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Abstract—The estimation of covariance matrices has been a
central problem in a variety of disciplines, including quantitative
finance, genomics, and signal processing. In Bayesian statistical
inference, the efficiency of Monte Carlo methods, such as adaptive
importance sampling (AIS), can be improved significantly if
the distribution used to draw samples has a similar covariance
structure to the posterior distribution of interest. Unfortunately,
it is generally difficult to learn covariance matrices in high-
dimensional settings due to the large number of samples needed
for its appropriate estimation. This problem is intensified in
the importance sampling context, where the usual weighted
covariance estimators do not yield full rank estimates in most
practical settings due to the weight degeneracy problem. In this
work, we propose an AIS algorithm that robustly learns the
covariance structure of the target distribution. The new method
is based on applying shrinkage in a recursive manner, where
the learned covariance matrix is constructed iteratively using
a sequence of biased weighted covariance estimators. Simulation
results indicate that the proposed method outperforms other state-
of-the-art AIS methods, especially in the case where the number
of samples drawn per iteration is relatively small.

I. INTRODUCTION

Many problems of science and engineering require the
computation of intractable integrals for estimating hidden
parameters or inferring the probability density function (pdf)
of those parameters. Monte Carlo (MC) methods use random
samples for approximation of those intractable integrals and
pdfs [1]. In the basic version, the MC technique simulates
samples from the targeted pdf and provides an estimate by
simply averaging the evaluation of those samples in a function
of interest. However, in most practical cases, the simulation of
samples from the target pdf is not possible, either because the
pdf is not available in a closed form (e.g., due to an intractable
normalizing constant) or because the distribution does not have
a standard form where sampling is possible. In those scenarios,
more advanced MC methods must be employed.

Importance sampling (IS) is a MC methodology that over-
comes the above mentioned limitations by sampling from some
so-called proposal pdf [2]. Each sample receives an importance
weight based on the mismatch between the target and the
proposal pdfs. The key for a good performance in IS is in
finding an adequate proposal pdf [3]. Many efforts have been
devoted in the last two decades to developing adaptive IS (AIS)
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algorithms that can iteratively improve the proposal (see [4] for
a survey). All AIS algorithms provide strategies for adapting
the location parameter of the proposal, but only few of them
adapt also the covariance matrix [5], [6], [7], [8]. The reason
is the instability of the covariance estimator, especially in the
early iterations of the algorithm where the mismatch between
proposal and target pdfs is large and we encounter the weight
degeneracy problem as a result of the curse of dimensionality.

In this work, we explore the use of shrinkage estimation [9],
[10] to improve the performance of adaptive MC algorithms.
Specifically, we incorporate a recursive shrinkage (RS) pro-
cedure to robustly adapt the proposal parameters. We prove
that, under certain conditions, the proposed RS estimator is
asymptotically unbiased. We also propose a gradual covariance
learning approach that allows the method to achieve improved
performance. When applied to AIS, the resulting mean and
covariance estimators remain stable, even in the case that
only a small number of samples are drawn per iteration.
Numerical experiments reveal that the shrinkage-based AIS
sampler outperforms other state-of-the-art methods, including
our own previously proposed method [8], which adapts the
covariance matrix using a nonlinear weight transformation to
mitigate the effects of the weight degeneracy problem.

The remainder of the paper is organized as follows: in
Section II we formulate the problem and in Section III, we
provide a brief review of relevant prior work. We introduce
the novel method in Section IV and validate the method in
Section V through numerical simulations. Finally, we provide
concluding remarks and future work directions in Section VI.

II. PROBLEM FORMULATION

We address the general problem of approximating the integral

I , E [g(✓)] =

Z
g(✓)⇡(✓)d✓, (1)

where ✓ 2 Rd✓ is a random vector with pdf ⇡(✓), and g(✓)
is a function that is integrable with respect to ⇡(✓). In many
applications, the difficulty is not only due to the intractability
of (1) but also because ⇡(✓) can be evaluated only up to an
(unknown) normalizing constant Z. In this way, one has access
only to ⇡̃(✓) = Z⇡(✓), where Z =

R
⇡̃(✓)d✓ and ⇡̃(✓) is

the unnormalized non-negative function that can be evaluated.
This is the case, for instance, in Bayesian inference, where
⇡̃(✓) is the product between prior and likelihood, and Z is the
marginal likelihood.



III. PRIOR WORK

A. Adaptive importance sampling (AIS)

A standard parametric AIS algorithm consists of the fol-
lowing iteratively applied steps: (1) sampling, (2) weighting,
and (3) adaptation. In the sampling step, M samples are
generated from a proposal distribution q(✓;µi,⌃i), where i
denotes the iteration index and µi and ⌃i denote the proposal
mean and covariance matrix, respectively. The generated
samples {✓(m)

i }Mm=1
i.i.d.⇠ q(✓;µi,⌃i) are then each assigned

a corresponding importance weight

w̃(m)
i =

⇡̃(✓(m)
i )

q(✓(m)
i ;µi,⌃i)

, (2)

which can be normalized as w(m)
i =

w̃(m)
iPM

j=1 w̃(j)
i

for m =

1, . . . ,M . The set of samples and normalized weights at
each iteration form a discrete random measure Ti =
{✓(m)

i , w(m)
i }Mm=1. Finally, at the end of each iteration, the

proposal distribution is adapted using some adaptation rule.
For instance, the mean of the proposal distribution can be
adapted according to the weighted sample mean

µi+1 =
MX

m=1

w(m)
i ✓(m)

i , (3)

while the covariance matrix can be adapted according to the
weighted empirical covariance

⌃i+1 =
MX

m=1

w(m)
i (✓(m)

i � µi+1)(✓
(m)
i � µi+1)

|. (4)

After I iterations, we obtain a set of samples and weights,
which can be used to approximate the integral in (1) with

ÎM,I
AIS =

IX

i=1

MX

m=1

w̄(m)
i g(✓(m)

i ), (5)

and approximate the target distribution ⇡(✓) with,

⇡̂M,I
AIS (✓) =

IX

i=1

MX

m=1

w̄(m)
i �(✓ � ✓(m)

i ), (6)

where �(✓ � ✓(m)
i ) denotes a Dirac-delta function centered at

✓(m)
i and w̄(m)

i =
w̃(m)

iPI
i=1

PM
j=1 w̃(j)

i

denotes the weight of the
mth sample generated in the ith iteration normalized over all
iterations. We summarize the approach in Algorithm 1.

B. Shrinkage in covariance estimation

Let b⌃ be a consistent estimator of the target covariance
matrix, ⌃. Suppose that there also exists another estimator
of the covariance e⌃, which assumes a specific covariance
structure. The estimator e⌃ is biased, but is more “stable” than
b⌃ for a smaller sample size. The shrinkage estimator of the
target covariance matrix, b⌃� , is given as

b⌃� = (1� �)e⌃+ � b⌃, (7)

Algorithm 1 Standard Parametric AIS
1: Initialization: Set the initial proposal parameters µ1,⌃1.
2: for i = 1, . . . , I do
3: Draw M samples from the proposal distribution,

✓(m)
i ⇠ q(✓;µi,⌃i), m = 1, . . . ,M.

4: Compute the importance weights of the samples,

w̃(m)
i =

⇡̃(✓(m)
i )

q(✓(m)
i ;µi,⌃i)

, m = 1, . . . ,M.

5: Compute µi+1 and ⌃i+1 according to (3) and (4).
6: end for

where 0  �  1. The biased estimator e⌃ captures the simpli-
fied structure of the covariance matrix, while the estimator for
the full covariance matrix b⌃ captures the correlations encoded
by the samples. The shrinkage weight parameter � controls
the bias-variance tradeoff, and is typically chosen to optimize
some objective function f(�), such as the mean squared error
(MSE) of the shrinkage estimator.

IV. PROPOSED METHOD

Recall from Section III-A that the mean of the proposal
distribution can be adapted according to the weighted sample
mean as defined in (3) and the covariance matrix can be
adapted according to (4). The weighted sample mean is
an unbiased estimator for the mean, while the weighted
empirical covariance is biased for a finite sample size. It is
possible to form an unbiased estimator of the covariance matrix
using weighted samples by applying Bessel’s correction. This
unbiased weighted covariance matrix is given as follows:

b⌃i =
1

Wi

MX

m=1

w̄(m)
i (✓(m)

i � µi+1)(✓
(m)
i � µi+1)

|, (8)

where Wi = 1 �
PM

j=1(w
(m)
i )2. While the estimators in (3)

and (8) are both unbiased, when d✓ is large, the weighted
sample covariance matrix can be ill-conditioned due to the
limited sample size M and the weight degeneracy in the early
iterations of the algorithm.

One way to overcome the challenges posed by high dimen-
sionality by considering a parameter adaptation strategy based
on applying the shrinkage principle recursively. In particular,
we adapt the mean and covariance matrix as

µi+1 = (1� ↵i)µi + ↵iµ̂i

⌃i+1 = (1� �i)⌃i + �i
b⌃i

(9)

where 0 < ↵i and �i < 1. We define µ1 and ⌃1 as the
initial mean and covariance matrix, respectively. We note
that ⌃1 should be chosen to be well-conditioned and positive
definite. The benefit of using the proposed adaptation scheme
in (9) is that the resulting parameter adaptations remain stable.
These estimators resemble adaptation schemes proposed in the
adaptive MCMC literature in [11] and [12], where moment



estimators like µ̂i and ⌃̂i are computed using samples from a
Markov chain whose stationary distribution is the target. This
is in contrast to our work, which uses unbiased estimators of
the moments to adapt the parameters.

In the following, we show that, in the limit as i ! 1,
the estimators in (9) are unbiased. We show this result for
the recursive covariance estimator, but it also follows for the
mean. We remark that if the sequence �1,�2, . . . ,�i are chosen
according to the Robbins-Monro stochastic approximation
conditions [13], the covariance of the proposal converges to
the covariance of the target distribution as i ! 1.

A. Asymptotic unbiasedness

Proposition 1. Let �1,�2, . . . ,�i be a sequence of constants
that satisfy 0  �j < 1, and let b⌃1, b⌃2, . . . , b⌃i be a sequence
of unbiased estimators of the covariance matrix ⌃. For any
positive definite matrix ⌃1, the recursive shrinkage estimator

⌃i+1 = (1� �i)⌃i + �i
b⌃i

is asymptotically unbiased.

Proof. For i = 1, ⌃2 = (1� �1)⌃1 + �1
b⌃1. For i = 2,

⌃3 = (1� �2)⌃2 + �2
b⌃2

= (1� �1)(1� �2)⌃1 + �1(1� �2)b⌃1 + �2
b⌃2

For any i, ⌃i+1 can be expressed as

⌃i+1 = ai⌃1 +
iX

j=1

�i,j b⌃j (10)

where ai =
Qi

j=1 (1� �j) and �i,j = �j
Qi

⌧=j+1 (1� �⌧ ) for
j = 1, . . . , i�1 and �i,i = �i. We note that ai+

Pi
j=1 �i,j = 1

always. Taking the expectation of both sides, we have that

E [⌃i+1] = E

2

4ai⌃1 +
iX

j=1

�i,j b⌃j

3

5

= ai⌃1 +
iX

j=1

�i,jE
h
b⌃j

i
= ai⌃1 +

0

@
iX

j=1

�i,j

1

A⌃

We would like to show that limi!1 E [⌃i+1] = ⌃. First

lim
i!1

ai = lim
i!1

iY

j=1

(1� �j) = 0

since 0  (1� �j) < 1 for all j. This implies that
limi!1

Pi
j=1 �i,j = 1 and limi!1 E [⌃i+1] = ⌃.

Intuitively, as the number of iterations gets large, the contri-
bution of ⌃1 in the recursive shrinkage estimator diminishes.
Note that the result does not hold with consistent estimators that
are biased for a finite sample size, e.g. the weighted empirical
covariance matrix in (4); however, even in this situation, the
contribution of the initial covariance matrix ⌃1 goes to zero
asymptotically with the number of iterations.

B. Gradual Covariance Learning

In the early iterations of an AIS algorithm, the weighted
covariance estimates are poor due to the weight degeneracy
problem. This can have a negative effect on the performance
of the covariance update rule in (9). We overcome this issue
by utilizing the following update for the covariance matrix:

⌃i+1 = (1� �i)⌃i + �i(1� ⌘i)b⌃i + �i⌘i⌃̃i, (11)

where ⌃̃i is an estimator of an intermediate covariance target,
⌘1, . . . , ⌘i is a decreasing sequence of constants that satisfy:
⌘1 = 1, and limi!1 ⌘i = 0. In this work, we choose the
intermediate covariance estimate to be the one proposed in
our previous work [8], which estimates the covariance using a
nonlinear transformation of the importance weights.

V. EXAMPLE: BAYESIAN LINEAR REGRESSION

We validate the proposed shrinkage-based adaptation tech-
nique with a simple example of Bayesian linear regression
[14]. Suppose we observe a vector of N observations y =
[y1, . . . , yN ]| 2 RN , where each yn 2 R can be written as

yn = x|
n✓ + un, (12)

where xn 2 Rd✓ is a vector of features, ✓ 2 Rd✓ is a vector
of weight coefficients, and un 2 R is a zero-mean additive
Gaussian noise with unity variance. Equivalently, we can write
y = X✓+u, where X = [x1, . . . ,xN ]| and u = [u1, . . . , uN ].

Under the Bayesian framework, our goal is to learn the
posterior distribution p(✓|y), which can be evaluated up to a
normalization constant accordingly:

p(✓|y) / ⇡̃(✓) , p(y|✓)p(✓), (13)

where p(y|✓) = N (y;X✓, Idy ) is the likelihood function of
the parameters and p(✓) is the prior distribution. Under the
choice p(✓) = N (✓;0, 1

5 Id✓ ), the posterior distribution can be
determined analytically in closed-form. For this reason, we
evaluate our method on this example, since we can compare
to the ground truth posterior. We simulate a synthetic data set
with N = 20 and d✓ = 10, where each feature vector xn ⇠
N (0,⌃x) with ⌃x being a non-identity covariance matrix and
the ground truth ✓ = [✓1, . . . , ✓10]| generated according to
✓i ⇠ U(0, 1) for i = 1, . . . , 10. For the proposed scheme, we
fix ↵i = 1 and test four variants for adapting the covariance
matrix according to (11): 1) Constant (�i = �1 and ⌘i = 0), 2)
Decreasing (�i = (�1)�0.5 and ⌘i = 0), 3) Constant/Gradual
(�i = �1 and ⌘i = i�1) and 4) Decreasing/Gradual (�i =
(�1)�0.5 and ⌘i = i�1). For the initial shrinkage parameter,
we test �1 2 {0.1, 0.2, . . . , 0.9}.

We run two experiments to test the efficiency of the proposed
scheme. In the first experiment, we test different sample sizes
M = {100, 200, 500} and run each algorithm for I = 105/M
iterations. The mean is initialized as µ1 ⇠ U([�5, 5]10) and
the covariance matrix is initialized as ⌃1 = 5I10. The results
are averaged over 1000 runs. Figure 1 plots the evolution of
the average MSE of the posterior mean estimate for different
values of �. Based on the figure, it is clear that the gradual
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Fig. 1: Evolution of average MSE for proposed scheme under different settings for �1 for M = 100.
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Fig. 2: Boxplot comparing MSE of each method.

covariance learning approach is the most robust, as it achieves
good performance regardless of the choice of �1. This is verified
in Table I, which shows performance averaged over the value of
�1 under different sample size settings. The results indicate that
the gradual covariance learning approaches (both constant and
decreasing �i) achieve lower average MSE than the standard
shrinkage approach.

Constant Decreasing Const./Grad. Decr./Grad.
M = 100 1.470± 1.591 0.598± 1.103 0.589± 0.717 0.013± 0.031
M = 200 1.094± 1.400 0.397± 0.785 0.239± 0.368 0.002± 0.003
M = 500 0.670± 1.100 0.281± 0.597 0.043± 0.091 0.006± 0.014

TABLE I: MSE averaged over �1 with standard error values.

In the second experiment, we compare the proposed method
to the standard parametric AIS in Algorithm 1 and the
covariance AIS (CAIS) algorithm in [8]. We fix M = 100
and I = 1000 and use the same proposal parameter initializa-
tion as the previous experiment. We fix �1 as follows for
each the proposed method variants: Constant (�1 = 0.2),
Decreasing (�1 = 0.3), Constant/Gradual (�1 = 0.1), and
Decreasing/Gradual (�1 = 0.4). The results of the experiment
are averaged over 1000 runs and are shown in Figs. 2 and
3. Figure 2 shows a boxplot that compares the MSE in the
estimates of the posterior mean. The results indicate that the
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Fig. 3: Evolution of MSE in the covariance matrix.

novel method always outperforms the standard AIS and for
the selected choices of �1, it outperforms CAIS under its best
configuration. This shows that our method is more robust than
methods like CAIS in the case that the number of samples
per iterate is small relative to the dimension of the target
distribution. Figure 3 shows the evolution of the distance
between the target covariance and proposal covariance for each
of the AIS methods (measured with the Frobenius norm). The
plot indicates that the adapted covariance in standard parametric
AIS and CAIS are further from the target covariance than
the proposed schemes. Furthermore, it is evident that, when
a gradual covariance learning strategy is used, the proposal
covariance approaches the target covariance at the fastest rate.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel proposal parameter
adaptation scheme for general adaptive Monte Carlo methods.
The scheme is based on applying shrinkage recursively, which
allows for stable parameter updates. We also proposed a variant
of the method that gradually learns the target covariance by
approximating the covariance of an intermediate target. The
adaptation scheme was applied to standard parametric adaptive
importance sampling (AIS). Numerical experiments showed
that the shrinkage-based AIS methods outperformed other
competing algorithms in practice.
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