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Abstract
We live in a world characterized by biodiversity loss and global environmental change. 
The extinction of large carnivores can have ramifying effects on ecosystems like an 
uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on 
vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve impor-
tant ecosystem functions as apex predators; yet, they are quickly heading towards 
an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal 
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1  |  INTRODUC TION

The current century is characterized by unprecedented global 
change. Climate change and human impacts disrupt the integrity 
of ecosystems worldwide with ramifications for faunal and floral 
biodiversity (Díaz et al.,  2019; Eichenberg et al.,  2021; Raven & 
Wagner, 2021). An estimated one million animal and plant species 
are threatened by extinction (Díaz et al.,  2019). Apex predators, 
such as big cats, are more sensitive to environmental and climate 
change than species at lower trophic levels (Cheng et al., 2017; Voigt 
et al., 2003). Strong declines or extinctions of large carnivores can 
have substantial effects on ecosystems, such as an uncontrolled in-
crease in wild herbivores, which in turn can alter plant communities 
and lead to shifts towards alternative ecosystem states (Beschta & 
Ripple, 2009) and even effect grassland net nitrogen mineralization 
(Frank, 2008).

The cheetah (Acinonyx jubatus, Schreber, 1775) is listed globally 
as a Vulnerable species by the International Union for Conservation 
of Nature (IUCN; Durant et al., 2015). However, as the majority of 
cheetahs occur outside formally protected areas, where rates of de-
cline are likely to be elevated, Durant and colleagues argued that the 
cheetah meets the IUCN criteria to be categorized as Endangered 
(Durant et al.,  2017). Furthermore, the subspecies A. j. venaticus 
in Iran and A. j. hecki in Northwest Africa are listed as Critically 
Endangered by the IUCN (Belbachir,  2008; Durant et al.,  2015; 
Jowkar et al., 2008). Threats to cheetahs include habitat conversion 
and loss, persecution by pastoralists, prey declines, illegal trophy 

hunting, illegal trade especially as pets, and armed conflicts (Durant 
et al., 2014; Lindsey et al., 2011; Ray, 2005; Tricorache et al., 2018, 
2021).

There are approximately 7100 adult and adolescent chee-
tahs distributed across 33 wild subpopulations in Africa and Asia 
(Durant et al., 2017; Figure 1). More than half (~60%) of wild chee-
tahs occur in one large population in southern Africa (A. j. juba-
tus) (Durant et al.,  2017), while A. j. venaticus is represented by 
fewer than 50–70 individuals and is only found in Iran (Farhadinia 
et al., 2017). At the end of the nineteenth century, the cheetah's 
distribution comprised most nonrainforest parts of Africa and 
much of Western and Southern Asia, from the Arabian Peninsula 
all the way to India, and northwards until Kazakhstan (Durant 
et al., 2017). However, over the past decades, the species' range 
declined drastically, and its current extent is probably only 9% of 
its historical distribution (Durant et al.,  2017). Currently chee-
tahs are divided into four subspecies by the IUCN Cat Specialist 
Group (Kitchener et al., 2017), namely A. jubatus hecki (Northwest 
Africa), A. j. soemmeringii (Northeast Africa), A. j. jubatus (Southern 
and East Africa) and A. j. venaticus (Western and Southern Asia, 
presently found only in Iran). Krausman and Morales (2005) list A. 
j. raineyi (East Africa) as a fifth subspecies, but its status is under 
debate (Kitchener et al., 2017). It is currently recognized as a syn-
onym of A. j. jubatus, because of its close genetic relationship in-
ferred from mitochondrial DNA (mtDNA; Charruau et al.,  2011), 
a finding that has previously been reported (O'Brien et al., 1987). 
Based on mtDNA and microsatellite data from up to 94 samples 
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trafficking, there are only approximately 7100 individuals remaining in nature. We 
present the most comprehensive genome-wide analysis of cheetah phylogeography 
and conservation genomics to date, assembling samples from nearly the entire current 
and past species' range. We show that their phylogeography is more complex than 
previously thought, and that East African cheetahs (A. j. raineyi) are genetically dis-
tinct from Southern African individuals (A. j. jubatus), warranting their recognition as 
a distinct subspecies. We found strong genetic differentiation between all classically 
recognized subspecies, thus refuting earlier findings that cheetahs show only little 
differentiation. The strongest differentiation was observed between the Asiatic and 
all the African subspecies. We detected high inbreeding in the Critically Endangered 
Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that over-
all cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity 
of all the big cats. This further emphasizes the cheetah's perilous conservation status. 
Our results provide novel and important information on cheetah phylogeography that 
can support evidence-based conservation policy decisions to help protect this spe-
cies. This is especially relevant in light of ongoing and proposed translocations across 
subspecies boundaries, and the increasing threats of illegal trafficking.

K E Y W O R D S
Acinonyx jubatus, cheetah, conservation genomics, double-digest restriction site associated 
DNA (ddRAD) sequencing, phylogeography
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including most of the cheetah's past and current range, Charruau 
et al.  (2011) further showed that Asiatic, North-East and West 
African cheetahs form separate phylogenetic groups, correspond-
ing to the currently recognized cheetah subspecies.

Recognizing the need for comprehensive conservation ge-
nomic analyses in cheetahs, we investigated genome-wide single 
nucleotide polymorphisms (SNPs), mtDNA and major histocom-
patibility complex (MHC) class II DRB immune response gene 
data to examine their phylogeography, and neutral and adaptive 
genetic diversity. We used the classical subspecies assignment 

based on geographic distribution as a starting point (hypothe-
sis) to test the validity of subspecies (Sackett et al.,  2014): A. j. 
hecki, A. j. soemmeringii, A. j. jubatus, A. j. venaticus and A. j. raineyi, 
acknowledging that the latter is currently not recognized by the 
IUCN as a separate subspecies (Kitchener et al., 2017). Discussing 
this information in the context of ongoing and future conserva-
tion measures, we intend that our data build the basis for compre-
hensive range-wide genetic monitoring of cheetahs. Moreover, it 
can be used to guide subspecies-specific conservation measures, 
as it sheds light on the genetic differentiation among cheetah 

F I G U R E  1  Current distribution of the five classical cheetah subspecies (after Krausman & Morales, 2005). The distribution ranges were 
adopted from the IUCN red list (Durant et al., 2015, 2017). Subspecies were assigned to the distributions using the results of Charruau 
et al. (2011) and this study. Photo credits are listed in the Acknowledgements.

A. j . hecki
A. j . venaticus

A. j . soemeringiiA. j . jubatus

A. j . jubatus 
(A. j. raineyi)

Subspecies Number Use Method

A. j. jubatus 23 Population 
genomics

ddRAD

A. j. soemmeringii 15 Population 
genomics

ddRAD

A. j. raineyi 3 Population 
genomics

Dobrynin et al. (2015)

A. j. venaticus 3 Population 
genomics

ddRAD

A. j. hecki 2 Population 
genomics

Whole genomic DNA from museum 
samples

A. j. jubatus 12 Relatedness 
testing

ddRAD; known parent-offspring trios

Puma concolor 1 Outgroup ddRAD

TA B L E  1  Number of individuals 
included in the different analyses (third 
column) based on genome-wide SNP 
data. The method used to generate the 
sequencing data is given in the right 
column
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subspecies, and will assist with evidence-based decision-making, 
for example, for planned reintroduction projects and regional 
conservation strategies.

2  |  MATERIAL S AND METHODS

A detailed description of the applied methods and all Convention on 
International Trade in Endangered Species of Wild Fauna and Flora 
(CITES) permits can be found in Supporting Information File 1 and 
Table  S1. Information about all samples used in this study can be 
found in Table S2.

2.1  |  Data set descriptions

2.1.1  |  Data set 1—nuclear DNA

Data set 1 consists of 46 Acinonyx jubatus individuals used in the 
population genomic analyses (belonging to all five classically recog-
nized subspecies), and 12 A. j. jubatus individuals of known parent-
offspring trios only used for testing the reliability of the relatedness 
tests (see Table 1). Sequencing reads for three individuals in data set 
1 were obtained from NCBI (Genbank: SRR2737543-SRR2737545; 
Dobrynin et al.,  2015). The data set also includes a specimen of 
Puma concolor used as outgroup in the phylogenetic analyses. We 
extracted DNA from tissue samples of 21 modern cheetahs and of 
the puma using the Qiagen DNeasy Blood and Tissue kit (Qiagen) 
and 32 diluted blood samples using the innuPREP Blood Kit (Analytik 
Jena AG). We extracted the DNA of the two museum samples of 
A. j. hecki using the DNA extraction protocol developed by Dabney 
et al.  (2013). All but the two museum samples were processed 
using the double-digest restriction-site associated DNA (ddRAD) 
sequencing approach (Peterson et al.,  2012). The two museum 
specimens were sequenced for their whole genomic DNA using the 
method described in Meyer and Kircher (2010), as their quality was 
not high enough to carry out ddRAD processing. To avoid DNA con-
tamination, we carried out all extractions in a dedicated laboratory 
for ancient DNA and museum samples at the University of Uppsala, 
Sweden.

Raw data processing
We mapped the read data against the Aci_jub_2 cheetah genome 
assembly (NCBI: GCA_003709585.1) using BWA-MEM (version 
0.7.17-r1188) (Li & Durbin, 2010) and processed the resulting map-
ping files using Samtools (version 1.9) (Li et al.,  2009). We subse-
quently assessed the mapping quality with Qualimap (Okonechnikov 
et al., 2016). For the two museum samples we further carried out 
adapter-trimming and duplicate removal using AdapterRemoval2 
(Schubert et al., 2016) and Picard version 2.8.2 (https://broad​insti​
tute.github.io/picar​d/). The resulting mapping files were processed 
with ANGSD (Korneliussen et al.,  2014), which was specifically 

developed for population genomic analyses of low coverage data. 
We carried out filtering using SNPcleaner (version 2.24) (Fumagalli 
et al., 2014), by first creating a vcf file (SNP data file) for all samples 
using Samtools. We then filtered the SNP data for (1) the presence of 
no more than 25% of missing data for individual sites, (2) a maximum 
coverage of 120x per individual to avoid calling sites in highly repeti-
tive regions, and (3) a minimum coverage of 3x for each individual. 
The resulting sites were used as input for the downstream ANGSD 
analyses.

Genomic differentiation
The following analyses were carried out with the 46 individuals from 
data set 1 (excluding the 12 parent-offspring individuals only used 
for the relatedness test assessment). We carried out unsupervised 
principal component analyses using ANGSD and pcangsd (Meisner 
& Albrechtsen, 2018) and investigated population differentiation in 
terms of FST with ANGSD. As some estimators of FST can be biased 
by uneven sampling (see e.g., Puechmaille et al., 2016), we created 
three replicates for which we randomly subsampled A. j. jubatus and 
A. j. soemmeringii down to three individuals. All replicates resulted 
in highly similar estimates (Table S3), comparable to the estimates 
obtained from the full data set (Table S4). Furthermore, Nazareno 
et al. (2017) and Willing et al. (2012) showed that FST can be reli-
ably estimated based on small sample sizes (n > 2) when more than 
1000–1500 SNPs are used in the analysis. To further investigate the 
reliability of our FST estimates, we carried out a permutation test. To 
do so, we generated three data sets, mimicking our original sampling 
(four groups of three individuals and one group of two individuals), 
in which each group was made up of randomly selected individuals 
of different subspecies. We then checked the FST distributions, the 
random ones and the one obtained from the original set for normal-
ity with the Shapiro–Wilk test in the R (version 3.4.3.) stats package. 
As both followed a normal distribution, we next tested whether both 
distributions had the same variance using the var.test() function of 
the stats package. This showed that both distributions are independ-
ent, and we thus proceeded with an F-test (implemented in the stats 
package) to see whether both were significantly different from each 
other.

We then looked for signatures of admixture using ngsAdmix 
(Skotte et al., 2013). To avoid sampling biases due to different sam-
ple sizes, we subsampled A. j. jubatus and A. j. soemmeringii to three 
individuals to match the sample sizes of the other three subspecies. 
We generated three replicates with different subsampled individu-
als. We further carried out a separate ngsAdmix analysis restricted 
to all individuals of the two subspecies A. j. soemmeringii and A. j. 
jubatus. We performed 50 replicates for all ngsAdmix runs ranging 
from k = 2 to k = 5. The results were summarized and visualized using 
CLUMPACK (Kopelman et al., 2015). We assessed the model fit of 
each k value to the data using evalAdmix (Garcia-Erill & Albrechtsen, 
2020). Finally, we performed an EEMS (Petkova et al., 2016) analy-
sis to infer effective migration rates between the African cheetah 
subspecies.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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Phylogenetic analyses
We carried out phylogenetic analyses using three different meth-
ods: (1) using genetic distances, generated with ANGSD and ngs-
Dist (Fumagalli et al., 2014), and FastME (Lefort et al., 2015), (2) a 
phylogenetic network approach using SplitsTree (Huson et al., 2008) 
and (3) a maximum likelihood based analysis with IQ-Tree (Nguyen 
et al.,  2015). Methods (1) and (2) were based on genotype likeli-
hoods, while method (3) was based on genotype calls.

Conservation genomic parameters
We investigated classical conservation genomic parameters, such 
as inbreeding, relatedness and heterozygosity. Inbreeding was esti-
mated using two approaches: (1) using ngsF (Fumagalli et al., 2014), 
and (2) ngsRelate (version 2) (Hanghøj et al., 2019). We further used 
ngsRelate version 1 (Korneliussen & Moltke,  2015) and version 2 
(Hanghøj et al., 2019), the latter corrects for inbreeding, to carry out 
relatedness analyses. To check test performance, we first ran the re-
latedness analysis tools on only the 12 individuals consisting of four 
parent-offspring trios (IDs: 448–459; see Table S2).

We carried out heterozygosity analyses for the 46 individuals 
using realSFS (part of the ANGSD package). Here, we did not restrict 
our analyses to filtered sites, to be able to compare our estimates 
to published genome-wide heterozygosity values for other felids 
(Pečnerová et al., 2021). Due to the low coverage and quality typical 
for degraded museum DNA, we did not include the two museum 
samples in this analysis.

2.1.1.1 | Data set 2—mitochondrial DNA
We amplified mtDNA regions of 929  bp for 57 individuals and 
681 bp for 57 individuals. We targeted two mitochondrial genes that 
included the 14 previously described diagnostic SNPs from Charruau 
et al. (2011), the NADH-dehydrogenase subunit 5 (MT-ND5) and the 
control region (MT-CR). The amplicons were Sanger sequenced. We 
further included the 78 individuals from Charruau et al. (2011) in the 
681 bp data set. All individuals of the 929 bp data set are included in 
the 681 bp set, as the 929 bp fragment includes the shorter 681 bp 
fragment. The mtDNA data were used to infer population structure, 
and included samples from their present and past distributions. We 
followed the protocol of Rohland et al. (2010) for the DNA extrac-
tion from museum samples. To avoid DNA contamination, we carried 
out all extractions in a dedicated laboratory for museum samples at 
the Vetmeduni in Vienna, Austria.

Population structure
For the mitochondrial DNA data we aligned all sequences using 
Codon Code Aligner version 3.0.2 (Codon Code Corporation). 
We obtained the reference sequence for the cheetah mitochon-
drial genome from GenBank (accession no. NC_005212.1; Burger 
et al., 2004). We carried out parallel analyses on the two concate-
nated data sets that differed in the length of the region and the num-
ber of individuals (Table S2). The first analysis comprised the larger 
mtDNA fragment of 929 bp amplified in 58 individuals. The second 
analysis was based on the shorter fragment of 681 bp and included 

78 individuals from Charruau et al.  (2011) and 57 examined in this 
study. Median-joining networks were created using Popart (Leigh 
& Bryant,  2015). We further investigated the molecular variance 
in our data using an AMOVA analysis, implemented in the software 
Arlequin version 3.5.2.2 (Excoffier & Lischer,  2010). Furthermore, 
we investigated the homology of the mtDNA regions to known 
NUMTs in the published cheetah genome (GCA_003709585.1) using 
the default settings in blastn (Altschul et al., 1990).

2.1.2  |  Data set 3—mini-barcodes

We designed a mini-barcode approach to investigate whether all A. 
j. soemmeringii carry the 3 bp deletion in the MT-ND5 gene as de-
scribed in Charruau et al. (2011), and as a quick subspecies assign-
ment test. We designed three mini-amplicons that amplify a total 
of 190  bp, based on diagnostic sites inferred from our mitochon-
drial haplotype data (data set 2). Primer sequences can be found in 
Table S5. We used the extracts of all A. j. soemmeringii specimens 
from data set 1 and sequenced the amplicons on an Illumina iSeq 
100 (2 × 150  bp) following the two step sequencing protocol of 
Lange et al. (2014).

Testing for the presence of the 3 bp deletion in the MT-ND5 gene in 
A. j. Soemmeringii
We mapped all sequencing reads back to the mitochondrial DNA 
reference for cheetahs (accession no. NC_005212.1; Burger 
et al., 2004) using the same approach as described for data set 1. 
We then called the consensus sequences of the mapping files using 
ANGSD (option: -do Fasta 3), inspected them by eye, and aligned all 
consensus sequences using Mafft (Katoh & Standley, 2013). Then we 
generated median joining networks for the mini-barcode data using 
Popart (Leigh & Bryant, 2015).

2.1.3  |  Data set 4—immune response genes

We sequenced the MHC class II DRB exon 2 of 46 individuals (be-
longing to four of the five classical subspecies; excluding A. j. hecki) 
to investigate their immunogenetic diversity. We used the Qiagen 
DNeasy Blood and Tissue kit for DNA extraction from hair and tissue 
samples, and the VWR PeqGold Tissue DNA Mini Kit Plus for blood 
samples. We carried out PCR amplifications of the target region as 
described in Castro-Prieto, Wachter and Sommer (2011). Indexing, 
multiplexing and sequencing was carried out following the Illumina 
Nextera XT DNA Library Prep kit reference guide. Sequencing was 
performed on an Illumina MiSeq (2 × 250 bp).

Adaptive immune system diversity
We mapped the reads against the MHC class II DRB exon 2 reference 
sequence from Castro-Prieto, Wachter and Sommer (2011) using 
BWA-MEM, and further processed the mapping file using Samtools. 
We called variants using Picard version 2.8.2 and GATK version 
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3.1.8 (McKenna et al., 2010). The main alleles were phased using the 
FastaAlternateReferenceMaker command in GATK. We estimated 
haplotype diversity (Hd) and nucleotide diversity (π) using DNAsp 
version 6.12.03 (Librado & Rozas, 2009). Rarefaction analyses were 
carried out using EstimateS 9.1.0 (Colwell & Elsensohn, 2014).

3  |  RESULTS

For the ddRAD data we aimed for a minimum of 225,000 read pairs 
per individual, assuming the generation of 45,000 loci. We obtained 
44,351 loci, and read pair counts ranged from 120,700 to 38.9 mil-
lion for the different individuals, with an average read pair count of 
3.58 million. For the two museum samples we aimed at 125 million 
read pairs and obtained 127.6 and 176 million read pairs, respec-
tively. After filtering for coverage and missing data we retained 3743 
SNPs for the analyses.

3.1  |  Genomic differentiation among the five 
classical cheetah subspecies

Subspecies or conservation unit assignments are crucial to carry out 
targeted conservation efforts. Therefore, we analysed biogeographic 

relationships using genome-wide SNP data (3743 SNPs after filter-
ing) for 46 individuals of the five classically recognized cheetah 
subspecies (see Table 1 and Table S2; data set 1). In contrast to the 
current and in line with the classical subspecies taxonomy, the un-
supervised principal component analysis (PCA) showed five distinct 
genomic clusters (Figure  2a and Figure  S1). These clusters corre-
spond to the four currently recognized subspecies (A. j. jubatus, A. 
j. soemmeringii, A. j. hecki and A. j. venaticus) and A. j. raineyi. This is 
further supported by the two phylogenetic tree analyses (Figure 2b, 
Figure  S2) and the phylogenetic network approach (Figure  2c, 
Figure S3). These analyses show monophyletic groups for the five 
subspecies (note that we could not include the two A. j. hecki sam-
ples in the ML tree analysis, which is based on genotype calls, due 
to their low coverage). The two phylogenetic tree analyses showed 
high support for these clades, with bootstraps falling in the range of 
91%–100%, except for the A. j. hecki clade, which shows a bootstrap 
of 70% (Figure 2b and Figure S2). Overall, the two phylogenetic tree 
topologies were congruent with each other and placed A. j. venati-
cus (from Asia) as a sister group to all African subspecies. However, 
they differed in the placement of two individuals (ID 305 and ID306), 
which appeared as sisters to (i) A. j. soemmeringii using genetic dis-
tances (Figure 2b), or (ii) A. j. raineyi in the ML tree (Figure S2). These 
individuals showed mitochondrial haplotypes associated with A. j. 
raineyi (see below), but clustered with A. j. soemmeringii in the PCA 

F I G U R E  2  Population- and 
phylogenomic analyses of genome-
wide nuclear SNP (3743) data for 46 
cheetah individuals. (a) PCA analysis of all 
individuals of the five classical subspecies 
included in this study. The clustering 
corresponds to the morphological 
subspecies classification. (b) Phylogenetic 
relationships of representatives of 
the five classical cheetah subspecies 
using genetic distances (estimated 
using ngsDist and FastME; using 100 
bootstraps). (c) Phylogenetic relationships 
of representatives for the five classical 
cheetah subspecies inferred by the 
phylogenetic network approach 
implemented in SplitsTree. For a fully 
annotated phylogenetic network see 
Figure S3.
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analysis based on the genome-wide SNP data. The split into five 
genetically distinct groups is further supported by model fit analy-
ses based on the inferred admixture proportions (Figure  3a and 
Figures S4 and S5). Analyses of different subsets (at K = 5) indicated 
little to no signatures of admixture (Figure 3a and Figure S4); one 
of the three replicate analyses suggested some, but limited, A. j. 
soemmeringii ancestry in A. j. raineyi individuals and, likewise, some 
slight A. j. raineyi ancestry in A. j. jubatus individuals, but no signa-
tures or patterns of admixture were consistently observed across 
the three different sample subsets analysed. We ran a separate ad-
mixture analysis including all individuals of A. j. soemmeringii and A. 
j. jubatus, but did not detect any signatures of admixture between 
these two subspecies (Figure S6). To understand patterns of gene 
flow among African cheetah populations, we estimated effective 
migration rates using EEMS (Figure  3b). This analysis indicated (1) 
migration between populations of the same subspecies (except for 
the two A. j. hecki individuals), (2) limited to no migration between A. 
j. jubatus and A. j. raineyi, and A. j. soemmeringii and A. j. raineyi, and (3) 
strong migration barriers between A. j. hecki and all the other African 
subspecies. Genetic distances measured using FST were the highest 
(0.497) between the two endangered subspecies, A. j. hecki and A. 
j. venaticus, and lowest (0.219) between A. j. soemmeringii and A. j. 
raineyi (Table 2). In general, we saw the highest FST values between 
A. j. venaticus and all the African subspecies (ranging from 0.438 to 
0.497). The permutation test showed that our FST were reliable, with 
a p-value of .0003354. The FST estimates for the replicates of the 
subsampled data sets and the complete data set can be found in 
Tables S3 and S4.

3.2  |  High inbreeding and low heterozygosity 
threaten the gene pool of the critically endangered 
Asiatic and northwest African cheetahs

We carried out inbreeding analyses using data set 1 and two dif-
ferent methods described in Fumagalli et al.  (2014) and Hanghøj 
et al.  (2019). Both inferred the highest inbreeding coefficients in 
individuals of the two Critically Endangered subspecies, A. j. venati-
cus and A. j. hecki (Figure 3c top panel and Figure S7), although with 
slightly different intensities. A. j. jubatus showed slightly lower in-
breeding coefficients than A. j. soemmeringii or A. j. raineyi (Figure 3c 
top panel and Figure S7). While most of the A. j. jubatus individuals 
are captive bred (from South African captive breeding facilities), we 
did not observe any differences between these and the wild A. j. 
jubatus individuals in our sampling. We further calculated genome-
wide heterozygosity for each of the modern samples (excluding the 
low-quality museum samples of A. j. hecki), which resulted in a spe-
cies mean of 0.00040 (range: 0.00020–0.00050; Figure 3c bottom 
panel and Figure 3d). A. j. venaticus showed the lowest genome-wide 
heterozygosity with a mean of 0.00029 (range: 0.00020–0.00040), 
followed by A. j. soemmeringii with a mean of 0.00040 (range: 
0.00029–0.00050), A. j. jubatus with a mean of 0.00043 (range: 
0.00036–0.00050) and A. j. raineyi with a mean of 0.00046 (range: 

0.00044–0.00048). In addition, we performed relatedness analyses 
to assess the impact of relatedness on our analyses. Most A. j. juba-
tus and A. j. soemmeringii showed relatedness patterns (coefficient 
of relatedness [r = k2/2 + K1] and k0) indicative of second to fourth 
generation cousins (Figure S8). A very limited number of individu-
als showed sibling or parent-offspring relationships. Both methods 
were able to resolve relatedness of four parent-offspring trios in-
cluded in the data set (Figure S9). Comparisons between relatedness 
values (k2) using both methods can be found in Figure S10.

3.3  |  Population structure using 
mitochondrial DNA

The analyses of mtDNA fragments of different sizes allowed us to 
investigate population genetic structure throughout most of the 
cheetahs' present and historical range (Figure  4a; data set 2 and 
3). We analysed mtDNA fragments of 681 bp from 135 individuals 
(Figure S11; data set 2), 929 bp from 58 individuals (Figure 4a; data 
set 2), and 190 bp of the 12 A. j. soemmeringii individuals for which 
we obtained nuclear SNP data (using a mini-barcode approach; 
Figure  S12; data set 3). The median-joining networks showed dis-
tinct haplogroups for the five classical subspecies (Figure  4a, 
Figure S13), although with limited genetic variation differentiating 
them. However, we found that individuals of A. j. raineyi fell into two 
distinct mtDNA haplogroups. Individuals of A. j. raineyi fell either 
within the A. j. jubatus haplogroup (circled in purple in Figure 4a) or 
in a separate cluster, here referred to as the A. j. raineyi haplogroup 
(circled in orange in Figure 4a). As noted in Charruau et al. (2011), we 
found all A. j. soemmeringii mitochondrial haplotypes to display the 
3 bp deletion in the MT-ND5 gene. However, two out of the 12 A. j. 
soemmeringii individuals (data set 1), which clearly fell within the A. j. 
soemmeringii cluster based on nuclear SNP data (see Figure 2a), car-
ried a mitochondrial haplotype belonging to the A.j. raineyi mtDNA 
haplogroup (Figure S12). We found a large fraction of the total vari-
ation partitioned between the five subspecies in the hierarchical 
AMOVA analysis using the mtDNA data (85% between subspecies 
and 15% within populations).

Over all our geographical sampling we discovered four unex-
pected haplotypes considering their sampling locations: we found 
an individual from Tanzania (ID 28) and one from Zimbabwe (ID 164) 
with similar haplotypes to A. j. venaticus individuals (one mutation 
difference; Figure  4a, Figure  S11). We cannot rule out that these 
samples were mislabelled sometime after their field collection. Also, 
we did not find any significant homology of these sequences to nu-
clear mitochondrial DNA (NUMTs) copies in the published cheetah 
genome (NCBI: GCA_003709585.1). Furthermore, one of the two 
Indian individuals included in our study (ID 425, see Table S2) shared 
a haplotype with an individual from Chad (ID 12, A. j. hecki, Northwest 
Africa; Figure  4a). This could be due to the well-documented his-
toric cheetah trade from Africa into India (Divyabhanusinh, 1999). 
Interestingly, this haplotype (carried by ID 425 and ID 12) fell be-
tween the A. j. hecki and the A. j. soemmeringii haplogroup. Based on 
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F I G U R E  3  Population genetic analyses of cheetahs using genome-wide SNP data. (a) Admixture analyses for K = 5 for the three different 
sample subsets using the 3743 SNP data. Numbers indicate how many individual runs of the 50 replicates support this grouping. (b) Effective 
migration rates between the African cheetah subspecies. Blue and brown colours reflect below- and above-the-average migration rates, 
respectively. The dots represent approximate sample locations (exact locations were not available) and their size is proportional to the 
number of samples from this region. (c) Inbreeding coefficients based on the 3743 SNPs and heterozygosity based on genome-wide data 
indicating high inbreeding in individuals of A. j. Venaticus and A. j. hecki and low heterozygosity in individuals of A. j. Venaticus. **Indicates 
that individuals of A. j. Hecki were not included in the heterozygosity analysis. (d) Genome-wide heterozygosity data for big cats, two lynx 
species, and five cheetah subspecies. All values apart from the cheetah estimates were obtained from Pečnerová et al. (2021). *Indicates 
that individuals of A. j. Hecki were not included in the heterozygosity analysis. The dashed line indicates the average value for the cheetah as 
a species.
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the location we would expect the Chad sample to cluster with the 
A. j. hecki haplogroup. More data, such as complete mitochondrial 
genomes or genome-wide SNP data will be necessary to determine 
whether these are real signals, mislabeling, or artefacts caused by 
the short length of the analysed mtDNA fragments.

3.4  |  Adaptive immune response gene diversity

We sequenced the MHC class II DRB exon 2 of 46 individuals (be-
longing to four of the five classical subspecies—all but A. j. hecki; data 
set 4), which resulted in 13 nucleotide and nine amino acid (AA) hap-
lotypes (Figure 4b, Table S6). We estimated a nucleotide haplotype 
diversity of 0.834 (standard deviation [std]: 0.028), a nucleotide di-
versity (π) of 0.069 (std: 0.005), and an average of 16.2 nucleotide 
differences (k). The most common AA haplotype was AcjuFLA-DRB 
*ha16 carried by 83% of the individuals, followed by AcjuFLA-DRB 
*ha17 and AcjuFLA-DRB *ha20, found in 30% and 28% of the individ-
uals, respectively (Table S6). Of the nine identified AA haplotypes, 
all were found in A. j. jubatus, seven in A. j. soemmeringii and five in 
A. j. venaticus (Table S6). AcjuFLA-DRB *ha21 and AcjuFLA-DRB *ha23 
were only present in A. j. jubatus. Similar to Drake et al., 2004, we 
found up to four different haplotypes in a single individual (Table S6). 
We further investigated whether we could expect to retrieve more 
haplotypes with increasing sample sizes using extrapolation (Colwell 
& Elsensohn,  2014; Figure  S13). Even though confidence intervals 

were wide, especially for A. j. venaticus and A. j. soemmeringii, some 
trends were apparent: (1) the steady increase of haplotypes for A. j. 
jubatus indicates that we have probably not saturated the sampling 
of MHC class II DRB exon 2 haplotypes for this subspecies; (2) the 
rarefaction curve of A. j. venaticus reaches a plateau at about 15 sam-
ples, which would indicate that no more than seven haplotypes are 
expected for this subspecies; and (3) we might be able to find more 
haplotypes for A. j. soemmeringii with increased number of samples 
(Figure S13).

4  |  DISCUSSION

4.1  |  Genomic analyses support the classical 
distinction of five cheetah subspecies

The understanding of subspecies structure in cheetahs has impor-
tant implications for their conservation as these are often used to 
assign conservation units. Here, we show that our genetic results 
support the previously established distinction of five cheetah sub-
species by Krausman and Morales (2005): A. j. jubatus, A. j. soemmer-
ingii, A. j. venaticus, A. j. hecki and A. j. raineyi. Our reasoning follows 
the criteria outlined in Sackett et al. (2014). (1) Genotypic separation 
of putative subspecies: We found five distinct clusters in the unsu-
pervised PCA analysis (based on nuclear SNP data), which fit the five 
classically recognized subspecies. Although differentiation between 
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cheetah subspecies has previously been suggested to be low based 
on mtDNA data (O'Brien et al., 2017), the genome-wide FST values 
of the present study show a high differentiation between the sub-
species. These findings are consistent with the results reported by 
Charruau et al. (2011) for 18 microsatellite loci. However, that study 
only included microsatellite data for three subspecies: A. j. venaticus, 
A. j. soemmeringii and A. j. jubatus. We show that genome-wide FST 
values (0.219–0.497) are comparable or higher than those of other 
large felids, such as tigers (0.11–0.43, Liu et al., 2018), lions (0.16–
0.28, Smitz et al., 2018) or African leopards (0.05–0.15, Pečnerová 
et al., 2021). Contrary to the mitochondrial data, A. j. raineyi displayed 
a closer relationship to A. j. soemmeringii than to A. j. jubatus, with 
which it was recently subsumed, both in the PCA and the FST analysis 
using the genome-wide data (data set 1). Admixture and effective mi-
gration rate analyses indicated no or limited gene flow between the 
subspecies. We found two individuals assigned to A. j. soemmeringii, 
using genome-wide nuclear SNP data, carrying mitochondrial haplo-
types of the A. j. raineyi haplogroup (Figure S11). Interestingly, these 
two individuals did not show any signatures of recent admixture 
(Figure S14), which could hint towards the possibility that this pat-
tern is caused by incomplete lineage sorting rather than admixture. 
More individuals are needed to formally test these different hypoth-
eses. (2) Spatial segregation: For the most part, cheetah subspecies 
show strong geographic segregation, with the distributions of only 
A. j. raineyi and A. j. soemmeringii perhaps being parapatric (Figure 1). 
(3) Monophyly in the phylogenetic tree reconstructions: The five puta-
tive subspecies show monophyly in all phylogenetic tree reconstruc-
tions based on the nuclear DNA data (Figure 2b,c and Figure S2). For 
the most part this pattern is also observed in the haplotype network 
reconstruction using the mitochondrial DNA data (Figure  4a; see 
the “Population structure using mitochondrial DNA” section of the 
Results for exceptions). (iv) Relatively large and significant fraction 
of the total variation partitioned between the subspecies: We found 
a large fraction of the total variation partitioned between the five 
subspecies in the hierarchical AMOVA analyses using the mitochon-
drial DNA data (data set 2; 85% between subspecies and 15% within 
population). We were not able to calculate hierarchical AMOVA for 
the genome-wide SNP data, as there are currently no available tools 
that can calculate this for low-coverage data.

4.2  |  Phylogeography, conservation 
genomics and their implications

The geographic distribution of the four African cheetah subspecies 
is similar to that of other savannah-dwelling large African mammals. 
African cheetahs are made up of Western, Northeastern, Eastern 
and Southern African groups. This pattern is, for example, similar 
to the distribution of the four currently recognized giraffe lineages 
(Winter et al., 2018; Coimbra et al., 2021), with a few regional dif-
ferences. While the distributions of A. j. soemmeringii and A. j. raineyi 
meet at the border between Ethiopia, South Sudan, and Kenya, the 
distributions of Giraffa reticulata and G. tippelskirchi meet further 

south in Central Kenya. Similar to cheetahs, Southern African lions 
show a closer phylogenetic relationship with those in Eastern 
Africa than with those in Western Africa (Bertola et al.,  2016). 
Furthermore, population genomic analyses for lions also indicate 
the presence of more than one genetic cluster in Tanzania (three for 
lions, and two in the case of the cheetah mitochondrial analysis). In 
contrast to cheetahs, where the Asian subspecies A. j. venaticus is 
sister to all African cheetah subspecies (Figure  2b and Figure  S2), 
Asian lions cluster phylogenetically with North African lions (Bertola 
et al.,  2016; de Manuel et al.,  2020). Estimates of the divergence 
dates within cheetahs based on mitochondrial DNA or genome data 
vary strongly between analyses and range from 4.5 to 139 kya (see 
e.g., Charruau et al., 2011; Dobrynin et al., 2015; O'Brien et al., 2017; 
Rai et al.,  2020). Also, confidence intervals in these studies often 
show a high degree of overlap (Rai et al.,  2020) and the underly-
ing phylogenetic trees often show limited bootstrap support for 
the splits separating the monophyletic subspecies clades (Charruau 
et al., 2011), making it difficult to decide on the sequence of subspe-
cies divergences. Given the lack of a reliable average mutation rate 
estimate for cheetah nuclear DNA, the limited bootstrap support for 
the underlying topology even for the genome-wide SNP data, and 
taking the lower coverage for some of our samples into considera-
tion, we refrained from estimating divergence times, acknowledging 
the limitations of our data set. High-coverage genome data from all 
five classically accepted subspecies will be needed to better under-
stand the cheetah's phylogenetic history.

We found the highest levels of inbreeding in individuals of the 
two Critically Endangered subspecies, A. j. hecki and A. j. venaticus, 
further emphasizing their extremely perilous conservation status. 
Moreover, A. j. venaticus also showed very low genome-wide het-
erozygosity. We excluded the A. j. hecki data from this analysis, 
because of the low DNA quality obtained from museum samples. 
Of all the subspecies, A. j. jubatus showed the lowest level of in-
breeding. Genome-wide heterozygosity was the highest in A. j. juba-
tus and A. j. raineyi. This is not surprising as A. j. jubatus makes up 
the largest continuous population of all cheetah subspecies and A. 
j. raineyi the second largest (Durant et al., 2017). We have to cau-
tion that a large fraction of our A. j. jubatus individuals (18 out of 
25) originated in captivity. However, these represent purebred A. j. 
jubatus, and we did not observe any differences in the genome-wide 
heterozygosity or inbreeding estimates between our captive-bred 
and wild caught individuals. Our genomic analyses show that chee-
tahs have genome-wide heterozygosity values (0.0002–0.0005) 
lower than those of other endangered mid-size or large felids (data 
from Pečnerová et al.,  2021; also noted in Dobrynin et al.,  2015), 
such as African leopards (Panthera pardus pardus, classified as 
Vulnerable, 0.0017–0.0036), African lions (Panthera leo leo, classified 
as Vulnerable, 0.0007–0.0015), jaguars (Panthera onca, classified as 
Near Threatened, 0.00119) and tigers (Panthera tigris, classified as 
Vulnerable, 0.0008–0.0010), but similar to Snow leopards (Panthera 
uncia, classified as Vulnerable, 0.0004) and Asiatic lions (Panthera leo 
persica, classified as Endangered, 0.000276; comparable to A. j. ve-
naticus), and higher than the Iberian lynx (Lynx pardinus, classified as 
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Endangered, 0.0001). This highlights the perilous conservation status 
of the cheetah, especially that of the critically endangered subspe-
cies A. j. venaticus and A. j. hecki.

4.3  |  Global change and cheetah conservation

As the cheetah serves important ecosystem functions as an apex 
predator, its survival is key to ensuring the healthy functioning of the 
ecosystems it lives in (Estes et al., 2011). The elimination or disap-
pearance of large carnivores from fragile habitats can have knock-on 
effects on other faunal and floral species (Beschta & Ripple, 2009). 
Threatened by global change and increasing predation pressure from 
humans, the protection of the last remaining cheetah populations is 
an imperative part of preserving natural and healthy biodiversity and 
habitats (Durant et al., 2017). Our findings have several implications 
for the conservation of cheetahs and highlight the need for further 
genetic studies and monitoring.

4.3.1  |  Subspecies-specific conservation strategies

Even though our genome-wide nuclear SNP data sample set from 
East Africa is small (n = 3), our results indicate that A. j. jubatus and 
A. j. raineyi should be considered distinct at least for the purpose 
of management and conservation strategies (e.g., in the form of 
distinct conservation units). Thus, ongoing translocations of south-
ern African cheetahs into parts of East Africa (e.g., Briers-Louw 
et al., 2019) should be informed by the conclusion reached in this 
study and may warrant closer scrutiny by conservationists. Even 
more so, while the phylogeographic distribution we inferred from 
our mtDNA data, for the most part, agrees with that described in 
Charruau et al. (2011), utilizing more samples, we were able to show 
the presence of two distinct groups within A. j. raineyi, with individu-
als from Tanzania and Kenya showing two different mitochondrial 
haplogroup assignments, falling either within the haplogroup of A. j. 
jubatus or forming their own haplogroup, here referred to as the A. 
j. raineyi haplogroup. The three individuals from Tanzania (Dobrynin 
et al., 2015), which form a separate cluster using genome-wide data 
(data set 1), show mitochondrial haplotypes that fall within the hap-
logroup of A. j. jubatus. Genome-wide data for more individuals from 
East and Northeast Africa will be needed to better resolve the sub-
species status in this region, and to better understand the complexi-
ties relating nuclear to mitochondrial DNA patterns in cheetahs.

4.3.2  |  Development of efficient range-wide genetic 
monitoring strategies

We generated genome-wide data for all subspecies, which can func-
tion as a baseline for the development of reduced SNP sets, for ex-
ample, for genotyping using SNP arrays or real-time PCR, enabling 
more cost-effective and large-scale genetic monitoring. We recently 

developed a SNP array for A. j. jubatus to monitor its legal and il-
legal trade (Magliolo et al., 2021). However, this approach was only 
based on individuals from one subspecies. A more generally applica-
ble SNP typing system should include samples from all subspecies. 
We caution that the presented data set should be extended by more 
samples of the two Critically Endangered subspecies, A. j. venaticus 
and A. j. hecki, and of A. j. raineyi to avoid ascertainment bias in the 
selected SNP sets.

4.3.3  |  The potential for genetic monitoring of 
illegal trade of cheetahs

Illegal wildlife trade is a major driver of the current biodiversity loss 
(Maxwell et al.,  2016) and affects a large portion of known plant 
and animal species (Fukushima et al., 2020; Scheffers et al., 2019). 
Northeast Africa is a poaching hotspot for the illegal cheetah pet 
trade, mostly to the Gulf states (Nowell, 2014; Tricorache et al., 2018, 
2021). It is also probably the region with the greatest negative im-
pact of illegal trade on wild populations of cheetahs (Nowell, 2014). 
Individuals are probably transported to the Arabian Peninsula via 
Somalia and Yemen. However, the origins of these animals are poorly 
known. Information from interdictions and interviews with traders 
suggest potential origins from opportunistic collections in ethnic 
Somali regions such as Ethiopia and Kenya (Nowell, 2014; Tricorache 
et al., 2021). Interestingly, as mentioned above, Northeast Africa is 
the contact zone between the two subspecies A. j. soemmeringii and 
A. j. raineyi. Previous studies along with our current findings indicate 
the presence of A. j. soemmeringii in South Sudan, and the northern 
and central parts of Ethiopia and Somalia, and of A. j. raineyi in Kenya, 
Tanzania, Uganda, and the southern parts of Somalia and Ethiopia 
(Charruau et al., 2011; this study). Simple subspecies distinctions for 
illegally traded individuals and products could thus help us to quan-
tify the respective proportion of the two subspecies in the trade, and 
ultimately the importance of different Northeast African countries 
as potential sources of origin. This can then form the basis for tar-
geted programmes to reduce poaching and the illegal wildlife trade 
of cheetahs in those countries. It will also allow evidence-based 
decision-making for the potential release of confiscated animals into 
the wild, including identifying appropriate potential founders for 
subspecies reintroduction attempts into sites where cheetahs are 
currently extinct, such as Nigeria, Uganda and Rwanda. However, 
we caution that this aim might be complicated by possible admixture 
between the two subspecies or incomplete lineage sorting.

4.3.4  |  Environmental change and immunogenetics

Immunocompetence is an important factor for the survival of a spe-
cies in changing environments and is influenced by genetic factors 
such as MHC diversity and the environment in which individuals live 
(Frankham et al.,  2002). For more than two decades, the cheetah 
has been a popular textbook example for a species with low genetic 
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diversity, especially at MHC loci. Depleted immune gene diversity 
was previously supported by the cheetah's ability to accept recipro-
cal skin grafts from unrelated individuals (O'Brien et al., 1983) and 
by restriction fragment length polymorphism (RLFP) analyses of 
MHC class I gene transcripts and class II DRB genes (e.g., O'Brien & 
Yuhki, 1999). However, the findings of low MHC diversity in cheetahs 
has been debated after Castro-Prieto, Wachter & Sommer, (2011) 
and others (e.g., Drake et al., 2004) detected a much higher genetic 
diversity within MHC I loci compared to previous studies, which they 
attributed to a larger sample size in their study (149 cheetahs from 
Namibia; Castro-Prieto, Wachter & Sommer, 2011). However, they 
were not able to find any further MHC II-DRB haplotypes than the 
four previously described in Drake et al. (2004). Our sampling of 46 
individuals, including four of the five classically recognized subspe-
cies, yielded nine MHC II-DRB haplotypes, with one to four different 
alleles found within single individuals, similar to Drake et al. (2004) 
who described two to four alleles per individual. Furthermore, rare-
faction analyses indicate the presence of more, yet unsampled, MHC 
II-DRB alleles in cheetahs. However, in general, cheetahs show MHC 
II-DRB diversities lower than other large felids, such as Bengal tigers 
(four alleles in 16 individuals; Pokorny et al., 2010), Eurasian lynx (16 
alleles in 13 individuals; Wang et al., 2009) and leopards (6 alleles 
in 25 individuals; Castro-Prieto et al., 2011). Interestingly, Namibian 
individuals showed a higher constitutive innate immunity than 
sympatric leopards, which could be interpreted as a compensation 
for the potential lack of immunocompetence in the cheetah adap-
tive immune system due to their lower MHC variability (Heinrich 
et al., 2017). This is consistent with the lack of substantial evidence 
of disease events in southern and east African wild cheetah popula-
tions, which do not display evidence of compromised immunocom-
petence (Castro-Prieto et al., 2011; Schmidt-Kuntzel et al., 2018).

4.3.5  |  Reintroductions of cheetahs in Asia

Several reintroduction strategies have been explored over the last 
years by former cheetah range countries. Frequently, the reasons for 
cheetah reintroductions include conservation of the species as well 
as expanded tourism (Boast et al., 2018). Ranjitsinh and Jhala (2010) 
identified several Indian national parks as potential candidate sites 
for reintroductions, although all would require extensive prepara-
tion and investment before reintroduction could be considered. 
Genetic studies of regionally extinct populations would be needed 
to assess past genetic structure and to assign individuals to subspe-
cies. Unfortunately, our sampling only included two individuals from 
India that were characterized for mtDNA only. While one individual 
clustered with a sample from Chad, the other one clustered with 
individuals assigned to A. j. venaticus (which is the suspected subspe-
cies for cheetahs from India). Furthermore, the two Indian individu-
als in Charruau et al.  (2011) and Rai et al.  (2020) also showed A. j. 
venaticus haplotypes. It is well documented that imports of tamed 
hunting cheetahs from Northeastern (Pocock,  1939) and Eastern 

Africa (Divyabhanusinh, 1999) into India and the Arabian Peninsula 
were a regular occurrence during the European colonial era, which 
could explain the close relationship of one of our samples to an 
individual from Chad. Current proposals for cheetah restoration 
in India (Ranjitsinh & Jhala,  2010) suggest introducing individuals 
from Africa, as the last remaining A. j. venaticus representatives are 
highly threatened with 50–70 individuals left in the wild (Farhadinia 
et al., 2017). A small-scale single-locus mitochondrial genetic analy-
sis (O'Brien et al.,  2017) argued that cheetah subspecies are very 
closely related and that genetic distances between Asian and African 
cheetah subspecies are equal to those within Africa. However, our 
genome-wide data show that differentiation in cheetahs (average 
FST of 0.38 for cheetah subspecies) is similar or even higher than 
that found in other large endangered felids such as tigers (0.11–0.43, 
Liu et al., 2018), lions (0.16–0.28, Smitz et al., 2018) and leopards 
(0.05–0.15, Pečnerová et al., 2021), and indicate a distinct genome-
wide differentiation among the African subspecies and also between 
Asian and African cheetahs, as we found the highest FST values be-
tween A. j. venaticus and all the African subspecies (ranging from 
0.438 to 0.497). Based on our genome-wide data and in the absence 
of detailed information on local and regional adaptation in different 
cheetah subspecies, we advise caution in releasing African cheetahs 
in Asia. We call for more research on the genetic and ecological dif-
ferences between subspecies before resorting to introduction of 
African cheetah subspecies into the historical range of A. j. venaticus.
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