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Abstract

The testing of battery cells is an expensive and long process, and hence understanding how large

a test set needs to be is very useful. This work proposes an automated methodology to estimate

the smallest sample size of cells required to capture the cell-to-cell variability seen in a larger

population. We define cell-to-cell variation based on the slopes of a linear regression model applied

to capacity fade curves. Our methodology determines a sample size which estimates this variability

within user specified requirements on precision and confidence. The sample size is found using

the distributional properties of the slopes under a normality assumption. The implementation is

available on GitHub.

For the five datasets in the study, we find that a sample size of 8-10 cells (at a prespecified

precision and confidence) captures the cell-to-cell variability of the larger datasets. We show that

prior testing knowledge can be leveraged with machine learning models to operationally optimise

the design of new cell-testing leading up to a 75% reduction in experimental costs.
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1. Introduction

Current lithium-ion cells do not yet meet some applications’ required power and energy den-

sities. Therefore, research on new materials is dynamic, and ageing behaviour is an essential part

of the evaluation. Furthermore, new applications for batteries with particular requirements - such

as the electrification of ships, trucks [1], aircraft [2], tractors and construction machinery - often

bring new load profiles, which will most likely induce a different ageing behaviour. Therefore,

adapted test and evaluation methods are necessary for a reliable lifetime prediction. Batteries are

highly complex systems with physical, chemical and electrical effects taking place simultaneously

requiring a lot more effort to accurately model these effects themselves. And thus, in the short and

medium term data-driven and empirical models will be used. These methods include diagnostic

methods such as deep learning or neural networks based on systematically generated data from

accelerated ageing tests in the laboratory [3].

The ageing of lithium-ion batteries depends on the complex interaction of numerous stress

factors such as current rate and temperature, which necessitates an extensive test matrix. In

addition, the transfer of test results to new batteries with varying materials and dimensions to

create models for new cells is very limited. Currently, complex testing is carried out on a small

scale on random samples due to the lack of testing resources. This limits the scope of a test

regarding the number of different stress factors, the resolution of the influence, and the statistical

aspects of cell-to-cell variation.

The ageing is primarily noticeable to the user as lower capacity and thus shorter operating time

[4]. Many different stress factors need to be considered for ageing prediction and testing. These

factors are, e.g. temperature, storage voltages for calendar ageing as well as cycle depth, state of

charge (SoC) range, mechanical pressure, current rate and charge throughput for (charge/discharge)

cycle ageing [5, 6].

Ageing takes place in all components of a battery, not only in the electrodes and electrolyte,

but also in the casing and separator [7]. The mentioned stress factors influence ageing in electrodes

and electrolytes. For example, the dissolution of electrolyte and binder as well as the reduction of

the active surface in anodes are accelerated by high temperature and high state-of-charge. These

ageing effects lead to capacity and power losses. In contrast, low temperature and high current

accelerate the deposition of metallic lithium on the anode surface [8]. Fast development cycles only
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allow short testing periods, but the longevity under multiple scenarios must also be guaranteed.

Therefore, ageing prediction with accelerated ageing is possible and necessary [9]. For a meaningful

acceleration of the lifetime tests, the intensified ageing conditions should not trigger additional

ageing mechanisms (e.g. lithium deposition) and the share of irreversible ageing and reversible

capacity effects from the inhomogeneity of the lithium distribution and the anode overhang must

be separated [10]. Studies combining ageing tests, cell-to-cell variation and post-mortem analyses

to investigate the effects of ageing in the material over time require a high number of cells to be

aged under comparable conditions and investigated in post-mortem analyses.

The fundamental patterns of how these factors influence ageing are known, and there are already

investigations on this subject [4]. The challenge, however, is that each cell type is different, and

thus the impact of those factors varies. This means that every new cell has to be investigated

in extensive tests to be able to estimate the long-term behaviour. All these measures require

very large test capacities. Furthermore, massive parallel tests are necessary to obtain results in a

shorter time compared to sequential tests. Naturally, the goal is to test as efficiently and as little

as possible and still achieve solid predictability. To uphold high utilisation, channels should be

used in succession, testing new stress factors on a new cell when channels become available. In

addition, batteries already start to age at the time of production [11]. Therefore, cells that enter

a test at different times may already behave differently. Cells, therefore, need to be stored with

minimal degradation at low temperatures and medium-low state-of-charge levels.

Furthermore, there are variations between individual cells of the same cell type [12]. They can

be attributed to the tolerances in the production and cannot be avoided. Thus, it is not sufficient

to test one cell, but all tests must be repeated with multiple cells. In a recent study by the 3rd

author, it was shown that more cells should be tested to accurately capture variability than what

is typically done today [13]. So far, publications of Design-of-Experiment include only either stress

factors [14, 15] or cell-to-cell variation [16, 17]. And, feedback-based experiments include only a

minimal design space of stress factors and extremely accelerated ageing (around 30 days of testing

per cell) [18]. Therefore, the published posterior methods cannot be used on ageing tests aimed at

predicting lifetime at up to 10-15 years of operation.
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2. Design of a sequential analysis

All of the above discussed aspects render the testing of batteries very costly. Therefore, it

is crucial to consider which stress factors of the measuring matrix and what number of cells are

necessary for the intended purpose and how to adjust the design of the experiment during the test

phase to incorporate knowledge gained on the fly and in a feedback loop for additional tests.

Battery degradation prediction is also limited by the amount of data available for either creating

empirical models or parameterising physics based or data-based models. Furthermore, due to

the vast parameter space of stress factors influencing battery degradation, tests can only provide

meaningful data when those stress factors are consistently considered.

When a test is finished, and the end-of-life of the cell is reached, the testing equipment is freed

for further use, and a question arises: Should you do more of the same testing or consider different

stress factors, in order to get the maximum information in a given time? While conducting an

ageing study, the result of the study can change with additional tests.

Probing phase
boundaries of stress factor 

design space

A priori test plan
Based on prior knowledge 

and probing phase 

Each dot 
represents a test 
condi�on

20 channels
4 weeks

1000 channels
2 years

Uphold high u�lisa�on
of 1000 channels

Ongoing test enhancement
Feedback loop based on evalua�on 

and incremental usefulness

Phase of 
high-throughput 
tes�ng

Resource
demand

Figure 1: Sketch of high-throughput test example using 1000 channels and different phases of the design of experiment

and continuous test enhancement.

Figure 1 shows the idea of the underlying testing concept as an example in this work. Each

dot represents a test condition with the stress factors as the axis of the design space. First, within

a probing phase, only a few cells (20 in this example) are tested to identify the boundaries of

the stress factors under investigation for the given cell. The aim is to collect this data within

a short time – for example 4 weeks. Then, based on this data and additional prior knowledge

transfer from previous ageing tests, an a priori test plan is created and rolled out on a massive test

infrastructure. In this second phase, individual stress factors are tested on 1000 channels parallel.
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Finally, in the last phase, channels become available due to cells degrading faster with some stress

factors, additional cells are tested to increase the data available at areas of interest with the most

amount of information gained at those conditions. The second and third stages overlap and will

continue for as long as the equipment is available or a sufficiently high accuracy and diversity of

the measuring data is reached. This can be up to 2-3 years of testing.

Figure 2 shows a number of channels and their usage over time. Images a) and b) show example

decisions made after one year based on an automatic usefulness calculation: in a) different testing

is given priority, while in b) the calculation showed more tests were necessary for the same testing

condition since the desired level of confidence was not yet reached.
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Figure 2: Example for an ageing test plan for 2 years with 24 channels available. Each row represents a channel and

a) and b) describe two scenarios with a change of the test plan after one year depending of having tested “enough”

to capture variability. Yellow denotes channels used to capture the cell-to-cell variability, green shows the initial run

of other stress factors, and blue and red show sequential tests on the same channels. In a) after 1 year enough cells

have been tested under the same conditions, so additional test conditions can be tested with the available channels.

In b) the amount of data collected is not yet enough and additional tests are started with the same ageing conditions.
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3. Datasets overview

In terms of data for this work, we use the same data as [13, Section 2.1] but with novel

techniques. For ease of comparison we adopt their nomenclatures. The description next follows

closely that in [13, Section 2.1]. For a general overview of publicly available battery data, see [19].

The datasets were chosen for study based on the necessity of testing as many cells as possible within

each dataset. All datasets are open source. Each dataset features a single type of commercially

available Li-ion cells, however the manufacturers, chemistries, and cell sizes vary from one dataset

to the next. Although the methods outlined below can be applied to different form factors, all

datasets used 18650 cylindrical cells. Some datasets had identical experimental settings, meaning

that each cell was tested in the same manner, whereas others changed the stress factors somewhat

beyond the expected uncontrollable experimental variability. The datasets are as follows, and

notation-wise we reserve the letter N to denote the total amount of cells in a dataset.

Baumhöfer 2014 48 cells, Sanyo/Panasonic UR18650E, NMC/graphite, 1.85 Ah

Dechent-2020 22 cells, Samsung INR18650-35E, NCA/graphite, 3.5 Ah

Dechent-2017 21 cells, Samsung NR18650-15 L1, NMC/graphite, 1.5 Ah

Severson-2019 67 out of 124 cells, A123 APR18650 M1 A, LFP/graphite, 1.1 Ah

Attia-2020 45 cells, A123 APR18650 M1 A, LFP/graphite, 1.1 Ah

Attia-predicted 45 cells, Predicted data for Attia-2020 using model proposed in [20].

The capacity fade curves in Baumhöfer-2014, Severson-2019 and Attia-2020 (also Attia-predicted)

exhibit the so-called Knee phenomena of rapid non-linear degradation [21, 22]. The Dechent-2017

and Dechent-2020 contain linear capacity fade trajectories over time. The capacity fade trajecto-

ries (y-axis) plotted against time (x-axis) can be found in Figure 3 below. For all the datasets, the

capacity is normalised to the nominal capacity, and hence, expressed as a percentage – we work

with state of health (SOH).

The Attia-predicted dataset is data generated considering the first 20 cycles of the Attia-2020

dataset and using the one-cycle predictor model proposed in [20].

A critical remark on cell-to-cell variability across datasets.

It should be noted that the datasets considered do not all share the same driving factor of

variability. For Baumhöfer-2014 and Dechent-2020 (within each dataset), the cells were cycled
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Figure 3: Capacity fade trajectories (y-axis) over time (x-axis) for the six datasets mentioned in Section 3

identically in the same environment. Therefore, the variability observed in the data is essentially

the intrinsic manufacturing variability of the cells. In contrast, Severson-2019 and Attia-2020

consider a wide range of charge protocols, and this is an additional driving factor for cell-to-cell

variability in the datasets. Thus, the variability observed in these datasets is driven by intrinsic and

extrinsic factors. However, as in [13], this paper works with a restricted subset of these datasets

where the variability of extrinsic factors is lower – in practise, this translated into selecting only

cells with a life cycle of between 23 and 40 days, and excluding Batch 2 of Severson’s [23] original

dataset. Dechent-2017 also shows extrinsic and intrinsic factors, but with small differences (< 15%

difference of charge current) between the tested cells. The ability to observe solely intrinsic cell-

to-cell variability is, of course, experimentally dependent.

It should be emphasised that the methodology proposed in this paper is built on a certain

assumption of normality (see next section). Thus it is best suited for experiments whose main

source of variability is intrinsic or where the extrinsic variability is lesser. Experiments designed

with large levels of extrinsic variability (as with Batch 2 of Severson’s [23] dataset compared

to Batches 1 and 3) may be multi-modal in nature (e.g., 50 cells tested at −10◦C and 50 cells

at 40◦C). In such cases, for the purpose of estimating variability, one would either require a

multidimensional methodology accounting for extrinsic factors or to cluster the experiment into
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distinct datasets where this in less of a factor. The methodology proposed in this manuscript

follows this latter framework. At the end of the next section we discuss the current difficulty with

the multidimensional methodology.

4. Methodology and estimation

The measure of cell variation for a dataset

Following Dechent et al. [13], we measure variation between cells as variation in the slopes of

straight lines (1) fitted through the cell’s repeated capacity measures,

Model Linear-2 : y(t) = α+ βt+ ε, (1)

where t is time, y is capacity, ε is a normal random variable with zero mean and finite (unknown)

variance denoting the errors/residuals. The slope β and intercept α are fitted to the data (via

standard least squares). Each slope β represents a cell’s rate of capacity fade over successive cycles

(the parameter α is discarded). This manuscript focuses on a one-parameter model for variability

and it will be shown below that the number of cells necessary to capture variability suggested by this

method is already high (e.g., half the total number of cells of the Dechent datasets). More complex

models could be explored with a greater availability of data. In general, our methodology can be

applied to other normally distributed summary statistics. For clarification, this work improves the

statistical methodology deployed by [13] for this problem and does not propose a new measure of

variability. This is left for future research.

For a sample of n slopes {βi}ni=1 we define the sample mean (denoted β̄n) and the sample

standard deviation (denoted σ̂n) as

β̄n =
1

n

n∑
i=1

βi and σ̂n =

√√√√ 1

n− 1

n∑
i=1

(
βi − β̄n

)2
. (2)

The sample standard deviation of the slopes β is the measure of cell-to-cell variation chosen for

this work.

We make the following working assumption.

Assumption: For each given dataset, the population of slopes β is normally distributed, i.e.,

slopes β ∼ N (µβ, σ
2
β), where both the population mean µβ and the population standard deviation

σβ are unknown parameters (that differ dataset to dataset).
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Under this assumption, σ̂n follows a Chi-distribution with n − 1 degrees of freedom ([24]),

namely

√
n− 1

σβ
σ̂n ∼ χn−1 .

In order to specify a confidence level that σ̂n is close to σβ as a function of n, working with the

χn−1 distribution is inconvenient. Nonetheless, it turns out that as n increases the chi-distribution

is well approximated by a normal distribution ([24], [25], [26]). We thus further assume that the

distribution of σ̂n in (2) can be approximated by a normal distribution with mean σβ and standard

error sn. That is, we assume σ̂n ∼ N (σβ, sn).

Capturing representative cell-to-cell variation for a dataset

The closeness of the estimate σ̂n to the true value σβ is quantified by the standard error sn. The

number of cells required to capture cell-to-cell variation is thus given by the value of n for which sn

is small enough to ensure a given precision with a given level of confidence. However, the standard

error is scale dependent, so it is instead more convenient to work with the relative standard error

(RSE) defined as the percentage ratio of the standard error to the standard deviation

RSE :=100
sn
σβ

. (3)

For a concrete prospective: with a normal distribution, roughly 68% of samples are expected to fall

within one standard deviation of the mean. Assuming that the sampling distribution of standard

deviations is approximately normal, the RSE can thus be viewed as an upper bound on how far

the sample standard deviation σ̂n is expected to differ from the population standard deviation σβ,

with a confidence of 68% that the bound will not be exceeded.

As the RSE is defined in relation to sn, it is quite easy to obtain confidence levels that our

estimate σ̂n will differ from σβ by no more than any percentage level k%. Simply dividing k by the

measured RSE will give the number of standard errors that a deviation of k% would correspond to.

And then, the number q := −k/RSE can be compared with the CDF of a standard normal to yield

the confidence level that it will not be exceeded.

For a given sample size n the RSE can be obtained in two ways: theoretically and empirically.

From the theoretical perspective, under the asymptotic regime of n > 10 ([24], [26]) the RSE is
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given by a deterministic expression:

RSE =100
1√

2(n− 1)
⇒ n = 1 +

1

2

1

RSE2
. (4)

The inversion shown above gives a sample size n which (for the reasons given above) corresponds

to a confidence level of approximately 68%. The reader can compare the results this equation gives

with Table 1.

To measure the RSE empirically, the quantities in formula (3) must be replaced with estimates:

σβ can be approximated by taking the empirical standard deviation of the largest available sample

(the whole dataset), and, sn by using a bootstrapping procedure to construct a distribution of

sample standard deviations and then taking its standard deviation. Concretely, for a given sample

size n and a number of bootstrap samples b (say b = 1000), sample (with replacement) b sets of n

slopes. Taking the standard deviation for each set of slopes produces a distribution of b standard

deviations; taking the standard deviation of this distribution gives an estimate for sn.

Making use of these results in practice

We can now describe concretely our approach to calculate the required number of cells to

maintain an accurate picture of cell-to-cell variability. Two elements must be prespecified: a

maximum acceptable deviation k% for the estimate σ̂n of σβ and the level of confidence required

that this k will not be exceeded. Firstly, the linear regression (1) is fitted to the capacity data

giving a list of slopes. Then, using this list of slopes, for sample sizes from n = 2 up to the full

size N of the dataset the RSE is calculated as described above - examples of the resulting values

can be seen in Figure 4. For the acceptable deviation level (k%) the probability that it will not

be exceeded is then calculated for each sample size - this is presented in Figure 5 for k = 25%.

The required sample size is then the smallest sample size providing the required confidence level.

The theoretical and empirical results will not always agree and (after checking for outliers and

normality as described below in relation to Table 4) we recommend selecting the larger of the two

sample sizes.

In Section 5 we compare the empirical and theoretical sample sizes our methodology recom-

mends for the datasets selected for this work. In Table 1 we present the theoretical required number

of samples for a range of maximum acceptable deviations (relative to σβ) and confidence levels that

this maximum will not be exceeded.
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Maximum acceptable deviation (%)

5 10 15 20 25 30 35 40 50

C
on

fi
d
en

ce
(%

)
50 92 24 12 7 5 4 3 3 2

60 143 37 17 10 7 5 4 4 3

68 199 51 23 14 9 7 6 5 3

75 266 68 31 18 12 9 7 6 4

80 330 84 38 22 15 11 8 7 5

85 416 105 48 27 18 13 10 8 6

90 543 137 62 35 23 17 13 10 7

95 770 194 87 50 32 23 17 14 9

99.7 1763 442 197 112 72 50 37 29 19

Table 1: Theoretical number of samples required to estimate the population standard deviation for a range of

maximum acceptable deviations (relative to σβ) and confidence levels that this maximum will not be exceeded. The

68% confidence row corresponds to the asymptotic RSE result of Equation (4) with the boxed n = 9 stands for

RSE = 0.25.

For example, to obtain an estimate of standard deviation sn that deviates from σβ by not more

than 25% at a confidence level of 68%, Table 1 indicates a sample of at least n = 9 cells (see also

[26, p120] or [27, p103]).

Comparison to prior art

The main contribution of this work, in comparison to [13], is a statistically quantified choice

of the required sample size n. While the definitions chosen for variability are of the same form

as there, the methodology developed for choosing the sample size is different. The methodology1

of [13] requires the selection of a manual threshold limit for each dataset and the exact statistical

1From a bird’s eye perspective, both here and in [13], the starting point are models like (1) and a variation

metric is build from their parameters. To work with the subsampled distributions, we use bootstrapping while [13]

uses a hierarchical Bayesian approach. The final aspect, and the main difference of approach, requires a technical

explanation. The method explained in the final paragraph of [13, Section 3] is to linearise the relationship between

variation and sample size by taking logs – this tacitly assumes an unstated power curve relationship between variation

and sample size – then identify a “stable region” of the linearised relationship by extrapolation from manually chosen

points. It is not clear how this could be automated or which statistical interpretation it has. Finally they threshold

deviations from the line to find the smallest sample size n. We compare sampling distributions using the RSE (3) as
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meaning of this is unclear. In contrast, the parameters of maximum acceptable deviation and level

of confidence used by our approach have clear statistical interpretations. The methodology here

focuses solely on a standard linear regression model and models capturing non-linear degradation

are not included (e.g., the line-exponential model highlighted in [13] or the Bacon-Watts model

[22]). The three parameters of the line-exponential model in [13] are not easily interpretable and

the model suffers from a lack of robustness. Additionally, the line-exponential model requires the

full longitudinal data to work well (see [21, 28]) which limits its usability in online applications as

is discussed below (see Section 6.2).

This project’s implementation under CC BY 4.0 copyright license is publicly available on

GitHub (see Additional Information section) as an open invitation for further testing and ex-

perimenting.

5. Results

For sake of exposition, this section is presented under the choice of a maximum acceptable

deviation of at most 25% and a confidence level of 68%. Figure 4 shows the relative standard

error of sample standard deviation as a function of the cell sample size, (starting with the smallest

sample with any variation n = 2 until the total number N of samples available). The empirical

estimates (shown as open circles) and the theoretical estimates (shown as lines) are obtained as

described in Section 4.

Figure 5 shows the corresponding confidence levels for a threshold on maximum acceptable

deviation specified at k = 25%. These confidence levels are obtained by comparison with a normal

distribution as described in Section 4. The figure shows that the theoretical estimates are generally

a close fit to the empirical estimates. Comparison with empirical data, such as the Severson-2019

data shown in Figure 5, shows a good agreement in that sample size n = 9 is the smallest sample

where the percentage RSE is not more than 25% with a confidence level of 68%.

Table 2 shows empirical estimates of the sample size needed to estimate standard deviation that

deviates from σβ by not more than k = 25% with a confidence of 68%. The theoretical estimate is

n = 9. Where there are differences between the theoretical and empirical results, (for example the

a general scale-invariant measure. The user then specifies a statistically interpretable and justified threshold on the

percentage of RSE at a confidence level and the sample size is found without any further (manual) choice.
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Figure 4: Relative standard error (RSE) of sample standard deviation as a function of sample size. Black continuous

line given by deterministic RSE asymptotic approximation of (4).
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Figure 5: Probability of a random sample estimate with relative error not more than 25%.
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Dechent-2017 dataset), it is most probably because the assumption of normal sampling was not

met.

Required Sample Size

N Empirical Theoretical

Baumhöfer-2014 48 8

9

Severson-2019 67 9

Attia-2020 45 9

Dechent-2017 21 10

Dechent-2020 21 10

Table 2: Sample sizes for the datasets of this study (at 25% maximum acceptable deviation and 68% confidence) per

dataset, and theoretical sample size estimate (see Table 1). N is the total number of cells tested.

Figure 6 shows a Q-Q-plot graphical assessment of distribution normality of cells with Linear-2

(1) slopes in each dataset. There could be several reasons for departures from normality in the

Dechent-2017 dataset. One possibility is simply that the dataset has too few cells, for example,

both Dechent-2017 and Dechent-2020 have just 21 cells. As a general evaluation, for Severson-2019,

Baumhöfer-2014 and Attia-2020, there is a very good agreement of the quantiles (large majority of

samples) but there is evident left- and right-skew hinting at a non-symmetric distribution. Figure

3 shows that the Dechent datasets do not display capacity fade curves with knee-points.
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Figure 6: Q-Q plots for the standardised distribution of cell slopes β. The inset histogram plots show the true

(non-standardised) distribution of slopes for each dataset.

6. Two applied examples

6.1. Using prior knowledge to inform new testing

From an historical perspective, Attia-2020 [18] appears in the literature one-year after Severson-

2019 [23]. Both datasets report cycling data from similar battery cells, and we argue that knowledge

gleaned from Severson-2019 could have been used to inform testing for Attia-2020. This example

explores this idea.

Imagine an experiment as follows: take from the public sphere the existing Severson-2019 [23]

dataset and train on it the machine learning one-cycle predictor model of [20] (the one-cycle model

is a model designed to predict the remaining capacity degradation trajectory of a Li-ion cell from

any single input cycle). Then, start the cycling experiment on the cells of Attia-2020 over a short

amount of time (the first 20-cycles) and, on that information, apply the [23] trained one-cycle

model to build predicted trajectories for all the cells of Attia-2020. Finally, let the rest of the

Attia-2020 experiment take its course. The paths of the capacity fade curves for the three datasets

can be found in Figure 3. The methodology of the previous section is then used.
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To the obtained linear model slopes of the Attia-predicted dataset apply the sample size method-

ology developed in Section 4. Table 3 reports the estimated sample sizes for a 25% maximum

acceptable deviation and a confidence level of 68% at which a theoretical sample size is computed

to be n = 9 (see Table 1). The sample size estimate for the Attia-2020 experiment is n = 9 while

for the Attia-predicted, computed using only very early life data, is n = 11.

Required Sample Size

N Empirical Theoretical

Severson-2019 67 9

9Attia-2020 45 9

Attia-predicted 45 11

Table 3: Sample size for Attia-predicted (at 25% maximum acceptable deviation and 68% confidence) per dataset,

and sample size theoretical estimate (see Table 1). Information on Severson-2019 and Attia-2020 kept for comparison.

We argue that this example validates the idea of using prior information to inform the design of

a future experiment. From the calculations, having used n ≈ 10 cells in the Attia-2020 experiment

instead of 45 cells would have sufficed to create a representative sample of cells to capture cell-to-

cell variability for that dataset. This reduction in sample size for the testing equates to a ≈ 75%

reduction in experimental costs and, in view of Figure 2, would free about 35 cell-cycler channels

after just 20-cycles (time-equivalent) of testing (see the concept of Figure 2).

6.2. Generating test cases in an online format to inform larger and longer experiments

In this example, we employ the estimation procedure of Section 4 under a segmentation of input

longitudinally across time (recall Figure 1 and 3).

Imagine an experiment as follows: a cell cycling experiment having N cells is allocated to a cell-

cycler and it is to last a T amount of time (say 10 weeks). All cycling data is collected2. Once the

experiment runs through 20% of its allocated time (two weeks), the procedure described in Section

4 is applied to the data available and the representative sample size, say n20%, is determined. Once

the experiment runs through 40% of its allocated time the procedure is applied again (to all data

2We ignore the possibility of having prior knowledge of the cells, otherwise one can easily leverage the ideas of

Section 6.1 by applying, e.g., the one-cycle model at further judiciously chosen time points.
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since the beginning of the experiment) and n40% is estimated. This is then repeated at increments

of 20% time until the end of the experiment is reached yielding the estimates n60%, n80% and n100%.

The estimated samples sizes nx% per dataset can be seen in Table 4 and these values need

to be understood in partnership with a verification of the normality assumption underlying our

methodology. This latter element is given in Figure 7 in the form of Q-Q plots at each stage of our

theoretical experiment.

Sample size for percentage of input

Dataset N 20% 40% 60% 80% 100%

Baumhöfer-2014 48 7 12 7 7 8

Severson-2019 67 45 17 16 6 9

Attia-2020 45 11 27 6 10 9

Dechent-2017 21 - 7 11 8 10

Dechent-2020 21 9 7 7 9 10

Severson-2019* 66 7 12 18 6 10

Table 4: Required sample size given the first 20, 40, . . . , 100% of input data (at 25% maximum acceptable deviation

and 68% confidence). It should be noted that the theoretical number of required cells is 9 regardless of input size

(see Table 1). Severson-2019* denotes the results after an outlier cell is removed from the Severson-2019 dataset (as

justified below).

For both Dechent-datasets, which exhibit linear degradation fade curves (Figure 3), the esti-

mated sample sizes nx% are stable across the longitudinal increments in time of the curves and

deviate slightly from the theoretical estimate (n = 9). The empty n20%-entry for Dechent-2017 is

due to insufficient datapoints on the capacity fade curve over that time interval (see also Figure7).

We thus suggest that data is recorded at a higher frequency.

For Attia-2020 and Severson-2019 (see Figure 7), there is a high variability of the data across

the 20% to 60% input marks and, prominent, are the few but heavy outliers (on the left tail)

that strongly influence the estimate for the sample size. Thus, the results in Table 4 at 20%-60%

percentages of input are not inline with the theoretical result. It is also important to note the

strong non-normal nature of the slope distributions around 60% for Severson-2019 and 40% for

Attia-2020. For this range, cells are transitioning through the inflection point of their capacity fade

curve, i.e., some cells have passed their knees (experiencing rapid capacity loss) and others are still
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Figure 7: Q-Q plots for the standardised distribution of cell slopes β across the percent input of time data as

according to Table 4. Datasets are left-to-right and percent input from top-to-bottom starting at 20% until 100%.

The inset histogram plots show the true (non-standardised) distribution of slopes for each dataset and percentage of

input data.

maintaining a linear decay. The data thus display a left skew at these percent levels, violating the

normality assumption. At the 80% and 100% marks, the data conforms to normality and this is

reflected in the estimated n in Table 4 being closer to the theoretical one.

For Severson-2019 there is a cell which decays notably faster during the early life (easily identi-

fiable in Figure 7 at the 20% mark on the left tail). This results in a large variability in estimates of

the standard deviation. For this reason, our methodology recommends keeping a large percentage

of the cells at this stage. In Table 4, the row Severson-2019* displays the results of our methodol-
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ogy after removing altogether the outlier cell (hence N = 66 instead of N = 67). The estimated

sample sizes then conform to those observed for the other datasets (Attia-2020 in particular). This

removal can be justified in practice as one cell degrading much faster than all others is likely to be

faulty (accounting for significant differences in testing protocol).

For Baumhöfer-2014, the results follow the trend of the two Dechent datasets even though the

capacity fade curves exhibit knees. This is explained by the less extreme (more gradual) nature of

the knees displayed in the Baumhöfer-2014 dataset: there is no abrupt cliff (as in Severson-2019

and Attia-2020; Figure 3) and thus no large break from normality. We do notice some effect at

the 40% level (see Figure 7), where there is a noticeable left skew in the data which accounts for

the larger estimated value of n in Table 4. This effect is small in comparison to that observed for

Severson-2019 and Attia-2019.

Recognisably, this example is not as conclusive as the previous one, nonetheless, it entails the

critical conclusion that the underlying modelling assumption need to be verified for conclusions to

be drawn. We strongly believe that this idea warrants further exploration given its potential and

hope to revisit it in future research. Lastly, it is very unclear if the line-exponential model would

yield better results (see discussion in Section 4) – improving upon this is left for future research.

7. Conclusions and outlook

The goal of this work was to propose a methodology to determine the smallest sample size that

captures in a justified and automated way the cell-to-cell variation seen in a larger population.

This manuscript improves upon the contribution of [13] by studying anew and re-thinking the

underpinning statistical methodology. Under a normality assumption, that needs to be validated

as part of the usage, our automatic methodology recommends a choice of n = 9 for a maximum

acceptable deviation of 25% with a confidence level of 68%.

In future work it would be helpful to model and better explain a representative sub-population

able to capture the cell-to-cell variation via the shape of the cell capacity fade trajectory. For clarity

of ideas, the manuscript’s focus was placed on a linear-regression method and not on models able

to capture the non-linear degradation (the reason for this is argued above). As an outlook, with

new larger datasets becoming available, this analysis could be performed with more complex health

indicators in mind for example derived from OCV, DVA or ICA [29].
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One idea for future exploration is that Internal Resistance profiles data can be included as

follows: find the βQ for the capacity (Q) curves according to the linear model (1); find the βIR

from the Internal Resistance (IR) curves; assume both sets βQ and βIR are normally distributed.

Then sum both. I.e., define β := βQ + βIR; since the sum of Normal random variables is a normal

random variable then the analysis carries through. This is contingent on Internal Resistance being

included in the datasets which is often not the case [19].

Many laboratories have at their disposal large datasets across a rich test matrix where each

entry has at most 3 battery cells [19, Section 2.7]. How to incorporate the findings of this work on

such small datasets is still an open question – one possibility is to clump together entries of the

test matrix to increase the number of available cells. If one has several of these datasets available

(created at different timelines, institutions, testing machines), then how to combine them is also

unknown. Critically, the message of [30] needs to be emphasised here: the metadata of test sets

needs to be sufficiently complete (for instance, adding cell weights be useful for variation analysis).

Otherwise, it will be difficult to credibly state that such datasets are sufficiently alike that they

can be seen as an independent sample from the same statistical distribution.

Lastly and for perspective, the quantification of cell-to-cell variability is an open research topic

and this work joins hands with [13] as educated first steps towards a general solution.
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