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Abstract

From a macro-energy system perspective, an energy storage is valuable if it contributes to meeting system
objectives, including increasing economic value, reliability and sustainability. In most energy systems models,
reliability and sustainability are forced by constraints, and if energy demand is exogenous, this leaves cost as the main
metric for economic value. Traditional ways to improve storage technologies are to reduce their costs; however, the
cheapest energy storage is not always the most valuable in energy systems. Modern techno-economical evaluation
methods try to address the cost and value situation but do not judge the competitiveness of multiple technologies
simultaneously. This paper introduces the ‘market potential method’ as a new complementary valuation method
guiding innovation of multiple energy storage. The market potential method derives the value of technologies by
examining common deployment signals from energy system model outputs in a structured way. We apply and
compare this method to cost evaluation approaches in a renewables-based European power system model, covering
diverse energy storage technologies. We find that characteristics of high-cost hydrogen storage can be more valuable
than low-cost hydrogen storage. Additionally, we show that modifying the freedom of storage sizing and component
interactions can make the energy system 10% cheaper and impact the value of technologies. The results suggest
looking beyond the pure cost reduction paradigm and focus on developing technologies with suitable value
approaches that can lead to cheaper electricity systems in future.

Highlights
• Review of evaluation methods for energy storage identifies need for new approaches.
• Formulation of new ‘market-potential method’ to identify value of storage.
• Pitfalls of cost approaches are identified in an European electricity system.
• Increasing storage design-freedom impacts technology value and system benefit.
• The ‘market-potential-method’ is useful for research and industry.
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Graphical Abstract

1 Introduction
In the face of global ambitions to reduce greenhouse gas
emissions, the energy transition characterised by increas-
ing shares of wind and solar power will benefit from
more energy storage in the future electricity system [1–
3]. How many benefits can be delivered by energy stor-
age depends, among others, on how future technology
will be designed. Consequently, research and develop-
ment (R&D)must evaluate the techno-economic design of
energy storage systems to be most beneficial.
A traditional technology evaluation approach is to

reduce the cost of its devices [4]. For energy storage, these
costs can be defined as absolute costs (e), or relative to
energy (e/kWh) or power (e/kW) quantities. In particu-
lar, in the material science and chemistry literature, cost
reductions of energy storage are a pivotal element, along-
side maintaining other storage characteristics such as a
‘sufficient’ high efficiency, power and energy density, and
safety [5, 6]. Though, what is ‘sufficient’ high is often
unclear. Only if one energy storage outperforms the other
in all characteristics it represents a superior technology;
otherwise, more expensive energy storage with suitable
technical characteristics can compete as well (as will be
demonstrated in Section 4). Similar, evaluation techniques
exist that aim to maximise the profit, however, these are
mostly suitable to evaluate single projects (see review
in Section 2). Fortunately, material science literature has
recognised one of the key challenges that energy storage
depends on different applications and the interaction with
the energy system [7].
Alternative technology evaluation approaches use

energy system models. These tools describe energy sys-
tems mathematically and capture system-values arising
from storage interactions with the wider energy system

(see Section 2 for more details). Some studies applying
energy system models focus on storage technology evalu-
ation and guidance. For instance, [8] explores the design
spaces for long-duration energy storage, [2, 3, 9] explore
the system-value of generic storage technologies and [10]
explores technology specific system-values of liquid-air
energy storage and pumped-thermal electricity storage. A
limitation of these studies is that counterfactual scenarios
constrain this analysis type to single generic or rigid stor-
age examples making the evaluation results questionable.
This study introduces as technology evaluation

approach the ‘market potential method’ which can be
described as systematic deployment assessment. Differ-
ent to classical market potentials that are derived from
energy system models which quantify mainly system
effects [11], we focus on the systematic assessment of
market potentials to evaluate energy storage technologies
(see Section 3.1). This approach overcomes the previously
described limitations and simultaneously analyses mul-
tiple and more-flexibly sized energy storage. As we will
see later in Section 4, reflecting competitive situations
and unique constraint demand and supply mismatches
in macro-energy systems are important factors that can
affect the system-value of energy storage.
The contribution of this paper to existing literature is as

follows:

• We review and discuss techno-economic approaches
that are currently used to evaluate and compare
energy storage technology in Section 2. We include
cost, profit and system-values analysis.

• We show that current cost metrics can be misleading
for technology design decisions. Section 4.2 and 4.3
show that a high levelised cost of storage (LCOS)
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hydrogen storage can be equally or even more
valuable than a low LCOS one from the system
perspective. We draw this conclusion by observing
the deployment of low and high LCOS hydrogen
storage systems in a least-cost power system
investment planning model.

• We extend system-value approaches by the newly
developed ‘market potential method’ in Section 3.1. It
is further applied and discussed in Section 4. The
market potential method systematically evaluates
deployment estimations from energy models by
looking at a set of probable scenarios in high
spatial-temporal resolution over large regions such as
Europe. Compared to existing alternatives that are
described in Section 2, the new approach could be
potentially more useful and overcomes many
limitations. Research and industry could apply the
new approach as a complementary tool to guide
energy storage innovation.

• We show that modifying the freedom of storage
sizing and component interactions can lead to
significant energy system benefits (Section 4.1) and
impact the system-value of a technology
(Section 4.3). It underlines the impact of developing
and offering adaptive components, such as charger,
storage and discharger, separately instead of
complete storage systems.

In this study, not all energy values are included. In
general, energy storage systems can provide value to the
energy system by reducing its total system cost; and
reducing risk for any investment and operation. This

paper discusses total system cost reduction in an idealised
model without considering risks. Reducing risk in power
systems can be seen as option value [2] leading to a more
beneficial investment and operation. Furthermore, only
energy balance benefits within a European power sys-
tem model are included, ignoring other energy sectors
apart from the electricity sector. This study neglects sub-
hourly signals relevant to address grid stability benefits,
but includes hourly up to seasonal arbitrage based scarcity
signals relevant to address short and long-term balancing
benefits (described in Section 3.3).
Our findings suggest that a narrow cost focus on design-

ing energy storage is not enough. Future R&D design deci-
sions should additionally use system-value insights from
energy system models. The presented market potential
method could be one approach to accomplish this.

2 Review on storage valuationmethods
This section reviews and classifies currently applied
storage valuation methods, or in other words, techno-
economic analysis approaches that appraise the compet-
itiveness of energy storage including both, technicalities
and economic measures.
This study classifies the literature into three groups: cost

analysis, profit analysis and system-value analysis, which
mainly differ in the objective of the metrics. Figure 1
summarises what components will be discussed. These
methods are broadly employed for industry decision mak-
ing, research focus consolidations, and policy regulation
[2, 12, 13], which underlines their importance and the
impact of any improvement.

Fig. 1 Classification of current techno-economic analysis methods in the context of energy storage. *Market potential indicator is a suggested
decision metric and part of the newly introduced market potential method. The abbreviations mean the following: levelised cost of storage (LCOS),
levelised cost of hydrogen or methane (LCOH/M), net present value (NPV), internal rate of return (IRR), return of investment (ROI)
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To understand the ‘visible’ and ‘hidden’ value terminol-
ogy chosen to classify the literature, one should acknowl-
edge that current markets can be considered imperfect
and incomplete for multiple reasons:

• Markets are not temporally or spatially resolved. For
instance, spot prices are settled over larger spatial
areas and not in real-time, leading to not perfect
spatial dissolved socialised grid fees [14].

• Market power can be exploited. Dominant market
participants act for their profit while damaging the
average participant [14].

• Forecast information is imperfect. Forecasts of
demand, wind and solar generation underlie
uncertainties leading to imperfect operation and
planning [14].

• Other negative and positive externalities exist related
to incomplete markets, which distort the price.
Negative externalities are, for instance, non-priced
costs for carbon emission, air pollution and
biodiversity losses; positive externalities are
non-priced benefits such as non-tracked carbon
reduction benefits [14].

In this context, system-value analysis generally analy-
ses markets by partially or entirely reducing these mar-
ket flaws. For instance, energy system models can cover
higher spatial and temporal resolution, exclude market
power, assume perfect foresight and account for exter-
nalities. However, not all models idealise. Some can also
incorporate effects of imperfect and incomplete markets
by adding cost and benefits related to uncertainty and
non-optimal operation and investment [15–17].
‘Visible values’ are benefits that can be priced or

accounted for in real-world imperfect and incomplete
markets as used for profit analysis. In contrast, ‘hidden
values’ are benefits that are not yet priced or accounted for
in real world markets. An example are hidden energy stor-
age benefits for network or peak plant deferral or reduced
solar and wind power plant curtailments [18]. To track
both hidden and visible values, system-value approaches
use idealised models assuming perfect and complete
markets.
The following subsections will clarify for each techno-

economic analysis class their objectives, methods and
users, and further analyse the grade of technical detail
and how the approaches handle the role of competition in
uncertain future markets.

2.1 Cost analysis
We categorise the cost analysis of energy storage into two
groups based on the methodology used: while one solely
estimates the cost of storage components or systems, the
other additionally considers the charging cost, such as the

levelised cost approaches. Their general objective is to
minimise the cost metric for a particular technology or
application.
An example of the first approach is represented in [19].

The energy weighted cost of a storage system (e/kWh)
is minimised, without any electricity price signal, by a
cost optimisation model that simultaneously maximises
the round-trip efficiency of the storage. In [20, 21], instead
of assuming the cost of components, they break down
storage components or systems into materials and manu-
facturing processes. This methodology, known as process-
based cost analysis, allows a deeper understanding of cost
reductions by mass production or switching to different
manufacturing methods. While both approaches do not
mention competitiveness or the value of energy storage,
their outputs combined with cost and benefit analysis
allows finding the value of energy storage solutions.
The levelised cost approaches for energy storage include

metrics such as the levelised cost of storage when elec-
tricity is discharged (LCOS) and LCOH or LCOM when
hydrogen or methane are discharged, respectively [12,
22]. All the levelised cost metrics above are similarly
structured. They divide the total cost of the considered
system by the discharged energy. Both parameters must
be discounted to represent the time value of money [23].
Because all levelised cost metrics work similar, we use as
generalised form the levelised cost of X (LCOX), where ‘X’
indicates that the equation holds for various discharged
energy carriers:

LCOX =
(∑T

0 Total cost
)
Discounted(∑T

0 Total discharged energy
)
Discounted

(1)

Thereby, the total cost typically consists of capi-
tal expenditures, operational expenditures and charg-
ing expenditures [24–26]. Sometimes additional factors
are included that can impact total cost and total dis-
charged energy, such as degradation rates, taxes, or self-
discharging [12].
Levelised cost metrics are used to evaluate many appli-

cations, such as energy arbitrage, frequency regulation,
voltage regulation, system restoration and operational
management (i.e. redispatch). For this purpose, the lev-
elised cost metric assumptionsmust be categorised for the
specific application, such as charging price, operational
time and power to energy ratio [12, 26].
While the ‘cost of component’ or ‘cost of system’

approach is widely used for design decisions with high
technological detail [19–21], the levelised approaches
forego some technical detail to inform project developers
and policy about their projected competitiveness in the
market [12].
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Cost of component or system metrics are excellent for
exploring cost reduction opportunities in great techni-
cal detail. On the other hand, LCOS-like metrics differ
by being a good first indicator for the competitiveness
between various technologies for a particular application.
A technology improvement should lead to total system

cost reductions. However, the main limitation of cost-
analysis methods is that cost reductions for one energy
technology can be only a clear signal for technology
improvement under the condition that its other techno-
economic characteristics do not degrade. For example, an
energy store only clearly improves if the cost reduces at
least for one component such as charger, store or dis-
charger, while the other component costs and efficiencies
are not negatively influenced. If this is not the case, a com-
plex solution space exists for which a more costly energy
storage can lead to lower total system cost, and hence,
being more valuable, see Section 4.

2.2 Profit analysis
The profit analysis describes methods from the investor’s
perspective. They tend to choose profitable energy stor-
age projects at current energy market designs [27, 28].
Thereby, the general objective for the investor is to max-
imise the profit indicator for a given investment.
The inclusion of discharging behaviour and revenue

streams are distinctive for profit analysis. Depending on
the market design, several different revenue streams for
energy storage exist. In the UK, for instance, 14 potential
revenue streams exist, such as frequency response provi-
sion or wholesale market arbitrage, which can be power
(e/kW) or energy (e/kWh) related [29]. In general, not
every storage has access to the same revenue streams due
to specific characteristics and requirements [12]. Most
studies include only the energy arbitrage service from
energy storage, which means buying cheap electricity and
selling it later more expensive [30]. Other studies co-
optimise multiple energy services, which result in higher
benefits [30–32].
The profit analysis typically evaluates energy storage

projects with capital budgeting techniques based on dis-
counted cash flowmethods to acknowledge the time value
of money [23]. The energy storage literature uses mul-
tiple project assessment metrics: present value (PV) is
employed to calculate the feasible cost of a storage project
[27], net present value (NPV) to evaluate the profitabil-
ity of a project [18, 33], and internal rate of return (IRR)
to determine at which discount rate or opportunity cost a
project is viable [30, 34]. NPV and IRR are good investor
signals when investment capital can be accessed easily.
However, when investment capital is limited, projects
should be evaluated by a profitability index, which relates
the discounted benefits to the cost [23]. Many energy stor-
age studies, therefore, investigate energy storage by the

profitability index [23], which is also termed cost-benefit
ratio [35, 36], NPV-ratio [37], return of investment (ROI)
[38], return on equity (ROE) [28], all giving the signal
of how much money can be achieved per investment.
Another common metric in the context of energy stor-
age is the payback period [34, 39, 40], which [23] judges
to be an illustrative but not useful factor for investment
decisions. Finally, when multiple energy storage technolo-
gies with different lifetimes are evaluated and compared,
such as in [33, 36, 40], an equivalent annual annuity met-
ric is recommended [23]. For instance, one could break
down the NPV to an equivalent annual annuity where the
highest annuity is the preferable project.
Themain limitation of the profit analysis is that it misses

the ‘hidden’ or broader power system cost and benefits of
energy storage. Because it only focuses on the ‘visible’ cost
and benefits at the current market design. Future energy
markets might internalise ‘hidden’ benefits, such as shown
in market design efforts to address the previously hidden
greenhouse gas emission costs. Hidden costs and benefits
are, for instance, savings due to investment deferral of net-
work upgrades or peak plants, or when fewer curtailments
increase the value of renewable generators [41]. Employ-
ing a hybrid method of profit and system-value analysis,
the authors in [18] added social or ‘hidden’ benefits to the
NPV metrics, which are not directly accounted for in the
market design. This lead to a higher value of energy stor-
age solutions. The drawback of the approach is that many
assumptions are made and added exogenously to the NPV
characteristics ignoring the spatial and temporal hetero-
geneity of the hidden cost and benefits. What may be a
reasonable assumption at one location at a specific time
must not be the case at another location at the same or
another time. Including these variables endogenously, as
some energy system models do, can help anticipate better
infrastructural changes and reduce risks.
As a result, the profit analysis is a useful method to

investigate a storage project’s value and competitiveness at
present for a specific location at current market designs.
This might be sufficient for investors to assess short-term
projects at specific locations. However, when one looks
at the value of energy storage in the long term or across
many regions, the following system-value approach can
give some extra insights.

2.3 System-value analysis
As previously stated, the system-value analysis estimates
the value of energy storage which are ‘visible’ and ‘hid-
den’ at existing markets, for longer time horizon and large
spatial regions by considering perfect and complete mar-
kets in the analysis. Energy systemmodels are used for the
system view, which optimises investment and operation
of generators, networks and storage or demand response
units at the same time to accomplish the objective of min-
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imising total system cost. The results of such analysis
are nowadaysmainly applied for policy recommendations.
However, they also reveal insights for technology design.
For instance, it was found that high capacity factor wind
turbines can be equally desired in an optimal energy sys-
tem as their less capital intensive alternative technology
with lower capacity factors – having smaller hub heights
and shorter blade lengths [42, 43].
The system-value approaches are important to identify

the benefits of energy storage. Which benefits are con-
sidered depends on the energy system model design. For
instance, [3] neglects network expansion, missing signifi-
cant network expansion cost savings from storage deploy-
ment [2]. On the contrary, the authors in [2, 10] use a
model that incorporates generation, network, and system
operations savings from energy storage in the UK.
The whole-system benefit (WSB) given in e/year and

the marginal WSB given in e/kW or e/kWh are two
inspiring concepts how to attach a system-value to the
energy storage in power systems [2, 3, 8, 9]. Both concepts
share a comparison of a none or existing storage sce-
nario with one that includes an energy storage expansion.
Such approaches are also known as counterfactual scenar-
ios [44]. Thereby, the total system cost difference between
the scenarios is the WSB that the energy storage creates
[10]. When the marginal WSB curve, given in e/kW or
e/kWh, is integrated by the respective storage unit (in kW
or kWh), then the WSB is obtained. The marginal WSB
is described as vital since it provides the upper-cost limit
for energy storage for a given amount of installed storage
[45]. Only if the marginal value is above its marginal cost,
the storage is an economically viable option and should be
installed. Additionally, to the WSB and its marginal value,
the authors in [45] extended the concept by the differen-
tiation of the benefits in net and gross benefit. The gross
benefit excludes the investment cost of energy storage,
while the net benefit includes them. Thereby, the gross
value method is used to benchmark how much the cost
can rise for a given technology. The net benefit analyses
the holistic value for a specific storage case.
Both WSB methods above lead to insightful results. For

instance, (i) that every additional installed energy stor-
age capacity decreases its marginal value; (ii) that the
value of energy storage can suffer from competition with
other flexibility providers, such as demand response or bi-
directional charging of electric vehicle; and finally (iii) that
energy storage benefits can be decomposed into its origins
such as network and peak capacity savings [2, 10].
The drawback of the WSB approaches is that they are

unsuitable as evaluation metrics to signal between multi-
ple storage alternatives what technology is more compet-
itive. The WSB approaches seem to work correctly only
for a single energy storage design. When multiple energy
storage units are included in the WSB analysis at the

same scenario and with variable sizing for each location, it
becomes difficult with counterfactual approaches to allo-
cate benefits. Or, in other words, it becomes unclear which
energy storage at what location is responsible for certain
energy storage benefits at a specific time. As a result, WSB
approaches cannot assign a value to one particular storage
or compare multiple storage technology candidates.
In the next section, the ‘market potential method’ aims

to extend the existing system-value literature to circum-
vent the above issue and give decision-maker signals even
under complex competition situations. In short, the new
approach moves away from assigning monetary values
directly to individual energy storage units but instead
focuses on the optimised quantity, which means that a
storage is likely to be valuable when a certain amount of
storage is built. As in Section 4.4 discussed, the quan-
tity appears to be another helpful metric for industry and
research when systematically applied.

3 Methodology
The methodology section is built up as follows. First, the
new system value assessment method, the ‘market poten-
tial method’ is defined in theory. Second, an experimental
model setup for hydrogen and battery storage is described
that compares cost and system-value analysis approaches.
Finally, to carry out the experiment, the power system
model PyPSA-Eur is introduced with its problem formu-
lation, set of scenarios and model input data.

3.1 Market potential method
The ‘market potential method’ attempts to expand the
existing system-value methods to give more useful sig-
nals of which storage technology is valuable in existing or
future energy systems. Figure 2 illustrates that the ‘market
potential method’ consists of: first, the ‘market potential
indicator’, which corresponds to the expanded power or
energy capacities of a storage component such as charger,

Fig. 2 High-level description of the Market Potential Method. First a
market potential indicator is derived for a single or multiple possible
scenarios. The market potential indicator is then used by an entity
through a market potential criteria to support design-decisions
making on energy storage technology
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discharger or capacity unit; second, the ‘market potential
criteria’ which seek to support design-decision making of
storage technologies.

3.1.1 Market potential indicator
The foundation of the introduced method is the market
potential indicator (MPI). The MPI is not a new metric. It
is a result of energy system models that analyse scenarios
in future energy systems and describes the total quan-
tity of a particular storage technology in a cost minimised
electricity system [3, 46, 47]. However, the MPI has never
been a central metric to improve, compare and explore
storage designs in detail; it was rather used to inform pol-
icymakers and market participants about probable energy
futures to reduce investors risk [47]. We utilise the MPI to
guide technology innovation with probable scenarios and
market potential criteria.
The market potential can be either aggregated or dis-

aggregated. In the context of energy system models, we
define the disaggregated MPI of a storage unit as opti-
mised (or expanded t − t0) power or energy-related size
at a region. Thereby, the market potential focuses on the
storage component c, representing a charger, discharger
or store unit. The over a region i aggregated MPI is
determined by:

MPIt−t0,c =
∑
i∈N

(MPI)t−t0,c,i [MW or MWh] (2)

It is crucial to consider the MPI by components rather
than by a fixed-sized storage system for mainly two rea-
sons. First, grid-scale energy storage can be highly scal-
able and adaptable [48, 49]. For instance, electrolysers
(MW), steel tanks (MWh) and fuel cells (MW) compos-
ing hydrogen storage systems can be freely scaled and
combined. Moreover, in a H2-hub operation, two differ-
ent electrolysers could feed the same H2-storage tank.
Second, energy storage system components–for instance,
hydrogen–are not required to be at one location. Indi-
cated by [22], hydrogen pipelines can become an econom-
ically viable option when large amounts of hydrogen need
to be transported. Its integration means that hydrogen
electrolyser and fuel cell are not required to be located
in one place. Consequently, because storage components
can be independently scaled, adaptable in operation and
do not require co-location, it seems advisable to optimise
them separately.

3.1.2 Scenario selection and dealing with uncertainty
The use of energy system models is subject to uncertainty
as predicting the future with certainty is impossible. It is
impossible because we canmake decisions that impact the
future, such as done by agreeing on multilateral CO2 tar-
gets, which improved renewable energy deployment and
led to learning by doing cost reductions effects [4]. Nev-

ertheless, analysing a broad range of future scenarios can
reduce uncertainty [50].
The market potential method in linear programming

models relies on possible and probable scenarios. Many
different ways exist to create ‘possible’ scenarios which
differ in the set of deterministic input assumption and
constraints [50, 51]. However, a possible future does
not necessarily mean that it is a probable one. A good
approach to develop scenarios that can be expected in
future is to follow the ones which are provided and
encouraged by either national or multinational institu-
tions - and engage in public consultations if they require
changes [47]. An example of the latter one is the European
Network of Transmission System Operator for Electricity
(ENTSO-E) which provides updates on multiple pathway
scenarios every two years based on storylines towards
the European agreed targets - known as Ten-Year Net-
work Development Plan (TYNDP) [47]. Transparency in
energy modelling, also from trusted institutions, is a key
requirement to lower uncertainty [52].
Scenarios can be additionally selected to investigate

multiple technology designs. For instance, technology
manufacturers might be interested in such analysis to
guide energy storage innovation.
This study includes three different hydrogen design

constraints and two different charger and discharger tech-
nologies for technology assessment, which are described
in more detail in Section 3.3. While this study uses an
exemplary 100% GHG emission reduction scenario that
is sufficient for the research purpose, future work should
include probable scenarios such given by national or
multinational institutions like ENTSO-E.

3.1.3 Market potential criteria
The ‘market potential criteria’ give the market potential
indicator its meaning and can help with decision-making.
The criterion includes two simple rules. In an optimised
energy system model with many if not all technological
alternatives, the technology with:

• MPI = 0, for one scenario is probably not valuable.
• MPI > 0, for one scenario is probably valuable.

Additionally, the positive MPI magnitude can be used as
supportive decision criteria to deal with uncertainty. This
can be, for instance, the ‘threshold’ or the ‘bigger is better’
rule described below:

• MPI > X or ‘threshold rule’. Where a company or
institution decides what minimum market potential
X must be achieved. For instance, an alkaline
electrolyser needs to have a market size of 1 GW to
be an attractive technology for a company.

• MPIA > MPIB or ‘bigger is better’ rule. If two
technologies A and B are compared, the one with
higher market potential is more likely to be valuable.
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In particular, when the evaluation condition appears
in multiple scenarios, it reduces the uncertainty of the
statements. For instance, when hydrogen storage is signif-
icantly optimized in all scenarios it is a clear indicator that
it is likely that the technology is valuable in many different
probable futures.
Figure 3 illustrates how the market potential criteria

could be applied as a decision support tool. The illustra-
tive example could lead to the anticipative decision of a
technology manufacturer or research institution to focus
rather on the first two technologies than the latter ones.
Only with the criteria one can systematically analyse the

market potential indicators and reduce risk. Together, the
market potential indicator and criteria build the market
potential method.

3.2 PyPSA-Eur. Model structure and data
The open European transmission system model PyPSA-
Eur is adopted to determine the value of various energy
storage systems in a European electricity system. PyPSA-
Eur is an adaptable investment and dispatch model built
on the core model PyPSA that combines high spatial
and temporal resolution. The suitability of PyPSA-Eur for
operational studies and long-term power system planning
studies is described in [17, 53, 54]. This section briefly
introduces the model structure and applied data. The full
model formulation of PyPSA-Eur is given in the Appendix.
PyPSA-Eur covers the European transmission model

and processes electricity system data from diverse
sources. Existing conventional generators, transmission
lines, substations, and hydro storage systems, as well as
planned network reinforcements, are included with their
size and location. Wind and solar based technologies are
greenfield optimised, which means that existing solar and
wind capacities are disregarded. The time series for wind
and solar generators are derived from satellite and earth
observatory data [53]. Regarding power demand, the load
time series are collected from ENTSO-E data for each
country and redistributed by GDP and population over
the regions. A spatial resolution of 181 nodes matched

with an hourly resolution across an entire year accounts
for the complex spatio-temporal patterns of renewables
and grid congestion events that shape investment deci-
sions [55].
In terms of market economics, the model assumes per-

fect competition and foresight for one reference year. A
detailed model description and formulation is included in
[53, 54, 56, 57]. Here, we only highlight the key features
and constraints. The model’s objective is to minimise the
total system cost in the European electricity system at the
transmission level. The total system costs consist of

• investment costs, which includes the annualised
capital cost of onshore and offshore wind turbines,
storage components and both HVAC and HVDC
transmission lines, and

• operating costs, which includes fixed operation and
maintenance, and variable operating cost.

The objective is subject to

• nodal power balance constraints that guarantee that
supply equals demand at all times,

• linearised power flow constraints modelling the
physicality of power transmission,

• Solar and wind resource constraints that limit the
theoretical generation time-series. We chose a single
weather year for our analysis; however, this can be
extended for a more robust prediction of weather
year anomalies or variations [58].

• Renewable availability constraints which restrict solar
and wind technical potential based on environmental
protection areas, land use coverage and distance
criteria.

• Emission constraint introduces a limit of carbon
dioxide CO2 equivalent emission in the model that
impacts technology investment and generation.

The model has many adjustable constraints. This study,
similar to many others such as [59], does not include
the available unit commitment (UC) constraints. In fact,

Fig. 3 Qualitative illustration of market potential criteria applied to a set of scenarios and technology options. The “+” indicates the MPI magnitude.
Additionally, the threshold rule is set to a single plus, meaning that a company requires at least two plus to consider a technology as a potential
candidate to manufacture or start R&D activities
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UC constraints are becoming increasingly negligible in
future energy systems with increasing shares of renew-
ables and energy storage. Mainly, because it was observed
that they only have minor impacts on investment and
operational outcomes [59]. Further, UC constraints intro-
duce extra computational burdens by the mixed-integer
formulation, which removes model convexity and, hence,
leads to a nonlinear program that requires more efforts
for solving. Therefore, we decided to exclude UC con-
straints due to their minor impact on the results and large
impact on the already heavy computational requirements
for the optimization (8 cores, 180 GB RAM solved for
roughly 13h with Gurobi). Nevertheless, if a more detailed
technological performance in a high renewable electricity
system with flexibility constrained nuclear power plants is
essential, this UC formulation could be included.
For the input cost and technical assumptions, the doc-

umented dataset provided in [60] is used, referring to an
electricity system scenario in 2030. We only adjusted the
dataset of [60] by the battery and hydrogen storage system
inputs summarised in Tables 1 and 2.

3.3 Energy storage scenarios
This study looks at three different constraint energy
storage scenarios in one fully emission-free energy sys-
tem scenario. As explained in Section 3.1.2, one energy
system scenario is just exemplary chosen and suffi-
cient for this research. Multiple system scenarios from
trusted organisations such as ENTSO-E should be applied
if technology decisions are made with the MPM. As
mentioned in [42], the energy technology impacts the
system value, however, the energy system layout and
constraints also impact he technology value. There-
fore Section 3.1.2 goes through the main scenario
design elements, the energy system and storage scenario
design.

Starting with the energy system layout and constraints,
Fig. 4 shows an example of the optimised European elec-
tricity landscape for the variable energy-to-power ratio
scenario, which is minimised in terms of total system costs
in a 181 bus spatial resolution. One should note that the
network structure is based on ENTSO-E data which is
aggregated to show realistic line capacities between the
buses.
Different to [61], the scenarios include the existing

European nuclear power fleet but acknowledge the Ger-
man, Spanish, Belgium and Swiss nuclear exit. The inclu-
sion of nuclear power plants reduces the required VRE
capacity expansion and, at the same time, increases the
share of dispatchable power plants – a measure that
reduces energy storage demand. However, the flexibility
of nuclear plants is overestimated in this study as typical
ramp rates reaching up to 36%/h and minimum allow-
able power of 20% per nominal power [62] are ignored.
However, we ignore such unit commitment constraints
to keep the model formulation convex and reduce the
amount of variables for computational speed (see more
details in Section 3.2). It implies that this study will tend
to underestimate the energy storage potential.
Further, similar to [56], an equity constraint is included

that requires every country to produce at least 80% of
its total electricity demand, leading to a smooth distribu-
tion of generators across all of Europe. This constraint is
motivated by the fact that political leaders avoid depend-
ing entirely on electricity imports but are willing to trade
considerable amounts to handle the trade-off between
the economic benefits of importing cheaper electricity
and the sometime costly independence of supply such for
isolated networks.
The network expansion is constrained to a volume of

25% compared to the existing network capacity, acknowl-
edging the increasing political difficulty to develop new

Table 1 Power related energy storage model inputs representing 2030 data

Energy storage components Electrolysor Fuel cell Battery Inverter

LCOS Scenario [Low] [High] [Low] [High] [-]

Investment [ EUR/kWel] 339 677 339 423b 209c

FOMa [%/year] 2 3 2 3 3

Lifetime [ a] 25 15 20 20 10

Efficiency [ %] 68 79 47 58 90

Discount Rate [ %] 7 7 7 7 7

Based on Ref. [13] [13] [63] [63, 64] [64, 65]

Alkaline SOECd PEMe SOFCf Li-Ion Batteryg

aFixed operation and maintenance cost as percent of the annualised investment costs
bIncludes fuel cell stack replacement after 10 years which cost 30% of initial cost
cIncludes 80 EUR/kW balance of plant, mainly assigned to wiring and connection [65]
dSolid-Oxide Electrolyser
eProton Exchange Membrane or Polymer Electrolyte Membrane
fSolid-Oxide Fuel Cell
gLithium-Ion Battery
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Table 2 Energy related energy storage model inputs
representing 2030 data

Energy storage components H2 storage Battery storage

LCOS Scenario [High] [Low] [-]

Investment [ EUR/kWhel] 8.4 8.4 188b

FOMa [%/year] - - -

Lifetime [ a] 20 20 10

Efficiency [ %] - - -

Based on Ref. [64] [64] [65]

H2 steel tanks Li-Ion Battery

aFixed operation and maintenance cost as percent of the annualised investment
costs
bIncludes 81 EUR/kWh for engineering, procurement and construction costs [65]

transmission lines. A limited network expansion can
potentially lead to higher storage demand [57]. Further
constrained are hydro storage technologies. While these
are based on actual power plant data, no further capac-
ity expansion is allowed due to natural limitations in most
regions.

The energy storage scenario design is described in Fig. 5.
First, technical and economic parameters are chosen as
model input for each storage component (see Tables 1 and
2) to represent a low and high levelised cost of storage
(LCOS) case for classical LCOS calculations. Afterwards,
the resulting techno-economic details are inserted in the
model environment into three scenarios. The scenarios
differ mainly in technological design freedoms. ‘Fix EP
ratio’ is the most constrained energy storage scenario hav-
ing a fixed energy-to-power ratio of 100 h for the hydro-
gen and 4h for the battery storage technology – such as
applied in a similar range in research [12, 27, 66]. Similar
to previously mentioned research publications, this fix EP
scenario also assumes that charger and discharger size are
equally sized. Otherwise, ‘Variable EP ratio’ optimises for
the hydrogen storage unit each component size, charger,
storage and discharger so that the energy-to-power ratio is
variable. Here, the battery remains constrained in flexible
sizing as charger and discharger represent the same com-
ponent, namely the inverter, so that the battery storage
can only size inverter and battery capacity related design
separately (see Battery component size variables x, y, x in

Fig. 4 Optimal generation, storage and network expansion under a 100% emission reduction scenario and technology data for 2030. Light grey
lines showing the existing installed network capacity, dark grey lines the additional expanded capacity. Plot produced with PyPSA-Eur
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Fig. 5 Description of the three storage scenarios. The cost and technical storage parameters are chosen once and serve as input for all storage
scenarios. Scenario 1 shows the fixed energy-to-power ratio of the hydrogen and battery unit a. In Scenario 2 and 3 all components can be freely
scaled. However, the battery is constrained to the same charger to discharger ratio. Further, the ’b’ in the H2 − Hub scenario indicates a new
technology addition. A least-cost optimization is run with each scenarios, whose results are used to create the spatially resolved LCOS and market
potential signals

Fig. 5). While both fix and variable EP ratio scenario opti-
mise low-LCOS and high-LCOS hydrogen components
separately, the ‘H2-Hub’ scenario permits cross opera-
tion of hydrogen technologies. This can be considered a
H2-Hub, having at one location techno-economically dif-
ferent low and high LCOS charging and discharging tech-
nologies that operate the same hydrogen storage. After
applying the scenarios in the optimization, the model
results are used to create the spatially resolved LCOS and
market potential signals which are further discussed in
Section 4.
This study creates energy storage scenarios that focus on

energy arbitrage benefits under spatially resolved perfect
and complete markets. Scarcity signals relevant to sea-
sonal balancing are considered through ‘unconstrained’
locational marginal prices, also known as nodal prices.
These nodal prices can increase to extremely high prices
such as more than 20000e/kWh and let energy storage
be optimised as a seasonal reserve, shifting cheap energy
of one season to times of high prices. As introduced in
Section 2, the complete market considerations include the
often unaccounted or ‘hidden’ values of energy storage
systems, such as:

• Avoided investment cost of network expansion
• Avoided investment and operational cost of

dispatchable generators
• Increased power plant utilisation/ less curtailment

Emission targets play for the energy storage market
potential a vital role. To keep the comparability between
scenarios and a decent amount of market potential for

energy storage, we set in all scenarios the CO2 emission
reduction target to 100%.

4 Results and discussion
4.1 Relaxing design constraints of energy storage and its

benefits
As introduction to the cost and value analysis scenarios,
this section discusses the impact of design freedom on the
storage components and the total system.
Increasing design freedom of energy storage can lead

to significant benefits in the electricity system. When
investigating the competitiveness of energy storage, many
studies assume that the energy to power ratio is fixed [3,
25]. However, assuming a fix energy to power ratio on
a continental scale is an unrealistic extreme as well as
assuming that all market participants choose the perfect
sizing for the market.
Table 3 shows that the increasing sizing complexity,

however, seems worthwhile to consider as it can lead to
per annum total system cost savings of approximately
13Be or 10% in the modelled zero CO2 electricity sys-
tem scenario while not leading to significant generation
portfolio changes (see Fig. 6). Looking at the genera-
tion portfolio, the optimization result are representing
currently installed power plants in the EU for nuclear,
biomass and run-of-river [67]. We prohibit these tech-
nologies from additional expansion to replicate political
constraints. That is why they are not increasing in volume.
Similar, these technologies are not decreasing in volume
because they are optimized and, hence, desirable options
in the given least-cost scenarios. While geothermal is
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Table 3 Annual total system costs, relative investment and
curtailment data. Variable sizing of energy storage reduces the
system costs by 10%

Scenario Total
system cost

Relative
investmenta

Curtailment [% of
annual demand]

Fix EP ratio 152.9 Be 4.874 ct/kWh 0.61%

Var EP ratio 139.9 Be 4.460 ct/kWh 0.73%

H2-hub 139.7 Be 4.453 ct/kWh 0.37%

aTotal system cost per annual demand

allowed for expansion it does not expand in future sce-
narios. This indicated that the technology does not con-
tribute to the least cost optimization result for the existing
cost assumptions in the power only scenario. Note that
this result might change when changing assumptions or
adding sectors such as heating and cooling.
The total system cost thereby includes the optimisation

relevant costs, which consist of newly installed gener-
ation, storage and network components, including any
operational costs. Another approach to comprehensively
quantify the savings is by calculating the relative invest-
ment cost, which divides the total system costs by the
total electricity demand. It shows that the introduction
of optimised sizing can lead to electricity bill savings of
roughly half a cent, with the H2-Hub scenario contribut-
ing only to negligible more savings. As a result, increasing
design freedom of energy storage can be desirable for a
cheaper electricity system and should be considered while
designing technology.

Fig. 6 Optimization result for future installed generation capacity in
the exemplary 100% emission reduction scenarios. The abbreviations
’ror’ stands for run of river, offwind-ac and -dc for AC and DC
connected offshore wind plants, respectively

The optimal storage design depends on location and
technology. Figure 7 shows the EP-ratio for multiple loca-
tions and technologies with relevant market potential in
an optimal European future scenario.
Hydrogen chargers are smaller sized, and reveal a wider

span of EP-ratios than their discharger opponents, which
means that slow charging and quick release seem to be
beneficial from an EU system perspective at most loca-
tions. Further, the Li-Ion batteries are optimised with a 2-4
h EP-ratio, much smaller than the hydrogen components.
The reason for that heterogeneous design is that local
diverse electricity system situations with its network con-
straints, supply and demand curves, as well as the different
storage characteristics (see Tables 1 and 2) benefit from a
variety of storage scaling to reach an optimal solution that
minimises the electricity bills.

4.2 Static LCOS vs modelled LCOS
The LCOS is currently an influential metrics to bench-
mark technology and to discuss their competitiveness.
Therefore it is not surprising to see that technology
design is even optimised for minimum levelised costs
(see Section 2). To show the drawbacks of this measure,
static and modelled values are calculated according to the
methodology described in Eq. 1.
The main difference between static and modelled LCOS

is what assumptions are used. The static LCOS calcula-
tion uses directly assumed or exogenous variables such
as for full load hours, electricity prices and energy-to-
power ratios. In contrast, the modelled LCOS is based
on endogenous variables determined by the energy sys-
temmodel and its inherent assumptions. It means that full
load hours, electricity prices and energy-to-power ratios
are determined for each location by the European power
system model.
The static LCOS is calculated with the technical and

economic component characteristics in Tables 1 and 2,
and the LCOS assumptions given in Table 4. The results
of the static LCOS calculation also given in Table 4 show
a 19.2% or 5 ct/kWh difference for the two hydrogen stor-
age units, whereby the battery storage seems much more
competitive.
In contrast, the modelled LCOS results are given in

Fig. 8 for most buses in the EU electricity system for
the ‘variable EP ratio’ scenario. Despite having the same
input cost, lifetime, discount factor and efficiency data as
the static LCOS calculation, a wide LCOS range can be
observed for each optimised storage unit which consists of
charger, storage, discharger. The LCOS ranges are roughly
between 20-100, 20-55 and 4-14 ct/kWh for the low, high
LCOS H2 unit and the battery. One reason for the wide
LCOS ranges is the heterogeneous charging and discharg-
ing behaviour, which is indicated by diverse full load hours
observed between 80-3000h; another one, the heteroge-
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Fig. 7 Optimal energy to power ratio ranges in the variable EP ratio scenario. The red line represents the fixed EP-ratio scenario assumption. The
energy to power ratios are very diversely sized in the 181 buses of the cost-optimal European system layout and in regards to hydrogen and not
necessarily equal for charger and discharger. The electrolyser capacity is generally smaller than the fuel cell capacity, which means that slow
charging and quick discharge at few moments is desired in the system

neous nodal prices or electricity price profiles at each
region; and, finally, the heterogeneous sizing of the storage
chain. While the battery technology seems more compet-
itive under the LCOS framing, it becomes ambiguous for
hydrogen with the overlapping LCOS ranges.
Aminimum LCOSmetrics as a solely technology design

objective is not enough to argue about competitiveness.
Regardless of the low or high LCOS indication, the ‘vari-
able EP scenario’ shows that all included energy storage
technologies are valuable. As noted earlier, we define a
technology as valuable if it reduces the total system costs.
This is the case if a technology is part of an optimised
energy system. In Fig. 8, all technologies reveal a mar-
ket potential indicating to be required assets to achieve
the minimum total system costs. As a result, instead of
improving energy storage by minimising the LCOS, one
could maximise the system-value and assess the market
potential indicator. Why reducing the total system cost
should also be in the interest of technology developers will
be discussed in Section 4.4.

4.3 Market potential method as value indicator
This section reveals the market potential indicator for
each technology and scenario and evaluates it exemplary
with the market potential criteria. Exemplary, because as
described in Section 3.1 the MPM scenarios should be
chosen according to institutional scenarios or ‘beliefs’ that

might be more likely to impact decision making. As noted
earlier, the scenario design of this study is described in
Fig. 5 and helps to interpret the results.
Figure 9 shows the total market potential indicator for

all expandable storage components in the European mar-
ket. How this market potential can be disaggregated over
Europe is demonstrated for chargers and the variable EP
ratio scenario in Fig. 10.
The first scenario shows a fixed energy to power ratio

of 100h (10TWh/95GW) for hydrogen technologies and
4h (0.07TWh/17GW) while the charging and discharg-
ing market potential are constrained to be equal for one

Table 4 Additional inputs for LCOS calculation oriented on [12]
and [27]

Hydrogen storage Battery storage

LCOS scenario [Low] [High] [-]

Discharging ratio [ h] 100 100 4

Electricity price [ Eur/MWh] 50 50 50

Yearly full load hours [ h] 2500 2500 3400

Roundtrip efficiencya [ %] 32.0 45.8 81,0

Lifetime [ a] 25 15 10

Static LCOSb [ ct/kWh] 0.21 0.26 0.12

aCalculated product from energy storage component efficiencies in Table 1
bCalculated with Eq. 1, and inputs from Tables 1 and 2, 4
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Fig. 8 Static LCOS results compared to European wide modelled LCOS. The static LCOS is marked by a red horizontal line and was calculated for a
set of assumption in Table 4. In contrast, the modelled LCOS is given as points and uses spatial-temporal dissolved European energy modelling
outputs for its calculation. The size of each point shows the optimised market potential of discharger in a given region and helps indicating the
relevance. The colour reveals full load hours for each storage technology and helps understanding the operational behaviour which partially lead to
the LCOS. The width of the violin plot shows the occurrence in the kernel density estimation, hence, the wider the plot the more buses are located
at the respective LCOS cost range. In all cases, buses with less than 1 MWmarket potential or 80 FLH are removed, keeping the visualisation readable

storage unit. In this scenario, the main optimised hydro-
gen technology is the high LCOS case of the static LCOS
calculation, whereby the low LCOS case reveals a neg-
ligible market potential. It means in simple terms that
the high LCOS hydrogen unit is more likely to be valu-
able and worthwhile to design or manufacture due to the
approximately two orders of magnitude higher market
potential.

In the second scenario, when all hydrogen storage com-
ponents, and the battery inverter to capacity ratio, are
independently scalable, one can observe a noteworthy
reduction of the market potential of battery components.
This means that flexible scaling of storage technolo-
gies can reduce the viable market for batteries. Further,
the optimised energy to power ratio impacts the market
potential for hydrogen technologies. Now, both high and

Fig. 9Market potential indicator for all charging and discharging components in Europe for three technical storage scenarios in a zero emission
electricity system. Despite having the same economic and technical input data the market potential vary drastically between the scenarios. The
SOFC fuel cell and Li-battery are according to the market potential method, the technologies which are most likely to be valuable in the exemplary
set of scenarios. Because they have an optimised market potential indicator in each scenario. *Refers to the total shared storage capacity
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Fig. 10 Optimal energy storage charger distribution in the variable energy to power sizing scenario. Showing the location of market potential in a
100% emission reduction scenario. When compared to Figure 4, most hydrogen units are co-located with wind plants while batteries gravitate
towards solar plant optimised areas [68]

low LCOS technologies possess a good market potential
and seem desirable as complementary technologies. How-
ever, the variable sizing of hydrogen components leads to
a market potential shift from charger towards discharger
components. For a fixed, variable and H2 − Hub scenario,
the total amount of hydrogen charger market potential
(summing low and high LCOS components) shifts from
95, 68 and 80 GW to a hydrogen discharger market poten-
tial of 95, 219 and 211 GW, respectively. This makes the
hydrogen discharger components the clear winner of vari-
able sizing through a rough doubling in market potential.

Concerning the H2 − Hub scenario, when components
are variable sized and diverse H2 electrolyser and fuel
cell technologies can simultaneously use the same stor-
age tank, then the storage technologies’ market poten-
tial changes remarkable again. It makes the before well
desirable solid oxide electrolyser as technology almost
negligible in terms of market potential.
As a result, the market potential indicator reveals that

the design freedom of storage is crucial because it impacts
the value assessment. For instance, when variable compo-
nent sizing is possible, the PEM fuel cell and the Alkaline
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electrolyser seem to be more desirable while Li-batteries
lose importance in the electricity system.
Applying the full MPM with the market potential crite-

ria leads to the insight that all the implemented storage
components can be considered valuable. The value is
thereby derived from the fact that at least one scenario
possesses a positive market potential indicator. However,
only the Li-battery, as well as the SOFC fuel cell, are the
most likely valuable technologies as they are optimised in
all scenario’s and exceed a self-defined 1 GW threshold
criteria. As noted earlier, such a threshold might be set
by a manufacturer to define a minimal viable market for a
technology worth to invest. The knowledge derived from
the market potential criteria can lead to implications, for
instance, that the Alkaline electrolyser manufacturer can
actively mitigate their value risk by promoting variable
sizing.
Finally, the presented insights underline the mislead-

ing concept of solely cost minimising technologies. Not
always a technology with the lowest investment or LCOS
is most valuable. It can also be the more expensive tech-
nology that can lead to a cheaper future electricity system.

4.4 The relevance of the market potential method
The market potential indicator is a helpful metric from
a practical and computer modelling perspective for man-
ufacturers, developers and researchers. The most impor-
tant reason for the usefulness is that the market potential
is a driver for business. Successful companies want to
generate money for their stakeholders and, hence, are
driven by two things, growth and profitability. The mar-
ket potential indicator for a specific product can relate
the growth potential to profitability. For instance, when a
company expects to offer a future product for net costs of
10 e/kWh, it could include these costs in the energy sys-
tem model with a profit and risk premium of 5 e/kWh.
The modelling output is the market potential indicator,
which is related to the profit and risk premium of 50%.
As a result, the market potential method can be use-
ful for growth and profit evaluations of future storage
technology.
Second, the market potential can give insights into

where growth markets are located and for what rea-
son. This can be achieved since the disaggregated mar-
ket potential can identify regions with future technol-
ogy expansion (see Fig. 10). The electrolyser distribution
reveals that in many locations, high and low LCOS units
complement each other. Additionally, when storage com-
ponents are compared to the generation distribution from
Fig. 4, most hydrogen units are co-located at regions with
wind plants (mostly northern regions). At the same time,
batteries gravitate towards solar plant optimised areas
(mostly southern regions). A reason for the observed co-
location might be the diurnal solar power pattern and the

multi-day to weekly wind power pattern, which creates
a network constrained mismatch suitable for the given
storage characteristics [68].
Third, the market potential is useful as an indicator of

future cost reductions. Because with the market poten-
tial, one can assume future technology deployment, which
is an implicit factor in learning by doing cost reduc-
tion effects [4] or a factor that can be incorporated into
process-based cost analysis to evaluate the cost reduction
potential [20, 21].
Forth, the market potential can reduce the structural

uncertainty of the linear programming energy system
model itself. Initial cost assumptions as model inputs
are often made without knowing deployment numbers
achieved in the optimisation. Nevertheless, it is known
that more extensive deployment can reduce costs due to
learning effects [4]. Since after the first model run the
market potential can function as a cost reduction signal,
one can in an iterative or sequential solution approach
improve the input accuracy and, hence, lower the struc-
tural uncertainty.
Finally, the operational behaviour can be analysed with

the spatially distributed market potential due to the use
of energy system models, which gives operational times
series of optimised technologies. These time series can be
used to identify operational patterns and full load hours,
which might be helpful in technology design decisions.

5 Critical appraisal
What the market potential gives its power to resolve
the complex value of energy storage - the energy system
model - also introduces typical limitations found in this
domain. The fundamental challenge of any mathemati-
cal energy model is to represent a realistic future energy
system that includes all relevant physical, social and politi-
cal details [69]. Current approaches encounter limitations
to represent these details. For instance, models often
aggregate in space, time and technological resolution, and
ignore unit commitment constraints to reduce the com-
putational requirements at the cost of reduced accuracy
to represent future scenarios; or assume perfect and com-
plete markets, where actors have perfect foresight. Both
deviate from what can be accomplished in reality [53], and
as pointed out in the introduction, it can be important to
address additional values of energy storage.
These energy model limitations can be understood as

(1) structural uncertainty related to the imperfect math-
ematical description of the physics and (2) paramet-
ric uncertainty that refers to imperfect knowledge of
input values, i.e. impacted by innovation or behaviour.
Both compromise every kind of mathematical model
with increasing uncertainty looking into the more dis-
tant future and vary from model to model [44, 57, 70].
The most important uncertainties of PyPSA-Eur are sum-
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marised in [53], for instance, that demand profiles for
regions in a country are not disaggregated and only scaled
by the GDP of the regions, hence, representing not local
differences; or missing multi-horizon optimisation, which
can help to describe investment pathways and lock-in
effects; or the only focus on the electricity system, missing
alternative flexibility competitors from other sectors.
Nevertheless, most of the uncertainties can be reduced

by improving future mathematical descriptions of the
reality and by strategies to reveal remaining uncertainties
[69]. For instance, one compelling way to address para-
metric uncertainty is to give robust insights about what
actions are viable within given cost assumptions by explor-
ing systematically scenarios and the feasibility space near
the optimum, such as applied in [71]. An approach to
address the structural uncertainty, includes this study’s
missing energy storage values for sub-hourly grid services
and risk confronted investment and operation. In PyPSA-
Eur many of these certainty creating features can be
implemented in short-term by state of the art techniques.
In the context of the above-described uncertainties, this

study does not seek to reveal the one true future predic-
tion. It instead shows a set of possible future scenarios
with different technological design freedoms for the only
purpose of comparing different storage design evaluation
methods.
Future work can reduce the limitations of this study,

such as the inclusion of sector coupling and pathway opti-
misation. Further, this study considered energy arbitrage
under perfect and complete markets. Another branch of
work can include more services relevant to grid stabil-
ity and risk approaches, for instance, by investigating the
impact of imperfect and incomplete market conditions
and higher spatio-temporal resolutions regarding market
potential method results. Finally, what might be valuable
in Europe could look different in other regions. Technol-
ogy developers would benefit from a global value assess-
ment. Therefore, it is of utmost importance to expand
open energy system models to cover most parts of earth.

6 Conclusion
In the context of storage technology evaluation methods,
cost reduction approaches are failing to account for sys-
tem values. This study observed that most energy storage
technologies are designed with the aim to reduce their
component or storage system costs ignoring the interac-
tion with the energy system. However, we showed that two
hydrogen long-term storages, both cheap and expensive,
can simultaneously provide benefits to the wider energy
system. Therefore, missing with existing cost reduction
approaches values a technology can or cannot provide
in a wider energy system might misguide technology
innovation.

System-value approaches aim to acknowledge wider
energy system benefits, however, existing approaches are
not practical in the current design for technology evalua-
tion. In this paper, we overcome many existing limitations
with the new introduced market potential method that
can be described as a systematic deployment assessment.
The market potential method provides a complementary
approach to evaluate energy storage technology from a
system value perspective.
In summary, the market potential method has impli-

cations for practical and modelling relevant insights for
manufacturers, developers and research. It can be used to

• support technology design-decision making with
growth signals of magnitude and location,

• improve the technology by changing operational
behaviour or adapting material or process selection
to be most valuable for the energy system,

• concentrate policy endeavours to come closer to
perfect market circumstances, or to

• enhance energy modelling as evaluation tool itself.

The new method strongly depends on energy system
modelling. Improving energy system model design and
reducing uncertainty is essential for a successful adoption.
Here it is of unquestionable value to use open data and
open source models to build trust and credibility for
decisions.
The economist Milton Friedman said that “there is one

and only one social responsibility of business–to use its
resources and engage in activities designed to increase its
profits so long as it stays within the rules of the [market]
game, which is to say, engages in open and free com-
petition without deception or fraud.” This might sound
convenient in many cases, but in the context of develop-
ing energy technology, the ‘game’ is constantly changing
due to the energy transition and sector coupling, aiming
at complete and perfect markets. Thus, maybe it is time to
look beyond the cost reduction paradigm and short-term
profit focus - to develop technology that leads to lower
system cost and winning the market of the future. The
market potential method could contribute to this.

Appendix
The following paragraphs formulate PyPSA-Eur based on
[53, 54, 56, 57, 72].
The objective of PyPSA-Eur is to minimise the

total system costs, comprised of annualised capital and
operational expenditures. Capital expenditures include
capacity-related, long-term investment costs c at location
i for generator Gi,r of technology r, storage energy capac-
ity Hstore

i,s , charging capacity H+
i,s and discharging capacity

H−
i,s of technology s and transmission line Fl. Operational

expenditures include energy-related variable cost o for
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generation gi,r,t and storage charging h+
i,r,t and discharg-

ing h−
i,r,t , as well as energy-level related storage cost ei,s,t .

Thereby, the operation depends on the time steps t that
are weighted by duration wt that sums up to one year∑T

t=1 wt = 365days ∗ 24h = 8760h.

min
G,H ,F ,g,h,e

(
Total System Cost

) =

min
G,H ,F ,g,h,e

[∑
i,r

(ci,r · Gi,r) +
∑

l
(cl · Fl)

+
∑
i,s

(cstorei,s · Hstore
i,s + c−i,s · H−

i,s + c+i,s · H+
i,s)

+
∑
i,r,t

(oi,r · gi,r,t · wt) +
∑
i,s,t

(
(o+i,s · h+

i,s,t + o−i,s · h−
i,s,t) · wt

)

+
∑
i,s,t

(ostorei,s · ei,s,t · wt)
]

(3)

The objective function is subject to multiple linear con-
straints to make scenarios more realistic, leading to a
convex linear program with continues variables. The con-
straints explained in the following in more detail consist
of i) demand equals supply constraint, ii) geophysical and
operational constraint for generators, storage units as well
as power lines, iii) Kirchhoff ’s current and voltage law
constraints that represent the physics of electric energy
flows in the power network, iv) a recovering cyclic energy
storage constraint and finally, and v) greenhouse gas emis-
sions reduction constraint. Such linear problems have
in general one unique objective value with sometimes
multiple non-unique operational solutions [72], making
complex problems solvable in reasonable amount of time
(sometimes multiple days).
The first constraint requires that for all substations

demand equals supply for all times and locations which is
needed for stable energy system operation.

Di,r,t = Si,r,t ∀i, r, t (4)

Secondly, since generator and storage units as well as
transmission lines can experience geographical restric-
tion, PyPSA-Eur can constrain the installed capacities and
gives the options for lower as well as upper limits.

Gi,r ≤ Gi,r ≤ Gi,r ∀i, r (5)

Hi,s ≤ Hi,s ≤ Hi,s ∀i, s (6)

Fl ≤ Fl ≤ Fl ∀l (7)

Such constraints help to implement social, environmen-
tal or physical based boundary conditions. Atlite is one
of the tools that are implemented in PyPSA to quantify
for instance the land availability for solar and wind power

plants by incorporating protected areas and land cover-
age classification data to reduce the renewable installation
potential [73].
Thirdly, while the previous constraint only limits the

installations, some energy system components require
time-varying operational limits. Examples for such tech-
nologies are renewable generators and power lines with
dynamic line-rating (DLR) which operation highly depend
on the weather signals. With roughly 20x20km globally
rasterized era5 weather data that are available for the last
30 years, again produced by Atlite, PyPSA-Eur can limit
the rated power of generators Gi,r and lines Fl by a loca-
tion and time dependent variable, i.e. temperature, wind
speed, humidity and solar irradiation, such that

0 ≤ gi,r,t ≤ gi,r,tGi,r ∀i, r (8)

0 ≤ fl,t ≤ f l,tFl ∀i, r (9)
Thirdly, the PyPSA-Eur model typically includes a lin-

earised power flow constraint modelling the physicality
of the power transmission network. A very distinctive
feature compared to most other energy system planning
models [54]. This is done by including Kirchhoff ’s Current
Law and Kirchhoff ’s Voltage Law constraints.
Kirchhoff ’s Current Law requires local generators and

storage units as well as incoming or outgoing flows fl,t , of
incident transmission lines described by Ki,l as the net-
works’ incidencematrix, to balance the inelastic electricity
demand di,t at each location i and time step t
∑
r

gi,r,t +
∑
s

h−/+
i,s,t +

∑
l
Ki,l · fl,t = di,t ∀i, s, r, t (10)

While Kirchhoff ’s Current Law accounts for both, AC
and controllable DC lines, the Kirchhoff ’s Voltage Law
only additionally constraints AC power lines. Here the
voltage angle difference around every closed cycle in the
network must add up to zero. PyPSA-Eur formulates this
constraint using linearised load flow assumptions, in par-
ticular, cycle basis Cl,c of the network graph where the
independent cycles c are expressed as directed linear com-
binations of lines [74]. This leads to the constraints

∑
l
Cl,c · xl · fl,t = 0 ∀l, t (11)

where xl is the series inductive reactance of line l [56].
As might be noted, the linearised powerflow assumptions
completely disregard the resistance. These assumptions
introduce negligible errors when (i) the reactance is much
larger than the resistance, such as for high voltage lines,
and (ii) the voltage angel differences are small i.e. sin(δ) =
δ [74].
Fourth, describing storage constraints. Storage charging

h+
i,s,t and discharging h−

i,s,t are both positive variables and
limited by the installed capacity H+

i,s,t and H−
i,s,t .
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0 ≤ h+
i,s,t ≤ H+

i,s ∀i, s, t (12)

0 ≤ h−
i,s,t ≤ H−

i,s ∀i, s, t (13)

This formulation keeps the feasible solution space con-
vex, though does not prevent simultaneous charging and
discharging, which is often an unrealistic effect that can
heavily distort modelling results in net-zero scenarios.
Setting adequate variable cost parameter solves this mod-
elling artefact while keeping the problem formulation
linear [72].
The storage energy level ei,s,t is the result of a balance

between energy inflow, outflow and self-consumption.
Additional to directed charging and discharging with
its respective efficiencies ηi,s,+ and ηi,s,−, natural inflow
hinflowi,s,t , spillage hspillagei,s,t as well as standing storage losses
that reduces the storage energy content of the previous
time step by a factor of ηi,s,+ are considered.

ei,s,t = ηi,s,+ · ei,s,t−1 + ηi,s,+ · wt · h+
i,s,t − η−1

i,s,− · wt · h−
i,s,t

+ wt · hinflowi,s,t − wt · hspillagei,s,t ∀i, s, t
(14)

The amount of energy that can be stored is limited
by the energy capacity of the installed store unit Hstore

i,s
[MWh], which allows independent storage component
scaling.

0 ≤ ei,s,t ≤ Hstore
i,s ∀i, s, t (15)

To fix the storage technology design, a technology-
specific energy to discharging power ratio Ts can be
multiplied with the capacity of the discharging unit H−

i,s

0 ≤ ei,s,t ≤ Ts · H−
i,s ∀i, s, t (16)

to define the upper energy limit per installed storage.
Further, the energy storage units are assumed to be

cyclic, i.e., the state of charge at the first and last period of
the optimization period T (i.e. 1 year) must be equal:

ei,s,0 = ei,s,T ∀i, s (17)

This cyclic definition is not mandatory but helps with
the comparability of model results. It further avoids the
free use of storage energy endowment, meaning that the
model could prefer to start with a higher and end with a
lower storage level to save costs.
Finally, PyPSA-Eur can constrain the total emissions.

These emissions are tracked by a variable at each gener-
ator unit, which depends on the supply source or carrier
q. Allowing to constrain the total emission by a limiting
parameter GHG by

gi,r,t,q ≤ GHG ∀i, r, t, q (18)
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