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Abstract
Specialized hardware accelerators continue to be a source
of performance improvement. However, such specialization
comes at a programming price. The fundamental issue is that
of a mismatch between the diversity of user code and the
functionality of fixed hardware, limiting its wider uptake.
Here we focus on a particular set of accelerators: those

for Fast Fourier Transforms. We present FACC (Fourier AC-
celerator Compiler), a novel approach to automatically map
legacy code to Fourier Transform accelerators. It automat-
ically generates drop-in replacement adapters using Input-
Output (IO)-based program synthesis that bridge the gap
between user code and accelerators. We apply FACC to un-
modified GitHub C programs of varying complexity and
compare against two existing approaches. We target FACC
to a high-performance library, FFTW, and two hardware
accelerators, the NXP PowerQuad and the Analog Devices
FFTA, and demonstrate mean speedups of 9x, 17x and 27x
respectively.

1 Introduction
Specialized accelerators deliver significant performance im-
provements [123]. However, specialization is in direct ten-
sion with programmability [43]. The more specialized the
accelerator, the greater its potential performance [133], but
the less likely it is to be used [100].

Fast Fourier Transform (FFT) acceleration is a good exam-
ple of this. While there are hundreds of commercial acceler-
ator designs [1, 3–6, 22], the API calls used to program them
lack the portability and flexibility of software libraries [10,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
https://doi.org/10.1145/3519939.3523439

53] making offloading the domain of experts [107]. Manu-
ally migrating to new software APIs is complex and time-
consuming [46, 72], and made more challenging by the in-
ability for APIs to hide the complex eccentricities exposed
by real hardware [25, 26].
Ideally, we would like hardware to be as specialized and

idiosyncratic as needed for performance. We also want ex-
isting code to automatically morph to new accelerators with
no user involvement [29, 47]. Unfortunately, “most applica-
tions require modifications to achieve high speedup on domain-
specific accelerators” [44]. Here we focus on FFT acceleration
as a real-world example of this problem.We demonstrate that
automatic modification is possible and achieve significant
speedups on GitHub legacy C programs1.

Attempts at replacing application code with accelerator li-
brary calls [59] are brittle and do not scale to real-world code
or algorithms complex enough to justify acceleration [19].
The fundamental issue is mismatch. As the complexity of
accelerator functionality increases, the likelihood that it
exactly matches a user’s application becomes vanishingly
small [89, 136].
Mismatch occurs at a variety of levels. The most basic

form is code mismatch where the number of different ways
of writing the same algorithm defeats approaches based
on code-shape. Significant mismatch also occurs at a data-
representation level, data mismatch. Here the code and ac-
celerator may have different types or values — for instance
using a custom definition of a complex type. Further still,
domain mismatch is common, with many accelerators only
supporting powers-of-2-sized FFTs [8] or limiting the size
of inputs [4]. Finally, there may be behavioral mismatch. For
example, accelerator output values or user code may be bit re-
versed or un-normalized. We tackle this fundamental issue in
targeting accelerators: the mismatch between user code and
accelerator functionality using a novel input-output behav-
ioral scheme using generate-and-test over fuzzing samples
to find unique solutions.

1.1 Current Schemes
Programming accelerators typically involves rewriting code
in an language or with a new API [131] but this is time-
consuming and requires expert knowledge [46, 72]. Recently,
work trying to automatically match and replace existing code

1All code available at [12]
1
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with accelerator libraries for simple operations has used con-
straint matching of code to an API description [27, 37, 45, 59].
However these schemes are brittle and fail with minor code
variations, and constraints are challenging to write [58]. Ex-
act matching techniques [96, 115] fail once the code scales
beyond an order of magnitude of ten instructions, and FFTs
scale up to thousands. The near duplicate codes these tech-
niques require is highly unlikely, even when implementa-
tions are copy-and-pasted [135].

There is a different stream of research aimed at code-clone
detection and algorithm classification [18, 42]. Rather than
focusing on code structure via constraint solving, it uses
machine-learning-based embeddings of code. Codes with
similar behavior will have similar embeddings. These have
been successful at labelling sections of code [34] andwe lever-
age this as a novel filter to our IO program synthesis. While
these code-embedding schemes can identify relevant sec-
tions of code, they cannot reason, transform code or compile
to accelerators. We evaluate constraint and code embedding
approaches in section 8.

1.2 Our Approach
We present FACC (Fourier ACcelerator Compiler), a compiler
that maps user code to Fourier transform accelerators. FACC
builds a neural classifier [18, 42] to isolate procedures within
user code as candidates for potential acceleration. It then
explores a space of possible bindings from user variables
to accelerator parameters. Next, FACC uses input-output
behavioral synthesis to generate accelerator wrappers that
bridge the mismatch between user code and accelerator. This
allows us to match user code as small as 12 lines of code
scaling up to procedures with more than 2000.
We take two accelerators: the Analog Devices FFTA [8]

and the NXP PowerQuad [7], and an optimized software
library, FFTW [53], and automatically match them to unmod-
ified GitHub code, showing large performance improvement:
27x, 19x and 9x over the original software respectively.

This paper makes the following contributions:
• We introduce four key mismatches that must be over-
come for source-code to accelerator compilation.

• We implement a synthesis-baed IO-matching solution
to overcome these micsmatches for FFT accelerators.

• We evaluate on real-world code and show significant
speedups of automatically compiling to hardware ac-
celerators and optimized libraries.

2 Motivation
Compiling software to specialized hardware accelerators
faces the challenge of mismatch between user code and accel-
erator behavior. Fourier transforms are an excellent example
of this problem: they are one of the most widely used trans-
forms in DSP [120], and offer a number of performance/flexi-
bility tradeoffs [126]. This results in a large amount of legacy

Figure 1. FACC takes user code and an accelerator interface
as input and produces an adapter that appears identical to
the user code, but uses the accelerator. FACC identifies target
regions in the user code that implement FFTs (highlighted in
blue), then automatically finds and replaces compatible parts
of the FFT with their hardware equivalent where function-
ality overlaps, while falling back to the software for other
operations. Code is synthesised to bridge the gap (in yellow)
in implementation and data structures.

C code implemented in drastically different styles and op-
timized for different input sizes. Current-generation hard-
ware accelerators for FFT can out-preform even the most
optimized software implementations [11] provided we can
bridge the gap between software and hardware.
Consider Figure 1: there is a section of existing legacy

C code that performs a Fourier transform. We would like
to cut it out and replace it with a call to an accelerator API.
Unfortunately, there is amismatch between the user code and
the accelerator API that prevents this. FACC automatically
generates an adapter that acts as a mediator between user
code and the accelerator API. User code is now replaced with
a call to the adapter enabling acceleration.

2.1 Mismatch Example
Fourier transforms can be implemented in any number of
different ways [49]. Figure 2 shows a number of Fourier trans-
forms that are not trivially acceleratable due to mismatches
between user codes and accelerators.
The first, left-most column shows a code mismatch. The

user code is a recursive FFT implementation, but the op-
timized library provides an iterative implementation. This
kind of difference is extremely common in real-world code,
but cannot be handled by pattern-matching solutions, which
struggle to match copy-pasted code [135]. Indeed, the core
FFT in the code we evaluate on ranges from 12 to over 2000
lines, representing a huge diversity in code despite perform-
ing the same task.

The second column shows a data mismatch. The user code
uses a custom complex type different from the complex rep-
resentation used by the accelerator. To run this code on the

2
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struct complex_float { 

float real;

float im; 

}; 

void FFT( 

    float  *real, 

    float  *imag, 

   int n) { .... }

fftw_call( 

    complex_float  *acc_input, 

complex_float  *acc_output, 

   int length, 

   int direction 

)

void  DenormalizedFFT ( 
      complex *input, 
      complex *twiddles, 
      int n) { 
  .... 
}

NXP PowerQuad
fft ( 
   complex *input, 
   complex *output, 
   int length 
)

Analog Devices FFTA 
(Power of 2 Only)

fft_accel( 
   float_complex *input, 
   float_complex *output, 
   int len 
)

void  mixed_radix_fft ( 
    float_complex *in, 
    float_complex *out, 
    int len) { 
  ....  
  if (len % 2 == 0) 
      radix_2_step(....) 
  else if (len % 3 == 0) 
    .... 
}

Code  
Mismatch

void  recursiveFFT (...) { 
     ... 
      recursiveFFT (...); 
     ... 
}

optimized_iterative_fft(...){     ... 

for  (...) 

for  (...) 

    .... 

}

Data  
Mismatch

Domain 
Mismatch

Behavior 
Mismatch

Optimized Library

Optimized Library

for (...) { 
    real[i] = 
      input[i].real; 
    imag[i] = 
      input[i].im; 
}

PrograML Neural Embeddings
 Used to Identify Code

Automatically Compute to/from 
Types

Program Synthesis to Equalize 
Behaviour

accelerator(....) 
denormalize(output)

Range-Check: Fallback 
to User Code

if (inputs in range) { 
   fft_accel(...) 
} else { 
   mixed_radix_fft(...) 
}

Figure 2. Examples of common mismatches between source code and accelerators, with FACC’s resolution below them.

accelerator, the types must be de-constructed and mapped
to the inputs to the accelerator.
The third column shows a domain mismatch. The user

code implements a mixed-radix FFT, which allows for inputs
of many different lengths, but the Analog Devices FFTA only
supports inputs that are powers of two. As a result, only
some inputs to the original user code can be accelerated and
dynamic or static checks must be added.
Finally, the right-most column shows a behavioral mis-

match. The user code implements an FFT but does not nor-
malize the result. To undo the normalization the accelerator
does perform, an adapter that denormalizes the output from
the accelerator must be used.
Despite these mismatches, this code is acceleratable pro-

vided the code, data, domain and behavioral gaps are bridged.

2.2 The General Challenges of Generic FFT Support
There are potentially an unbounded number of differences
between functionally equivalent FFTs. Mismatches of code,
data domain and behavior can all be handled by FACC’s com-
bination of code detection, program synthesis, and generate-
and-test IO equivalence.

2.2.1 Code Mismatch. Different programmers use differ-
ent strategies for solving the same problem. This results
in incidental differences between implementations which

defeat constraint-based approaches. FACC achieves indepen-
dence of coding style by first using code neuro-embedding to
find candidate regions in user code. Once it has synthesised
candidate adapters for these regions, FACC uses IO examples
to test whether the adapter and original candidate code are
behavioraly equivalent.

2.2.2 Data Mismatch. Different implementations of the
same algorithm can use different representations of the same
data. FACC explores the space of possible mappings between
user code and accelerator API variable types via binding syn-
thesis. It uses constraints on data types and variable ranges
to reduce the space of possible mappings which are then
later evaluated for input-output (IO) behavioral equivalence.

2.2.3 Domain Mismatch. A valid input to user code may
not be a valid input to an accelerator and vice-versa, and
this causes complex constraints on functional equivalence
between accelerator and code. For example, the Analog De-
vices FFTA [6] only supports inputs that are powers of two
of size greater than 64 and less than 2048 in small mode, and
65536 in large mode. There are two issues to deal with here.
The accelerators may not support the full range of inputs that
the user code supports. This is a task that requires the gener-
ation of a static or dynamic range check. The user code may
also not support the full range of its own inputs, either throw-
ing errors or resulting in undefined or arbitrary behavior

3
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when fed with unintended random inputs, which can make
equivalence testing difficult. FACC uses value profiling [32]
and range analysis [64] to address this problem.

2.2.4 Behavioral Mismatch. Accelerators may not im-
plement the same functionality as user code. To make code
match, we either specialize or generalize.
Behavioral specialization is where accelerator input/-
configuration parameters are assigned constant values. For
example an accelerator may support both FFT and IFFT al-
gorithms, but user code may only implement FFT and so the
accelerator should be specialized to match the user code.
Behavioral generalization is where software performs
some function that the accelerator does not. For example,
the user code may compute un-normalized results, while a
hardware accelerator may return normalized results. A soft-
ware function should be used to generalize the accelerator
to produce compatible results.

2.3 Correctness
Implementations of FFTs vary between tens of lines of code
and thousands (see section 8.1) and handle arrays of floating-
point numbers. Proving traditional correctness is impossible,
as different implementations have different error proper-
ties [83, 92]. Correctness is further complicated by a lack of
formal models available for commercial hardware acceler-
ators, whose designs are often corporate secrets [2]. Even
if these issues are overcome, modern floating-point theo-
rem provers are not capable of proving equivalence of such
large-scale floating-point algorithms.
Instead of relying on formal proofs of equivalence, we

use a pragmatic approach based on fuzzing via input/output
examples to determine behavioral equivalence in a number
of test cases. Once FACC has confidence that the code can
be replaced, it is the developer’s role to sign off the source-
code replacement via code output in the source language
they understand (e.g. figure 3). False positives are very rare
without malicious input designed to disguise itself as an FFT.
During our evaluation, we encountered no false positives.

3 System Overview
FACC uses Input-Output (IO)-based program synthesis to
generate an adapter that is a drop-in replacement for the orig-
inal user code, matching the output behavior for all inputs
even though the implementation is different. Given some
accelerator performing a function 𝐴 and some user code
performing a function𝑈 , FACC finds adapter functions 𝑔, ℎ
such that ∀𝑥 .𝑈 (𝑥) = 𝑔(𝐴(ℎ(𝑥))), where 𝑥 represents test
input. Crucially, this test for IO equivalence is invariant of
the exact structure of the code, which in FFTs can vary from
tens to thousands of lines, and so can match any code which
given the same inputs produces the same outputs. Adapters
are created via a generate-and-test approach, by generating

complex ∗ FFT_acce l ( complex ∗ x , in t N) {
/ / Check f o r v a l i d i n p u t s t o a c c e l e r a t o r
i f ( i s_power_o f_ two (N) && N <= 65536 ) {

/ / B ind u s e r i n p u t s t o a c c e l e r a t o r
in t l e n = N ;
#pragma a l i g n 64
c omp l e x _ f l o a t ou tpu t [ l en ] ;
c omp l e x _ f l o a t i npu t [ l en ] ;
# pragma end
for ( in t i = 0 ; i < l en ; i ++) {

i npu t [ i ] . r e = x [ i ] . r e a l ;
i npu t [ i ] . im = x [ i ] . imag ;

}
/ / C a l l a c c e l e r a t o r
a c c e l _ c f f t ( input , output , l e n ) ;
/ / B ind a c c e l e r a t o r o u t p u t s
for ( in t j = 0 ; j < N ; j ++) {

x [ j ] . imag = ou tpu t [ j ] . im ;
x [ j ] . r e a l = ou tpu t [ j ] . r e ;

}
/ / De− no rma l i z e o u t p u t s
for ( in t k = 0 ; k < N ; i ++) {

x [ k ] . imag ∗= N ;
x [ k ] . r e a l ∗= N ;

}
} e l se { / / Not v a l i d a c c e l e r a t o r i n p u t

/ / F a l l b a c k t o u s e r c od e .
UserFFT ( x , N ) ;

}
}

Figure 3. A drop-in replacement for user code generated
by FACC. The Analog Devices FFTA used here requires that
inputs are 64-byte aligned, and is out-of-place, while the
user’s code is in-place. Pre-binding is highlighted in gray,
post-binding in pink, post-behavior in green and range in
orange — pre-behavior is empty in this case.

many plausible candidates, filtered first using known con-
straints and heuristics, before all but one option is eliminated
using fuzzing. Finally, the synthesised adapter is presented
to the user for verification.

3.1 A Generic Framework for Accelerator Support
Our key insight is that to support an accelerator performing
function 𝐴, and use it to accelerate diverse user code 𝑈 ,
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we must patch the difference using functions range (𝑟 ), pre-
binding (𝑏), post-binding (𝑏 ′), pre-behavioral (𝑠) and post-
behavioral (𝑠 ′) such that

𝑈 = 𝑟 (𝑠 ◦ 𝑏 ◦𝐴 ◦ 𝑏 ′ ◦ 𝑠 ′)

where each function provides the following behavior:

𝑏, 𝑏 ′ address the data mismatch problem by mapping be-
tween accelerator variables and user-code variables. 𝑏
takes user-code inputs and produces conversions to ac-
celerator inputs, while 𝑏 ′ takes the accelerator outputs
and converts them to user outputs (Section 5.1).

𝑟 addresses the domain mismatch problem with input
range checking to determine whether the inputs pre-
sented can be run on the accelerator. FACC does this
with a mix of static and dynamic analysis, generating
the minimal possible check with the static information
available (Section 5.2).

𝑠, 𝑠 ′ address the behavioral mismatch problem by adding
or undoing accelerator functionality to match the user
code. FACC sets 𝑠 to the identity function, as many
pre-behavioral FFT problems have a post-behavioral
equivalent 𝑠 ′ which can be used instead (Section 5.3).

An example output is shown in figure 3. In order to match
the accelerator’s data format (gray) the adapter converts
the user code’s input to a different datatype — aligned and
changed to be out-of-place. After accelerator execution, the
adapter restores the in-place representation (pink). The nor-
malization performed by the accelerator but not the user
code is undone (green). If the accelerator’s constraints on
size and being a power of two aren’t met, the user code is
run instead (orange).
Generic and Domain-Specific Components The frame-
work described above is domain-agnostic. However, to make
the synthesis problem tractable, some parts are domain-
specific. In particular, our solution to behavior mismatch
relies on sketch-based synthesis and is domain-specific to
FFTs. We expect our sketches to be easily extendable to new
domains. Our solutions to the data mismatch and domain
mismatch problems are general and applicable to many types
of accelerator.

3.2 Operation
FACC uses synthesis to generate an adapter that enables
drop-in accelerator use. Multiple candidates are generated
and tested against the user code to pick the correct one.
Figure 4 shows the stages of the tool:

1. An API to compile to and limitations of the hardware
are provided as input.

2. Candidate detection discovers potential targets us-
ing neural classification [42], and analyzes user code
using static analysis to aid in generating a match (Sec-
tion 4.3).

Figure 4. FACC takes a specification of an accelerator, and
produces an equivalent version of the original program with
acceleration. It uses neural embeddings to find plausible can-
didates for replacement, then creates a set of possible input
and output bindings, filtered by constraints and heuristics.
It then tries to patch the functionality of the accelerator to
match that of the user code via behavioral synthesis. Finally,
FACC generates all possible combinations of these mappings,
and tests them for IO equivalence with the user code.

3. Synthesis generates candidates for the 𝑟, 𝑠, 𝑠 ′, 𝑏, 𝑏 ′ func-
tions, discarding those made invalid via constraints
and heuristics (Section 5).

4. Generate and Test filters the combination of all pos-
sible matches using IO tests to generate a drop-in re-
placement (Section 6).

4 Identifying Acceleratable Candidates
FACC bridges the gap between user code and accelerator
behavior by generating adapters. Before it can do that, it
employs an existing tool [42] to identify candidate accel-
eratable code regions. FACC then gathers information on
how variables within code regions are used to drive adapter
synthesis.

4.1 Identifying Acceleratable Regions
FACC is a binding tool, using a neural classifier based on
ProGraML [42], to detect likely acceleratable FFT-based code.

5
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Data We use the OJClone algorithm classification dataset
introduced in Mou et al. [95] consisting of 105 classes, each
composed of different implementations of the same task.
We add FFT as an additional class, with the same FFT code
snippets obtained from Github used in the rest of the article.
We restrict all classes to 20 instances for a balanced dataset.
Each instance is parsed and transformed into a data flow
graph of its LLVM instructions with ProGraML [42]. Due
to the reduced size of the dataset, we implement 10-fold
cross validation, such that each train split contains 80% of
the dataset and the remaining 20% is left as holdout.
Model We implement a Graph Convolutional Neural Net-
work with two graph convolutional layers followed by max-
pooling and a linear layer to perform the actual classification,
using PyTorch [102] and DGL [130]. We do not perform any
hyperparameter search (instead, set reasonable default val-
ues), and use the Adam optimizer [75] with weight decay as
regularization. All models are trained for a maximum of 100
epochs using early stopping with a patience of 10, which led
to convergence in all experiments.
Identifying Invalid Regions No code detection tool is
perfect, and so ProGraML may misclassify algorithms. FACC
evaluates all of these as potential generate-and-test targets,
and if an invalid region (i.e. one not matching the accelerator
interface) is identified, FACC will fail to generate valid bind-
ings and leave the spuriously identified region unchanged. In
this sense, the neural classifier is used to cut down the search
space: rather than considering all instruction sequences of
all programs as possible targets, it only tries to match those
labelled by the neural classifier2.
Code Mismatch Identifying code regions is only the first
part of overcoming code mismatch. The second is that code
itself is highly diverse; our evaluation set ranges from 12 lines
to over 2000 for similar behavior. In section 6, input-output
(IO) testing is used to test whether the adapter synthesized
in section 5 matches the behavior of the identified code.
IO-testing allows us to ignore the underlying code structure
eliminating code mismatch by focusing only on the interface.

4.2 Identifying Input/Output Variables
FACC relies on existing liveness analysis to determine which
variables are output variables and which are input variables.
This allows for extraction of functions with side-effects, or
extraction of sub-function regions of code. We use variable
range analyses [64, 79, 88] points-to analyses [21, 63] and
value-profiling [32] to reduce compilation time.

4.3 Type Inference
FACC expands types in two ways: by inferring the lengths
of arrays, and by inferring more structured types over base
types where they may be required by the accelerator.

2Code is available at [13]

This step takes a single type from the user code as input,
and produces a number of plausible extended types to use for
the remainder of the synthesis as an output. A pseudo-code
type augmentation algorithm is shown in algorithm 1.

Algorithm 1 Type Augmentation Algorithm. Takes a type
as input, and produces all plausible types that can replace it.

procedure AugmentTypes(Type𝑖𝑛)
Types = ∅
if IsArray(Type𝑖𝑛) then ⊲ Infer Lengths

for len ∈ Possible Length Variables do
Add Type𝑖𝑛#len to Types

end for
else

Add Type𝑖𝑛 to Types ⊲ Not Array so No Length
end if
for 𝑇 ∈ All Possible Types do ⊲ Infer Structure

for 𝑇 ′ ∈ Types do
if IsCompatible(𝑇 , 𝑇 ′) then

Add 𝑇 to Types
end if

end for
end for
return Types

end procedure

Length Inference Arguments passed as arrays to func-
tions often have a variable number of values. For example, a
type signature that takes a single integer as argument can
only take a single input, but a function that takes an array can
take N inputs, where N is the length of the array. In languages
like C, array lengths are implicit, not directly specified by
the programmer. Although best-effort compiler passes can
assist with providing this information [87], FACC is able to
infer array lengths using a generate-and-test approach. Each
array is assigned a number of possible length parameters,
and the correct one is determined during testing.
Structure Inference API designers are often encouraged
to present APIs with the most syntactic information possi-
ble [66]. The user code faces no such restrictions. As a result,
FACC needs to infer more syntactic information over base
types. All plausible (dependent on the types in the accel-
erator API) inferred types are considered, and filtered via
generate-and-test (see algorithm 1).

5 Synthesis
Here we describe the core accelerator support problem. We
address three key mismatches: data mismatch using binding
synthesis, domain mismatch using range-check generation,
and behavioral mismatch using behavioral synthesis.

6
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Figure 5. Type constraints reject two impossible bindings.

Figure 6. A non-trivial conversion (2𝑛) is considered, but
ruled out due to range heuristics.

Figure 7. An example solution to the binding problem. To
determine the correct binding, FACC tries all plausible bind-
ings that cannot be statically determined impossible.

5.1 Data Mismatch: Binding Synthesis
In binding synthesis, we take a set of input variables and a
set of output variables from the user code. We generate every
mapping that Type Inference (section 4.3) does not allow us
to eliminate either via constraint or heuristic, between these
variables and the accelerator API variables, to be evaluated
using generate-and-test. Figures 5 and 6 show an example
creating possible bindings for a single variable while reject-
ing those statically known to be impossible. Figure 7 shows
a full candidate mapping.

5.1.1 Non-trivial Conversions. The vast majority of ac-
celerator parameters can be copied directly from parameters
existing in user code. However, frequently, the same infor-
mation is encoded in indirectly compatible ways. A typical

example is using 𝑁 to directly encode array length, com-
pared to using 2𝑁 to represent array length. Another typical
example is the many different ways that a flag can be repre-
sented in C: 0 and 1, -1 and 1, 1 and 0, etc. FACC generates
conversions allowing compatibility between implementa-
tions with different flag values. Variable-range information
is used to vastly reduce the search-space of conversions.

5.1.2 Constraints. FACC applies constraints to generated
bindings, limiting the search of impossible matches.
Type Conversions If a variable 𝑥 is to be assigned to some
variable 𝑦, then there must be a known conversion between
the two types, including over distinct representations of
complex numbers.
Array Assignments If any two array variables share a
length variable, then the arrays that they are assigned to
must also share a length variable — and those two length
variables must be assigned to each other.

5.1.3 Heuristics. FACC also applies a number of heuris-
tics to the bindings generated.
Range Heuristics are applied to determine whether the
accelerator is likely to be useful. For example, if a variable
𝑥 may take any one of 100 values, and is assigned to an
accelerator API variable 𝑦, which only supports one value,
the odds of successful acceleration are extremely small, so
the binding is not considered likely (figure 6).
Single-Read Heuristics FACC assumes that user-code
variables should only be read from once when assigning
to accelerator variables. This heuristic greatly reduces the
synthesis space by assuming a lack of unneeded redundancy
in the programmer’s original code.

5.2 Domain Mismatch: Range-Check Generation
Fixed function accelerators are often extremely specialized —
significant performance is possible by making the common
case fast. However, legacy C code is more general in scope.

It is important that offloaded code only operates within the
valid range of the accelerator. To ensure this, we synthesize
range checks, which offload to the accelerator if the inputs
are valid, and fall back to the user code otherwise.
We use two sets to determine the overlap region of an

accelerator and user source code.
Accelerator Specification The accelerator API is expected
to specify what set of inputs the API functions on. These
inputs are used both to direct testing of compatibility, and
to generate input-range checks.
User-Code Analysis Inter-procedural range analysis com-
plements the accelerator specification by allowing FACC to
reduce the quantity of input checking to the intersection
of the accelerator’s range and the user code’s range, rather
than all possible FFT inputs.
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5.3 Behavior Mismatch: Behavioral Synthesis
Behavioral synthesis introduces adapters that make accel-
erators transparently compatible with more user code. For
example, suppose we have a user FFT function that does
not normalize the results, even though the FFT accelerator
available does. We use post-behavioral synthesis to gener-
ate de-normalizing code and enable accelerator use while
allowing the programmer to use de-normalized results.

We implement domain-specific post-behavioral synthesis
program using sketch-based synthesis [116]. For FFT func-
tions, there are a small number of behaviors that are often
omitted: normalization/denormalization and bit-reversal.
We provide a number of sketches with holes, and a pro-

cedure to fill the holes and produce all options. No infinite
sketches are allowed — all sketches must be finite once holes
are filled, and there must be a finite number of ways to fill
each hole. Generated candidates are tested against user code.

6 Generate and Test
FACC is an Input-Ouput (IO)-based synthesis tool. The can-
didate adapters generated by synthesis are compared to the
original code using fuzzing to determine equivalence. The
working adapter is output in the original source language
(figure 3) and used as a drop-in replacement in the user’s
code.

6.1 Random-Input Generation
Tests are randomly generated with a bias towards smaller
examples that run more quickly. Examples are constrained
to be within the computed range analyses of user code, and
the valid-input range of the accelerator. As discussed in Sec-
tion 4.3, variable-length arrays have inferred length variables
and so order of generation is important. We use a topology
sort to ensure that that variables are assigned in a valid order.
In addition to IO-equivalence, AddressSanitizer [114] is used
to detect arrays with incorrect length parameters assigned
by detecting out-of-bounds accesses.

6.2 Potential for Bounded Model Checking
Bounded model checking is an approach where a theorem-
proving tool shows that a program cannot enter a specified
error state, or provides a counter example. Given that the
accelerators we support have bounded input sizes and for
other sizes we call the original code, boundedmodel checking
is sufficient. However, FFT algorithms are reliant on floating-
point analyses and fall into a significantly harder category of
model checking. The input to a floating-point model checker
can be phrased as:

f l o a t ∗ u = u s e r _ f f t ( . . . ) ;
f l o a t ∗ a = a c c e l _ f f t ( . . . ) ;
f l o a t e = e r r o r ( u , a ) ;
a s s e r t ( e < t h r e s h o l d ) ;
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Figure 8. FACC success and failure classification.
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Figure 9. Performance of different strategies: constraint
matching, neural embeddings and FACC.

Despite the portability of IEEE 754 floating point [9], it
is designed for small-step operations, rather than full algo-
rithms such as FFTs. Floating-point tools such as XSat [54]
or Klee [31] can accept bounded model checking problems
that could theoretically prove equivalence between func-
tions within accuracy bounds. Existing techniques fall far
short from being computationally efficient enough to prove
the correctness of complex floating-point functions. FACC
requires programmer sign-off due to imprecision of hard-
ware and software implementations, as well as the IO testing
mechanism.

7 Setup
We search GitHub for “FFT”, and restrict the results to C. Of
the first 100 results, we have identified 24 distinct complex
floating-point FFT implementations after excluding buggy
code3, code with missing dependencies, clones and imple-
mentations in different languages. We have added the FFT
in MiBench [61]. We have placed these 25 implementations
into a benchmark suite, and used FACC to compile from
each. Where required, we have constructed a value-profiling
environment, to enable FACC to compile the benchmark to
the accelerator.

3Buggy should be interpreted as “the authors were unable to make the code
produce correct results to the Fourier transformation.”
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Project Lines of
Code

Lengths
Supported Algorithm Twiddle Factors Imaginary

Numbers
Pointer

Arithmetic Loop Structure Optimizations

0 83 Only 64 Radix-2 FFT Constant Custom No While-True-Break Minimal

1 278 Powers of 2
(≤ 256) Radix-2 FFT Constant Custom No Do-While/For Minimal

2 65 Powers of 2 Radix-2 FFT Computed in FFT Custom No For/Recursive Minimal
3 107 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal
4 934 All Mixed-Radix FFT Computed in FFT Custom No For/Recursive Extensive Unrolling
5 2159 All Mixed-Radix FFT Pre-Computed Custom Yes For Hand-Vectorized/Unrolled
6 77 Powers of 2 Radix-2 FFT Computed in FFT Custom No For Minimal
7 237 Powers of 2 Radix-2 FFT Pre-Computed Custom Yes For Minimal
8 101 Powers of 2 Radix-2 FFT (DIF) Computed in FFT C99 Complex No For Minimal
9 1627 All Mixed-Radix FFT Pre-Computed Custom Yes For/While/Recursive Extensive Unrolling
10 75 Powers of 2 Radix-2 FFT Pre-Computed Custom No For Minimal
11 538 All Mixed-Radix FFT Pre-Computed Custom Yes Do-While/For Twiddle-Factor Memoization
12 367 All Mixed-Radix + Bluestein Computed in FFT Custom No For/Recursive Unrolling
13 101 Powers of 2 Radix-2 FFT (DIT) Computed in FFT C99 Complex No For Minimal
14 314 Powers of 2 Radix-2 FFT Computed in FFT None No For Minimal
15 215 All Recursive FFT Computed in FFT C99 Complex No Recursive Minimal
16 20 All DFT Unneeded C99 Complex No For None
17 12 All DFT Unneeded C99 Complex No For None

Table 1. Features of each benchmark used, representative of a wide range of implementation styles, from highly-optimized
several-thousand line implementations to short, simple Discrete Fourier Transforms (DFTs).

Implementation FACC is implemented usingOCaml, with
behavioral synthesis libraries implemented in C. FACC cur-
rently has a C backend which is compatible with toolchains
for the various backend targets. In total our implementation
is 13,000 lines of OCaml, with 1,000 lines for range check gen-
eration, 1,000 lines for behavioural synthesis, 3,000 lines for
binding, and 4,000 lines for backend-specific generation and
the remaining 4,000 used for various utilities. All compiler
and benchmark code is available at [12].
Experimental Setup Codes were placed in a benchmark
suite that tests them on inputs that could be accelerated by
the accelerator in question. We evaluate on three platforms:
FFTW : A desktop environment running Windows Sub-

system for Linux and using an Intel i9-10900X processor and
the FFTW optimized library. Code is available at [12].
ADSP board (SC589/FFTA): A multicore embedded en-

vironment using the Analog Devices ADSP-SC589 Devel-
opment board with an Arm Cortex A5 as a primary core,
an SC589 SHARC DSP core and an FFTA Fourier transform
hardware accelerator. Code is available at [14].

NXP Board (Powerquad): A single core embedded envi-
ronment using the NXP LPC55S69 Development board with
an Arm M33 as a primary core and an NXP PowerQuad ac-
celerator capable of accelerating Fourier transforms. Code is
available at [15].
Competitive Approaches We evaluate IDL [59], an exist-
ing constraint based approach to identifying code sections
for acceleration. We evaluate our ProGraML-based classi-
fier’s [42] speedup by offloading FFTs to an SC589 DSP core.
FFTs can be offloaded to the SC589 DSP core simply by identi-
fying them, but the semantic information required to offload
to the FFTA is not inferred. Rather, we use ProGraML as a

hint that the code is likely to perform better on the DSP than
the CPU.

8 Results
We evaluate FACC along several dimensions, comparing
against success rates of IDL and ProGraML (section 8.2),
performance of IDL and ProGraML (section 8.3), performance
across multiple platforms (section 8.4) and properties of the
compilation (section 8.5).

8.1 Which Benchmarks does FACC Support?
FACC compiles 18 of the 25 implementations as shown in
Figure 8. Table 1 shows a summary of the code features used
in the projects FACC is able to compile. We can see that
implementations vary both at the level of functionality they
support, with different implementations supporting different
lengths of input, and in the way they implement the Fourier
transform. Approaches vary between 12 and 2,159 lines of
code, using iterative and recursive approaches. A number
of implementations unroll loops and base cases by hand to
achieve better performance, while others introduce memo-
ization between calls and others still use hand-vectorized
instructions. It is very common to use custom-defined com-
plex types, rather than the standard C99 type.
Figure 8 shows why FACC cannot compile some cases.

Printfs during execution results in observably different be-
havior than can be supported on an accelerator that does not
print to stdout. Void* pointers and Integer FFTs both require
more implementation work to support the appropriate type
conversions required. Support for nested memory structures
requires implementation of support for nested calls to malloc.
The features to support these are work in progress.
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Figure 10. Comparing offloading techniques between on the Analog Devices ADSP-SC589 Development board. Inputs of size
1024 are used unless otherwise noted. An Arm Cortex-A5 is the master core, and can offload either to the SC-589 DSP or to the
FFTA accelerator. A neural embedding is used to offload to the DSP core and achieves geometric mean speedup of 3.5x. FACC
offloads to the FFTA, and achieves corresponding speedup of 27x.

8.2 Which Benchmarks do IDL and ProGraML
Support?

Figure 9 shows the performance of three different compila-
tion techniques on our benchmark suite.
IDL For IDL [59], we design a pattern for project 0 (in
Table 1). We can see that IDL can compile the single bench-
mark we hand-crafted a pattern for, but cannot generalize.
Figure 12 shows why: from our workload set, no pattern
becomes similar enough to any other past 50 lines, and most
diverge much more quickly. While simple function prologue
snippets are sometimes similar enough to allow us to match
them between functions for a few lines, the level of code
mismatch in the core FFT algorithm makes this strategy inef-
fective. Even if we charitably try to match the two simplest
codes, 16 and 17 at 20 and 12 lines respectively, we imme-
diately fail; they use different library functions for complex
arithmetic.
ProGraML By contrast, the modified ProGraML [42] clas-
sifier is effective at detecting FFTs: Figure 11 shows a cross
validation. Top-1 refers to classifying a code region solely
by the highest predicted probability class. Top-3 refers to
considering those 3 classes with the highest probability. The
FFT top-3 recall reaches 100% with as few as 11 examples.
Using top-3, we also find precision converges rapidly to 1.
This means FACC will try binding on all code regions la-
belled FFT by Top-3, discarding those where there is no legal
binding, to avoid false-positive code outputs — it is better to
have a classifier that identifies too many regions than too
few regions.

Although we use a top-3 scheme, a top-1 scheme for FFTs
provides a different performance point with an F1 score of 0.8.

Such classification schemes can be tuned to obtain suitable
performance/coverage characteristic for the compute power
available.
We also show the overall performance for predicting all

classes - not just FFT. We observe that with around 8 exam-
ples per class, top-3 accuracy is consistently above 50%. Over-
all, the model does not overfit to the train split, and reaches
useful performance with relatively few examples. This is
due to the effectiveness of the ProGraML representation, the
convolutional graph inductive bias, and the class separability
of the dataset, especially in the case of FFT, whose data-flow
graph shows clearly distinguishable patterns. Generally, we
can see that neural embeddings are effective at detecting
FFTs, and also have applicability for similar acceleration-
identification tasks in other domains.

8.3 How Do FACC’s Adapters Preform?
Figure 10 shows the performance of FACC on the ADSP
board compared with the ProGraML Neural Classifier and
IDL. FACC takes advantage of the algorithm-specific acceler-
ator, achieving geometric mean speedups of 27x. ProGraML
cannot exploit the accelerator since it is just a classifier, but
achieves a 3.5x speedup by moving FFT code to the DSP.
Interestingly, in one case the DSP is actually faster than the
FFTA due to the small data size. IDL only detects one acceler-
ation opportunity, achieving the same performance as FACC
on benchmark 0 only.

8.4 How Do FACC’s Adapters Perform on Different
Platforms?

Figure 13 shows the performance improvement obtained by
each implementation on the ADSP board, the NXP board and
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Figure 11. Cross-validation accuracy (mean and standard
deviation) of our ProGraML-based neural classifier in terms
of the number examples per class when trained using a re-
duced version of the OJClone dataset with FFT examples
injected.

Figure 12. How the number of patterns matched changes
with the length of the IDL pattern used. IDL patterns tomatch
entire FFTs are thousands of lines long and do not generalize.
By 50 lines we have only a single remaining match and still
only cover the prologue of a single FFT function.

the FFTW optimized software library. Relative performance
is dictated by the performance of the accelerator and the
performance of the compiler used to compile the original
implementation.

These differences can be seen on benchmark 8, where the
original implementation is poorly optimized for the hard-
ware on the Arm Cortex-M33, but runs much better on the
Arm Cortex-A5 and Intel i9-10900X. We can also see signif-
icant differences between styles of implementations, with
projects 16 and 17, which are DFTs yielding particularly large
speedups (10,000x on the PowerQuad). The geometric mean
speedup for each accelerator relative to their baseline is 9x
for FFTW, 17x for the PowerQuad and 27x for the FFTA.

Performance for varying sizes of input for projects 1–
7 is shown in figure 14. Speedups increase with data size
as expected for an offloading-based accelerator model [19].
Speedups are possible using optimized software libraries,
although the opportunities are more limited and may require
profiling to determine viability.

8.5 Compilation Time
Figure 15 shows the compilation time taken by FACC for
each benchmark. Results are gathered on a 6 core Intel i7-
8700K CPU running at 3.70 GHz with 32 GB. We anticipate
a number of simple parallelism-based optimizations could
significantly reduce compilation time.
Figure 16 shows how the number of binding examples

generated for each target. FFTW exposes more functionality
in it’s interface, so requires more examples to be generated.
FACC uses the same interface to access the ADSP board’s
FFTA and the NXP board’s PowerQuad, so the number of
examples is identical. The difference in compile time is due
to different supported input lengths: the PowerQuad sup-
ports smaller input sizes, which are faster to test. None of
these programs result in excessively large search spaces. If
the search space were to grow, standard synthesis pruning
techniques could be applied [28].

9 Related Work
9.1 Algorithm Identification
A number of techniques have been developed that enable
algorithm identification within extensive user codebases.
Vector-embedding techniques such as code2vec [18] can be
used to identify and label algorithms in code. There are
numerous techniques that use larger, code-clone specific
datasets to achieve quantifiable results. Embeddings such as
ProGraML [42] achieve upwards of 95% accuracy in clone de-
tection, and a number of other machine-learning approaches
using static information exist [30, 51, 55, 95, 101, 132, 134,
139]. Dynamic runtime information can also be used for this
task [129] and numerous approaches developed without ma-
chine learning exist [69, 70, 74, 110]. API-recommendation
tools [65, 68] can also be used for algorithm identification. Fi-
nally, NLP has been applied to code comments to identify the
algorithm [76]. Algorithmic mismatch has been explored on
a number of dimensions in relation to AI accelerators [128],
and with relation to different FFT API calls [122].

9.2 Existing Compilation Techniques
DSP optimizations [52, 73] can aid FFT performance, but
do not come close to accelerator performance [11]. DSL ap-
proaches get closer [108, 109, 118, 127], and work to extract
such DSLs from source code has been developed [16, 20, 71,
91], but these approaches rely on programmable small-step
accelerators and do not generalize to big-step accelerators
such as the FFT accelerators we explore.
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Figure 13. Relative performance for different FFT implementations on GitHub, comparing original software and FACC’s
generated accelerator call for FFTs of length 1024. FFTA results from the ADSP board are compared to software running on the
Arm Cortex-A5. PowerQuad results from the NXP board are compared to software on an Arm Cortex-M33. FFTW results are
compared to software on an i9-10900X desktop CPU. Geometric mean speedup is 9x for FFTW, 17x for the PowerQuad and 27x
for the FFTA.
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Figure 16. CDF of the number of candidates generated by
FACC for each benchmark. One distribution per target. FFTA
and PowerQuad overlap due to similarity of restrictions ex-
posed via API from the hardware, unlike the software FFTW.

Constraint matching [27, 45, 57] provides a way of match-
ing and extracting interfaces from high-level code. Unfor-
tunately, these approaches are brittle [45] — they do not
scale beyond a single implementation/accelerator pair, and
constraint patterns are extremely hard to write [39, 40, 58].
Rewrite-rule based compilers can be used to target accel-
erators [77], but these still rely on initial matching using
constraints or similar. For affine algorithms, approaches us-
ing polyhedral analysis have also been attempted [24, 82,
119, 121] — but these are inapplicable to non-affine or highly-
optimized implementations. Other authors focus on ensuring
that the presented API retains easy programmability [86],
aiming to help programmers program accelerators directly.
A large amount of work has been done on API migra-

tion [38, 97–99, 105],the task of migrating code using one API
12
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to use a newAPI. Likewise, a number of API-recommendation
tools [68, 137] have been developed, although these do not
tell the programmer how to integrate the API. Another com-
mon approach is a backend-independent API [93, 122] allow-
ing formigrations to happen under the hood. Samak et al. [111,
112] approach a similar problem in the object-oriented space,
using embeddings and synthesis to generate adapter classes
for drop-in replacement classes in Java. The tools,Mask and
ClassFinder, use symbolic execution to prove equivalence,
a technique which does not scale to FFT-sized algorithms.
Work applying program synthesis to take advantage of it’s
syntax-independence has been applied for software optimiza-
tion [41, 106, 113].

9.3 FFT Accelerators
Hundreds of research implementations [22, 56] and com-
mercial implementations [1, 3–6, 22] of FFT accelerators
exist intended both as stand-alone accelerators, and to be
integrated in larger accelerators [125]. Work on support-
ing FFT acceleration exists for FPGAs [94], GPUs [84] and
specialized architectures from linear algebra cores [104] to
CGRAs [67, 85], machine-learning accelerators [50, 80, 117],
optical computers [78] and sonic computers [103].

FFT accelerator performance is largelymemory-bandwidth
limited [48, 124], a problem exacerbated by access patterns
that make poor use of DRAM buffers [17, 23]. Much work
has been focused on reducing memory demands. Comput-
ing twiddle factors on-chip has been explored [33, 35, 62]
and applied in industry [90]. In-memory FFT accelerators
have also been proposed to reduce this communication over-
head [36, 81, 138] along with 3D-stacked memory accelera-
tors [60].

10 Conclusion
This paper describes FACC, a tool for compiling user-code
to Fourier-transform accelerators and optimized libraries.
FACC uses IO matching and program synthesis to address
the problems of code, data, domain and behavioral mismatch,
allowing for easy accelerator integration into existing source
code. Using FACC and real-world optimized libraries and
hardware accelerators, we are able to achieve speedups aver-
aging 9x for FFTW, 17x for the PowerQuad and 27x for the
Analog Devices FFTA.

While FACC focusses on matching user code to accelera-
tion APIs, it can also be used to match optimized libraries to
emerging hardware e.g matching FFTW to FFTA. This would
allow users, who have already restructured their application
to use libraries, to continue to benefit from hardware evolu-
tion, while automatically handling the unusual constraints
that fixed-function hardware poses.

Although, this paper focusses on Fourier-transforms, this
approach is readily applicable to other fixed-function acceler-
ators. Fixed-function need not be the enemy of programma-
bility and automatic targeting. Rather, we can automatically
rearchitect software to build adapters that bend the accelera-
tor to the user’s will rather than vice versa.
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