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 20 

ABSTRACT 21 

The chemical composition of dissolved organic sulfur in snow is important in understanding the 22 

sources and scavenging processes of atmospheric organic matter. Snow samples collected 23 

simultaneously from four megacities in North China were analyzed using ultrahigh-resolution 24 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The modified oxygen 25 

(O*) and redefined aromaticity index (AI*) help interpret the possible structural information and 26 

evaluate the aromaticity of sulfur-containing molecules. By extending these parameters, we 27 

provide a new structural classification for organic sulfur species in the atmosphere. With the new 28 

classification, the oxidized (O/S >3) and less oxidized state (O/S ≤3) sulfur-containing molecules 29 

can be easily distinguished. Typical known secondary organosulfates and sulfonates, and 30 
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anthropogenic-derived anionic surfactants verified the validity of this new classification. The new 31 

classification was applied to the molecular characterization of dissolved organic sulfur in snow 32 

samples. More than one hundred (138-150) of the molecules with medium O/S ratios of 5-11 and 33 

low-medium mass range < 500 Da are related with typical known secondary organosulfates and 34 

anthropogenic-derived anionic surfactants. Our study provides new insights into the molecular 35 

compositions of organic sulfur species in the ambient air, although their atmospheric behaviors 36 

between the snow-aerosol interfaces warrant further studies. 37 

 38 

KEYWORDS 39 

Dissolved organic sulfur, wet deposition, snow, organosulfates, classification criterion, FT-ICR 40 

MS 41 

 42 

SYNOPSIS 43 

Molecular composition of dissolved organic sulfur in urban snow obtained by ultra-high resolution 44 

mass spectrometry is classified by a new structural scheme.  45 
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INTRODUCTION 46 

A variety of physical and chemical processes occurring in the Earth’s atmosphere and cryosphere 47 

act as important elements of global biogeochemical cycles of organic matter.1 Snow plays an 48 

important role in scavenging atmospheric organic matter.2 Over the last decade, many studies have 49 

been conducted to illustrate the unique role of snow in the transport and fate of organic 50 

contaminants in polar and high mountain areas.3-7 The presence of snow can alter the aerosol size 51 

distributions of gasoline engine exhausts, while the organic composition of snow is affected by 52 

exposure to exhausts.8 Vehicle exhaust-derived benzene, toluene and polycyclic aromatic 53 

hydrocarbons were found to accumulate at the air-snow interface.9 Carboxylic acids, amino acids, 54 

sugars and phenolic compounds were used as chemical markers to investigate the aerosol-snow 55 

transfer processes.10 Shahpoury et al.11 suggested that the interplay between gas-particle 56 

partitioning in the aerosol and dissolution during in- or below-cloud scavenging determines the 57 

phase distribution of polar particulate substances. 58 

Recently, with the development of analytical instruments, various organic sulfur molecules 59 

referred to here as CHOS, have been detected in atmospheric aerosols12-17 and fog or cloud water18-60 

21. Among these compounds, organosulfates (R-O-SO3
−) and sulfonates (R-SO3

−) are of particular 61 

concern.15 Organosulfates are tracers of the formation of secondary organic aerosols (SOA), while 62 

sulfonates might be related to anthropogenic origins.22, 23 The temporal24, 25 and spatial26-28 variations 63 

in CHOS in rainwater or snow have been investigated focusing on molecules within the low and 64 

medium mass range (200–500 Da). However, the higher molecular weight species of CHOS (≥500 65 

Da) remain poorly characterized. With a resolution improvement of high-field Fourier transform 66 

ion cyclotron resonance mass spectrometry (FT-ICR MS),29-31 more reliable assignments of high 67 

mass multiple elemental formulas became possible,32, 33 especially for non-oxygen heteroatom-rich 68 
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(such as nitrogen, sulfur or phosphorus) dissolved organic matter. The characteristics of high mass 69 

CHOS in biodiesel and diesel fuel SOA,34 and methacrolein and methylvinyl ketone-derived 70 

products13 were reported previously. 71 

In recent years, North China has been suffering from frequent severe haze events, especially in 72 

winter. To obtain a better understanding of the aerosol-snow interactions in the urban atmosphere, 73 

snow samples were collected from four megacities in North China. By compiling thousands of 74 

CHOS, this study provides a new structural classification of CHOS for atmospheric samples. Our 75 

results indicate that low-medium mass CHOS species (< 500 Da) in snow, with medium O/S ratio 76 

(5-11), are related with typical known secondary organosulfates and anthropogenic-derived 77 

anionic surfactants. The feasibility of the new classification on CHONS molecules will be 78 

performed in another study by taking consideration of variety oxidation states of sulfur and 79 

nitrogen. 80 

 81 

MATERIALS AND METHODS 82 

Fresh surface snow samples were collected from urban areas of four megacities in North China 83 

(Table S1 and Figure S1). The four samples were collected during the same regional precipitation 84 

event in urban Beijing, Tianjin, Shijiazhuang, and Taiyuan on 21 February 2017. Melted snow was 85 

preconcentrated using solid phase extraction and stored at −20℃ prior to measurement using the 86 

ESI-FT-ICR MS (15T, Bruker Daltonik, Germany). Detailed information about the sampling, 87 

pretreatment processes and data managements could be found in the supporting information text 88 

(Text S1). 89 

This study mainly focuses on water soluble CHOS groups within the mass range (m/z) of 180–90 

700 Da. From herein, the mass ranges are referred to as low-mass (180–300 Da), medium-mass 91 
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(300–500 Da), and high-mass (500–700 Da). Due to the possible existence of numerous isomers 92 

represented by each formula, the compound classes or functional groups identified in this study 93 

only indicate the most likely categorization.35, 36 94 

The sample specific average number of oxygen atoms between the range from CHOiS1 to 95 

CHOjS1 formulas (average oxygen number density, Num_Densityi-j) was calculated according to 96 

Equation 1: 97 

𝑁𝑢𝑚_𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"# =
∑ %&'_)*+!,"
#
$

#"!-.
, j≥i≥1,                                        (1) 98 

where Num_CHOnS1 is the CHOnS1 formula number in the specific sample, and the oxygen 99 

variation range of Num_Densityi-j is from i to j. 100 

For CHOiS1 (containing one sulfur atom), if i>3 (with more than three oxygen atoms) in the 101 

formula, it represents that CHOiS1 contains one sulfate group or one sulfonate group coupled with 102 

an additional oxygen containing functional group (such as -OH, -(C=O), -OR, and -COOH).23, 34, 103 

37-39 For CHOiS1 formulas, an alternative notation was introduced using O*, which acquires a value 104 

of O* = i–3, where i is the number of oxygens in the formula.38 For organic sulfur molecules 105 

containing less than 3 oxygen atoms, O* could have values (= i–3) ≤ 0 and consequently also the 106 

ratio O*/C is ≤ 0.  107 

By subtracting SO3 from CHOiS1, CHOiS1 formulas could be viewed as oxygen-containing 108 

hydrocarbon molecules with a new formula of CHOi-3. The oxygen in sulfate group or sulfonate 109 

group could not contribute to the double-bond equivalent (DBE), therefore, subtracting SO3 from 110 

CHOiS1 ensures that the transition from CHOiS1 to CHOi–3 does not affect the aromaticity of the 111 

rest of the formula. AI* (the modified aromaticity index, see Equation 2) helps evaluate the 112 

aromaticity of sulfur containing molecules more accurate than AI (the aromaticity index).34 For 113 

example, for benzene-sulfonic acid, C6H6SO3, AI=0, the benzene ring is underestimated. By 114 
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subtracting SO3, the new formula transition into C6H6, AI*=0.67, the aromaticity of benzene ring 115 

is accurately estimated as expected. A detailed interpretation of this formalism could be found in 116 

previous studies.34, 38  117 

By introducing DBE(=1+c–h/2) and O*(=i–3) of CcHhOi–3, AI* could be simplified into 118 

following equation 2. Text S1 provides detailed mathematical calculations of AI*. 119 

AI*=(DBE–O*)/(c–O*)                                                              (2) 120 

 121 

RESULTS AND DISCUSSION 122 

Variations in Oxygen to Sulfur Ratios. The oxygen to sulfur (O/S) ratio of CHOS is widely 123 

used for elucidating the possible structure and origin of organic sulfur-containing molecules 124 

identified using FT-ICR MS.14, 24, 28, 39, 40 An O/S ratio being lower than 3 indicates reduced S-125 

containing molecules. The O/S ratio equals to 3 indicates organic sulfonates. While an O/S being 126 

higher than 3 indicates an organosulfate or sulfonate with an additional oxygen containing function 127 

group/s (such as hydroxyl, carboxyl and so on). 128 

According to Figure S4, CHOS2 molecules contributed negligibly to the number and relative 129 

intensity abundance of CHOS molecules. The following discussion only focused on the more 130 

abundant CHOS1 molecules. The radar distribution in oxygen atoms illustrates the variation in O/S 131 

ratios of CHOS1 molecules (Figure 1b). CHOS1 in the Beijing sample differed from the rest with 132 

the highest abundance in the O4-13 groups (number of formulas Num_Density4-13: 227), while the 133 

other three samples were similar among them, largely consisting of O5-12 with a lower number of 134 

formulas (Num_Density5-12 varying from 166 to 202).  135 

To further analyze similarities and differences of CHOS1 molecules, these were divided into two 136 

mass ranges (< 500 Da and ≥ 500 Da) in Figure 1b. For the low and medium mass range of CHOS1 137 
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molecules (< 500 Da), the four snow samples showed a same pattern with the number of oxygen 138 

atom mainly between 5 and 11. That is, CHO5-11S1 formulas constituted 82-89% of the identified 139 

CHOS1 formulas in the low and medium mass range, with Num_Density5-11 ranging from 133 to 140 

176. However, for the high mass range (≥ 500 Da), the oxygen distribution presented a totally 141 

different pattern. The Beijing sample showed higher abundance in the O9-14 range with a higher 142 

Num_Density9-14 (117). In contrast, the other three snow samples were mainly composed of O9-13 143 

with a lower Num_Density9-13 (varying from 54 to 61). 144 

The similarity in the low-medium mass range versus the difference in the high mass range of 145 

CHOS1 molecules indicates distinct origins of molecules in these two mass ranges. Song et al.41 146 

identified O4S1-O9S1 (≤500 Da) as the most abundant water-soluble CHOS species emitted from 147 

coal combustion. Jiang et al.37 reported that numerous S-containing molecules in aerosols on clean 148 

days were also observed on haze days, although Wang et al.40 demonstrated that organic sulfur 149 

containing molecules on haze days were of higher mass than those on clean days in Beijing. A 150 

previous laboratory study showed that the methacrolein-derived organic sulfur molecules were of 151 

high mass (300-650 Da) in the presence of a high concentration (10 mM) of methacrolein.42 As 152 

discussed in the Text S2, the snow event occurred in Beijing coupled with high concentrations of 153 

PM2.5_24h, DOC and SO4
2– (Figure 1a). Although the PM2.5_24h levels of Tianjin and Shijiazhuang 154 

samples were almost the same with the Beijing sample (about 60 μg m-3), but the DOC and SO4
2– 155 

concentrations of the Beijing sample was about 1-2 times higher than those from Tianjin and 156 

Taiyuan. In addition, according to our previous optical results (UV−vis and excitation-emission 157 

matrix fluorescence) on these samples, the Beijing one exhibited higher UV-vis absorbance and 158 

higher fluorescence intensity at humic-like substance peaks (peak A and M) than other samples.43 159 

These results indicate that high mass (≥ 500 Da) organic sulfur containing molecules might be 160 
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largely attributed to the higher formation propensity or greater accumulation potential of these 161 

molecules in snow during haze episodes. Furthermore, our previous study on wintertime aerosols 162 

in Beijing confirms that high mass (≥ 500 Da) CHOS molecules with oxygen atoms ranged from 163 

10-15 were significantly enhanced during haze events than clean days.44 164 

A Classification of Organic Sulfur Species and its Validation. Previous classification of 165 

atmospheric organic sulfur species did not include all molecules, particularly those CHOiS1 166 

molecules with i ≤3.34, 38 The modified subgroups, introduced in our study, provide a new way for 167 

identification of the origins of the natural organic sulfur molecules. By combining the modified 168 

van Krevelen (VK) plots that use O*/C in place of the O/C ratio38 and the AI* values34, the CHOS1 169 

molecules could be divided into six subgroups (Subgroup A to F) (Table S2 and Figure 2a). It 170 

should be noted that the CHOS1 molecules with AI* = 0.5 and AI* = 0.67 scatter among a wide 171 

range in the modified VK diagram (Figure S5). To make the boundary of AI* = 0.5 and AI* = 0.67 172 

visual, hypothetical boundaries are used according to Figure S5. However, in making this 173 

classification, the actual value of AI* of one molecule were considered, rather than the location of 174 

the molecule situated in the modified VK diagram. 175 

Subgroups A to E are comprised of CHOS1 molecules containing more than three oxygen atoms. 176 

Outdoor smog chamber experiments together with field observations of urban fine aerosols 177 

demonstrated that organosulfates and sulfonates could be significant products of polycyclic 178 

aromatic hydrocarbons derived SOA.23 Thus, the possibility of the presence of sulfonate combined 179 

with another oxygen containing functional group should not be ignored when interpreting the 180 

possible structures of CHOS1.34, 37-39 Molecular H/C ratios (hydrogen saturation index), O*/C ratios 181 

(oxygen saturation index) and AI* values (aromaticity index), as significant structural information, 182 

help in mapping CHOS formulas into subgroups with distinguishable structural moiety (e.g., 183 
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aromatic carbon backbone, and aliphatic carbon backbone). Subgroup A includes polycyclic 184 

aromatics molecules (PCAs) with AI* > 0.67 and 0 < O*/C < 0.8.45 Subgroup B contains highly 185 

aromatic molecules with 0.5 <AI* ≤ 0.67 and 0 < O*/C < 0.8.45 Subgroup C is composed of highly 186 

unsaturated molecules with AI* ≤ 0.5 and H/C < 1.5 and 0 < O*/C < 0.8.46 Subgroup D is 187 

comprised of unsaturated aliphatic molecules with 1.5 ≤ H/C < 2.0 and 0 < O*/C < 0.8.47 Subgroup 188 

E includes saturated molecules with H/C ≥2.0 or O*/C ≥ 0.8.47 A similar classification of CHO 189 

molecules in dissolved organic matter derived from groundwater was made by Seidel et al.48 190 

Subgroup F is defined as containing low oxidation state sulfur containing organic molecules 191 

with O*/C ≤ 0 (organic sulfur molecules containing less than 4 oxygen atoms). Thus, Subgroup F 192 

may be composed of sulfoxides, sulfones, sulfonates. The sulfidic and thiophenic molecules in 193 

petroleum could be oxidized into sulfoxides and sulfones molecules,49 acting as potential sources 194 

for low oxidation state S-containing molecules in atmospheric precipitation.28 195 

The CHOS2 molecules, i.e., two-sulfur-containing functional groups, such as thiosulfinates, 196 

disulfides, and polysulfides, make up the seventh subgroup (Subgroup G). Organosulfate dimers 197 

(C20H34O9S2) and trimers (C30H50O10S2) were formed by the reactions of α-pinene oxide (C10H16O) 198 

with ammonium sulfate particles using Quasi-Static reactor and chamber experiments.50 Liberatore 199 

et al.51 reported C12-olefin disulfonate (C12H22S2O6
2-, as surfactant) and bromosultone sulfonate 200 

(C12H22BrS2O6
-, as disinfection byproducts) from laboratory-disinfected gas extraction wastewater.  201 

To verify the validity of our modified classification of CHOS molecules, a number of known 202 

organosulfates and sulfonates detected in previous studies were placed on the modified VK 203 

diagram and previously unmodified VK diagram used in atmospheric studies (Figure 2a).52, 53 The 204 

detection of these organosulfates and sulfonates in our snow samples is listed in Table S5, Table 205 
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S6 and Table S7, according to the origins of these molecules (SOA and anionic surfactants emitted 206 

by anthropogenic sources).  207 

The known SOA molecules in Figure 2a include long-chain alkanes-derived, isoprene / 208 

glyoxyal-derived, monoterpenes-derived, sesquiterpenes-derived, benzene-derived, naphthalene-209 

derived, unsaturated fatty acids-derived organosulfates, and naphthalene-derived sulfonates that 210 

have been detected in smog-chamber experiments. 14, 22, 23, 39, 42, 54-65 Linear alkyl benzene sulfonates 211 

(LAS), sulfophenyl carboxylic acids (SPC), dialkyl tetralin sulfonates (DATS), and dialkyl tetralin 212 

sulfonate intermediates (DATSI) (in Figure 2a) are typical anionic surfactants (used in domestic 213 

detergents),3, 66-69 which have been detected in wastewaters, surface waters, sediments, soils, 214 

atmospheric precipitation and aerosols.66-77 In addition, alkyl sulfates, alkane sulfonates, and alpha-215 

olefin sulfonates, as anionic surfactants precursors,78 are also placed in Figure 2a. Anthropogenic 216 

activities release anionic surfactants into the aquatic environment through wastewater treatment 217 

plant.79 Anionic surfactants (such as LASs) can migrate from water to the atmosphere, especially 218 

from the sea-surface microlayer and ultimately into sea spray aerosol.66, 79, 80 A series of LASs (C16-219 

C20) were identified in fine and coarse sea spray particles.66 Surfactants found in tropospheric 220 

aerosol can affect the formation and development of clouds, and become organic contaminants in 221 

wet and dry deposition.66, 79 Altieri et al.24 reported four molecules consistent with LASs in 222 

rainwater using a 7T FT-ICR MS.  223 

By locating the known sulfonates in the modified VK diagram, organic sulfonates are in 224 

subgroups B, C, D, and F (Figure 2a), which are consistent with our hypothesis that when O/S is 225 

higher than 3, the molecule may be an organosulfate or sulfonate with an additional oxygen 226 

containing functional group. The modified VK diagram can more easily distinguish the oxidized 227 

(O/S >3) and less oxidized state (O/S ≤3) sulfur-containing molecules than the unmodified one. 228 
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For example, alkane sulfonates, alpha-olefin sulfonates, and linear alkyl benzene sulfonates ideally 229 

situate at the line O*/C=0 in the modified VK diagram, rather than scatter in the unmodified one. 230 

Molecular Classification of CHOS Molecules in Snow Samples. The CHOS molecules 231 

observed in snow samples were displayed by modified VK diagram of Figure 1c. The Beijing 232 

snow sample differed from the other three samples in subgroups C and D in formula number 233 

proportions, centralized mass range, and O/S composition (Table S4). High O/S molecules (10-16) 234 

with high mass (≥ 500 Da) made a significant contribution to this difference. To be specific, the 235 

high mass organic sulfur containing molecules, as discussed above, were largely distributed in 236 

subgroups C and D. Highly unsaturated molecules (subgroup C) might be related to SOA 237 

compounds from biomass burning.81 In contrast, unsaturated aliphatic molecules (subgroup D) are 238 

largely attached to biogenic VOCs.23, 60, 81 In addition, the Beijing snow sample exhibited a high 239 

level of K+,43 which acted as chemical tracer of biomass burning.82 Wang et al.39 also found that 240 

the abundance fraction of CHOS molecules with longer carbon chains (C ≥ 10) was higher in 241 

aerosols in haze days than in clean days in Beijing. Similar phenomena were observed when 242 

comparing the CHOS molecules in aerosols between Shanghai and Los Angeles.38 High O/S 243 

molecules with high mass CHOS molecules in Beijing snow samples might be largely related to 244 

the high contribution of biomass burning and biogenic VOCs in ambient aerosols during a haze 245 

episode. However, on the account of the small sample number of this study, the atmospheric 246 

behaviors of organic sulfur containing compounds between aerosol-snow interfaces still need 247 

further investigation. 248 

As shown in Table S4, the Beijing sample contained the most abundant molecules in subgroup 249 

F among snow samples, and the CHOS molecules are clustered in the medium and high mass 250 

ranges (429-598 Da). For the other urban snow samples, the molecules mainly centered on the 251 
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medium mass range (321-452 Da). There were some sulfonate-like molecules (O*/C = 0) in each 252 

sample with the formula number ranged from 15 to 86. High-resolution X-ray photoelectron 253 

spectra identified sulfur species of humic-like substances in ambient aerosols, suggesting the 254 

existence of thiophenes, thioesters, mercaptanes, sulfones, and sulfates.83 255 

Eleven hundred common CHOS molecules (the intersection molecules of four snow CHOS sets) 256 

were assigned in the snow samples, contributing 43.2-71.1% to the formula numbers and 257 

69.9-85.0% to the total intensity abundance of CHOS molecules (Figure S6b). The classification 258 

of the common molecules is shown in Figure 2b and 2c. Detailed molecular classification of 259 

common CHOS in the snow samples could be found in Text S3. It should be noted that these 260 

common CHOS molecules are largely in medium O/S ratios (5-11) with low-medium mass (< 500 261 

Da) (Figure 2b and 2c). More than one hundred (138-150) organosulfate and sulfonate formulas 262 

were detected in each snow sample (Figure S8), contributing about 10% of the common CHOS 263 

molecules. Besides, 60 unsaturated fatty acids-derived organosulfate formulas were detected as 264 

common molecules (Table S5), which might be derived from sulfation processes of chemical 265 

species from cooking and/or biogenic primary emissions.65  266 

The classification of the unshared CHOS1 molecules of the four snow samples (those left behind 267 

after the removal the common CHOS) are shown in Figures S6 and S7. The unshared CHOS1 268 

molecules exhibited quite different patterns among four cities. Previous studies indicated that 269 

CHOS molecules in urban organic aerosols are highly related to anthropogenic emissions.38, 39 270 

Beijing, a megacity with the population of twenty million, is located at the northwest part of the 271 

North China Plain where is influenced by a combination of fossil fuel combustion and other 272 

anthropogenic emissions such as agricultural activities.84, 85 In contrast, Taiyuan is a megacity with 273 

five million population and is the capital of a coal-rich province. The spectrum of anthropogenic 274 
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VOCs produced by both anthropogenic and biogenic emissions might be largely different and thus 275 

influence the potential formation of organic sulfur compounds in the atmosphere.38, 39, 86 In addition, 276 

CHOS molecules could act as condensation nuclei, being incorporated during crystal growth, or 277 

scavenged during precipitation.2, 52, 87 The meteorological conditions during the precipitation event 278 

in the four cities also illustrate a difference between Beijing and Taiyuan, according to our previous 279 

air mass trajectories results.43  280 

This work introduces a new classification scheme to sort organic sulfur-containing compounds 281 

by distinguishable structural moiety in the ambient air, providing a toolbox in discerning their 282 

source origins. Typical known secondary organosulfates and anthropogenic-derived anionic 283 

surfactants (with medium O/S ratio and low-medium mass range) are significant components of 284 

the common CHOS molecules in our snow samples. Nevertheless, the absence of structural 285 

information on these isomers leads to the uncertainty of the connection between the aerosols and 286 

precipitation. Future work using FT-ICR MS with hyphenated techniques, such as MSn and trapped 287 

ion mobility spectrometry (TIMS), is needed to uncover the mechanisms of scavenging processes 288 

of organic compounds during atmospheric precipitation.  289 
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 653 
Figure 1. (a) Formula number proportion distribution of different elemental groups, along with 654 

dissolved organic carbon (DOC) of melted snow, inorganic sulfate (SO4
2-) of melted snow and 655 

PM2.5_24h (daily average mass concentration of the particulate matter < 2.5μm during the snow 656 

event). (b) Radar distribution map of oxygen atoms of CHOS1 molecules within different mass 657 

range, including the whole mass range (left), molecules with m/z< 500 Da (middle), and m/z³ 500 658 

Da (right). (c) Modified van Krevelen diagrams of CHOS1 in the four snow samples. The O/S ratio 659 

of molecules are color-coded. Region A represents polycyclic aromatic molecules, B - highly 660 

aromatic molecules, C - highly unsaturated molecules, D - unsaturated aliphatic molecules, E -661 

saturated molecules, F - lower oxidation state sulfur containing molecules. 662 

  663 



 26 

 664 
Figure 2. Modified van Krevelen diagrams of CHOS1 compounds. (a) The modified classification 665 

of typical known organosulfates and sulfonates (detected in previous studies). The classification 666 

criteria of CHOS subgroups are shown in Table S2. The hypothetical boundaries of AI* according 667 

to Figure S5. The lower plot shows the unmodified classification by Bianco et al.52 using the O/C 668 

ratio. (b) Modified classification for the common CHOS molecules in the four snow samples (the 669 

intersection molecules of four snow CHOS sets). The O/S ratio of molecules are color-coded. (c) 670 

The molecular mass and carbon number distribution of common molecules in subgroups B to F. 671 

Region A represents polycyclic aromatic molecules, B - highly aromatic molecules, C - highly 672 

unsaturated molecules, D - unsaturated aliphatic molecules, E -saturated molecules, F - lower 673 

oxidation state sulfur containing molecules. 674 


