

Edinburgh Research Explorer

Quickstrom: property-based acceptance testing with LTL
specifications
Citation for published version:
O'Connor, L & Wickström, O 2022, Quickstrom: property-based acceptance testing with LTL specifications.
in R Jhala & I Dillig (eds), Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. ACM Association for Computing Machinery, New
York, NY, USA, pp. 1025-1038, 43rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, California, United States, 15/06/22. https://doi.org/10.48550/arXiv.2203.11532,
https://doi.org/10.1145/3519939.3523728

Digital Object Identifier (DOI):
10.48550/arXiv.2203.11532
10.1145/3519939.3523728

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Jul. 2022

https://doi.org/10.48550/arXiv.2203.11532
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.48550/arXiv.2203.11532
https://doi.org/10.1145/3519939.3523728
https://www.research.ed.ac.uk/en/publications/709675d1-1661-49a6-aa47-56d48143083f

Quickstrom: Property-based Acceptance Testing with
LTL Specifications

Liam O’Connor

University of Edinburgh

Edinburgh, Scotland

l.oconnor@ed.ac.uk

Oskar Wickström

Monoid Consulting

Malmö, Sweden

oskar@wickstrom.tech

Abstract
We present Quickstrom, a property-based testing system for

acceptance testing of interactive applications. Using Quick-

strom, programmers can specify the behaviour of web ap-

plications as properties in our testing-oriented dialect of

Linear Temporal Logic (LTL) called QuickLTL, and then au-

tomatically test their application against the given specifica-

tion with hundreds of automatically generated interactions.

QuickLTL extends existing finite variants of LTL for the test-

ing use-case, determining likely outcomes from partial traces

whose minimum length is itself determined by the LTL for-

mula. This temporal logic is embedded in our specification

language, Specstrom,which is designed to be approachable to

web programmers, expressive for writing specifications, and

easy to analyse. Because Quickstrom tests only user-facing

behaviour, it is agnostic to the implementation language of

the system under test. We therefore formally specify and test

many implementations of the popular TodoMVC benchmark,

used for evaluation and comparison across various web fron-

tend frameworks and languages. Our tests uncovered bugs

in almost half of the available implementations.

Keywords: property-based testing, linear temporal logic,

web frontend programming, semantics

1 Introduction
Property-based testing, such as that of QuickCheck [16],

is a popular bug testing methodology whereby software is

specified in the form of logical properties, and automatically

tested against randomly-generated inputs to find possible

counterexamples to those specifications. Property-based test-

ing specifications are more high-level than unit tests, and

facilitate greater maintainability with less effort. Unlike unit

testing, property-based testing allows the programmer to

specify the behaviour of a module without also specifying

the expected behaviour of the module’s user, i.e. the expected

inputs to a function.

With the increasing use of web browser technology for

user interfaces of applications, automatic testing of these

interfaces using browser testing technology such as Selenium

WebDriver [2], has become more necessary. To write a test

in Selenium, the programmer must first script a specific

interaction with their application’s user interface, and then

test that the interaction produces the expected result. For

example, to test the property:

When I click Cancel , I should return to the main menu.
The programmer would write a script that first simulates a

click to the Cancel button and then inspects the state of the

user interface to confirm that we have indeed returned to

the main menu. Other properties, however, are not so simple,

such as this invariant:

I should not reach the finances page without logging in.
Or this temporal property:

The menu should never be disabled forever.
These properties cannot be easily translated into a Selenium

script, because Selenium tests, like unit tests, require the

programmer to specify not just the intended behaviour of

the application but also the expected behaviour of the appli-

cation’s user. This is where Quickstrom comes in.

Quickstrom [40] is an in-development open-source tool

which uses property-based testing techniques to enable auto-

matic behavioural acceptance testing of web user interfaces

from high-level specifications. Using a simple specification

language, engineers informQuickstrom of their desired prop-

erties, as well as how to interact with their user interface.

Then, Quickstrom generates and tests hundreds of possible

interactions, just as property-based testing libraries generate

inputs, checking that the given properties are not violated.

In conventional property-based testing frameworks, the

properties that make up specifications usually take the form

of equations relating inputs to expected outputs of func-

tions under test. Quickstrom, however, is not designed for

testing functions, but for testing whole applications. These
applications cannot be viewed as functions—instead they are

reactive systems: they continuously respond to signals such

as user actions and environmental events.

One of the most common logics used to specify reactive

systems is Linear Temporal Logic (LTL) [32], a logic equipped

with temporal modalities to describe behaviours: completed,

infinite traces of a system’s execution. Our tests, however,

only produce finite traces: as only a finite number of actions

can be taken, only a finite prefix of a desirable behaviour

can be observed. Our dialect of LTL, called QuickLTL, is

extended to accommodate this testing use-case. It is a multi-
valued version of LTL defined for finite, partial traces whose

minimum length is determined by the given formula. The

ar
X

iv
:2

20
3.

11
53

2v
1

 [
cs

.P
L

]
 2

2
M

ar
 2

02
2

Liam O’Connor and Oskar Wickström

logic is multi-valued to enable Quickstrom to give presump-
tive answers for when the formula cannot be definitively

proven nor refuted by the steps taken so far. The syntax and

semantics of QuickLTL are given in Section 2.

QuickLTL is embedded in our bespoke specification lan-

guage Specstrom. This language is designed to be familiar to

web programmers, expressive for writing specifications, and

simple to analyse. In addition to writing QuickLTL formu-

lae, engineers also use Specstrom to tell Quickstrom which

actions to take and which events to expect when running

tests. Details of the design of Specstrom and examples of its

use are given in Section 3.

Our framework is designed for acceptance testing, that is, it
only tests the user-observable behaviour of the application as

a whole. Therefore, Quickstrom specifications are indepen-

dent of the language used to implement the application under

test. TodoMVC is a widely-implemented benchmark and sam-

ple application for a variety of web application frameworks

and languages. We have converted the (informal) English

specification of TodoMVC to a formal Specstrom specifica-

tion, and used Quickstrom to test its various implementa-

tions, uncovering bugs and problems in more than a third

of the available implementations. Our specification and our

test results are discussed in Section 4.

Contributions
• The design and implementation of the Quickstrom tool

itself, including its Specstrom interpreter and its test

executor based on Selenium WebDriver,

• The QuickLTL temporal logic, a multi-valued dialect

of Linear Temporal Logic for partial traces which in-

corporates minimum constraints on the length of the

trace. We specify its semantics by formula progression

and provide examples of its use.

• The design and implementation of the specification

language Specstrom, which includes a variety of fea-

tures, such as control over evaluation, which make it

easy to specify systems. We specify an egg timer as a

worked example.

• A formal specification of the TodoMVC benchmark in

Specstrom/QuickLTL, and our evaluation of various

implementations of this benchmark against our formal

specification, in which we find faults in over one third

of available implementations.

2 LTL and QuickLTL
Linear Temporal Logic [32] is a modal logic that describes

behaviours: infinite, linear sequences of states ordered by

time. The syntax of LTL is given in Figure 1 and its semantics

in Figure 2. When our behaviours are the completed traces

or executions of our application, we can use LTL to write its

specification. For instance, we can express invariants using

the modality (read “henceforth” or “always”), as in this

Formulae:

𝜑,𝜓 ::= 𝑝 | ¬𝜑 | ⊤ | ⊥
| 𝜑 ∧𝜓 | 𝜑 ∨𝜓

| 𝜑 (next)
| 𝜑 | 𝜑 (henceforth/eventually)
| 𝜑 U 𝜓 | 𝜑 R 𝜓 (until/release)

𝑝 ∈ Σ → {⊤,⊥} predicates

𝜎 ∈ Σ states

𝜌 ∈ Σ𝜔 behaviours

Figure 1. Syntax of LTL

For 𝜌 = 𝜎0𝜎1𝜎2 · · · :
𝜌 |= 𝑝 ⇔ 𝑝 (𝜎0)
𝜌 |= 𝜑 ∧𝜓 ⇔ 𝜌 |= 𝜑 and 𝜌 |= 𝜓

𝜌 |= ¬𝜑 ⇔ 𝜌 ̸ |= 𝜑

𝜌 |= 𝜑 ⇔ 𝜎1𝜎2 . . . |= 𝜑

𝜌 |= 𝜑 ⇔ There exists an 𝑖 such that 𝜎𝑖 . . . |= 𝜑

𝜌 |= 𝜑 ⇔ For all 𝑖 ≥ 0, 𝜎𝑖 . . . |= 𝜑

𝜌 |= 𝜑 U 𝜓 ⇔ There exists an 𝑖 such that 𝜎𝑖 . . . |= 𝜓

and for all 𝑗 < 𝑖 , 𝜎 𝑗 . . . |= 𝜑

𝜌 |= 𝜑 R 𝜓 ⇔ For all 𝑖 ≥ 0, 𝜎𝑖 . . . |= 𝜓 or

there exists 𝑗 < 𝑖 such that 𝜎 𝑗 . . . |= 𝜑

Figure 2. Semantics of LTL

invariant which states that users should not be able to access

the “Finances” page without being logged in:

(LoggedIn ∨ page ≠ "Finances")

Invariants are an example of safety properties, which say

that “bad” states will not be reached. It is straightforward

to find counterexamples to safety properties by testing, as

safety properties are exactly those that can be refuted in

a finite number of steps [5], but many specifications also

include liveness properties, which say that a “good” state will

(eventually) be reached. We can express liveness properties

by using the modality (read “eventually”), dual to . For

example, this property states that a menu will eventually be

enabled:

menuEnabled

Counterexamples to liveness properties are more difficult

to find via testing, as they take the form of infinite traces

where the desired “good” state is never reached—no finite

amount of testing will ever produce a complete counterexam-

ple. Conversely, if, rather than search for counterexamples,

we instead search for a positive witness that the property

holds, liveness properties become easy and safety properties

become hard.

We can combine with to state that the menu will be

enabled infinitely often; or, equivalently, that the menu will

Quickstrom: Property-based Acceptance Testing with LTL Specifications

¬ 𝜑 = ¬𝜑 (1)

¬ 𝜑 = ¬𝜑 (2)

¬ 𝜑 = ¬𝜑 (3)

¬(𝜑 U 𝜓) = ¬𝜑 R ¬𝜓 (4)

¬(𝜑 R 𝜓) = ¬𝜑 U ¬𝜓 (5)

𝜑 = ⊤U 𝜑 (6)

𝜑 = ⊥ R 𝜑 (7)

𝜑 = 𝜑 ∧ 𝜑 (8)

𝜑 = 𝜑 ∨ 𝜑 (9)

𝜑 U 𝜓 = 𝜓 ∨ (𝜑 ∧ (𝜑 U 𝜓)) (10)

𝜑 R 𝜓 = 𝜓 ∧ (𝜑 ∨ (𝜑 R 𝜓)) (11)

Figure 3. Important LTL identities

never be disabled forever:

menuEnabled ¬ menuDisabled

Both of the temporal operators and are special-cases

of the more general temporal operators U (read “until”)

and its dual R (read “release”) respectively, as can be seen

in identities 6–7 of Figure 3. Using these operators we can

express more sophisticated requirements on the ordering of

events, such as these (equivalent) properties that state that

we cannot access a secret page without logging in first:

LogIn R ¬SecretPage ¬(¬LogInU SecretPage)
All of these operators can be thought of as fixed points of

expansion identities involving the (read “next”) operator,

such as identities 8–11 of Figure 3. We can also use in our

specifications, such as this example that describes a flashing

screen, alternating between dark and light:

(dark ∧ light ∨ light ∧ dark)

2.1 LTL with Finite Testing
As can be seen from these examples, LTL makes it easy to

specify our application, but actually checking that our appli-

cation meets our specification remains a challenge. As Quick-

strom does not have any view of the application’s structure

beyond the current trace, we cannot construct a model of

the system and apply the usual LTL model-checking tech-

niques [39]. Instead, we randomly explore the state space

of the system by performing randomly-chosen interface ac-

tions from a list given in the specification. This gives us

finite, partial traces of the system’s execution. LTL, however,

is defined on behaviours—infinite, completed traces. As no

finite amount of testing will give an infinitely long trace, we

must instead turn to variants of LTL for finite traces.

The most glaring problem when moving LTL to finite

traces is the operator: what does 𝜑 mean if there is

no next state? Pnueli
1
answers by splitting the operator

into two dual “next” operators: The “weak next” , which

defaults to ⊤ when there is no next state; and the “strong

next” , which defaults to ⊥. The and (resp. R and U)

expansion identities then use and respectively, so 𝜑

holds when a violation of 𝜑 does not occur in the trace, and

𝜑 holds when a state satisfying 𝜑 occurs at some point in

the trace.

Pnueli’s finite LTL is still defined for completed traces,

however. It assumes that the application terminates when

the trace ends, and no further states could follow. By contrast,

Quickstrom traces are partial: they can be extended with

more states simply by Quickstrom further interacting with

the application. This means that if we were to use Pnueli’s

finite LTL, a liveness property for example about a timer

application such as

(timeRemaining = 0)
could be marked as false simply because we didn’t wait long

enough for the remaining time to reach zero.

Bauer et al. [13] describe a tri-valued LTL for partial traces

called LTL3 which distinguishes between those formulae that

are evidently true or false only from the trace provided, and

those formulae which are indeterminate, i.e. require further
states to evaluate definitively. Bauer et al. [12] later refine

LTL3 into RV-LTL, an LTL designed for runtime verification.

This logic has four values: formulae may be definitively false,

such as when a safety property is shown to be violated;

presumptively false, such as when a liveness property fails to

be fulfilled in the trace; presumptively true, such as when no

counterexample to a safety property is found in the trace; or

definitively true, such as when a liveness property is shown

to be satisfied. The definitive cases correspond to the same

in LTL3. In the indeterminate cases, the presumptive results

correspond to the answers given by Pnueli’s finite LTL.

While RV-LTL is suitable for run-timemonitoring or verifi-

cation, it is still insufficient for testing. Consider our example

from earlier that the menu will not be forever disabled:

menuEnabled

As this formula nests and operators, it is definitive

in neither positive nor negative cases and will only give

presumptive answers. But the presumptive answer given

in RV-LTL depends only on the value of menuEnabled in

the last state of the trace. For a trace where menuEnabled
continuously alternates off and on, the correct presumptive

answer would be true, but this formula would be considered

presumptively false if we happen to end testing in a state

wheremenuEnabled is false. This would lead to many spuri-

ous counterexamples that, like the liveness property earlier,

are merely due to ending our partial trace at the wrong time.

1
This technique is found in many early papers on LTL with Pnueli as a

coauthor such as Lichtenstein et al. [28], but Manna and Pnueli [33], which

is usually cited for this technique, does not mention finite traces at all.

Liam O’Connor and Oskar Wickström

Formulae:

𝜑,𝜓 ::= 𝑝 | ¬𝜑 | ⊤ | ⊥
| 𝜑 ∧𝜓 | 𝜑 ∨𝜓

| 𝜑 (required next)
| 𝜑 | 𝜑 (weak/strong next)
| 𝑛 𝜑 | 𝑛 𝜑 (henceforth/eventually)
| 𝜑 U𝑛 𝜓 | 𝜑 R𝑛 𝜓 (until/release)

Guarded form:

𝐹,𝐺 ::= 𝐹 ∧𝐺 | 𝐹 ∨𝐺

| 𝜑 | 𝜑 | 𝜑

Figure 4. Syntax of QuickLTL

0 𝜑 = 𝜑 ∧ 0 𝜑

𝑛+1 𝜑 = 𝜑 ∧ 𝑛 𝜑

0
𝜑 = 𝜑 ∨

0
𝜑

𝑛+1 𝜑 = 𝜑 ∨ 𝑛 𝜑

Figure 5.QuickLTL expansions for basic temporal operators.

Exactly when testing should stop and traces should end to

give correct presumptive answers depends on the specific

formula being tested. Therefore, our QuickLTL dialect of

LTL extends RV-LTL with additional information, allowing

users to specify the required length of traces as part of the

formula itself.

2.2 QuickLTL
As can be seen in Figure 4, we annotate temporal operators

with numbers that specify the minimum length of the trace

required to give accurate presumptive answers for that op-

erator. For instance, to check 𝑛 𝜑 , Quickstrom must check

at least 𝑛 states for 𝜑 before concluding that the formula is

presumptively true; and for 𝑚𝜓 it must check at least𝑚

states for𝜓 before giving up and concluding that the formula

is presumptively false. Adding annotations to our previous

example, we get:

100 5
menuEnabled

These annotations instruct Quickstrom to check (at least)

100 states for the property
5
menuEnabled, which itself re-

quires Quickstrom to check at least 5 states formenuEnabled.
These annotations eliminate the spurious counterexamples

mentioned in the previous section, so long as the menu is

re-enabled within 5 states of being disabled. The semantics

of these annotations is best explained by their expansions

into the “next” operators, given in Figure 5. In addition to

the “weak next” and “strong next” of RV-LTL, we also

introduce the self-dual “required next” , which, rather than

default to a value in the absence of a next state, simply re-

quires Quickstrom to perform more actions to produce a next
state if one does not exist. As can be seen in Figure 5, the

𝜑
𝜎↦−→ 𝜓

⊤ 𝜎↦−→ ⊤ ⊥ 𝜎↦−→ ⊥

𝑝
𝜎↦−→ 𝑝 (𝜎)

𝜑
𝜎↦−→ 𝜑 ′

¬𝜑 𝜎↦−→ ¬𝜑 ′

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 ∧𝜓
𝜎↦−→ 𝜑 ′ ∧𝜓 ′

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 ∨𝜓
𝜎↦−→ 𝜑 ′ ∨𝜓 ′

𝜑
𝜎↦−→ 𝜑 𝜑

𝜎↦−→ 𝜑 𝜑
𝜎↦−→ 𝜑

𝜑
𝜎↦−→ 𝜑 ′

𝑛+1 𝜑
𝜎↦−→ 𝜑 ′ ∧ 𝑛 𝜑

𝜑
𝜎↦−→ 𝜑 ′

0 𝜑
𝜎↦−→ 𝜑 ′ ∧ 0 𝜑

𝜑
𝜎↦−→ 𝜑 ′

𝑛+1 𝜑
𝜎↦−→ 𝜑 ′ ∨ 𝑛 𝜑

𝜑
𝜎↦−→ 𝜑 ′

0
𝜑

𝜎↦−→ 𝜑 ′ ∨
0
𝜑

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 U𝑛+1 𝜓
𝜎↦−→ 𝜓 ′ ∨ (𝜑 ′ ∧ (𝜑 U𝑛 𝜓))

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 U0 𝜓
𝜎↦−→ 𝜓 ′ ∨ (𝜑 ′ ∧ (𝜑 U0 𝜓))

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 R𝑛+1 𝜓
𝜎↦−→ 𝜓 ′ ∧ (𝜑 ′ ∨ (𝜑 R𝑛 𝜓))

𝜑
𝜎↦−→ 𝜑 ′ 𝜓

𝜎↦−→ 𝜓 ′

𝜑 R0 𝜓
𝜎↦−→ 𝜓 ′ ∧ (𝜑 ′ ∨ (𝜑 R0 𝜓))

Figure 6. Unrolling a formula, evaluating it against one state

numeric annotation 𝑛 on a temporal operator expands into

𝑛 uses of the operator, thus requiring Quickstrom to gen-

erate and check at least 𝑛 states to evaluate the formula for

that operator.

2.3 Evaluation by Formula Progression
We evaluate QuickLTL formulae in a step-by-step manner,

unrolling and partially evaluating the formula for each state

of the trace in succession, similar to an operational semantics

but for LTL formulae. Evaluation of a formula 𝜑 proceeds in

three phases, repeated in a loop:

1. Given the state 𝜎 , unroll the formula 𝜑 one step and

partially evaluate it against 𝜎 , according to the rules

given in Figure 6. This relation 𝜑
𝜎↦−→ 𝜑 ′

evaluates

all atomic propositions about the state 𝜎 , leaving a

formula 𝜑 ′
where all nontrivial propositions are sur-

rounded by a “next” operator. Note that the rules for

temporal operators are expanding formulae exactly as

in the expansion identities of Figure 5.

Quickstrom: Property-based Acceptance Testing with LTL Specifications

𝐺 �⇒ 𝜑

𝐺 �⇒ 𝜑 𝐹 �⇒ 𝜓

𝐺 ∧ 𝐹 �⇒ 𝜑 ∧𝜓

𝐺 �⇒ 𝜑 𝐹 �⇒ 𝜓

𝐺 ∨ 𝐹 �⇒ 𝜑 ∨𝜓

𝜑 �⇒ 𝜑 𝜑 �⇒ 𝜑 𝜑 �⇒ 𝜑

Figure 7. Stepping a formula forward

2. Simplify the resultant formula 𝜑 ′
using simple logical

identities and the negation identities 1–5 from Figure 3.

This will either result in a definitive answer like ⊤ or

⊥, in which case Quickstrom will cease checking; or it

will result in a formula 𝐹 in guarded form, syntax of

which is given in Figure 4. A formula is in guarded form

if it consists solely of conjunctions and disjunctions

of formulae guarded by “next” operators. If none of

these “next” operators are the “required next” , then

a presumptive answer can be given by treating all -

guarded terms as⊤ and all -guarded terms as⊥, then
simplifying the formula.

3. If the guarded-form formula 𝐹 contains -guarded

terms, then Quickstrom must perform more actions

to generate a new state 𝜎 . We then step the formula

forward according to the rules in Figure 7. This relation

𝐹 �⇒ 𝜑 progresses the formula to the next state, giving

a new formula 𝜑 that can be used in the next iteration

of the loop with the new state 𝜎 .

This procedure is very similar to the formula progression
technique proposed by Kabanza et al. [8, 26] for standard

LTL, however we split the progression relation into the two

relations in Figures 6 and 7 to allow us to distinguish between

formulae that already have definitive answers and those

that have only presumptive answers due to the presence of

remaining “next” operators.

Roşu and Havelund [37] warn that this technique can re-

sult in exponential blow-up in the size of the formula relative

to the number of steps taken, however we have found in our

case studies that this is avoided in all practical cases by our

simplification of the formula at each step. Nested temporal

operators can cause the formula size to grow at each step

but, as our traces are rarely longer than a few hundred states,

this is not prohibitively expensive. Therefore, this technique

remains effective for our practical scenarios.

3 Specstrom
QuickLTL formulae are only a small component of a Quick-

strom specification. Specification writers must also describe

which actions can occur, either due to Quickstrom interacting

directly with the interface or due to asynchronous environ-

mental events, as well as the state queries that make up the

atomic propositions in a QuickLTL formula.

Our specification language, Specstrom, is a simple lan-

guage with syntax that superficially resembles JavaScript

and has smooth interoperability with JavaScript data such as

objects and arrays, but with a significantly more restricted

semantics: recursion is not allowed, and all expressions termi-

nate. Specstrom also includes a number of built-in primitives

for constructing formulae, actions and state queries.

Although Specstrom supports higher order functions, it

still guarantees termination through use of a very simple

type system. Because most web programmers are not accus-

tomed to strict type-checking, this type system is designed

to be mostly invisible to the programmer: it distinguishes

only between functions and non-functions, and all types are

inferred. To avoid circumvention of this type system, func-

tions may not be placed inside data types such as arrays

or objects. The termination guarantee that we obtain from

this type system enables us to analyse Specstrom code more

easily, as in Section 3.3.

3.1 Evaluation Control
Specstrom also gives the user fine-grained control over eval-

uation, allowing programmers to define their own temporal

operators or connectives. As an illustrative example, consider

the following temporal predicate evovae(𝑥), which states

that 𝑥 shall forever have the same value it had initially:

evovae(𝑥) = let 𝑣 = 𝑥 ; (𝑥 == 𝑣);
In a languagewhich evaluates in applicative order (i.e. "strict"

evaluation), this would trivially be true, because the parame-

ter 𝑥 would be fully evaluated to a value before evovae was
even invoked, and thus 𝑥 == 𝑣 would be true independently

of the state in which it is executed. On the other hand, in a

language where bindings are only evaluated when they are

used, this would also be trivially true, because binding 𝑣 to

𝑥 would not evaluate 𝑥 until inside the operator, making

evovae(𝑥) equivalent to the trivial (𝑥 == 𝑥). For this rea-
son, Specstrom allows the user to specify which bindings are

to be left unevaluated explicitly, with a ∼ prefix before the

binding. This allows us to define evovae with the intended

semantics, where only 𝑥 is left unevaluated and 𝑣 is evaluated

eagerly:

evovae(∼𝑥) = let 𝑣 = 𝑥 ; (𝑥 == 𝑣);

3.2 Specifying an Egg Timer
Figure 8 gives an illustrative example of a complete Spec-

strom specification for a three-minute egg timer application,

with syntax slightly adjusted for brevity. The application

consists of a start/stop toggle button and a label containing

the remaining time in seconds.

State projections. The first two lines introduce atomic

propositions, stopped and started, which indicate the status

of the timer. Strings surrounded in
‵backticks‵ are CSS se-

lectors which extract part of the application’s UI state. In this

Liam O’Connor and Oskar Wickström

let ∼stopped = ‵#toggle‵.text == "start";
let ∼started = ‵#toggle‵ .text == "stop";
let ∼time = parseInt(‵#remaining‵.text);
action start! = click!(‵#toggle‵) when stopped;
action stop! = click!(‵#toggle‵) when started;
action wait! = noop! timeout 1000 when started;
action tick? = changed?(‵#remaining‵);
let ∼ticking {
let old = time;
started
∧ (tick? in happened

∧ time == old − 1

∧ if time == 0 {stopped} else {started})
}
let ∼waiting =

started ∧ (wait! in happened ∧ started);
let ∼starting =

stopped ∧ (start! in happened

∧ if time == 0 {stopped} else {started});
let ∼stopping =

started ∧ (stop! in happened ∧ stopped);
let ∼safety =

loaded? in happened ∧ time == 180
∧ 400 (starting ∨ stopping ∨ waiting ∨ ticking);

let ∼liveness =
400 (start! in happened ⇒

360
stopped);

let ∼timeUp =

400 (start! in happened ⇒
360

(time == 0));
check safety liveness;
check timeUp with start! wait! tick?;

Figure 8. An Example of a Specstrom specification

case, our propositions are determined by the text label on

the toggle button. Note that these definitions are expected

to change over time and are thus bound with the ∼ operator

to prevent them from being evaluated at definition-time. We

similarly define a state-dependent quantity time which is

determined from the label containing the number of seconds

remaining.

Actions. The next four lines define actions that may occur,

either due to user actions, which are initiated by Quickstrom,

or due to events, which are asynchronously initiated by the

application. In our specifications and libraries, we adopt the

convention that user actions are suffixed with an exclama-

tion mark (!) and events with a question mark (?). Thus, we

define three user actions and one event. The event is tick?,
which fires when the application updates the remaining time

label each second. The user actions are start!, stop! andwait!,

which all indicate actions Quickstrom may take when in-

teracting with the application. They are defined in terms

of built-in primitive actions such as noop! and click!(). We

associate guards to our actions using the when operator,

allowing us to differentiate between the start! and stop! ac-
tions: both of these actions simply involve clicking the toggle

button, but in different contexts. In general, these guards take

the form of atomic propositions, i.e. non-temporal boolean

formulae. The action will only fire if the guard condition is

met.

Timeouts. The definition for the action wait! associates
a timeout to the built-in action noop! with the timeout key-
word. This indicates to Quickstrom that, after performing

this action, it should not attempt to perform another action

for at least one second, or until an event occurs. These time-

outs are designed to accommodate the very common use

case where a user action causes an application to respond

asynchronously. In this case, the action noop! does nothing,
so the actionwait!will cause Quickstrom to wait until a tick?
occurs, or until one second elapses. This action is needed

because otherwise Quickstrom will simply stop the timer

as soon as it starts, as it has no other actions available to

perform once the timer has started.

Safety properties. The next five definitions can be un-

derstood by looking at the property safety. This property
states that the built-in event loaded? must happen first, and

that in the initial state, the time remaining should be three

minutes. It then states that one of ticking,waiting, starting,
and stopping must be true forevermore. Each of these prop-

erties describes one allowable state transition. For example,

stopping describes a transition from a state where the timer

was started to a state where the timer has stopped due to

the stop! action. The variable “happened” is a special state-
dependent variable that contains all events or actions that

occurred immediately prior to the current state. The ticking
transition uses a let-binding to freeze the value of time be-
fore the tick? event occurred. This allows us to then specify

that the value of time after the event must be decremented.

Liveness properties. While the safety property defined

above thoroughly describes what transitions are allowable,

it does not say anything about what transitions will be taken.

For this, we need liveness properties. The simplest liveness

property of our egg timer is that the timer will eventually

stop—either by running out of time or by the user press-

ing the stop button. This is easily expressed in the property

liveness. For an egg timer, however, it is reasonable to want

a stronger property: eventually, time will run out. Unfortu-

nately this property, which we call timeUp in Figure 8, is

not necessarily true for all implementations. For example,

if the timer is implemented with a one-second granularity,

the user might repeatedly press the start and stop button

faster than the granularity of the timer, and prevent it from

Quickstrom: Property-based Acceptance Testing with LTL Specifications

Checker Executor
Start ⟨dependencies⟩ Event ⟨event⟩ ⟨state⟩

Request a new session be started Notify the checker about an event that occurred
(also specifies which selectors are relevant) along with the updated state

Act ⟨action⟩ ⟨version⟩ ⟨timeout⟩ Acted ⟨state⟩
Request the given action be performed Notify the checker that an action was performed
(rejected if version < trace length) along with the updated state

Wait ⟨time⟩ ⟨version⟩ Timeout ⟨state⟩
Request to signal a Timeout after the given time Notify the checker that a timeout has elapsed
if no event occurs first. along with the (possibly) updated state

Figure 9. The protocol between the checker and executor.

ever making progress. An optional parameter to thecheck
command, seen at the bottom of Figure 8, allows us to spec-

ify which actions may fire when testing a given property.

Therefore, we can still check this property by excluding the

stop! action from the set of allowable actions. Then, the only

way the timer will stop is if it runs out of time.

Currently, the Quickstrom checker makes a completely

random selection from the set of allowable actions for the

current state. Refining this action selection to be more tar-
geted, methodically exploring previously unreached parts of

the state space, is left as future work (see Section 5.1).

3.3 Static Analysis
Quickstrom is built on top of Selenium WebDriver [2], a pro-

grammatic testing tool which can simulate user interaction

with a web application using a headless browser instance.

When given a Specstrom specification, Quickstrom must de-

termine what parts of the browser state are relevant for the

properties at hand before checking, to properly instrument

the running application with listeners for changes to rele-

vant components of the user interface, and to get a consistent

view of a state by retrieving all relevant information in bulk.

We determine this information automatically by statically

analysing Specstrom code. Because Specstrom guarantees

termination and does not support recursion, this analysis is a

very simple abstract interpretation for dependency analysis.

In addition to direct dependencies, such as the expression

‵#toggle‵.text which depends obviously on the UI element

‵#toggle‵, we must also track indirect dependencies, such as

in the expression if ‵#toggle‵ .enabled {0} else {1}, which
also depends on

‵#toggle‵. Running this analysis on the

property under test yields a set of state elements which are

instrumented and recorded by Quickstrom as it runs actions.

3.4 Checker and Executor
Quickstrom is divided into twomain components: the checker,
which is the Specstrom interpreter that evaluates the for-

mula and selects actions to perform; and the executor, which

ExecutorChecker

Act click! 0

Acted ⟨state⟩

Event changed? ⟨state⟩

Act pressKey! 2

Acted ⟨state⟩

Event changed? ⟨state⟩

Act pressKey! 3

Figure 10. Example of communication between checker and

executor.

interacts with Selenium WebDriver to actually interact with

the application under test using a headless browser instance.

Figure 9 describes the protocol for communication be-

tween the checker and executor. Each column describes

the messages sent by the checker and executor respectively.

When the checker intends to test a property, it signals the ex-

ecutor to load the application (Start) and tells it which parts

of the application’s state are relevant to the property. As

mentioned, this information is determined by simple static

analysis of the Specstrom code. The executor uses this infor-

mation to add event listeners to the application under test,

and to determine what parts of the state to include in future

messages. The executor then waits for events to occur in the

application or action requests (Act) to come from the checker.

In either case it reports the updated application state to the

checker, after performing the requested action if necessary

(Acted and Event). The checker will wait until the initial

Liam O’Connor and Oskar Wickström

event of the property is observed (usually, this is when the

page is loaded) before beginning to request actions.

For user actions that include a timeout, such as our wait!
action from the egg timer example, the Act message may

optionally include a timeout parameter. If the specified time

elapses without an event occurring, the executor will send

a Timeout message along with the state (which might have

changed since the last action occurred). The checker can also

request such a timeout separately from an action using the

Wait message, which is used when a timeout is associated
with an event: if the event occurs, the checker requests a

timeout from the executor.

Because the application under test is running in a separate

process and cannot be paused, it is possible that asynchro-

nous events could change the application’s state while the

checker is decidingwhat action to perform. Thus, the checker

might make a decision based on out-of-date information. We

solve this problem by including the length of the trace so far
in every message after checking begins. Figure 10 illustrates

an interaction between the checker and executor after ini-

tiating a run for a particular property. Time flows from the

top to the bottom. Initially, the checker tells the executor to

click a button, which the executor dutifully does, returning

the updated state along with its acknowledgment that the

action was performed. Then, part of the application’s state is

asynchronously changed, which the executor reports to the

checker along with an updated state. The checker acknowl-

edges receipt of all these updated states by including the

current trace length (2) in its next action request, to press a

key. The executor then performs this action and sends the

new state to the checker. Then, the application state is again

asynchronously changed, but before the checker is notified
of this, it requests that the executor perform another action

to press a key. Because this request has an out of date trace

length (3, not 4), the executor knows to ignore this request.

Nothing about the checker is specific to Selenium Web-

Driver: paired with a different executor, the same checker

could be used to test any reactive system. While the only

production-ready executor is the WebDriver-based one, to

simplify testing of our Specstrom interpreter we have also

implemented another executor, which interprets models writ-

ten in Milner’s Calculus of Communicating Systems [34].

Developing other executors is promising future work.

4 Evaluation
The TodoMVC benchmark is a suite of various implementa-

tions of the same to-do list application, which should all look

the same and behave according to the same (plain English)

specification [4]. The various implementations are provided

by independent developers, usually the developers of the

frameworks themselves. The purpose of the benchmark is to

provide a non-trivial application that can be used to compare

frameworks for performance, functionality and ease of use.

2 items left

What needs to be done?

All Active Completed Clear completed

›

Meditate

Go for a walk

Listen to music

Figure 11. A TodoMVC implementation in action.

Figure 11 contains a screenshot of one of the TodoMVC

implementations in action. As can be seen, items can be

added by typing into the text box at the top of the list, and

items may be marked “completed” by clicking the checkbox

to their left. The arrow icon to the left of the text entry box

allows all items to be toggled simultaneously. Items may be

filtered by their status using the buttons below the list, and

items may be edited by double clicking on them. A delete

button appears to the right of an item when the user hovers

over it. The to-do list is persistent, stored in local storage, so

page reloads should not affect the content of the to-do list.

4.1 A Formal TodoMVC Specification
The TodoMVC specification is quite precise, but it is writ-

ten in technical English, not a formal specification language.

Therefore, we have translated the TodoMVC specification

into a formal specification, consisting of 300 lines of Spec-

strom. As has been observed with other natural language

specifications [11], our formalisation efforts show the official

specification is rife with ambiguity and under-specification.

For instance, the official TodoMVC specification defines

what items should be shown when the user changes the

current filter, but it does not say what happens to the rest
of the user interface. Our formal specification makes the

reasonable assumption that no other part of the interface

(such as pending input) should be modified when switching

between filters, even though the official specification does

not explicitly rule out such behaviour.

The official specification also says nothing about which

filter should be active after all to-do items have been re-

moved, and our specification does the same, i.e. it leaves

it undefined. Interestingly, there seems to be a commonly

understood de-facto specification that the filter should be

unchanged—developers have submitted bug-fix pull requests

to implementations that behave differently—but we have not

formalised this as it is not officially specified by TodoMVC.

Figure 12 gives a high-level sketch illustrating the main

safety property for TodoMVC in our formal specification.

Quickstrom: Property-based Acceptance Testing with LTL Specifications

let ∼safety = initial
∧ (focusNewTodo

∨ enterNewTodoText
∨ addNew
∨ changeFilter
∨ setSameFilter
∨ toggleAll
∨ checkOne
∨ uncheckOne
∨ delete
∨ enterEditMode
∨ inEditMode)

∧ · · · ⟨invariants⟩
let ∼enterEditMode = startEditing ∧ editMachine
let ∼editMachine {
let item = itemInEditMode;
exitEditMode(item) R

(enterEditText ∨ exitEditMode(item))
}
let exitEditMode(initialItem) =

commitEdit (initialItem)
∨ abortEdit (initialItem)

Figure 12. Sketch of our TodoMVC specification

When numeric subscripts on temporal operators are omit-

ted, they use a user-specified default value. Using a higher

value increases test accuracy but also test running time. See

Section 4.3 for a detailed analysis of this trade-off. Like our

timer specification, we specify the application similarly to

a state machine. The property consists of three conjuncts:

one specifying the initial state, one specifying the allowable

transitions corresponding to user actions, and one contain-

ing a list of invariants. These invariants mostly just state the

requirement that the various elements that make up the user

interface are actually present.

This kind of state machine specification is a very common

pattern when writing Quickstrom specifications, and our

TodoMVC example also demonstrates another pattern: We

can use the temporal operator R to nest these state machine

specifications. Notice that the transition conjunct of the main

safety property is easily satisfied if we are editing an item

(i.e. the inEditMode disjunct is true). This is because we spec-
ify editing an item as a separate state machine specification

in editMachine, which is invoked by the enterEditMode tran-
sition. From the perspective of the main, high-level state

machine in safety, editing an item is a single abstract state

with a single internal transition, described by the formula

inEditMode. But in editMachine, we refine this into three

transitions: editing the text of an item, committing changes,

and aborting changes. If either of those last two transitions

are taken, we leave the nested state machine: we are no

Passed — 23 (9 beta, 14 mature)

angularjs_require, aurelia, backbone_require, backbone,
binding-scala, closure, emberjs, enyo_backbone,
exoskeleton, js_of_ocaml, jsblocks, knockback,
knockoutjs, kotlin-react, react-alt, react-backbone,
react, riotjs, scalajs-react, typescript-angular,
typescript-backbone, typescript-react, vue

Failed — 20 (8 beta, 12 mature)

angular-dart
14
, angular2_es20151, angular25, angularjs7,

backbone_marionette
11
, canjs_require13, canjs13, dijon2,

dojo
9
, duel4, elm4

, jquery
10
, knockoutjs_require2,

lavaca_require4, mithril
7
, polymer

6
, ractive12, reagent4,

vanilla-es6
8,3
, vanillajs

8

Table 1. Summary of Results

longer in edit mode and need no longer abide by the nested

state machine specification. We use the release operator R
to indicate this (Note that the top-level safety state machine

uses , which is equivalent to R with an exit condition of⊥).
In addition, we also “remember” the original value of an item

that is being edited, using the let binding in editMachine, so
that we can specify that the text returns to its original value

if an edit is aborted.

We have not yet formalized the persistence aspect of the

official specification. We expect that this could be modelled

by inserting page reloads as another possible action, and may

expose further problems in the implementations’ handling

of local storage, but this is left as future work.

4.2 Results
From the many standard TodoMVC 1.3 implementations

listed on the TodoMVCwebsite [4], we selected 43 implemen-

tations for our evaluation. We selected only those implemen-

tations that are stored on the TodoMVC repository (commit

version 41ba86d from February 2020) to ensure reproducibil-

ity. We also excluded any implementations that were not

standard, single-page TodoMVC applications (e.g. streaming

variants such as those based on Firebase), those that didn’t

successfully start (i.e. cujo), those whose markup didn’t

match the specification (i.e. gwt), and those for whom com-

piled, testable artifacts were not available (i.e. react-hooks,
emberjs-require). Some of these implementations are la-

belled as beta, i.e. still under evaluation from the TodoMVC

team. As can be seen in Table 1, which gives a high level

overview of our results on each of these implementations, we

found bugs or faults in 20 of those implementations—almost

half. Surprisingly, this fault rate was not significantly higher

for the implementations marked as beta, although bugs due

to missing features are more common.

Table 2 describes in detail the specific faults that Quick-

strom exposed. The problem found in angular-dart, num-

ber 14, does not actually impede the overall operation of the

Liam O’Connor and Oskar Wickström

Description Count
1 Items have no checkboxes 1

2 There are no filter controls 2

3 A element is missing 1

4 Blank items can be added 1

5 Edit input is not focused after double-click 1

6 Incorrectly pluralizes the to-do count text 1

7 Any pending input is cleared on filter

change or removal of last item

4

8 A new item is created from pending input

after non-create actions

2

9 “Toggle all” does not untoggle all items

when certain filters are enabled

1

10 The “Toggle all” button disappears when

the current filter contains no items.

1

11 Commiting an empty to-do item in edit

mode does not fully delete it—it can later

be restored with “Toggle all”

1

12 Editing an item hides other items 1

13 Adding an item changes the filter to “All” 2

14 Adding an item first shows an empty state 1

Table 2. Problems found in TodoMVC implementations

application. However, because it temporarily empties the list

before re-populating it when adding a new item, this is a

bug according to our formal specification. Because this is

not explicitly forbidden by the official English specification,

however, we consider it a “dubious” case, and it could be

considered “correct” by a more generous interpretation of

the specification. Of the remaining problems, three (Prob-

lems 1–3) are just unimplemented functionality or missing

UI elements that are required by the specification. These

problems appear only in beta versions for the most part, and

would likely be found in a cursory review. The others all ap-

pear to be programming mistakes. Problems 4–6 are simple

bugs that are easily found manually, but the remaining prob-

lems (Problems 7–13) require nontrivial steps to uncover.

In particular, problems often manifest when the user does

something unexpected after entering (but not committing)

some input text, as in Problem 7 (the most common fault at

four implementations) and Problem 8 (which also appeared

in multiple implementations). In addition, the interaction be-

tween filters and the “Toggle all” button is another common

source of bugs, as in Problems 9–11.

Problem 11 is particularly involved to uncover, and could

easily slip past cursory review. In order to reproduce this

bug, the user must create a to-do item, then immediately

double click it to start editing, erase all text and press Enter

(the item now appears deleted, but filters are still visible).

Then, the user must click the “toggle all” button, at which

point the supposedly deleted item re-appears.

0 100 200 300 400 500

0

20

40

60

80

100

temporal operator subscript (trace length)

f
a
l
s
e
n
e
g
a
t
i
v
e
r
a
t
e
(
%
)

0

50

100

150

200

r
u
n
n
i
n
g
t
i
m
e
(
s
)

false negatives

running time

Figure 13. False negative rate and average running-time

The bugs found in the various TodoMVC implementations

run the gamut from trivial to complex. Notably, we found

roughly as many faults in mature implementations as we

did in beta ones. We even found problems in all three of

the “Pure JavaScript” examples (vanillajs, vanilla-es6,
and jquery) considered as reference implementations by

the TodoMVC specification. These case studies demonstrate

Quickstrom’s effectiveness as a bug-finding tool, even for

mature software with extensive manual testing.

4.3 Running Time and False Negative Rate
Figure 13 summarises the relationship between the subscripts

on temporal operators, test accuracy, and running time for

our TodoMVC specification. Specifically we measure the

false negative rate (percentage of tests on faulty implementa-

tions that unexpectedly pass) for failing implementations and

compare it to the average running time for testing passing

implementations. This is because the TodoMVC specification

consists only of safety properties: when checking a safety

property, passing cases will always take more time than fail-

ing ones, as the testing tool will always exit as soon as a

counterexample is found. Similarly, the only way that test-

ing of safety properties could give inaccurate results is in

the form of a false negative, because Quickstrom will only

report a test failure if a concrete counterexample is found.

Conversely, when testing liveness properties, the situation

would be reversed: failing cases would take the most time,

and inaccurate results would be false positives. For each sub-

script, each implementation was tested 10 times on a 2020

Apple MacBook Pro M1 with 16GB of RAM, although testing

time is dominated by waiting for events, so performance of

hardware does not greatly affect running time.

As can be seen, testing takes linearly more time but be-

comes logarithmically more accurate as the temporal sub-

script increases. All of the faults found in TodoMVC can

be exposed with a subscript of merely 50, but the more in-

volved faults such as Problem 11 are only found infrequently,

Quickstrom: Property-based Acceptance Testing with LTL Specifications

resulting in flaky tests. The vast majority of faults are re-

liably found with a subscript of 100—the default value in

Quickstrom—and testing takes less than a minute (approx.

42 seconds for passing cases). After that, higher subscripts

are still more likely to uncover faults, but there are dimin-

ishing returns in terms of faults found for time taken.

5 Related and Future Work
5.1 Automated Browser Testing
While tools such as Selenium WebDriver are now well es-

tablished and enjoy widespread industry use, higher-level

automation of such acceptance testing is an area that has

not yet been thoroughly explored. Like us, Bainczyk et al.

[9] apply their testing tool ALEX to the TodoMVC bench-

mark, however ALEX is based on learning-based testing

without models or specifications, and is therefore limited

to finding inconsistencies between TodoMVC implementa-

tions. By contrast, Quickstrom generates tests based on user-

provided logical specifications, and can therefore find more

bugs, albeit with greater effort required for writing specifi-

cations. We believe model inference techniques [6] such as

those in ALEX and other model checking techniques such

as counterexample-guided abstraction-refinement [18] are

highly compatible with Quickstrom, and could potentially

be used to make Quickstrom more intelligently select ac-

tions and search for counterexamples—a kind of targeted
property-based testing for LTL specifications [29, 30].

Panchekha et al. [35] present a tool to automatically verify

constraints on page layout and appearance based on high-

level specifications. While it is possible to verify some layout

constraints with Quickstrom, that is not its primary pur-

pose. Quickstrom does not presently feature any specific

functionality to verify that pages are laid out correctly, fo-

cusing instead on behavioural specifications. Thus, this tool

is complementary with Quickstrom.

5.2 LTL for User Interfaces
We are not the first to realise the suitability of LTL for de-

scribing user interfaces. Jeffrey [24] and Jeltsch [25] simulta-

neously observed that, just as logical formulae correspond to

types of programs, LTL formulae can correspond to types for

functional-reactive programs (FRP), including user interfaces

and interactive applications. Perez and Nilsson [36] used LTL

formulae for testing and debugging of FRP programs.

The Model-View-Update (MVU) architecture, pioneered by

the Elm programming language [3], itself descended from

FRP, is a simple design pattern for user interfaces that has

now become widespread, with variants for most program-

ming languages and UI frameworks. At its core, it describes

interactive applications with a type for the model or applica-
tion state𝑀 , a type for the view 𝑉 , a type for actions 𝐴, and a
pair of functions display : 𝑀 → 𝑉 and update : 𝑀 ×𝐴 → 𝑀 .

This model is highly compatible with the view of states and

actions used in Quickstrom. As the Quickstrom checker is

not WebDriver-specific, we could repurpose it with custom

executors to produce language- or framework-specific test-

ing tools, allowing Specstrom and QuickLTL specifications

to be applied to these applications more directly.

5.3 Other Executors and Debuggers
As neither Specstrom nor QuickLTL are specific to web appli-

cations, it is worth investigating other domains to see if they

would be a suitable fit. Other GUI frameworks such as GTK

and Qt both have acceptance testing frameworks similar to

Selenium WebDriver, and are obvious candidates, but there

may be more interesting use cases further afield: for example,

our Specstrom checker could also be attached to an emulator

or a debugger for an embedded system, where actions and

events take the form of IO signals and the accessible state is

the memory on the system. Model checkers based on LTL

such as Spin are already used in the embedded systems area,

so programmers in this area may already be amenable to

LTL specifications.

5.4 State Machine Specifications
As previously mentioned, our specifications for both our

egg timer example and our TodoMVC case study strongly

resemble a specification of a state machine. Model-oriented

property-based testing using state machine models was orig-

inally developed for the implementation of QuickCheck for

Erlang, which was used to find linearisable instances of

race conditions [17]. The same version of QuickCheck was

later used to test AUTOSAR implementations [7, 23]. This

state machine idea has now been implemented for several

other property-based testing systems, including the original

Haskell QuickCheck. Unlike Quickstrom, these frameworks

require that the model capture the essential complexity of the

application under test: it needs to be functionally complete

to be a useful oracle. For a system that is conceptually simple,

such as a key-value database engine, this is not a problem,

but for systems that are burdened with inherent complexity,

such as a business application with many intricate rules, a

useful model tends to grow as complex as the system itself.

Quickstrom specifications can be more abstract: the engineer

does not have to implement a complete functional model of

their system, and is free to leave out details and specify only

the most important aspects of their application. For example,

the timer specification given in Figure 8 intentionally applies

both to timers that reset when stopped and to timers that

pause when stopped.

5.5 QuickLTL as a Temporal Logic
While QuickLTL is by definition a superset of other partial

trace variants of LTL such as RV-LTL [12], we have not yet

formally explored the relationship between QuickLTL and

conventional infinite-trace LTL dialects. Recall that actions

in Quickstrom are divided into user actions, under the control

Liam O’Connor and Oskar Wickström

of the user, and events, under the control of the application.
It is not reasonable to assume progress for all actions, as

conventional LTL dialects do, as this would impose a require-

ment on applications that events must eventually occur if no

user actions can be taken. The reactive LTL of van Glabbeek

[38] is designed specifically to address this problem, and

would serve as a good starting point for this investigation.

5.6 Fault Injection
Majumdar and Niksic [31] provide a theoretical justifica-

tion for the surprising effectiveness of randomly testing dis-

tributed systems with fault injection—intentional simulation

of network faults for testing purposes. This kind of fault

injection is often provided by tools such as Jepsen [1] and

Elle [27]. While these tools are for systems like distributed

databases, the same fault injection technique may also be

useful in Quickstrom: Modern web applications often try

to handle network interruptions gracefully, defaulting to

local storage or warning the user that the connection was

lost. Simulating network faults would enable Quickstrom

specifications to test such scenarios.

5.7 Security and Confidentiality
A drawback of our approach is that we can only write proper-

ties that are expressible in LTL, i.e. properties of a single trace.

While we can specify some properties that relate to security,

such as our property requiring the user to log in to see the

“Finances” page, we cannot express security properties, such

as information-flow security, in standard LTL as they are hy-
perproperties—properties relating multiple traces [20]. While

temporal logics exist to express hyperproperties [10, 19, 21],

random testing for hyperproperties may not be as fruitful

as it is for QuickLTL properties. As hyperproperties relate

multiple traces, a counterexample to a security property

expressed as an 𝑛-hyperproperty would take the form of

a 𝑛-tuple of traces, rather than a single trace. This makes

counterexamples to security properties significantly harder

to find. While Hrit,cu et al. [22] report effectively testing se-

curity properties using randomised property-based testing,

these tests were on abstracted models of security definitions

rather than on realistic systems. We expect that, when ap-

plied to real-world web applications with large amounts of

state, counterexamples to security properties will not be

easily found by randomised exploration of the state space,

and would likely benefit from the more targeted approaches

previously mentioned.

5.8 Property-based Testing and Formal Methods
The specifications used for property-based testing resemble

those used for formal verification of software. In particular,

QuickCheck test suites have served as sources of specifi-

cations for deductive verification of Haskell code [14]. Our

specifications too resemble temporal logic specifications that

one might find for formal tools such as TLA+, Spin or, most

recently, Alloy 6. In their work on information flow, Hrit,cu

et al. [22] observe that property-based testing is still valuable

even in the context of formal verification, as it can eliminate

the wasted effort of trying to prove a faulty or ill-specified

system correct. Chen et al. [15] posit that property-based

testing could be used as an incremental path towards more

widespread adoption of formal verification among software

engineers. Quickstrom very much fits into this theme, as

specifications in Specstrom could, with little modification,

be transliterated for use in more formal, exhaustive tools.

6 Conclusion
We have presented Quickstrom, a property-based browser

testing framework for acceptance testing of web applications.

Quickstrom users write formal specifications of their appli-

cation’s behaviour in our specification language Specstrom,

based on our new dialect of Linear Temporal Logic for test-

ing, QuickLTL. With this specification, Quickstrom will test

the application with hundreds of possible interactions, all

generated automatically from the specification.

Our case studies demonstrate that Quickstrom is an effec-

tive tool for finding non-trivial bugs in realistic web applica-

tions. Writing a Specstrom/QuickLTL specification enables

programmers to find bugs more quickly and easily than by

writing a comprehensive test suite with a browser testing

framework. But, more than that, we hope that Quickstrom

will make formal specification and modelling, immensely

powerful tools for improving software reliability, more ac-

cessible to mainstream web application programmers.

Acknowledgments
Many thanks to Rob van Glabbeek for his early feedback on

the design of our logic.

References
[1] 2021. Jepsen. https://jepsen.io/ accessed January 2021.

[2] 2021. Selenium WebDriver. https://www.selenium.dev/ accessed

January 2021.

[3] 2021. The Elm Programming Language. https://www.elm-lang.org/
accessed January 2021.

[4] 2021. The TodoMVCBenchmark. https://www.todomvc.com/ accessed
October 2021.

[5] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness. Inform.
Process. Lett. 21, 4 (1985). https://doi.org/10.1016/0020-0190(85)90056-0

[6] Dana Angluin. 1987. Learning regular sets from queries and coun-

terexamples. Information and Computation 75, 2 (1987), 87–106.

https://doi.org/10.1016/0890-5401(87)90052-6
[7] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Test-

ing AUTOSAR software with QuickCheck. In International Confer-
ence on Software Testing, Verification and Validation Workshops. 1–4.
https://doi.org/10.1109/ICSTW.2015.7107466

[8] Fahiem Bacchus and Froduald Kabanza. 1996. Using Temporal Logic to
Control Search in a Forward Chaining Planner. IOS Press, 141–153.

[9] Alexander Bainczyk, Alexander Schieweck, Bernhard Steffen, and Falk

Howar. 2017. Model-Based Testing Without Models: The TodoMVC Case
Study. Springer International Publishing, Cham, 125–144. https:
//doi.org/10.1007/978-3-319-68270-9_7

https://jepsen.io/
https://www.selenium.dev/
https://www.elm-lang.org/
https://www.todomvc.com/
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/ICSTW.2015.7107466
https://doi.org/10.1007/978-3-319-68270-9_7
https://doi.org/10.1007/978-3-319-68270-9_7

Quickstrom: Property-based Acceptance Testing with LTL Specifications

[10] Musard Balliu, Mads Dam, and Gurvan Le Guernic. 2011. Epistemic

Temporal Logic for Information Flow Security. In Programming Lan-
guages and Analysis for Security. Association for Computing Machin-

ery, San Jose, California, Article 6, 12 pages. https://doi.org/10.1145/
2166956.2166962

[11] Ryan Barry, Rob van Glabbeek, and Peter Höfner. 2020. Formalising

the Optimised Link State Routing Protocol. Electronic Proceedings in
Theoretical Computer Science 316 (Apr 2020), 40–71. https://doi.org/
10.4204/eptcs.316.3

[12] A. Bauer, M. Leucker, and C. Schallhart. 2010. Comparing LTL Seman-

tics for Runtime Verification. Journal of Logic and Computation 20, 3

(2010), 651–674. https://doi.org/10.1093/logcom/exn075
[13] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Run-

time Verification for LTL and TLTL. ACM Transactions in Soft-
ware Engineering Methodology 20, 4, Article 14 (Sept. 2011), 64 pages.

https://doi.org/10.1145/2000799.2000800
[14] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,

John Wiegley, and Stephanie Weirich. 2018. Ready, Set, Verify! Ap-

plying Hs-to-Coq to Real-World Haskell Code (Experience Report).

Proceedings of the ACM in Programming Languages 2, ICFP, Article 89
(jul 2018), 16 pages. https://doi.org/10.1145/3236784

[15] Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot

Heiser. 2017. The Cogent Case for Property-Based Testing. InWorkshop
on Programming Languages and Operating Systems (Shanghai, China).
ACM, 7 pages. https://doi.org/10.1145/3144555.3144556

[16] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. In International Confer-
ence on Functional Programming. ACM, 268–279. https://doi.org/10.
1145/351240.351266

[17] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans

Svensson, Thomas Arts, and Ulf Wiger. 2009. Finding Race Conditions

in Erlang with QuickCheck and PULSE. In International Conference
on Functional Programming (Edinburgh, Scotland). ACM, 149–160.

https://doi.org/10.1145/1596550.1596574
[18] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-

mut Veith. 2003. Counterexample-Guided Abstraction Refinement

for Symbolic Model Checking. J. ACM 50, 5 (Sept. 2003), 752–794.

https://doi.org/10.1145/876638.876643
[19] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.

Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Log-

ics for Hyperproperties. In Principles of Security and Trust, Martín

Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 265–284.

[20] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties.

Journal of Computer Security 18, 6 (Sept. 2010), 1157–1210.

[21] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe,

and Helmut Seidl. 2012. Model Checking Information Flow in Reactive

Systems. In Verification, Model Checking, and Abstract Interpretation,
Viktor Kuncak and Andrey Rybalchenko (Eds.). Springer Berlin Hei-

delberg, Berlin, Heidelberg, 169–185.

[22] Cătălin Hrit,cu, John Hughes, Benjamin C. Pierce, Antal Spector-

Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and

Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly. In

International Conference on Functional Programming (Boston, Mas-

sachusetts, USA). ACM, 455–468. https://doi.org/10.1145/2500365.
2500574

[23] John Hughes. 2016. Experiences with QuickCheck: Testing the Hard

Stuff and Staying Sane. In Successes That Can Change the World - Essays
Dedicated to Philip Wadler on his 60th Birthday. https://doi.org/10.
1007/978-3-319-30936-1_9

[24] Alan Jeffrey. 2012. LTL Types FRP: Linear-Time Temporal Logic Propo-

sitions as Types, Proofs as Functional Reactive Programs. In Program-
ming Languages Meets Program Verification (Philadelphia, Pennsylva-

nia, USA). Association for Computing Machinery, New York, NY, USA,

49–60. https://doi.org/10.1145/2103776.2103783
[25] Wolfgang Jeltsch. 2013. Temporal Logic with "Until", Functional Reac-

tive Programming with Processes, and Concrete Process Categories.

In Programming Languages Meets Program Verification (Rome, Italy).

Association for Computing Machinery, New York, NY, USA, 69–78.

https://doi.org/10.1145/2428116.2428128
[26] Froduald Kabanza and Sylvie Thiébaux. 2005. Search Control in Plan-

ning for Temporally Extended Goals. In International Conference on
Automated Planning and Scheduling. AAAI, Monterey, California, USA,

130–139.

[27] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anom-

alies from Experimental Observations. arXiv:2003.10554 [cs.DB]

[28] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. 1985. The glory

of the past. In Logics of Programs, Rohit Parikh (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 196–218.

[29] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-

Based Testing. In International Symposium on Software Testing and
Analysis. ACM, Santa Barbara, CA, USA, 46–56. https://doi.org/10.
1145/3092703.3092711

[30] Andreas Löscher and Konstantinos Sagonas. 2018. Automating Tar-

geted Property-Based Testing. In International Conference on Software
Testing, Verification and Validation. 70–80. https://doi.org/10.1109/
ICST.2018.00017

[31] Rupak Majumdar and Filip Niksic. 2017. Why is Random Testing

Effective for Partition Tolerance Bugs? Proceedings of the ACM in
Programming Languages 2, POPL, Article 46 (dec 2017), 24 pages. https:
//doi.org/10.1145/3158134

[32] Zohar Manna and Amir Pnueli. 1992. The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, Berlin, Heidelberg.

[33] Zohar Manna and Amir Pnueli. 1995. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, Berlin, Heidelberg.

[34] Robin Milner. 1982. A Calculus of Communicating Systems. Springer-
Verlag, Berlin, Heidelberg.

[35] Pavel Panchekha, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil.

2019. Modular Verification ofWeb Page Layout. Proceedings of the ACM
in Programming Languages 3, OOPSLA, Article 151 (2019), 26 pages.
https://doi.org/10.1145/3360577

[36] Ivan Perez and Henrik Nilsson. 2017. Testing and Debugging Func-

tional Reactive Programming. Proceedings of the ACM in Program-
ming Languages 1, ICFP, Article 2 (aug 2017), 27 pages. https:
//doi.org/10.1145/3110246

[37] Grigore Roşu and Klaus Havelund. 2005. Rewriting-Based Techniques

for Runtime Verification. Automated Software Engineering 12, 2 (April

2005), 151–197. https://doi.org/10.1007/s10515-005-6205-y
[38] Rob van Glabbeek. 2020. Reactive Temporal Logic. In Expressiveness in

Concurrency, and Structural Operational Semantics (EXPRESS/SOS 2020)
(Electronic Proceedings in Theoretical Computer Science 322, Vol. 322).
Open Publishing Association, Online, 51–68. https://doi.org/10.4204/
EPTCS.322.6

[39] Moshe Y. Vardi and Pierre Wolper. 1986. Automata-theoretic tech-

niques for modal logics of programs. J. Comput. System Sci. 32, 2 (1986),
183–221.

[40] Oskar Wickström. 2020. Quickstrom. https://quickstrom.io/ accessed
January 2021.

https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.4204/eptcs.316.3
https://doi.org/10.4204/eptcs.316.3
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/3236784
https://doi.org/10.1145/3144555.3144556
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1596550.1596574
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/2500365.2500574
https://doi.org/10.1145/2500365.2500574
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2428116.2428128
https://arxiv.org/abs/2003.10554
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1145/3158134
https://doi.org/10.1145/3158134
https://doi.org/10.1145/3360577
https://doi.org/10.1145/3110246
https://doi.org/10.1145/3110246
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.4204/EPTCS.322.6
https://doi.org/10.4204/EPTCS.322.6
https://quickstrom.io/

	Abstract
	1 Introduction
	2 LTL and QuickLTL
	2.1 LTL with Finite Testing
	2.2 QuickLTL
	2.3 Evaluation by Formula Progression

	3 Specstrom
	3.1 Evaluation Control
	3.2 Specifying an Egg Timer
	3.3 Static Analysis
	3.4 Checker and Executor

	4 Evaluation
	4.1 A Formal TodoMVC Specification
	4.2 Results
	4.3 Running Time and False Negative Rate

	5 Related and Future Work
	5.1 Automated Browser Testing
	5.2 LTL for User Interfaces
	5.3 Other Executors and Debuggers
	5.4 State Machine Specifications
	5.5 QuickLTL as a Temporal Logic
	5.6 Fault Injection
	5.7 Security and Confidentiality
	5.8 Property-based Testing and Formal Methods

	6 Conclusion
	Acknowledgments
	References

