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CSTNet: A Dual-Branch Convolutional Neural
Network for Imaging of Reactive Flows Using

Chemical Species Tomography
Yunfan Jiang , Jingjing Si , Member, IEEE, Rui Zhang , Godwin Enemali , Member, IEEE, Bin Zhou ,

Hugh McCann , and Chang Liu , Senior Member, IEEE

Abstract— Chemical species tomography (CST) has been
widely used for in situ imaging of critical parameters,
e.g., species concentration and temperature, in reactive flows.
However, even with state-of-the-art computational algorithms,
the method is limited due to the inherently ill-posed and rank-
deficient tomographic data inversion and by high computational
cost. These issues hinder its application for real-time flow
diagnosis. To address them, we present here a novel convolutional
neural network, namely CSTNet, for high-fidelity, rapid, and
simultaneous imaging of species concentration and temperature
using CST. CSTNet introduces a shared feature extractor that
incorporates the CST measurements and sensor layout into
the learning network. In addition, a dual-branch decoder with
internal crosstalk, which automatically learns the naturally cor-
related distributions of species concentration and temperature,
is proposed for image reconstructions. The proposed CSTNet
is validated both with simulated datasets and with measured
data from real flames in experiments using an industry-oriented
sensor. Superior performance is found relative to previous
approaches in terms of reconstruction accuracy and robustness
to measurement noise. This is the first time, to the best of our
knowledge, that a deep learning-based method for CST has been
experimentally validated for simultaneous imaging of multiple
critical parameters in reactive flows using a low-complexity
optical sensor with a severely limited number of laser beams.

Index Terms— Chemical species tomography (CST), convolu-
tional neural network (CNN), deep learning, inverse problem.

I. INTRODUCTION

IN THE past two decades, chemical species tomogra-
phy (CST) has been widely applied for nonintrusive and

sensitive imaging of multiple critical parameters in reactive
flows, e.g., gas-phase species concentration [1]–[3], tempera-
ture [2]–[3], and velocity [4]. To solve the inverse problem
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of CST, a variety of computational tomographic algorithms
have been developed. Some of them are adapted from previous
hard-field tomography modalities and improved subject to
the characteristics of the flow field. These algorithms can be
mainly categorized as follows:

1) algebraic techniques based on linear back projection,
e.g., algebraic reconstruction technique (ART) [5] and
Landweber algorithm [1], [6];

2) regularization methods, e.g., Tikhonov regulariza-
tion [7];

3) global optimization, e.g., simulated annealing [8];
4) statistical inversion, e.g., covariance estimation [9];
5) dimensional reduction techniques, e.g., surrogate func-

tions method [10].
As discussed in [11], these algorithms can, to some extent,

mitigate the difficulty of robust image reconstruction in
CST. Nevertheless, deficiencies still remain, particularly the
appearance of artifacts in the reconstructed images due to
the rank-deficient tomographic data inversion and the high
computational cost incurred due to the complex mathematical
operations. These issues severely hinder the exploitation of
CST for applications where high-fidelity performance and
real-time image reconstruction are required.

The last ten years have witnessed a boom in the use
of learning-based algorithm for bioimaging and medical
imaging [12]–[14]. Extreme learning machine (ELM)-based
method [15] has been pioneered in the simulative study of
CST as it enjoys fast training speed. However, reconstruction
accuracy may be limited since only one iteration of learning
is performed during ELM training. In contrast, the convo-
lution operation performed in convolutional neural networks
(CNNs) [16] can take account of the spatial features and
correlations of data and incorporate and learn the inherent
domain priors for better image reconstruction. CNN is a good
candidate to overcome the above-mentioned issues in CST due
to the following properties.

1) Automatic discovery of intricate features. In compari-
son with the computational CST algorithms with constraints
manually imposed on the flow fields, CNN can automatically
construct data representations during the learning process [16],
enabling end-to-end (i.e., from measurements to reconstructed
images) learning of intricate features of the flow fields with
superior generalization ability.
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2) Accurate image retrieval with strong robustness. CNN
can capture and learn distinct features of the flow fields
without overfitting the tomographic data, thus yielding strong
immunity to measurement noise. As the training sets are
established from CST measurements of noise-free target fields,
CNN trained under supervision intrinsically addresses the
limited sampling of CST systems, thus helping to eliminate
artifacts in the tomographic images.

3) Rapid and cost-effective computation, empowered by
hardware acceleration, for rapid processing of a large amount
of CST data typically acquired. This has the potential to facil-
itate online imaging and thus real-time flow and combustion
diagnosis.

CNN has been demonstrated recently in CST simulations
to perform spatially resolved measurements in combustion
diagnosis [17], [18]. Previous work employed CNNs in CST
and showed that their models could achieve a similar accuracy
level as simulated annealing [17] and the reduction in network
parameters [18]. In addition, CNN has been applied in a proof-
of-concept experiment to reconstruct the 3-D distribution of
methane concentration using mid-infrared CST [19]. Although
these endeavors are promising for the industrial application of
CNN in CST, the following three issues remain to be addressed
as a matter of urgency.

1) The properties of the CST measurement system. The
only a priori information taken into account by the previous
work was that pertaining to the attributes of the phantoms
themselves, i.e., smooth distributions of species concentra-
tion and temperature. However, more in-depth features, e.g.,
smoothness and centrosymmetry in the CST measurement
and sensor layout, were not considered in the learning
architectures.

2) Interdependence of species concentration and tempera-
ture distributions. The previous work assumed independence
between species concentration and temperature distributions,
neglecting their internal correlation in combustion processes.
Furthermore, these efforts were incapable of multiparameter
retrieval. They can only reconstruct either species concen-
tration distribution or temperature distribution with a single
neural network model.

3) Practicality for industrial applications. Previous optical
sensors used up to six angular views and tens of laser beams
per view, greatly assisting the image reconstruction process.
However, severely limited optical access with fewer laser
beams commonly exists in industrial applications, e.g., for
the purpose of reliability maintenance. Such limited projection
data place more rigorous challenges on the applicability of
CNNs in CST.

To address these issues, we propose here a novel CNN,
namely, CSTNet, for high-fidelity, rapid, and simultaneous
imaging of species concentration and temperature using CST.
It incorporates and learns domain priors of CST measurements
via convolution operations. Furthermore, it also consists of
a dual-branch decoder with internal crosstalk to integrate
correlations between different flow-field parameters, e.g., gas
concentration and temperature, such that they can be simulta-
neously reconstructed with high fidelity. Our contributions are
summarized as follows.

1) We incorporate domain priors of CST, for the first
time, into the model design, enabling our neural
network to learn inherently physical characteristics
of CST.

2) To simultaneously reconstruct multiple flow-field para-
meters, we design a dual-branch decoder with internal
crosstalk that considers the natural correlation between
these multiple parameters. This architecture enables
more reasonable and efficient image reconstruction in
practical combustion processes.

3) The proposed CSTNet is both analytically and experi-
mentally proven to be successful in high-fidelity imaging
of 2-D H2O concentration and temperature distributions
using two H2O transitions and a tomographic sensor
with 32 laser beams. To the best of our knowledge, this
is the first time that a deep learning-based method for
CST has been experimentally validated for simultaneous
imaging of multiple critical parameters in reactive flows
using a low-complexity optical sensor with a severely
limited number of laser beams.

The remainder of this article is organized as follows. Based
on the basic formulations of CST, we first introduce the
domain priors in CST and the architecture of CSTNet in
Section II. Then, the CSTNet model is established using
the 32-beam CST sensor and adapting our specific task in
Section III. Subsequently, we train the established neural
network, examine its performance, and compare with two
state-of-the-art methods with simulated test sets in Section
IV. The proposed CSTNet is further experimentally vali-
dated in Section V. Finally, conclusions are presented in
Section VI.

II. METHODOLOGY

A. Mathematical Formulation of CST

CST is implemented by multiple line-of-sight tunable diode
laser absorption spectroscopic (TDLAS) measurements gov-
erned by the Beer–Lambert law [20], [21]. When a laser beam
at frequency v (cm−1) penetrates an absorbing gas sample with
a path of length L (cm), the wavelength-dependent absorbance,
α(v), is defined as

α(v) = ln
I0(v)

It (v)
= ∫L

0 P(l)X (l)S(T (l))φ(v)dl (1)

where I0(v) and It (v) are the incident and transmitted laser
intensities, respectively, l is the local position along the path,
P(l) (atm) is the local pressure, X (l) is the local molar fraction
of the absorbing species, T (l) (K) is the local temperature,
S(·) (cm−2atm−1) is the temperature-dependent line strength,
and φ(·) (cm) is the line shape function [11]. Line strength is
defined as a temperature-dependent function for each individ-
ual transition, which is a discontinuous change of an electron
from one energy level to another within an atom. We denote
the line strength of transition i at the central wavelength vi

(cm−1) as Svi and the corresponding wavelength-dependent
absorbance as αvi (v).

Since the line shape function is normalized to unity,
i.e.,

∫ +∞
−∞ φ(v)dv ≡ 1, the path integrated absorbance for
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Fig. 1. Geometric description of CST measurements in the discretized RoI.

transition i , Avi , can be formulated as

Avi =
∫ +∞
−∞

αvi (v)dv =
∫ L

0
P(l)X (l)Svi (T (l))dl

=
∫ L

0
avi (l)dl (2)

where avi (l) is the local density of Avi .
The problem of CST is formulated by employing M line-

of-sight measurements and discretizing the region of inter-
est (RoI) into N pixels, as shown in Fig. 1. It results in a
matrix form

Avi = Lavi (3)

where Avi ∈ R
M×1 denotes the vector of path integrated

absorbance obtained from M CST measurements, with its
element A j

vi representing the path integrated absorbance of the
j th beam. Assuming that the CST sensor consists of Q angular
views and R parallel projection beams per view, M satisfies the
relation of M = Q × R. L ∈ R

M×N is the sensitivity matrix
with its element L j,k representing the length of the laser path
segment for the j th laser beam passing through the kth pixel.
j ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . , N} are the indices of
laser beams and pixels, respectively. avi ∈ R

N×1 is the vector
of absorbance density with its elements ak

vi
= Pk Xk Svi (T

k),
where Pk , Xk , and T k are the local pressure, local molar
fraction, and local temperature in the kth pixel, respectively.

In common with X-ray CT, the reconstruction of images
in CST uses mathematical methods from the field of inverse
problems to solve the spatial distribution of molar fraction of a
target species and/or the temperature. Concretely, we use CST
measurements, i.e., Av1 and Av2 , from two preselected transi-
tions [11] at central wavelengths v1 and v2, and the sensitivity
matrix L, to simultaneously yield images of species molar frac-
tion, i.e., concentration, and temperature in this article. More
details regarding the principles, implementation, and applica-
tion of CST can be found in review papers [11], [22], [23].

B. Domain Priors in CST

1) Smoothness: The optical layout of the CST sensor is
given by Q angular views and R parallel laser beams per view,
satisfying Q × R = M . Imposed by the adjacent arrangement
of laser beams, the path integrated absorbance within the qth
angular view θq , Avi ,θq ∈ R

R×1, experiences smooth change

Algorithm 1 Construction of Centrosymmetry Heatmaps and
Smoothness Heatmaps From CST Projection Data

Input: Number of equiangular projections Q, number of equi-
spaced parallel beams R, and CST measurements Av1 ∈ R

M×1and
Av2 ∈ R

M×1 where M = Q × R
Output: Centrosymmetry heatmap S ∈ R

2Q×R×1 and smoothness
heatmap P ∈ R

R/F×QF×2 with F the least prime factor greater
than 1 of R
Initialize: Empty S and P
1: F ← the least prime factor greater than 1 of R
2: Construct S:

for i in {1, 2} do
3: Areshape

vi
← reshape(Avi , (Q, R))

4: if vi is the counterpart frequency then
5: (Q × (i − 1)+ 1)-th to (Q × i)-th rows of

S ← vertical_flip (Areshape
vi

)
6: else
7: (Q× (i − 1)+ 1)-th to (Q× i)-th rows of S← Areshape

vi
8: end if
9: end for
10: Construct P:

for i in {1, 2} do
11: for j in {1, 2, . . . , Q} do
12: Apatch

vi
← reshape((R × ( j − 1)+ 1)-th to (R × j)-th

elements of Avi , ( R
F , F))

13: (F × ( j − 1)+ 1)-th to (F × j)-th columns of the i-th
channel of P← Apatch

vi
14: end for
15: end for

from beam to beam due to the smooth distributions of flow-
field parameters in the RoI∣∣∣Ar

vi ,θq
− Ar−1

vi ,θq

∣∣∣ ≤ ε ∀r ∈ {2, 3, . . . , R} ∀q ∈ {1, 2, . . . , Q}
(4)

where ε is a threshold and Ar
vi ,θq

is the r th element of Avi ,θq .
Note that Avi ,θq ∈ R

R×1 represents only a “segment” of the
full measurements Avi ∈ R

M×1. Smoothness heatmaps can be
constructed according to Algorithm 1 to assist the learning of
such a priori information. Learning this domain prior enables
speedy convergence with a lower loss during training. Hence,
it is incorporated into CSTNet detailed in Section II-C.

2) Centrosymmetry: CNN exploits the hierarchical prop-
erty of images and therefore is superior for recognizing and
detecting patterns in the images [16]. This characteristic can
assist to perceive the physical fields with CST. When the
CST beam array is rotationally symmetric around the center
of the RoI, e.g., invariant on 180◦ rotation, the measurement
patterns thus created can be exploited by CNN. We illus-
trate this property by the following example. Fig. 2(a) and
(b) shows two “phantom” temperature distributions. These
two identical distributions are centrosymmetric to each other
except that they are rotated by 180◦ around the center of
the RoI. Using the 32-beam CST sensor, path integrated
absorbance at two transitions v1 and v2, i.e., Av1 ∈ R

32×1

and Av2 ∈ R
32×1, can be measured to carry out two-line

temperature imaging [11]. The centrosymmetry introduced
by the CST measurement can be characterized by a pattern,
named the centrosymmetry heatmap, which contains informa-
tion of both Av1 and Av2 . First, Av1 and Av2 are reshaped to
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Fig. 2. Illustration of a priori information of centrosymmetry in CST.
(a) and (b) Two centrosymmetric temperature images and (c) and (d) heatmaps
containing Av1 and Av2 obtained from the temperature images in (a) and (b),
respectively. In (c) and (d), the x-axis and y-axis indicate the horizontal and
vertical indices of the heatmap, respectively. The color bar represents the
values of path integrated absorbances.

Areshape
v1

∈ R
4×8 and Areshape

v2
∈ R

4×8, respectively. Then, the
heatmap is constructed by concatenating Areshape

v1
at the upper

half and vertically flipped Areshape
v2

at the lower half. As shown
in Fig. 2(c) and (d), the two phantom temperature distrib-
utions lead to heatmaps with identical patterns but opposite
orientations. In other words, when a fixed centrosymmetric
beam geometry is employed, moving the inhomogeneity to
a centrosymmetric location in the RoI is equivalent to reori-
entating the heatmap. Learning these heatmaps enables the
prediction of both the distributions of flow-field parameters
and the locations of inhomogeneities in the RoI. Therefore,
centrosymmetry is adopted as another a priori information in
CSTNet.

C. CSTNet Architecture

As shown in Fig. 3, the proposed CSTNet consists of
two main parts, i.e., a shared feature extractor and a dual-
branch decoder with internal crosstalk. A lambda layer is
first used to generate two heatmaps from the projection data
of CST. The two heatmaps are then directly learned by the
feature extractor [24]. The upper and lower parts of the
feature extractor learn the centrosymmetry and smoothness,
respectively. Both learning processes can be formulated by

O = f (W ∗ I + b) (5)

where I ∈ R
HI×WI×CI is the input heatmaps or intermediate

feature maps, W ∈ R
HW×WW×CW is the convolution kernel,

O ∈ R
HO×WO×CO is the output feature maps, b ∈ R

Cb×1 is
the bias vector, f (·) is the activation function, and ∗ is the
operand for 2-D convolution. HI (HO), WI (WO), and CI (CO)
are height, width, and channel of I (O), respectively. HW , WW ,
and CW are the filter height, filter width, and the number of
filters of W , respectively. Cb is the length of b.

Then, the output feature maps are flattened, concatenated,
and fed into the dual-branch decoder for simultaneous imaging
of species concentration and temperature. In reactive flows,

for example, hydrocarbon combustion processes, the species
concentration distribution is generally correlated with the tem-
perature distribution. Therefore, their correlation is incorpo-
rated into the dual-branch decoder [25] with internal crosstalk.
Both branches consist of G stages and can be simultaneously
computed by

X g = f X
g

(
hX

g

(
X g−1

)+WT
g � hT

g

(
T g−1

))
g ∈ {1, 2, . . . ,G} (6)

and

T g = f T
g

(
hT

g

(
T g−1

)+WX
g � hX

g

(
X g−1

))
g ∈ {1, 2, . . . ,G} (7)

where f Xg (·) and f Tg (·) denote activation functions in the con-
centration and temperature branches, hX

g (·) and hT
g (·) denote

the operations before the addition of crosstalk, e.g., linear
transformation and batch normalization, and X g ∈ R

N×1
g and

T g ∈ R
N×1
g are the outputs from the gth stage of concentration

and temperature branches, respectively. Ng represents the
length of the output from the gth stage. WT

g ∈ R
N×1
g and

WX
g ∈ R

N×1
g are the crosstalk weights in the gth stages

of the concentration and temperature branches, respectively.
� denotes the elementwise production.

Equations (6) and (7), visually shown in Fig. 4, describe
how the crosstalk is added into the dual-branch decoder. While
the left branch in Fig. 4 corresponds to (6), the right branch
corresponds to (7). Two cross arrows in Fig. 4 represent the
internal crosstalk introduced into the decoder, i.e., the term
WT

g � hT
g (T g−1) in (6) and the term WX

g � hX
g (X g−1)

in (7), respectively. hX
g (·) and hT

g (·) represent the fully-
connected (FC) layer and batch norm layer at the left branch
and the right branch in Fig. 4, respectively. In addition, f Xg (·)
and f Tg (·) represent activations at the left branch and the
right branch, respectively. We separate notations for different
branches considering that weights are not shared.

III. MODEL ESTABLISHMENT

A. System Specification

A CST sensor with 32 beams, as shown in Fig. 5(a),
is used in this work to generate four equiangular projections,
i.e., Q = 4, each with eight equispaced parallel laser beams,
i.e., R = 8 [26]. The angular spacing between projections is
45◦. Neighboring beams within each projection are separated
by 1.80 cm. The distance between an emitter and a receiver
is 36.76 cm. The RoI is defined as the octagonal sensing area
with the side length of 12.60 cm. The dimension of each pixel
in the RoI is 0.766 cm× 0.766 cm, resulting in 1924 uniformly
segmented pixels, i.e., N = 1924. Fig. 5(b) shows its practical
implementation.

As a principal product of hydrocarbon combustion, water
vapor (H2O) has a strong near-infrared absorption spectrum
and therefore is selected as the target absorption species in
this work. Two H2O transitions at v1 = 7185.6 cm−1 and
v2 = 7444.36 cm−1 are adopted given their good temperature
sensitivity for the target temperature range of 300–1500 K [3].
Using the 32-beam CST sensor, the projection data,
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Fig. 3. Overall architecture of CSTNet. Conc.: concentration. Temp.: temperature.

Fig. 4. Stage of crosstalk decoders.

Av1 ∈ R
32×1 and Av2 ∈ R

32×1, are obtained at v1 and
v2, respectively. The end-to-end CSTNet will be imple-
mented in Section III-B to simultaneously reconstruct the
distributions of H2O concentration and temperature using
Av1 and Av2 .

B. Implementation of CSTNet

1) Lambda Layer: The lambda layer is used to construct the
centrosymmetry heatmap, S ∈ R

8×8×1, and the smoothness
heatmap, P ∈ R

4×8×2, by combining and rearranging Av1 and
Av2 according to Algorithm 1. With the lambda layer, Av1

and Av2 can be directly used as inputs for the shared feature
extractor, facilitating end-to-end learning.

2) Shared Feature Extractor: The shared feature extractor
takes the output of the lambda layer as inputs and directly
learns centrosymmetry from S and smoothness from P by
convolution. Its outputs are shared by two branches in the
subsequent decoder.

Table I lists the experimentally determined hyperparameters
for our model structure. The shared feature extractor mainly
consists of convolutional layers, while the dual-branch decoder
mainly consists of FC layers. The first branch that learns
the centrosymmetry consists of three convolutional layers
using 3 × 3 filters with strides of 1 for height and width.
While inputs to the first two layers are padded by 1 in
height and width, input to the last layer is not padded. Each
layer adopts PReLU [27] as the activation function. Batch
normalization [28] is employed for accelerated training and

Fig. 5. (a) Schematic layout and (b) photograph of the 32-beam CST sensor.

can largely prevent overfitting. There are two reasons for
not adopting pooling layers in CSTNet. First, the use of
pooling is detrimental to the pixelwise prediction that we
aim to achieve [29]. Second, CSTNet can hardly benefit from
the reduced dimensions of feature maps, which are already
of small dimensions, by using pooling layers. The forward
propagation is computed by

S i =
{

S, i = 0

PReLUi
(
BNγi ,βi (W i ∗ S i−1)

)
, i ∈ {1, 2, 3} (8)

where W i is the convolution kernel for the i th convolution
layer, S i is the i th intermediate feature maps extracted from
S, PReLUi (·) is the PReLU activation function for the i th
layer, and BNγi ,βi (·) is the batch normalization in the i th layer.
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TABLE I

DETAILED PARAMETERS FOR IMPLEMENTING CSTNET. THE INPUT DIMENSION OF EACH CONVOLUTIONAL LAYER IS DESCRIBED IN THE FORM OF
HI ×WI × CI . THE OUTPUT DIMENSION IS DESCRIBED IN THE FORM OF HO ×WO × CO . THE FILTER SIZES AND STRIDES ARE DESCRIBED IN

FORMS OF HW ×WW AND (HEIGHT AND WIDTH)

The second branch that learns the smoothness contains a
single convolution layer, in which PReLU and batch normal-
ization are adopted as well. To correctly extract the smoothness
information, filters in W are intentionally designed with the
size of 2 × 2 and strides of (1, 2) such that they always operate
on projection data obtained from adjacent receivers within the
same projection angle, i.e., R = 8 and, hence, F = 2 in
Algorithm 1. The forward propagation is computed by

P = PReLU
(
BNγ,β(W ∗P)

)
(9)

where P is the extracted feature maps from P.
As a result, multiscale feature maps, S3 ∈ R

6×6×256 and
P ∈ R

3×4×64, are extracted and further concatenated [30],
yielding a vector containing latent features, L ∈ R

9984×1.
3) Dual-Branch Decoder With Internal Crosstalk: L is fed

into the dual-branch decoder with crosstalk for simultaneous
imaging of H2O concentration and temperature. In this case,
FC layers are employed to fuse L [31].

With batch normalization and PReLU activation, outputs
from each of the first three stages can be computed through

X i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L, i = 0

PReLUX
i

(
BNγX

i ,βX
i

(
WX

i X i−1
)

+WT
i � BNγT

i ,βT
i

(
WT

i T i−1
))

i ∈ {1, 2, 3}

(10)

and

T i =

⎧⎪⎪⎨⎪⎪⎩
L, i = 0

PReLUT
i

(
BNγT

i ,βT
i

(
WT

i T i−1
)+WX

i

�BNγX
i ,βX

i

(
WX

i X i−1
))
, i ∈ {1, 2, 3}

(11)

where BNγX
i ,βX

i
(·) and BNγT

i ,βT
i
(·) denote batch normaliza-

tion in H2O concentration and temperature branches of the i th
stage, respectively.

The last stage, i.e., the output stage, is formed by imposing
physical constraints on the H2O concentration and tempera-
ture. Hyperbolic tangent function, tanh(·), is adopted as the
output activation considering that flow-field parameters are

supposed to be within a physically reasonable range. There-
fore, the distributions of H2O concentration and temperature
are finally reconstructed by

X=Tanh
(

BNγX
4 ,βX

4

(
WX

4 X 3
)+WT

4 � BNγT
4 ,βT

4

(
WT

4 T 3
))
(12)

and

T=Tanh
(

BNγT
4 ,βT

4

(
WT

4 T3
)+WX

4 � BNγX
4 ,βX

4

(
WX

4 X 3
))
.

(13)

IV. NETWORK TRAINING AND TESTING

A. Dataset

In the state-of-the-art simulation of laminar flames
[5], [6], [8], [15], [17], [18], the cross section temperature
distribution has been assumed to be a Gaussian profile or
the combination of multiple Gaussian profiles. We follow
this assumption and use Gaussian profiles to simulate the
laminar flames in our study. However, in turbulent flow fields
with more complex temperature distributions, for example,
swirl combustion in gas turbine [32], the datasets should be
established with more reliable and field-oriented simulated
data, instead of simple Gaussian profiles. These data can be
possibly obtained from computational fluid dynamics (CFD)
simulation [33] and more complex measurement modalities,
e.g., planar laser-induced fluorescence (PLIF) [34].

In this work, the constructed dataset includes three
categories of 2-D distributions of H2O concentration and
temperature with one, two, and three inhomogeneities. Each
inhomogeneity is modeled by a 2-D Gaussian profile. As noted
in Section II-C, H2O concentration distribution is generally
well correlated with temperature distribution. In each phantom,
the peak locations of the inhomogeneities in H2O concen-
tration distributions are modeled the same as those in the
temperature distributions. In general, the spread of H2O con-
centration depends on flow convection, which is slower than
heat transfer and dissipation. Therefore, the 2-D Gaussian
inhomogeneities in the H2O concentration distributions are
generated with smaller standard deviations than those in the
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temperature distributions. To be specific, the distributions
of H2O concentration and temperature are mathematically
expressed as

X (x, y) = Xmin +
D∑

d=1

ξd(Xmax − Xmin)

× exp

(
−

(
x − xd

c

)2 + (
y − yd

c

)2

σ 2
X

)
(14)

and

T (x, y) = Tmin +
D∑

d=1

ξd(Tmax − Tmin)

× exp

(
−

(
x − xd

c

)2 + (
y − yd

c

)2

σ 2
T

)
(15)

where x and y denote the horizontal and vertical coordinates
of the RoI, respectively, (xd

c , yd
c ) is the central position of the

dth Gaussian profile. D is the total number of inhomogeneities
in the phantom, Xmax (Tmax) and Xmin (Tmin) are the maximum
and minimum H2O concentration (temperature), respectively,
ξd ∼ U (0.7, 1) is a random scaling factor, and σX and σT are
the standard deviations of H2O concentration and temperature
inhomogeneities that satisfy σX = ρσT with ρ∼U (1/3, 1),
respectively.

In this work, we adopt Xmin = 0.01, Xmax = 0.12,
Tmin = 318 K, and Tmax = 1300 K. The dataset is gen-
erated with 19 305 independent examples, which are then
randomly divided into a training set with 13 440 examples,
a validation set with 5760 examples, and a test set with
105 examples. Using the H2O transitions at v1 = 7185.6 cm−1

and v2 = 7444.36 cm−1, the training and validation sets
containing 19 200 sets of Av1 and Av2 are generated according
to (3) without noise contamination. Six testing sets each with
105 examples are generated on six different levels of noise,
with signal-to-noise ratio (SNR) ranging from 20 dB (high
noise in CST) to 45 dB (low noise in CST).

Subsequently, path integrated absorbance for the j th beam
in the training and validation sets is standardized. The process
of standardization has two benefits. First, it can speed up the
training process since the averages of input features are moved
close to zero and their covariances are kept approximately
the same, which balances out the learning speed of weights
connected to input nodes [16]. Second, standardization can
suppress generalization error during image reconstruction,
which is caused by bias and fluctuations in real CST mea-
surements.

B. Training Details

CSTNet is trained through empirical risk minimiza-
tion (ERM) and structural risk minimization (SRM). ERM cor-
responds to minimizing a weighted mean-square-error (MSE)
loss in terms of the reconstructed and true distributions of
H2O concentration and temperature. SRM corresponds to
minimizing an additional L2 regularization term. Hence, the

objective function is defined as

min τ
1

N

N∑
k=1

(
Tk− T̂k

)2 + (1− τ ) 1

N

N∑
k=1

(
Xk − X̂k

)2+λ‖ψ‖2
2

(16)

where τ is a hyperparameter to trade off the MSE loss on
imaging of H2O concentration and temperature, X̂k (T̂k) and
Xk (Tk) are the reconstructed and true H2O concentration (tem-
perature) in the kth pixel, respectively, λ is the weight for L2
weight decay, ||·||2 represents the L2 norm, and ψ denotes the
trainable weights of the proposed neural network.

Since the value of MSE is the expected value of the squared
error between ground truths and the reconstructions, the min-
imization of MSE loss leads to image reconstruction with
higher accuracy. Furthermore, the L2 penalty term serves as a
regularization, preventing the proposed model from overfitting.

Adam optimizer [35] is employed with a value of 10−3

for learning rate found by the range test [36] and default
values for other hyperparameters. λ is set to 2 × 10−6

determined by the Monte Carlo estimation [37]. τ is set to
0.5 to maintain the balance between H2O concentration and
temperature imaging since both have been processed to have
the same scale. Training our model takes approximately an
hour using a single NVIDIA Tesla P100 graphics processing
unit (GPU) with 16-GB memory. It is trained for 350 epochs
until convergence.

C. Test Results

The established CSTNet is trained for three times with
different randomness, yielding an ensemble of three differ-
ent sets of model weights, i.e., � = {ψ1, ψ2, ψ3}. Fur-
thermore, we compare our method with two state-of-the-art
methods. One is the model used in [17] and [18], denoted
as HuangNet, which directly takes CST measurements as
input without adopting any domain priors in CST. The other
is the ELM-based method used in [15], denoted as ELM.
In addition, to test the contribution of the dual-branch decoder
and the internal crosstalk, we introduce two ablative versions
of CSTNet, denoted as CSTNet (single), each with a single-
branch decoder either for concentration or temperature recon-
structions. The same training sets are used for all models.
Note that HuangNet, ELM, and the ablative CSTNet (single)
have to be trained twice using different labels (either true
H2O concentration distributions or temperature distributions)
to retrieve these two flow-field parameters.

The proposed CSTNet is compared with these methods
by computing the image errors of H2O concentration and
temperature imaging at different SNRs

IEconc. = 1

H

H∑
h=1

∥∥Xh − X̂h

∥∥
2∥∥X̂h

∥∥
2

(17)

and

IEtemp. = 1

H

H∑
h=1

∥∥T h − T̂ h

∥∥
2∥∥T̂ h

∥∥
2

(18)
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Fig. 6. Comparison between the proposed CSTNet, an ablative version
with a single-branch decoder, denoted as CSTNet (single), and two state-
of-the-art methods, i.e., HuangNet and ELM. (a) and (b) Image errors for the
reconstructed distributions of H2O concentration (IEconc.) and temperature
(IEtemp.) at different SNRs, respectively.

where h and H denote the index and the total number of
test examples, respectively, and Xh (Th) and X̂h (T̂h) are
the hth true and reconstructed H2O concentration (temper-
ature) distributions, respectively. The proposed CSTNet can
simultaneously reconstruct the two images, (X̂h , T̂h). How-
ever, HuangNet, ELM, and the ablative CSTNet (single) have
to reconstruct them one after another, resulting in doubled
inference cost.

Fig. 6(a) and (b) shows the image errors for the reconstruc-
tion of H2O concentration (IEconc.) and temperature (IEtemp.),
respectively. The x-axis represents different levels of noise
ranging from high noise (SNR = 20 dB) to low noise
(SNR = 45 dB). Both IEconc. and IEtemp. decrease as SNR
increases. The proposed CSTNet is always the best at all levels
of noise, while ELM is the worst. With a practical SNR in
real applications at approximately 35 dB, IEconc. and IEtemp.

for CSTNet are 0.3087 and 0.1264, respectively, which are
lower than those obtained using the previous state-of-the-art
methods, e.g., IEconc. = 0.3563 and IEtemp. = 0.1512 for
HuangNet and IEconc. = 0.4523 and IEtemp. = 0.1549 for
ELM, demonstrating the capability of achieving high-fidelity
reconstruction and the accurate retrieval of the true images
using the proposed CSTNet. Furthermore, IEconc. and IEtemp.

for CSTNet increase by 0.79% and 2.21% when the SNR
varies from 45 to 20 dB. In contrast, for HuangNet and
ELM, IEconc. increases by 1.41% and 5.58%, while IEtemp.

increases by 2.8% and 7.35%, respectively. Therefore, the
proposed CSTNet is also more robust for noise-contaminated
measurements.

In the ablation study, at the same noise level (SNR =
35 dB), IEconc. and IEtemp. for CSTNet (single) are 0.3167 and

Fig. 7. True H2O concentration distributions with (a) and (b) one
inhomogeneity, (c) and (d) two inhomogeneities, and (e) and (f) three
inhomogeneities.

Fig. 8. True temperature distributions with (a) and (b) one inhomogeneity,
(c) and (d) two inhomogeneities, and (e) and (f) three inhomogeneities.

0.1283, respectively. Compared with HuangNet that does not
consider any domain priors in CST, the lower image errors
demonstrate the benefits of incorporating domain priors in
CSTNet. Furthermore, IEconc. and IEtemp. obtained using the
full CSTNet model with dual-branch decoder are lower than
those obtained using the CSTNet (single), denoting that cor-
relations between multiple flow-field parameters, e.g., tem-
perature and gas concentration, are helpful for better-fidelity
retrieval. The correlations are learned through the internal
crosstalk introduced by the dual-branch decoder.

Six representative results from CSTNet with one, two, and
three inhomogeneities are selected. As shown in Figs. 7 and 8,
phantoms (a) and (b) include single inhomogeneity with
different sizes and locations. Figs. 7 and 8(c)–(f) have more
inhomogeneities with different orientations, mutual distances,
and sizes. As shown in Figs. 9 and 10, the reconstructions
of these phantoms indicate that the trained CSTNet can
clearly distinguish the number of inhomogeneities, precisely
locate the inhomogeneities, and accurately retrieve the true
images. The proposed CSTNet contributes to supremely good
quality of the tomographic images with no artifacts. Using
compute unified device architecture (CUDA) [38], the well-
trained CSTNet achieves simultaneous imaging with an aver-
age frame rate of 3134 frames/s, providing great potential
for speedy and real-time multiparameter imaging in industrial
applications.

V. EXPERIMENTS

Laboratory experiments were carried out to further validate
the proposed CSTNet model. The CST sensor was built in
the optical layout shown in Fig. 5. More details of the optics,
e.g., lasers and detectors, electronics, e.g., data acquisition and
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Fig. 9. Reconstructed H2O concentration distributions under an SNR of
35 dB for the corresponding phantoms shown in Fig. 7 with (a) and (b)
one inhomogeneity, (c) and (d) two inhomogeneities, and (e) and (f) three
inhomogeneities.

Fig. 10. Reconstructed temperature distributions under an SNR of 35 dB for
the corresponding phantoms shown in Fig. 8 with (a) and (b) one inhomogene-
ity, (c) and (d) two inhomogeneities, and (e) and (f) three inhomogeneities.

Fig. 11. Four reactive flow fields generated in the experiments with (a) and
(b) single flame and (c) and (d) two flames with different sizes.

signal processing system, and the parameter settings in wave-
length modulation spectroscopy have been described in [39].

As shown in Fig. 11, four cases with different distributions
of H2O concentration and temperature are demonstrated in the
experiments. The first two cases, shown in Fig. 11(a) and (b),
contain a single flame located at the lower center and upper
center of the RoI, respectively. To consider more complex
phantoms, two flames with different sizes and locations are
generated in the other two cases shown in Fig. 11(c) and (d).

The tomographic images of H2O concentration and tem-
perature for the four cases are shown in Figs. 12 and 13,
respectively. Retrieved peak values of the inhomogeneities in

Fig. 12. Reconstructed H2O concentration distributions for the four cases in
Fig. 11 with (a) and (b) single flame and (c) and (d) two flames with different
sizes.

Fig. 13. Reconstructed temperature distributions for the four cases in Fig. 11
with (a) and (b) single flame and (c) and (d) two flames with different sizes.

TABLE II

RETRIEVED PEAK VALUES FOR H2O CONCENTRATION AND

TEMPERATURE IMAGING. CONC.: H2O CONCENTRATION.
TEMP.: TEMPERATURE. L.: LARGER

FLAME. S.: SMALLER FLAME

the tomographic images are listed in Table II. For the single-
flame cases, locations of the flames in the tomographic images
reconstructed by CSTNet agree well with original ones. As the
same flame is used in both cases, similar retrieved peak values
indicate good consistency between the reconstruction and the
truth. For the dual-flame cases, the reconstructions not only
precisely localize the two inhomogeneities but also reveal
their relative sizes. Last but not least, artifacts are signifi-
cantly limited in all cases, demonstrating that the proposed
CSTNet is strongly robust for image reconstruction even with
a severely limited number of laser beams. The results are very
promising for industry-oriented CST, mostly implemented
in harsh environments, with low-complexity optical sensors.
Aided by GPUs and CUDA [38], CSTNet completes high-
fidelity imaging within several milliseconds. The very short
inference time enables online CST and further stimulates
the industrial implementation of the proposed CSTNet on
embedded devices, such as field-programmable gate arrays
(FPGAs) [40], [41].

VI. CONCLUSION

In this article, we developed a novel CNN named CSTNet
for simultaneous imaging of the distributions of species
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concentration and temperature in reactive flows using CST.
The inherently physical characteristics of the CST are learned
by a feature extractor, which incorporates the domain a priori
information of smoothness and centrosymmetry. To simulta-
neously reconstruct the distributions of species concentration
and temperature, a dual-branch decoder with internal crosstalk
is designed in CSTNet. It considers the natural correlation
between species concentration and temperature, enabling more
reasonable and efficient retrievals in practical combustion
processes. The proposed CSTNet is both analytically and
experimentally proven to be successful in high-fidelity imaging
of H2O concentration and temperature images using two H2O
transitions and a tomographic sensor with 32 laser beams.

The performance of CSTNet is first evaluated using sim-
ulated test sets. Given a measurement SNR of 35 dB, CST-
Net can accurately reconstruct various distributions of H2O
concentration and temperature, outperforming state-of-the-art
methods HuangNet and ELM by 13% (16%) and 32% (18%)
for the reconstructions of H2O concentration (temperature),
respectively. For a wide range of SNR, numerical results
indicate that CSTNet maintains excellent robustness against
measurement noise. In the lab-scale experiments, image recon-
struction using CSTNet achieves good agreement with the
known locations of the original flames. The artifacts in the
tomographic images are significantly eliminated, denoting
strong resistance to the measurement noise in practical applica-
tions. Benefiting from GPU acceleration, the proposed CSTNet
can simultaneously reconstruct images of H2O concentration
and temperature distributions with 3134 frames/s, exhibit-
ing great potential for online CST toward real-time process
control.

To the best of our knowledge, this is the first experimental
application of deep learning in CST using an optical sensor
with a severely limited number of laser beams. In practice, the
low-complexity optical sensor is overwhelmingly preferred in
order to maintain the integrity of the industrial reactors and
chambers. In our future work, we will also deploy CSTNet
on embedded devices such as FPGAs for the sake of more
cost-efficient computation in industrial applications.
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