
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using genetic variation to disentangle the complex relationship
between food intake and health outcomes
Citation for published version:
Pirastu, N, McDonnell, C, Grzeszkowiak, EJ, Mounier, N, Imamura, F, Merino, J, Day, FR, Zheng, J, Taba,
N, Pina Concas, M, Repetto, L, Kentistou, K, Robino, A, Esko, T, Joshi, PK, Fischer, K, Ong, KK, Gaunt,
TR, Kutalik, Z, Perry, JRB & Wilson, JF 2022, 'Using genetic variation to disentangle the complex
relationship between food intake and health outcomes', PLoS Genetics, vol. 18, no. 6, e1010162.
https://doi.org/10.1371/journal.pgen.1010162

Digital Object Identifier (DOI):
10.1371/journal.pgen.1010162

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PLoS Genetics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Jul. 2022

https://doi.org/10.1371/journal.pgen.1010162
https://doi.org/10.1371/journal.pgen.1010162
https://www.research.ed.ac.uk/en/publications/bd26029c-0f49-44a3-b42b-c6849bd82cc2


1 

Using genetic variation to disentangle the complex relationship between food intake and 

health outcomes. 

 

Authors 

Nicola Pirastu1,2✝, Ciara McDonnell1,3*,Eryk J. Grzeszkowiak1*, Ninon Mounier4,5,6, Fumiaki 

Imamura6, Jordi Merino8,9,10, Felix R. Day6, Jie Zheng11, Nele Taba12,16, Maria Pina Concas13, 

Linda Repetto1, Katherine A. Kentistou1,3, Antonietta Robino13, Tõnu Esko12,10,Peter K. 

Joshi1, Krista Fischer12, Ken K. Ong6,Tom R. Gaunt11,  Zoltán Kutalik4,5,6, John R. B. Perry6, 

James F. Wilson1,15. 

 

Affiliations 

1 Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, 

Edinburgh, EH8 9AG, Scotland. 

2 Human Technopole, Milan, 20157 Milano Italy  

3 Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of 

Edinburgh, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, 

Scotland 

4 Centre for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland 

5 Department of Computational Biology, University of Lausanne, Lausanne, Switzerland 

6 Swiss Institute of Bioinformatics, Lausanne, Switzerland 

7 MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, 

University of Cambridge School of Clinical Medicine, Box 285, Cambridge, CB2 0QQ, UK 



2 

8 Diabetes Unit and Centre for Genomic Medicine, Massachusetts General Hospital, Boston, 

MA, USA 

9 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA 

10 Department of Medicine, Harvard Medical School, Boston, MA, USA 

11 MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, UK 

12 Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 

51010, Estonia 

13 Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy 

14 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 

12A, SE-171 77 Stockholm, Sweden 

15 MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, University of 

Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland 

16 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Riia 23, 51010, Estonia 

 

*Authors contributed equally to this work. 

✝Correspondence should be addressed to Nicola Pirastu, nicola.pirastu@ed.ac.uk 

 

 

 

 

 

 



3 

Abstract:  

Diet is considered as one of the most important modifiable factors influencing human 

health, but efforts to identify foods or dietary patterns associated with health outcomes  

often suffer from biases, confounding, and reverse causation. Applying Mendelian 

randomization in this context may provide evidence to strengthen causality in nutrition 

research. To this end, we first identified 283 genetic markers associated with dietary 

intake in 445,779 UK Biobank participants. We then converted these associations into 

direct genetic effects on food exposures by adjusting them for effects mediated via other 

traits. The adjusted effects were then used for MR, assessing the association between 

genetically predicted food choices and other risk factors, health outcomes. We show that 

omitting the conversion to direct effects leads to biases in downstream analyses (genetic 

correlations, causal inference), similar to those present in observational studies. 

However, MR analyses using direct genetic effects on food exposures provided 

unequivocal evidence of causal associations between specific eating patterns and obesity, 

blood lipid status, and several other risk factors and health outcomes. 
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Author summary 

Food and drink consumption is one of the most important factors influencing human health 

and wellbeing. The role of diet in human physiology and disease has been widely studied, but 

challenges in accurately assessing long term diet result in contradicting findings. Mendelian 

randomization is a statistical technique that uses genetic variants associated with modifiable 

exposures to estimate the causal effect of an exposure to a health outcome, and could be 

extremely useful in the context of diet-health relationships. In our study, we initially 

identified genetic variants associated to 29 measures of food and drink consumption. We then 

show that genetic variants associated with food and drink consumption are subject to reverse 

causation and confounding. We have thus developed a statistical genetics method to identify 

genetic variants directly associated with food and drink consumption. By using these genetic 

variants (and their corresponding direct effects) in Mendelian randomization analyses we 

provided consistent evidence of causal associations of food and drink consumption with 

obesity, blood lipid status, and several other risk factors and health outcomes. 
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Introduction 

Given its impact on human well-being, diet is one of the most studied human behaviours. 

Quality, quantity, and patterns of consumed foods are associated with a wide range of 

medical conditions such as metabolic, inflammatory, or mental health diseases.1 However, 

despite the growing number of studies reporting associations between diet and health 

outcomes, it has been challenging to establish causal relationships due methodological 

limitations such as measurement error, confounding, and reverse causation2,3. To date, several 

approaches have been devised to try to account for intrinsic limitations in nutritional studies 

such as the use of methods to calibrate food records4 through the use of 24h recalls5, 

biomarkers6 and doubly labelled water,7 or the implementation of domiciled feeding studies.8 

Although the implementation of these methods or study designs have helped in addressing 

some of the limitations of nutrition research, difficulties remain especially when it comes to 

estimate the causal effect of diet on health outcomes. 

In this context genetics may represent an alternative approach by the use of Mendelian 

Randomization (MR). MR is a methodological approach in which genetic variants associated 

with an exposure of interest are used as instrumental variables to investigate the causal 

association between this exposure and an outcome.9 To date, several MR studies have been 

designed to investigate the associations between the consumption of single food groups, such 

as alcoholic beverages10 , coffee11,  milk12–14 and specific health outcomes, but a systematic 

study investigating the overall role of diet on multiple health outcomes is missing. Previous 

MR studies have not accounted for the fact that genetic variants associated with reported 

dietary intake may be primarily associated with other risk factors, reporting characteristics or 

social determinants of health which may confound the causal estimates.  

The present study was designed to initially identify the genetic variants associated with 

reported food consumption, and then to leverage a causal inference statistical framework to 
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systematically investigate the causal effects of dietary factors on health outcomes while 

accounting for the reverse causal effects that health determinants have on habitual dietary 

intake reporting. 
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Methods 

Given large number of analyses conducted for this study and their complexity Figure 1 

summarises the main analyses. 

Fig 1. Overall study design. 

 

Study population and genome-wide association for dietary intake 

The UK Biobank15 is a large population-based cohort including 500 000 adults aged between 

40 and 69 years at baseline across 22 assessments centres in the United Kingdom. Data were 

collected based on clinical examinations, assays of biological samples, detailed information 

on self-reported health characteristics, and genome-wide genotyping. Dietary intake in UK 

Biobank was assessed using a touchscreen dietary frequency questionnaire which included 

questions about the frequency of consumption specific foods and beverages over the past 

year. The number of samples used for each trait can be found in table S1 while a detailed 

description of the phenotypes, can be found in the in the supplementary methods 1.2 and 

table S2. For alcohol consumption traits analyses were limited to people drinking at least one 

glass of the alcoholic beverage a week. This choice was due to very high number of people 
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who reported to drink 0 glasses of the specific alcoholic beverage per week (between 58% for 

red wine to 94% for fortified wine) which would have biases the analyses, due to reverse 

causation16. A similar issue applies to coffee consumption traits where stratifying for coffee 

type required to restrict the analysis to coffee drinkers. Finally, we have excluded people who 

reported eating certain foods (e.g. beef) less than once a week due to the very large range of 

different consumptions which this response corresponds to. The proportion of people used for 

the analysis compared to the overall UK biobank participants can be found in table S1. 

Validity of the food consumption measures has been evaluated by Bradbury and others17 

which concluded that “the dietary touchscreen variables, available on the full cohort, reliably 

rank participants according to intakes of the main food groups”. 

We used the BOLT-LMM software18 to assess the association between the genetic variants 

across the human genome and 29 food phenotypes. Analyses were conducted on genetic data 

release version 3 imputed to the HRC panel19, as provided by the UK Biobank 

(http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). Population 

stratification was assessed using LD-score regression as implemented in ldsc20,21 using the 

LD scores provided with the software which refer to the HapMap22 v3 SNPs. Table S15 

reports for each food trait the LD regression intercept and heritability estimation using the 

ldsc software20. Cluster analysis conducted on the foods identified five main independent 

groups of traits (see additional online methods paragraph 1.8 and 2.2 for details of group 

definition) and we thus set the genome-wide significance threshold at 1x10-8 (5x10-8/5). This 

work was conducted using the UK Biobank resource (application 19655). Participants 

enrolled in UK Biobank have signed informed consent forms. Replication analyses for the 

identified signals associated with food phenotypes were conducted independently by using 

http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
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genetic and dietary data from the EPIC-Norfolk Study23 and the Fenland Study24. Details 

additional online methods 1.4. 

Investigating the causal effect of health outcomes on reported food intake 

Univariable MR analyses were initially conducted to measure the causal effect of health 

outcomes on food consumption using the TwoSampleMR25 R package. Exposures of interest 

were selected amongst those for which nutritional advice is given and included body mass 

index (BMI), low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol 

(HDLc), Total cholesterol, Triglycerides, Diastolic and Systolic blood pressure, Type 2 

diabetes, and coronary artery disease. In addition, we included educational attainment 

amongst the exposure traits for the multivariable MR, as a proxy of socio-economic status 

which is likely to affect food consumption. The full list of studies from which the summary 

statistics were derived is detailed in Table S6. For each exposure we selected all SNPs with 

p<5 x 10-8 and r2<0.001 to be used as instruments in the MR analysis. After performing 

stepwise heterogeneity pruning to remove SNPs which showed evidence of heterogeneity in 

the causal effect estimate,  we performed MR analysis using the inverse variance method26. 

We then tested if the intercept from the MR-Egger27 regression was different from zero 

(p<0.05). If this was the case, MR-Egger was used for the analysis instead. 

Identification of genetic variants with predominantly direct effects on diet 

One of the most important assumptions in MR is that the effect of the instrument on the 

outcome must be mediated only through the exposure of interest (sometimes referred as 

exclusion restriction criteria)28. In this light, genetic instruments whose effect on food is 

mediated through the health outcomes or through educational attainment may violate this 

assumption acting as confounders in the relationship between the exposure and the outcome. 

Moreover, if the mediating trait is acting on the reporting of food consumption and not food 
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consumption itself it would mean that the genetic variant is not truly associated to food 

consumption, and it would thus not be a valid instrument. It is thus important to estimate the 

direct effect (i.e., the effect that acts directly on food intake rather than is mediated through 

other factors see Figure 2) the SNPs are exerting on actual food consumption in order to 

properly select the genetic variants to be used as instrumental variables. 

To this end we use a modified version of bGWAS29, in which corrected estimates for genetic 

variants are obtained after accounting for the effect of other phenotypes on these genetic 

variants. Further details about bGWAS can be found in supplementary methods 1.6. We 

applied bGWAS to all 29 food phenotypes. As potential mediators, we used the same 

cardiometabolic phenotypes as before except total cholesterol to avoid collinearity issues 

with LDL and HDL cholesterol, and we added summary statistics from Crohn’s disease and 

ulcerative colitis and smoking as they are likely to affect dietary patterns. A full list of the 

traits used as exposures and their sources can be found in table S6. We identified genetic 

variants with only a direct effect on diet based on the corrected to uncorrected ratio (CUR) as 

the ratio between the corrected and the uncorrected effects (see additional methods 1.7 for a 

detailed explanation).  The threshold to define genetic variants with non-mediated effects 

(CUR=1±0.05) is based on simulations provided in the supplementary note 2.1 and on the 

genetic variants with known biological function (i.e. bitter taste receptors). We defined as 

“non- mediated” those SNPs whose CUR fell within the defined ranges while “uncertain” the 

others. 

 

 

 

 

 

 

 

 



11 

 

 

 

 

 

 

 

Fig. 2 Direct and indirect SNP effects. The plot shows the causal path of exemplar genes identified for cheese consumption. 
In the multivariable MR model cheese consumption is causally influenced by educational attainment (EDU), low density 
lipoprotein cholesterol levels (LDL) and systolic blood pressure (SBP). The effect of PDCH17 and is mediated through 
educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects cannot be used reliably 
as MR instruments as they could be affecting either consumption or its reporting. Moreover, they could act as confounders 
in the MR analysis and thus they need to be identified. 

 

Genome-wide genetic correlations between corrected dietary intake and health 

outcomes. 

We used LD-score regression implemented in LD Hub20,21 to estimate genome-wide genetic 

correlations between dietary intake phenotypes and 844 health outcomes and intermediary 

phenotypes. Genetic correlations were estimated both with the corrected and uncorrected 

GWAS summary statistics using the bivariate LD-score regression model. Stratified LD-

score regression30 analyses were implemented using ldsc and the annotation files available on 

the ldsc website.  

Definition of food group variables 
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In order to define measures of dietary patterns we first performed cluster analysis of the 29 

food items applying iCLUST31 to the corrected genetic correlation matrix between the 

different foods. iCLUST clusters items in different groups based on a hierarchical structure 

(Details additional methods 1.8). Figure 3 shows the resulting dendrogram and its 

comparison with the genetic correlation matrix.  

Fig3 Clustering of the food traits and definition of measures of dietary patterns. The plot reports the genetic correlation 
plot amongst the food traits after applying the correction. The stars report the Bonferroni-corrected significant correlations. 
The dendrogram and the boxes represent the clustering according to the ICLUST algorithm. The labels on the dendrogram 
branches show the traits used to define each measure of dietary pattern. The dashed line represents the traits excluded from 
the estimation of the dietary pattern traits. The “Vegetarian” trait was excluded from the “Meat PC” trait but was included 
in the overall dietary pattern measure (All PC). 
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We then defined based on the resulting structure several measures of dietary pattern at 

different levels of the dendrogram as shown in Figure 3. For each group we performed 

principal component analysis of the items of that group. The rotation matrix was derived 

from the eigen decomposition of the genetic correlation matrix of the foods in the PC trait of 

interest. For example, for the Coffee PC measure we performed principal component analysis 

of “Ground Coffee”, “Instant Coffee” and “Decaf Coffee”. Once the rotation matrix was 

estimated for each SNP its effect on the new measure was estimated as the linear combination 

of the effect on each food trait using as weights the loadings on each PC. This method has 

been described before in Tsepilov et al. 202032. For each group of traits only the first 

component which explained the greatest amount of genetic variance was retained for further 

analyses. A correlation plot of the loadings of each item onto the PC traits can be found in 

figure S7.  

MR analyses to assess causal relationships between food intake and health outcomes 

MR analyses were conducted to estimate the effects of the food phenotypes on 64 health 

related phenotypes (see table S17 for details) available in MR-base.25 Genetic instruments for 

each exposure of interest included independent genetic variants (p<5x10-8 and pruning for 

LD (r2<0.001)). For dietary patterns exposures SNPs were selected as outlined in additional 

methods 1.9. Briefly once each defined group of traits we estimated the loadings of each 

index item as the eigen decomposition of the corresponding correlation matrix as outlined in 

the previous section. This procedure was repeatedly applied to both the original and corrected 

effects which allowed us to estimate for each SNP on each PC trait effect size, standard error, 

p-value and CUR. The PC traits where then treated as any other trait applying the same p-

value threshold to the projected traits.   

For the main analysis we restricted the genetic instruments to those that had evidence of 

purely direct effect (i.e., not affecting the main exposure through a different pathway; CUR 
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1±0.05). Discussion of the relationship with other methods can be found in supplementary 

note 2.7. Weights for the genetic instruments were based on the uncorrected effects. To verify 

the effects of using only direct effect only SNPs on MR, all the analyses were also conducted 

without applying the CUR filtering.  

After selecting the genetic instruments, exposure and outcome data were harmonised. The 

MR estimates were tested for heterogeneity and outliers were removed using the MR-Radial 

method.33 MR analyses were based on the inverse variance weighted method, which 

estimates the causal effect of an exposure on an outcome by combining ratio estimates using 

each variant. A random effect model was used if significant heterogeneity between the 

different estimates was detected. We then tested for the presence of directional pleiotropy 

using the intercept from the MR-Egger regression. MR median and MR-Raps were used as 

sensitivity analyses. All results have been made available through an online app ( 

https://npirastu.shinyapps.io/Food_MR/) and can be found in additional table S18.  

 

  

https://npirastu.shinyapps.io/Food_MR/
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Results  

Genetic variants associated with food intake  

In a GWAS of 29 food phenotypes we identified 412 genetic associations in 256 independent 

loci (Fig 4 and additional table S4) at Bonferroni corrected level of significance (P< 1×10-8). 

The principal component association analysis revealed 160 additional SNP-trait associations 

with additional 27 loci for a total of 572 genetic associations in 283 distinct loci. 

 
 
Fig. 4 302 independent genomic loci associate with food choices. Results for both univariate (256 loci) and PC traits 
(additional 27 loci see paragraph S2.3) analyses are included.  For each SNP the lowest uncorrected p-value for all traits 
was plotted. The upper panel represents the unadjusted GWAS associations while the lower panel represents the association 
with food choices, after adjustment for mediating traits, such as health status for the same snp-trait pair used for the upper 
panel.  

 

Replication was sought in two additional UK-based cohorts including up to 32,779 

participants. Despite relatively limited power in replication cohorts, concordant direction of 

effect was observed for 82% of the signals (p=7.82x10-35, Binomial test; Table S5), and 

nominal significance was achieved by 32% of the signals (p=9.47x10-54). Gene prioritization 

is described in supplementary methods 1.10 while biological annotation, network analysis 

and tissue enrichment analysis are discussed in additional paragraphs 1.11, 2.4 and 2.5. 

Several of the identified loci have been previously associated with BMI. However, contrary 

to our expectations, the BMI-raising allele was consistently associated with lower reported 
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consumption of energy-dense foods such as meat or fat, and higher reported intake of low-

calorie foods. 

Genetic variants associated with food intake are strongly influenced by other 

phenotypes  

In univariable MR we identified 81 instances in which health-related traits significantly 

influencing food intake (Fig. 5 additional table S7). For example, BMI and Educational 

attainment influenced more than 50% of the food traits. Similar effects extend to a broad 

range of traits, for example LDL and triglycerides influenced 15 and 18 traits respectively. 

Higher genetically predicted CAD associates with higher consumption of fish and red wine, 

and lower consumption of whole milk, salt and lamb. These findings suggest that some of the 

signals identified in GWAS for reported food phenotypes are not directly associated with 

food intake but are mediated through a wide range of potential confounders. 
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Fig 5. Health status influences reported food choices. The plot reports only the univariable MR results which were 
significant at FDR<0.05. For each food outcome the effect estimate (β) is reported in standard deviations of the exposure 
trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD, 
coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density 
lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature.

 
The Multivariable MR confirmed the univariable MR results (Supplementary Fig S4 panel A 

and Supplementary Table S8).  The percentage of genetic variance for the reported food 

phenotypes explained by health determinants ranged from 42% for cheese to ~0% for 

fortified wine and white wine/champagne (Supplementary Fig S2 panel A and Supplementary 

Table S16). We systematically compared the estimated effect sizes of each genetic variants 
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influencing food consumption before and after correcting for the effect of health determinants 

and showed that in many loci the variant initially identified for food phenotypes changed 

dramatically after considering the effect of health factors (Fig. 4, see Supplementary file 1 for 

trait-specific plots). For example, the effect size of the lead FTO variant (rs55872725, 

p=2x10-29) on milk fat percentage chosen decreased three-fold after accounting for the 

mediated effects. To further explore the magnitude of this indirect effect on food intake 

phenotypes, we compared the correlation patterns between the 29 food phenotypes and 832 

phenotypes present in the LD hub21 database identifying great differences. For example, low 

fat milk intake was correlated with a beneficial effect on body fat percentage (rG = -0.43) but 

this association diminished to near zero (rG = -0.04) after accounting for indirect effects 

(Supplementary Data 2.2 and additional table S10). The effects of the correction procedure 

on the genetic correlation amongst the traits and with the 844 health traits are discussed in 

supplementary note 2.2 while full results can be found at in table S9 and browsed at 

https://npirastu.shinyapps.io/rg_plotter_2/. These findings highlight the relevance of biases 

and confounding in genetic correlation studies and we provide a framework to mitigate these 

problems and to reliably study complex physiological relationships. 

Causal inference analyses for diet phenotypes and health outcomes 

A total of 245 out of 572 genetic variants initially associated with food phenotypes were 

categorized as “non-mediated” associations (Table S3). Most loci contained either non-

mediated (146/283 loci) or uncertain associations (92/283 loci), while the remaining 45 

contained a mixture of the two. 

 The fraction of uncertain genetic associations varied by food group, ranging from mostly 

direct effect for tea, decaffeinated coffee, poultry and processed meat, to mostly uncertain for 

percentage fat in milk and adding spread to bread (Table S3). 

https://npirastu.shinyapps.io/rg_plotter_2/
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In two-sample MR analyses we found 52 significant associations between food phenotypes 

and health outcomes after multiple test correction (q-value < 0.05, Table S18). None of them 

showed sign of heterogeneity amongst the estimates (heterogeneity test q-value >0.05). 

Figure 6 reports full results for all significant food exposure trait outcome pairs.  

Fig 6. Significant effects of food choice on disease related traits. The heatmap reports the results for all significant food 
trait exposure trait outcome. Only dietary pattern exposures summarising the overall group consumption (PC1) have been 
reported. All exposures have been aligned to have a positive loading onto the “overall unhealthy diet” measure. Significant 
food/trait association are indicated with *. Abbreviations: BMI Body Mass Index, WHR Waist to Hip Ratio, TRY 
triglycerides, TC total cholesterol, HDL HDL cholesterol, LDL LDL cholesterol, Hb% Haemoglobin percentage, PLT 
Platelet count, Edu Educational attainment, CD Chron’s Disease, IBD Inflammatory Bowel Disease. Panel has been divided 
in two to separate quantitative traits where effect size is in SDoutcome per SDexposure (higher effect equals red colour) from 
qualitative traits where effect sizes are expressed in log(ORoutcome) per SDexposure (higher effect equals green colour).
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Overall, we found that the “overall unhealthy diet” measure did not show significant 

associations with many traits except for BMI where higher values of this measure 

corresponded to higher obesity. However, we showed that specific components had effects on 

different traits. For example, BMI was significantly associated with genetically determined 

meat consumption, particularly pork and processed meat, but also with a general tendency to 

heating less healthy foods. In contrast, other measures of adiposity such as waist-to-hip ratio 

were not associated with meat consumption while a lowering effect of higher “healthy foods 

consumption” particularly of fish and vegetables.  

We identified 13 instances in which we would have not detected significant associations 

without filtering out the non-direct effect instruments such as the effect of increased fruit 

consumption on triglycerides levels (estimated uncorrected effect= -0.09 (SE=0.04) vs. 

estimated corrected effect = -0.17 (SE=0.05)) or the effect of increased healthy foods 

consumption on BMI (uncorrected effect = 0.004 (-0.13, 0.14) vs corrected effect = -0.16 (CI 

0.07-0.26). In addition, we found 109 food/trait relationships that were not significant after 

applying CUR filtering, showing that either confounding effects or reduced power explain the 

lack of association (see additional note 2.6). For example, Psychoactive drinks consumption 

was initially associated with increased lung cancer (uncorrected effect =0.27 (CI 0.09- 0.45)), 

but there was little evidence of an association after filtering out the instruments not directly 

influencing Psychoactive drinks (corrected effect 0.02 (CI -0.17 - 0.19)). On the flip side, we 

showed that the effect of alcohol consumption on mean corpuscular volume remains 

substantially unchanged when applying the filtering approach (beta 0.05 (SE 0.02) 

uncorrected and 0.05 (SE 0.06) corrected), suggesting that our approach could precisely 

identify relevant biological relationships.  

A full description of our findings is found in table S18 and have been made available through 

an online app ( https://npirastu.shinyapps.io/Food_MR/). 

https://npirastu.shinyapps.io/Food_MR/
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Discussion 

In this study we have quantified the complex interplay between diet and health outcomes 

showing that the causal path from food intake to adverse health outcomes is not 

unidirectional and may be influenced by reverse causation and confounding even when MR is 

used. We showed that genetic correlations and causal inference can be improved by 

leveraging statistical approaches that consider these mediated effects and identify genetic 

variants that have predominantly direct effect on the exposure of interest. This information 

allowed us to perform causal inference analyses that helped identifying more reliable 

potential causal effects of food on health outcomes. 

Results in context 

Previous MR studies have mainly focused on specific food groups such as coffee, alcohol and 

milk consumption while none has comprehensively investigated the role of different food 

groups on health outcomes. Here we have expanded this approach to encompass a wide range 

of specific foods and dietary patterns allowing to compare results across the different traits 

and giving us more insight in the interpretation of the results. Findings from this study 

suggest that the biases affecting measures of food consumption (reporting bias, confounding 

and reverse causation) are propagated to genetic associations. We have shown that these 

issues extend beyond obesity and socio-economic status, and revealed a broad range of 

intermediate factors. For example, we showed that LDL and triglycerides concentration 

influence a wide variety of food traits, implying these phenotypes should be considered as 

potential sources of bias in future MR studies. For our analyses we have used UK biobank in 

which participants were aged between 40 and 69 at the time of the questionnaire, it is likely 

that a younger cohort will suffer less from some of these biases (i.e. altered food consumption 

due to elevated LDL cholesterol or blood pressure) as it is unlikely that they will display 

pathological level of these traits.  
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Our results showing that genetic variations associated with food phenotypes could be 

influenced by reverse causation and confounding are in contradiction to some previous 

studies, in which no evidence of reverse causation was reported.34,35 We believe that this 

difference is due to our novel approach, which does not correct for potential mediators based 

on their correlation (through linear regression), but rather based on their causal effect 

(through MR), which should be able to distinguish the forward and reverse effects when the 

causal relationship is bidirectional. Our study suggests that it is possible to disentangle these 

different colliding effects, and identify genetic instruments with a non-mediated effect. This 

particularity of our approach enables the use of MR for the assessment of causal relationships 

between food and health.  

Many studies have looked at the relationship between nutritional composition and health 

outcomes. One of the most salient examples is the relationship between saturated fat intake 

and cardiovascular disease and all-cause mortality, in which recent studies suggest that food 

sources of saturated fatty acids are more important than saturated fat content per se36. Our 

study provides a new angle on the importance of food sources by showing that foods with 

similar nutrient profile, for example cheese and meat, have opposite effects on some 

metabolic risk factors such as BMI but there is no difference in other phenotypes such as 

blood lipids. Similarly, food with relatively different nutritional composition such as fruit, 

vegetables, and fish had the beneficial effect on triglycerides. While these findings require 

further investigations, our genetic evidence lends support for the importance of studying 

foods in their complexity and not as a mere mixture of nutrients. This approach, in fact, does 

not consider that the sources of the nutrients are not equal due to the food matrix, the 

different preparations and that foods are seldom consumed by themselves but in patterns 

which are likely to modify the effects on health. 
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Our findings illustrate that the effect of diet on health outcomes is complex, and components 

of specific food groups have a differential association with health. In this case, although fish 

and fruit and vegetables have a very different macronutrient composition it was impossible to 

separate their effect on triglyceride concentrations. This suggests that at least in this case the 

macronutrient composition is not as important as an overall tendency to eat certain foods and 

it highlights the importance of always including the assessment of dietary patterns before 

claiming health effects of single foods or nutrients. This example also highlights one of the 

limitations of MR. We can study only specific food exposures for which valid and relatively 

specific instrument exists and the resolution stops at the point where genes influence food 

groups/patterns rather than specific items. Better powered studies may enable the 

identification of genetic markers associated with specific food items, enabling more refined 

analyses.   

Our study also provide evidence that the overall unhealthy diet is almost exclusively 

associated with BMI, with no evidence of associations with any other outcome. This means 

that it may be possible to design dietary interventions by modulating only specific food 

depending on the effect we want to obtain for everyone. For example, if we consider obesity 

related traits, meat seems to have an effect specifically on BMI while consumption of healthy 

foods, fish, fruit and vegetables influence fat distribution as indicated by the association with 

WHR and WHR adjusted for BMI. Although thus there is heterogeneity in effects both 

lowering BMI and WHR are desirable outcomes and thus and overall healthy diet is still the 

desirable intervention if we aim at maximising the beneficial health effects across all 

outcomes. 

Our study has several potential limitations. First, the number of items available in the dietary 

questionnaire in the UK biobank is limited, and therefore it limited our ability to capture 

overall diet or specific food groups not available. The inclusion of white and relatively 
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healthy and educated participants from UK Biobank may have limited the generalisability of 

our findings. The self-reported nature of the diet questionnaire is prone to measurement error 

and bias, and the use of a short food frequency survey could have further reduced the 

resolution of dietary data collected. More accurate dietary intake assessment methods such as 

the use of dietary intake biomarkers (doubly labelled water, urinary nitrogen, minerals, and 

vitamins) for calibration purposes would be valuable in future studies, specially to obtain 

more precise estimates of the causal effect sizes, however these are challenging to implement 

in large-scale cohort. Another source of bias may be due to the missing samples due to either 

nonresponse or to removal due to the phenotype definition which may induce spurious 

correlation similarly to sampling bias.  Moreover estimated effect sizes could be inflated 

because of the underestimation of the SNP effects on the actual food trait consumption, rather 

than its self-report, if so, this will have inflated our estimates of the effects of food on health, 

due to the noise in the questionnaire responses, and warrants further statistical investigations. 

Even so, our method should not have falsely identified a causal effect or reversed its 

direction, but further studies are needed to assess the precise effect sizes. Finally, we must 

consider the possibility of residual confounding effects through variable either not included 

in our models or imperfectly measured. For example, we have used educational attainment as 

a proxy for socio economic status, so we cannot exclude that more precise measures would 

result in even better estimates. Despite these limitations, our methodological approach offers 

a possibility to improve our understanding of the genetics of diet and strengthen causality in 

nutrition research. 

In conclusion, our findings show that overall, what is generally considered a healthy diet 

leads to many favourable health outcomes and to reducing a wide range of risk factors 

broadly agreeing with current guidelines aimed at reducing meat and alcohol consumption 

while increasing fruit vegetables and fish. We also show that some of these effects are mostly 
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attributable to specific food or group of foods which however are not characterized by 

common nutrient composition thus adding granularity to our knowledge on the effect of diet 

on health. This information can be useful to inform the design and implementation of future 

studies to reduce the burden of diet-related diseases.  
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