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Abstract
FPGAs (Field Programmable Gate Arrays) have become the

substrate of choice to implement accelerators. They deliver

high performance with low power consumption, while of-

fering the flexibility of being re-programmable. But they are

notoriously hard to program directly using HDLs (Hardware

Description Languages). Traditional HLS (High-Level Syn-

thesis) methods are addressing some of these issues but are

far from being perfect. Programmers are still required to

write hardware-specific code and existing HLS tools often

produce sub-optimal designs.

Modern approaches based on multi-level functional IR (In-

termediate Representation) such as Aetherling, have demon-

strated the advantages of generating high performance de-

signs in a predictable way. A functional IR makes optimiza-

tions via rewrite rules simple to express, and abstract away

the hardware details. However, as we will see in this pa-

per, functional approaches bring their own set of challenges

to produce high performance hardware. In particular, data

reshaping operations, such as transposition, introduce over-

heads that hurt performance or even prevent the generation

of synthesizable hardware designs altogether.

This paper presents an approach with rewrite rules to

solve this fundamental issue and produce efficient FPGA

designs from functional IRs. Using rewrites, it is possible to

generate high performance designs for matrix multiplication

and 2D convolution. The paper also evaluates the perfor-

mance impact of the optimizations and shows that without

them, low performance designs are produced, or even worse,

it is impossible to synthesize the designs at all.
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1 Introduction
When implementing accelerators, FPGAs shine due to their

high efficiency and flexibility. However, this flexibility comes

with extra burden placed on the programmer. Traditional

HLS tools try to simplify hardware development but, despite

their name, they are still relatively low-level and require

some hardware knowledge to achieve high performance.

Furthermore, these toolchains are typically built using tradi-

tional software compiler passes that are not a good match for

hardware optimization. This makes it hard to predict what

the hardware will look like at the end of the compilation

process [17], often leading to poor designs.

The compiler community has recently witnessed a shift

towards multi-level IRs (e.g., MLIR [14]). A multi-level IR

simplifies the compiler design by decomposing compilation

into a lowering process with multiple simple steps. Multi-

level IRs are a great fit for HLS as recently demonstrated by

Lift-hls [12] and Aetherling [5]. With such approaches, the

IR is gradually lowered: high-level abstractions are replaced

with hardware-specific primitives, until the desired hardware

design is generated. Furthermore, the use of a high-level,

functional IR as an entry point to the compiler ensures that

programs can be written in a simple, hardware-agnostic way.

However, despite the success of prior work, several chal-

lenges remain with functional approaches in general. In par-

ticular, as we will see in this paper, they lack a systematic

approach to deal with data reshaping operations efficiently.

Data reshaping is required to express important workloads

such as MxM (Matrix Multiplication) or convolution.

https://orcid.org/0000-0002-3835-4774
https://orcid.org/0000-0003-1629-8617
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https://doi.org/10.1145/3519941.3535069
https://doi.org/10.1145/3519941.3535069


LCTES ’22, June 14, 2022, San Diego, CA, USA Christof Schlaak, Tzung-Han Juang, and Christophe Dubach

In such workloads, there is a need for repeating, trans-
posing or sliding data. Aetherling [5], for instance, does not

support these features and simply cannot express MxM, nor

2D convolution. Lift-hls [12] implements a work-around for

MxM, but does not address the repetition issue generally,

while transposing and sliding of data, as needed for tiling

and convolution, is not supported at all.

This paper makes two major contributions. First, it identi-

fies the challenges that functional data reshaping operations

present during high-level synthesis. In particular, it discusses

and evaluates the impact of not optimizing such reshaping

operations. Most of the issues encountered are related to

needs for large on-chip buffers or complex signal wiring, in

order to perform the reshaping operations.

Secondly, the paper shows how each challenge is tackled

using a set of simple rewrite rules. The key idea consists of

moving the reshaping operations towards the source that

produces the data in the first place. When this source is, for

instance, a read operation, indexed by a stream of addresses,

the data reshaping operations are implemented by manip-

ulating the read addresses instead of the data itself. As we

will see, manipulating addresses is much cheaper and faster,

than reshaping the data produced by the read operations.

The performance results show that without the optimiza-

tions presented in this paper, a functional approach either

produces designs that do not synthesize due to resource

constraints, or produces designs with abysmal performance.

To summarize, the main contributions of this paper are:

• The identification of the main causes of hardware in-

efficiencies associated with data reshaping operations;

• A rewrite rule approach to optimize away reshaping

operations by merging the reshaping operations when

possible with other primitives;

• An evaluation of this optimization process on matrix

multiplication and 2D convolution on a real FPGA.

The rest of the paper is structured as follows: Section 2

presents background information about functional languages

for hardware generation and highlights the challenges associ-

ated with data reshaping operations. The main contributions

of this paper are presented in section 3, which describes

both the source of inefficiencies for common data reshaping

operations as well as the solution to these problems. Sec-

tion 4 evaluates the approach on matrix multiplication and

2D convolution, showing the effects of the optimizations

presented. Finally, section 5 discussed related work, while

section 6 concludes this paper.

2 Functional IRs for Hardware Generation
Lift-hls [12], Aetherling [5] and Spatial [11] have recently

shown that hardware synthesis from high-level functional

IRs can deliver performance for simple use-cases. This paper

is based on similar principles and this section reviews such

functional IRs and shows their unresolved challenges.

𝐽𝑜𝑖𝑛 : [𝑇 ]𝑀 → [𝑇 ]𝑁 → [𝑇 ]𝑀+𝑁 (1)

𝑆𝑝𝑙𝑖𝑡<𝑁> : [𝑇 ]𝑀 → [[𝑇 ]𝑁 ]𝑀/𝑁 (2)

𝑍𝑖𝑝 :

(
[𝑇 ]𝑁 , [𝑈 ]𝑁

)
→ [

(
𝑇,𝑈

)
]𝑁 (3)

𝑀𝑎𝑝 : (𝑇 → 𝑈 ) → [𝑇 ]𝑁 → [𝑈 ]𝑁 (4)

𝑅𝑒𝑑𝑢𝑐𝑒 : (𝑈 → (𝑇 → 𝑈 )) → [𝑇 ]𝑁 → 𝑈 (5)

(a) Common functional hardware-agnostic primitives. [𝑇 ]𝑁 de-

notes an array of 𝑁 elements of type 𝑇 .

𝑀𝑎𝑝𝑆𝑡𝑚 : (𝑇 → 𝑈 ) →

𝑆
𝑇
𝑀 [𝑇 ]𝑁 →

𝑆
𝑇
𝑀 [𝑈 ]𝑁 (6)

𝑀𝑎𝑝𝑉𝑒𝑐 : (𝑇 → 𝑈 ) →

𝑉
𝐸
𝐶 [𝑇 ]𝑁 →

𝑉
𝐸
𝐶 [𝑈 ]𝑁 (7)

(b) Hardware-specific Map over stream (𝑆𝑇𝑀) or vector (𝑉𝐸𝐶) data,

as in the IRs of Lift-hls [12] and Aetherling [5]. Definitions for

ZipStm, SplitVec, etc. are similar to the hardware-agnostic ones,

except that stream and vector data types are used instead.

Figure 1. Examples of functional primitives. Type variables

𝑇 and 𝑈 are data types,𝑀 and 𝑁 are natural numbers that

mainly encode array length.

2.1 Background
Hardware-agnostic IR. Examples of typical high-level

hardware-agnostic primitives, as they appear in many func-

tional languages, are listed in fig. 1a. They focus on the what,
rather than the how. This frees up the programmer from

having to worry about the underlying hardware specifics to

achieve performance. Instead, the compiler is responsible for

providing performance, given a high-level input program.

Producing high-performance hardware from such high-

level primitives is challenging. The compiler must make

many choices regarding parallelization and buffering strate-

gies. To address this challenge, it is typical to use another IR

level to encode implementation choices.

Hardware-specific IR. At the lowest level, choices about
whether computation is run in parallel or sequential, for

instance, are encoded directly in the IR. The two low-level

Map primitives in fig. 1b express this choice.

The two types of data collections, vectors and streams,

and their corresponding Map processing operations, are il-

lustrated in fig. 2. In the context of hardware generation, a

MapStm produces a sequential process in time, consuming

and producing a stream of data with potential for pipeline

parallelism. In contrast, MapVec processes data in space, re-
sulting in spatial parallelism with the function 𝑓 duplicated

in hardware for every element of the vector.

Lift-hls [12], Aetherling [5], Spatial [11] and Shir [21]

are examples of HLS approaches that use such a type of

functional hardware-specific IR. Further design choices, i.e.

whether data buffered in on-chip or off-chip memory can be

encoded in a similar style, as shown in Shir [21].
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Figure 2. Streamed data (left) is passed element by element

through function 𝑓 of MapStm. MapVec creates multiple in-

stances of 𝑓 to process a vector (right) in parallel.

Memory access to on-chip or off-board RAM (Random Ac-

cess Memory) is represented in the IR with Read and Write
primitives. Read, for instance, receives an n-dimensional

stream of addresses and returns an n-dimensional stream of

data from memory.

Compilation to Optimized Hardware. While hardware-

specific IRs are great at expressing hardware choices, it re-

mains challenging to lower a high-level, hardware-agnostic

IR into such a hardware-specific one. Spatial [11] gets around

this problem by requiring programmers to express directly

their programwith the hardware-specific IR. In contrast, Lift-

hls [12], Aetherling [5] and Shir [21] tackle this problem

head on using a system of rewrite rules.

A rewrite rule could, for instance, parallelize a Map. Ad-
ditional conditions may further restrict the application of a

rule. The following example shows how a hardware-agnostic

input program to the compiler, eq. (8), could be lowered step

by step, using rewrites, into a hardware-specific expression

eq. (10) encoding some parallelization optimization:

𝑀𝑎𝑝 (𝑀𝑢𝑙) ◦ 𝑍𝑖𝑝 ◦
(
𝑖𝑛𝑝𝑢𝑡𝐴, 𝑖𝑛𝑝𝑢𝑡𝐵

)
(8)

↓ lowering ↓

𝑀𝑎𝑝𝑆𝑡𝑚(𝑀𝑢𝑙) ◦ 𝑍𝑖𝑝𝑆𝑡𝑚 ◦
(
𝑖𝑛𝑝𝑢𝑡𝐴, 𝑖𝑛𝑝𝑢𝑡𝐵

)
(9)

↓ optimization ↓

𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚 ◦𝑀𝑎𝑝𝑉𝑒𝑐 (𝑀𝑢𝑙) ◦ 𝑆𝑡𝑚𝑇𝑜𝑉𝑒𝑐 (10)

◦ 𝑍𝑖𝑝𝑆𝑡𝑚 ◦
(
𝑖𝑛𝑝𝑢𝑡𝐴, 𝑖𝑛𝑝𝑢𝑡𝐵

)
Since each rewrite is simple and type-preserving, any com-

bination of rewrites will preserve program semantics. Each

intermediate step (between two rewrites) results in an ex-

pression that is synthesizable. Furthermore, the rewrites are

designed so that it is possible to apply them in any order

until a fixed-point is achieved.

Once all rewrites have been applied, a simple process turns

the final hardware-specific representation of the program,

eq. (10), into a hardware description based on VHDL (VHSIC

Hardware Description Language) code. This paper’s method-

ology builds on top of prior work by Shir [21].

2.2 Data Reshaping Challenges
Despite all the advantages of a high-level functional ap-

proach to hardware design, there are some cases where these

concepts are too far away from the hardware world. In par-

ticular data reshaping operations such as transposition or

sliding of data, as used in 2D convolution for instance, might

require large amounts of hardware if implemented naively.

Nested Map also cause problems when accessing different

input data as in the case of MxM. In such cases, the input

data must be repeated multiple times. A trivial task in pure

software, since memory can be read multiple times. However,

in the hardware world, data arrives in the form of streams

from memories or data generators. Repeating such a data

stream is a non-trivial business, since its state needs to be

reset and some control mechanism needs to determine how

many times the stream needs to be repeated. This might not

be supported by the streaming protocol, or at best ’only’ in-

troduces long latency if the computation is deeply pipelined.

These issues are not specific to just the compiler presented

in this paper, but to all functional based approaches for hard-

ware generation. Direct compilation from such a representa-

tion to hardware sometimes results in slow performance or

even non-synthesizable hardware designs, as we will see in

the evaluation in section 4.

Table 1 provides a feature table that shows the limitations

of state-of-the-art functional approaches for high-level syn-

thesis. As can be seen, Lift-hls [12] provides none of the data

reshaping optimizations but manages to implement MxM

with a non-generic work-around for the data repetition. The

challenges around transposition or sliding windows are left

untouched, which is why convolution cannot be realised.

Aetherling [5] has not support for repetition of streams,

transposition and is therefore unable to encode matrix mul-

tiplication or 2D convolutions. Spatial [11] is able to express

the above data reshaping operations, but since there are no

hardware-agnostic primitives, it is up to the user to perform

the optimizations manually. Finally, Spiral [22] is not very

generic and focuses mostly on FFT (fast Fourier transform).

2.3 Summary
The goal of this paper is to show how to turn high-level,

hardware-agnostic programs into high performance designs

in the presence of data reshaping operations. The main con-

tributions of this paper are two-fold. First, it identifies the

problems created by data reshaping in the context of hard-

ware synthesis. Secondly, it shows how to make these prob-

lems disappear — literally — by applying rewrite rules.

These contributions will benefit all functional-based IR

used for high-level synthesis. Furthermore, although the

approach is evaluated on two applications — matrix mul-

tiplication and convolution — that exercise the reshaping

operations presented, it is applicable to any application ex-

pressed as a combination of dense array operations.
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Lift-hls [12] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Aetherling [5] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Spatial [11] ✗ — manual — ✓ ✓ ✓ ✓

Spiral [22] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Features of related work compared to this paper.

3 Rewriting Reshaping Operations
A rewrite rule system is used to generate high performance

designs in the presence of reshaping data. As this section will

show, rewritesmake data reshaping operationsmore efficient

on the underlying hardware, while preserving the program

semantics. Instead of reshaping the data, as implied by the

programmed algorithm, it is more efficient to reorganize the

read addresses of that data in memory instead.

3.1 Repetition of Data
Generally, in an accelerator design the application’s input

data is read from memory and then streamed through the

compute logic of the FPGA. However, some applications

require the input data to be repeated.

One simple example for this is the creation of all possible

pairs of the rows of two matrices, as in this functional code:

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑟𝑜𝑤𝐴 => (11)

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑟𝑜𝑤𝐵 => 𝑍𝑖𝑝𝑆𝑡𝑚 ◦
(
𝑟𝑜𝑤𝐴, 𝑟𝑜𝑤𝐵

)
)

◦ 𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐵)
◦ 𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐴

Here, the outer map operates on the input matrix𝐴, while

the inner map operates on input matrix 𝐵. For functional

programs executed in software, this example works without

any issue. But if hardware is generated in a naive way, by cre-

ating a hardware module for each primitive in the program,

as depicted in fig. 3a, the result will be incorrect.

3.1.1 Problem Statement. A naive hardware implemen-

tation for MapStm would just extract the rows from the input

matrix. Then, the ZipStm returns the pairs of the 𝑛-th row

of matrix 𝐴 and the 𝑛-th row of matrix 𝐵. However, due

to the simultaneous use of parameters from two different,

nested MapStm expressions, the original program specifies a

different behaviour: The rows must be repeatedly read from

memory. The compiler must introduce some extra logic in

the generated hardware design to achieve the correct repeti-

tion of data.

input matrix A

input matrix B

computation
MapStm

MapStm

Zip
Stm

row B

row A

ReadCounter
2D

ReadCounter
2D

(a) The result of the naively generated hardware design is wrong,

because the rows of matrix 𝐴 are not repeated correctly.

input matrix A

input matrix B

computation
MapStm

MapStm

Zip
Stm

row B

row A
Repeat

Zip
Stm

N × row A
row A

ReadCounter
2D

ReadCounter
2D

(b) A Repeat block is inserted to achieve the required repetition of

one of the input rows. This repeat will back-propagate a signal to

the producer to inform that the stream must be repeated.

input A

input matrix B

computation

MapStm
MapStm

ReadRepeatCounter
2D MapStm

Zip
Stm

row B

Zip
Stm

row A
N × row A

N × each
row A

ReadCounter
2D

(c) The Repeat has moved into the address generation, to remove

the need to back-propagate repeat signals and to improve the per-

formance. The Read block for input 𝐴 transforms a 3D stream of

addresses into a 3D stream of data, containing 𝑁 times each row.

Figure 3. Hardware block diagrams to create all pairs of

rows for two input matrices. Counters emit 2D streams of

addresses, that, after reading, result in 2D streams of values.

Newly insertedmodules are orange and have a dashed border.

A dotted signal entering a MapStm means that this signal is

not an input to this MapStm block.

In general, this is required, whenever a lambda is using

an unbound parameter in its body. In the above example,

the inner lambda is accessing the unbound parameter rowA,
which must therefore be repeated.

Amore familiar example for such amemory access pattern

is Matrix Multiplication, with the only difference being the

calculation of the dotproducts from these pairs of rows. This

is under the assumption that the second matrix has been

transposed in memory already. For two 𝑁 × 𝑁 matrices 𝐴

and 𝐵, where𝐴×𝐵 = 𝐶 , each row of matrix𝐴 and the entire

matrix 𝐵 are read 𝑁 times. Thus, the input data must be

repeated to provide the correct data for the computation.
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This data repetition problem is solved by breaking it down

into two simple, automatic steps. First, the compiler detects

unbound parameter accesses and inserts explicit Repeat
primitives around each access. While this might not be the

most optimal location, as we will see shortly, this produces

functionally correct hardware. Secondly, rewrite rules move

these new primitives in the IR to more optimal places to

improved performance, while preserving the functional se-

mantics of the given application.

3.1.2 Insertion of Explicit Repeat. To enable the com-

piler to explicitly encode repetitions in the high-level IR,

the Repeat primitive is introduced first. It repeats the input

stream 𝑁 times to create a matrix of 𝑁 ×𝑀 elements 𝑇 :

𝑅𝑒𝑝𝑒𝑎𝑡<𝑁> :

𝑆
𝑇
𝑀 [𝑇 ]𝑀 →

𝑆
𝑇
𝑀 [

𝑆
𝑇
𝑀 [𝑇 ]𝑀 ]𝑁 (12)

Coming back to the above example, the parameter rowA
is wrapped in such a Repeat. Furthermore, the unbound

parameter from the inner lambda is removed entirely using a

rewrite rule. This produces an expression where the repeated

row of 𝐴 and the matrix 𝐵 are zipped together and fed into

the map expression:

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑟𝑜𝑤𝐴 => (13)

𝑀𝑎𝑝𝑆𝑡𝑚(𝑍𝑖𝑝𝑆𝑡𝑚) ◦ 𝑍𝑖𝑝𝑆𝑡𝑚
◦
(
𝑅𝑒𝑝𝑒𝑎𝑡<𝑁> ◦ 𝑟𝑜𝑤𝐴, 𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐵

)
)

◦ 𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐴

This will repeat one row of matrix 𝐴 𝑁 times before pro-

ceeding to the next row. Thus, the generated hardware design

will contain a new module, as shown in the block diagram

in fig. 3b, and produce the correct result.

Nevertheless, this design is far from perfect as the repeti-

tion of the rows is dynamic and therefore determined during

runtime of the hardware. The counter is unable to predict

when addresses must be repeated. Whenever it emits the

last memory address of a row, the counter has to wait until

it receives a potential repeat signal to decide whether to

repeat the current row or to advance to the next one. Fig-

ure 4a visualizes a pipeline with such a repeat signal. This

pipeline between counter and repeat logic must stall to allow

this communication. As the corresponding timing in fig. 4c

shows, this stall causes a delay which depends on the number

of registers in the data flow.

3.1.3 Repeat Optimization. This section now looks at

how to avoid the delay of the repeat signal. To achieve this,

the compiler applies rewrite rules to move the Repeat in-

serted in the previous step. The Repeat primitives in the

IR are moved step by step towards the IR’s leaves, which

are address counters for reading the program’s input data.

Effectively, the repetition of data is transformed into a more

efficient repetition of addresses, as depicted in fig. 3c.

The counter and repeat logic communicate within the

same pipeline stage, as fig. 4b shows. Thus, the generated

address generation memory access computation
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21 3

repeatreset 1st dim.

addr data
valid valid

data

valid
...

row

pipeline stages

(a) Repetition of data: The address generation part must stall to

allow the repeat logic to communicate with the counter over multi-

ple pipeline stages.

Map(Repeat)

pipeline stages

address generation memory access computation

ReadCounter 2D

21

reset 1st dim.

addr data
valid valid

addr

valid
...

repeat
row

(b) Repetition of addresses: The repeat logic is next to the counter.

They communicate directly, no pipeline stall required.
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(c) The counter must wait 3 cycles

(orange) for a potential repeat signal

before sending the next address row.

Here, a repeat row signal is sent, caus-

ing the address to jump back to a0.
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(d) The repeat signal is

sent instantly when the

row’s last address arrives.

No cycles are wasted due

to pipeline stalls.

Figure 4. Block diagrams and waveforms before (a), (c),

as well as after repeat optimization (b), (d). Here, the 2D

counters emit an 8x8 matrix of addresses. The repeat logic,

Map(Repeat), sends a signal (red arrow) to the address

counter to reset its inner dimension. Grey boxes are reg-

isters. Memory access takes one cycle in this example.

hardware is able to generate valid memory addresses each

cycle, as indicated in fig. 4d.

This optimization is implemented as a set of about 20

simple semantic-preserving rewrite rules which are applied

as a fixed-point iteration over the IR.
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For instance, one rule splits a MapStm to isolate the Repeat
primitive:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑓 ◦ 𝑅𝑒𝑝𝑒𝑎𝑡<𝑁>) ◦ 𝑖𝑛𝑝𝑢𝑡
===⇒ 𝑀𝑎𝑝𝑆𝑡𝑚(𝑓 ) ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑅𝑒𝑝𝑒𝑎𝑡<𝑁>) ◦ 𝑖𝑛𝑝𝑢𝑡 (14)

While another rule moves the repetition across the Read
primitive to cause a repetition of memory addresses:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑅𝑒𝑝𝑒𝑎𝑡<𝑁>) ◦ 𝑅𝑒𝑎𝑑 ◦ 𝑖𝑛𝑝𝑢𝑡
===⇒ 𝑅𝑒𝑎𝑑 ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑅𝑒𝑝𝑒𝑎𝑡<𝑁>) ◦ 𝑖𝑛𝑝𝑢𝑡 (15)

After applying such rewrites, the Repeat primitives will

eventually reach an address counter. In the IR, counters are

defined based on an initial value 𝐶0, a step size 𝐶𝑆 and a

maximum value 𝐶𝑀 :

𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝐶0,𝐶𝑆 ,𝐶𝑀> :

𝑆
𝑇
𝑀 [𝑇 ] (𝐶𝑀−𝐶0)/𝐶𝑆

(16)

Given the example in eq. (13), the automatic rewriting

process returns the following optimized expression. This

time, the part for reading input matrix 𝐴 is expanded to

show the repetition next to the counter (last two lines):

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑟𝑜𝑤𝐴 => (17)

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑟𝑜𝑤𝐵 => 𝑍𝑖𝑝𝑆𝑡𝑚 ◦
(
𝑟𝑜𝑤𝐴, 𝑟𝑜𝑤𝐵

)
)

◦ 𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐵)
◦ 𝑅𝑒𝑎𝑑
◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑅𝑒𝑝𝑒𝑎𝑡<𝑁>)
◦ 𝑆𝑝𝑙𝑖𝑡<𝑁> ◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 1, 𝑁 ∗ 𝑁 − 1>

This address generation no longer simply increments its

value, but jumps back to the beginning of the current row,

whenever a repetition is desired. The compiler is able to

generate very efficient hardware for such a combination of

counters and repeat modules. A valid address value is pro-

duced each clock cycle. This way, the repetition problem is

solved statically, during compile-time, and the problem of

run-time pipeline stalls, as mentioned above and depicted in

fig. 4c, disappears. This will lead to improved overall perfor-

mance, as evaluated in section 4.

3.2 Stream and Vector Conversions
Stream and vector types allow to easily express designs with

different area usage and performance characteristics on the

FPGA. For design space exploration the compiler must be

able to trade in available resources for increased through-

put with a more parallelized design. For this, stream-based

primitives are simply substituted with their vector-based

counterpart. If, for example, a MapStm with a function 𝑓 is

replaced by a MapVec, many instances of 𝑓 will be created to

process all the elements in parallel. Mixed stream and vector

designs are also possible by first splitting the input stream

and then only parallelizing the inner stream part.
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(a) Fully stream-based design

with only one multiplier. The

memory output width matches

the input width of the computa-

tional part.
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(b) StmToVec is inserted to con-

nect the new 4x parallelized com-

putation to the remaining part

of the design. The memory port

width is now the bottleneck.
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(c) Memory width scaled by 4.

VecToStm is inserted to connect

it to the rest of the design. To

remove such conversions, the

VecToStm is moved (red arrow)

until it reaches the StmToVec.
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(d) Final design after rewriting:

The high memory bit-width is ex-

ploited by the parallelized com-

putation. The performance is no

longer impaired by the conver-

sions.

Figure 5. Rewriting process from initial design (a) through

intermediate steps (b) and (c) to fully parallelized design (d).

All wires (black lines) have the same bit-width.

3.2.1 Parallelization. Given an initial design, as seen in

fig. 5a, it is possible to parallelize it by first converting the

stream into a vector, using StmToVec, and then by perform-

ing the computation in parallel as shown in fig. 5b.

With the computation parallelized, the bandwidth of the

data source —usually memory— must be increased, as in

fig. 5c, to feed enough data to the computational part. Other-

wise, the generated hardware would not perform well due to

waiting times. Again, a VecToStm conversion must be used

to maintain interoperability with the remaining part of the

accelerator design.

After increasing the memory’s bandwidth, the communi-

cation between this source of data and computation can still

contain some ’other operations’, as in fig. 5c. These opera-

tions may consist of further computations or even data type

conversions, because the memory’s hardware interface may

differ from the required input data type of the computation.

The overall performance is still impaired by the communica-

tion bottleneck between memory and computation.

3.2.2 Conversion Optimization. In order to speed up

the communication between memory and computation, a

design as shown in fig. 5c must be transformed into a design

as in fig. 5d.
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The compiler achieves this optimization automatically by

moving the VecToStm primitive away from its data source,

through the ’other operations’, towards a potential StmToVec
primitive. Once these two conversions meet in the IR, the

communication bottleneck is fixed, by removing both con-

versions with the following rewrite rule:

𝑆𝑡𝑚𝑇𝑜𝑉𝑒𝑐 ◦𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚 ◦ 𝑖𝑛𝑝𝑢𝑡
=⇒ 𝑖𝑛𝑝𝑢𝑡 (18)

The VecToStm primitive is moved through the IR by ap-

plying a set of about 20 rewrite rules, some of which are

described below. If, for example, a VecToStm in combination

with another function 𝑓 is found in a MapStm, it is isolated
with the following map-fission rule:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚 ◦ 𝑓 ) ◦ 𝑖𝑛𝑝𝑢𝑡
=⇒ 𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑓 ) ◦ 𝑖𝑛𝑝𝑢𝑡 (19)

The rewriting system now continues to move the combi-

nation of MapStm and VecToStm further away from the data

source and towards a potential StmToVec. A map-fusion rule

combines two MapStm into a single one, enabling further

rewrites to then move the VecToStm through function 𝑓 :

𝑀𝑎𝑝𝑆𝑡𝑚(𝑓 ) ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦ 𝑖𝑛𝑝𝑢𝑡
=⇒ 𝑀𝑎𝑝𝑆𝑡𝑚(𝑓 ◦𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦ 𝑖𝑛𝑝𝑢𝑡 (20)

If a VecToStm meets a JoinStm primitive during its relo-

cation in the IR, it is stuck and cannot skip this JoinStm.
It is impossible to replace a 𝐽𝑜𝑖𝑛𝑆𝑡𝑚 ◦𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚 combina-

tion with another expression, where the VecToStm occurs

on the left-hand side, while leaving the overall semantics

untouched. Therefore, the JoinStm also needs to be pushed

through the IR as well, to make room for a more parallelized

design. One of the rewrite rules responsible for this works as

follows, where AnyExpr is a placeholder for any expression:

𝐴𝑛𝑦𝐸𝑥𝑝𝑟 ◦ 𝐽𝑜𝑖𝑛𝑆𝑡𝑚 ◦ 𝑖𝑛𝑝𝑢𝑡
=⇒ 𝐽𝑜𝑖𝑛𝑆𝑡𝑚 ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝐴𝑛𝑦𝐸𝑥𝑝𝑟 ) ◦ 𝑖𝑛𝑝𝑢𝑡 (21)

In summary, memory and computation related paralleliza-

tion optimizations easily cause a demand for additional con-

versions to be inserted into the IR to preserve a feasible

design. These conversions, namely VecToStm and StmToVec,
are a performance bottleneck for the hardware design. The

rules presented exemplify how VecToStm is moved in the IR

to eventually find a matching StmToVec and then annihilate

both conversions. Once the fixed-point iteration terminates,

the communication wires between a wide memory and a

parallelized computation are also parallelized, as in fig. 5d.

3.3 Transposition
If the input data for MxM or convolutional layers is too large

for the FPGA’s on-chip buffers, tiling is applied. The large

input matrix is partitioned into several small tiles, which are

then processed one by one.

PermuteVec
0
1
...
N-1

...
M*N-1

0
N

M*N-N
...

...
M*N-1

(a) Naive transposition of 2D vectors based on the PermuteVec
primitive and the permutation function _ 𝑖 => 𝑖/𝑁 +(𝑖 mod 𝑁 )∗𝑀 .

MapStm

01...N-1
0N...M*N

-N...M*N
-10N...N*M

-N

MapStm

Add

Counter

Counter

(b) Optimized hardware to generate transposed 2D addresses. The

complex wire mesh, as in fig. 6a, is no longer required.

Figure 6. Block diagrams for transposition of 2D data.

Using the Split primitive, horizontal slices are easily ex-

tracted from matrices. Full tiling, however, also requires

these slices to be split into vertical chunks. For this, the

Split primitive is applied on the transposed matrix. With

this simple trick, tiling with𝑀 by 𝑁 tiles is expressed as:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ◦𝑀𝑎𝑝 (𝑆𝑝𝑙𝑖𝑡<𝑀>) (22)

◦𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ◦𝑀𝑎𝑝 (𝑆𝑝𝑙𝑖𝑡<𝑁>)

To implement transposition, which is a special case of

permutation, the PermuteVec primitive is first introduced:

𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑉𝑒𝑐<(𝑁 → 𝑁 )> :

𝑉
𝐸
𝐶 [𝑇 ]𝑁 →

𝑉
𝐸
𝐶 [𝑇 ]𝑁 (23)

It operates on a vector of 𝑁 elements by applying a stati-

cally known permutation function (𝑁 → 𝑁 ) to manipulate

the order of elements based on their indices.

Now, with this new primitive, transposition of 2D vectors

is expressed by first flattening the𝑀 by 𝑁 input matrix using

JoinVec, then permuting it with a more complex function,

and finally splitting it again:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑉𝑒𝑐 = 𝑆𝑝𝑙𝑖𝑡𝑉𝑒𝑐<𝑀> (24)

◦ 𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑉𝑒𝑐<(_ 𝑖 => 𝑖/𝑁 + (𝑖 mod 𝑁 ) ∗𝑀)>
◦ 𝐽𝑜𝑖𝑛𝑉𝑒𝑐

Stream-based transposition builds on this but requires the

2D input data to be converted to vectors first:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 = 𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚 (25)

◦𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑉𝑒𝑐 ◦ 𝑆𝑡𝑚𝑇𝑜𝑉𝑒𝑐 ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑆𝑡𝑚𝑇𝑜𝑉𝑒𝑐)
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3.3.1 Problem Statement. As demonstrated, all the re-

quired functionality for transposition is expressible based

on PermuteVec. The generated hardware for this primitive

results in several wire assignments, as depicted in fig. 6a.

For large data structures, the wiring quickly becomes too

complex and requires more area than feasible for the FPGA.

3.3.2 Transpose Optimization. In order to address this

issue, a fixed-point iteration over the IR applies rewrite rules

to express the transposition more efficiently. Similar to the

repeat optimization in section 3.1, the transposition of data

is rewritten as a transposition of memory read addresses.

Initially, the program given to the compiler may contain

the following expression for transposition on data:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 ◦ 𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑚<𝑁> (26)

◦ 𝑅𝑒𝑎𝑑 ◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 1, 𝑀 ∗ 𝑁>

Given this expression, the following rewrite rule moves

the TransposeStm further towards the Read’s input — the

counters that generate the addresses:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 ◦ 𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑚<𝑁> ◦ 𝑅𝑒𝑎𝑑 ◦ 𝑖𝑛𝑝𝑢𝑡
===⇒ 𝑅𝑒𝑎𝑑 ◦𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 (27)

◦ 𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑚<𝑁> ◦ 𝑖𝑛𝑝𝑢𝑡

As a result of this rewriting, the complex data reshaping

operations are placed next to the address counter:

𝑅𝑒𝑎𝑑 ◦𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 ◦ 𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑚<𝑁> (28)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 1, 𝑀 ∗ 𝑁>

Nevertheless, this expression still generates a complex

wiring on the FPGA. The following rewrite rule replaces the

transposition of addresses by a more efficient expression,

based on two simple counters:

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑆𝑡𝑚 ◦ 𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑚<𝑁> ◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝐶0,𝐶𝑆 , 𝑀 ∗ 𝑁>

===⇒ 𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝1 => 𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝2 => 𝐴𝑑𝑑 ◦
(
𝑝1, 𝑝2

)
)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 𝑁 ,𝑀>) (29)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝐶0,𝐶𝑆 , 𝑁>

The corresponding hardware design is shown in fig. 6b

and has no more complex wiring left. After rewriting, this

final, optimized expression is returned:

𝑅𝑒𝑎𝑑 ◦𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝1 => (30)

𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝2 => 𝐴𝑑𝑑 ◦
(
𝑝1, 𝑝2

)
) ◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 𝑁 ,𝑀>)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 1, 𝑁>

3.4 Slide
In order to implement convolution, the hardware-agnostic

IR is extended by a primitive for sliding windows, similar to

the stencil operation in prior works of Lift [7]:

𝑆𝑙𝑖𝑑𝑒<𝑊,𝑆> : [𝑇 ]𝑁 → [[𝑇 ]𝑊 ] (𝑁−𝑊 )/𝑆+1 (31)

parallel 3×3 convolution
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Figure 7. 3×3 convolution with slide parallelization.

For each input element, this operator produces the corre-

sponding ’window’ of𝑊 elements. Depending on the step

size 𝑆 , some of these outputs are skipped.

For 2D convolution, the following combination of primi-

tives expresses a 2D sliding window operation:

𝑀𝑎𝑝 (𝑆𝑙𝑖𝑑𝑒<𝑊2, 𝑆2> ◦𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) ◦ 𝑆𝑙𝑖𝑑𝑒<𝑊1, 𝑆1> (32)

On the hardware-specific IR level, the slide primitive is

refined to operate on streams and vectors:

𝑆𝑙𝑖𝑑𝑒𝑆𝑡𝑚<𝑊,𝑆> :

𝑆
𝑇
𝑀 [𝑇 ]𝑁 →

𝑆
𝑇
𝑀 [

𝑉
𝐸
𝐶 [𝑇 ]𝑊 ] (𝑁−𝑊 )/𝑆+1 (33)

𝑆𝑙𝑖𝑑𝑒𝑉𝑒𝑐<𝑊,𝑆> :

𝑉
𝐸
𝐶 [𝑇 ]𝑁 →

𝑉
𝐸
𝐶 [

𝑉
𝐸
𝐶 [𝑇 ]𝑊 ] (𝑁−𝑊 )/𝑆+1 (34)

With these primitives an efficient parallel convolution is

achieved, as depicted in fig. 7.

3.4.1 Problem Statement. The hardware implementation

of SlideStm is based on a shift register that emits its entire

contents, the window vector, whenever a new input is re-

ceived. The parallel variant SlideVec creates a wiring mesh

in hardware, similar to fig. 6a, but even more complex, be-

cause every input signal is connected to𝑊 /𝑆 outputs. For

large window sizes, either an enormous shift register or com-

plex wiring is inferred, which may not fit onto the FPGA.

3.4.2 Slide Optimization. An optimization is required to

implement the elaborate slide operation on real hardware.

Similar to the optimizations for repetition and transposition,

in sections 3.1 and 3.3, instead of reshaping data, the ad-

dresses of that data in memory are reorganized, which is

more efficient. This is achieved by another rewrite-based

fixed-point iteration over the IR. To describe this process on

an example, the following initial expression is considered:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦ 𝑆𝑙𝑖𝑑𝑒𝑆𝑡𝑚<𝑊,𝑆> (35)

◦ 𝑅𝑒𝑎𝑑 ◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑒𝑝, 𝑁>
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First, a rewrite rule moves the SlideStm primitive to the

input of Read, so that it operates on the addresses:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦ 𝑆𝑙𝑖𝑑𝑒𝑆𝑡𝑚<𝑊,𝑆> ◦ 𝑅𝑒𝑎𝑑
===⇒ 𝑅𝑒𝑎𝑑 ◦𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) (36)

◦ 𝑆𝑙𝑖𝑑𝑒𝑆𝑡𝑚<𝑊,𝑆>

In the next step, a rewrite rule replaces the slide over

addresses by a more efficient combination of counters that

produces the same values:

𝑀𝑎𝑝𝑆𝑡𝑚(𝑉𝑒𝑐𝑇𝑜𝑆𝑡𝑚) ◦ 𝑆𝑙𝑖𝑑𝑒𝑆𝑡𝑚<𝑊,𝑆>

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑒𝑝, 𝑁>

===⇒ 𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝1 => 𝑀𝑎𝑝𝑆𝑡𝑚(_ 𝑝2 => 𝐴𝑑𝑑 ◦
(
𝑝1, 𝑝2

)
)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<0, 𝑠𝑡𝑒𝑝,𝑊 >) (37)

◦𝐶𝑜𝑢𝑛𝑡𝑒𝑟<𝑠𝑡𝑎𝑟𝑡, 𝑆, (𝑁 −𝑊 + 𝑠𝑡𝑒𝑝)/𝑆 + 1>

After these rewrite optimizations, the slide expression is

removed entirely. The generated hardware for the counters

looks similar to the optimized transposition in fig. 6b, only

the counters’ configurations are different. The large shift

registers or wire meshes are in effect replaced by counters,

reducing area while preserving functionality.

3.5 Summary
As seen in this section, data reshaping operations must be

optimized to generate efficient hardware. The key idea is

to move these operations across the other primitives. This

process will either annihilate them altogether, as seen for

the conversions between streams and vectors, or it might

bring the reshaping operations close to a counter, where the

operation is optimized away.

4 Evaluation
In normal compiler operation, all the presented optimiza-

tions are enabled by default. To evaluate the data reshaping

optimizations and show how much they improve perfor-

mance, some of the rewrite rules are explicitly disabled in

the following experiments.

The compiler is implemented in Scala and the input pro-

grams are written in a DSL (Domain Specific Language)

embedded in Scala. The compiler generates VHDL files from

these high-level specifications in just a few seconds. Quartus

Prime 19.2 synthesizes these for the Intel Arria 10 GX FPGA

which is connected to an Intel Xeon machine via PCIe Gen

3 x8. All synthesized designs meet the timing requirements

with a clock frequency of 200Mhz.

Tiled MxM and 2D convolution serve as the main bench-

marks, operating on randomly generated input data sets. The

results computed by the real FPGA are verified against a ref-

erence CPU implementation. A cycle counter on the FPGA

measures the end-to-end runtime, which includes the initial

input data transfer to the FPGA, as well as the transfer of

the results back to host RAM.

Table 2. Generated tiled matrix multiplication designs with

a different rewrite optimizations enabled. The input matrix

consists of 4096×4096 8-bit integers. The tile size is 512×2048.
The generated hardware designs use 2048 multipliers.
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1 not synthesizable!

2 ✓ 0.3 1 <1% 38% 53% 67%

3 ✓ ✓ 81.9 409 20% 32% 53% 67%

4 ✓ ✓ ✓ 290.9 1455 71% 31% 53% 67%

∗
OPC represents parallel mul-add operations per cycle.

∗∗
DSP efficiency is the proportion of the overall runtime in which the

DSPs are used, i.e., OPC / DSPs.

4.1 Tiled Matrix Multiplication
In tiled MxM, the input tiles are processed separately and

accumulated directly on the FPGA to form a tile of the re-

sulting matrix. Table 2 lists the tiled matrix multiplication

experiments, with different rewrite rules enabled. They are

based on the following input program code, which is all the

user has to provide to the compiler. The optimizations are

applied automatically, if not explicitly disabled.

Map(_ row1 =>
Map(_ row2 =>

Reduce(_ a => Add(a),
Map(_ m => Mul(m), Zip(row1 , row2))),

matrix2),
matrix1)

The first experiment shows, that with all the rewrite rules

disabled, the generated design cannot be synthesized for

the FPGA. The stream-based or vector-based transpositions

still remaining in the IR either produce too large on-chip

buffers, or too complex wiring. The Transpose rewrite rule

must be enabled to generate feasible designs, as the following

experiments 2–4 show.

The performance of the second experiment suffers from

the repeat problem, as described in section 3.1. The efficiency

of the DSPs (Digital Signal Processors) is low. Less than 1%

of the overall runtime is actually used to perform useful

operations on a DSP. The remaining time is spent waiting

for input data to arrive due to pipeline stalls, as seen in fig. 4c,

due to the need to back propagate the repeat signals.

In experiment 3 all the rewrite rules for the Repeat op-

timization are enabled. This leads to a few hundred times

increase in performance, with a DSP efficiency of 20%.
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Table 3. Generated 2D convolutional layer designs with

different rewrite rules. The input image has 1024×1024 8-bit
integers. The tile size is 128×128. The kernel weights are 3×3
with 3 input and 64 output channels.

Rewrites Performance Resources
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5 not synthesizable!

6 ✓ not synthesizable!

7 ✓ ✓ 3% 3% 17% 6% 28%

8 ✓ ✓ ✓ 3% 3% 17% 6% 28%

9 ✓ ✓ ✓ ✓ 76% 80% 14% 6% 28%

∗
Throughput is the ratio of the experiment’s read and write speeds

compared to that of memcopy.

When all optimizations are enabled, the DSP efficiency of

experiment 4 increases by 3.5× compared to experiment 3,

so that the DSPs are used in 71% of the overall runtime. Fu-

ture work will look at increasing efficiency further, by using

double-buffering to overlap tile loading with computation.

4.2 2D Convolution
In this section, the rewrite rules are evaluated on tiled 2D

convolution. The high-level Scala code given to the compiler

specifies a full convolution as found in typical convolutional

neural networks:

Map(_ weight =>
Map(_ rowGroup =>

Map(_ window =>
Reduce(_ a => Add(a),

Map(_ m => Mul(m), Zip(window ,weight))),
Slide(rowGroup)),

Slide(input)),
weightGroup)

The results are shown in table 3. The performance is eval-

uated using memory throughput, since this benchmark is

memory bound. The throughput in table 3 is specified as

a percentage in comparison to the maximum throughput

achieved by memcopy. This value has been measured with a

separate memcopy benchmark and is 6.5GB/s, which is in

line with the maximum theoretical PCIe speed.

The first two convolution experiments show that the Slide

and Transpose optimization must be enabled to generate

synthesizable designs. Again, without these rules the de-

sign would require too much on-chip memory or cause too

complex wire routing than feasible for the FPGA.

Once the rules are applied, as in experiments 7–9, the

generated hardware design is able to run on the FPGA. With

more rewrite rule optimizations enabled, the throughput

increases from 3% up to 76% of its maximum possible value.

The introduction of the repeat rewrite rules do not have a

noticeable effect on the performance of a parallelized convo-

lution, because only vectors are repeated here, which does

not induce much overhead. However, enabling the conver-

sion optimization does increase performance by 25×.

5 Related Work
Hardware Design Languages. Formerly “very high level”

hardware design languages like VHDL, Verilog, and System-

Verilog are now considered low level. Fleet [29], Esterel [6],

and Bluespec [18] raise the abstraction level but still require

hardware expertise. This contrasts with hardware-agnostic

approaches, such as the one presented in this paper.

High-Level Synthesis. Many approaches, e.g., LegUp [4]

and SOFF [9], take code in a C-like language to generate

hardware. The FPGA vendors Intel and Xilinx have their

own languages: Intel OpenCL SDK, Vivado HLS and SDAccel.

The user provides program code annotations to instruct their

compilers about hardware optimizations. To reduce this man-

ual effort, HeteroCL [13] offers a more abstract program spec-

ification. Since these are based on C-like code, they inherit all

the problems of such approaches: vendor-specific optimiza-

tions complicate performance portability [19]. Software-like

representations are not well suited to describe hardware and

may generate unpredictable results [17].

Besides C code, functional languages are also used for HLS,

as in C_ash [1], Chisel [2], Delite [20, 28], AnyHSL [19] and

others [16, 30]. There are also languages for HLS that model

dataflow, like [8, 10, 27] and LiquidMetal [3]. T2S-Tensor [25]

presents a framework for optimizing and generating systolic

arrays for FPGA. The Spatial [11] language and compiler

enable the user to provide a high-level algorithmic specifica-

tion for hardware generation. However, these specifications

contain hardware details after all. While these proposed ap-

proaches are a step in the right direction, they still require

hardware expertise.

Other projects like DNNWeaver [23] and [15] employ

large-scale templates to generate hardware. Although the

templates can be configured by adjusting their parameters,

these approaches are not as flexible and generic as IR-based

ones and are restricted to certain application types.

Optimizations Using Rewrite Rules. Rewrite rules offer
a systematic way to modify programs. This is used for design

space exploration and design optimization. Similar to this

work, Lift [26], Lift-hls [12], Shir [21], Aetherling [5], and

Spiral [22] leverage the mechanism of rewrite rules. As seen

in the motivation of this paper, all these approaches lack

optimizations for data reshaping operations and are unable

to express efficient tiled MxM and 2D convolution.
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Shir [21] is a framework to synthesize hardware designs

from a functional IR. Its focus lies on the ability to encode

arbitrary memory usage in the IR. Similar to this paper, Shir

uses rewrite rules to optimize their memory design and in-

crease the design’s performance. This paper builds on top of

Shir but, instead, focuses on data reshaping optimizations

using rewrite rules and introduces tiled designs for matrix

multiplication and 2D convolution.

Glenside [24] presents an IR with access patterns to cir-

cumvent the issue of implicit repetitions by avoiding name

binding (lambdas) and higher order functions altogether.

This, however, prevents the programmer from using well-

known functional patterns, e.g., Map, and puts the additional

task of choosing the right access patterns on the program-

mer’s shoulders. Moreover, this requires the definition of

specialized operators like reduceSum and dotProd in the

Glenside IR. In contrast, the high-level IR presented in this

paper supports lambdas and higher order functions, which

enable the programmer to specify arbitrary programs on any

dimensional data in a familiar way with only a few common

functional primitives. Furthermore, Glenside does not gener-

ate hardware designs but rewrites the program to match a

predefined implementation, not exploiting the flexibility of

the FPGA. They neither discuss how expensive operations

like transposition could be achieved in hardware, nor show

any performance results.

6 Conclusion
As seen in this paper, a functional approach for HLS is chal-

lenging in the presence of data reshaping operations. If not

handled carefully, such operations can lead to incorrect de-

signs (repetition), non-synthesizable design (transpose, slide)

or poor performance (repetition, stream/vector conversion).

This paper has shown how all these challenges are solved

through the introduction of an explicit repeat primitive and

through the application of simple rewrite rules. These rewrite

rules optimize the design by moving the data reshaping oper-

ations in the IR closer to the counters, or even by removing

these operations altogether.

The evaluation on a real Intel Arria 10 FPGA shows that

performance is increased by up to 25× for matrix multiplica-

tion and convolution applications, when applying the opti-

mizations presented. In addition, we have seen that without

these optimizations, the designs require too many resources

to be synthesized for the FPGA.
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