nearly all

computational variant effect predictors, even those based solely on sequence conservation,

underperform on non-LOF mutations. However, we do show that non-LOF mutations could

potentially be identified by their tendency to cluster in three-dimensional space. Overall, our

work suggests that many pathogenic mutations that act via DN and GOF mechanisms

are likely being missed by current variant prioritisation strategies, but that there is con-

siderable scope to improve computational predictions through consideration of molecular

disease mechanisms.
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M issense single nucleotide variants, which result in the
substitution of a single amino acid residue at the pro-
tein level, are responsible for a large fraction of all

currently known human genetic disorders1,2. Such disease-
causing variants generally display a lower frequency of being
observed in the population due to selective pressures. As a result
of employing allele frequency filtering as an integral part of
clinical genetics pipelines, a large number of rare variants that
lack evidence of pathogenicity have been assigned as variants of
uncertain significance. However, pathogenic missense variants
represent only a small fraction of rare variants that have been
observed in the human population, as all of us in fact harbour a
significantly higher number of benign, but rare, variants than has
been considered before3–5. Thus, separating causal missense
changes that are truly clinically relevant from rare benign varia-
tion remains a major challenge for diagnosis, and ultimately
treatment, of human genetic disease.

A large number of computational methods have been devel-
oped for the prediction of variant effects, and are widely used in
clinical sequencing pipelines for the prioritisation of potentially
damaging variants. Such variant effect predictors (VEPs) are
diverse in their methodologies and implementation, leveraging
protein sequences and/or structures, as well as various contextual
annotations at the gene, protein or residue level6,7. While their
current utility in a clinical setting is still limited by their insuf-
ficient accuracy8, the improvement and application of VEPs is
expected to remain a major avenue to variant prioritisation9.

VEPs can provide useful information on the likelihood of
mutations being pathogenic, but most tell us nothing about the
molecular mechanisms underlying disease. For this, consideration of
the protein structural context of mutations can be very informative.
In particular, protein stability predictors, which directly evaluate the
change in Gibbs free energy of folding (ΔΔG) upon mutation,
represent an alternate computational strategy for understanding the
effects of missense mutations. Most stability predictors directly uti-
lise protein structures to model the change in stability between the
wild-type and variant proteins through a scoring function of pair-
wise atomic or coarse-grained interactions10. While these methods
were not specifically designed for the identification of pathogenic
variants, they are routinely used when evaluating candidate
mutations11–14 in order to identify those that are likely to be
damaging to protein structure and thus cause a loss of function
(LOF)15–17. Alternatively, increased protein stabilisation can also be
associated with disease, and it has been shown that using the
absolute ΔΔG values results in higher accuracy when identifying
disease mutations, although this may also be due to predictor
inability to correctly distinguish the direction of the effect18,19.
Interestingly, a recent study found that stability predictors per-
formed much better in the identification of pathogenic missense
mutations in genes associated with haploinsufficiency20, supporting
the utility of stability predictors for identifying LOF mutations.

Although many pathogenic missense mutations cause a simple
LOF, a large number are known to operate via alternate molecular
mechanisms. For example, with the dominant-negative (DN)
effect, the expression of a mutant protein interferes with the
activity of a wild-type protein21. This is most commonly observed
for proteins that form homomeric complexes, in which the
mutant subunits can effectively “poison” the assembly22. Such
mutations should not be highly destabilising, as the DN effect is
reliant on the mutant protein being stable enough to co-assemble
into a complex with the wild type. In fact, it has previously been
observed, for a limited subset of transmembrane channel pro-
teins, that DN missense mutations tend to have low predicted
ΔΔG values14. Similarly, we can hypothesise that gain-of-function
(GOF) mutations, which can occur through various mechanisms,
such as constitutive activation, shift of substrate or binding target

specificity, or protein aggregation23, should also tend to be mild at
a protein structural level.

In this study, we have investigated the effects of pathogenic
missense mutations associated with different molecular disease
mechanisms on protein structure. We find clear differences
between LOF vs non-LOF mutations in terms of their location
within structures, their predicted effects on protein stability, and
their clustering in three-dimensional space. Most importantly, we
find that nearly all the VEPs we tested perform worse on DN and
GOF mutations, which shows that there are systematic limitations
in the ability of current computational predictors to identify
disease mutations associated with non-LOF mechanisms.

Results
Consideration of full protein complex structures improves the
identification of disease mutations. As the basis for this study,
we first compiled a dataset of human missense mutations mapped
to three-dimensional protein structures from the Protein Data
Bank24 of 1261 Mendelian disease genes (schematic outline of our
data collection and annotation pipeline is outlined in Supple-
mentary Fig. 1; complete dataset is accessible through the link in
section ‘Data Availability’). Due to the nature of the PDB, this
dataset is focused on structured proteins, and will contain very
few intrinsically disordered protein regions. The compiled set
included 13,050 annotated pathogenic and likely pathogenic
missense mutations from ClinVar3, and 211,266 missense var-
iants observed across >140,000 people from gnomAD v2.14. We
recognise that the gnomAD dataset will contain some damaging
variants, e.g., those that are associated with late-onset disease,
population-specific penetrance or are pathogenic under homo-
zygous conditions. The vast majority of the gnomAD variants are
classified as rare according to clinical genetics standards (<0.1%
allele frequency), and performing allele frequency-based filtering
of this dataset would drastically diminish the available data and
statistical power of our analyses, despite most rare variants
observed in the general population being benign or of sub-clinical
significance5. Thus, we have chosen to include all the gnomAD
variants (excluding those annotated as pathogenic in ClinVar) as
our ‘putatively benign’ dataset.

Next, we modelled the effects of all missense changes using the
structure-based protein stability predictor FoldX v525. We used
FoldX for three reasons. First, we previously showed it to have the
best performance, out of 13 different stability predictors, in
distinguishing between ClinVar pathogenic and gnomAD
variants18. Second, most other stability predictors consider only
the structures of individual polypeptide chains, and are incapable
of evaluating stability changes on protein complexes, which is a
key focus of our study. Finally, most stability predictors are only
accessible as webservers, making it untenable to apply them to
our very large dataset.

Based on our previous analysis, here we have primarily used
absolute values, |ΔΔG | , which show a better ability to
discriminate between pathogenic and putatively benign variants.
This could reflect two things. First, some pathogenic mutations
might increase protein stability, and so the magnitude of the
stability perturbation is most useful for identifying these
stabilising disease mutations. Second, FoldX, as well as other
similar stability predictors, may be better at predicting the
magnitude than the sign of the stability perturbation. This was
supported by the fact that different stability predictors are often
discordant in whether or not a mutation is stabilising or
destabilising18. Importantly, for most analyses, we found it makes
very little difference whether we use raw or absolute ΔΔG, as the
large majority are destabilising. We will further address the issue
of stabilising vs destabilising mutations later in the manuscript.
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Our previous study on the identification of pathogenic
mutations with protein stability predictors considered only
monomeric proteins18. As the dataset used in our current study
was derived from both monomeric and complex structures, we
first investigated the impact of using full structures. For each
mutation, we calculated ΔΔG for both the protein monomer
alone, and for the full biological assembly containing all
molecules. Monomer | ΔΔG | represents the effect on the stability
of a monomeric protein or isolated subunit, while full | ΔΔG |
includes both intra- and intermolecular interactions. For the
structures of monomeric proteins, and for mutations not close to
intermolecular interfaces, the full and monomer | ΔΔG | values
will be identical or nearly identical.

Figure 1a shows that using the full structures in the FoldX
calculations increased the average extent of observed stability
perturbations of pathogenic mutations by almost 15%, from 3.39
to 3.89 kcal mol−1, compared to only using the monomeric subunits.
To see how this affects the identification of disease mutations, we
performed receiver operating characteristic (ROC) analysis to assess
discrimination between the ClinVar and gnomAD mutations. The
area under the curve (AUC), which corresponds to the probability of
a randomly chosen disease mutation being assigned a higher-
ranking |ΔΔG | value than a random gnomAD variant26, was used
as a quantitative classification performance metric. As is evident
from Fig. 1b, the curve, derived from full |ΔΔG | values, resides
higher than the performance curve of monomer prediction values
over the entire threshold range. Using full |ΔΔG | values results in an
AUC of 0.677, which is significantly higher (p= 4.3 × 10−71) than
the AUC of 0.652 when only using monomeric structures. While this
is unsurprising, given the common role of intermolecular interac-
tions in human genetic disease27,28, it emphasises the importance of
considering full protein complex structures, when available.

Recessive mutations are more structurally perturbing than
dominant mutations. Next, we investigated mode of inheritance,
which is closely related to molecular disease mechanism. Auto-
somal recessive (AR) disorders are overwhelmingly associated

with LOF, whereas autosomal dominant (AD) disorders can have
different underlying molecular mechanisms23. While some
dominant mutations will cause disease via LOF (i.e., hap-
loinsufficiency), many will be DN or GOF. Thus, we expect that
differences in the structural effects of recessive vs dominant
missense mutations should be reflective of the differences
between LOF and non-LOF mechanisms.

Disease inheritance annotations for genes were obtained from
OMIM29. To allow a simplified analysis at the gene level, we only
investigated genes with either autosomal recessive (726 genes) or
autosomal dominant (535 genes) inheritance, excluding those
with mixed inheritance. Figure 2a compares the monomer and
full | ΔΔG | values for AD and AR disease mutations, and the
putatively benign gnomAD variants. While all groups exhibit a
high degree of heterogeneity, AR mutations are significantly more
perturbing, with a mean difference of 1.1 kcal mol−1 for
monomer | ΔΔG | and 0.9 kcal mol−1 for full | ΔΔG | compared
to AD mutations. Interestingly, AD mutations are approximately
intermediate compared to gnomAD and AR variants.

The differences in perturbation magnitude across the different
mutation groups can be partially explained by their enrichment in
different spatial locations (Fig. 2b). It is well known that
pathogenic mutations are common in protein interiors and at
interfaces, where they can act via protein destabilisation or
disruption of interactions, while they are underrepresented on
protein surfaces27,28,30–32. We find that AR mutations are most
enriched in protein interiors (58%), while only 15% occur at the
protein surface. In contrast, 43% of the gnomAD variants occur
on the surface and 38% in the interior. AD mutations appear
intermediate between AR and gnomAD, with 43% in the interior
and 26% on the surface. Interestingly, however, the AD group
shows the highest prevalence of variants at protein interfaces
(31%), compared to 27% for AR and 20% for gnomAD, hinting at
the importance of intermolecular interactions for understanding
alternate molecular disease mechanisms. Importantly, in Supple-
mentary Fig. 2 we show that the differences in perturbation
magnitudes are still observed when controlling for interior,
interface and surface locations.
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As the ability to identify pathogenic mutations also depends
upon the properties of the benign variants from which they must
be discriminated, we further compared the | ΔΔG | values of
gnomAD variants from AD vs AR disease genes. The properties
of gnomAD variants from AR genes are expected to be quite
different compared to those from AD genes, as AR genes will, by
definition, tend to be more tolerant of heterozygous damaging
mutations. Therefore, we selected a subset of variants that have
been observed in a homozygous state at least once in gnomAD,
with the expectation that these should be more reflective of truly
benign variants (although at the cost of being a much smaller
dataset). Interestingly, we find in Supplementary Fig. 3 that, while
the gnomAD variants in AR genes are collectively much more
damaging than those from AD genes, when we consider the
homozygous subset of variants from AR genes, they are very
similar to AD gene mutations.

Finally, we assessed whether the inheritance mode of variants
affects the performance of disease variant identification using
predicted stability effects. We observe considerably increased
performance in the identification of pathogenic missense
mutations from AR genes compared to AD genes as measured
by ROC AUC (0.71 vs. 0.67 for full | ΔΔG | , AR and AD
respectively), which is even greater when the homozygous set of
putatively benign AR gnomAD variants are used (0.77; Fig. 2c).
This suggests that predicted changes in protein stability are more
useful for the identification of recessive mutations, due to the fact
that recessive disorders are much more likely to be associated
with LOF.

Gain-of-function and dominant-negative mutations have much
milder effects on protein structure than loss-of-function
mutations. To compare the effects of mutations associated with
different molecular disease mechanisms, we attempted to classify
AD disease genes into those associated with haploinsufficiency
(HI), DN effects, or GOF, using a combination of keyword
searches, manual curation of OMIM29 entries, and ClinGen33

annotations (see ‘Methods’). While this approach is necessarily
imperfect, in that it assumes that all disease mutations from the
same gene will be associated with the same mechanism, it
represents the most feasible strategy we currently have available
for investigating the general properties of these different types of
mutations on a larger scale. For the sake of flow and conciseness,
from this point in the text we will be referring to the variants
from classified genes directly by the associated mechanism (‘DN
mechanism variants’ and not ‘variants from genes associated with
DN disease’).

We first explored predicted stability effects using monomer
| ΔΔG | values (Fig. 3a, left). Interestingly, a clear difference
emerges between the loss-of-function (HI) and non-LOF (DN
and GOF) mutations, with the HI mutations being far more
disruptive to protein structure. The HI mutations show a nearly
identical distribution to the AR mutations, with monomer
| ΔΔG | means of 4.18 and 4.02 kcal mol−1, respectively, and no
statistically significant difference. In contrast, the DN and GOF
mutations are much milder, with monomer | ΔΔG | means of 2.66
and 2.42 kcal mol−1, respectively, and also showing no statisti-
cally significant differences from each other. In fact, although the
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DN and GOF mutations are considerably more perturbative than
the putatively benign gnomAD variants, they are closer to those
in magnitude than they are to the LOF mutations.

When intermolecular interactions from full protein structures
are also taken into consideration, using full | ΔΔG | values (Fig. 3a,
right), a similar overall pattern is observed, with LOF mutations
being the most damaging, and DN and GOF mutations being
intermediate between LOF and gnomAD. However, DN muta-
tions show a large rise in predicted | ΔΔG | compared to using
only monomeric structures, increasing from 2.66 to 3.32 kcal mol
−1, while GOF mutations show only a small increase, from 2.42 to
2.65 kcal mol−1, and the overall difference between DN and GOF
mutations becomes highly significant.

Figure 3b demonstrates that the DN mutations are far more
likely to affect intermolecular interactions, with 45% of mutations
occurring at the interface. In contrast, GOF mutations show little
interface enrichment, thus explaining the significant difference
between DN and GOF mutations when considering full | ΔΔG |
values. Of course, this result is probably influenced by the fact
that DN mutations are more likely to be found in protein
complexes22, with our dataset showing a significant enrichment
of DN-associated mutations in complexes vs monomers
(p= 1.581 × 10−10, Fisher’s exact test), compared to the
complex-monomer proportion of all other disease variants.

Using ROC analysis, we tested the ability of the predicted
stability perturbations to distinguish between pathogenic and
putatively benign gnomAD variants across all the different
molecular disease mechanism groups (Fig. 3c). Most strikingly,
we see that LOF mutations (HI and AR) are predicted far better
than DN and GOF mutations, with AUCs 0.1–0.15 higher for LOF
vs non-LOF groups. We also note a 0.05 AUC improvement in the
prediction of DN mutations when considering intermolecular

effects through full |ΔΔG | values, consistent with our observations
above, although this is still well below the performance observed for
LOF mutations.

We previously demonstrated that optimal performance of
stability predictors for the identification of pathogenic mutations
is subject to significant gene and predictor-specific
heterogeneity18. While FoldX | ΔΔG | values showed an optimal
threshold for distinguishing between pathogenic and benign close
to 1.5 kcal mol−1, a value that has been previously utilised in
several studies on variant stability perturbation34–36, we observed
that on a per-gene level the optimal thresholds varied
considerably. Therefore, we explored whether knowledge of the
underlying molecular disease mechanism could inform us of a
more optimal threshold to use for variant prioritisation.
Supplementary Table 1 lists the optimal FoldX | ΔΔG | thresholds
for gene groups based on our molecular mechanism annotations.
We observe considerable differences in optimal thresholds,
ranging from 1.16 kcal mol−1 for GOF mutations to 1.59 kcal
mol−1 for HI mutations when using full | ΔΔG | . Interestingly,
the two LOF group thresholds correspond quite closely to the
previously used 1.5 kcal mol−1. However, our findings signify that
using this single threshold in a practical setting would lead to
considerable underprediction of non-LOF disease variants. It is
currently unlikely that practical prediction performance can be
dramatically improved by mechanism-specific threshold choices,
but awareness of the unique protein-and variant-level features
underlying non-LOF variants could reveal future avenues for
protein-specific prediction approaches.

There are significant functional class prevalence differences
across disease inheritance and molecular mechanism groups.
Given that protein structure is intrinsically tied to biological
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function, we wondered whether our results could in part be
explained by different molecular disease mechanisms being
related to different functional contexts. It has been previously
shown that taking into account protein functional class annota-
tions can increase accuracy in distinguishing between disease and
benign variants37. Expanding upon the dataset derived by Iqbal
et al.37 through manual and PANTHER38 annotation, we derived
a 25-class functional protein annotation for our genes, with a
single gene being allowed to be associated with more than one
functional class. Supplementary Fig. 4 demonstrates the func-
tional class label prevalence differences for gene groups associated
with distinct inheritance and molecular disease mechanisms, with
statistically significant class proportion differences observed for
all comparisons except between DN and GOF disease genes
(Holm-corrected Chi-square test P= 0.15; remaining comparison
P < 4.12 × 10−3). There are major functional class differences
between AD and AR genes, particularly with transporters and the
overlapping categories of transcription factors and nucleic acid
binding proteins being enriched in dominant disease, and various
enzymatic functions being primarily associated with recessive
disease. However, when we control for molecular disease
mechanism, we can see that there are significant functional class
prevalence differences: the dominant enrichment in transcription
factors and nucleic acid binding proteins is overwhelmingly dri-
ven by HI genes; GOF disease is more associated with signaling
molecules, some enzyme classes and transporters; and DN effects
tend to occur more predominantly in receptors, transcription
factors and transporters.

To assess whether the observed general stability change trends
may in fact be driven by the underlying biological functions, we
compared the predicted full | ΔΔG | value differences between
mechanisms for each functional class. We only explored
functional classes that had at least 20 pathogenic variants
associated with each of the four disease mechanisms groups
(DN, GOF, HI, AR). As we see in Supplementary Fig. 5, the same
general tendency for LOF variants to be more damaging than
non-LOF variants is observed across most groups. Notably, HI
and AR variants are significantly more damaging than GOF
variants in most groups. However, in kinases, signalling
molecules, receptors and transferases, DN variants are actually
the most damaging, although this could possibly be related to
small sample sizes. This suggests that the precise molecular
mechanisms underlying DN mutations could show some
tendency to vary related to functional context. For example,
while a DN effect can be caused by non-destabilising mutants that
can incorporate into and “poison” a protein complex, there are
also DN mutations that disrupt interactions, resulting in a
“competitive” DN effect39.

Independent variant-level GOF and LOF dataset supports the
observed stability effect trends. To validate our generalised
variant disease mechanism annotation approach, we took
advantage of a recently published dataset containing variant-level
GOF vs LOF mechanism assignments from Bayrak et al.40,
derived through a natural language processing model applied to
available literature. Using their HGMD41 missense mutation
annotations as a foundation, we derived a structural FoldX score
dataset based on predicted AlphaFold42 monomer models (see
‘Methods’), as many of the proteins in this dataset lacked
experimentally determined structures. The external dataset con-
sisted of variants from 361 OMIM ‘AD’, 353 ‘AR’ and 83 mixed
inheritance ‘ADAR’ genes (containing both AD and AR disease
variants), with only 76 genes from the total harbouring both GOF
and LOF variants (Supplementary Fig. 1).

As we demonstrate in Supplementary Fig. 6a, HGMD GOF
variants are significantly milder than LOF variants in terms
of | ΔΔG | values in all scenarios we explored: considering the full
dataset; considering only variants from mixed inheritance genes;
and considering only genes with both GOF and LOF variants.
Furthermore, for those genes with both GOF and LOF variants,
we find that the GOF variants have a significant tendency to be
milder than the LOF variants from the same gene (Supplementary
Fig. 6b). These analyses also validate our gene-level classification
approach, as, interestingly, even when annotated at variant-level,
a large majority of the genes contain either GOF or LOF disease
variants, exclusively. Furthermore, the observed differences
between GOF and LOF variants should be even more pronounced
if controlling for DN variants, as natural language processing
model used in the Bayrak et al. study did not distinguish
dominant-negative variants separately; thus, the LOF variant class
is likely to contain some proportion of DN variants.

Using the AlphaFold models we also explored the per-residue
modelling quality metric, pLDDT, which has been shown to also
be highly predictive of structural disorder43. We compared
pLDDT between the HGMD GOF and LOF variants, as well as
our dataset of ClinVar variants split into four mechanism classes.
As we derived our annotations for ClinVar variants at the gene-
level, we present the results as per-gene disease variant pLDDT
means, to account for uneven variant sample sizes between the
genes. While the shift is not drastic, Supplementary Fig. 7a shows
that HGMD GOF variants occur at positions characterised by
significantly lower pLDDT, indicating the regions are likely more
disordered. This makes sense for GOF variants in terms of the
observed milder ΔΔG values, as lower residue density in a less-
ordered region would lead to fewer unfavourable energetic
interactions. Additionally, fewer mutations are needed in
intrinsically disordered regions to give rise to new interactions,
compared to structured domains, increasing the likelihood of
disease via gain-of-function mechanisms in such regions44.
Interestingly, we also observe a significantly lower pLDDT in
the ClinVar GOF genes, compared to the LOF groups (HI and
AR), although the distinction from DN genes is not significant
(Supplementary Fig. 7b). However, looking at the overall disease
variant density according to pLDDT, we can see that that disease
variants in disordered regions (pLDDT < 50) represent the
minority of currently known pathogenic variants, for both GOF
and LOF disease (Supplementary Fig. 8).

Finally, to validate the disease variant identification perfor-
mance differences between the distinct mechanisms, we subjected
the external HGMD dataset to a classification strategy similar to
our gene-level ClinVar annotation, using our own haploinsuffi-
ciency assignments to split the dominant LOF mutations into HI
and ‘Other LOF’ groups, with the ‘Other LOF’ group expected to
be enriched in DN mutations (see ‘Methods’). Reassuringly, we
find that the four-group HGMD variant performance closely
resembles what we demonstrated using our ClinVar dataset
(Supplementary Fig. 9). The results are not surprising, as the vast
majority of genes in the HGMD contain disease variants
characterised by a single disease mechanism class, which also
suggests our gene-level annotation approach may not be strongly
prone to bias.

Stabilising mutations may be important for disease in gain-of-
function and particular loss-of-function contexts. We also
hypothesised that, in addition to being milder in magnitude,
pathogenic GOF mutations might have a tendency to increase
protein stability, e.g., by stabilising activated states. Similarly,
DN mutations could conceivably be associated with increased
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rigidification, allowing a mutant protein to ‘poison’ a complex
containing a mixture of mutant and wild-type subunits. Indeed, a
number of pathogenic mutations that increase protein stability
have been noted in the literature45–47. To address this, we need to
consider the actual ΔΔG values, including sign. In Fig. 4a, we plot
the distribution for full ΔΔG values different types of pathogenic
mutations. From this, we can see that, while the large majority of
mutations in each class are predicted to have a net destabilising
effect (ΔΔG > 0), there are still many stabilising mutations. Fig-
ure 4b shows the fraction of stabilising mutations (ΔΔG < 0) for
each group. This shows that predicted stabilising effects are most
common in GOF mutations (21%), followed by DN (17%). In
contrast, LOF mutations have a much lower tendency to be sta-
bilising (12% for HI and 10% for AR).

While the above analysis shows that non-LOF mutations are
more likely to have predicted stabilising effects, it is possible that
this is simply due to the fact that they tend to be of lower
magnitude. If one assumes a typical error of ~1 kcal mol−1 for a

FoldX ΔΔG prediction48, then we can expect that many of the low
magnitude ΔΔG values might appear to be stabilising due to this
margin of error. We attempted to control for this by considering
predicted stabilising vs destabilising effects in two groups: those
with | ΔΔG | < 1 kcal mol−1, and those with | ΔΔG | from 1-4 kcal
mol−1. We then calculated Fisher log odds enrichment of
stabilising mutations within each class from among all disease
mutations annotated with a mechanism. As illustrated in Fig. 4c,
the tendency for predicted stabilisation to be most enriched
among GOF mutations is observed in both groups
(p= 1.73 × 10−4 and 0.015 for | ΔΔG | < 1 kcal mol−1 and
1–4 kcal mol−1 groups, respectively). In contrast, destabilisation
is most enriched among AR mutations (p= 4.36 × 10−5 and
7.75 × 10−4). Interestingly, stabilisation appears to be more
common in HI than AR mutations, which is difficult to explain,
considering that we would expect both to act via similar LOF
mechanisms. While both of these mechanism groups were
previously shown to be similar in terms of both overall
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predicted variant perturbation magnitude and structural
variant location, HI seems to show a higher tendency of
eliciting pathogenicity through stabilising, or rigidifying, the
structure or interaction.

One explanation for this may be that HI genes differ from the
AR group in terms of specific functional class prevalence. As
previously seen in Supplementary Fig. 4, mutant transcription
factors are among those proteins more susceptible to cause
disease through haploinsufficiency, and the importance of their
conformational flexibility in divergent sequence recognition has
been previously explored49,50. Increasing transcription factor
stability may rigidify them and reduce their conformational
flexibility, in turn causing a loss of function. To test this
hypothesis, we split up HI gene variants in the |1–4| kcal mol−1

bin, according to their predicted effect type, either destabilising or
stabilising, and observed the differences in relative prevalence of
functional protein class labels of their associated genes (Fig. 4d).
While stabilising variants were slightly less likely to be associated
with transcription factors than destabilising variants (13% vs.
16%), the closely related nucleic acid binding category was almost
twice as likely to be associated with stabilising mutations (33% vs.
17%). This result could signify that stabilising variants are
important to understanding disease that stems from dysfunction
of nucleic acid binding as a whole in haploinsufficiency contexts.
Additionally, our analysis demonstrates how knowledge of
protein functional classes and underlying molecular disease
contexts can potentially be valuable as synergistic features for
variant identification. We also repeated the analysis for remaining
mechanism groups; however, they did not show statistically
significant functional gene class differences between stabilising
and destabilising variants.

Nearly all variant effect predictors underperform on non-loss-
of-function mutations. Given that DN and GOF mutations tend
to be mild at a protein structural level, and are thus poorly
identified using FoldX | ΔΔG | values, we wondered whether this
might also have similar implications for the performance of other
computational VEPs. Initially, our hypothesis was that, while
predictors that incorporate protein structural information might
perform worse on non-LOF mutations, those based primarily on
evolutionary conservation should be relatively insensitive to dif-
ferences in molecular disease mechanism. Therefore, we tested a
diverse set of 45 VEPs for their performance on different types of
disease mutations.

Supplementary Table 2 outlines the different VEPs used, which
we classified into several groups. First, we included those based
purely on amino acid sequence conservation. Multi-feature
methods are those that rely on multiple different features,
although they all also include sequence conservation. Metapre-
dictors are those VEPs that derive predictions based on the
outputs of two or more other predictors. We also considered
several simple amino acid substitution matrices. Finally, we
considered some methods based purely on DNA-level features,
primarily nucleotide conservation. It is important to note that a
majority of the VEPs in our multi-feature and metapredictor
groups were derived in a supervised fashion, which makes them
susceptible to circularity due to dataset overlaps with training
data7,51. While this prevents us from being able to make fair
judgements on absolute performance of different predictors, as
some VEPs are likely to have been trained on some of the
mutations in our dataset, we are more interested in the relative
performance within predictors against different molecular disease
mechanism groups.

Figure 5 shows the ROC AUC values for discriminating
between pathogenic ClinVar and putatively benign gnomAD

missense variants across all predictors. Remarkably, we observe
nearly universal underperformance on non-LOF mutations. For
the large majority of protein-level predictors, the LOF
mutations (HI and AR) show higher AUC values than the
non-LOF (DN and GOF) mutations. Furthermore, when we
subject our four-class HGMD dataset based on variant-level
GOF vs. LOF annotation to the same analysis, we observe very
similar results (Supplementary Fig. 10), despite the fact that
only 329 of the 714 HGMD genes overlap with our 1261 gene
ClinVar dataset.

How can we explain this consistent underperformance against
non-LOF mutations? One clue comes from examination of the
substitution matrices. These are very simple models, derived from
physicochemical properties of amino acids, or patterns of
evolutionary substitutions, that will always give the same value
for the same type of amino acid substitution. Effectively, they
represent how different the mutant amino acid residue is from the
wild type. Across all substitution matrices, HI mutations are
predicted better than DN and GOF mutations, which simply tells
us that the non-LOF mutations tend to involve more similar
amino acid substitutions than LOF mutations. Thus, despite the
fact that these models do not use protein structural information,
they are still reflecting the milder nature of the pathogenic non-
LOF substitutions.

In principle, the substitution matrix results could also explain
the performance of some other predictors based on amino acid
sequence conservation that also incorporate a substitution matrix
(e.g. SIFT52). Notably, however, the underperformance of non-
LOF mutations is also observed for DeepSequence53, which is
based purely on multiple sequence alignments of the protein of
interest and does not explicitly use any external substitution
scores for variant evaluation, suggesting that amino acid residues
associated with DN or GOF mutations genuinely tend to show
weaker evolutionary conservation than those associated with LOF
mutations.

It is also interesting to note the performance differences of
the nucleotide-level prediction methods between the ClinVar
and HGMD datasets (Fig. 5 vs. Supplementary Fig. 10). For the
HGMD variants, nucleotide-level methods perform worse on all
dominant mutation groups, while for ClinVar variants, only
DN and HI genes show underperformance. One explanation is
that the HGMD dataset, being based on AlphaFold models,
does include intrinsically disordered proteins or regions, which,
if not involved in a particular function, are less likely to be
conserved54. As we showed earlier, GOF variants were more
likely to occur at positions of lower AlphaFold pLDDT, a metric
intrinsically related to the degree of structural order. The PDB-
based ClinVar dataset, lacking disordered regions, may be
enriched in GOF variants at more conserved positions,
resulting in higher GOF variant identification performance by
conservation-based methods.

Overall, the tendency for LOF mutations to be predicted better
than non-LOF mutations is very clear. However, the differences
are relatively small between DN and GOF mutations across most
predictors. Interestingly, the DN mutations are better predicted
across all substitution matrices, suggesting that DN mutations
tend to involve more perturbative amino acid substitutions. In
contrast, GOF mutations tend to be better predicted by methods
based purely on sequence conservation. The two competing
factors - DN mutations being somewhat more perturbative, and
GOF mutations occurring at more conserved positions – appear
to effectively cancel each other out across most VEPs that utilise
both sources of information, resulting in very similar predictions
for the two groups. Comparison of conservation and amino acid
substitutions may hold some value in discriminating between DN
and GOF mutations.
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Gain-of-function and dominant-negative mutations tend to
cluster in three-dimensional space. Finally, since non-LOF
mutations tend to be poorly predicted by existing computational
approaches, we wondered whether there is other information that
could be used to better predict them. We hypothesised that DN

and GOF missense mutations should tend to cluster within spe-
cific regions, while LOF missense mutations should be more
evenly spread throughout a protein. The reason for this is simple:
destabilising mutations should be able to occur throughout a
protein sequence, at least within its folded domains, while the
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more specific effects associated with DN and GOF mutations may
be more localised to particular regions. Previously, there has been
some evidence for this. For example, a recent study found that
genes with more spatially clustered disease variants tend to be
associated with mechanisms other than haploinsufficiency55.
Other studies have shown dominant GOF mutations exhibit more
focal, shorter distance clustering at sites of functional potential,
compared to recessive LOF variants, which occur more uniformly
throughout structures56,57. Another study of cancer-associated
variation found that GOF mutations in oncogenes tend to be
more clustered compared to LOF mutations in tumour sup-
pressors and other targets58.

To address this in more detail, we defined a simple metric for
disease mutation clustering, based on the proximity of each
protein residue to a known disease mutation at another residue
within the same polypeptide chain (see ‘Methods’). The final
clustering metric is presented as a ratio for each protein, termed
the EDC (‘Extent of Disease Clustering’), whereby a value of
greater than one indicates that residues where disease mutations
occur tend to cluster together within the three-dimensional
structure of the protein, whereas a value of one would be expected
if the sites of disease mutations were randomly distributed. The
rare examples of proteins with clustering ratios less than one
indicate cases where the sites of disease variants are more evenly
distributed throughout the protein, but these are likely to
represent chance occurrences due to the nature of the metric
rather than meaningful “anti-clustering”.

In Fig. 6a, we compare the distributions of clustering values for
AR vs AD disease genes, under the assumption that AR genes
should be primarily associated with LOF mechanisms, while AD
genes can be associated with LOF or non-LOF mechanisms.
Remarkably, we observe a very strong, highly significant tendency
for disease mutations in AD genes to be more clustered than
those in AR genes. Furthermore, if we consider a variation of the
metric derived using putatively benign gnomAD variants for the
same genes, rather than pathogenic variants, we observe a much
lower extent of clustering. In Fig. 6b, we compare the
distributions of clustering values for AD genes associated with
different molecular disease mechanisms. Consistent with our
previous observations, we find that DN and GOF mutations tend
to be significantly more clustered than HI mutations. Together,
these results strongly support the idea that non-LOF disease
mutations tend to cluster together more than LOF mutations.
Interestingly, however, there is no significant difference between
clustering of DN and GOF mutations. Thus, the utilisation of
information about mutation clustering in three-dimensional
space shows promise for improving predictions of pathogenic
non-LOF mutations.

To exemplify the utility of this finding, we considered two
genes on the opposite ends of the EDC spectrum, ADSL and
KCTD1, which are associated with dominant and recessive
disease, respectively (Fig. 6c). LOF mutations in ADSL cause
adenylosuccinate lyase deficiency59, and the protein is character-
ized by a notably low EDC value of 0.89. This indicates strong
disease variant dispersal throughout the structure. KCTD1, on the
other hand, demonstrates a high degree of disease variant
clustering (EDC= 1.90). However, KCTD1 was not annotated
with a molecular disease mechanism in our pipeline, as it did not
have a ClinGen dosage sensitivity entry or references to
dominant-negative or gain-of-function mechanisms in OMIM.
Interestingly, exploration of the literature revealed numerous
cases of the mechanism underlying KCTD1 disease being
described as dominant negative, in reference to causing the
scalp-ear-nipple syndrome. Thus, EDC can in practice serve as a
tool to identify disease genes with mutations likely to act via non-
loss-of-function mechanisms. Certainly, we believe there is much

scope in the future to consider alternate approaches for
quantifying mutation clustering, and considering intermolecular
distances within protein complexes, which could lead to
significantly improved disease variant identification.

Discussion
Our first observation in this study was the importance of con-
sidering full protein complex structures, if available, when using
stability predictors to investigate potential mutation pathogeni-
city. This is unsurprising, as many pathogenic mutations are
known to occur at protein interfaces32, and the impact of these
will be missed when considering only monomeric structures.
Thus, the effects of a mutation on a protein complex structure
should be tested if possible. While there will be many cases where
no structure of a biologically relevant complex is available,
advances in protein modelling and intermolecular docking may
be helpful in the future.

Next, we found a striking association between predicted
changes in protein stability, inheritance and molecular disease
mechanisms, which were independent of the distinct functional
class enrichments in those groups. LOF mutations associated with
AR and HI genetic disorders can be distinguished quite well using
changes in protein stability, but dominant GOF and DN muta-
tions tend to have mild effects at a protein structural level. While
there has been limited evidence of this in the past for DN
mutations in transmembrane proteins14, this is the first time this
has been assessed on such a large scale for both DN and GOF
mutations.

Given the above observations, it is essential to emphasise that
the primary benefit of stability predictors with respect to disease
mutations is in understanding molecular mechanisms. When a
mutation is predicted to destabilise a protein or disrupt an
interaction, this gives us a plausible molecular disease mechan-
ism. However, that a mutation is structurally mild should not be
taken as strong evidence that it is likely to be benign, unless all
other known pathogenic mutations are known to be destabilising.
There is a tendency in the literature when reporting new disease
mutations to only include predicted changes in stability if they are
high. We suggest that even mild changes in predicted or observed
stability should be reported, as this can provide clues as to the
potential molecular mechanisms. With additional further
understanding of molecular disease mechanisms in the context of
other features, like protein functional classes, we may be able to
individualise stability score thresholds for precision variant
identification.

One limitation of our study arises from our strategy for
annotating HI vs DN vs GOF mutations. We are reliant on the
descriptions of mutations that have been compiled into the
OMIM database, which can be somewhat qualitative. In fact, it is
often very difficult to distinguish between DN and GOF muta-
tions experimentally, and thus there is a large set of mutations
we excluded from our analyses because OMIM described them
as potentially being either DN or GOF, but could not distinguish
between the two. Moreover, for simplicity, we assume that all
pathogenic missense mutations in the same gene are associated
with the same molecular mechanism, which is clearly not true
for all genes. Importantly, however, we were able to reproduce
our results using a recent variant-level dataset, annotated with
GOF and LOF mechanism assignments40, thus supporting the
validity of our gene-level approach. However, currently available
variant-level datasets do not cover DN variants on a large-scale.
It is highly likely that, if we had more accurate, mutation-level
classifications of molecular mechanisms of disease mutations,
the trends we have observed here would be even more
pronounced.
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While we have shown that DN and GOF mutations tend to
have mild effects on protein stability compared to LOF mutations,
the actual specific mechanistic details underlying most non-LOF
mutations remain indeterminate. We know that the DN effect
tends to be associated with intermolecular interactions and the
assembly of proteins into complexes22,60,61, and this is supported
by our observation of an enrichment of DN mutations at interface
positions. However, our finding that including intermolecular
interactions and using the full | ΔΔG | values significantly improve
the identification of pathogenic DN mutations is in a way para-
doxical, as it implies that DN mutations tend to perturb inter-
actions. A mutation that completely disrupts assembly of a
protein complex would not be compatible with a DN effect, as
there would be no way for the mutant protein to affect the wild-
type protein. However, it is possible that DN mutations often
cause milder perturbations, not entirely blocking protein complex
assembly, but sufficient to affect the function of a full complex.
Alternatively, by ‘loosening’ interactions in the complex, DN
mutations may cause all subunits, including wild type, to be
mislocalised or degraded, as in the example of ALDH222,62.
Conversely, the observed increase in perturbation could in some
cases stem from stabilising mutations involved in intermolecular
interactions, inactivating complexes through rigidification of

conformational dynamics, competing for and sequestering lim-
iting substrates or targets in non-productive complexes61,63. As
for GOF mutations, they are likely to be much more hetero-
geneous in their specific molecular effects, e.g. excessive protein
stabilisation, toxic aggregation, modulation of protein activity or
interaction selectivity44,46,47,64. However, we did observe a gen-
eral trend of GOF variants occurring in positions characterised by
higher degree of disorder, and subsequently looser residue
packing, providing one explanation of why the observed stability
perturbation is so mild.

Previously, there has been very little consideration of how
variant effect predictors perform for pathogenic mutations asso-
ciated with different molecular mechanisms. One study found
that SIFT and PolyPhen appeared to underperform on GOF
mutations, but this involved a very small set of known disease
mutations65. Our observation that nearly all tested VEPs perform
worse on non-LOF mutations was very surprising, and has major
implications for the identification of pathogenic variants. Com-
putational predictors are very widely used for the prioritisation of
potentially causal variants, and if they are systematically under-
performing on DN and GOF mutations, this could translate into
large numbers of true pathogenic variants being missed by cur-
rent sequencing studies. Given our results, there are no specific
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Fig. 6 Pathogenic mutations in genes associated with dominant-negative and gain-of-function mechanisms are significantly more clustered in space
than those associated with loss-of-function mechanisms. Sample sizes denote protein number. Boxes denote data within 25th and 75th percentiles, and
contain median (middle line) and mean (red dot) value notations. Whiskers extend from the box to furthest values within 1.5x the inter-quartile range.
a Distribution of Extent of Disease Clustering (EDC) values for autosomal recessive (AR) compared to autosomal dominant (AD) disease genes. EDC
values calculated with gnomAD variants from the same set of genes are shown for comparison. p-values were calculated with the two-sided Holm-
corrected Dunn’s test. EDC values were only calculated for protein structures with pathogenic/gnomAD variants at least 10 different residues, which
means that the number of proteins in the gnomAD set is slightly smaller than the sum of the AD and AR groups. b Distribution of EDC values for AD
disease genes associated with gain-of-function (GOF), dominant-negative (DN) and haploinsufficient (HI) mechanisms. c Demonstration of the variant
distribution differences between non-LOF (KCTD1) and LOF (ADSL) disease proteins, and their strikingly different EDC values. Source data are provided as
a Source Data file.
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predictors we can particularly recommend if DN or GOF muta-
tions are suspected, although we continue to, in general, recom-
mend DeepSequence53 or other related unsupervised methods
based upon our previous benchmarking study7. At the moment,
we suggest that, if a DN or GOF mechanism is suspected, one
should be very careful about filtering out variants due to lower
VEP scores.

The clustering of DN and GOF mutations in three-dimensional
space presents one possible strategy for improving their predic-
tion. However, this is limited to those genes where multiple
disease mutations are already known, which greatly limits the
applicability of clustering-based approaches. In addition, even
though we see a strong enrichment of clustering in DN and GOF
mutations, clustering of pathogenic missense mutations can still
be associated with a LOF mechanism. For example, if a protein
has multiple folded domains, separated by flexible linkers, and
destabilising LOF mutations are most likely to occur in the folded
domains, this will result in apparent clustering of LOF mutations.
The strategy we have used here may be relatively immune to this,
as we only considered structured regions of proteins, but if one
uses full-length protein models that include flexible/disordered
regions (e.g. AlphaFold models42), or a sequence-only clustering
approach, then more significant clustering of LOF mutations
might be observed.

Due to the size of our dataset and the computational effort
required, we explored only one stability prediction method as part
of this study. However, other distinct methodologies could
potentially reveal extended perturbation effects of stabilising and
non-LOF mechanism variants. For instance, DynaMut266, a sta-
bility prediction method based on normal mode analysis, can
evaluate mutation-induced changes to protein dynamics and
flexibility, which could be important for understanding the effects
of DN and GOF variants in protein complexes. However, the
majority of such methods currently offering unique advantages
are only accessible as webservers, severely limiting the ability to
carry out and troubleshoot large-scale prediction efforts.

Another way of improving the identification of non-LOF
mutations is with high-throughput experimental approaches, e.g.,
deep mutational scanning (DMS). These experiments have shown
tremendous power for the direct identification of pathogenic
variants67–71, and if an appropriate experimental phenotype is
chosen, it should be possible to measure an appropriate variant
effect for DN and GOF mutations. However, not all DMS stra-
tegies are appropriate for different types of mutations. A recent
study using fluorescent-coupled PTEN to measure the abundance
of different variants was able to identify destabilising disease
mutations, but not known DN mutations72–74. Future work will
be required to determine the best ways to systematically identify
pathogenic mutations associated with different molecular
mechanisms using a DMS-like strategy.

Methods
Structural variant dataset collection and annotation. All mutations, variant and
gene annotations, corresponding structure identifiers, predictor and inheritance or
mechanisms-based group gene clustering values are accessible through the link
found in the ‘Data Availability’ section.

The pathogenic missense mutations used in this study were downloaded from
ClinVar on 2021.01.28, selecting those labelled as ‘pathogenic’ and ‘likely
pathogenic’. Putatively benign missense variants were taken from gnomAD v2.1.1.
Any variants present in the ClinVar dataset were excluded from the gnomAD set.
No filtering for allele frequency was performed in the gnomAD variants, as this
would dramatically reduce the size of our dataset. For certain analyses involving
recessive mutations, we used only those gnomAD variants that had been observed
at least once in a homozygous state.

Protein structures were downloaded from the Protein Data Bank on 2020.08.17,
considering the first biological assembly for each structure to maximise the chance
that it represents the biologically relevant quaternary structure. Mutations were
mapped to protein structures in the same manner as previously described32,
considering those polypeptide chains with >90% sequence identity to a human

protein over a region of at least 50 amino acid residues. While in some cases this
includes non-human structures, allowing us to substantially increase the size of our
dataset, mutations were only mapped to structures where the residue of interest, as
well as its adjacent neighbours, were the same as the human wild-type sequence. In
the case where a residue maps to multiple PDB files, we selected a single chain
based on sorting by best resolution followed by largest biological assembly. Only
the first structure was extracted from NMR ensembles. Importantly, each variant
was mapped to only a single residue in a single PDB structure, and residues missing
from PDB structures were not considered. For PDB files containing multiple
occupancies of a single residue, only the first occurring entry was selected.

Structural locations were classified as interior, surface, or interface according to
a previously classification75. Interface residues show a solvent-accessible surface
area difference between the free subunit and full protein structure. Other residues
with less than 25% relative solvent accessible surface area in the full structure were
classified as interior, while the remainder was designated as surface.

Molecular disease mechanism annotations for genes were derived based upon
information available in the OMIM29 and ClinGen33 databases. First, only genes
that were annotated with an inheritance of ‘AD’ in OMIM were considered for
dominant mechanism annotation. Those genes annotated as ‘Sufficient evidence
for dosage pathogenicity’ in ClinGen were classified as HI. Next, we searched all
OMIM entries for the keywords ‘dominant negative’, ‘gain of function’ and
‘activating mutation’. Then, we manually read the OMIM entries for all genes
identified in this search. If there was evidence in the OMIM entry that a pathogenic
missense mutation was due to one of these mechanisms, then it was assigned as DN
or GOF. AR disease genes were assigned from OMIM genes associated with disease
inheritance marked by the ‘AR’ category. Importantly, we tried to keep this process
as unbiased as possible, so we only considered information available in the OMIM
entries. While for many genes, there is further evidence available in the literature
regarding molecular disease mechanisms available, this could lead to bias on our
part if we spend more time investigating certain genes than others.

Protein functional class annotation was derived based on work published by
Iqbal et al.37. We expanded their 24-class annotation with the inclusion of a
“Translational Protein” class, and produced missing gene labels using PANTHER38

annotation and manual curation of entries in line with the underlying categories.
Multiple functional class labels can be associated with a single gene.

For external validation we derived an independent structural dataset, based on
variant-level GOF and LOF disease mechanism annotation by Bayrak et al.40. The
HGMD GOF and LOF label data was downloaded from https://itanlab.shinyapps.
io/goflof/ on 2021.10.25. We used the UniProt76 identifier mapping API to
determine the canonical UniProt accession and primary sequence for each protein.
We then mapped the chromosomal position of each variant to the canonical
sequence using the EBI protein coordinates API77. OMIM ‘AD’, ‘AR’ and ‘ADAR’
genes were used in analyses, unless otherwise indicated. The variants were mapped
to AlphaFold models based on UniProt sequence position. AlphaFold models were
downloaded from https://alphafold.ebi.ac.uk/download on 2021.07.27. As large
AlphaFold structures (over 2700 amino acids; aa) are split up into 1,400aa residue
files, protein variants found in multiple files had their FoldX and pLDDT values
averaged accordingly. Our ClinVar dataset variants were also reinterpreted in terms
of the AlphaFold pLDDT, but with the additional step of deriving pLDDT means at
the gene level. This was done to account for and minimise the biases of our gene-
level mechanism annotation, and for the variant number disparities between
the genes.

HGMD four-class annotation was derived analogously to our ClinVar gene-
level classification, with the exception that LOF variants in dominant genes without
evidence for haploinsufficiency were labeled as ‘Other LOF’. OMIM ‘ADAR’ genes
were excluded to be able to distinguish between dominant and recessive LOF
variants, but mixed non-ADAR mechanism genes (HGMD dataset genes
containing both GOF and LOF variants in the same gene) were left in the dataset.
gnomAD variants from matching genes were included as the putatively benign
variant set, excluding variants observed in ClinVar or HGMD disease sets.

Variant stability and effect prediction. FoldX 5.0 calculations were performed
using all default parameters, essentially as previously described18. The procedure
was modified to include structures of protein complexes, and the FoldX calcula-
tions were set to also take into account intermolecular interactions. Importantly,
the ‘RepairPDB’ function was applied separately to both the monomer and full
structures prior to corresponding monomer and full ΔΔG calculations.

Other VEP values were obtained using our previously described pipeline7.
Where available, VEP predictions were obtained using the dbNSFP database
version 4.078. Further predictor scores were download from online sources
(PonP2), obtained from predictor web-interfaces (SNAP2, SuSPect,
NetDiseaseSNP) or run locally (SIFT, DeepSequence). While for most VEPs we
have predictions for the vast majority of mutations considered in this study, due to
the high computational requirements of DeepSequence we were only able to run it
for 168 proteins. The full list of VEPs employed in this work together with the
sample sizes for ClinVar and gnomAD variant predictions can be found in
Supplementary Table 2.

Spatial disease variant clustering. For the disease mutation clustering analysis,
we defined a metric based on the proximity of each protein residue to a known
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disease mutation at another residue. For each residue in a protein structure,
considering only monomeric subunits, we calculated the Cα:Cα distance D to all
other residues with a known ClinVar disease mutation, and the closest distance
Dmin was selected. We calculated the average of the log distance (�D) for all disease
residues, and all non-disease residues separately (Eq. 1).

�D ¼ 1
n ∑

n

i¼1
logDmin ð1Þ

The final clustering metric, which we termed ‘Extent of Disease Clustering’
(EDC), is presented as the ratio of the two values (Eq. 2):

EDC ¼ �Dnon�disease
�Ddisease

ð2Þ
Thus, a value greater than one indicates that the sites of disease mutations tend

to be closer to the sites of other disease mutations than non-disease residues tend to
be to the sites of disease mutations. One advantage of this simple metric is that it
allows clustering to occur in more than one distinct regions of a protein.

In the case of calculating an ‘inverse’ version of EDC using putatively benign
gnomAD mutations, we performed the same procedure by calculating distances to
known gnomAD positions and exchanging �Ddisease for �DgnomAD in Eq. 2.

Statistical testing. Pairwise statistical comparisons between ΔΔG value groups
were carried out using Dunn’s test implementation in the R ‘ggstatsplot’79 package,
with the p-values for comparisons involving more than two groups being adjusted
through Holm’s multiple comparison correction.

Dunn’s test80 involves performing m = k(k − 1)/2 multiple pairwise
comparisons using z-test statistics, where k is the total number of groups. The null
hypothesis in each pairwise comparison is that the probability of observing a
randomly selected value in the first group that is larger than a random value in the
second group equals one half, which is analogous to the null hypothesis of the
Wilcoxon–Mann–Whitney rank-sum test. Assuming the data is continuous and
the distributions are identical except for a difference in centrality, Dunn’s test may
be understood as a test for median difference81.

Holm’s sequential adjustment82 is intended to control the maximal familywise
error rate and involves adjusting the m p-values of each pairwise test, ordered from
smallest to largest. The first p-value is compared to α/m, where the alpha level α
represents the probability of falsely rejecting the null hypothesis. If the first p-value
is found to be less than α/m, then it is declared significant and the adjustment
procedure continues, with the second p-value now being compared against α/(m –
1). Comparisons continue through i ordered p-values until one is found to be
greater or equal to α/(m – i+ 1). If a comparison is failed, the procedure stops and
all further p-values are rejected83.

Statistical differences for variant feature proportion ratios were assessed using
ggstatsplot or the pairwise Chi-square test implemented in ‘rmngb’84 R package,
Cramer’s V effect sizes were derived using ‘cramerV’ from ‘rcompanion’85. Fraction
error bars were derived using the ‘binom.confint’ function from the ‘binom’86

package. Fisher odds ratios for the stabilising variant analysis were derived using
the base R ‘fisher.test’ function.

ROC analysis was performed in R using the ‘pROC’87 package, with AUC curve
differences being statistically assessed through DeLong’s algorithm using the
‘roc.test’ function. Optimal classification thresholds were calculated at default
settings using the ‘closest.topleft’ argument for all proteins with at least 20
gnomAD and pathogenic or likely pathogenic ClinVar variants per-gene, and
determined through the closest ROC point distance to the top-left corner of the
plot88. In the VEP ROC analysis, case-control direction was adjusted individually
for each predictor to produce positive predictiveness values above 0.5 AUC.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the OSF database at https://doi.
org/10.17605/OSF.IO/H62FQ. Source data are provided with this paper.
Previously published databases or datasets used in this work: gnomAD (https://

gnomad.broadinstitute.org/downloads); ClinVar (https://ftp.ncbi.nlm.nih.gov/pub/
clinvar/); dbNSFP (http://database.liulab.science/dbNSFP); Itan Lab’s GOF/LOF database
(https://itanlab.shinyapps.io/goflof/); OMIM (https://www.omim.org/); ClinGen Dosage
Sensitivity database (https://search.clinicalgenome.org/kb/gene-dosage).

Code availability
Code to calculate our mutation clustering metric from PDB files is available at https://doi.
org/10.5281/zenodo.6759338.
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