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Abstract
The field of biometrics research encompasses the need to associate an identity to an indi-
vidual based on the persons physiological or behaviour traits. While the use of intrusive
techniques such as retina scans and finger print identification has resulted in highly accurate
systems, the scalability of such systems in real-world applications such as surveillance and
border security has been limited. As a branch of biometrics research, the origin of soft bio-
metrics could be traced back to need for non-intrusive solutions for extracting physiological
traits of a person. Following high number of research outcomes reported in the literature on
soft biometrics, this paper aims to consolidate the scope of soft biometrics research across
four thematic schemes (i) a detailed review of soft biometrics research data sets, their anno-
tation strategies and building a largest novel collection of soft traits; (ii) the assessment of
metrics that affect the performance of soft biometrics system; (iii) a comparative analysis on
feature and modality level fusion reported in the literature for enhancing the system perfor-
mance; and (iv) a performance analysis of hybrid soft biometrics recognition system using
multi-scale criterion. The paper also presents a detailed analysis on the global traits associ-
ated to person identity such as gender, age and ethnicity. The contribution of the paper is to
provide a comprehensive review of scientific literature, identify open challenges and offer
insights on new research directions in the filed.
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1 Introduction

Human body, its behaviours or interactions and any kind of materials or clothing attached
to it are rich sources of information for identification. These sources of information can be
used for features based recognition in surveillance and retrieval of probe from a larger group
present in the gallery or database [45, 64, 98, 133].

The set of features used can be either intrusive or non-intrusive or both. This survey is
focusing on non-intrusive features as they provide seamless recognition and retrieval [119].
However, both types of features are categorized as biometrics [29].

The field of soft biometrics is emerging as a potential alternate to traditional biometrics
in recent years [29]. There are multiple reasons behind it, like non-intrusive nature of fea-
tures or traits [45], independence at modality and feature level [188], presence of semantic
description for each individual trait [49] and finally, a seamless method for recognition and
retrieval [46]. However, the field is still facing several challenges and there are number of
gaps that need to be filled before declaring it a replacement for traditional biometrics.

Due to the importance of the topic and the recent advancements, several surveys have
made efforts to summarize the key developments in the field of soft biometrics. In [19],
goal is to explore and analyze the effectiveness of facial soft biometrics over traditional face
recognition systems in challenging realistic environments where variation of pose, expres-
sion and occlusion etc. is higher. The objective of using facial soft biometrics is to facilitate
face recognition systems or develop a standalone facial soft biometrics recognition system.
The paper summarizes techniques describing different types of face soft biometrics like
facial marks, geometric measures, color, gender and ethnicity along with feature extrac-
tion and classification model used for this purpose. In [76], to extract 6 different facial
soft biometrics i.e. gender, age, ethnicity, moustache, beard and glasses, 2 commercial off
the shelf systems were used. As a prerequisite step, multiple techniques for facial soft bio-
metrics extraction, fusion of soft and hard biometrics and search space reduction methods
were compared. In another work [71], for continuous authentication during online session,
techniques to extract facial soft biometrics i.e. ethnicity, eye color, hair color, skin color
and gender were explored and compared. The system comprises of a traditional biometrics
authentication process.

The field of soft biometrics is not just limited to facial region, it is beyond face, involves
body including limbs and material attributes like clothing and accessories etc. In [46], a
bag of soft biometrics from three modalities i.e. face, body and clothing is presented. This
collection defines nature of attribute value, permanence, discrimination power and sugges-
tiveness for each soft biometrics too. One of the most comprehensive survey exploring the
field of soft biometrics domain [45], discusses, how soft biometrics transformed from an
ancillary component of hard biometrics systems to standalone soft biometrics systems. It
discusses the different soft biometrics modalities, a small set of features in each modality,
taxonomy and techniques for gender, age and ethnicity recognition before year 2016.

The field of soft biometrics is gaining more and more attention over traditional biomet-
rics due several factors along with its non-intrusive authentication nature. The standalone
soft biometrics experimental systems have been developed for unconstrained environments.
In our survey, a comprehensive approach towards evaluation and analysis of soft biometrics
systems development in the later half of current decade followed by [45]. The survey high-
lights effectiveness of soft biometrics over traditional biometrics based upon certain factors,
it redefines the structure of modalities and provides more than 10 times larger bag of soft
biometrics, while authors of [46] focusses only on a limited number of traits. The survey
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also describes annotation methods, types and a summary of datasets annotated for the eval-
uation of soft biometrics systems. To develop robust soft biometrics systems, the survey
analyzes four critical factors affecting individual soft traits. A comparison of most recent
standalone soft biometrics applications developed for authentication using modalities from
whole human body rather than face only [19, 71, 76] is part of survey too. The most recent
global soft biometrics i.e. gender, age and ethnicity estimation techniques in both hybrid
framework and independently are compared in the survey. Moreover, the soft biometrics
estimation and classification using selfie and ocular images is also covered in the survey.
Finally, a list of open challenges and possible solutions based upon analysis in the survey is
a key contribution presented.

1.1 Soft biometrics: non-intrusive biometrics

Usually, the intrusive features are fingerprints [37], retina scans [186] etc. They are referred
as traditional or hard biometrics [188]. The non-intrusive features are called soft biometrics.
There is a large number of non-intrusive features present in the whole human body. These
are demographic, global, anthropometric, material, behavioural and medical etc. [45, 188].
This set of soft biometrics features can be estimated or extracted from whole human body
beside face or head only. The whole human body includes limbs, clothing and style etc.
[133].

The origins of soft biometrics could be traced back to 18th century where Bertillon sys-
tem was used for criminal identification based on suspects physical description [134]. The
attributes used to quantify the physical description were termed as antropometric measure-
ments which include head length, head breadth, length of middle finger, length of the left
foot, and length of the cubit. These attributes were classified as body geometry and face
geometry both of which were supplemented with a mug shot of the individual. A detailed
review of soft biometric features derived from the Bertillon system could be found in [45,
46, 133].

Despite the success of Bertillon systems, the lack of ability to generalise such features
in the earliest part of 20th century, the attention of the scientific community turned to
using hard biometrics with fingerprinting still leading being a primary source of person
identification within criminal justice systems. Until recently, the study of soft biometrics
was only considered as an ancillary research domain to biometrics with research focused
on the hybrid identification frameworks that investigated feature fusion of intrusive and
non-intrusive features. The fusion framework performs identification in a group [213], or
continuous authentication during an online session [14, 149]. The overall aim was better
recognition or retrieval [214].

One of the major reasons behind using soft biometrics only is seamless recognition and
retrieval and this type of system is called standalone soft biometrics system. The seamless
recognition is composed of non-intrusive features which are easier to estimate in uncon-
strained environments too. That is why, it is essential to look for non-intrusive features
present in different human body modalities.

1.2 Soft biometrics: modalities and features

Similar to traditional biometrics, soft biometrics is extracted set of features from whole
human body [71].

The human face or head, its appearance, structure and body including limbs are per-
manent modalities [214]. Any material to cover like clothing is temporary modality [134].
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The Fig. 1 presents an overview of soft biometrics modalities and traits. The global, face
and body are permanent modalities while clothing is temporary one. There exist features
or traits in each modality. Perhaps, the number of features in each modality is infinite and
depends upon scenario. To build understanding, we have presented a few soft traits from
each modality, however, a comprehensive list of soft traits can be found in Tables 4, 5 and 6.

1.3 Soft biometrics: semantic description

So, each modality of human body contains a richer set of soft traits. Indeed, there is a need
to provide semantic description for each soft trait. The semantic description is actually real-
world definition of a soft trait mostly depends upon scenario either recognition or retrieval
[49].

The human beings recognition process for each other in real life is interesting to study.
Suppose, a person is male, short height, thin face and wearing black coat. It is the semantic
description against soft traits gender, height, face type and clothing. This is categorical
method of describing an individual semantically. Using attribute values, one can also be
retrieved from a group [134] .

The other way of identification is to compare a subject against set of subjects. For exam-
ple, comparing probe against each in the gallery or database using soft traits [134]. In
soft biometrics, both categorical and comparative methods of semantic description are in
practice. These are referred as qualitative descriptions [166].

To find match for the probe in the gallery or identification in surveillance scenario,
we need some sort of quantitative description for soft traits. Till date, soft biometrics-
based recognition and retrieval is focused more on qualitative description i.e. categorical
or comparative. On the other hand, we have quantitative methods like anthropometrics and
geometric measurements. These are hard to estimate in real-world scenario but experimen-
tal outcomes are good enough [87]. Indeed, quantitative method is a much better solution to
improve recognition or retrieval accuracy.

The Table 1 presents concept of possible semantic descriptions for few soft traits. For
example, the height of human object. It is described using all three types of annotations.
In real-world observation, this is true for height. The gender is categorical only either male
or female. This is again true reflection of real-world observation. However, the Inter Eye

Fig. 1 Soft Biometrics
Modalities and Features Present
in Human Body Global Gender, Age, Ethnicity

Face
Skin Color, Nose Length,

Eye Size, Lip Thickness, etc.

Body
Arm Length, Chest
Width, Height, etc.

Clothes
Head Coverage, Clothing

Color, Footwear Type, etc.



Multimedia Tools and Applications

Table 1 Some soft traits and possible semantic descriptions

Soft trait Semantic Description

Categorical Comparative Absolute

Height Taller/Shorter A taller than B i.e. 5.9 ft

Gender Male/Female na na

Inter Eye Dist na Much Shorter/Same i.e.2.5cm

/Much Larger

Distance is not categorical but comparative and absolute. In real-world perception, this is
little bit hard to define it in categorical terms.

1.4 Soft biometrics: a seamless solution for recognition

As of definition, “Soft Biometrics traits are physical, behavioural or adhered human char-
acteristics, classifiable in pre–defined human compliant categories. These categories are,
unlike in the classical biometric case, established and time–proven by humans with the aim
of differentiating individuals. In simple words, the soft biometric traits instances are created
in a natural way, used by humans to distinguish their peers” [11, 46].

One of the major reasons to adopt soft biometrics is authentication in a seamless manner
as depicted in [14, 132, 149], for example, during online session or exam etc. On other hand,
the set of soft biometrics features is increasing in number. This is another motivation for a
standalone soft biometrics recognition or retrieval system development [45].

The applications of standalone soft biometrics recognition or retrieval are experimented
over the years in surveillance [164, 180], social robotics [47], IoT [195], social media and
mobile authentication [72, 129]. These factors are strong motive to use soft biometrics
for seamless authentication. Such diverse applications has necessitated the importance of
adopting soft biometrics in public spaces for enhanced security.

A conceptual framework for the implementation of soft biometrics based recognition
system is presented in Fig. 2. The possible soft traits which can be calculated are height,

Fig. 2 A Conceptual Framework of Seamless Recognition
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spectacles, ethnicity, gender and age etc. Some of these are permanent while others are
temporary.

1.5 Contributions and organization of paper

In this study, we are focused on research carried out for the development of standalone soft
biometrics recognition or retrieval system only. There is particular emphasis on literature
since year 2015 and ownwards. The latest surveys [45, 133] already covered emergence of
soft biometrics, its historical perspective, types of modalities, features and fusion with hard
biometrics in detail.

So, we have summarized what has changed from previous surveys in soft biometrics
research. This also includes discussion on several critical challenges. To provide a compre-
hensive view of the field, we identified key problems and success stories too. Indeed, this is
more up to date work analyzed in the field. This survey has following contributions.

1. This paper summarizes datasets used in soft biometrics based recognition or retrieval,
their volume, subjective and environmental diversity etc. annotation methods and types.
To the best of our knowledge, we also built a largest novel collection of soft biometrics
features, from different research experiments.

2. To improve overall recognition or retrieval performance, the study also analyzes four
critical factors. These factors are attribute correlation, distance, attribute permanence
score and discrimination power. These factors directly affect overall recognition or
retrieval performance.

3. The paper also compares both modality and feature level fusion frameworks from dif-
ferent research experiments. It states that fusion of certain modalities and features
improves performance.

4. Finally, the most recent hybrid soft biometrics based recognition or retrieval systems
are compared in this study using a multi-scale criterion. The paper also compares three
global traits i.e. gender, age and ethnicity using same multi-scale criterion. This is done
in both hybrid framework and independently.

In our opinion, above stated aspects affect the overall performance of any soft biometrics
system. It is critical to address them first. That is why, we decided to explore and summarize
the techniques tackling these challenges. Finally, we explored and listed the open challenges
present in the field. The recommendations to cope these challenges are discussed too.

The rest of the paper is organized as follows. The datasets, annotation methods, anno-
tation types and bag of soft traits is presented in Section 2. The Section 3 discusses key
factors affecting soft traits. A comparison of features and modalities level fusion is also
part of the same section. A multi-scale comparison of recognition or retrieval techniques
for hybrid soft biometrics systems is presented in Section 4. The multi-scale comparison of
global traits is present in the same section too. In Section 5, we have identified the open
challenges present in the field and presented possible recommendations. The Section 6 is
conclusion summarizing the key contributions of the paper.

2 Soft biometrics: datasets

It is prerequisite to understand what type of dataset is used in soft biometrics application.
The dataset annotation method and type. Moreover, diversity in datasets i.e. number of
different individuals, their number of image or video sessions, session gap, gender, age and
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ethnicity ratios and number of modalities and features used in dataset. Finally, the recording
environment, constrained or unconstrained [106].

These are the critical properties to consider. The accuracy of a standalone soft biometrics
recognition system is dependent on these stated properties of a dataset. Before discussion on
dataset diversity, we will discuss the types of annotation processes and their outcome first.

2.1 Annotation processes and types

To annotate soft traits, various kind of methods practiced in research. The goal of each
method is to improve recognition and the outcome of each method is a set of labels for a soft
trait like in [76]. The Table 2 summarizes relationship between different types of annotations
and methods. It is important to remember that purpose of annotations is matching after
automated estimation from dataset or recognition in surveillance.

Since, the emergence of soft biometrics research, categorical and comparative annota-
tions are the most common outcomes using annotation methods like expert opinion and
crowdsourcing. In expert opinion, the entire dataset is annotated by an individual expert
[113].

In crowdsourcing which is a richer form of annotation in terms of annotators, a very
large number of people from diverse background [219] perform annotations. Each anno-
tator is given training before hand, but lack of experience and expertise can be an issue.
Both categorical and comparative annotations are based on human perception, a qualitative
measure.

For example, to categorize individuals or compare them using height attribute will result
in qualitative terms using categorical or comparative method. In soft biometrics research,
a large number of datasets are annotated using stated two methods and using one or both
types of annotations [173].

To improve soft biometrics based recognition, it is critical to annotate human body soft
traits in quantitative terms. The methods to measure various geometrical attributes of human
body are needed for datasets annotation. Moreover, the estimation methods in surveillance
scenarios are essential to explore too. [87]. In broader sense, these measured features used
for annotation of datasets are called absolute annotations or anthropometric features. These
are actually geometric measurements of human body having its roots in ancient history i.e.
Bertillonage system for suspect identification [65].

As stated earlier, the most critical factor to determine the accuracy of a soft biomet-
rics recognition system is diversity present in dataset. To the best of our knowledge, no
such dataset is developed specifically for soft biometrics recognition system evaluation yet.
However, different image or video based facial [104] and pedestrian datasets are anno-
tated. [106]. These datasets cover whole human body including limbs and clothes. The
Southampton University Tunnel dataset and its variants etc. [7, 184] are good initiatives in

Table 2 Annotations methods and types

Annotation method Annotation Type

Absolute Categorical Comparative

Expert Opinion � �
Crowdsource � �
Measured �
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this direction. In our work, we tried to summarize datasets along with their distinguishing
properties in Table 3.

In [118], a newer method called super fine attribute annotation is proposed using crowd-
sourcing. The soft biometrics gender, age and ethnicity are re-annotated from famous
Pedestrian Attribute (PETA) dataset [48] of images. This large-scale dataset is combination
of 10 re-identification datasets. Each time respondents were given with an image and a 5-
scale visual protype for each trait. The respondents were advised to perform matching of
image with visual prototype. The 5-scale annotation type was categorical. This is perhaps
the largest and most reliable annotation performed till date.

Although, crowdsourcing is considered more reliable way of annotating a dataset but
for very large datasets it is not feasible. The time and effort increases as dataset volume
increases. Before crowdsourcing, expert opinion has been a way to annotate datasets. It is
done for lesser number of soft traits and on small datasets by an expert. Like in [194], and
[193, 198], expert experience is exploited for soft traits-based dataset annotation.

It is evident from Table 3 that in all the expert opinion-based annotation scenarios the
number of distinct individuals and their images are in few hundreds except [193], where it
is about 1700. That is why, it consumed lot of time and effort too. Moreover, in expert opin-
ion, only absolute and categorical annotations are performed. The expert opinion method
reflects human perception actually. They describe an individual in front in qualitative or
quantitative terms. There is only one recognition scenario [76] using Labelled Faces in the
Wild (LFW) dataset, where we have larger dataset of images from everyday life but the
number of features to be annotated is very small i.e. 6.

Speaking, one way or the other, crowdsourcing has been the most dominant way of
annotating datasets. The annotations are performed for both types i.e. categorical and com-
parative. We have several datasets like Southampton Multibiometric Tunnel DB [193] and
[115], Soton Gait DB [184], LFW-MS4 [91], their subsets and modified versions [174],
which have been annotated using both categorical and comparative annotations. However,
annotation method, number of respondents, amount of responses received, and the number
of soft biometrics annotated is changing.

It is important to note that most of these datasets cover whole human body modalities
i.e. face, body including limbs and clothing etc. In the following 9 different recognition
experiments [7, 9, 81, 95, 97, 116, 121, 165, 166] and on 5 different datasets, the complete or
subset are annotated using crowdsourcing for evaluation. They all contain balanced gender
and ethnicity ratio from varying age group.

Surprising is the number of respondents involved in annotation process ranging from
less than a 100 to more than 3000. So, the outcome is a very large number of annotations
received for distinct features like in [116] and [7]. Important is that these datasets cover
almost whole human body [95, 97]. That is why, the amount of time and effort utilized to
annotate these large-scale datasets is too much higher, despite having qualitative annotation.

2.2 A novel collection/bag of soft traits

There are multiple research experiments ranging from recognition to retrieval, where
datasets presented in Table 3 are used [19]. It is a preliminary step to annotate the dataset
before using it for a specific type of research experiment. So, the list of soft traits used in
these experiments is very long.

In our study, we have reported a collection of more than 170 soft traits used in one or
more research experiments, using one or more annotation type and process. To the best of
our knowledge, this is the largest and novel collection of soft traits present till date than
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Table 3 Datasets: Attributes Count, Annotation Process, Type and Volume. Abbreviation: Respondents (R-
nts), Responses (R-ses), Categorical (Cat), Comparative (Com), Subjects (Sub), Instances (Inst), Attribute
(Att.), Crowdsource (C-Sou), Expert Opinion (E-Opi)

Process Type Volume

Dataset Method R-nts R-ses Cat Com Sub Inst Total Att.

PETA [48, 118] C-Sou 1600 190K � 8K - 19000 03

LFW [76, 91] E-Opi - - � 13K - 5749 06

MORPH DB E-Opi - - � � 42 6 252 32

(subset) [194, 199] 24

ATVS Forensic E-Opi - - � � 18 8 144 32

DB [167, 194] 24

Multibiometric
Tunnel DB

E-Opi - - � 58 30 1740 23

(TunnelDB) [179, 193]

Multibiometric Tunnel E-Opi - - � 222 1 222 07

Dataset [179, 198]

Southampton
University

C-Sou 10 13340 � 58 1 58 23

TunnelDB [121,
164, 193]

Southampton
Biometric

C-Sou 3073 37968 � 100 1 100 24

Tunnel Dataset [7, 184]

Multi-biometric
Tunnel - 50

C-Sou 1016 59400 � 100 1 100 12

male/female each [164]

Soton Gait Dataset C-Sou 63 8019 � 100 1 100 27

(Subset) [165, 184]

Soton Gait Dataset C-Sou 57 558 � 100 1 100 19

(subset) [164, 184]

LFW-MS4 [8, 9, 91] C-Sou 9901 241K � 430 4 1720 24

Modified
Southampton
Gait

C-Sou 20 4000 � � 200 3 600 10

Tunnel [80, 81, 184] 4000 20

Soton Gait
Dataset (Subset)

C-Sou 24 6321 � 115 1/2 128 21

Frontal Images
[95, 184]

2149 07

Soton Gait (Subset) - C-Sou 27 9324 � � 128 2 256 17

Frontal and Side
[97, 174]

2219 10

Soton Gait
Dataset [96, 174]

C-Sou 11 6636 � � 115 1/2 128 21

2219 07
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[46, 165, 209] and [97]. These soft traits are from different human body permanent and
temporary modalities.

The soft traits from temporary modality i.e. clothing are covered in Table 4 while Table 5
and 6 cover permanent modalities i.e. face or head and body. The occurrence of a particular
soft trait in various types of research experiment shows its potential to become the part of a
standalone soft biometrics recognition system.

We have also explored and summarized the types of annotations used for any single soft
trait. This is actually annotation type used in a single experiment or more than one. Each
kind of annotation used connot be perfect in contrast to real-world observation. However,
how many different annotation types are used for a specific soft trait not only share the
experience of different scenarios but opens dimension to evaluate each annotation type in
real-world terms too.

It is evident from Tables 4, 5 and 6 that we have 35 attributes which are used in dif-
ferent research experiments more than three times and up to 6 times. However, almost 04
times more attributes are used twice or less. Leaving the traits having frequency twice or
less, we still have large group of soft biometrics to consider as a potential candidate for
more accurate standalone soft biometrics system. The higher occurrence of soft traits in
research experiments is one parameter to be considered as potential candidate in recogni-
tion. However, there are several soft traits which are used once but they have been evaluated
in challenging recognition scenarios. That is why, it would be a wise approach to look for
scenario before choosing any particular soft trait.

3 Soft biometrics: critical factors affecting individual soft traits

The accuracy of standalone soft biometrics recognition system is dependent on several prop-
erties of its traits. These are genuine concerns associated with traits, although techniques are
being developed to cope these. We are going to discuss following four critical factors i.e.
attribute correlation, distance, permanence or stability, discrimination and feature or modal-
ity level fusion. These factors directly affect the overall performance of any soft biometrics
recognition or retrieval system.

3.1 Attribute correlation

In previous section, we explored and summarized commonly annotated soft biometrics
datasets. More importantly, a huge collection of commonly used soft traits is presented.
This collection of features is highly significant towards improved recognition system
development, a main objective of our research too.

Keeping the main objective in front, we decided to explore and summarize the techniques
to find correlation between certain attributes. It is actually performed in several research
experiments earlier. To find correlation between soft traits will not only limit the size of
feature set but doing so, correlated features will work in conjunction for better recognition.
There are several techniques present to find correlation between features. We also discussed
few.

The most commonly used technique to find correlation between features is Pearson Cor-
relation Coefficient [26]. It is a linear association between two variables and starts from
-1, passes by zero and goes towards +1. The zero indicates no association while heading
towards +1 indicates increasing association and heading towards -1 is opposite of it.
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To improve accuracy of a recognition system, the correlation between two or more soft
biometrics can be a significant input. For example, it is most likely that male can have
moustache but female and children cannot certainly. It is evident from research that there is
certain amount of correlation relationships exist between two or more soft biometrics and
this correlation has significance towards more accurate recognition. Like in [76], correla-
tion using Pearson Correlation Coefficient between 6 soft biometrics i.e. moustache, beard,
glasses, ethnicity, age and gender is computed.

To elaborate the concept, we picked three different pairs of soft traits from four dis-
tinct experiments. We summarized outcome of correlation analysis using Pearson method
in Fig. 3. The samples of highly correlated attributes i.e. Gender-Beard, the moderate cor-
relation i.e. Age-Glasses and a negative correlation i.e. Age-Gender from [76] are shown.
Similarly, Pearson Correlation coefficient is used in another experiment but on a differ-
ent dataset of 23 soft traits. The dataset has global traits and from head and body region
[193]. The dataset contains 23 attributes of 58 distinct subjects. The correlation outcome for
three sample pairs of soft traits i.e. Ethnicity-Skin Color, Gender-Ethnicity and Gender-Hair
Length is presented in Fig. 3 too.

The higher positive correlation between Ethnicity-Skin Color is also true in terms of real-
world observation, while a little negative correlation of Gender-Ethnicity can be ignored.
However, it is important to note that there is a mismatch between correlation computation
and real-world observation case of Gender-Hair Length. The computation is that female has
longer hairs, but it is not true for every part of the world. This is one dimension in diversity
of proposed dataset, what we intend to highlight.

In two more related experiments [7, 194] using Pearson Correlation Coefficient but on
higher number of soft biometrics i.e. 24 in each, correlation is computed. The Southampton
Biometric Tunnel DB was used in first experiment while ATVS Forensic DB and MORPH
DB was used in second experiment. The objective was to observe the correlation behaviour
when the number of attributes increases. From the analysis, the most significant correlation
has been found between Figure-Face Width and Jaw Shape-Face Structure.

It is interesting true that some higher correlation exists between Figure and body struc-
tures, as observed by people in real world too. However, there are certain traits which shows
independence, perhaps, leading towards discrimination power. Like Eye Size-Face Shape
and Eyebrows Distance-Eyes Size, having correlation coefficient leading towards higher
negative i.e. -0.6 and -1.0 respectively. This higher negative correlation depicts the real-
world perception too. A very little amount of positive correlation has been found between
Skin Color-Eyebrow Length and Face Size-Nose Size. The later pair can be considered for
features estimation in conjunction, as it looks proportional in real world too.

In two more similar experiments, Pearson Correlation coefficient was computed using 21
and 17 clothing soft biometrics [95, 97], shown in Fig. 4. In both cases, it was proposed that
each attribute having correlation coefficient higher than 0.5 has significance for recognition.
It was observed that clothing attributes of upper and lower body have higher correlation.
Similarly, Skin Exposure and Clothing Season shown higher positive correlation. The latter
does not looks true in terms of real-world observation. Moreover, the corelation between
Style Category-Tattoos and Upper-Lower Color Scheme has not enough to consider.

The last pairs in both experiments output higher negative correlation. It is a generalized
opinion that higher coefficient means more likely to have two or more attributes simul-
taneously present in one object, while lower correlation is considered opposite of it. It is
important to note that higher and lower are specific to a dataset. These coefficient changes
as the size of dataset changes.
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Fig. 3 Pairs of Soft Biometrics from Head and Body (Higher Positive Correlation to Higher Negative
Correlation)

Like, Person Correlation coefficient analysis, Kendall’s method [102] is also used to
measure strength of association between two variables or features. The scale used was from
0.1 to 1. The value 0.1 indicates least association while 1 indicates the higher association.

In an experiment to find correlation between 12 soft biometrics [116], Kendall’s cor-
relation method was used as shown in Figure 5. The attributes were gender, height, age,
weight, figure, arm thickness, leg thickness, muscle build, chest size, skin colour, hair colour
and hair length. It can be observed that a higher correlation is found between skin colour
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Fig. 4 Pairs of Soft Biometrics from Clothing (Higher Positive Correlation to Higher Negative Correlation)

and hair colour. It means darker skinned objects have darker hairs. It looks true as well in
real world observation. Moreover, gender and height have moderate association while skin
colour and chest size are towards least association. Later two associations are also reflection
of real-world perception.

3.2 Impact of distance in recognition

Similar to other vision-based recognition systems, distance affects accuracy in estimating
different soft biometrics. In an open recognition environment, it becomes a bigger challenge.
We have investigated several research experiments to cope with this challenge. The Table 7
presents performance impact for soft traits estimation at three different distances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Att. Pairs

0.7

0.4

0.1

Martinho et al. [116]

Skin Color-Hair Color

Gender-Height

Skin Color-Chest Size

Fig. 5 Pairs of Soft Biometrics from Head and Body (Highly Correlated to Non- Correlated)
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It is clear from Table 7 that distance is an important factor while estimating soft traits. For
instance, in [81], a newer dataset of three modalities i.e. face, body and clothing attributes
from human body is developed. The dataset contains 10 features from each modality and
each feature is captured at three different distances i.e. far, medium and close and for every
individual.

In fact, the key objective of experiment here is to investigate how distance influences
recognition. To measure sensitivity to distance for each soft biometrics, Pearson Correlation
Coefficient [26] is applied in three groups i.e. Far-Medium, Far-Close and Medium-Close
on each trait. Its was an observation that most of the clothing traits and many body traits are
less sensitive to varying distance while facial traits are highly sensitive. In simple words,
clothing and body traits are easier to measure from far distance rather face.

Earlier, in a similar work [193], a study was done to analyse recognition accuracy when
distance between subject and camera was changing continuously. Although, the proposed
soft biometrics system was in conjunction with a face recognition system, but input was at
three levels i.e. far, medium and close. There are total 23 features used, divided in three
categories i.e. head, body and global. The recognition was evaluated solely based on soft
biometrics. Again, the bodily traits are the largest set and presented lower EER in terms of
far distance.

To recognize gender from both modalities i.e. face and body at three different distance,
close, medium and far, a comparison is performed [75]. The objective of this activity was to
analyse from which modality gender is easier to estimate and from far distance. In fact, it
is always easier to estimate gender from far distance from body more accurately than face,
however, it is essential that full body image must be available.

Table 7 Effect of distance on soft traits estimation - lower the equal error rate (EER), higher the accuracy
(Acc)

Performance (%)

Year Work Modality Traits Close Medium Far

2019 [83] Face (F) 10 Acc - 99.2 Acc - 99.0 Acc - 49.3

Body (B) 10 Acc - 99.3 Acc - 98.4 Acc - 96.6

Clothing (C) 10 Acc - 98.5 Acc - 95.8 Acc - 95.9

F-B-C 30 Acc - 98.5 Acc - 92.5 Acc - 82.6

2018 [81] Face/Head (F/H) 10 Acc - 95.7 Acc - 62.7 Acc - 13.1

Body (B) 10 Acc - 85.4 Acc - 57.4 Acc - 55.4

Clothing (C) 10 Acc - 82.5 Acc - 69.4 Acc - 67.0

2018 [82] F/H-B-C 30 EER - 03.77 EER - 03.88 EER - 04.17

2017 [80] Face/Head (F/H) 10 EER - 00.45 EER - 02.89 EER - 22.76

Body (B) 10 EER - 01.76 EER - 03.96 EER - 04.33

Clothing (C) 10 EER - 02.76 EER - 04.00 EER - 03.59

2017 [75] Face for Gender 01 Acc - 89.28 Acc - 80.71 Acc - 57.14

Body for Gender 01 Acc - 79.28 Acc - 86.42 Acc - 87.85

2014 [193] Face/Head 07 EER - 13.54 EER - 14.60 EER - 15.25

Body 13

Global 03
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3.3 Permanence or stability score and discrimination power

To develop a standalone soft biometric recognition or retrieval system, it is critical to find
a set of permanent and discriminating features. It is always a wise approach to use limited
and highly relevant set of features in any recognition system. Same is true for soft bio-
metrics recognition systems. However, features should have higher permanence score and
discrimination power. There are certain experiments using various mathematical and sta-
tistical methods to compute stated properties for a soft trait. The Table 8 presents several
techniques related to permanence score and discrimination power computation.

In [9], a subset of LFW-MS4 image dataset is used with comparative annotations. The
Pearson Correlation Coefficient [26] is applied on both visual and semantic space. The
permanence score is computed for 24 facial attributes. It is observed that several attributes
have more permanence in visual space than in semantic space.

In another experiment, statistical methods i.e. mean, and mode are applied on two famous
facial datasets i.e. ATVS Forensic DB and MORPH DB [194]. Each of these datasets have
32 continuous and 24 discrete attribute annotations. The permanence score for each type
of attribute is computed. Moreover, they have also computed discrimination power of each
continuous and discrete annotated attribute. This is computed using ratio between inter and
intra subject variability by developing a mathematical formulation.

The permanence score and discrimination power of 23 soft biometrics from different
modalities i.e. face or head, body and global are computed. The statistical Mode and ratio
between inter and intra subject variability is measured. The experiment was performed on
Southampton Multibiometric Tunnel DB [193]. The dataset has comparative annotations.

3.4 Soft biometrics: attributes andmodalities fusion analysis

Soft biometrics is now a very large set encompassing features from face or head, body
including limbs and clothing etc [134]. Moreover, these traits are richer in terms of taxon-
omy too i.e. demographic, geometric or anthropometric, medical, material and behavioural
[45]. In earlier days, a few fromnow soft biometrics were used to support traditional biomet-
ric recognition systems which is called fusion framework [213]. However, standalone soft
biometrics started to evolve now. There are multiple types of soft biometrics recognition
systems started to develop now using different fusion architectures [201].

Keeping idea in mind, we investigated various developed fusion frameworks fully based
on soft biometrics modalities and traits ahead. We have also explored what are those
soft biometrics which increases the overall fusion-based recognition system. The Table 9
presents a comparative analysis of fusion frameworks.

There are so many fusion frameworks developed for soft traits based estimation. The
fusion was at either modality level, feature level, or both. For example, in [81], fusion of
soft biometrics traits from 3 different modalities i.e. face or head, body and clothing is
performed for improved recognition. There were total 30 attributes, 10 from each modality.
First, attributes from each modality used independently for recognition on images dataset.
Then, three different fusion frameworks i.e. Bayes theory, Likelihood Ratio Test (LRT) and
Support Vector Machine-LRT were used.

It was observed that all three fusion frameworks provided much better recognition than
individual modalities. It improved when images were taken on varying distance. For the
fusion score computation, a vector from each modality was build using mean and standard
deviation for each attribute. On a similar dataset, having same number and type of features,
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Table 9 Fusion vs single feature/modality performance analysis, abbreviation: accuracy (Acc), equal error
rate (EER), rank-1 Id-R (R-1 Id-R), Face/Head (F/H)

Year Auth Modality Features Single/Fusion Performance (%)

2019 [83] Face (F) 10 Single Modality Acc: 97.0

Body (B) 10 Single Modality 98.0

Clothing (C) 10 Single Modality 83.0

F-B-C 30 Rank Score-sum 98.5

2019 [131] Face/Clothing 256/256 F-Score Sum EER: 0.007

2019 [124] E-Brows/Gl-ses 2 F-Score Sum EER: 1.26

2018 [81] Face/Head(F/H) 10 Single Modality Acc - 95.7 - 13.1

Body (B) 10 Single Modality Acc - 85.4 - 55.4

Clothing (C) 10 Single Modality Acc - 82.5 - 67.0

F/H-B-C 30 Bayes Acc - 96.3 78.1

F/H-B-C 30 LRT Acc - 96.1 76.5

F/H-B-C 30 SVM-LRT Acc - 97.0 - 80.8

Face/Head(F/H) 10 Single Modality EER - 0.45 - 22.76

Body (B) 10 Single Modality EER - 1.77 - 4.33

Clothing (C) 10 Single Modality EER - 2.76 - 3.59

2018 [82] F/H-B-C 30 Rank Score Fusion EER - 3.77 - 4.17

2017 [80] F/H-B-C 30 PCA EER - 0.20 - 2.05

F/H-B-C 30 LDA EER - 0.21 - 3.0

F/H-B-C 30 gCCA EER - 0.19 - 2.98

F/H-B-C 30 Sg-CCA EER - 0.17 - 2.79

2017 [75] Face for Gender 01 Ind-Score Acc - 89.28 - 57.14

Body for Gender 01 Ind-Score Acc - 79.28 - 87.85

F-B Fusion 01 Sum Fusion Acc - 89.82 - 87.85

for Gender SMARTER Sum Acc - 93.57 87.85

2017 [134] Face (F) 15 (Cat) Single Modality EER - 7.8

Face (F) 15 (Com) Single Modality EER - 5.2

Body (B) 16 (Cat) Single Modality EER - 13.6

Body (B) 16 (Com) Single Modality EER - 8.3

Clothing (C) 14 (Cat) Single Modality EER - 15.1

Clothing (C) 14 (Com) Single Modality EER -15.5

F-B-C (Cat) 45 (Cat) Sum and Prod Rule EER - 0.33

F-B-C (Com) 45 (Com) Sum and Prod Rule EER - 0.14

B-C (Cat) 45 (Cat) Sum and Prod Rule EER - 0.99

B-C (Com) 45 (Com) Sum and Prod Rule EER - 0.43

2016 [73] Face/Head (F) 02 Single Modality R-1 Id-R – 80.0

Body (B) 06 Single Modality R-1 Id-R – 90.0

F/H-B 08 Decision Level Fusion R-1 Id-R - 95.0

2015 [18] Facial Shape (F) 01 Single Modality Rank-1 Id-R - 64.3

Skin Colour (S) 01 Single Modality Rank-1 Id-R - 14.2

Height (H) 01 Single Modality R-1 Id-R - 28.6

Weight (W) 01 Single Modality R-1 Id-R - 13.0
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Table 9 (continued)

Year Auth Modality Features Single/Fusion Performance (%)

F-S 02 F-Scores Sum R-1 Id-R - 45.0

F-W 02 F-Scores Sum R-1 Id-R - 61.0

F-H 02 F-Scores Sum R-1 Id-R - 68.0

F-H-W 03 F-Scores Sum R-1 Id-R - 81.4

F-S-H 03 F-Scores Sum R-1 Id-R - 60.0

F-S-H-W 04 F-Scores Sum R-1 Id-R - 64.0

F-H-W 03 Sum, Weighted-Sum R-1 Id-R - 81.4, 84.2

Bayes, SVM, Fuzzy R-1 Id-R- 81.4,85.8,88

2015 [194] F/H - ATVS 32 (Abs) Ind-Features EER - <25

F/H - MORPH 32 (Abs) Ind-Features EER - <35

F/H - ATVS 14, 32 (Abs) Euclidean EER - 7.38, 13.05

F/H - ATVS 14, 32 (Abs) Mahalanobis EER - 3.70, 8.09

F/H - MORPH 16, 32 (Abs) Euclidean EER - 16.50, 22.02

F/H - MORPH 16, 32 (Abs) Mahalanobis EER - 14.01, 17.55

F/H - ATVS 24 (Cat) Ind-Features EER - <32

F/H - MORPH 24 (Cat) Ind-Features EER - <40

F/H - ATVS 14, 24 (Cat) Euclidean EER - 10.34, 14.68

F/H - ATVS 23, 24 (Cat) Hamming EER - 7.84, 8.59

F/H - ATVS 05, 24 (Cat) Mahalanobis EER - 13.34, 17.84

F/H - MORPH 11, 24 (Cat) Euclidean EER - 21.78, 27.91

F/H - MORPH 15, 24 (Cat) Hamming EER - 20.89, 24.58

F/H - MORPH 14, 24 (Cat) Mahalanobis EER - 24.95, 30.74

different methods for fusion i.e. PCA, LDA, gCCA and Sg-CCA were applied. The results
are presented in form of equal error rate [80].

In another approach, shape and skin colour from face while height and weight from
body are integrated in a fusion framework for person identification [18]. Each of the four
attributes after estimation from image were tested for identification independently. Then
sequentially and finally a fusion framework of three attributes i.e. Facial Shape, Height and
Weight was tested for identification using five different fusion methods. Each of the five
methods presented rank-1 identification rate of minimum 80 percent, while fuzzy logic has
been most successful with 88 percent.

Just to emphasis on the significance of fusion framework, gender was estimated from
face and body modalities separately and then in a fusion of both [75]. It was observed
that when a framework taking both face and body image into account for recognition, the
accuracy is increased about 4 to 5 percent and even at far distance. Similarly, 2 features from
face and 6 features from body were used as a single modality. First, independent modality
and then fusion framework on CASIA Gait and FACES datasets was tested. The fusion
proved better than individual ones [73].

In another approach, shape, orientation and size of facial traits were exploited for recog-
nition using images [194]. The experiments were conducted on two datasets i.e. ATVS DB
and MORPH DB. There were total 32 attributes with continuous and 24 with discrete val-
ues used for experimentation. Each of 32 and 24 attributes were used for experimentation
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independently and in fusion framework. It is evident that continuous features are better in
recognition as they have lower equal error rate.

In another work, three modalities of whole human body i.e. face, body and clothing
were considered for soft biometrics traits estimation in a recognition task [134]. To evaluate
performance of fusion framework over independent modalities, experiments were carried
out. It was concluded that fusion of modalities presents lower equal error rate than individual
ones. Also, in both fusion frameworks experimented, attributes with comparative labels
presented lower equal error rate than categorical. Also, the fusion of face-body-clothing has
lower equal error rate than fusion of body-clothing.

4 Soft biometrics: comparison of recognition and retrieval systems

One of the biggest problem in the development of standalone soft biometrics recognition
system is accurate extraction of soft traits from different human body modalities. This
becomes more challenging in surveillance scenarios. In other words, it is also called visual
description which is machine description of a soft trait. This is actually an estimated or
extracted value of a trait from image or video.

The process of soft traits estimation and then recognition are actually detection of a spe-
cific person in an uncontrolled environment. These object detection techniques can be single
or multi-stage [139–141]. The Table 10 compares different approaches for soft biometrics
based recognition or retrieval for detecting a specific person in an uncontrolled environment.

To explore and understand achieved milestones, a large range of features estimation and
classification approaches are compared. Earlier, we explored a richer set of soft traits, and
now, the vision-based feature estimation and classification methods are summarized. To this
end, goal is matching, either performing recognition or retrieval.

The soft biometrics-based recognition roots itself in traditional facial recognition systems
but focusing only non-intrusive facial features. The recognition should be performed in a
seamless manner. We are not getting into details of facial recognition systems here rather
focusing on experiments which directly propose models for seamless recognition. These
non-intrusive features are not just limited to face, rather covers whole human body and
clothing etc.

In a recognition experiment from dataset using facial soft biometrics from images,
component-based approach is applied. It first localizes facial landmarks, then construct
components based on these landmarks. Finally, generates a vector of visual features from
these components. The Active Shape Models (ASMs) [43], Active Appearance Models
(AAMs) [42] and Constrained Local Models (CLMs) [44, 175] are used for landmark local-
ization and facial component segmentation. Lastly, the step of visual features estimation
using GIST [135] performed. The experiments were carried out on LFW-MS4 dataset of
images and an equal error rate of 12.71% was recorded which indicates a higher accuracy
level.

In another experiment using facial image from two different datasets ATVS Forensic DB
and MORPH DB, the task of recognition is performed [194]. This time 21 facial landmarks
are annotated manually by an expert and 11 attributes are computed automatically using
geometric measurements. Then, using these manually and automatic attributes, a newer set
of 24 discrete facial attributes is generated. Finally, using different similarity measures like
Euclidean, Hamming and Mahalanobis, the task of facial recognition performed. The output
is presented in the form of equal error rate.
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Table 10 Overview of soft biometrics recognition or retrieval systems

Year Auth Dataset Features Classi/Retri Traits Performance

(Sub/Img) (%)

2020 [185] LFW(5K/13K) DCNN Features Face Matcher 400 Acc: 98.55

CAS(10K/40K)

MP(337/75K)

CF(269/3K)

2019 [124] VISOB(550/1K) DLib CNN 2 EER: 1.26

2019 [190] CASIA-A Landmark Eucli-Dist Acc: 70.0

2019 [94] FERET Gabor Feature Match 5 EER:0.07

(900/11K) Soft Gabor 0.063

2019 [197] LFW(5K/13K) Raw Pixel Mobilenet 8 Acc: 92.1

2019 [131] Custom(1100) lightCNN,R-Net-18 Eucli-Dist GMR: 99.02

2019 [203] Custom Color Features K-Mean, DB 2 Acc: 96.0

(30K) Hierarchical 92.0

2019 [90] FARGO(75/75) Raw Pixel Depp CNN FMR: 1.5

2019 [103] VISOB LBP, HOG Score 3 EER: 9.3

(550/1100) Sum 8.0, 10.6

2019 [182] Celeb, Selfie Raw Pixel DocFace+ TAR: 98.40

IvS(500K/98K)

(53K/53K)(12K/5K)

2019 [177] LDHF DB Phy. measurements Cosine 20 AUC:Same-0.823

(100/300) of human body Similarity AUC: Diff-0.573

2019 [162] CrossEyed PatchCNN Feature EER: 0.73

UBIRIS-V1 Matcher 0.82

(241/1877)

UBIRIS-V2 3.31

(261/783)

2018 [9] LFW-MS4 ASM, AAM, GIST SVM 24 EER - 12.71

(430/1720) CLMs Regression

2018 [67] SoftBioSearch Mask R-CNN AlexNet 03 IoU - 0.4

2018 [81] Southampton ELO Rating System Bayes,LRT, 20 EER:0.19-2.44,

Tunnel(200/600) SVM-LRT 10 1.07-3.02,0.16-2.08

2018 [161] VISOB Raw Pixel MobileNet-v2 256 EER: 5.28

(550/1100) 5.37, 6.57

2017 [153] VISOB Raw Pixel CNN TPR: 100, 99.65

(550/1100) 100, 99.95

2017 [154] VISOB SURF Match Score EER: 24.4

(550/1100) 23.1

2017 [150] LFW AFLW Raw Pixels, LBP Markov Fields EER - 2.87

Multibiometric for Feature Scores using

Tunnel DB Vector Mahalanobis

(58/170) Distance

2017 [198] Southampton Silhouette, Key SVM with 07 Acc: 51.6 - 94.6

Multibiometric Point Extraction Guassian



Multimedia Tools and Applications

Table 10 (continued)

Year Auth Dataset Features Classi/Retri Traits Performance

(Sub/Img) (%)

Tunnel DB Kernel

2016 [117] SoBiR Raw Pixels Seman-Retri 12 AUC: 84.8,

(100/160) CNN 88.1,

HumanID Distance Eucli- Dist AUC:Same-0.758

(285/570) Diff-0.633

2016 [97] Soton Gait Skin Detecor, Color Probe-Gallery 17 Cat: EER-0.102

DB Map, Skin Detector, Query 10 Com: EER-0.100

(128/128) Gamma Corr, LBP

2016 [73] FACE94 Human Silhouette SVM 08 Rank-1 ID-R:

(15./3060) based Spatial F-90, B-80

CASIA Segmentation

(20/400)

2015 [128] HAD Shape Descriptor Linear 11 Acc: 92.5

DB (20/80) Cost Matching Regression

2015 [194] ATVS Landmark Similarity 32 All (EER)

DB (50/400) Estimation, measurement 24 4.09, 15.86

MORPH DB Geometric Features using Eucli, Selected (EER)

(130/780) Categorical: Hamming 3.06, 12.27

2014 [66] PASCAL Tri-Super Pixel GrabCut 01 Acc - 86.8

(1487) Algo

2014 [219] FERET Edges, Frequency SVM, ELM 03 Acc: Glasses-90.7

(800/800) from Images 88.01, 84.67

2014 [219] SoBiR Ensemble of Loc- Prob-Gallery 12 AUC: 84.8,

(100/160) alized Features Matching 12 88.1

(ELF) Descriptor 83.1

2014 [193] Southampton Tanh-Estimator Similarity 23 EER-13.54-15.25

Similar to earlier experiment, anthropometric features are used for recognition [152].
There are 19 features from face region to shoulders used in recognition. These are actu-
ally different geometric and appearance features. The FERET DB and AR DB are used for
experimentation. First, facial landmarks are localized in semi-automated way using MAT-
LAB getpts function. Then, horizontal, vertical, linear and non-linear measurements are
obtained using Euclidean distance and spline curves available in MATLAB. These are called
features. The classification at decision and feature level was performed using Euclidean
distance by matching similarity and Adaboost.

Moving out from face and using 11 bodily anthropometric features, re-identification and
retrieval from dataset is performed [128]. The silhouette of human is used for shape con-
text description. The silhouette is considered very good for discrimination in identification
applications. First, shape context is extracted using a custom-built shape context descriptor.
For matching, a mathematical cost function is formulated for shape context feature matching
and feature vector generation. Finally, linear regression is applied for re-identification.
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Again, using human silhouette but from single shot images, the biometrics such as
shoulder width, height, arms-length, hips width, hair colour and body complexion are esti-
mated [198]. The Southampton Multi-Biometric Tunnel dataset is used for this purpose.
The images from far distance from the camera are used to extract person silhouette and key
points. Then, euclidean distance is used to extract features automatically. A support vector
machine is used for classification. An accuracy chart for all 7 attributes is developed. It was
intermediate to very good.

Similarly, along with silhouette, skin and hair colour from face or head, height and gait
cycle from body is estimated using spatial segmentation. The support vector machine is used
for recognition then [73]. The experiments is performed on CASIA and FACES datasets.
The Rank-1 identification rate for individual modalities and fusion framework is computed.

In a slightly different approach on a single image, human height and couple of
anthropometric attributes are estimated [25]. The method is combination of techniques
from projective and single view geometry, having prior statistical knowledge of human
anthropometry. The method is tested on 96 frontal images.

Similar to above, human height and shoulder breadth are estimated from the single
monocular image for re-identification across multiple cameras [24]. The focus was accuracy
improvement of landmark localization in 2D image, a big source of error in overall system.
It gets even harder when converted to 3D. The circular measurements are always easier to
measure in 3D. So, the height is measured using Euclidean distance between head top and
feet at the bottom. However, the shoulder is mapped as an ellipse for measurement.

It is evident from above that both face or head and body are used for recognition and
retrieval in soft biometrics, independently or in conjunction. There is an interesting and
novel experiment of head-body matching performed recently. It uses anthropometric fea-
tures from face or head and body. It is actually two way matching. It is interesting to observe
that both modalities have the ability to perform recognition independently. The experiment
was performed on two famous datasets i.e. Long Distance Heterogenous Face (LDHF) and
HumanID DB. There are 5 anthropometric features computed from head region and 15
anthropometric features were computed from body. The framework called dual pathway for
head-body matching. To extract anthropometric features, segmentation of different body
parts was performed and physical measurements i.e. distances were computed. These are
called features. The cosine similarity and euclidean distance were used for matching on set
of 20 features.

Apart from face or head and body, there is another set of soft biometrics which are
material i.e. clothing. Although these attributes have significance in short term track-
ing and retrieval from database, it is important to study them too. Similar as in a soft
biometrics-based retrieval experiment, face or head, body and clothing attributes are used
for recognition in [81, 193] and [81]. A set of 10 attributes from each region i.e. face, body
and clothing are combined together for recognition while in [193], 7 attributes from head
and 13 from body are selected. The age, ethnicity and gender are put in global traits category.
The categorical annotation is used in [81] for clothing attributes and comparative for face
and body in [193]. The feature estimation method in both was Elo Rating system and Tanh-
estimator respectively. For classification or matching, first used Bayes, LRT and SVM-LRT,
while second is based on similarity score measurement using Mahalanobis distance.

There is an experiment which specifically discusses clothing traits. It includes overall,
upper and lower body clothing exposure, season and contrast etc. The ultimate objective is
identification or retrieval. There are total of 17 clothing attributes used by [97] on Soton Gait
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dataset. The HAAR classifier, pre-trained model for skin detection, 5-scale colour map for
clothing colour and brightness detection etc. are used. Moreover, local binary patterns were
used for clothing pattern i.e. contrast etc. All 17 attributes were annotated categorically but
a subset of 10 attributes was annotated comparatively too. The retrieval results are presented
in form of equal error rate.

The Table 10 covers around 30 different research experiments relevant to soft biometrics
based recognition. It is actually a comprehensive review of different approaches developed
in recent years. It includes details of datasets used, number of soft traits, features esti-
mation methods, classification or retrieval approaches and outcome. This is indeed useful
information for future research.

4.1 Global traits

Generally, its been observed that many researchers declare gender, age and ethnicity as
derivative soft biometrics. They categorize them as global traits. In recent years, there is
a large number of research experiments performed to estimate these from image or video
captured in constrained or unconstrained environment. That is why, we decided to explore
and summarize recent successful outcomes of research for global traits estimation. Our
analysis includes both type of approaches i.e. hybrid and independent.

4.2 Hybrid approaches based on gender-age-ethnicity

To recognize individuals in constrained or unconstrained scenes, the three global traits are
used in combination. The task of recognition is performed on image or video datasets.

The hybrid recognition model of gender, age and ethnicity is used for recognition in
multiple research experiments. A large number of datasets and various feature estimation,
classification and deep learning methods are used for this purpose. The hybrid recognition
models are of two types i.e. gender-age-ethnicity and gender-age. The Tabless 11 and 12
presents a comparison of both types of hybrid models.

The first and most common hybrid model for global traits estimation is composed of
gender, age and ethnicity. There are too many different models developed to estimate these
three features using different datasets over the years. The feature estimation techniques
include face and body landmarks based measurements to color features. For the purpose
of classification or retrieval, support vector machine and deep learning based methods like
VGG-16 are used. The Table 11 presents a summary of most recent research along with
outcome.

The second common hybrid model for global traits estimation includes gender and age.
It misses ethnicity and there is no specific reason for it. The ethnicity is to distinguish
populations actually while gender and age are specific to every distinct individual.

The gender and age based models developed over the years are versatile too. There are
so many different kinds of features estimation and classification or retrieval methods used
for this purpose. The most common features estimation techniques include raw pixel pro-
cessing, HAAR features, local binary patterns, texture and biologically inspired etc. The
classification again includes simple classifiers like variants of support vector machine and
many different deep learning methods like ML-Net, CNN-ELM, Attention Networks and
Deep-CNN etc. This is an active research fired and models are discussed in Table 12.
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Table 11 Overview of hybrid approaches based on gender-age-ethnicity

Year Auth Dataset Features Classi/Retri Performance

(Sub/Image) (%)

2020 [108] Joint Face Analysis- Face++ for VGG-16 Task Acc for Gender

(259K/687K) Landmark Oriented and Ethnicity

Localization Network MAE for Age

92.09,7.58,83.67

2020 [191] ColorFeret (1K/14K) [147] Raw Pixel FaceNet Acc:28.4,34.2,21.8

Adience (2K/26K) [57] 32.6, 18.0

2019 [31] Adience (22K/26K) [57] Color SVM Acc: Age - 65.1

Features Gender - 86.0

2019 [118] PETA (8K,19K) [48] Raw Pixels ResNet-152 mAP

0.733 0.002,

2019 [58] US Adult (10K/10K) Wavetom ANN, SVM, Acc:

Ext Cohn-Kanade- Shearlet SOM 98.0, 95.0, 87.0

(185/2105) [21, 101] 97.0, 94.0, 85.0

FG-NET (16K/22K) [144] Transform 97.0, 96.0, 86.0

2018 [200] MORPH(19K/55K) [160] Raw Pixels FM-GAN Acc for G-A

CACD (2K/160K) [34] MAE for Age:

FG-NET (16K/22K) [144] 98.54,3.85,97.03

2017 [187] Wild East Asian Face Landmark CNN Acc 88.02,

Dataset (31K/31K) Localization 38.04, 33.33

4.3 Independent approaches for recognition or retrieval based on gender, age
and ethnicity

Contrary to hybrid approaches discussed above, the three global traits i.e. gender, age and
ethnicity are used independently as well. The goal is to perform recognition or retrieval.

We have already discussed there may be a scenario where a global trait is used inde-
pendently for recognition or retrieval. That is why, it is important to analyze each global
trait individually in different research experiments. The Tables 13, 14 and 15 summarizes
individual approaches comparing global traits using multi-scale criterion.

In Table 13, there is a long list of experiments performing recognition or retrieval using
only one global trait i.e. gender.This is an active research area and performed using many
different kind of datasets. The list of feature estimation and classification techniques tested
is richer too. It includes landmark localization using openpose, local binary patterns, his-
togram of gradients, aesthetic, intensity based and texture features. For classification or
retrieval,

variants of support vector machine, clustering techniques like K-NN and deep learning
based methods like CNN, ResNet etc. are used.

Similar to gender, age is estimated from unconstrained image or video scenes individu-
ally. Age is the only global trait among group of three which used for recognition more. The
outcome of age estimation can be of two types.

It can be presented as overall accuracy or in form of age group. The Table 14 presents
an overview of most recent age estimation methods, where a large range of diverse datasets
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Table 12 Overview of hybrid approaches based on gender-age

Year Auth Dataset Features Classi/Retri Performa

(Sub/Image) (%)

2019 [62] FG-NET (16K/22K) [144] SDN VGG19-Net Acc: 98.80

Adience (22K/26K) [57] +SVM 93.52

CACD (2K/160K+) [35] 95.01

2019 [84] Adience (22K/26K) [57] Raw Pixel ML-Net Acc: 62.11

91.8

2018 [74] Custom Built HAAR Fisherfaces, Acc: 93.60

FERET (465/930) [144] Features Eigenfaces, 76.86, 76.10

2018 [55] MORPH-II (19K/55K) [160] Convolution CNN-ELM Acc:88.2

Adience (22K/26K) [57] Layer MAE: 3.44

2017 [183] LFW (5K/13K) [104] LBP SVM Acc:

FER2013 (35K/35K) [77] Gen-80.08

Self Collected (29K/29K) Age - 53.72

2017 [15] LFW (5K/13K) [104] Convolution ResNet-50 Acc, MAE

MORPH-II (19K/55K) [187] Layer VGG-16CNN+ Gen-99.3,99.4

FG-NET (16K/22K) [144] LDAE Age-2.84,2.99

2017 [151] Adience (22K/26K) [57] Raw Pixels DNNs Acc: 62.37

2017 [170] Adience (22K/26K) [57] Biologically Attention Acc:

IoG (28.2K/5.1K) [69] Inspired Network 93.0, 94.5

MORPH-II (19K/55K) [160] Features MAE: 2.56

2016 [196] Adience (22K/26K) [57] LBP, Texture Dropout-SVM Result/Img

Features for Age,Gen

2016 [138] Hybrid Dataset Raw Pixels Ft-VGG- Acc: 92.0

Face+SVM Age 57.9

2015 [88] Adience (22K/26K) [57] Raw Pixels Deep-CNN Acc: 86.8,50.7

2015 [23] IoG (28.2K/5.1K) [69] ML-LPQ SVM 79.1, Age Matr

is used. Moreover, raw pixels, appearance features, landmarks, local binary patterns etc. are
used for feature estimation. The classification is again performed using variant of support
vector machine and different deep learning methods. The outcome of each experiment is
presented in last column.

The third global trait i.e. ethnicity is used less number of times for recognition or retrieval
as compared to gender and age. One reason is application at higher abstraction level i.e. to
distinguish populations. Also, there is not any specialized list of ethnicity dataset, it is really
hard to collect multi-ethnicity dataset.

Similar to gender and age, raw pixel to landmarks and local binary patterns are the tech-
niques used for ethnicity features estimation. The classification is mostly performed using
deep learning methods like VGG-16 etc. The Table 15 presents a comparison of ethnicity
recognition techniques.
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Table 13 Overview of gender based recognition or retrieval

Year Auth Dataset Features Classi/Retri Performa

(Sub/Image) (%)

2020 [1] G’s DB(28K/28K) [69] PCANet SVM Acc: 89.65

2020 [181] DivFace Raw Pixel CNN Acc: 96.47

(24K/72K) [125] ResNet 97.47

2020 [63] Self Colelcted LBP E-3NN Acc: 94.7

ICPR (30/2790) [78] 93.29

2019 [61] C-I-D (100/100) [215] ULBP+OV SVM Acc: 82.0

MBGC (135/135) [146] +BSA 81.67

2019 [208] Hybrid Dataset Landmark CNN Acc: 92.19

Localization (Base-Net) 87.9, 89.0

2019 [86] C-PEAL (10K/99K) [70] Raw Pixels DeepGender Acc: 98.0

FEI (200/2800) [192] NN

2019 [3] LFW (5K/13K) [104] Local and AdaBoost Acc: 95.98

IoG (28.2K/5.1K) [69] Contextual based 90.73

Adience (22K/26K) [57] Features Score Fusion 90.59

FERET (465/930) [144] 99.49

2019 [22] Gotcha Dataset Landmark Rand-Forest Acc: 83.4

(90 Videos) [178] using OpenPose

2018 [159] VISOB (550/100) [156] Pre-Trained SVM+MLP Acc: 90.0

/Custom CNN

2018 [50] Celebrity Face Data FC Layer Deep-CNN Acc: 95.0

subset(200/200) [111]

2017 [158] VISOB (550/1100) [156] HOG MLP Acc: 91.6

2017 [32] LFW (5K/13K) [104] HOG SVM with Acc: 96.7

LFW (5K/13K) [104] RB Kernel 90.0

IoG (28.2K/5.1K) [69] 98.77

MORPH (13K/55K) [30]

2017 [33] EGA (469/2345) [168] LBP, LGP Lin-Ker-SVM Acc: 89.18

IoG (28.2K/5.1K) [69] with BRF 89.22

2017 [5] CK+MUG (80/80) [101] Landmark KNN Acc: 80.0

detection

2016 [114] LFW (5K/13K) [104] Raw Pixels Local-DNN Acc: 96.25

G’s DB (14K/14K) [68] 90.58

2016 [20] Custom Built (120/24K) Aesthetic Features KNN, D-Tree Acc: 74.16

Intensity, Texture 70.0, 69.16

2016 [16] CASIA WebFace [210] Convolution Layer CNN-I Ensem Acc: 96.94

LFW (5K/13K) [104] 97.3

2016 [100] PaSC (293/2802) [28] Anthropometric SVM Acc: 71.37

SARC3D(248/248) [169] Ratios 86.0

2015 [17] Custom Built (400/400) Anthropometric Neur-Network Prec: 90.0
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Table 14 Overview of age based recognition or retrieval

Year Auth Dataset Features Classi/Retri Performa

(Sub/Image) (%)

2020 [205] Adience (36K/36K) [57] Raw Pixel Multi-Stage 1-Off: 96.3

M-age-Asia (40K/40K) [216] CNN MAE: 2.81

FG-NET (580/1046) [144] MAE: 2.71

MORPH-II (19K/55K) [160] MAE: 2.73

2020 [145] UVA-NEMO (1240/1240) [51] Appearance SIAM 4.74

Features Network

2020 [127] MORPH (13K/55K) [167] Raw Pixel CNN-GAN MAE: 9.45

PAL (580/1046) [120] 8.56

2020 [206] MORPH-II (19K/55K) [160] Raw Pixel Ensemble MAE: 2.81

FG-NET (580/1046) [144] CNN 3.44

AgeDB (568/16488) [126] 5.80

Chalearn-Lap (4K/4K) [59] 2.71

2019 [53] MORPH (13K/55K) [167] LBP, HOG, Deep MAE: 3.67

PAL (580/1046) [120] BSIF CNNs 4.04

2019 [13] Adience (22K/26K) [57] Facial Land CNN Acc: 83.14

marks/Parts

2019 [136] MORPH-II (19K/55K) [160] BSIF, LPQ SVM + SVR MAE: 3.17

PAL (580/1046) [120] 4.49

LFW-Subset (4K+/4K+) [104] 7.9

2019 [110] MORPH-II (19K/55K) [160] Raw Pixels ODFL+ODL+ MAE: 2.92

FG-NET (580/1046) [144] CrossEntropy 2.92

2019 [137] FGnetAD [160] Raw Pixels LMFBP MAE: 4.95

HQfaces [120] Descriptors 3.65

PAL [104] 5.33

2019 [189] MORPH-II (19K/22K) [160] Convolution VGG16 MAE: 2.87

FG-NET (16K/22K) [144] Layer GoogLeNet 3.05

2018 [211] MORPH-II (19K/55K) [160] Convolution Age with MAE:

FG-NET (16K/22K) [144] Layer Probability 2.91, 3.43

2018 [176] MORPH-II (19K/55K) [160] Raw Pixels LDMP with MAE:

FG-NET (16K/22K) [144] Probability 3.9, 4.6

2018 [112] FACES (171/1026) [56] Features Latent Acc: 92.19

LIFESPAN (838/838) [120] using Structured 93.68, 97.8

NEMO (564/2058) [51] Segmentation SVM

2018 [172] Train-IMDB-WIKI Landmark VGG-16 MAE:

(82612/523051) [171] Localization CNN 2.68, 3.09

2018 [212] MORPH (13K+, 55K+) [30] Stacked DSSAE MAE:

FG-NET (16K/22K) [144] Autoencoder 3.34, 3.75

2018 [130] FG-NET (16K/22K) [144] Bioinspired SVR MAE: 5.66

FERET Features 3.02, 3.68

MORPH (13K/55K+) [30]

2018 [201] MORPH-II (19K/55K) [160] Bioinspired FusionNet+ MAE: 2.82

Features AdaP+Reg
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Table 14 (continued)

Year Auth Dataset Features Classi/Retri Performa

(Sub/Image) (%)

2018 [54] MORPH-II (19K/55K) [160] Raw Pixels RAGN MAE: 2.61

2018 [39] MORPH (19K/22K) [30] Raw Pixels Ranking MAE: 2.96

FG-NET (16K/22K) [144] CNN 4.13

Adience (580/1046) [120] Acc: 53.7

2017 [157] Adience (12K) [105] Raw Pixel CNN Acc: 80.96

2017 [109] FG-NET (16K/22K) [144] Convolution GA-DFL+ MAE:

MORPH-II (19K/55K) [160] Layer OHRanker 3.93, 3.25

2017 [207] MORPH-II (19K/55K) [160] Raw Pixels Net VGG- MAE:

WebFace (59K/59K) [218] Hybrid 2.96, 5.75

2017 [107] MORPH-II (19K/55K) [160] Convolution D2C MAE:

WebFace (59K/59K) [218] Layer (Net-CHL) 3.16, 6.12

2017 [92] FG-NET+MORPH [30, 144] DeepID2 KNN with Acc: 97.2

Adience (580/1046) [120] BB-FCN Adience 51.1

2017 [12] Adience (4534/4535) [57] CNN FFNN Acc 58.49

2017 [40] Hybrid Dataset Raw Pixels M-LSDML MAE: 2.89

2016 [52] IoG (28.2K/5.1K) [69] Convolution Deep CNN Acc: 92.0

Layer (Deep ID)

2016 [6] FG-NET (16K/22K) LBP SVM Acc 71.02

(82/1002) [144]

2016 [148] FG-NET (16K/22K) [144] AAM Age using MAE:

MORPH-II (19K/55K) [160] SVM 4.50, 5.86

2016 [4] FG-NET (16K/22K) [144] Raw Pixels Regression MAE 3.19

2016 [85] LAP-2016 (7591/7591) [60] Deep CNN Kernel ELM MAE 3.85

2016 [217] FG-NET (16K/22K) [144] Raw Pixels K-SVR MAE:

MORPH II (19K/55K) [160] 4.66, 4.72

2016 [38] Adience (580/1046) [120] Raw Pixels Deep CNN Acc: 52.88

2016 [202] FG-NET (16K/22K) [144] Raw Pixels raSVM+ MAE:

MORPH-II (19K/55K) [160] 4.07, 5.05

5 Open challenges and recommendations

We have performed a thorough study on recent soft biometrics in previous sections. It
is now clear that several important steps are necessary to take for the development of a
robust and seamless recognition system using Soft Biometrics. These are actually open
challenges present in the field and requires rectification. To present a list of challenges and
recommendations is one of the main objectives of this survey too.

5.1 Design or development of benchmark dataset

The development of any practical soft biometrics recognition system requires its evaluation
on a specially designed or developed challenging dataset. Till date, several face and pedes-
trian datasets like PETA [48], variants of LFW [91, 104], MORPH [199] and ATVS Forensic
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Table 15 Overview of ethnicity based recognition or retrieval

Year Auth Dataset Features Classi/Retri Performa

(Sub/Image) (%)

2019 [93] Hybrid Raw Pixel Modified Acc: 99.18

Dataset VGG-16

2019 [41] VNFaces Raw Pixel CNN Acc: 91.64

(6100/6100)

2019 [2] Custom Built Geometric MLP Matching

Features

2018 [89] Custom Built Convolution VGG-16 95.2

(3051/3598) Layer CNN

2018 [123] FERET DLib Landmark CNN 97.83

(989/1978) [79] Localization

2018 [163] Custom Built Histogram Haarlick of GLCM 85.39

(2184/2184) GLCM Histogram

2017 [99] Custom Built Landmarks PCA, PLS PCA - 71.11

(135/675) Detection PLS - 76.03

2017 [122] FERET HOG, LBP Fusion SVM, MLP, 97.50

(989/1978) [79] LDA, QDA

2016 [36] Custom Built Convolution CNN 89.2

(1380/1380) Layer

DB [167] are used. These datasets are used alone or in concatenation for the evaluation
of soft biometrics system. None of these datasets cover all the modalities of human. Usu-
ally only face or body are in focus while recording. Also, the number of images or videos
for distinct individuals is few hundreds except PETA and LFW and they both do not cover
all the modalities. Another challenge is missing multiple number of sessions per subject
and information about time lapse between different sessions, if there is any. More impor-
tantly, diversity in terms of recording environment, lighting conditions, gender, ethnicity
and viewing angle etc. is not catered fully.

That is why, it is preliminary step to develop or design a single dataset catering all the
modalities of human from different viewing angles, having multiple sessions spanning over
longer period of time and including selfie images [155]. The Southampton University Tun-
nel Dataset [121, 179], its variants [174] and Soton Gait Dataset [184] are appreciating steps
in this direction. However, they consist few hundred subjects, having fewer sessions with
little time gap and recorded in a controlled environment, simply, lower in diversity.

5.2 Methods for quantitative annotations

Like, traditional biometrics, soft biometrics recognition process also involves matching of
automated estimated feature value with actually annotated ones [27]. So, the annotation of
dataset is the next step after development of a diverse dataset. As discussed earlier, cat-
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egorical [113] and comparative [219] annotations are the most widely used methods for
annotation. The annotation process used is expert opinion or crowd sourcing.

It is important to note that both categorical and comparative annotations provide quali-
tative value for soft trait. One has very good application in short term tracking while other
is useful in feature based retrieval on a small dataset [10]. This is indeed a major limitation
while performing recognition in an unconstrained environment.

This is the main reason for a using quantitative method of feature annotation, like
Bertillonage system from 18th century i.e. anthropometrics [65]. The quantitative method
of annotation will provide absolute value for each trait of each individual subject. This is
absolute value will be highly discriminating too. There are certain experiments like [177,
194, 204] where these anthropometric and geometric measurements of human are used for
recognition. However, these experiments are performed on smaller datasets with limited
diversity. Therefore, there is a great need to first explore and develop tools like Bertillon for
quantitative annotation of datasets, following by development of automated techniques for
estimation in surveillance.

5.3 Feature selection

In our work, we reported a collection of soft biometrics features from whole human body
i.e. face or head, body including limbs and clothing. To the best of our knowledge, this is
10 times larger collection till date after [46, 165, 209] and [97] etc. These traits are used in
various research experiments to perform different recognition or retrieval tasks.

This is a huge collection of more than 170 soft biometrics. Now, it is an open question
to select those features which are highly significant to recognition or retrieval [143]. This
information can be identified in multiple ways like; occurrence of a feature in various exper-
iments, type of experiment, application domain, weighted significance in a specific scenario,
permanence or stability score of a particular trait and discrimination power for each trait etc.
In fact, we can calculate these properties of an individual trait on a comprehensive dataset.

It is also important to note that several traits are estimated using all the three annotation
types and others using one or two. The question is to understand in which scenario a specific
annotation type is used and how much accurate it has been. So, there should be a mech-
anism for evaluating annotation type for each trait. A mechanism reflection of real-world
observation.

5.4 Development of techniques for improved automated estimation of soft
biometrics

To improve recognition accuracy, we have also investigated four critical factors affecting
overall performance. These four factors are attribute correlation [26, 102], permanence score
[9], discrimination power [193, 194] and distance [81]. These are directly linked to each
soft biometrics and can be defined at trait level.

A better handling of these factors for each trait will result in form of improved recog-
nition, if included. So, it is highly recommended that each of these traits from this larger
collection should be tested for these four factors. This activity can only be performed on a
diverse and large dataset after annotation. The higher the value of four factors of a soft trait,
higher is the choice of being part of soft biometrics system. By this way, a smaller set of
soft biometrics will provide better recognition or retrieval.
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5.5 Development of feature andmodality level fusion framework

In soft biometrics research, we have explored that human body is consist of modalities and
these modalities contains features. So, we have found two kind of fusion scenarios in various
research experiments; i.e. 1) feature level based on permanence and discrimination power
[18, 194], and 2) modality level [80, 81]. There are different kinds of mathematical and
statistical operations used to perform feature or modality level fusion. It has been predomi-
nantly observed that fusion always perform better than independent ones. As of our analysis,
fusion contains larger number of features from each modality. So, it is better to select few
features which are permanent [9] and discriminating [193, 194]. Then, for improved recog-
nition, it is better to compare different sets of fusion at multiple levels and in distinguishing
scenarios.

5.6 Techniques for improved hybrid recognition

We also compared various approaches of soft biometrics features estimation and classi-
fication or retrieval, tested on various datasets. There is a large number of methods like
Raw Pixel processing [81], LBP [150], AAM/ASM [9], landmark estimation [25, 194]
and Masrk-R CNN [67] etc. used for feature estimation. The classification or retrieval is
performed using methods like similarity score or prob-gallery match [97, 193] euclidean
distance [152], Bayes [25], and SVM regression [9] etc. Moreover, it can be a wise approach
to test clustering techniques too for improved recognition [142].

In fact, future soft biometrics system will be hybrid in terms of modalities and features.
That is why, to develop a comprehensive dataset is essential. Afterwards, to test these feature
estimation and classification or retrieval techniques on this dataset will be effective. By this,
we can head towards an improved hybrid recognition system using soft biometrics.

5.7 Techniques for improved global traits based recognition

As discussed earlier, the gender, age and ethnicity [118, 213] are studied as independent
soft biometrics. That is why, we have explored and summarized these trio features in hybrid
framework and independently. The techniques used for feature estimation are of versa-
tile nature for this trio like image processing based [4] to wavelets etc. Some commercial
applications [108] and PCA [99] etc. are used for classification or retrieval.

In our opinion, these global traits have weighted significance in recognition using soft
biometrics. These can be used as independent sub-systems or become internal component
of any recognition system. It is highly recommended to develop a standalone system using
this trio soft biometrics. More specifically, the gender should be mapped as binary class
problem, while age and ethnicity as multi-class problem. The class size should be as small
as possible.

6 Summary and concluding remarks

This paper provides comprehensive analysis of soft biometrics approaches for recognition
and retrieval purposes. As the overview of existing work on soft biometrics shows us, the
development of a robust and highly accurate soft biometrics recognition system remains a
challenging task. One of the main issues that need to be resolved include a creation of a
diverse dataset and development of effective methods for classification, feature selection
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and quantitative annotation. As these areas have primary effect on the overall performance
in recognition tasks, it is of utmost importance to direct future research these directions in
order to deliver a robust soft biometrics-based recognition systems.
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