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ABSTRACT: The host−guest chemistry of coordination cages continues to
promote significant interest, not least because confinement effects can be exploited
for a range of applications, such as drug delivery, sensing, and catalysis. Often a
fundamental analysis of noncovalent encapsulation is required to provide the
necessary insight into the design of better functional systems. In this paper, we
demonstrate the use of various techniques to probe the host−guest chemistry of a
novel Pd2L4 cage, which we show is preorganized to selectively bind dicyanoarene
guests with high affinity through hydrogen-bonding and other weak interactions.
In addition, we exemplify the use of Raman spectroscopy as a tool for analyzing
coordination cages, exploiting alkyne and nitrile reporter functional groups that are
contained within the host and guest, respectively.

■ INTRODUCTION

Analysis of the interactions that govern encapsulation
phenomena is crucial for an understanding of the metal-
losupramolecular host−guest complexes that find application
in areas such as catalysis, drug delivery, molecular recognition,
and separation.1−3 Single-crystal X-ray crystallography is the
most definitive tool for demonstrating the formation of a
host−guest complex because it allows encapsulation to be
directly visualized. It can also provide compelling evidence as
to which noncovalent interactions may be key to binding.4−6

Solution host−guest studies, using techniques such as 1H
NMR spectroscopy and spectrophotometric methods, are also
key, not least because many of the most important applications
occur in this phase. It is especially important to show that
encapsulation observed in the solid state persists in solution,
where sometimes the competition from a vast excess of even
weakly interacting solvent molecules can disrupt the
interactions that drive binding.
IR and Raman (RS) spectroscopy have been much less

widely used for probing host−guest compounds. However,
they are powerful methods for analyzing molecular structure
and can be used to monitor the changes in specific vibrational
modes of the guest and host upon complexation.7−15 They are
also advantageous because they can be applied to both
solution- and solid-phase (crystalline and noncrystalline)
samples. Raman analysis of metalloorganic cages is underex-
plored; however, there are clear opportunities.16,17 Specifically,
the alkyne functional group, which is often used as a
structurally rigid spacer unit in many coordination assemblies,
is a widely used RS handle. This is because its stretching

frequency generates intense peaks18 and is both highly
sensitive to changes in the local environment19,20 and direct
chemical modification.21 It also occurs in a largely silent region
of the spectrum, which, in particular, has made it a popular
choice for analyzing suitably labeled biomolecules within
cells.18

An example of an alkyne-containing metalloorganic cage is
compound 1. We have previously studied the host−guest
chemistry of 1 (Figure 1a), showing that it is complementary
toward quinones.22 This is because the O−O distance of the
guest is perfectly matched to form hydrogen-bonding
interactions with both pockets of o-pyridyl CH H-bond
donors (Figure 1a, where H atoms are shown in blue). We
have also shown that bound quinones can act as both
substrates and cofactors in catalytic investigations, wherein the
activity comes from electronic modulation of the encapsulated
species.23,24 Our most recent catalytic investigations have
shown that substrates with a range of H-bond-accepting
functional groups can interact with the cage.25 In the context of
RS, we were particularly interested in guests that contain a
nitrile group; this is also a useful spectroscopic handle because,
like the alkyne stretch, it occurs in the region of the spectrum
(≈2100−2300 cm−1) where there are few other signals. We
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herein describe the use of RS as a complementary tool for
probing the binding properties of a Pd2L4 metalloorganic cage,
exploiting a dual-labeled, alkyne−nitrile host−guest system
(Figure 1b).

■ RESULTS AND DISCUSSION

p-Dicyanoaryl compounds were an obvious choice of guest
because (a) it was hoped that their vertically aligned nitrile
groups could simultaneously interact with both pockets of the

H-bond donors in a fashion analogous to that of quinone⊂1
and (b) there are several dicyanoarenes that are commercially
available. To accommodate the larger separation between the
nitrile N atoms of the dicyanoarene guests compared to the
interoxygen distance in a quinone, we targeted cage 2 (Figure
1b), which features a naphthyl spacer instead of the m-C6H4

motif that is used in the parent cage 1. The ligand for cage 2
was prepared by Sonogashira cross-coupling from commer-
cially available materials.26 Combining 2 equiv of this ligand

Figure 1. Chemical structures of (a) the previously studied quinone⊂1 host−guest cage complex and (b) the dicyanoarene⊂2 inclusion complex
alongside the different guests investigated in this current study.

Figure 2. X-ray crystal structures of the cage structure 2 and dicyanoarene⊂2 host−guest complexes. (a) “Empty” cage structure 2 showing the
partial ingress of BArF counteranions, with close contacts represented by the dashed black lines. (b) Host−guest complexes: (i) DCB⊂2; (ii)
DCN⊂2; (iii) DCA⊂2; (iv) TCDCB⊂2. (c) Alternative views of (i and ii) DCB⊂2 and (iii and iv) DCA⊂2. The C atoms of the cage are shown in
green, and the C atoms of the guests are shown in orange. Other color codes: Pd, blue; N, light blue; F, cyan; B, pink; H, white.
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with [(CH3CN)4Pd](OTf)2 in equal amounts of CH3CN/
CH2Cl2 led to formation of the expected [Pd2L4](OTf)4
structure, as evidenced by NMR spectroscopy (Figure S2).
Anion metathesis with the noncoordinating tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate (BArF) gave [Pd2L4]-
(BArF)4 (2). We have previously described how the use of
BArF counteranions can maximize host−guest interactions
with neutral organic molecules.22

Cage 2 was characterized by a variety of NMR techniques
(Figure S4) and electrospray ionization mass spectrometry
(Figure S6). In addition, crystals suitable for single-crystal X-
ray diffraction were grown from the diffusion of diethyl ether
into a solution of 2 in CH2Cl2 over 2 days. The crystal
structure of 2 (Figure 2a) is described by a Pd2L4 distorted
lantern, whereby the two PdII ions are linked by the four 2,7-
naphthalene-based ligands, providing a cavity with a Pd−Pd
distance of ≈14 Å. As predicted, the interpalladium distance is
slightly larger than that of cage 1 (≈12 Å).27 Interestingly, the
structure also shows an unexpected feature: two BArF
counterions are partially protruding into the cavity. These
anions are interacting with the cage in the same manner; each
forms interactions between the two CF3 groups from a single
BArF aryl ring and the o-pyridyl H atoms that usually H-bond
to carbonyl guests [Figure 2a(i)]. However, because each
counteranion only partially occupies the cavity, they interact
with just two H atoms at either site, with close contacts
between ArF2C−F···H−Py of ≈2.5 Å. Globally, partial
inclusion of the bulky anions distorts the overall structure,
creating two larger portals at the expense of the other two and
shifting the cage toward D2h symmetry. This is most obvious
when viewed down the Pd−Pd axis [Figure 2a(ii)]. Whether
the same hydrogen-bonding interactions between the BArF
anions and 2 are maintained in solution is difficult to gauge.
However, it can be noted that the 19F NMR shift for cage 2 is
very similar to that of other cages that we have previously
made and also NaBArF, suggesting that in solution this
interaction, at best, is very weak.
In order to probe the host−guest chemistry, we first utilized

a more conventional approach using a combination of X-ray
crystallography and 1H NMR spectroscopy. Four different
commercially available guest compounds were investigated
(Figure 1b): 1,4-dicyanobenzene (DCB), 1,4-dicyanonaph-
thalene (DCN), 9,10-dicyanoanthracene (DCA), and 2,3,5,6-
tetrachlorodicyanobenzene (TCDCB). Single crystals were
grown by either slow evaporation of an NMR sample or
diffusion of diethyl ether into solutions of the host−guest
complexes in CH2Cl2 over 2−4 days. In all cases, the
dicyanoarene guest occupies the central cavity of the lantern,
with the N atoms of the two cyano groups simultaneously
interacting with the “top” and “bottom” pockets of the H-bond
donors [Figure 2b(i)−(iv)]. The ArCN···H−Py H-bond

distances cover a narrow range of 2.5−2.7 Å, while the
ArCN···Pd distances span from 3.1 to 3.3 Å. For comparison,
the equivalent CO···H−Py H-bond and CO···Pd
distances in the pentacenedione⊂1 structure that we have
previously reported are 2.4−2.6 and 3.5 Å, respectively.15 The
Pd−Pd distances of the dicyanoarene host−guest complexes
are also close to that of 2, ranging from 14.1 to 14.4 Å
(DCB⊂2 < TCDCB⊂2 < DCN⊂2 < DCA⊂2). There are,
however, also some interesting features that appear to correlate
with the solution host−guest chemistry (vide inf ra). The most
obvious aspect relates to subtle distortions in the overall cage
structure, which appears to relate to the way the guest is
aligned within the cavity. In all of the structures, the two N4Pd
coordination planes are aligned close to parallel. For DCB⊂2,
the Pd ions connect the two planes vertically, with the DCB
guest sitting along this vertical axis [Figure 2c(i),(ii)]. In
contrast, the guest molecules in the structures of DCN⊂2,
DCA⊂2, and TCDCB⊂2 are aligned noticeably away from
vertical, which is particularly evident when viewed through one
set of opposing portals [Figure 2c(iii),(iv)]. This causes the
overall structure to become distorted away from D4h symmetry,
with offset PdN4 coordination planes. Because this distortion is
not apparent in DCB⊂2 but is present in all of the structures
with the larger guests, this would suggest that secondary
interactions between the inward-facing naphthyl H atoms (Hg)
and the different guests may play a role in the preferred
conformation that the cage adopts.
A combination of 1H NMR and UV−vis experiments show

that DCB, DCN, DCA, and TCDCB are also guests for 2 in
solution. The 1H NMR spectra of the host−guest complexes
are particularly informative; a pronounced downfield shift
(0.3−0.7 ppm) of the inward-facing o-pyridyl proton of 2 (Ha),
which H-bonds to the N atom of the guests, is observed
(Figure 3). Conversely, the inward-facing naphthyl protons
(Hg) become shielded (Figure 3), presumably because of
interactions between these H atoms and the π surface of the
guest. Association constants were determined by titration
experiments using either 1H NMR (DCB⊂2 and DCN⊂2) or
UV−vis (DCA⊂2) spectroscopy. Unfortunately, no associa-
tion constant for TCDCB⊂2 could be obtained because of the
onset of crystallization upon the addition of excess TCDCB to
2. All of the measured nitrile guests show significant binding
with 2 (≥103 M−1).
A comparison of the association constants for dicyanoar-

ene⊂2 and quinone⊂1 reveals some interesting trends and
differences (Table S1). First, the dicyanoarene⊂2 complexes
are all weaker than quinone⊂1 (e.g., benzoquinone⊂1 vs
DCB⊂2, etc.). This can possibly be explained by the poorer H-
bond-accepting capacity of nitriles compared to ketones, as
predicted by Hunter.28 The affinity of 2 toward dinitriles with
extended π systems increases, i.e., DCB < DCN < DCA, which

Figure 3. 1H NMR (500 MHz, CD2Cl2, 300 K) spectra of cage 2 and dicyanoarene⊂2 host−guest complexes. (a) 1H NMR spectrum of “empty”
cage 2. 1H NMR spectra of a mixture of cage 2 and (b) DCB, (c) DCN, (d) DCA, and (e) TCDCB. The cage and dicyanoarene guest signals are
highlighted in green and orange, respectively. The lettering refers to the assignments shown in Figure 1.
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is also observed with quinone⊂1, where guest binding
increases along the series benzoquinone, naphthoquinone,
and anthraquinone. However, this effect is much less
pronounced for dicyanoarene⊂2. For example, the Ka for
DCA⊂2 is just over one order of magnitude higher than that
for DCB⊂2. In contrast, the difference in the affinity of
benzoquinone and anthraquinone for 1 is approximately 104. It
has been suggested that the increased binding of these larger
quinones in the case of 1 is due to the favorable secondary
interactions between the four inward-facing “equatorial” CH
groups of the cage and the extended π surface of the guest. It
seems somewhat counterintuitive then that 2 possesses twice
the number of “equatorial” CH groups that could interact with
the guest yet shows weaker relative binding. This could
possibly be caused by the need to optimally align these
interactions, which could require the cage to distort, as has
been observed with the single-crystal X-ray structures, causing
the relative energy of the cage structure to increase and leading
to a smaller increase in the affinity. Finally, we have also
measured the affinity of 2 toward benzoquinone to
demonstrate that the host−guest chemistry of 2 (and, by
inference, 1) correlates strongly with the ability of the guest’s
H-bond-accepting atoms to simultaneously interact with both
sets of o-pyridyl H-bond-donor pockets. The Ka value of just
18 M−1 for benzoquinone⊂2 fully supports this hypothesis
(Figure S15).
RS was subsequently performed on milligram amounts of

dried crystalline materials of all four host−guest complexes, the
four free guests, 2, and the cage ligand L. In order to ensure
that the cage had not broken into its component parts, we first
made comparisons between 2 and the free ligand L. For 2, the
ν(CC) (ring) stretching modes at 1626.1, 1574.1, 1458.2, and
1385.7 cm−1 were tentatively assigned to the naphthalene
group (Figure 4),29 which all presented minor shifts in the
Raman stretching frequencies compared to L (Figure S21).
Evidence of coordination of the pyridyl moieties is confirmed
by the large increase in the intensity and red-shifting of the
Raman band assigned to the pyridine ring mode of L (1603.0
cm−1) compared to 2 (1597.2 cm−1). This is further
corroborated by convergence of the two peaks assigned to
the alkynyl stretching frequency in L (2206.9 and 2216.6
cm−1) into a single broad peak at 2222.0 cm−1 in 2.
We next investigated the use of RS to probe the host−guest

chemistry of 2 in both the solution and solid state. We will
initially focus our discussion on the encapsulation of DCN as

an exemplar because this was the second-highest-affinity guest
and did not have any issues with regard to fluorescence
preventing the acquisition of solution data, as was the case for
DCA.
Analysis of the solid-state RS of DCN, 2, and DCN⊂2

showed spectral features indicative of encapsulation (Figure 4),
particularly in the regions of 1250−1750 and 2180−2280
cm−1. First, the Raman spectrum of DCN⊂2 shows a
combination of peaks from both the host (e.g., 1458.2 and
1625.0 cm−1) and guest (e.g., 1327.0, 1429.4, and 1584.1
cm−1). Notably, however, many of the signals show stretching
frequency shifts compared to “empty” cage 2 and free DCN.
For example, the nitrile of DCN shifts from 2231.6 cm−1 in the
free guest to 2230.8 cm−1 in the host−guest complex, with
peaks in the fingerprint region also producing frequency shifts
upon encapsulation (e.g., from 1325.9 to 1327.0 cm−1 and
from 1515.5 to 1511.1 cm−1). The encapsulation of DCN also
results in spectral shifts of the host, including a red-shifting of
the alkynyl stretching frequency of the ligand (from 2222.0 to
2220.2 cm−1; Figure 4), with a corresponding reduction in the
Raman scattering intensity. Of the naphthalene modes, those
at 1626.1, 1574.1, and 1385.7 cm−1 shift upon encapsulation of
DCN, while the band at 1458.2 cm−1 is generally unaffected by
guest occupation, indicating the varying extents to which
encapsulation distorts the lantern structure.
We have also made a general comparison of the spectral

frequency differences between 2 and each of the host−guest
complexes in the solid state (Table S2). In general, the four
free guests show intense peaks arising from the CN stretching
in the region 2230−2260 cm−1 in the Raman spectra (Figure
S24). Interestingly, the Raman spectrum of TCDCB shows
two partially resolved CN stretching peaks at 2222.9 and
2213.2 cm−1, which may be ascribed to the A and B stretching
modes. [A previous spectroscopic study of DCB identified a
predominant Raman band at 2218 cm−1 [A mode, ν(CN)],
while in contrast, another stretching mode B ν(CN) was
assigned to the IR band at 2220 cm−1. This mode has a small
polarization value, which will result in weak (if any) Raman
scattering. In TCDCB, we propose that these two modes are
detected.31] Because of the highly fluorescent nature of DCA,
we were unable to collect a full Raman spectrum; however, a
partial Raman spectrum was acquired at 785 nm laser
excitation that identified a CN stretching mode at 2220.8
cm−1. For the host−guest complexes, the naphthalene Raman
bands at 1385 and 1626 cm−1 were consistently red-shifted

Figure 4. Solid-state analysis of the encapsulation of DCN within 2 using RS. Raman spectra were acquired from the free guest (DCN, black),
“empty” cage (2, red), and host−guest complex (DCN⊂2, blue). Raman spectra were acquired using 785 nm excitation for 10 s with a 50×
objective lens (0.18 mW). All assignments are in reciprocal centimeters. The full Raman spectra are provided in Figure S22.
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compared to 2, while the 1458 cm−1 Raman band was
generally unaffected by guest encapsulation. In addition, the
modes at 1597 and 1574 cm−1 were both red-shifted upon
encapsulation of DCN and TCDCB but were both blue-shifted
upon encapsulation of DCA. These results indicate that the
Raman spectral shifting of the lantern structure is directly
impacted by the size and chemical nature of the encapsulated
guest molecule.
Last, we examined solution-state experiments, focusing on

the alkyne−nitrile region of the RS, because these two groups
cannot be directly detected using 1H NMR spectroscopy.
Several spectra were recorded with increasing equivalents of
DCN with respect to 2 (Figure S23). These experiments show
that the alkyne stretching frequency of 2 shifts from 2221.0 to
2219.2 cm−1 upon the addition of 3.5 equiv of DCN.
Significantly, no further shift is observed, even after the
addition of 16 equiv of DCN, with only an increase in the
intensity of the signal for free DCN (2231.5 cm−1). These
results indicate that we are observing the binding and
saturation of 2 at low equivalents of DCN, which is consistent
with our NMR data. This represents the first example (to the
best of our knowledge) of the detection of a host−guest
coordination cage complex using RS.

■ CONCLUSION
We have described the host−guest chemistry of a novel Pd2L4
cage compound. This metallosupramolecular structure shows
selective and high-affinity binding toward a range of
dicyanoarene compounds. A combination of X-ray crystallog-
raphy and 1H NMR spectroscopy has provided insight into
guest encapsulation, revealing subtle features that affect the
relative affinities of different species. Further analysis using RS
has shown that this can be a complementary and informative
technique, exploiting reporter functional groups that are
present in many different coordination assemblies. We
continue to use these methods to probe the noncovalent
chemistry of cage compounds, paving the way to new
opportunities in various applications, from magnetism30 to
catalysis.
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