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Laser Power Efficiency of Partial Histogram  
Direct Time-of-Flight Lidar Sensors 

Filip Taneski, Tarek Al Abbas, Member, IEEE, and Robert K. Henderson, Fellow, IEEE 

Abstract—On-chip capacity for storing temporal photon data in 
direct time-of-flight (dToF) lidar sensors is limited. This has 
prompted the development of various partial histogram 
approaches to reduce the amount of data stored on-chip. The aim 
of this paper is to inform sensor design by providing a taxonomy 
of these approaches, models for evaluating their impact on system 
laser power and identification of additional trade-offs which must 
be considered. All published on-chip partial histogram lidar 
approaches to-date are reviewed and two main categories are 
established: zooming and sliding. A means of evaluating any 
specific configuration based on its histogram reduction ratio 
(HRR) is also established. To quantitatively evaluate partial 
histogram approaches, a model to determine the minimum 
number of required laser cycles is developed. Both zooming and 
sliding are compared to an ideal baseline using this model, in order 
to establish a laser power penalty benchmark for each approach. 
These are evaluated over a range of real-world design conditions 
for two contrasting designs: short-range indoor and long-range 
outdoor. In general, a sliding approach is found to be the most 
laser power-efficient for long-range outdoor applications, while a 
zooming approach becomes increasingly more effective under low 
ambient conditions. Power efficient cycle-scaled variations on the 
conventional zooming and sliding approaches are introduced. 
These are shown to consistently reduce the laser power penalty 
across all tested design conditions. It is also shown that a cycle-
scaled sliding histogram approach can be adopted to reduce the 
required on-chip histogram storage capacity by half, with almost 
no additional laser power penalty. Finally, a qualitative discussion 
of zooming and sliding compares additional key design 
considerations such as sensitivity to motion artefacts.  

Index Terms—Direct time-of-flight (dToF), light detection and 
ranging (LiDAR), 3-D ranging, CMOS image sensor (CIS), 
distance measurement, single-photon avalanche diode (SPAD), 
time-of-flight (ToF).  

I. INTRODUCTION
IRECT time-of-flight (dToF) lidar is a technique used 
to determine distance, by measuring the roundtrip time 
of a laser pulse. Commercial interests are motivated by 

applications such as 3D facial recognition [1], augmented and 
virtual reality (AR/VR) [2] and, more recently, advanced 
driver-assistance systems (ADAS) for self-driving vehicles [3]. 

This paragraph of the first footnote will contain the date on which you 
submitted your paper for review, which is populated by IEEE. It is IEEE style 
to display support information, including sponsor and financial support 
acknowledgment, here and not in an acknowledgment section at the end of the 
article. For example, “This work was supported in part by the U.S. Department 
of Commerce under Grant BS123456.” The name of the corresponding author 
appears after the financial information, e.g. (Corresponding author: M. Smith). 
Here you may also indicate if authors contributed equally or if there are co-first 
authors.  

The earliest implementations began with single-point laser 
rangefinders in 1960 by Hughes Aircraft Company [4] and the 
first laser distance measurement to Earth’s moon by MIT in 
1962 [5]. Through to the 1990s, technology scaling along with 
continued interest in space navigation, defense and robotics 
enabled development of compact 2D scannable point lidars [6]. 

By the end of the 1990s, the first flash lidar was developed 
at Advanced Scientific Concepts [7] using a 2D array of sensors 
pixels, each independently measuring the laser return time. This 
made 3D ranging possible without the need for mechanical 
scanning.  

In 2003, the fabrication of single-photon avalanche diodes 
(SPADs) using standard CMOS processes was achieved [8], 
allowing commercially-feasible single-photon sensitivity 
alongside integrated CMOS circuitry. Before long, the 
integration of SPADs alongside photon arrival timing circuitry 
was realized [9]. This was shortly followed by the addition of 
memory to collect and store multiple time stamps over 
successive cycles [10]. The scaling of CMOS technologies and 
the adoption of 3D chip stacking, now enables large 2D arrays 
of SPAD sensors to be integrated onto a single silicon chip [11]. 

Filip Taneski and Robert K. Henderson are with the University of 
Edinburgh, Edinburgh, EH9 3JL, U.K. (e-mail: filip.taneski@ed.ac.uk; 
robert.henderson@ed.ac.uk).  

Tarek Al Abbas is with Ouster Automotive, Edinburgh, U.K. (e-mail: 
tarek.alabbas@ouster.io). 

Color versions of one or more of the figures in this article are available 
online at http://ieeexplore.ieee.org
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Fig. 1. Compression of raw photon arrival time data (a) into a 
histogram (b) and peak interpolation to recover precision. 
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However, as the number of pixels on a flash lidar sensor 
increases, storing and processing all photon events off-chip 
becomes less feasible. Instead, storing and/or processing of this 
data, for every pixel, must be done on the sensor itself. An 
effective method to compress photons data is to sort photon 
arrival times into coarse histogram bins, as illustrated in Fig. 1. 
Precision can then be recovered through interpolation. This 
approach was adopted in a 64×64 dToF pixel sensor using 16 
bins per pixel to range up to 50m [12] and in a 16-pixel dToF 
sensor using 2048 bins per pixel to range up to 100m [13]. 
Nevertheless, the data capacity of each pixel is limited, leading 
to a trade-off between distance resolution (histogram bin width) 
and the maximum measurable distance (total histogram bins). 

To overcome this constraint, a series of novel partial 
histogram approaches have recently been developed. These 
approaches, described in detail in Section II, successfully 
reduce the amount of data stored and processed on-chip per 
frame. However, the consequence of each approach, is a 
substantial increase in the number of laser cycles required for 
the lidar system to detect a target.  

The average optical power of a pulsed laser 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 with 
rectangular pulse width τ, laser cycle rate 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and peak optical 
power 𝑃𝑃𝑝𝑝𝑐𝑐𝑎𝑎𝑝𝑝 is given by 

 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =  τ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑝𝑝𝑐𝑐𝑎𝑎𝑝𝑝 (1) 

If the use of a partial histogram approaches results in a lidar 
system which requires additional laser cycles, the sensor 
activity and minimum achievable frame rate will be severely 
impacted. Above all, the resulting increase in average laser 
power would have severe repercussions. This is particularly 
crucial in flash lidar where the laser can contribute as much as 
80% of the total system power consumption [14]. Therefore, 
any design decisions taken to reduce on-chip capacity must 
consider the resulting impact of increased laser power, which 
to-date has not been studied.  

This paper contributes to the state-of-the-art by enabling 
informed design of partial histogram dToF sensors based on 
laser power impact. A model is presented to allow the laser 
power-efficiency of partial histogram approaches to be 
evaluated and cycle-scaled variants are proposed to 
significantly reduce laser power. The paper is organized as 
follows:  

 
● Section II: a taxonomy and literature review of on-chip 

partial histogram implementations to-date. 
● Section III: a model for determining the minimum 

number of laser cycles required for any dToF system. 
● Section IV: analysis of partial histogram approaches 

based on the minimum number of laser cycles required 
to achieve real-world design specifications. The 
benefits of cycle-scaled approaches are also evaluated. 

● Section V: a power penalty comparison of partial 
histogram approaches and a discussion of additional 
key considerations to inform design decisions. 

II. A REVIEW OF PARTIAL HISTOGRAM LIDAR SENSORS 
The aim of partial histogram approaches is to reduce the total 

number of histogram bins that would otherwise be needed to 
achieve a given range or precision. The term histogram 
reduction ratio (HRR) is introduced to describe the ratio of bin 
reduction that is achieved for a given approach.  

All partial histogram approaches adopted to-date can be 
categorized into two groups: zooming and sliding. These are 
illustrated in Fig. 2. 

 
Fig. 2. Illustration of partial histogram methods (a) zooming 
over “Z” steps and (b) sliding over “L” steps. 

A. Zooming Histogram 
In a zooming approach, the lidar sensor begins by spreading 

the reduced set of histogram bins across the full distance range. 
After an initial series of laser cycles, the peak bin is identified, 
establishing a region-of-interest (ROI). In the next step, the 
histogram sensing range is zoomed in to count photons within 
only the identified ROI, improving the distance resolution. 
Multiple zooming steps 𝑍𝑍 can be employed until the desired 
resolution is achieved, as illustrated in Fig. 2(a). A zooming 
histogram architecture using 𝑀𝑀 bins at each step achieves a 
histogram reduction ratio of: 

 HRR = 𝑀𝑀/𝑀𝑀𝑍𝑍 (2) 

The first histogram-per-pixel SPAD sensor capable of 
zooming both time resolution and position was published in 
[15] where 32 histogram bins can be programmed to a width of 
between 50 ps and 6.4 ns. This early implementation requires 
the time resolution and position of histogram bins to be 
programmed externally between each zoom step. In addition, 
histogram settings can only be applied globally across all 
pixels. This makes it practical for the targeted application of 
spectroscopy but is less suited to applications such as lidar.  

The first sensor in which each pixel is able to independently 
zoom to a specific region-of-interest was published in [16]. In 
this implementation each pixel uses 8 histogram bins over 3 
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zooming steps to achieve a HRR of 1/64. A maximum range of 
50 m with 8.8 cm accuracy and worst-case precision of 1.4 mm 
(single standard deviation) is achieved, although the frame rate 
in this configuration was not disclosed. This implementation is 
further developed in [17] where 2 stages of 32 bins are used, 
giving a HRR of 1/32. A maximum range of 9.5 m with an 
accuracy of 1 cm and precision of 9 mm is achieved. Similarly, 
the frame rate under this specific performance is not disclosed, 
although an achievable frame rate of 20 fps is reported. 

In [18], each pixel uses only 2 histogram bins but over a total 
of 8 zooming steps per frame to achieve a HRR of 1/128, 
effectively trading off on-chip storage capacity for frame rate. 
A maximum sensing distance of 45 m is achieved with 4 cm 
accuracy and a precision of 40 cm. Adoption of a large number 
of zooming steps in this implementation is likely to severely 
limit frame rate, which is not disclosed. To improve frame rate, 
the design is further developed in [19], increasing the number 
of bins in each step from 2 to 4 and reducing the number of 
zooming steps from 8 to 4. To mitigate the effect of edge-cases, 
the final (fine) zoom step covers half the range of the previous 
course step rather than a quarter. As a result, this design also 
achieves a HRR of 1/32. 

Finally, a two-step zooming approach is implemented in [20] 
where each pixel begins with a coarse 5-bit step, followed by a 
fine 6-bit (64 bins) step, giving a HRR of 1/32 limited by the 
first coarse stage. Implemented as a scanning lidar sensor, it 
uses fewer pixels than an equivalent flash sensor, allowing for 
a larger number of bins to be integrated on-chip compared to 
the previously described sensors. A maximum range of 48 m is 
achieved at a frame rate of 1 fps with an accuracy of 11.86 cm 
and a precision of 0.85 cm. A summary of all published on-chip 
histogram zooming implementations is provided in Table I. 
 
B. Sliding Histogram 

In a sliding approach, the lidar sensor starts by spreading the 
reduced histogram across only a subset of the full sensing range. 
Thus, only a fraction of the full range is initially captured, albeit 
to a high level of precision. After sufficient cycles have been 
integrated, the ROI slides to a new range. This process is 
repeated until the full the distance range has been covered. 
Ignoring use of any overlap bins, a slide histogramming 
architecture achieves a histogram reduction ratio equivalent to 
the number of steps 𝐿𝐿.  

The first implementation of a sensor with per-pixel sliding 
histograms was published in [14] where 32 histogram bins are 
used to slide across 16 time windows. 6 overlap bins are 
allocated on each side of the histogram to cover edge-cases, 
resulting in an equivalent of 320 time bins across the full 
sensing range, giving a HRR of 1/10. The system, targeted for 
indoor use, achieves 6 m range with 1% (6 cm) accuracy and a 
precision of 0.15% (9 mm) at a frame rate of 30 fps.  

The sensor described in [21] uses 8 bins which can be 
configured as a sliding histogram with up to 128 steps i.e. 
minimum HRR of 1/128. However, since operating in a 
continuous sliding histogram mode is not the primary mode of 
acquisition for this sensor, performance under this 
configuration is not disclosed. The sensor in [22] is also capable 
of a sliding approach, referred to as progressive gating, whereby 
each sliding region-of interest is set globally across all pixels. 

Details of the number of achievable steps or sensor performance 
in this mode of operation are not disclosed. 

A summary of histogram reduction configurations used in 
published sliding lidar sensors is provided in Table I. Sensors 
published in [23] and [24] are also notable early sliding 
implementations, though using a single time gate. These are 
omitted from the table which focuses on on-chip histogram 
implementations only. 

TABLE I:  
SUMMARY OF ON-CHIP PARTIAL HISTOGRAM CONFIGURATIONS 

USED IN LIDAR SENSOR PUBLICATIONS 

Publication [16] [17] [18] [19] [20] [14] [21] 

Partial 
Histogram 

Method 
Zooming Sliding 

Bins 8 32 2 4 64 32 8 

Steps 3 2 8 4 2 16 128 

Histogram 
Reduction 

Ratio 
1

64�  1
32�  1

128�  1
32�  1

32�  1
10�  1

128�  

C. Discussion 
Both sliding and zooming successfully reduce histogram 

data, allowing extended dToF range and/or precision in spite of 
limited on-chip storage. However, both approaches incur a laser 
cycle penalty compared to counting all photon arrivals over the 
full distance range. In the case of zooming, this penalty arises 
from the wider time resolution of each bin in earlier zooming 
steps, which increases the number of background photons 
captured in each bin. Therefore, more laser cycles are required 
to identify each region-of-interest. In the case of sliding, 
returning signal photons are ignored in the majority of sliding 
steps, so a greater number of cycles are required to complete a 
full frame. Thus, compensating for limited on-chip photon 
storage by adopting partial histogram approaches impacts lidar 
system performance as a whole.  

In the following section, a method for calculating the 
minimum number of laser cycles required to detect a target is 
presented. This will enable the performance of different partial 
histogram approaches to be evaluated in subsequent sections. 

 

 
Fig. 3. The signal return time bin (black) becomes more 
distinguishable as the number of laser cycles increases. 
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III. PROBABILITY OF DETECTION MODEL 
For every pulse of the laser, a dToF sensor is exposed to both 

background and signal photons. In order to identify the signal, 
photons are accumulated over multiple 𝑁𝑁 laser cycles per 
frame. In a high noise environment, such as outdoor dToF, 
determining the laser arrival time by identifying the peak 
histogram bin is a highly suitable approach [25]. However, as 
Fig. 3 illustrates, the peak histogram bin may not correspond to 
the signal bin if the number of integration cycles is insufficient.  
The proportion of frames in which the signal bin is correctly 
identified is known as the probability of detection 𝑃𝑃𝐷𝐷 and 
depends on: (i) the expected signal photon count per laser pulse; 
(ii) the ambient background photon arrival rate; (iii) the number 
of laser integration cycles. This model aims to determine the 
limit of the minimum number of laser cycles required to meet a 
given probability of detection. Accordingly, the following 
assumptions are made: 

● the laser signal falls entirely within a single time bin 
● no SPAD dead time or pile-up 
● all photon arrivals per cycle are counted 

 
One method of characterizing probability of detection for a 

histogram-based dToF system is to run a time-intensive Monte 
Carlo simulation. In this approach, a Poisson-distributed 
background photon count is generated over 𝑀𝑀 histogram bins. 
A Poisson-distributed signal photon count is then added to a 
single pre-determined bin. By observing the ratio of runs in 
which the signal bin contains the most photon counts, the 
probability of detection can be characterized.  

To provide a more complete analysis over a time-intensive 
Monte Carlo approach, a derivation of probability of detection 
for histogram-based dToF is provided. Let 𝜆𝜆𝐵𝐵 represent the 
average background photon arrivals per bin after 𝑁𝑁 cycles and 
𝜆𝜆𝑆𝑆 the average signal photon arrivals after 𝑁𝑁 cycles. For a 
system with 𝑀𝑀 bins, 𝑃𝑃𝐷𝐷 can be described as: the probability that 
the signal bin takes on a photon count value 𝑥𝑥 and all 𝑀𝑀 − 1 
non-signal bin take on a value lower than 𝑥𝑥, for all possible 
photon count values 𝑥𝑥: 
 

 𝑃𝑃𝐷𝐷 = �𝑓𝑓𝑆𝑆(𝑥𝑥) × 𝐹𝐹𝐵𝐵(𝑥𝑥)𝑀𝑀−1  𝑑𝑑𝑥𝑥 (3) 

 
Here, 𝑓𝑓𝑆𝑆(𝑥𝑥) is the probability density function (PDF) of the 
signal bin and 𝐹𝐹𝐵𝐵(𝑥𝑥) is the cumulative density (CDF) of any 
non-signal bin. When approximated to a Gaussian distribution, 
these can be expressed as: 

 
𝑓𝑓𝑆𝑆(𝑥𝑥) ≈

1
(𝜆𝜆𝑆𝑆 + 𝜆𝜆𝐵𝐵)√2𝜋𝜋

𝑒𝑒−
1
2�
𝑥𝑥− (𝜆𝜆𝑆𝑆+𝜆𝜆𝐵𝐵)

(𝜆𝜆𝑆𝑆+𝜆𝜆𝐵𝐵) � (4) 

 
 𝐹𝐹𝐵𝐵(𝑥𝑥) ≈ 𝛷𝛷 �

𝑥𝑥 − 𝜆𝜆𝐵𝐵
𝜆𝜆𝐵𝐵

� (5) 

 
Recognizing that the photon count value 𝑥𝑥 cannot take on 
negative values binds the lower limit of the integral in (3). The 
upper limit can be set by recognizing that values of 𝑥𝑥 multiple 

times greater than 𝜆𝜆𝑆𝑆 + 𝜆𝜆𝐵𝐵 result in negligible accuracy 
improvement.  

This derivation is validated in Fig. 4 which shows the 
calculated probability of detection using (3) overlaid with the 
results generated through a Monte Carlo approach for a fixed 
𝜆𝜆𝑆𝑆 and 𝜆𝜆𝐵𝐵. Note that for low numbers of laser cycles 𝑁𝑁, the 
accuracy of (3) begins to diminish with respect to the Monte 
Carlo result as the assumption of Gaussian-distributed photon 
arrival rates becomes less valid. However, this is irrelevant in 
the context of dToF, where typically thousands of laser cycles 
are integrated per frame.  

 
Fig. 4. Calculated probability of detection using (3) accurately 
reproduces the values of a Monte Carlo approach. 

By applying standard computational optimization methods 
on (3), the minimum number of laser cycles 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 to detect a 
target for a given probability of detection; signal photon count; 
and background photon rate, can be determined. This provides 
a useful tool in the design of lidar systems and forms the basis 
for evaluating partial histogram approaches which follows. 

IV. ANALYSIS OF PARTIAL HISTOGRAM APPROACHES 
A methodology for evaluating any histogram-based dToF 

design based on the minimum required number of laser cycles 
is outlined in Fig. 5. It is composed of the following: 
 
1) Lidar Design Specification 

A set of system design parameters which determine the 
expected signal and background photon count.  

2) Photon Budget Model 
Calculation of expected signal and background photon 
rates using the dToF numerical model developed in [26].  

3) Probability of Detection Model 
Solves (3) using computational optimization methods to 
determine the minimum number of required laser cycles. 

 

 
Fig. 5. Methodology for evaluating any histogram-based dToF 
design based on the minimum required number of laser cycles. 
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It should be highlighted that this model only provides the 
minimum number of laser cycles required for a lidar system to 
identify the correct temporal signal bin. To achieve a high 
degree of distance precision through interpolation, further laser 
cycles are often required, a topic thoroughly explored in [27]. 
The approach adopted here enables a universal comparison of 
partial histogram approaches without additional constraints. 

TABLE II:  
TWO CONTRASTING LIDAR DESIGN SPECIFICATIONS USED FOR 

ANALYSIS OF PARTIAL HISTOGRAM APPROACHES  

Component Parameter 
Value 

Short-range 
(SR) indoor 

Long-range 
(LR) outdoor 

Target 
Maximum distance 10 m 200 m 

Reflectivity 10 - 90% 

Ambience 
Intensity 2.5 - 25 klux 10 - 100 klux 

Irradiance reference ASTMG173 

System 
Probability of detection 99% 

Frame rate 30 fps 

Emitter 
Pulse energy 500 nJ 50 µJ 
Wavelength 905 nm 
Spot shape Round 

Sensor 
(achievable 

SPAD 
characteristics 
based on [28]) 

Photon detection 
efficiency  22% 

Pixel pitch 30 µm 
SPADs per pixel 3 × 3 
Pixel resolution 4×(200 × 63) 200 × 63 
Field-of-view 85° ×  32° 26° × 8° 

Lens 

Diameter 6 mm 
F# 1.1 2.2 

Filter bandwidth 20 nm 
Transmission 1 

TABLE III:  
EXPECTED PHOTON RATE FOR BOTH SR AND LR DESIGN 

SPECIFICATIONS AS GIVEN BY THE PHOTON BUDGET MODEL 

 
Reflectivity (%) 

Min Max 

A
m

bi
en

t I
nt

en
si

ty
 

(k
lu

x)
 Min 

  𝜆𝜆𝑆𝑆 = 0.01 count 
  𝜔𝜔𝐵𝐵 = 2M count/s 

 𝜆𝜆𝑆𝑆 = 0.09 count 
 𝜔𝜔𝐵𝐵 = 18M count/s 

Max 
  𝜆𝜆𝑆𝑆 = 0.01 count 
  𝜔𝜔𝐵𝐵 = 20M count/s 

 𝜆𝜆𝑆𝑆 = 0.09 count 
 𝜔𝜔𝐵𝐵 = 180M count/s 

To evaluate and compare partial histogram approaches, two 
contrasting lidar design specification are modelled. These are 
outlined in Table II. The short-range (SR) set is typical of 
indoor applications such as AR/VR, while the long-range (LR) 
set resembles common requirements for fully autonomous self-
driving vehicles. For a comprehensive evaluation of partial 
histogram approaches, the two designs are explored across the 
full range of min/max target reflectivity and ambient intensity.  

The resulting average signal photon (𝜆𝜆𝑆𝑆) and background rate 
(𝜔𝜔𝐵𝐵) given by the photon budget model across this design space 
is summarized in Table III. Although two contrasting designs 
are presented, both exhibit equivalent signal and background 
photon return rates at the boundaries. For example, the LR 
design exhibits the same background return rate at 100 klux as 
the SR design at 25 klux due to a 2× increase in lens F#.  

In the analysis which follows, each histogram approach will 
be evaluated based on the minimum number of laser cycles 
required to detect a target at the maximum distance with 99% 
probability of detection (𝑃𝑃𝐷𝐷 = 0.99). 

The first phase of analysis begins by establishing a baseline 
level of performance for an ideal pixel with no capacity 
constraints. A capacity of 𝑀𝑀=1024 bins is assigned to cover the 
full distance range in this case. The resulting average 
background photon rate in each bin (𝜆𝜆𝐵𝐵) when all 𝑀𝑀 bins are 
used to cover the maximum distance range (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) is given by 
(6) where 𝑐𝑐 is the speed of light. 
  

 𝜆𝜆𝐵𝐵 = 𝜔𝜔𝐵𝐵
2 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀 𝑐𝑐

 (6) 

Solving the probability of detection model (3) for 𝜆𝜆𝐵𝐵 and 𝜆𝜆𝑆𝑆 
across the full design space (Table III) to find the minimum 
required laser cycles gives the results shown in Fig. 6. The 
maximum laser cycle limit below-which the frame rate 
specification can be achieved is annotated and supported by 
both SR (500k cycles) and LR (25k cycles) designs across the 
full design space (assuming no frame time lost for readout).  

Using the same method, the minimum number of laser cycles 
for equivalent partial histogram approaches are now analyzed.  

 
Fig. 6. Minimum number of laser cycles required for the ideal 
baseline pixel to meet the design specification in Table II. 



6 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The minimum number of laser cycles required for the short-range (SR) design in Table II to meet a set of target 
reflectivity and ambient intensity specifications using: (a) zooming (b) cycle-scaled zooming (c) sliding (d) cycle-scaled sliding. 

Fig. 8 The minimum number of laser cycles required for the long-range (LR) design in Table II to meet a set of target reflectivity 
and ambient intensity specifications using: (a) zooming (b) cycle-scaled zooming (c) sliding (d) cycle-scaled sliding. 
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A. Zooming Histogram Performance  

To model zooming, pixel capacity is restricted to a more 
practical value of 𝑀𝑀 = 32 bins. A total of 2 zoom steps  
(HRR = 1/32) results in a bin resolution during the final zoom 
step equivalent to the ideal baseline (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚/1024). Assuming 
the number of laser cycles used at each zoom step is the same 
as the minimum required for the first zoom step, the background 
count per bin at each step is given once again by (6). The full 
design space of target reflectivity and ambient intensity is 
explored for the zooming pixel and the resulting minimum 
number of laser cycles is shown in Fig. 7(a) and Fig. 8(a) for 
the SR and LR designs, respectively. Results are presented for 
each zoom step separately and cumulatively. The increased bin 
width, and hence background arrival rate per bin, results in an 
almost 15× laser power increase for the SR design and 37× for 
the LR design, compared to the ideal pixel at the minimum 
target reflectivity and maximum ambient intensity design point. 
Furthermore, no data point along the design space allows the 
LR system to meet the frame rate specification. 

B. Cycle-Scaled Zooming Histogram Performance 
A key feature of zooming is that the bin width is 

progressively scaled down after each step. The background 
photon count per bin at each individual 𝑖𝑖 step can therefore be 
more accurately realized as: 
 

 
As a result, a more laser-power efficient cycle-scaled zooming 
approach is explored, whereby the required minimum number 
of laser cycles at each step is scaled accordingly based on the 
reduced 𝜆𝜆𝐵𝐵. The resulting minimum number of laser cycles for 
the SR and LR designs using a cycle-scaled zooming approach 
are presented in Fig. 7(b) and Fig. 8(b) and shown to reduce 
laser power by almost 2×. A small portion of the LR design 
space now also falls within the range required to meet the frame 
rate specification. 

C. Sliding Histogram Performance 
To enable a like-for-like comparison with zooming, the 

sliding histogram model is also restricted to 𝑀𝑀 = 32 bins. A 
total of 32 sliding steps results in the same HRR of 1/32 and a 
bin resolution equivalent to both the zooming and ideal baseline 
configurations (assuming no overlap bins). Since the 
observation time window at each step is reduced by the total 
steps (𝐿𝐿), the background photon count per bins is given by:  
 

 𝜆𝜆𝐵𝐵,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜔𝜔𝐵𝐵
2 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿 𝑀𝑀 𝑐𝑐

 (8) 

 
To determine the minimum total laser cycles, the minimum 

cycles required to detect an object in the furthest distance bin of 
the final (32nd) slide step is first calculated. This is then 
multiplied by the total number of steps (𝐿𝐿). The results are 
presented in Fig. 7(c) and Fig. 8(c) for the SR and LR designs, 
respectively. A laser cycle increase of over 20× is observed for 
both designs compared to the ideal pixel at the minimum target 
reflectivity and maximum ambient intensity design point.  

D. Cycle-Scaled Sliding Histogram Performance 
The returning laser signal power in a lidar system follows the 

inverse square law. Therefore, assigning the same number of 
laser cycles to all slide steps is not the most laser power-
efficient method. As with the zooming approach, a cycle-scaled 
approach is therefore again proposed; scaling down the number 
of cycles used at each step based on the expected signal count 
at the maximum distance of each step. 

Given the expected signal rate 𝜆𝜆S(𝐿𝐿) in the last slide step 𝐿𝐿, 
the average signal rate in each 𝑖𝑖 step can be scaled as follows: 
 

 𝜆𝜆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝜆𝜆𝑆𝑆(𝐿𝐿) × �
𝑖𝑖
𝐿𝐿
�
2

 (9) 

By appropriately scaling 𝜆𝜆𝑆𝑆 for each slide step based on (9), the 
resulting minimum number of laser cycles from a cycle-scaled 
sliding approach is presented in Fig. 7(d) and Fig. 8(d). A 
reduction in laser cycles of 4× is observed. Furthermore, a large 
portion of the design space now lies within the range required 
to meet the frame rate specification. 

V. POWER PENALTY & DESIGN CONSIDERATIONS 

A. Laser Power Penalty vs. Design Condition 
To determine the relative power penalty of each partial 

histogram approach, the minimum number of cycles required 
by both SR and LR designs across the entire design space (Fig. 
7 and Fig. 8) is compared to the ideal baseline (Fig. 6). These 
results are summarized in Fig. 9. The independence of laser 
power penalty to target reflectivity allows the results to be 
summarized as a function of ambient intensity only.  
 

 
Fig. 9. Modelled laser power penalty of partial histogram 
approaches with an equivalent HRR of 1/32 for the designs 
outlined in Table II. 

 𝜆𝜆𝐵𝐵,𝑧𝑧𝑧𝑧𝑧𝑧𝑚𝑚(𝑖𝑖) = 𝜔𝜔𝐵𝐵
2 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑠𝑠 𝑐𝑐

 (7) 
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The relative power penalty of a sliding approach resolves to 
become largely independent of ambient intensity. This is due to 
the bin width in each step being the same as that in the 
equivalent ideal approach. Note the advantage of cycle-scaling 
in a sliding approach becomes slightly less significant under 
low ambient conditions where the minimum required number 
of laser cycles in close-range steps is already low. 

On the other hand, zooming uses coarser bins compared to 
an equivalent ideal approach in all but the final zoom step. This 
makes identification of the signal bin in a zooming approach 
more sensitive to ambient levels relative to the ideal approach. 
As a result, the power penalty of zoom histogramming exhibits 
a strong dependence on the targeted ambient conditions.  

For long-range outdoor lidar applications, Fig. 9 shows a 
cycle-scaled sliding approach to be the most laser power-
efficient, regardless of ambient intensity conditions. For short-
range indoor applications on the other hand, the use of a cycle-
scaled zooming approach becomes more compelling, 
particularly under low ambient conditions where the region of 
interest at each step can be identified sooner.  

 
Fig. 10. (a) Zooming and (b) sliding configurations with 
equivalent effective bin width. (c) The resulting laser power 
penalty of each configuration as a function of HRR. 

B. Laser Power Penalty vs. Histogram Reduction Ratio 
To complete the quantitative analysis, the effect of different 

histogram reduction ratios is explored. This enables informed 
decisions based on specific on-chip capacity constraints for a 
given design. As before, the design conditions laid out in Table 
II are used. The design type (long-range), ambient intensity 
(100klux) and reflectivity (10%) remain fixed this time to 
simplify comparison. To maintain a consistent effective bin 
width, the bin/step combinations for each HRR have been 
carefully chosen and are outlined in Fig. 10(a) and (b) for 
zooming and sliding, respectively. The resulting power penalty 
as a function of HRR is shown in Fig. 10 (c). The plot shows 
that a sliding approach becomes increasingly more power-
efficient over zooming for increasing HRR. This is a 
consequence of the ever-increasing bin width (and hence 
background count) of the first zoom step with additional steps.  

A significant result observed in Fig. 10(c) is that the power 
penalty introduced through a cycle-scaled sliding approach with 
a HRR of ½ is almost negligible. By splitting the full histogram 
range into two steps, fewer competing bins are present in the 
second step, while cycle-scaling reduces the required number 
of cycles in the first step. This is an important observation, as it 
shows that dToF sensors can employ a cycle-scaled sliding 
approach to halve the required on-chip storage capacity while 
inflicting a negligible laser power penalty. 

C. Other Design Considerations 
Although this paper focuses on the laser power penalty 

introduced through both zooming and sliding, both approaches 
present further trade-offs which are now discussed.  

Both partial histogram approaches can significantly reduce 
the number of histogram bins, and hence on-chip area, required 
to store photon data. However, a zooming approach would need 
to store higher count values compared to an equivalent zooming 
approach to accommodate a higher background photon count 
per bin in the first zoom step. On the other hand, a zooming 
approach only needs to readout histogram data after the final 
zoom step, whilst a sensor adopting a sliding approach needs to 
read out data after each consecutive step. For flash lidar sensors 
containing large pixel array, this may limit the achievable HRR 
using a sliding configuration. 

A sliding approach needs to consider the event of an object 
moving between slide steps during acquisition, resulting in 
motion artefacts. Mitigating these effects requires the adoption 
of overlapping histogram regions and/or additional signal 
processing. The inherent nature of zooming to home in on a 
target can make it more robust against such artefacts. 

The most contested drawback of zooming is its limitation in 
dealing with multi-peak events which can arise from multi-path 
reflections, multiple targets, or translucent objects in the line-
of-sight such as glass. Although workarounds can be conceived 
to deal with such situations, these would inevitably require 
further on-chip storage resources and/or laser cycles.  

Difficulties also arise in zooming when the returning laser 
arrival time lies between bins, causing a pixel to zoom in on the 
wrong region-of-interest. A sliding histogram approach can 
mitigate against such situations by allocated a small number of 
bins to an overlap region between steps. Designing an 
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equivalent solution for zooming is less trivial, particularly 
during earlier zoom steps.  

A stoplight summary of both quantitative and qualitative 
evaluations is shown in Table IV. 

TABLE IV 
A STOPLIGHT SUMMARY OF DESIGN TRADE-OFFS FOR ZOOMING 

AND SLIDING HISTOGRAM APPROACHES

Parameter Zooming Sliding 

Laser power penalty  
(low signal vs. background) High Low 

Laser power penalty  
(high signal vs. background) Low Medium 

Data rate Low High 

Sensitivity to  
motion artefacts Low Medium 

 Sensitivity to  
inter-bin arrivals Medium Low 

 Sensitivity to 
multiple peaks High Low 

VI. CONCLUSION

This paper presents an in-depth study of partial histogram 
lidar sensor approaches with a focus on laser power impact.  

The first taxonomy of partial histogram has been conducted, 
establishing two categories: zooming and sliding. A means of 
evaluating any specific configuration based on its histogram 
reduction ratio (HRR) is also established and a literature review 
of all published partial histogram lidar sensors to-date is 
presented and summarized in Table I. 

A relationship between probability of detection; average 
signal; background return; and the number of laser cycles in 
dToF lidar is derived (3). This enables evaluation of any 
histogram-based dToF design based on the minimum required 
number of laser cycles.  

Power efficient cycle-scaled approaches of both zooming 
and sliding are proposed and shown to consistently reduce the 
laser power penalty across all tested design conditions. In 
general, a cycle-scaled sliding histogram approach exhibits the 
lowest power penalty in long-range outdoor applications while 
a zooming approach may be suitable for indoor-short range 
applications. A design sweet spot is identified, indicating that a 
cycle-scaled sliding approach with a HRR of ½ can allow the 
realization of a dToF sensor with half the required on-chip 
storage capacity, while inflicting a negligible laser power 
penalty. Additional key aspects to be considered when choosing 
between zooming and sliding approaches are discussed and 
summarized in Table IV. 
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