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An evolving objective function for improved
variational quantum optimisation

Ioannis Kolotouros∗ and Petros Wallden†
University of Edinburgh, School of Informatics, EH8 9AB Edinburgh, United Kingdom

(Dated: November 10, 2021)

A promising approach to useful computational quantum advantage is to use variational quan-
tum algorithms for optimisation problems. Crucial for the performance of these algorithms is to
ensure that the algorithm converges with high probability to a near-optimal solution in a small
time. In Barkoutsos et al [1] an alternative class of objective functions, called Conditional Value-at-
Risk (CVaR), was introduced and it was shown that they perform better than standard objective
functions. Here we extend that work by introducing an evolving objective function, which we call
Ascending-CVaR and that can be used for any optimisation problem. We test our proposed objective
function, in an emulation environment, using as case-studies three different optimisation problems:
Max-Cut, Number Partitioning and Portfolio Optimisation. We examine multiple instances of dif-
ferent sizes and analyse the performance using the Variational Quantum Eigensolver (VQE) with
hardware-efficient ansatz and the Quantum Approximate Optimization Algorithm (QAOA). We
show that Ascending-CVaR in all cases performs better than standard objective functions or the
“constant” CVaR of [1] and that it can be used as a heuristic for avoiding sub-optimal minima. Our
proposal achieves higher overlap with the ideal state in all problems, whether we consider easy or
hard instances – on average it gives up to ten times greater overlap at Portfolio Optimisation and
Number Partitioning, while it gives an 80% improvement at Max-Cut. In the hard instances we
consider, for the number partitioning problem, standard objective functions fail to find the correct
solution in almost all cases, CVaR finds the correct solution at 60% of the cases, while Ascending-
CVaR finds the correct solution in 95% of the cases.

I. INTRODUCTION

We have recently entered the era where quantum
computers have scaled up, from small proof-of-principle
devices to devices that are beyond the classical simula-
tion limit opening the prospect for providing computa-
tional speed-ups. However, we are still very far from the
point that large fault tolerant quantum computers are
developed. Our period has been termed as Noisy Inter-
mediate Scale Quantum (NISQ) device era [2] and refers
to the time that the existing devices vary from ≈ 50
qubits of Google’s quantum-advantage1 experiment [3]
to devices with O(1000) qubits that are anticipated in
a horizon of five to ten years.

There are two paths forward for quantum comput-
ing. The “long-term” path requires to intensify the ef-
forts (theoretical and experimental) to overcome exist-
ing barriers and truly scale up these devices to the large
fault-tolerant regime. The “near-term” one, is to deter-
mine if and how these NISQ devices can be used directly
and offer advantage for problems of practical impor-
tance. A promising approach in the latter path, is the
use of hybrid quantum-classical algorithms. A leading
class of candidate algorithms, both due the possible im-
portance of the applications and the promise it shows,

∗ i.kolotouros@sms.ed.ac.uk
† petros.wallden@ed.ac.uk
1 Also known as “quantum computational supremacy”.

is the class of variational quantum algorithms for opti-
misation problems.

One can divide variational quantum algorithms (see
more details II]) into three main steps. The first step is
to map the targeted problem to the mathematical task
that these algorithms are designed to solve, which is the
search for the ground state energy of a Hamiltonian2.
The second step, is a method to estimate the energy of
a quantum state, given a (polynomial in the size of the
input) number of copies. Finally, the third step consists
of a parameterised family of quantum states (“ansatz”)
and a classical optimiser that given the above tools,
outputs efficiently an approximation of the ground state
energy. This is done by finding the choice of parameters
that lead to the quantum state that has the smallest
energy.

The success of the algorithms depend on all those
steps and extensive research on improving each of them
exists, indicatively, [4] used warm-starting to improve
QAOA on low depth, [5] improved QAOA by intro-
ducing a non-local version which outperformed classical
QAOA on 3-regular graphs, [6, 7] introduced different
procedures on how to optimise the variational param-
eters and [8] used reinforcement learning to assist the
classical optimisation.

2 Mathematically this is simply evaluating the smallest eigen-
value of a Hermitian matrix.
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What we focus in this contribution is the third part,
and specifically on how to use the measurement out-
comes performed in estimating the energy of a quan-
tum state to (i) accelerate the speed and (ii) improve
the accuracy that the classical optimiser finds an (ap-
proximation of the) ground state and thus solves the
problem optimally. Prior to our work, [9] inspired by
statistical physics, used a Gibbs objective function to
improve the performance. Minimising the infidelity be-
tween the parameterised state and a target state [10, 11]
appears to be another promising approach.

For classical optimisation problems, the solution
(ground state) is one of the computational basis quan-
tum states. Preparing a quantum state that has big
overlap with that state is sufficient to give a good and
quick approximation of the ground state. For example,
if one can achieve a constant but possibly small overlap
with the correct solution, it is guaranteed after sampling
this state a constant number of times to obtain at least
one sample of the true ground state. In [1], the authors
used this idea, and instead of evaluating the proxim-
ity of a quantum state to the desired (ground state) by
minimising the (overall) energy, aimed to minimise the
energy of the lowest tail of a quantum state. This, intu-
itively, would succeed quicker in finding a quantum state
that has a non-negligible overlap with the solution (but
not necessarily very high overlap). This state, however,
suffices to solve the problem. This intuition was also
confirmed with numerical simulations. In other words,
the cost function used in the classical optimiser, in or-
der to find the optimal parameters, was not the energy
of the quantum state, but the tail of the corresponding
distribution.

Inspired by this idea but also by adiabatic quantum
computing [12], we consider here an evolving cost func-
tion. In our proposal the way that the cost of a quantum
state is computed, dynamically changes during the clas-
sical optimisation process. We start with a cost function
as in [1] focusing on a small tail, but during the optimi-
sation process we gradually increase the tail (fraction of
the distribution we “count”) until we reach a point that
all the distribution is included i.e. we measure the full
expectation value of the energy (as in “standard” cost
functions).
Our contributions.

• We introduce an evolving objective function that
starts with the CVaR defined in [1] and gradually
in the optimisation process becomes the full en-
ergy of the quantum state. Alternative forms of
this Ascending-CVaR objective functions are con-
sidered and a linear and a sigmoid functions (that
appear to perform better) are selected.

• We test our proposal, with classical numerical
simulations (using up to 20 qubits), both in the
setting of VQE with hardware efficient ansatz and

in QAOA. Our results suggest that our proposal
leads to faster convergence with bigger overlap
with the ideal solution than prior works, while
crucially, succeeds in obtaining the solution in
(many) instances that other techniques fail alto-
gether (see Section VII for statistics and compar-
isons).

• Our analysis is done for three different combina-
torial optimisation problems, namely Max-Cut,
Number Partitioning and Portfolio Optimisation.
We consider many different instances and prob-
lem sizes where the conclusions persist in all cases.
This has importance in its own right, since these
problems are important by themselves, and our
proposal gives an approach to improve the perfor-
mance and bring closer achieving “useful” quan-
tum advantage. Interestingly, our method offered
greater advantage in “hard instances” of the prob-
lems, where the other methods frequently failed
to find the solutions altogether.

Structure. In Section II we give the essential back-
ground: We introduce the variational quantum algo-
rithms and specifically, the variational quantum eigen-
solver and the quantum approximate optimisation algo-
rithm. We then introduce the CVaR objective function
of [1] and finally analyse the three different combinato-
rial optimisation problems that we use as case-studies.
In Section III we introduce our novel method called
Ascending-CVaR and we discuss the hyperparameters
of our model. In section IV we illustrate our method
using a small instance as an example. In Section V we
discuss our methodology. In section VI we present the
results of our method compared to existing objective
functions. We conclude in Section VII with a general
discussion of our method and future work.

II. PRELIMINARIES

We introduce two of the main Variational Quantum
Algorithms [13], the CVaR objective function [1] and
the three types of combinatorial optimisation problems
that we use.

A. Variational Quantum Algorithms

Here we revise the methods with focus on optimisa-
tion problems. The general framework of a variational
quantum algorithm is outlined in Figure 1. The first
step is to map the classical cost function C(x) that de-
scribes the optimisation problem, into an interacting
qubit Hamiltonian HC whose ground state gives the so-
lution we are seeking.
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Figure 1: General framework of a variational quantum algorithm. The optimisation problem, described by a cost
function C(x) is mapped to an interacting qubit Hamiltonian HC . A parameterised family of states (“ansatz”)
U(θ) with random initial parameters is chosen and a classical feedback loop iteratively updates the parameters θ.

The optimisation ends when the stopping condition is met, and the optimal parameters θ∗ are outputted.

The second step is to choose an ansatz family of uni-
tary operators U(θ). This family is both efficiently ex-
pressible and trainable, parameterised by a µ-parameter
vector θ = (θ1, ..., θµ) where µ = O(poly(n)) and n is
the system size. In general, the parameters are initial-
ized at random3. The third step is to evaluate some
objective function, usually taken to be the expectation
value of the problem’s Hamiltonian on the state consid-
ered 〈ψ(θ)|HC |ψ(θ)〉. This is done by preparing the
state (applying the unitary U(θ) on the initial state)
and then measuring the output in the computational
basis and repeating this procedure for a given number
of times (typically called “shots”). This number deter-
mines the accuracy the objective function is evaluated.
The fourth step is to update the parameters and repeat
step three, iteratively using some classical optimiser un-
til a stopping condition is satisfied. We then say that
the parameters are optimal, i.e.

θ∗ = arg min
θ
O (θ, HC) (1)

The state produced by these parameters, |ψ(θ∗)〉 =

U(θ∗) |0〉⊗n, can be used to give an estimate of the
ground state energy of the Hamiltonian HC and thus an
approximate solution to the desired optimisation prob-
lem. The objective function used during this process,
as stated above, typically coincides with the expecta-
tion value of the problem’s Hamiltonian. However, we
note here that other choices may also be possible, es-
pecially if we realise that the true target of the opti-
misation algorithm is to sample, at least once, the op-
timal solution. This can efficiently be produced if the

3 There are cases that a “clever” initialization could lead to faster
convergence [14, 15]

output state has a sufficiently large (or more precisely
simply non-vanishing) overlap with the optimal solution
| 〈ψ(θ∗)|ψopt〉 |2.

1. Variational Quantum Eigensolver

The Variational Quantum Eigensolver, as proposed
by [16], is a hybrid quantum-classical algorithm, orig-
inally designed to solve quantum chemistry problems,
but it can be used to tackle optimisation problems [17].
The main idea is to a map the optimisation problem
into a cost function that is translated into an interacting
qubit Hamiltonian [18], whose ground state corresponds
to the solution of the optimisation problem.

The encoded qubit Hamiltonian, HC , is decomposed
into a linear combination of Pauli strings Pa, consisted
of tensor products of Pauli Matrices σ̂x, σ̂y, σ̂z :

HC =

M∑
k=1

ckPk (2)

where M = O(poly(n)), n is the system size and ck
is the complex coefficient of the Pk Pauli string. How-
ever, for combinatorial optimisation problems where the
Hamiltonian is a diagonal matrix, HC is decomposed
only on Pauli strings consisting of σzi operators.

VQE is initialised by creating a parameterised state
|ψ(θ)〉 whose parameters are iteratively updated by a
classical optimiser so as to minimize an objective func-
tion, usually the expectation value of (2). The param-
eterised state is created by choosing a variational form
U(θ) which acts on the initial state |0〉⊗n and produces
|ψ(θ)〉.
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single layer

|0〉 Ry(θ0,0) Ry(θ1,0)

|0〉 Ry(θ0,1) Z Ry(θ1,1)

|0〉 Ry(θ0,2) Z Z Ry(θ1,2)

Figure 2: Single Layer Hardware Efficient Ansatz for 3
qubits.

Our choice of variational form U(θ) is a hardware
efficient ansatz [1, 19], where the qubits are initialised
in the |0〉 state and Ry(θi)-rotations are applied in each
qubit along with control-Z operators. Each layer of the
variational form consists of (CZ)ij operations with i
the control qubit and j the target qubit, as long as the
condition i < j holds, and Ry(θi) rotations for every
qubit. If p is the number of layers, then the number
of parameters is linear, µ = n (1 + p), in the number of
qubits and the variational form spans every basis state
already within the first layer.

The hardware efficient ansatz falls in the more gen-
eral category of problem-agnostic ansatze, meaning that
the structure of the ansatz carries no information about
the problem itself and is mostly suited for optimisation
problems. Other problems use different ansatz families,
like the Unitary Coupled Cluster which is widely used in
chemistry to obtain the ground state of a molecule [20]
or the Variational Hamiltonian Ansatz which encodes
the problem’s Hamiltonian [21].

2. Quantum Approximate Optimisation Algorithm

The Quantum Approximate Optimisation Algorithm
(QAOA) [22] is a variational quantum algorithm mostly
used in combinatorial optimisation problems, and while
in shallow depths it is analytically and numerically ex-
plored for some problems [23, 24], its performance in
intermediate depths is still unknown.

The QAOA algorithm applies an alternation of two
unitary transformations, one encoding the cost function
HC , U(HC) = e−iγHC , and the other a mixer Hamil-
tonian HB =

∑
σxi , U(HB) = e−iβHB , where γ and β

are variational angles specifying the “time” for which
the unitary transformations are applied. The system is
initialised at the ground state of HB and the alternat-
ing ansatz of U(HB) U(HC) is applied p-times, with
p defining the number of layers of the algorithm (see
Figure 3), producing the state:

. . .

. . .

. . .

|0〉 H

UC(γ1)

Rx(β1)

UC(γp)

Rx(βp)

|0〉 H Rx(β1) Rx(βp)

|0〉 H Rx(β1) Rx(βp)

Figure 3: General framework of a p-layer QAOA
consisting of 2p variational angles.

|β,γ〉 = e−iβpHBe−iγpHC . . . e−iβ1HBe−iγ1HC |+〉 (3)

where |+〉 is the uniform superposition state, γ =
(γ1 . . . , γp) and β = (β1 . . . , βp).

With sufficient repetitions of the algorithm, the ex-
pectation value is calculated as:

Fp(β,γ) = 〈β,γ|HC |β,γ〉 (4)

until the 2p optimal parameters (β∗,γ∗) are found.
If Copt is the optimal cost function, then the target of

the algorithm is to maximise the approximation ratio,
defined as:

r∗ =
Fp(β

∗,γ∗)

Copt
(5)

Finding the optimal parameters is far from trivial
since the expectation value landscape is highly non-
convex, filled with local minima where a classical op-
timiser could easily get stuck.

The hardest part of QAOA, and in general of a varia-
tional quantum algorithm, is finding the optimal param-
eters that will lead in a high overlap with the optimal
(or near-optimal) bit-string or low expectation value.
Recently, [25] proved that training the optimization pa-
rameters is NP-Hard and that the landscape of the ob-
jective function is filled with far-from-optimal local min-
ima. One way to avoid “getting stuck” in a local minima
is using multi-start methods [26] or heuristic methods
like using the global optimum of one layer, in QAOA,
as a starting point for the next [24].

B. Conditional Value-At-Risk

Barkoutsos et al. [1] used an alternative objective
function. They demonstrated that their proposal per-
formed better than minimising the expectation value.
The key observation is that for optimisation problems
the optimal solution is a computational basis state. For
computational basis states, one can compute their en-
ergy (efficiently). For a general quantum state |ψ(θ)〉
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one can prepare and measure it (multiple times) in the
computational basis, and the expectation value of the
energy is simply the average of the individual compu-
tational basis states energies. To find the overlap of
this state with the optimal solution (ground state) one
can simply observe the frequency of the computational
basis state with the smallest energy. Naturally, if that
overlap is too small (or even zero), it is possible that
none of the measurements outcomes will give the solu-
tion. On the other hand it is also clear that the overlap
of this state with computational basis vectors with high
energy are irrelevant for finding the ground state. The
idea of [1] was to use this observation and instead of
using all the measurement outcomes and compute the
expectation value, they used as objective function the
lower tail of the distribution of energies obtained, i.e.
ignored all but a small fraction (with smallest energy)
of their measurement outcomes.

They then demonstrated that their technique suc-
ceeded in getting quicker a quantum state that has a
sufficiently large overlap with the ground state. This
in turn, is sufficient to actually find this ground state,
since as a final step, once the optimal θ∗ is found, one
can keep the computational vector that has the small-
est energy only. Specifically, let Hk be the energy cor-
responding to a computational basis vector, and let us
order them in such a way that larger k corresponds to
larger energy. For each state, one repeats the measure-
mentK-times, so there are (up to)K distinct valuesHk.
In [1] a new parameter α was introduced. Let α ∈ (0, 1]
be the fraction (part of the tail) that we want to keep.
This fraction, typically, needs to be non-negligible (we
can assume for simplicity, that is constant). Then the
objective function that was used, was the average of the
smallest αK samples, i.e.

CV aRα =
1

dαKe

dαKe∑
k=0

Hk (6)

In order to achieve the same accuracy when evaluating
this objective function, as the accuracy achieved when
computing the expectation value using K shots, it is
clear that the number of runs of the preparation circuit
need to be increased to K/α.

As it was proven by [1], the angles θ∗ that minimise
CVaRα do not (in general) correspond to minima of the
expectation value. As a result, the angles that lead to
the smallest possible α-tail differ from the angles that
minimise the average of the samples. This fact moti-
vates to introduce a lower α-tail optimisation so as to
achieve an overlap with the optimal state of at least α,
i.e find optimal θ∗ that satisfy:

| 〈ψ(θ∗)|ψopt〉 |2 ≥ α (7)

C. Combinatorial Optimisation Problems

We test our proposed method in various instances
of three different combinatorial optimisation problems.
These are all important problems in their own right,
so improving the performance of variational quantum
algorithms for these problems is of independent inter-
est. Moreover, testing our proposed objective func-
tion on different types of combinatorial optimisation
problems demonstrates that improvements observed are
generic and motivates further use for different applica-
tions. Given that our proposal’s starting point is the
work of [1], we included the problems that they tested
their proposal to allow for more direct comparison.

The easiest way to use variational quantum algo-
rithms for an optimisation problem is to first map the
problem to a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem. This is what we will do
for all our examples. QUBO problems seek to solve
(find the x that minimises the expression):

min
x

(
bTx+ xTAx

)
(8)

where b ∈ Rn and A ∈ Rn×n. These cost functions can
easily be mapped to an Ising Hamiltonian [27] by first
transforming the binary variables xi ∈ {0, 1} according
to:

xi =
1− zi

2
(9)

where zi ∈ {−1,+1} are spin variables, and then turn-
ing the cost function to a Hamiltonian by promoting
these variables to Pauli σzi operators, one for each qubit
i. The QUBO problem then transforms to

min
z
cTz + zTQz (10)

where the new c ∈ Rn and Q ∈ Rn×n are easily com-
putable.

Then, by replacing the spin variable zi with the Pauli
σzi operator with corresponding eigenvalues {−1,+1},
the problem translates into finding the ground state, i.e.
the spin configuration, of an n-qubit system interacting
with the Hamiltonian:

H =

n∑
i=1

ciσ
z
i +

n∑
i=1

Qijσ
z
i σ

z
j (11)

1. Max-Cut Problem

The first problem is Max-Cut. It is one of the most
studied combinatorial problems in the context of varia-
tional quantum algorithms due to the simplicity and
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guaranteed performance at least for some instances
[22, 23].

Let G(V,E) be a non-directed n-vertex graph, where
V is the set of vertices, E is the set of edges, and wij
are the weights of the edges. A cut is defined as a
bipartion of the set V into two disjoint subsets P,Q,
i.e. P ∪Q = V and P ∩Q = ∅. Equivalently, we label
every vertex with either 0 or 1, where it is understood
that the vertex belongs to set P if it takes the value
0 and to set Q if it takes the value 1. The aim is to
maximise the following cost function:

C(x) =

n∑
i,j=1

wijxi (1− xj) (12)

This intuitively corresponds to finding a partition of the
vertices into two disjoint sets that “cuts” the maximum
number of edges. By applying the transformation, Eq.
(9), the cost function transforms into:

C(z) =
∑
〈i,j〉∈E

wij
2

(1− zizj) (13)

Maximising the cost function above corresponds into
finding the ground state of the Hamiltonian4:

HC = −
∑
〈i,j〉∈E

wij
2

(
1− σzi σzj

)
(14)

Max-Cut is known to be NP-Hard. The best classi-
cal approximation algorithm is that of Goemans and
Williamson which uses semi-definite programming to
achieve an approximation ratio, Eq. (5), r∗ ≈ 0.87856
for all graphs. Note, that being NP-Hard implies that
we do not expect to have an efficient quantum algo-
rithm (poly-time) to solve the problem for its hardest
instances5, but we could definitely get improvements
using quantum algorithms (either by smaller speed-ups
or by heuristics that could solve more instances than
classical heuristics).

Although it was proven that constant-depth QAOA
does not outperform GW for certain class of problems
[5], there are instances where the approximation ratio of
the former is larger than the latter [28]. Note here that
QAOA beats random guessing even at p = 1 [22], while
Machine Learning techniques have been used to classify
for which graph types is better to use QAOA instead
of GW [29]. In general, however, the performance of
QAOA in intermediate depths is still highly unexplored.

4 Note the overall minus sign that turns the maximisation of the
cost function to finding the minimum energy for the Hamilto-
nian.

5 NP is strongly believed to not be included in BQP

2. Number Partitioning

The second problem is Number Partitioning and is
stated as follows. Given a set of N positive integers
S = {n1, n2, ..., nN}, the target is to find a bipartion of
the set S into two disjoint subsets P,Q, where P∪Q = S
and P ∩Q = ∅ so that the difference between the sum of
the elements on the set P and the set Q is minimized.
We thus want to minimize the cost function:

C(x) =

(
N∑
i=1

(2xi − 1)ni

)2

(15)

The binary string x = x1x2 . . . xn corresponds to one
configuration where a number ni is placed in the P set
(xi = 0) or in the Q set (xi = 1). The cost function can
easily be mapped to the Ising Hamiltonian:

HC =

(
N∑
i=1

σzi ni

)2

(16)

By expanding the cost function Eq. (16), the cost
function can be written as:

HC =
∑
i 6=j

(ninj)σ
z
i σ

z
j +

N∑
i=1

n2i (17)

If we neglect the constant term, we can see that the
Number Partitioning problem can be easily mapped to
the Sherrington-Kirkpatrick model which is an energy
minimization problem with an all-to-all random cou-
plings which was recently analysed on [30].

Although the problem is known to be NP-Hard, it
is also known as the “easiest hard problem”. That is,
because there exists a “hard-easy” phase transition [31]
where instances belonging in the easy-phase can be ef-
ficiently tackled using heuristics [32]. Interestingly, it
appears that one may be able to tackle some of the in-
stances in the “hard phase” using variational quantum
algorithms.

3. Portfolio Optimisation

The third problem is Portfolio Optimisation [33, 34]
and is stated as follows. Given a set of n assets
{0, · · · , n}, corresponding expected returns µi and co-
variances Σij , a risk factor q > 0 and a budget B ∈
{1, . . . , n}, the considered portfolio optimisation prob-
lem tries to find a subset of assets P ⊂ {1, . . . , n}
with |P | = B such that the resulting q-weighted-mean-
variance, i.e.

∑
i∈P µi − q

∑
i,j∈P Σij , is maximised. In

other words, we want to maximise the cost function:
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C(x) =

n∑
i=1

µixi − q
n∑

i,j=1

Σijxixj (18)

along with the constraint

n∑
i=1

xi = B (19)

The portfolio vector x ∈ {0, 1}n, consisting of n bi-
nary decision variables, indicates whether an asset is
picked (xi = 1) or not (xi = 0). The constraint in (19)
is translated as an extra penalty term in the Hamilto-
nian (

∑n
i=1 xi −B)2.

The problem is known to be NP-complete [35]. We
apply the transformation, Eq. (9), so the cost function
transforms into:

C(z) = −q
n∑

i,j=1

Σij
4
zizj +

n∑
i=1

 n∑
j=1

qΣijzi
2
− µizi

2


+

n∑
i=1

µi
2
−

n∑
j=1

qΣij
4


(20)

which, along with the extra penalty term, corresponds
to minimising the Hamiltonian :

HC =

n∑
i,j=1

qΣij
4

σzi σ
z
j −

n∑
i=1

 n∑
j=1

qΣijσ
z
i

2
− µiσ

z
i

2


−

n∑
i=1

µi
2
−

n∑
j=1

qΣij
4

+

(
n∑
i=1

σzi +
n

2
−B

)2

(21)
Portfolio optimisation as given in Eq. (18) was re-

cently tackled using variational quantum algorithms
[36], using warm-starting QAOA [4] and on D-wave sys-
tems using quantum annealing [37]. Prior to our work,
[38] developed a quantum-walk-based optimisation al-
gorithm and [39] considered a more general setting of
portfolio optimisation, called dynamic portfolio optimi-
sation, where one has to allocate weights to a number
of assets in a period of time in order to maximise the
overall return.

III. ASCENDING-CVAR

The CVaR cost function of [1] was shown to perform
better in general, than the “standard” expectation value.
There are three observations, however, that motivates
our proposal. First, as noted in [1], the choice of α is

somehow random, and importantly, for different prob-
lems and even for different instances of the same class
of problems, the optimal choice of α varies in a non-
obvious (e.g. monotonic) way. The performance of the
algorithm’s speed, but also if it finds the solution at
all, depends on that choice. The second point is that
optimising with a fixed small α has further disadvan-
tages: (i) it “finds” parameters θ that result to a state
that does not have the greatest overlap with the solu-
tion and (ii) the true running time of the algorithm to
achieve same accuracy is larger, in other words for each
iteration one requires 1/α times more measurements to
achieve the same accuracy in estimating the cost func-
tion (since only the lower α fraction of the measure-
ments are used). Finally, the third observation is that
the CV aRα objective functions with different α have
a different energy landscape. For any fixed choice of
α the optimiser could “get stuck” at a local minimum.
Interestingly, if one varies the α during the optimisa-
tion, while we still ensure that if the algorithm finds
the true ground state it remains there, we also avoid
getting stuck at local minima since those are different
for different choices of α. Therefore if the optimiser
reaches a point that has a local minimum for one value
of α, when α changes this point (may) no longer be a lo-
cal minimum and thus could continue “moving” towards
the true global minimum (ground state).

Let’s say that an optimisation problem has an opti-
mal solution which is a computational basis state and
we denote it as |ψopt〉. Let’s also assume that a param-
eterised family of gates, U(θ), acts on the |0〉⊗n state
and produces the state

|ψ(θ)〉 = aopt(θ) |ψopt〉+ (1− aopt(θ)) |ψother〉 (22)

where |ψother〉 is the superposition of all sub-optimal
computational basis states. Let’s also assume that this
parameterised family of states can achieve a maximum
overlap κ with the optimal solution6. We can write the
state |ψ〉, corresponding to the state with the highest
overlap, without loss of generality as:

|ψ〉 =
√
κ |ψopt〉+

(
1−
√
κ
)
|ψother〉 (23)

Proposition 1. For the family of states in Eq. (22)
and for all α ≤ κ:

min
θ
CV aRα(θ) = min

|φ〉
〈φ|HC |φ〉 (24)

i.e. all CV aRα with α ≤ κ share the same minimum
objective function value which is the smallest eigenvalue
of the Hamiltonian.

6 In other words, the complex coefficient aopt(θ) corresponding
to the probability of sampling the optimal solution Prob(opt) =
|aopt|2 has a maximum value : maxθ |aopt(θ)|2 = κ)
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It is clear from Proposition 1 that all CV aRα(θ) with
α ≤ κ share the same ground state, which is the true
optimum of the optimisation problem. Thus all angles
θ∗ that correspond to a global minimum of CV aRα1

will also correspond to a global minimum of CV aRα2

if α2 ≤ α1 ≤ κ. For example for an ansatz U(θ) that
is able to attain 10% overlap with the optimal com-
putational basis state, if one is able to find the global
minimum of CV aR0.1, which means that 10% of the
measurements correspond to the ground state, then it
is clear that all α < 0.1 will also be minimised by the
same angles.

Proposition 2. Let an optimisation problem with an
optimal solution |ψopt〉 corresponding to a computa-
tional basis state. For any parameterised family of gates
U(θ) that can achieve a maximum overlap κ with the
optimal solution, the angles θ∗ that correspond to the
global minimum of CV aRα1

will also correspond to a
global minimum for CV aRα2

if α1 ≤ α2 ≤ κ. The
converse does not necessarily hold.

In other words, Proposition 2 states that if
θ∗ = arg minθ CV aRα2

(θ) then also θ∗ =
arg minθ CV aRα1

(θ) for all α1 ≤ α2 ≤ κ. This indi-
cates why decreasing α may not seem like a good choice.
If for example the optimiser is able to find the optimal
angles that minimise CV aRα1

with α1 ≤ κ, then for all
α2 < α1 they will still remain optimal angles and thus
will not be able to achieve a higher overlap state.

Proposition 3. A local minimum for CV aRα1
does

not necessarily correspond to a local minimum for
CV aRα2 if α1 6= α2.

Proposition 3 was proven using a counterexample in
[1]. All these Propositions are important for introduc-
ing a non-stationary optimisation technique that avoids
local minima. We know from Proposition 1 that all
CV aRα objective functions with α ∈ (0, κ] share the
same minimum objective value which is the ground
state energy of the Hamiltonian. We also know from
Proposition 2 that many of the global minima for α1

may not be a global minimum for α2 if α1 < α2 and
thus increasing α introduces extra information about
the optimality of states. Finally, Proposition 3 indi-
cates that different objective functions are associated
with different energy landscapes as they do not agree
on the local minima.

However, knowing the maximum overlap κ in ad-
vance is not always possible. In the case of VQE with
a hardware efficient ansatz, it can be shown that κ = 1
and so minθ CV aRα(θ) = min|φ〉 〈φ|HC |φ〉 for every
α ∈ (0, 1]. On the other hand for the QAOA ansatz,
our experiments showed that κ is usually small on low
depth but increases with the number of layers

The cost functions used in variational quantum algo-
rithms, to our knowledge, are “constant in time”, mean-

ing that the whole optimisation is run with a fixed cost
function. To solve the issue of “selecting the best α”, and
the other reasons listed above, we propose to use a dy-
namically evolving cost function, that essentially passes
through a fixed set of α values. In the case of VQE, it
is initialised in a very small value and the optimisation
ends with α = 1 that is the standard expectation value
of the Hamiltonian. We call all these cost functions
Ascending-CVaR. This has also a great(er) number of
free choices, since we can now freely choose the (as-
cending) function. However, all choices we tried for the
ascending function performed (in general) better than
fixed α, which indicates that the evolving cost function
is a promising approach. For the remaining of the paper
we focused on two functions that performed better:

The linear ascending in which the parameter αt is
iteratively and discretely increased by the rule:

αt+1 = αt + λ

CV aRαt
=

1

dαtKe

dαtKe∑
k=0

Hk

(25)

where λ ∈ [0.025, 0.045] is the ascending factor and 0 <
αt ≤ 1.

The sigmoid ascending in which the parameter α is
discretely increased according to the function :

αt =
1

1 + e5−λt
(26)

where λ ∈ [0.3, 0.4] is again the ascending factor and
0 < αt ≤ 1.

To reach this conclusion we tested four different func-
tions, a sigmoid, a linear, an exponential and a logarith-
mic (see Figure 4) on VQE-CVaRαt with various differ-
ent ascending rates. All functions were tested on all
three problems. The metrics used were the magnitude
of the overlap with the optimal solution, the success rate
(i.e. the number of times where it succeeds to achieve a
non-negligible overlap) as well as the average time taken
to achieve at least 10% overlap (for details see V).

The linear ascending, Eq. (25), and the sigmoid as-
cending, Eq. (26), functions have the most steady be-
havior, outperforming the other two types on the ma-
jority of instances. The sigmoid was slightly slower in
terms of speed, which is why we mainly used the linear
one. However, as we will discuss in the next section, it
appears to be better in some classes of problems espe-
cially on harder instances with ∼ 50 qubits. It seems
that in those cases, the optimiser is doing better spend-
ing the majority of its iterations on low α values and
thus the sigmoid performs better.

It is worth noting that increasing α to α = 1 where
it becomes the expectation value is not necessary. The
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Figure 4: Different choices for the ascending function.
All functions start from the same initial point,
α0 = 0.01 and ascend until αf = 1 is reached.

Figure 5: Portfolio optimisation instance for 18 assets
and different ascending functions. The blue line

indicates the linear ascending and always achieves a
high overlap with the optimal solution in contrast to
the orange line, the exponential ascending, which fails

in almost any instance.

whole point of variational algorithms is to achieve a con-
stant non-negligible overlap with the optimal or near-
optimal solution. For that reason one could only vary α
until it reaches a threshold ε truncating the optimisation
and reducing the number of iterations by a considerable
amount.

The pseudocode for the Ascending-CVaR algorithm
is outlined in Algorithm 1

IV. WHY OUR METHOD WORKS: AN
EXAMPLE

It would be illustrative to describe how local minima
may vanish when the objective function is changed dur-

Algorithm 1: General Ascending-CVaR
Optimisation Algorithm

Require: Cost Function C(θ);
θ(0) ← Random initial parameters in the domain of
C(θ);
α0 ← Initial α;
g(α)← Ascending function;
U(θ)← Ansatz Family
for i = 1, 2, . . . do

θ∗ = argminθ CV aRαi−1(θ) with initial
parameters θ(0);

if stopping condition is met then
return θ∗;

end
αi ← g(αi−1);
θ(0) = θ∗;

end

ing the optimisation. In Figure (6) we plot the CV aRα
objective function landscape for different values of α.
We choose to draw the landscape for the QAOA algo-
rithm for depth p = 1 because the two parameters β, γ
make it suitable to visualise in a 2D plot. On the con-
trary, VQE with a hardware efficient ansatz even on
depth p = 1 would require 2n parameters.

It can be easily seen that the positions of the local
minima change but the position of the true global min-
imum remain the same while the condition α ≤ κ holds
(see Proposition 1). However, in order to make it clearer
for the reader, we choose to circle the position of a local
minimum, located at γ = 0.15, β = 1.75. In this case,
we can see how the local minima vanishes during the
variation of the objective function. An optimiser that
could stuck during the optimisation on a fixed value of
α could “unstuck” with the change of α.

The problem corresponding to the figures is a small
instance of the Number Partitioning problem with size
n = 8. Even in a small size instance like this, the land-
scape is full of sub-optimal local minima where the op-
timiser could falsely converge to. This case-problem
however does not constitute an example to prove the
value of our method but only to visualise the changes in
the energy landscape. The biggest improvements were
observed in high dimensional expressive parameterised
family of gates like the VQE with a hardware efficient
ansatz or larger depth QAOA which cannot be plotted
in a two-dimensional contour.

V. METHODS

One common metric used, especially in QAOA, is the
approximation ratio as given in Eq. (5). However, as
we noted earlier, the true aim of variational quantum
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Figure 6: Visualisation of local and global minima for different CV aRα objective functions. On the top two
figures, corresponding to α = 0.05 on the left and α = 0.08 on the right, you can see the local minima drawn in
the red circle. However, on the bottom figures, corresponding to α = 0.11 on the left and α = 0.14 on the right,

the local minima no longer exist.

algorithms for combinatorial optimisation is to obtain
quickly a sufficiently high (but not necessarily close to
unity) overlap with the optimal solution. The CVaR
method, for example, is constructed in a way that the
maximum overlap achieved is not unity but determined
by the risk α. While our approach does achieve high
approximation ratio, to make a fair and more complete
comparison with prior works and importantly with [1],
we use different metrics. Specifically, to benchmark and
test our proposed method, we used three different types
of metrics. The first is the overlap with the optimal
solution. If |ψopt,i〉 is a d-degenerate ground state of
the problem Hamiltonian, then the overlap is defined
as:

d∑
i=1

| 〈ψ(θ)|ψopt,i〉 |2 (27)

i.e. the probability of obtaining the optimal solution,
given the parameters θ. It follows that the parame-
terised state with the highest overlap with the optimal

solution leads to sampling that optimal solution with
the least number of circuit executions.

The second metric we want to test is the time taken to
reach a given fixed overlap. We set a threshold of 10%
probability of obtaining the optimal solution and we
tested which method achieves at least that probability
faster. We note however that, in order to test which
method converges to a 10% overlap faster, we have to
use α ≥ 0.1 because all α < 0.1 are not guaranteed to
converge in an overlap of 10% since the parameters θ
than minimise α lead in an overlap smaller than 0.1.

To summarise the results and compare better the dif-
ferent approaches, for each cost function we divided the
problem instances to those that the cost function is suc-
cessful and to those that it fails. The meaning of what
constitutes a “successful” run or a “failed” run cannot
be unambiguously defined. For our work we consider
that an optimiser is successful at a given instance of
a problem if it achieves at least 10% overlap with the
optimal solution. It is clear that as the size of the prob-
lem instances increase, achieving a fixed 10% overlap
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becomes harder7. In our analysis we chose 10% since
this leads to interesting behaviour where the methods
analysed differ in their performance.

In our experiment, for comparing with fixed α we
used four different choices: α = 0.1, 0.2, 0.5, 1. The
α = 1 choice corresponds to the expectation value (it
includes all the measurement outcomes) and it is the
objective function that has been used in all existing
literature apart from [1]. All these were compared with
our proposed αt. We also note that ascending factors
λ ∈ [0.025, 0.045] and λ ∈ [0.3, 0.4] were found to be a
good choice for the three different problems on instances
with 15 to 20 qubits for the linear and sigmoid ascending
respectively.

In the QAOA algorithm we tested instances using
depth p = 1 to p = 6 while on VQE we worked only on
the depth p = 1, since this depth was sufficient to get
very good accuracy. In near term devices for the QAOA
algorithm, increasing the depth even more becomes im-
practical due noise and decoherence. For this reason we
did not consider greater depth, despite the fact that the-
oretically this could lead to better performance. This
means that the variational ansatz for QAOA has only
2 to 12 parameters, i.e. only a fraction of the total pa-
rameters present in hardware efficient ansatz used for
VQE in depth-1.

To account for the different sizes of problem in-
stances, and to make a fair comparison for the speed
of convergence, we used the normalised optimiser it-
erations [40]. Note that this choice is made in order
to be able to compare the performance of the algorithm
among instances that involve different number of qubits,
and see how the improvement offered by Ascending-
CVaR is independent of the instance size. Concretely,
the normalised optimiser iterations is defined as the
number of times the optimiser evaluates the objective
function divided by the function’s number of parame-
ters, i.e. the number of parameters of the ansatz. In the
case of the VQE the number of parameters are n(1 + p)
while on QAOA are 2p. We note however, that the real
time of convergence could be used as seen in Appendix
A, where we compare the performance with respect to
the total number of circuit repetitions. However, as
we show below, there are instances where the constant
CVaR does not achieve even a small overlap with the
optimal solution and in those cases the time taken be-
comes irrelevant.

We ran our experiments on IBM’s Qiskit Aer sim-
ulator, allowing noiseless multi-shot executions of our
circuit. We set the number of executions of our cir-
cuit to K = 1000, which scaled up as K/α with the

7 We should note that even a much smaller overlap is sufficient
to find at least once the solution, provided that the number of
“shots” is sufficiently large.

choice of α. All instances were given a maximum of
(66× parameters) optimiser iterations which is more
than enough iterations for an optimiser to converge to a
minimum in the problems we implemented. They were
initialised with a random choice of parameters, but the
same for all different choices of α. We used the same
gradient-free optimiser, COBYLA [41], for all different
problems and instances as it was shown to outperform
other classical optimisers [17].

VI. RESULTS

We will analyse the results for each of the three com-
binatorial optimisation problems separately. For each of
them we will present the results for VQE with hardware-
efficient ansatz first and then the results for QAOA. We
note that for all three combinatorial optimisation prob-
lems and for all methods used (Ascending-CVaR, con-
stant CVaR, expectation value), VQE performs (much)
better than QAOA, at least for the sufficiently shal-
low circuits that we consider. Our method improves
the performance in both cases (VQE, QAOA) but since
VQE gives much better results for these problems, in
the comparison and discussion we will focus on VQE
instances only.

A. Max-Cut

For the Max-Cut problem we worked on unweighted
graphs with 15-19 vertices, drawn from different graph
classes and sampled them using the NetworkX library
[42].

1. CVaRαt -VQE

For regular graphs, CVaRαt
-VQE behaved equally

well with constant-α’s optimisation as well as with the
expectation value. All of the methods reached the cho-
sen threshold of 10% overlap with the optimal state at
almost equal times without any difficulty. For that rea-
son we focused on harder non-regular instances where
our method outperformed the latter methods. In Ta-
ble I we give a summary of the results for 100 random
non-regular unweighted graph instances with 15 to 19
vertices. We can see that our method succeeds in more
instances while the overlap achieved is also much higher.

There are many reasons why non-regular random
graphs are “harder” than regular graphs. The first is
that the ground state of a regular graph, due to its sym-
metry, is highly degenerate where the optimiser could
easily reach without “stucking” in a sub-optimal mini-
mum. The second is that the Hamiltonian correspond-
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Max-Cut Successful Instances Average Overlap
αt 0.1 0.2 0.5 1 αt 0.1 0.2 0.5 1

Random Graphs 96 84 81 68 53 64.69 12.13 21.45 39.28 36.24

Table I: Results table for the Max-Cut problem (VQE) for 100 random non-regular unweighted graph instances
with 15 to 19 vertices.

ing to a random graph has more distinct eigenvalues
and as it was shown numerically by [17], the number of
distinct eigenvalues correlates inversely with the perfor-
mance of hardware efficient ansatz.

Indicatively, in Figure 7 we plot the probability of
sampling the optimal solution over the normalised num-
ber of iterations for two random graphs with 17 vertices.
For the left figure, we can see how the optimiser for the
Ascending-CVaR optimisation is able to to find the op-
timal solution in under 10 normalised iterations which
by the end of the optimisation is able to increase the
probability up to 70%. Notably the expectation value
or constant CVaR completely fail. The right part of
the figure, gives another example where our approach
performs better. This instance constitutes an example
where smaller α’s do not lead to better performance for
constant CVaR8. We can see in the figure that while
α = 0.1 failed, α = 0.2 was able to achieve a high qual-
ity parameterised state. This is another indication why
our approach is more flexible.

2. CVaRαt -QAOA

Solving the Max-Cut problem using QAOA, with
small depth circuits, does not seem a very promising
approach in any of the methods considered (constant
CVaR or Ascending-CVaR). In terms of speed, all meth-
ods converged equally fast but in states with small over-
lap with the solution (with relatively small differences
within different approaches). Having said that, as ex-
plained below, our method still gives improved perfor-
mance.

While CVaRαt
-VQE optimisation results in high

overlap states, CVaRαt
-QAOA produces “flat” states,

a behaviour also observed in [1]. These states have al-
most equal probability amplitudes to the majority of
the computational basis states. For the Max-Cut prob-
lem, as noted in [22], it seems that the states produced
with QAOA with small p result to states with energy
close to the (random) initialisation point. The spread
of the energies does increase with p, possibly leading

8 In most cases, small α gives better performance, but one cannot
know a-priori which is the suitable α in the constant CVaR case.

to a state close to the ground state, but in our anal-
ysis we focused on small p ≤ 6. Intuitively, the main
reason why QAOA cannot achieve the same probabil-
ity amplitudes as VQE, in the same depth, is due to
having a smaller number of parameters as well as the
architecture of the ansatz [43].

Note that the parameter space is filled with sub-
optimal local minima. Constant CVaR objective func-
tions with different confidence level α’s lead to different
energy landscape. This means that a local minimum
for a confidence level α1 does not, in general, corre-
spond to a local minimum for a confidence level α2 if
α1 6= α2. This is probably the reason that we get im-
proved performance. For example, in Figure 8 we see
how Ascending-CVaR can avoid local minima. In this
example all constant CVaR achieve less than 3% over-
lap with the ground state, while the Ascending-CVaR
gives 7%.

B. Number Partitioning

On Number Partitioning we tested instances with 17
to 20 integers, on both VQE and QAOA.

1. CVaRαt -VQE

On CVaRαt-VQE we tested 300 instances with 17 to
20 integers, sampled randomly from three sets; N1 =
{0, . . . , 200}, N2 = {0, . . . , 500} and N3 = {0, . . . , 750}.
We highlight that the smaller the set that the numbers
are uniformly drawn from, the easier the optimiser suc-
ceeds in finding the optimal solution. A summary of
the results is given at Table II.

For the first two sets, we used a linear ascending func-
tion with an ascending factor λ = 0.03. Further optimi-
sation of the parameter may lead in either faster con-
vergence or more successful instances. Either way, the
Ascending-CVaR method outperforms constant CVaR
and the expectation value objective function on the
aforementioned metrics (e.g. see typical performance
on Figure 9).

For the last set N3, constant CVaR and the expec-
tation value as objective functions struggled to achieve
even a small overlap with the optimal solution. Indica-
tively, at 40% of the cases none of the constant CVaR
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Figure 7: Max-Cut instances with 17 vertices for random non-regular unweighted graphs. Ascending-CVaR,
drawn with a blue line, results in a fast and high overlap with the optimal solution in contrast to constant CVaR.

NP Successful Instances Average Overlap
αt 0.1 0.2 0.5 1 αt 0.1 0.2 0.5 1

N1 87 85 66 16 2 54.17 11.50 16.56 7.94 0.99
N2 80 69 29 11 0 48.33 10.24 7.56 5.88 0.4
N∗3 95 58 24 9 0 56.85 8.24 5.84 3.45 0.16

Table II: Results table for the Number Partitioning problem (VQE) for the three different sets N1, N2 and N∗3 ,
where the star at the last set indicates that we used the sigmoid ascending function.

Figure 8: CVaRαt-QAOA optimisation with linear
ascending for a Max-Cut instance of 17 qubits. The
blue line, indicating the ascending optimisation,

results in more than a 100% increase in the overlap
with the optimal solution in contrast to the

expectation value or constant CVaR optimisation.

objective functions could be “successful”9. We found
that by choosing a sigmoid ascending function, the op-
timiser is able to attain a high quality parameterised
state and succeed in the majority of instances (95%).

9 Recall, that successful in our convention, means to achieve over-
lap of at least 10% with the optimal solution.

The trade-off is that using the sigmoid ascending func-
tion, in contrast to linear ascending, comes with some
cost of more circuit shots in order to achieve the same
accuracy. Note also, that the linear ascending func-
tion, while performing worse than the sigmoid, it was
still more successful than the constant CVaR objective
functions.

2. CVaRαt -QAOA

While CVaRαt-VQE optimisation efficiently achieved
a high overlap state already within the first layer for in-
stances drawn from the two sets N1 and N2, CVaRαt-
QAOA failed to achieve a high overlap on small depths.
To address this issue without having to increase the
depth of the ansatz we chose to work on instances drawn
from the smaller set M = {0, . . . , 50}. For the Num-
ber Partitioning problem, the cost function’s parameter
space is highly dependent on the set we draw the num-
bers from. The unitary transformation eiγHC is com-
posed of eiγnknlσ

k
zσ

l
z terms where nk, nl correspond to

the numbers on the k and l index respectively. The pa-
rameter γ is then restricted to 0 ≤ γ < 2π/(njnm) with
nj and nm corresponding to the two smallest numbers
of the set.

Our method succeeds in finding quantum states with
higher overlap, unreachable with constant CVaR opti-
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Figure 9: Probability of sampling the optimal solution for Number Partitioning instances with 17-20 integers
uniformly drawn from the sets N1 = {0, . . . , 200} (on the left) and N2 = {0, . . . , 500} (on the right). The blue
line, indicating Ascending-CVaR outperforms constant CVaR in terms of speed and overlap with the optimal

solution.

Figure 10: CVaRαt-QAOA for an 18-integer instance
Number Partitioning problem with p = 4. The blue
line, indicating Ascending-CVaR optimisation, is able

to achieve 100% increase in the overlap with the
optimal solution in respect to the other objective

functions.

misation, possibly because it avoids the high amount of
local minima. Indicatively in Figure 10 we see an exam-
ple where Ascending-CVaR achieves more than double
overlap with the optimal solution than other methods,
but is still below the threshold of 10% required to clas-
sify this as a “successful run”.

C. Portfolio Optimisation

On Portfolio Optimisation we tested instances with
16 to 20 assets, on both VQE and QAOA, with a budget
drawn uniformly at random from the set B = {0, ...n}
where n is the number of assets and many different risk
factors q.

1. CVaRαt -VQE

We used linear ascending with an ascending factor
λ = 0.045 and the confidence level was initialised on
α0 = 0.01. The results are summarised in Table III. In
Figure 11 we see the typical performance of two different
instances where we plotted the probability of obtaining
the optimal solution over the normalised number of op-
timiser iterations for the CVaRαt

-VQE.
We highlight the fact that Ascending-CVaR and con-

stant CVaR with α = 0.1, 0.2 succeed in achieving at
least 10% overlap on all instances tested (see results on
Table III), while the expectation value (α = 1) failed
in almost all cases. Moreover, it is worth noting that
our method offers a significant improvement in compar-
ison with all the other approaches in the speed that
this overlap was achieved (in terms of normalised opti-
miser iterations and circuit repetitions) and in the over-
all magnitude of the overlap achieved (see also Table
III).

2. CVaRαt -QAOA

CVaRαt
-QAOA, similarly with [1], underperforms

significantly in terms of overlap with the optimal state,
compared to CVaRαt

-VQE. Specifically, keeping the
depth as in previous parts, and without increasing
the shots each circuit is implemented, all methods fail
achieving overlap with the optimal solution well below
1%. There are several reasons for this failure, includ-
ing the Reachability Deficits [44], the large problem
density [17] and Barren Plateaus [45]. This, however,
goes beyond the focus of this paper that is to find a
way to improve the performance of previously used ob-
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Portfolio Optimisation Successful Instances Average Overlap
αt 0.1 0.2 0.5 1 αt 0.1 0.2 0.5 1

Random Portfolios 100 100 100 16 1 63.25 13.35 24.74 9.42 0.64

Table III: Results table for the Portfolio Optimisation problem (VQE) for 100 random Portfolios with 16 to 20
assets.

Figure 11: Portfolio Optimisation problem for 18 and 20 asset instances with linear ascending and λ = 0.045.
The blue line indicates the CVaRαt

-VQE optimisation which already within the first 10 optimiser iterations has
achieved over 40% overlap, compared to constant α’s where either fail (α = 0.5, 1), or lead to slower and

sub-optimal convergence (α = 0.1, 0.2).

jective functions. To illustrate the improvement, we
could have used (significantly) larger number of shots,
where Ascending-CVaR would start showing better per-
formance. This would make the comparison with other
problems unfair (where in all cases we used the same
“normalised” number of shots), and it would still not
present a practical way to solve the Portfolio Optimi-
sation problem (VQE is much better), so we omitted
it.

VII. CONCLUSIONS

We introduced a novel type of objective function,
Ascending-CVaR, to be used in variational quantum al-
gorithms for any combinatorial optimisation problem.
The starting point is the (constant) CVaR objective
function of [1], where they illustrated that for any choice
of risk α the true ground state is a minimum, and that
with (typically small values of) α one can improve the
performance compared to the “standard” expectation-
value objective function. Our idea was to use an evolv-
ing objective function that “passes” through all the dif-
ferent values of α to finish at the expectation value.
This, intuitively, avoids getting stuck at local minima
since the energy landscape for different α’s differs apart
from the global minimum.

We tested numerically the proposal on three combi-

natorial optimisation problems (Max-Cut, Number Par-
titioning and Portfolio Optimisation), where in agree-
ment with prior works we found that for these problems
VQE seems more promising than QAOA with small
depth. The improvement that Ascending-CVaR pro-
vides to VQE and QAOA are similar but we focus on
VQE here since this was the overall more promising
approach to solve the corresponding optimisation prob-
lems.

We observed that Ascending-CVaR gave much
greater on average overlap with the optimal solution
(see Table IV). In Portfolio Optimisation and Number
Partitioning we got 10 times greater overlap than the
expectation value (while we got at least double overlap
than the best constant CVaR choice). In Max-Cut we
got smaller improvement (80%) compared to the expec-
tation value, but note that the constant CVaR actually
gave much smaller overlap. Perhaps the most important
feature is that in the Number Partitioning and Max-
Cut, Ascending-CVaR succeeded in finding the solution
in many instances that no other approach achieved more
than the small chosen threshold of 10% overlap. This
indicates that not only the approach improves the qual-
ity of the results, but is plausible that instances that are
believed to be “hard” with the other methods, will be-
come “easy” and thus solvable.

Beyond the accuracy of the result, another factor to
evaluate the performance of variational quantum algo-
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Problem Type Successful Instances % Overlap Improvement %
αt 0.1 0.2 Expectation Value αt 0.1 0.2

Portfolio Optimisation 100 100 100 1 9782 2125 4023
Number Partitioning 87.3 70 39.6 0.6 10225 1858 1464

Max-Cut 96 84 81 53 78.5 -66.52 -40.8

Table IV: Overview of our method

rithms is the speed, that can be counted with respect
to the (average) number of iterations the optimisation
needs to run until the algorithm outputs a (candidate)
solution. Since our proposal “passes” through several
choices of α, one could expect that the “trade-off” for
better overlap would be slower speed and thus more
optimisation iterations. Interestingly, not only we do
not get any cost in speed, but in most cases we see an
improvement, i.e. our method requires fewer iterations
to reach the threshold of 10% overlap with the solution
(see Table V). The only case that our method required
slightly more iterations than the α = 0.1 was for the
case that we actually observed the greater improvement
in overlap. This was the Number Partitioning from the
set N3, where the overlap was seven times better than
the “next best” case, and 350 times greater overlap than
the expectation value (see Table II).

Our work, not only offers a generic method to improve
the performance of variational quantum algorithms for
combinatorial optimisation problems, it also suggests a
new direction of research where dynamic objective func-
tions can be used to boost the performance in terms
of quality and speed of near-term quantum algorithms.

An immediate follow up to the proposal suggested here
is to generalise our approach. Concretely, our method
introduces two extra degrees of freedom. The hyper-
parameter λ and the function according to which the
parameter α increases. It is worth exploring a more
systematic rule on how to fix these degrees of freedom
according to the problem considered and the features
of the specific instance. Finally, considering other dy-
namic objective functions is another direction that is
worth pursuing.

The code for the experiments is available at
GitHub 10.
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Appendix A: Circuit Repetitions

In this section, we demonstrate how our method out-
performs, in terms of real circuit repetitions and qual-
ity of the output state, the previously used objective
functions. We set our “default” circuit repetitions to
K = 1000 which we then scale it up, along the discretely
increasing α using the expression K/αt, for each given
time. While one may think that this would weaken our
results, as illustrated below, it seems that in terms of
circuit repetitions our method converges to the chosen
threshold of 10% faster than the best of constant CVaR
or the expectation value approaches.

Figure 12: Probability of sampling an optimal solution
over the circuit repetitions for a Number-Partitioning
instance.
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