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Estimating uncertainty in model predictions is a central task in quantitative
biology. Biological models at the single-cell level are intrinsically stochastic
and nonlinear, creating formidable challenges for their statistical estimation
which inevitably has to rely on approximations that trade accuracy for tract-
ability. Despite intensive interest, a sweet spot in this trade-off has not been
found yet. We propose a flexible procedure for uncertainty quantification in
a wide class of reaction networks describing stochastic gene expression
including those with feedback. The method is based on creating a tractable
coarse-graining of the model that is learned from simulations, a synthetic
model, to approximate the likelihood function. We demonstrate that synthetic
models can substantially outperform state-of-the-art approaches on a
number of non-trivial systems and datasets, yielding an accurate and com-
putationally viable solution to uncertainty quantification in stochastic
models of gene expression.
1. Introduction
The stochasticity of biological processes at the single-cell level is one of the
major paradigm shifts of twenty-first-century biology [1–3]. Modern exper-
imental methods, ranging from advanced microscopy to single-cell
sequencing [4–6], have confirmed and detailed the pervasiveness of stochasti-
city in cellular biology. While these discoveries open new perspectives on the
fundamental functioning of living systems, they also create novel challenges
towards the development of mathematical models of biological processes,
accentuating the role of statistical inference and uncertainty quantification in
any modelling effort.

Biological variability is the result of many concomitant processes. A major
source of noise (intrinsic noise) stems from the random timing of chemical reac-
tions and is particularly important for reaction systems involving a small
number of molecules of a certain species, as in many gene regulatory systems.
The chemical master equation (CME) [7] has been broadly adopted as a general
framework to describe the intrinsic stochastic dynamics of chemical reaction
networks [8]. While the CME benefits from an elegant mathematical formu-
lation, its exact analytical solution is only known in a few instances [8]; on
the other hand, the stochastic simulation algorithm (SSA) [9] provides a
Monte Carlo method to perform simulations of systems described by the CME.

Bayesian inference, the gold standard for capturing model and parameter
uncertainty, relies on the likelihood function p(xobs|θ) to estimate parameters
θ given observations xobs. For biochemical reaction networks, computing the
likelihood requires a closed-form expression for the solution of the CME,
which is generally unavailable: while the forward problem of generating
samples from the CME can be solved efficiently using the SSA, the backward
problem of computing the probability of samples cannot. As a consequence,
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Bayesian inference for biochemical reaction networks often
relies on a variety of approximations to the likelihood
function [8,10].

Among the most well known of these are the finite-state
projection (FSP) [11], continuum approximations [7,12] and
moment equations [13]. The FSP solves the CME on a finite
truncation of the state space, whose size typically grows expo-
nentially in the number of species; in practice, this approach
relies on computationally intensive approximations [14–16]
for more complex systems. Continuum approximations to
the CME based on stochastic differential equations, such as
the chemical Langevin formalism [12] and the linear noise
approximation (LNA) [7] are limited to systems with small
noise and in the case of the latter, Gaussian copy number dis-
tributions. Moment equations can be derived from the CME
and used to construct an approximate likelihood function
[17]; for systems with bimolecular reactions, the moment
equations have to be ‘closed’ by a process called moment clo-
sure, which yields approximate solutions of highly variable
quality [13]. These approaches, termed moment-based infer-
ence (MBI), are commonly used in practice [17–23] and
usually very scalable, but the error introduced by the approxi-
mations can be difficult to quantify. Recent work [23–25] has
pointed out that these methods can perform poorly for some
systems and lead to biased or overly uncertain parameter esti-
mates.We refer to the extensive review [8] for amore thorough
exposition of various approximation methods for the CME
and their application to parameter inference.

An alternative to analytical approximations of the CME is
provided by simulator-based inference [26], which relies on
simulations of the original model to estimate the likelihood
using Monte Carlo methods. This family of methods only
requires the ability to perform simulations of the model,
which for biochemical reaction networks can be readily
obtained using the SSA. Simulator-based approaches are
mostly model-agnostic and can be easily adapted to many
different problems, but due to their generality they typically
require many simulations to produce a fully data-driven
approximation of the likelihood.

Perhaps the best-known simulator-based inference method
is approximate Bayesian computation (ABC) [27,28]. ABC
replaces the likelihood p(xobs|θ) with p(d(xobs, x)≤ ε|θ),
the probability that the model generates outputs within a
tolerance ε of the observed data, where d( · , · ) denotes an
appropriately chosen discrepancy measure. The posterior
is then estimated by repeatedly sampling parameters and
accepting those falling within this threshold. Tuning the
discrepancy measure and the parameter ε, which trades accu-
racy for number of simulations, is difficult in practice and
usually requires compressing the model output into low-
dimensional summary statistics, a step that typically entails a
loss of information.

A different simulator-based approach is synthetic likeli-
hoods [29,30], where the likelihood is approximated by a
multivariate Gaussian whose mean and covariance are esti-
mated from simulations. We will refer to this method as
Gaussian synthetic likelihoods (GSL). Like ABC, this
approach frequently works with summary statistics of the
data, which in this case should be approximately normally
distributed under the model. In what follows, we will use
the observed molecule numbers at different times. This
approach is similar to the LNA, which models the reaction
system as a linear set of stochastic differential equations
and also results in a multivariate Gaussian distribution for
observed molecule numbers. The difference is that this
Gaussian is derived analytically under the LNA, while
GSL estimates this Gaussian from simulations. The LNA is
very cheap to evaluate and commonly used in inference
[19,22,31], but for nonlinear systems, it provides biased esti-
mates of the means and variances of molecule numbers and
it is generally unable to model multimodal systems. Given
enough simulations, GSL can be expected to be more accurate
for those systems and will be therefore used as a comparison
instead of the LNA.

For systems with highly non-Gaussian distributions,
neither the GSL nor the LNA are likely to provide accurate
results [32,33]: as shown in [24], Gaussian approximations
can result in unusable parameter estimates for some systems.
While parameters inferred using these methods will usually
result in a good fit on the moment level, systems with non-
Gaussian distributions are not uniquely defined by their
means and variances, and there is no guarantee that the pre-
dicted parameters will match the shape of experimentally
observed distributions. Methods that approximate the likeli-
hood based on kernel density estimation [34] or neural
networks [35] can better model non-Gaussian distributions,
but they can require significant amounts of tuning and compu-
tational power to work well. A scalable approach to inference
would ideally combine the flexibility of simulator-based
methodswithprior knowledgeof themodel toprovide efficient
yet flexible means of approximating the likelihood function.

In this paper, we propose a new method for inference in a
wide class of biochemical reaction networks, specifically those
modelling gene expression, which is rooted in the specific
characteristics exhibited by models of gene regulatory net-
works. Gene expression systems can often be thought of as
systems switching between discrete states of expression,
broadly speaking corresponding to patterns of activation
states of the genes’ promoters [36–39]. It is therefore natural to
abstract the dynamics of gene systems as an indirectly observed
dynamical system over a discrete (finite) set of states. These
states are measured through observations of molecular
counts; motivated by experimental measurements of the distri-
butions of transcript and protein numbers, as well as analytical
solutions of the CME obtained in a variety of cases, we propose
a negative binomialmixture distribution as amodel formolecu-
lar counts in our coarse-grained models of gene expression. We
therefore propose that mixtures of time-dependent negative
binomials can provide a tractable class of approximate models
of gene expression systems.We call this class ofmodels synthetic
models (SM), and use these to approximate the likelihood func-
tion of gene expression models by fitting them to model
simulations, in the spirit of synthetic likelihoods [30]. In cases
when measurements are taken at short time intervals, where
time correlations are particularly important, SM can be further
enhanced by imposing hidden Markov model (HMM)
dynamics on the latent states. We show that SM can provide
excellent estimates of the model likelihood where other
methods (FSP, GSL, MBI and ABC) struggle, and that our
approach can be applied to obtain accurate parameter and
uncertainty estimates for challenging inference problems.
1.1. Synthetic models
Our approach to inference is based on approximating the dis-
tributions predicted by the CME within a suitable family of
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candidates. We are in particular interested in gene expression
systems, including those with feedback, but our methodology
is general and can be applied to a large class of models,
including non-Markovian models such as those recently con-
sidered in [40,41]. An outline summarizing the method can
be found in figure 1a,b.

Theoretical investigations have shown that single-time
marginal distributions predicted by the CME for a variety
of models describing many of the major biomolecular pro-
cesses affecting gene expression (transcription, translation,
cell growth, DNA replication and cell division) can be
approximated by mixtures of negative binomials (MNBs) in
the presence of time-scale separation [42–46]—for an illus-
tration see figure 1c. When time-scale separation is not
applicable, such an approximation cannot be derived analyti-
cally, yet measurements of the distribution of mRNA and
protein numbers in bacterial, yeast and mammalian cells
show that these are still well fit by such mixtures in many
cases [36–39].

Having established that MNBs provide a good statistical
model for experimental measurements of gene expression
networks at fixed times, the next step is to extend this to
include time dependency. Experimental measurements of a
system at different times will be correlated, and a natural
way to emulate these correlations is to treat the individual
mixture components at each time point as states in
an HMM. More precisely, we propose using a finite-state
Markov chain with negative binomial output distributions
for each state, see figure 1a for an illustration. This statistically
tractable surrogate model, which we term synthetic model,
defines a surrogate distribution over observations jointly at
all measured time points. Note that integrating out the
hidden state variable shows that the marginal distribution
at any time point is still a mixture of negative binomials.

Assuming the marginal distribution p(x|θ, t) predicted by
the CME at time t can be approximated by a mixture of nega-
tive binomials qϕ(x) with parameters ϕ, a principled way to
determine these parameters is to minimize the Kullback–
Leibler divergence between the two distributions

f� ¼ arg min
f

DKLðpð�ju, tÞk qfÞ:

Here, qϕ is the MNB with mixture parameters ϕ. Since the
reference distribution, being given by the solution of the
CME is in general inaccessible, we can approximate it empiri-
cally by drawing samples using the SSA; minimizing the
above KL divergence is then equivalent to maximizing the
likelihood of the simulated samples, up to sampling error.

Fitting MNBs to data can be done efficiently using the
expectation-maximization (EM) algorithm described in
[47,48]. In order to fit all parameters of an HMM, including
the initial distribution and the transition rates, we used the
Baum–Welch algorithm (see electronic supplementary
material for details), a special case of the EM algorithm that
performs maximum-likelihood fitting for HMMs. Once we
have fit our synthetic model, we can then compute the likeli-
hood of our experimental observations xobs using the forward
algorithm for HMMs. This likelihood, which we denote
p̂synðxobs juÞ, can be used to compute the posterior over par-
ameters θ, typically using MCMC, or to find the most likely
parameters via optimisation—for an illustration see figure
1b. In most contexts, the observed data xobs will consist of
independent and identically distributed measurements for
many cells, and the synthetic model (or Gaussian for GSL)
is used to evaluate the likelihood for each observation
independently.

Our procedure to estimate the likelihood p(xobs|θ) for
model parameters θ is as follows:

(1) Simulate sample trajectories using the SSA for the orig-
inal model with parameters θ.

(2) Fit the parameters of the HMM to the simulated trajec-
tories using the Baum–Welch algorithm.
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(3) Evaluate the HMM at the observed data xobs to obtain the
synthetic likelihood p̂synðxobs juÞ.

Note that the synthetic model has to be fit from scratch for
every parameter set at which the likelihood is queried,
which is the main computational bottleneck of our approach.

The number of simulations and mixture components
should be chosen appropriately for the reaction network. In
our experiments, we simulated each system at several ran-
domly chosen parameters and ensured that the given
number of simulations and mixture components could accu-
rately reproduce the observed distributions. In an MCMC
context, the number of simulations should be chosen such
that the variance of the likelihood estimate still results in an
acceptable rejection rate. Allowing a few more components
than necessary did not affect the quality of fit in our exper-
iments, as extraneous components either merged with
others or were assigned negligible weights.

We remark that experimental data for mRNA or protein
number generally comes in the form of either population
snapshot data or live cell imaging. In the case of the
former, each snapshot represents a different group of cells
and modelling correlations at different times becomes
unnecessary; it therefore suffices to fit MNBs independently
for each time at which a snapshot is taken. This simplification
can also be made when time correlations are weak enough to
be neglected, as is the case for the toggle switch model
considered in the next section.
2. Results
2.1. Autoregulatory genetic feedback loop
We consider an autoregulatory genetic feedback loop that is
illustrated in figure 2a. It consists of a gene with two promo-
ter states Gu and Gb, and a protein P that is produced at
different rates ρu and ρb depending on the promoter state.
Protein production occurs in geometrically distributed
bursts with mean burst size b. The promoter switches from
state Gu to Gb by binding a protein molecule with rate σb,
and this process is reversible with rate σu. Protein dilution
is effectively modelled by a first-order reaction; note that all
other rates are rescaled by the protein dilution rate. We
assume mass action kinetics for all reactions. This is the
prototypical example of stochastic self-regulation in a gene
and can be rigorously derived from a more detailed model
incorporating mRNA dynamics [46].

We consider the negative feedback regime where the
protein production rate decreases upon protein binding (i.e.
ρb < ρu). Due to the simplicity of this model, likelihoods can
be efficiently computed using the FSP using a truncation to
several hundred states in our examples, leading to an essen-
tially exact solution and enabling us to compare our
method with exact Bayesian inference. We tested our
approach by using the SSA to simulate time-series data
from several genetically identical cells and performed Baye-
sian inference based on the observed protein numbers, with
a uniform box prior on the model parameters. For all
methods except ABC, we sampled from the posterior using
the Metropolis–Hastings sampler with a fixed Gaussian tran-
sition kernel (see electronic supplementary material, §1 for
details). We note that while the steady-state solution of the
CME of this system is predicted by theory to be well
approximated by a negative binomial mixture (because of
the small promoter switching rates compared with other
rates [46]), we use data collected in pre-steady state where
theoretical results are difficult to obtain. Hence the use of
SM as a means to automatically obtain a negative binomial
mixture approximation of the likelihood is particularly
useful in this case.

Due to the presence of bimolecular protein–gene inter-
actions, solving the moment equations for MBI in this
model requires a moment-closure approximation. We used
the linear mapping approximation (LMA) [49] for this pur-
pose, which provided very accurate moment estimates for
the parameter ranges considered in our experiments.

We compared the exact posterior obtained using the FSP
with those computed using SM and three representative
inference methods: GSL, MBI and ABC (figure 2b)—see
Material and methods and electronic supplementary material
for details. For all parameters, the mode of the posterior com-
puted using FSP or SM is close to the true parameter values;
this is not the case for the other methods. In particular, our
approach was the only one to yield a posterior where ρb
was concentrated around the true value of zero, whereas
the other methods yielded posterior means that were signifi-
cantly non-zero, falsely suggesting leaky gene expression.
This is an example of technical parameter non-identifiability,
where a structurally identifiable parameter cannot be ident-
ified using a specific method. As we see in this case, using
detailed distributional information can be valuable for discri-
minating between different modes of gene expression.
Figure 2c shows that SM approximate the true likelihood of
the model substantially better than both GSL and MBI, uni-
formly over the range of parameters considered (ABC does
not yield explicit likelihood estimates). See electronic sup-
plementary material, figure S2 for further data including
the posterior and MLE predictive distributions obtained
using these methods.

In electronic supplementary material, figures S2 and S3,
we repeat the same analysis for a positive feedback loop
where the protein production rate increases upon protein
binding (ρb > ρu). As for the negative feeback loop, we find
that likelihood approximation and parameter inference
using SM is significantly more accurate than using standard
methods.
2.2. Genetic toggle switch
Next, we consider a genetic toggle switch [50] in a eukaryotic
cell (for an illustration see figure 3a). This consists of two
different promoters, each of which can be on or off, and the
protein from each promoter represses the expression of the
other. We explicitly model the translocation of mRNAs
from the nucleus to the cytoplasm, the translation of cyto-
plasmic mRNAs into proteins and the translocation of
proteins to the nucleus.

This system is significantly more complex than the auto-
regulatory feedback loop considered above, involving an
effective 10 species (we do not count bound promoter states
due to conservation laws). For realistic mRNA and protein
abundances (few tens and several tens to hundreds, respect-
ively), a simple state space truncation would need to consider
of the order of 109 states, many orders of magnitude more
than the previous example. Due to hardware constraints,
we were therefore not able to apply the FSP to this example;



0

–250

–500

–750

–1000
–1000 –750 –500 –250 0

true log-likehood

SM
GSL
MBI

ap
pr

ox
im

at
e 

lo
g-

lik
el

ih
oo

d

GT SM GSL MBI ABC

0 0 0 050 5100 0.010.5

(b)(a)

(c)

Gu

Gb

P P

P

P
P

P

Figure 2. Comparison of synthetic models with standard methods for the case of an autoregulatory genetic negative feedback loop. (a) Illustration of the reaction
scheme describing the genetic circuit. (b) Posteriors obtained using four different inference methods, with the ground truth solution computed using the FSP (black).
The red dashed lines show the true parameter values. Left: synthetic models (SM) and Gaussian synthetic likelihoods (GSL). Right: moment-based inference (MBI)
and sequential ABC. The ranges plotted coincide with the prior ranges. (c) Comparison of true and approximate log-likelihoods. Parameter values were sampled from
the prior, and the true log-likelihoods were computed using the FSP. Synthetic models (yellow) provide significantly closer approximations to the true log-likelihood
than either Gaussian synthetic likelihoods (green) or moment-based likelihoods (purple). The true parameter values are given in electronic supplementary material,
figure S1. The input data consist of protein numbers from 25 SSA trajectories measured at times t = 4, 8, 12, 16.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220153

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

ul
y 

20
22

 

this illustrates the lack of scalability of the direct approach
when applied to more realistic systems and the need for
more efficient methods.

Fixing the translocation and degradation rates, which can
often be deduced experimentally, we tested our approach in
this case by inferring the remaining eight parameter values.
We used the SSA to simulate a synthetic dataset of 100 cells
observed at eight different time points each, and performed
Bayesian inference on the cytoplasmic protein numbers
(both species) with a box prior around the true parameters
(figure 3b) using SM, Gaussian MBI (not shown, see below)
and ABC. As with the autoregulatory feedback loop, we
used a Metropolis–Hastings sampler with a Gaussian tran-
sition kernel for all methods except ABC (see electronic
supplementary material for details).

Not all parameters of this model were identifiable from
the data: while the ratio between the binding and unbinding
rates for each gene can be identified, the individual rates
themselves cannot. These findings did not depend on the
method used, which suggests that we are dealing with struc-
tural parameter non-identifiability, as opposed to technical
non-identifiability due to the shortcomings of an individual
method. This is supported by electronic supplementary
material, figure S4, which shows that the predictive uncer-
tainty in the posteriors is very small despite large variations
in these two parameters. By contrast, the peaked posteriors
around the true values of the transcription and translation
rates show that these rates can be well estimated by SM
and GSL (which is not the case for ABC and MBI). We fur-
thermore compared the predictive distributions for the
maximum-likelihood parameters estimated during inference
(figure 3c)—we note that the SM prediction is the only one
of all methods that is accurate for all times.

While the input to this experiment consisted of time-series
data for SM, fitting a full HMM performed similarly to fitting
independent MNBs at each time point, and we therefore used
the latter approach for simplicity. We observed that using a
full HMM for this model was more prone to local optima
during the fitting step, which resulted in a higher variance
of the approximate likelihood and reduced acceptance rates.
GSLs similarly had significantly lower acceptance rates com-
pared with independent MNBs, with a correspondingly
increased number of MCMC iterations until convergence.

As for the autoregulatory feedback due to the nonlinear-
ity of the propensities of the protein–gene interactions, MBI
for this model requires a moment-closure approximation.
Out of the nine different schemes implemented in the pack-
age MomentClosure.jl [51], the LMA [23,49] was the
only one that consistently predicted positive moments
around the true parameters, a necessary condition to get
well-defined likelihoods. However, even the LMA failed to
predict the moments accurately for this system, resulting in
a wildly skewed posterior (not shown) and heavily divergent
predictive distribution (figure 3c).
2.3. MAPK pathway in S. Cerevisiae
Our final example uses experimental data from [52] to analyse
the high osmolarity glycerol MAPK pathway in S. Cerevisiae,
where population snapshots were taken at different times
after the induction of osmotic shock. The model is described
in figure 4awhich features highly non-Gaussian distributions
of mRNA copy numbers. It consists of a single gene (STL1) in
four possible states, each of which produces mRNA at a speci-
fied rate. Switching into one specified state is controlled by a
kinase that is activated by a signalling cascade under osmotic
shock; the concentration of the kinase is given as an external
input to the system.

It was found in [24] that MBI generally fails to yield good
predictive results for this example, in contrast to direct
likelihood-based inference using the FSP. As the model con-
tains only four effective species (mRNA and three gene
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given in electronic supplementary material, figure S4. The input data consist of cytoplasmic protein numbers (A and B) from 100 SSA trajectories measured at
times t = 1, 2,…, 8.
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states, the fourth being given by the conservation law) it is
very amenable to the FSP, as a truncation to a few hundred
states suffices to capture its dynamics in the relevant par-
ameter range. Despite this simplicity, the model has 12 free
parameters and poses a challenge for full Bayesian inference.
A random-walk Metropolis–Hastings algorithm would
require very small step sizes in order to keep acceptance
rates high in 12 dimensions, requiring very long run-times in
order to cover the relevant posterior mass. For synthetic likeli-
hood-based approaches, another issue is the large number of
experimental measurements (16 k), which significantly
increases the variance of the total likelihood estimates and
reduces acceptance rates even further. For these reasons, we
followed the approach of the authors in [24,52], performing
maximum-likelihood estimation (MLE) and comparing the
predictive distribution with experimental data.1

The results can be seen in figure 4b. Since the data comes
in the form of independent population snapshots, we used
independent MNBs as our synthetic model. Parameters
obtained using FSP and our approach provide good agree-
ment with the experimental data in [24], whereas GSL and
MBI failed to match the observed data. MBI was not able to
accurately estimate the moments for this system, resulting
in biased parameter estimates that did not agree with the
inputs to any appreciable degree. GSL returned parameter
estimates which predict distributions with means and var-
iances that match the data, but with appreciably different
shapes—this is an example of technical parameter non-
identifiability, owing to the fact that GSL reduces the data
to its first two moments. By contrast, MNBs model the data
on the distribution level, and the parameters estimated
using these provide a close match to the data. Our results
show that synthetic models can be applied to obtain high-
quality parameter estimates for real-life biochemical systems
with comparable accuracy to FSP.
3. Discussion
We presented an approach for inference in stochastic gene
regulatory networks relying on an approximation of the gen-
erally intractable CME by a family of SM, fit to the original
model via simulations. These SM yield estimates of the
model likelihood, which can be optimized to obtain MLE
for the true model parameters, or within an MCMC sampler
for posterior inference and model selection.

We tested our method on a well-studied autoregulatory
feedback loop and showed that it closely approximates the
exact posterior in both the positive and the negative feedback
regimes, recovering true parameters with significantly more
accuracy than standard approaches such as MBI and ABC,
both in terms of the posterior approximation and in terms
of the predicted model output. We then considered a more
complex model, the genetic toggle switch, which is difficult
to analyse using moment-based methods and the FSP, illus-
trating the flexibility of our approach and its ability to
handle non-trivial models of real-life systems. We finally
demonstrated the effectiveness of our approach for analysing
real-life data by testing it on the MAPK pathway in
Saccharomyces cerevisiae in [52], obtaining parameter estimates
rivalling those of the FSP in predictive accuracy. Our findings
show that distributional approximations beyond Gaussians
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Figure 4. Comparison of synthetic models with standard methods for the MAPK pathway model. (a) Illustration of the reaction scheme of the model, which consists
of a gene in four possible states Gi and mRNA. A kinase, whose concentration is a time-dependent input signal, modulates the transition rate k�21 (see electronic
supplementary material for details). (b) Comparison of the experimentally observed distribution (grey) with the predictive distributions for the maximum likelihood
estimates obtained using four different methods. Synthetic models (yellow) provide a quality of fit similar to the finite state projection (dotted line), whereas
Gaussian synthetic likelihoods (green) and moment-based inference ( purple) fail to capture the long-tailed shape of the distributions. Estimated parameters
for each method are given in electronic supplementary material, table S1.
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can aid parameter identifiability, and that simulation-based
methods can be effectively used in place of analytical
approximations where the latter fail.

The main contribution in this work is an alternative simu-
lation-based class of approximations to the CME. As
inference for the CME generally relies on approximations,
the chosen approach for a given reaction network can have
a large impact on parameter inference. For small enough sys-
tems, the FSP can provide an excellent finite-dimensional
approximation with practically negligible error. MBI, which
replaces the full likelihood by that of empirical moments,
can be accurate given large enough sample sizes, but it
relies on the true moments being computable, which is not
the case for general reaction networks with bimolecular reac-
tions. Furthermore, the moments themselves do not always
carry enough information to identify parameters uniquely,
particularly for very non-Gaussian distributions; this is
also a potential issue with ABC where informative summary
statistics have to be chosen, but the appropriate choice is
not clear a priori. This can lead to overly broad or otherwise
inaccurate posteriors in practice, as we observed in
our experiments.

Gaussian approximations such as the LNA and GSL are
often very practicable and easy to implement, and they can
perform very well if the true distributions are not far from
Gaussian. Here, the bias introduced by the LNA to systems
with bimolecular reactions contrasts with the variance
involved in estimating the GSLs. As we observe in the genetic
toggle switch, even for systems with markedly non-Gaussian
likelihoods these methods can provide useful parameter esti-
mates, but in general their inability to distinguish between
distributions with a given mean and variance leads to poten-
tially unreliable results. MNBs can provide very accurate
approximations of the distributions occurring in many sto-
chastic reaction networks, including very non-Gaussian
ones, and one would expect their use to result in more accu-
rately inferred parameters in general, as corroborated by the
above experiments.

We emphasize, however, that more accurate SM than the
HMMs introduced in this paper could be used especially
for strong time correlations between measurements; for
closely spaced observations leading to such correlations
sequential Monte Carlo methods such as [53] are likely to
provide better results. It should be remarked that the
improvement in accuracy that can be obtained using our
approach is probably not uniform in parameter space.
Indeed, many configurations of parameters will yield
species distributions which can be reasonably well approxi-
mated as Gaussians: in these cases, while we still expect our
method to perform well, we do not expect it to differ sig-
nificantly from GSL or MBI. It is worth noticing, however,
that many biologically interesting phenomena arise pre-
cisely when systems are far from Gaussianity, for example
exhibiting multi-modality.

A major limitation of our method is that fitting a
synthetic model to simulations introduces a variance in the
approximate likelihood proportional to the number of exper-
imentally observed datapoints. In order to obtain accurate
estimates of the true likelihood, therefore, the number of
simulations used to train the synthetic model needs to be
increased in step with the sample size. For MLE estimation,
this does not significantly complicate things, but in an
MCMC context this variance causes difficulties as it can
heavily reduce acceptance rates. Another limitation of our
method is that a MNB can only provide an accurate approxi-
mation for (transcript or protein) marginal distributions
with a Fano factor greater than 1. This condition is met in
the overwhelming majority of computational models and
experimental studies of gene regulatory systems, but excep-
tions exist [54–56]. Incorporating a different parametric
family of distributions with Fano factor smaller than 1 (e.g.
hypergeometric) is in principle straightforward within the
SM framework.

The Metropolis–Hastings sampler used in this paper is
most suited for low-dimensional problems spaces, as a
random walk-based approach is not an efficient way to
explore high-dimensional posteriors. MCMC sampling in
high-dimensional spaces is often done using the Metropolis-
adjusted Langevin algorithm or Hamiltonian Monte Carlo
[57], both of which require gradients of the posterior
to direct the sampler towards high-probability regions.
Approximating the gradient of the likelihood function using
synthetic likelihoods is therefore a promising direction for
future research.
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The need to fit a synthetic model from scratch at every
iteration of the MCMC procedure is the main computational
bottleneck of our method. Methods such as data subsampling
[58,59] and amortization, e.g. using neural networks [35],
could result in significant speed-ups and a reduced variance
in the likelihood estimates for more complex problems.

An advantage of our approach over standard CME-
based inference methods is that it can be readily applied
to systems with extrinsic noise, simulated using the exact
Extrande algorithm [60], and/or non-Markovian systems
such as those considered in [40,41,61,62]. While such
models are difficult to analyse mathematically, requiring var-
ious extensions to the CME formalism, the presence of
efficient and exact versions of the SSA for these systems
allows most simulator-based inference methods to work
without any modification. We hope that our work, as well
as the ideas contained within, provides a useful stepping
stone that will enable researchers to analyse and use these
models more efficiently in the future.
9:20220153
4. Material and methods
4.1. Gaussian synthetic likelihoods
We model the distribution of observed molecule numbers, jointly
at all time points, as a multivariate Gaussian whose mean and
covariance we estimate from simulations obtained using the
SSA. If S species are simultaneously observed at T time points,
this results in a S × T-dimensional Gaussian which is fit to the
simulations by MLE. We then evaluated the likelihood for each
observed cell using this inferred Gaussian.

4.2. Moment-based inference
The moments of the CME can be computed at any point in time
from its associated moment equations. For linear systems with
mass action kinetics, such as the MAPK pathway example,
these can be solved directly, while for the autoregulatory feed-
back loop and the genetic feedback loop we used the LMA [49]
to obtain a solvable set of equations.

Experimentally observed moments form a stochastic estimate
of the true moments of the system; for large sample sizes, the
central limit theorem ensures that these sample moments will
be approximately normally distributed. Following the approach
in [17,23] we thus model the first and second (uncentred)
sample moments over observed molecule numbers using a
multivariate Gaussian. The means and covariances of the
sample moments can be expressed in terms of the analytical
moments of the system, and we assume that measurements at
different time points are independent (see electronic supplemen-
tary material for details). This results in a Gaussian likelihood on
the moment level that can be used for inference. If S species are
observed, for each time point, the associated Gaussian will have
S components for the means and S(S + 1)/2 components for the
second moments. We estimate the likelihood of the observed
data by evaluating the likelihood of the empirical first and
second moments using this Gaussian.

4.3. Approximate Bayesian computation
We use the first- and second-order moments over species num-
bers at each time point as summary statistics. Fixing a
tolerance ε, we repeatedly sample parameters from the prior
and compare the simulator output x with the observed data
xobs. Namely, we accept parameters for which the sum of the
squared relative errors in the first and second moments is less
than ε and iterate until a pre-specified number of acceptances
is reached. To improve sample efficiency, we decrease ε over
multiple rounds following [28], using a Gaussian proposal
prior estimated from the results of the previous round to guide
sampling. Regression adjustment [63] did not yield measurable
improvements in our experiments.

Data accessibility. Code implementing synthetic models as well as the
experiments in this paper is available at https://github.com/kaando-
cal/synmod.

The data are provided in the electronic supplementary material
[64].
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