
Multiscale dual-continuum modelling
of deformable porous media

Mark Ashworth

Submitted for the degree of Doctor of Philosophy
Institute of GeoEnergy Engineering

Heriot-Watt University

Thursday 11th February, 2021

The copyright in this thesis is owned by the author. Any quotation from the thesis or use
of any of the information contained in it must acknowledge this thesis as the source of
the quotation or information.



Abstract

Within the geosciences, we are often challenged by how to model the coupling
of physical phenomena across varying space and time scales, as well as between
different phenomena themselves. As a result, we forgo accuracy and physical
consistency/understanding, in favour of efficiency and practicality. To address
these tradeoffs we can use multiscale and multiphysics modelling. In this work,
we are concerned with multiscale behaviours owing to the coupling between
a microscale model and a (macroscopic) dual-continuum model. For the mul-
tiphysics component, we consider the coupling between linear deformation and
flow, referred to as poroelasticity.

Accordingly, the goal of this thesis is to apply multiscale and multiphysics
modelling concepts to the study of strongly heterogeneous (deformable) porous
media, to better understand and represent the links between various scales of
interest. We split this work into three main parts.

Part one investigates the relations between microscopic and dual-continuum
poroelastic constitutive models, including previously introduced phenomenolo-
gical models. To do so, we use micromechanical approaches. Subsequently, start-
ing from the microscale, we derive a fully anisotropic dual-continuum poroelastic
constitutive model using homogenisation. We then show how the resulting model
is related to constitutive models available in literature. For these previously intro-
duced models, we use micromechanical considerations and analytical solutions
to compare and contrast the various modelling concepts used in their deriva-
tion. We also investigate various simplifying assumptions made by past users of
these models. On the basis of our studies we provide recommendations for how
and when to use the various dual-continuum poroelastic constitutive modelling
concepts and simplifications.

Part two introduces a numerical framework for poroelastic dual-continuum
modelling. We subsequently use this framework to further study the links between
microscale and macroscale poroelastic materials. Our numerical framework con-
siders anisotropy and uses a hybrid discretisation suited for the flow and de-
formation subproblems accordingly. We benchmark the resulting framework
against analytical solutions and demonstrate its use on a complex geological
grid. With the framework in-hand we compare and study dual-continuum beha-
viours against microscale representations given various modelling and material
assumptions on the latter. We present a number of tests starting from isotropic
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cases, progressing to more complex anisotropic cases. Our results show that an-
isotropy can have measurable effects on coupled behaviours. However, for the
tests considered, we show the dual-continuum approach is capable of capturing
the global poroelastic behaviours of microscopic representations.

Finally, part three establishes a computational multiscale approach based on
machine learning to improve the accuracy of macroscopic approaches in sub-
surface modelling. Here the idea is to use data-driven modelling as a surrogate
constitutive model within a hierarchical multiscale setting. Accordingly, we de-
tail the framework, describing the key components and considerations therein.
We then apply the framework to the problem of inter-continuum mass trans-
fer, whilst considering an uncoupled (flow only) dual-continuum representation.
We couple the resulting data-driven model to a physics-based model leading to a
hybrid machine learning-physics-based approach. We show the resulting hybrid
method to give high quality results with respect to a microscale model, without
the computational expense of the latter.
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q Volume flux vector
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Σ Mean stress

σ ′,Σ ′ Microscopic and macroscopic effective (Cauchy) stress tensor
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ϑ Macroscopic Eulerian porosity
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1
Introduction

In various fields of science and engineering, mathematical models give us the
ability to develop physical insights and make predictions about behaviours bey-
ond our observations. For example, the role of modelling plays a critical part
in informing high cost, high risk subsurface activities such as geological stor-
age, contaminant transport, and energy and groundwater extraction. However,
choosing the ‘best’1 model for a given task is nontrivial, particularly when faced
with a number of complex interdependent processes.

In the subsurface, strong heterogeneities exist within the rock fabric, as well
as between the solids and saturating fluids. Subsequently, contrasts in mater-
ial properties lead to strong couplings across space and time scales (multiscale
phenomena), and between different physics (multiphysics phenomena). Given
multiscale, multiphysics effects we now have a modelling dilemma: How com-
plex can we afford, and do we need, our models to be? Depending on resources
and requirements, modelling at the heterogeneity scale (microscale) may be in-
tractable or provide more information than necessary. One possible solution is
to use coarser (macroscale) models that consider an aggregation of physics over
the microscale. Now, two important questions are: How do we encode micro-
scale information that we do not directly model at the macroscale? And, how do
assumptions at the microscale affect what we observe at the macroscale?

The latter questions above form recurring themes in this thesis. Subsequently,
our objective in this dissertation is to investigate these questions within the con-
text of strongly heterogenous porous media, with and without multiphysics
behaviours. At the macroscale we use an implicit macroscopic modelling ap-
proach referred to as a dual-continuum model. In this paradigm we account for
strong differences in timescale behaviour between two different characteristic
porosity levels. For the multiphysics component, we are interested in the interac-
tions between flow and linear deformation, referred to as poroelasticity within
literature (e.g. Coussy 2004). In both cases, we endeavour to increase our un-

1Following Brooks and Tobias (1996), we refer to ‘best’ as a model that manages the trade-off
between accuracy, complexity and efficiency.

1



derstanding of the links between microscopic and macroscopic representations
using a range of modelling tools. Further, we wish to investigate new techniques
in which we can pass information between scales.

For the remainder of this chapter we detail the topics and ideas explored in
this work, finishing with the contributions and outline of this thesis.

1.1 Dual-continuum models

Geological materials exhibit strong heterogeneities in material properties over
local and regional scales due to a variety of rock forming and altering processes
(Geiger et al. 2004). Classic examples of such materials within the subsurface are
naturally fractured rocks and aggregated soils (Nelson 2001; Gerke 2006; Borja
and Koliji 2009; Adler et al. 2013). Perhaps the most intuitive approach to model-
ling these materials is to model them at the scale of the heterogeneity. So called
explicit methods (Fig. 1.1), benefit from capturing high degrees of detail (Karimi-
Fard et al. 2003), which can be important for costly decision making. However,
over large scales such models are resource intensive, both from computational
and data points of view, as well as being difficult to interpret and calibrate
(Berkowitz 2002). To alleviate these challenges, we can reduce modelling com-
plexity by replacing our heterogeneous microscale model with an ’equivalent’
homogeneous macroscopic model. These latter type models are often referred to
as implicit models (Berre et al. 2019) (Fig. 1.1).

lowhigh

Accuracy, theoretical basis and resources

Interpretability and verifiability

Single-continuumDual-continuumExplicit (microscopic)

Implicit (macroscopic)

highlow

Figure 1.1: Modelling scales and approaches.

A natural starting point for replacing our heterogeneous material would be to
use a single equivalent medium (Fig. 1.1). In this case, microscopic field variables
and properties are replaced with effective equivalents at the macroscale. From a
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theoretical point of view, adopting a continuum perspective over the microscale
requires length scales over which material statistics and the wavelengths of phys-
ical processes remain stable (Hill 1963; Auriault 2002; Geers et al. 2010). However,
in the case of fractured materials, identification of such scales is strongly debated
due to the absence of characteristic length scales in fracture growth processes
(Bonnet et al. 2001). Nevertheless, despite difficulties in identifying character-
istic length scales, from a practical point of view it is often desirable to enable
at least some form of effective description when modelling (Berkowitz 2002).
Finally, single-continuum models can be inappropriate in cases where strong
differences in timescale behaviour exist between different heterogeneity levels.
As a result, these models tend to oversimplify the physics causing measurable
inaccuracies (Lewandowska et al. 2004; Samardzioska and Popov 2005).

Multi-continuum models combat the disadvantage of single-continuum mod-
els described above, by modelling effective representations of the heterogeneities
as distinct continua that overlap in space and time. Depending on the level of
complexity required we are not restricted by the number of overlapping continua
we can model (Pruess et al. 1985). However, the simplest and most common
approach is to consider two interacting continua, leading to the so called dual-
continuum (DC) model (Barenblatt et al. 1960; Warren and Root 1963) (Fig. 1.1).

In the dual-continuum paradigm one continuum typically represents a high
storage, low permeability material (e.g. matrix). The other then represents a
low storage, high permeability material (e.g. fractures). Depending on the dual-
continuum model formulation, macroscopic communication across the storage
material is either neglected (dual-porosity) or permitted (dual-permeability). Be-
sides descriptions of intra-continuum communication, the other fundamental in-
gredient to the DC model is inter-continuum communication.

In flow modelling, inter-continuum communication concerns mass transfer
between the two materials. Inter-continuum mass transfer is an area of much
interest within the DC literature (e.g. Zimmerman et al. 1993; Lim and Aziz
1995; Haggerty and Gorelick 1995; Geiger et al. 2013). Here the challenge comes
from the hysteretic dependence of the transfer model. As a result, the model is
described as a convolution product over previous time levels leading to explicit
time dependence (Royer et al. 1996). However, these complicated explicit time
formulations are unsuitable for numerical modelling (Lim and Aziz 1995; Royer
et al. 1996). Subsequently, it is common to remove explicit time by modelling
the mass transfer as a linear function of the two continuum pressures (Baren-
blatt et al. 1960; Warren and Root 1963; Gerke and Van Genuchten 1993; Lim
and Aziz 1995). The cost of this simplification is the introduction of errors in
DC flow behaviour due to neglecting higher order transient terms at early time
(Zimmerman et al. 1993).
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On the basis of the above we identify two main challenges with the implicit
modelling approach. The first is the identification, or lack, of suitable length
scales over which an implicit approach can be justified. The second is formulat-
ing relations between macroscopic quantities, such as for inter-continuum mass
transfer. In this work we align ourselves with the latter problem due to its com-
monality with the main themes of this thesis. We explore the details of this type
of challenge in the following section of this chapter.

1.2 Multiscale modelling

Multiscale modelling encompasses a range of methods using multiple models
simultaneously to describe scale dependent phenomena. Practically, there are
two important situations when such an approach may be useful: First, in the
presence of singularities, or in regions with high macroscopic gradients, there is
a lack of scale separation in terms of the physical processes involved (Kouznet-
sova et al. 2004). Consequently, the two scales are strongly coupled and we need
to use different scales, or methodologies, within different parts of our domain
(Fish 2006). These types of problems are referred to as concurrent multiscale prob-
lems (Matouš et al. 2017). Alternatively, in regions where scales are not strongly
coupled, coarser representations can be justified. However, and concerning the
second situation, we may require microscale models to supplement missing con-
stitutive information at the macroscale. Addressing this problem is the goal of
micromechanics (Hashin 1983), where bridging between the micro and macro-
scales is then referred to as homogenisation (Babuška 1976). Accordingly, in this
thesis we align ourselves with this latter, hierarchical multiscale modelling prob-
lem.

The hierarchical micromechanical problem described above can be addressed
using analytical and/or computational approaches. With respect to the former,
the earliest attempts to describe the effective macroscopic properties of micro-
scopically heterogeneous materials came using the mixture rules provided by
Voigt (1887, 1928) and Reuss (1929). These rules were developed whilst consid-
ering composite materials. Important developments with regards to composite
material modelling then came from Eshelby (1957), who gave the solution to an
elastic inclusion problem. A common theme held by Eshelby (1957) and others
working around the same time-period, was a continuum description at the mi-
croscale. Subsequently, ‘continuum micromechanics’ was formally introduced by
Hill (1965). Further analytical results and methods within this field were intro-
duced by Hashin and Shtrikman (1963) and Hill (1963) (variational bounds), Bu-
diansky (1965) and Hill (1965) (the self-consistent scheme), and Mori and Tanaka
(1973) (mean-field homogenisation scheme) among others. We can group the ana-
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lytical approaches, such as those just mentioned, under the term micromechanical
analysis.

Computational approaches to multiscale modelling can be categorised accord-
ing to their algorithmic basis. Following Matouš et al. (2017), these are parallel
and sequential methods. In parallel methods, both scales are solved in a mono-
lithic way. Alternatively, in sequential methods each scale is solved separately
and information is passed between the scales. For example, information coming
from the microscale could be precomputed offline and then called as needed in
the macroscopic model. Nested finite-element methods (e.g. Feyel 1999; Kouznet-
sova et al. 2001), are a popular computational multiscale method that lie some-
where between parallel and sequential methods. In these approaches, micro-
scopic boundary value problems are nested within points in the macroscopic
domain, with the solution of the former providing information for the latter. In
this sense, these methods are sequential. However, their solution is rather paral-
lel in that equilibrium between both scales is established simultaneously through
macro-micro and micro-macro compatibility conditions (Geers et al. 2017). Des-
pite the effectiveness of these nested approaches, they can be computationally
prohibitively to run at large scales, as well as producing significant amounts of
data which needs to be stored and processed (Wang and Sun 2018). As a result,
sequential methods remain popular (Stephenson et al. 2018).

Historically, sequential methods have involved the use of precomputed look-
up tables (Weinan 2011). Interpolation schemes between points in these tables
are then used when called by the macroscopic model. In this context, we can
think of the look-up table and corresponding interpolation as a mapping linking
various macroscopic fields. This mapping represents a surrogate constitutive model
of input-output behaviour. More generally, surrogate modelling is the approxim-
ation of some unknown expensive-to-run function by one that is computationally
cheaper-to-run (Razavi et al. 2012). Whilst the look-up table surrogate model is
straightforward to understand, we lack a closed-form expression for the map-
ping. Accordingly, we acquire little knowledge about the function, the quality
of our dataset and how well we may generalise to samples not included in the
look-up table. An alternative to the look-up table approach is to somehow learn
a surrogate model given our input-output data and other possible information.
Learning such mappings is one of the fundamental goals of machine learning.

Machine learning (ML), or data-driven modelling, encompasses a range of al-
gorithms that revise and update themselves from data in order to extract pat-
terns, approximate functions or make sequential decisions. In the context of
multiscale modelling ML is recieving increasing attention (Alber et al. 2019; Peng
et al. 2020), with applications beyond the hierarchical multiscale scenario con-
sidered here. However, within the current context, ML methods form a natural
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approach to sequential modelling of hierarchical multiscale problems. Indeed,
these methods have been used to capture constitutive behaviour in multiscale
settings in Wang and Sun (2018), Stephenson et al. (2018), Lu et al. (2019) and
Ghavamian and Simone (2019) to name but a few. Given the surge in uptake of
these approaches, it is interesting to further explore and develop their use in the
multiscale setting considered in this work.

Lastly, with the increase in computing power, recent efforts into multiscale
modelling have largely focused on computational developments (Weinan 2011).
However, micromechanical analysis still remains useful for providing insight
into multiscale behaviours and simplified models, as well as guidelines for the
design of numerical procedures (Weinan 2011). Accordingly, in this thesis we
consider both analytical and computational approaches to hierarchical multiscale
modelling problems. For the latter, we are interested in data-driven approaches,
with the focus being on the method rather than the application. For the former,
we are interested in micromechanical analysis with applications to coupled flow
and deformation processes in DC materials. This coupling, in the context of
linear deformation, is referred to as poroelasticity and is explored in the next
section.

1.3 Poroelasticity

Poroelasticity describes the coupling between fluid flow and linear deforma-
tion. Originally formulated by Biot (1941) on phenomenological grounds, this
constitutive theory has since been supported through thermodynamical argu-
ments (Biot and Temple 1972; Coussy 1995, 2004), theory of mixtures approaches
(Bowen 1982; De Boer 2006) and homogenisation approaches (Burridge and
Keller 1981; Chateau and Dormieux 2002; Dormieux et al. 2006) to name but a
few. In its more common mixed compliance setting, the poroelastic constitutive
theory relates a linear strain tensor and fluid pressure to the (Cauchy) stress
tensor and porosity variation (Coussy 2004).

Within the context of dual-continua, the notion of flow and deformation coup-
ling was first introduced by Aifantis (1977, 1979) and Wilson and Aifantis (1982).
Later offerings then came from Elsworth and Bai (1992), Lewis and Ghafouri
(1997) and Bai et al. (1999). However, the constitutive models presented in these
works all made an implicit decoupling assumption within the DC poroelastic
model. Specifically, the authors neglected the cross coupling effects of pressure
changes in one continuum and porosity changes in the other continuum. The
absence of these couplings was shown by Khalili (2003) to give nonphysical pres-
sure responses for a uniaxial drainage problem. Specifically, the authors showed
discontinuities in matrix and fracture pressures that were inconsistent with the
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coupled response one would expect for the isotropic material geometry con-
sidered therein. The link between the observations made by Khalili (2003) and
the role of pressure cross coupling still remains an open question. One goal of
this work is to investigate this link in further detail.

Phenomenological models rectifying the decoupling deficiency mentioned above
were introduced by Berryman and Wang (1995), Khalili and Valliappan (1996),
Loret and Rizzi (1999), Berryman (2002) and Berryman and Pride (2002). These
‘fully coupled’ models differ in how the constitutive parameters of the DC poroelastic
model are calculated. For example the models of Berryman and Wang (1995),
Khalili and Valliappan (1996), Loret and Rizzi (1999) implicitly assume the trans-
port phase to be all void space. In contrast, the models by Berryman (2002) and
Berryman and Pride (2002) allow the same continuum to have an intrinsic stiff-
ness.

The constitutive models introduced thus far formulate expressions for con-
stitutive coefficients in terms of microscopic mechanical properties of the materi-
als involved. Instead, Borja and Koliji (2009) and Choo and Borja (2015) use very
different information: Based on thermodynamic arguments the authors derive a
constitutive expression for stress, with relations for the constitutive coefficients
formulated in terms of volume fractions. However, the authors stop short at de-
riving explicit constitutive expressions for continuum pore fraction (or porosity)
variations. It is not quite clear what the lack of closure for these latter quant-
ities will be on DC poroelastic behaviours. Considering the variety of models
and modelling assumptions, it is interesting to compare how these different
modelling concepts affect the overall macroscopic response of a poroelastic dual-
material. Further, we would like to investigate possible links between the volume
fraction based constitutive models and those based on intrinsic material proper-
ties.

Answers to structure-property relations, such as those posed above, can be
investigated with the aid of micromechanics. Using this framework, Dormieux
et al. (2006) derived a fully anisotropic poroelastic dual-continuum model com-
plete with expressions for the constitutive parameters. By starting from the mi-
croscale we can see directly how assumptions at this scale manifest in the result-
ing macroscopic model. It is interesting to compare the constitutive models men-
tioned earlier in this section to one derived following the rigour of micromech-
anics.

Finally, the micromechanics framework provides a natural guide for testing
the macroscopic poroelastic DC model against microscale equivalents. Work has
gone into testing and validating the DC concept for the flow problem (e.g. Le-
wandowska et al. 2004; Egya et al. 2019). However, little has been done to asses
validity of the poroelastically coupled DC approach. In particular it is interest-
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ing to study the DC models in light of microscopically induced effects. In this
work we consider anisotropy as one such effect in order to keep within the linear
framework of (linear) poroelasticity. A natural approach to carry out these tests
is to use numerical modelling. This requirement motivates, in part, the numer-
ical framework introduced in this work. Our other motivation is to introduce a
framework aligned with the traditional modelling approaches for the flow and
deformation subproblems, as well as one equipped to handle the complex grid
geometries encountered when modelling the subsurface.

1.4 Contributions and thesis outline

Given the themes described above, our goal of this work is to better under-
stand and represent the links between microscale and macroscale models, within
the context of strongly heterogenous porous media, considering poroelastically
coupled and uncoupled representations. We address this goal by focusing on
three main tasks:

1. Investigate the relations between microscale and dual-continuum poroelastic
consitutive models, including previously introduced phenomogelogical mod-
els, using micromechanical approaches.

2. Introduce a numerical framework for dual-continuum poroelastic model-
ling. Use the resulting framework to further study the links between dif-
ferent modelling scales given various modelling and material assumptions
made at the microscale.

3. Establish a machine learning-based multiscale modelling approach to im-
prove the accuracy of macroscopic models. Apply the resulting framework
to the modelling of inter-continuum mass transfer.

Subsequently, the main contributions of this thesis are:

• Derive a DC poroelastic constitutive model starting from the microscale
using homogenisation. Show how previous constitutive models introduced
in literature are special cases of the anisotropic one derived here.

• Compare and contrast different DC poroelastic constitutive model formula-
tions introduced previously in literature, as well as assumptions made on
these models, using micromechanical arguments and analytical solutions.

• Present a numerical framework for modelling poroelastic dual-continua
aligned with traditional approaches for flow and deformation, that is also
suitable for the complex grids encountered in the subsurface.
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• Using the numerical framework, validate the poroelastic DC model against
microscale models for varying degrees of material symmetry. Subsequently,
compare and study the impacts of microscale modelling assumptions on
macroscopic behaviours.

• Present a machine learning-based framework for multiscale constitutive
modelling. In doing, describe the key elements and considerations of the
framework.

• Demonstrate the potential of the multiscale modelling approach on the
problem of inter-continuum mass transfer in a DC material (without mul-
tiphysics behaviours).

We structure this thesis into three parts (Fig. 1.2), aligned with the tasks de-
scribed above:

Explicit Dual-continuum

Part II

Numerical

Part I

Micromechanical
analysis

Part III

Data-driven modelling

modelling

Microscopic
Macroscopic

Figure 1.2: Thesis structure.

Part I investigates the link between microscopic and macroscopic poroelastic
constitutive models using micromechanical analysis. In Chapter 2, we introduce
the macroscopic equations describing dual-continuum materials, starting with
the mass and momentum balance equations. Subsequently, we identify quantit-
ies needing closure by way of constitutive relations. To provide the poroelastic
constitutive model we use a homogenisation approach, introducing the key mi-
cromechanical modelling concepts therein. In Chapter 3, we contrast and com-
pare previously introduced poroelastic constitutive models. Further, we investig-
ate previously made decoupling assumptions made on these models. To conduct
our analyses of various modelling approaches and decoupling assumptions we
use micromechanical perspectives and analytical solutions to a poroelastic model
problem. On the basis of these analyses we formulate a set of recommendations
for how and when to use various modelling approaches and decoupling assump-
tions.

Part II involves the numerical modelling of poroelastic dual-continua. Accord-
ingly, in Chapter 4 we introduce a numerical framework suitable for subsurface
modelling. Our framework also allows for anisotropic material properties based
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on the constitutive model derived in Chapter 2. We demonstrate the framework
on a geological grid that includes non-neighbouring connections. In Chapter 5,
we use the resulting framework to test the poroelastic dual-continuum approach
against a variety of microscale equivalent representations. Our tests vary in com-
plexity, starting with isotropic test cases and progressing to anisotropic test cases.
We compare the results between the two modelling scales, studying the effects at
the macroscale of modelling and material assumptions made at the microscale.

Part III is dedicated to data-driven multiscale modelling. We introduce the
machine learning-based multiscale constitutive modelling framework and de-
tails of the key components therein. With the framework in-hand we apply it to
the problem of inter-continuum mass transfer in the remainder of Chapter 6. We
introduce and compare various machine learning methods used to model the
time-dependent transfer behaviour. To follow, we show how we inject the result-
ing surrogate model into a dual-continuum simulator. Lastly, we compare the
resulting hybrid machine learning-physics modelling approach to a microscale
model, and to a dual-continuum model using the linear transfer approximation,
on several numerical test cases.

Finally, to keep notation brief for the remainder of this thesis, we refer to the
low permeability storage continuum as the matrix continuum, and the low stor-
age, high permeability transport continuum as the fracture continuum. However,
the work herein is sufficiently general that other multiscale materials can be
considered e.g. soil aggregates.
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2
Mathematical model: From micro
to macro

In this chapter, we present the mathematical model for poroelastic dual-continuum ma-
terials including the derivation of an appropriate constitutive model through homogen-
isation. The latter is a novel addition to the literature for which we incorporate aniso-
tropy and intrinsic fracture stiffness properties within the constitutive formulation. In
Section 2.1, we start by introducing the representative elementary volume (REV), which
serves as the building block for the (macroscopic) continuum approach. In Section 2.2, we
give the continuity equations that govern the transport of mass and momentum between
elementary volumes. To finish Section 2.2 we provide the constitutive relations neces-
sary for a closed mathematical model. Specifically, we provide closure relations for the
(uncoupled) DC flow model, and then highlight the need for the poroelastic constitutive
model in the coupled case. To derive the latter we use a micromechanical-based homo-
genisation approach. Subsequently, in Section 2.3 we go over the key ingredients of the
micromechanical approach. Then, in Section 2.4, using concepts introduced Section 2.3,
we derive the poroelastic constitutive model. In Section 2.5 we show the relations and
conditions linking the dual-continuum and single-continuum constitutive models. Fi-
nally, in Section 2.6 we summarise this chapter and provide recommendations for future
work. The contents of this chapter are based on work done in Ashworth and Doster
(2019b) and Ashworth and Doster (2020).

2.1 The representative elementary volume

In the continuum approach we model transport phenomena (e.g. mass, energy)
as continuous processes, despite potential discontinuities at a microscopic scale.
Subsequently, we assume infinitesimal volumes (with respect to a macroscopic
body size) over which we can replace heterogeneous property fields with hy-
pothetical homogeneous ones (Fig. 2.1). To start, an elementary volume Ω is
defined such that effective properties (e.g. porosity) over the domain remain
stable given small perturbations in volume size (Bear and Bachmat 1991). At
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this point, we refer to the elementary volume as a representative elementary
volume (REV) (Bear and Bachmat 1991). More formally, we can define the scale
requirements for an REV according to the separation of scales principle (Bear
and Bachmat 1991),

`� l� L. (2.1)

where `, l and L denote the characteristic lengths at the local heterogeneity, REV
and macroscopic body scales respectively. Despite the geometrical arguments
presented above for the definition of an REV (Fig. 2.1), Eq. (2.1) must also hold
for the wavelengths of the physical processes involved (Auriault 2002; Geers et al.
2010). As a result, discontinuous processes such as shocks or localisations pre-
clude the described continuum approach (Kouznetsova et al. 2004). Although the
description of an REV presented here is brief, numerous literature exist detailing
the finer points of REV definition (e.g. Bear and Bachmat 1991; Ostoja-Starzewski
2006).

homogenisation

matrix continuum

fracture continuum

matrix fracture

`

l

L

γf

γm

REV

MB

DC

Figure 2.1: Identification of an REV over the microscopic scale from a large macroscopic
body (MB). The REV is used to define the macroscopic dual-continuum (DC)
model in which matrix (m) and fracture continua (f) are superposed in space
and time. Inter-continuum mass exchange is described by the transfer term
γα [α = m, f]. Notations `, l and L denote characteristic lengths of local
heterogeneities, the REV and the macroscopic structure respectively.
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Lastly, assigning an REV over fractured media is a subject of much debate
due to the challenge of establishing criteria for scale separation (Long et al. 1982;
Neuman 1988; Min and Jing 2003; Berre et al. 2019). In this thesis, however, we
suppose a material for which an REV can be defined, such as densely fractured
rock masses (Berkowitz 2002).

2.2 Model equations

In the following, we present the mathematical model for a dual-continuum with
and without poroelasticity. As part of the DC approach we assume two-continua
which overlap in space and time and communicate through a mass exchange
term (Barenblatt et al. 1960). To start we introduce the balance equations that
describe the (continuous) variations of mass and momentum within space and
time. With respect to deformation, we operate under assumptions of small dis-
placements (|U/L| � 1) and infinitesimal transformations (|∇U| � 1), where
U is the macroscopic displacement vector. As a result, we make no distinction
between Eulerian and Lagrangian frames. We then give the constitutive equa-
tions necessary to provide a closed mathematical model. First, we provide the
constitutive equations for an uncoupled dual-continuum model (flow only). This
model will form the basis of the work done in Chapter 6. Second, we identify the
quantities in need of closure in the coupled case, addressed in the subsequent
sections of this chapter. Lastly, notation for the vector and tensor operations used
herein can be found in the corresponding subsection within Notation.

2.2.1 Mass balance

Following Coussy (2004) the balance of mass for a dual-continuum material is
given as

∂ml,m

∂t
+∇ ·wm = γm, (2.2)

∂ml,f

∂t
+∇ ·wf = γf, (2.3)

where ml,α [α = m, f],wα and γα are the fluid mass content, mass flux and inter-
continuum mass transfer rate associated with continuum α respectively. The
fluid mass content is given by ml,α = ρlφα, where ρl and φα are the intrinsic
fluid density and the Lagrangian porosity for continuum α respectively. The
latter is defined as the ratio of the continuum pore volume |Ω

p
α|, to the bulk

volume of the undeformed configuration |Ω0|, where superscript 0 denotes the
reference state. Finally, owing to continuity γf = −γm.
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Eqs. (2.2) to (2.3) are the starting blocks for the uncoupled (flow-only) DC
model. However, when considering poroelasticity we also need to consider the
balance of momentum.

2.2.2 Momentum balance

We present the momentum continuity under quasistatic loadings such that (Coussy
2004),

∇ ·Σ+ ρg = γ ′, (2.4)

where Σ, ρ and g are the macroscopic (Cauchy) stress tensor, bulk density of
the dual-material and the gravitational acceleration respectively. Notation γ ′ is
a momentum source arising from the inter-continuum mass transfer (Coussy
2004). Accordingly, γ ′ is given as

γ ′ =
∑
α=m,f

γαvl,α, (2.5)

where vl,α is the absolute fluid velocity within each continuum. For the re-
mainder of this thesis, however, we assume γ ′ ≈ 0, with respect to the other
force density terms in Eq. (2.4). Further, we also neglect the effects of gravity g.

2.2.3 Constitutive equations

To close Eqs. (2.2) to (2.4) we require constitutive equations that allow us to
express the continuity equations in terms of continuum pressures Pα [α = m, f],
and when considering poroelasticity, U. In both the uncoupled and coupled case,
the intra-continuum mass flux is given according to Darcy’s law

wα = ρlqα = −ρl
Kα
µl
· (∇Pα − ρlg), (2.6)

where qα and Kα are the volume flux vector and macroscopic permeability tensor
for continuum α respectively. Notation µl is the fluid viscosity. Further, we re-
quire a constitutive law for γα. Note, despite neglecting the effects of gravity
in the remainder, we include it in Darcy’s law Eq. (2.6), purely as a means of
notational completeness.

For Chapters 3 to 5 we consider a simple linear transfer model of the form
(Warren and Root 1963),

γα = ρl
κk ′
µl

(Pβ − Pα), (2.7)
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where β denotes a continuum such that β 6= α. Notation k ′ denotes the interface
permeability, taken here as the intrinsic matrix permeability (Barenblatt et al.
1960; Choo and Borja 2015). Parameter κ is referred to as the shape factor (War-
ren and Root 1963). As the name suggests, κ encodes the geometrical inform-
ation of the matrix blocks that interact with the fracture phase. For simplified
geometries and boundary conditions κ can be determined analytically. In this
work we make use of such simplifying assumptions. Accordingly, for square and
cube geometries of isotropic matrix material, we use an analytically derived κ
given according to Lim and Aziz (1995),

κ =
Nfπ

2

`2
, (2.8)

where Nf is a dimension parameter related to the number of fracture sets, and `
is the characteristic spacing length for the fracture continuum (Fig. 2.1). The first-
order nature of Eq. (2.7) is known to oversimplify the physics of inter-continuum
mass transfer, particularly at early times (Zimmerman et al. 1993). Rectifying this
deficiency is one of the aims in Chapter 6. However, prior to this chapter we ac-
knowledge this simplification with the focus being on multiphysics behaviours.
Given expressions forwα and γα, we still require expressions for ρl and φα from
ml,α = ρlφα. For both coupled and uncoupled cases we consider isothermal fluid
flow. Consequently, the following fluid compressibility relation holds

1

Kl
=
1

ρl

∂ρl
∂Pα

, (2.9)

where Kl is the fluid bulk modulus. If the fluid is only slightly compressible
(high Kl), we only consider small pertubations in ρl (dρl/ρ0l � 1), allowing for
the following linearisation

ρl = ρ
0
l

[
1+K−1

l

(
Pα − P

0
α

)]
. (2.10)

We note, notation dρl refers to the variation of a quantity, in this case ρl, from
a reference state ρ0l . Under linearity this reference state is taken to be the initial
state.

For the remainder of this thesis, unless mentioned otherwise, we assume small
perturbations in fluid density, allowing us to use ρl ≈ ρ0l where necessary.
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2.2.4 Uncoupled

In the uncoupled case we consider only the mass balance equations Eqs. (2.2)
to (2.3). Accordingly, we require a constitutive model for φα and define the fol-
lowing compressibility relation

1

Kφ,α
=

1

φα

∂φα

∂Pα
(2.11)

where Kφ,α is the pore modulus for continuum α. Considering small pertuba-
tions in φα (dφα/φ0α � 1) leads to the following linearisation

φα = φ0α

[
1+K−1

φ,α

(
Pα − P

0
α

)]
, (2.12)

For the remainder of this thesis, unless mentioned otherwise, we assume small
perturbations in porosity, allowing us to use φα ≈ φ0α where necessary.

Finally, whilst simple, Eq. (2.12) neglects the potentially significant effect of
deformation on pore pressure and vice versa (Zimmerman 2000). However, a
good starting point to address this deficiency is the framework of poroelasticity
(Biot 1941).

2.2.5 Coupled

In the coupled case we also consider the momentum balance equation Eq. (2.4).
Accordingly, we need constitutive equations for Σ and for quantities associated
with the fluid. For the latter, we first consider variations in the fluid occupied
pore space by way of changes in Lagrangian porosity. Then, we extend these
formulations to account for variations in fluid mass.

Variation in Lagrangian porosity formulation

Here we provide the relations between Σ, φm and φf in terms of E (respectively
U), Pm and Pf, where E is the linearised macroscopic strain tensor. The link
between these quantities can be verified by the energy approach to poroelasticity.
We can show from a purely macroscopic approach (Coussy 2004; Section 4.1, pg.
72), that the increment in strain work density dWs on the skeleton due to the
strain triplet (dE, dφm, dφf) can be expressed as

dWs = ΣdE+ Pmdφm + Pfdφf. (2.13)

17



Due to elasticity, our system is non-dissipative and thus the skeletal strain energy
is stored entirely as an elastic potential

dWs = dHs, (2.14)

where Hs denotes the Helmholtz free energy of the skeleton, and from which it
follows

ΣdE+ Pmdφm + Pfdφf − dHs = 0. (2.15)

Eq. (2.15) is a trivial extension of the skeleton free energy expression for single-
porosity materials, and is indeed analogous (and identical) to the expression
for the multiphase fluid single-porosity poroelastic problem (e.g. Coussy 2004).
Now introducing the following Legendre transform

Fs = Hs − Pm(φm −φ0m) − Pf(φf −φ
0
f), (2.16)

where Fs is a potential energy of the skeleton. Substitution of Eq. (2.16) into
Eq. (2.15) results in

ΣdE− (φm −φ0m)dPm − (φf −φ
0
f)dPf − dFs = 0. (2.17)

From Eq. (2.17) we arrive at the following state equations

Fs = Fs(E,Pm,Pf) : Σ =
∂Fs
∂E

; φm−φ0m = −
∂Fs
∂Pm

; φf−φ
0
f = −

∂Fs
∂Pf

. (2.18)

Applying Eq. (2.18) to Eq. (2.17), and making use of the Maxwell symmetry
relations which arise naturally from Eq. (2.18) (Appendix A), leads to

dΣ = C∗ : dE−BmdPm −BfdPf, (2.19)

dφm = Bm : dE+
dPm

Nm
+
dPf
Qm

, (2.20)

dφf = Bf : dE+
dPm

Qf
+
dPf
Nf

, (2.21)

The parameters C∗, Bα, N−1
α and Q−1

α are referred to as tangent properties
(Coussy 2004). Parameter C∗ is the (homogenised) stiffness tensor for the dual-
medium, whilst Bα, N−1

α and Q−1
α are the effective Biot coefficient, effective Biot

modulus and poroelastic cross-coupling modulus for continuum α respectively.
Finally, we note that within poroelasticity literature it is common to refer to the
quantity C∗ : E as the effective stress Σ ′ = C∗ : E (Bishop 1959; Nur and Byerlee
1971; Borja 2006). We can further simplify Eqs. (2.19) to (2.21) by first invoking
integration on the variations, under the assumptions of linearity from reference
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conditions. Further, we assume the tangent properties remain constant. Accord-
ingly, given the linearity, our reference state corresponds to the initial state, for
which we assume the initial stress, strain and continuum pressures are zero,
leading to

Σ = C∗ : E−BmPm −BfPf, (2.22)

dφm = Bm : E+
Pm

Nm
+
Pf
Qm

, (2.23)

dφf = Bf : E+
Pm

Qf
+
Pf
Nf

, (2.24)

We make the distinction between Eqs. (2.19) to (2.21) and Eqs. (2.22) to (2.24)
as for the most part in this thesis, we assume problems for which the reference
state is as described in formulating Eqs. (2.22) to (2.24). However, the variation
formulation shown in Eqs. (2.19) to (2.21) will be useful for the developments in
Chapter 3.

Variation in fluid mass content formulation

An alternative formulation to Eqs. (2.20) to (2.21) (resp. Eqs. (2.23) to (2.24))
involves variations in continuum fluid mass. Accordingly, the definition for the
variation in fluid mass content is (Dormieux et al. 2006),

dml,α = ρlφα − ρ
0
lφ

0
α. (2.25)

Using the small perturbation in fluid density assumption introduced in Sec-
tion 2.3.2 ensures linearity of the constitutive relations. As a result, we express
Eq. (2.25) as

dml,α

ρ0l
= dφα +φ

0
α

dρl

ρ0l
. (2.26)

Introducing the following notation ξα = ml,α/ρ
0
l , in which ξα denotes the fluid

volume content for continuum α, and making use of Eq. (2.10) gives

dξα = dφα +
φ0α
Kl

. (2.27)

Finally, substituting Eqs. (2.20) to (2.21) into Eq. (2.27), for each continuum, gives

dξm = Bm : dE+
dPm

Mm
+
dPf
Qm

, (2.28)

dξf = Bf : sE+
dPm

Qf
+
dPf
Mf

, (2.29)
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where

1

Mα
=

1

Nα
+
φ0α
Kl

. (2.30)

Eqs. (2.28) to (2.29) will be useful for the analyses conducted in Chapter 3.
In the remainder of this chapter, we see how the constitutive model in Eqs. (2.22)

to (2.24), and expressions for the constitutive parameters in terms of constituent
information, can be directly obtained from the microscale. To do so we use ho-
mogenisation.

2.3 Micromechanical preliminaries

To start, we present the key ingredients that enable the homogenisation ap-
proach used here. In this work we consider homogenisation to refer to meth-
odologies leading to an effective (homogeneous) macroscopic description of a
material characterised by a heterogeneous microstructure. Accordingly, we intro-
duce the averaging operation required by the homogenisation procedure used
herein. With this operation in-hand, we provide the links between microscopic
and macroscopic quantities, introducing important relations that will be used
for deriving the constitutive model.

2.3.1 Volume averaging

Typical approaches for averaging include the volume average, moving average
and the ensemble average (Beran 1971; Hashin 1983; Bear and Bachmat 1991;
Nemat-Nasser and Hori 1993). The first is a spatially independent average taken
over a (sub)volume element from a large macroscopic body. The second defines
averages taken on a fixed specimen over elementary volumes at different points
within the body. The third is a statistical treatment representing the average
taken at fixed points across an ensemble of bodies.

To reconcile these different averaging operations we introduce the concept
of statistical homogeneity. This assumption states that the statistics describing
the distributions of heterogeneities across any number of REVs are spatially
invariant (Hashin 1972). Consequently, the volume average and moving average
coincide (Nemat-Nasser and Hori 1993). Further, by the definition of an REV in a
statistically homogeneous body, averages over the REV itself approach averages
taken over the whole body (Hashin 1972). Finally, statistical homogeneity lets
us define an ergodic hypothesis between the moving average and the ensemble
average. Accordingly, the ensemble average coincides with the ensemble average
over the body, or the volume average over an REV (Hashin 1972).
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Following the arguments above, in this work we assume statistically homogen-
eous materials and define the classical volume averaging expression

z =
1

|Ω|

∫
Ω
z(x) dV , (2.31)

where z is an arbitrary field quantity.

2.3.2 Strain and stress average theorems

In the following, we provide the links between the microscopic linearised strain
tensor ε and (Cauchy) stress tensor σ, and their macroscopic counterparts E
and Σ respectively. To do so we make use of the averaging operation described
above.

Substituting ε and σ into Eq. (2.31) gives

ε =
1

|Ω|

∫
Ω
ε(x) dV , (2.32)

σ =
1

|Ω|

∫
Ω
σ(x) dV . (2.33)

Further, we can express the average quantities shown in Eqs. (2.32) to (2.33) in
terms of intrinsic averages. Specifically, these are volume averages considered
over one of the constituent domains Ωα ⊂ Ω, as oppose to the whole domain Ω.
Assuming a perfectly bonded two phase material we write

ε = v1ε1 + v2ε2, (2.34)

σ = v1σ1 + v2σ2, (2.35)

where subscripts 1 and 2 are just arbitrary notations for denoting two distinct
phases or constituents. Notation vα denotes the volume fraction, given as the
ratio of the undeformed constituent volume |Ω0α| to |Ω0|. The intrinsic average of
a field is then

zα =
1

|Ωα|

∫
Ωα

z(x) dV . (2.36)

We now move on to the strain and stress average theorems for which we follow
the working of Hashin (1972). Starting with strain, we first note the microscopic
strain-displacement compatibility relation

ε = ∇u =
1

2

(
∇u+∇>u

)
, (2.37)
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where u is the microscopic displacement vector, and ∇ denotes the symmetric
gradient operator. Then, introducing Eq. (2.37) into Eq. (2.32) followed by applic-
ation of Gauss’s theorem leads to

ε =
1

2|Ω|

∫
∂Ω

(u⊗n+n⊗u) dS, (2.38)

where ∂Ω and n denote the boundary of Ω, and the unit normal surface vector
respectively. Next, we introduce the uniform displacement boundary conditions
at the boundary of our REV

u(x) = E · x ∀x ∈ ∂Ω. (2.39)

Substitution of Eq. (2.39) into Eq. (2.38) leads naturally to the strain average
theorem

ε = E, (2.40)

which holds for any compatible strain fields Eq. (2.37) that obey Eq. (2.39). We
can derive a similar relation to Eq. (2.40) for stress. Using the relation

∇ · (x⊗σ) = σ, (2.41)

in Eq. (2.33), followed by Gauss’s theorem leads to

σ =
1

|Ω|

∫
Ω
(x⊗σ ·n) dS. (2.42)

Next we introduce the uniform stress boundary conditions

σ(x) ·n(x) = Σ ·n(x) ∀x ∈ ∂Ω. (2.43)

Substitution of Eq. (2.43) into Eq. (2.42) leads naturally to the stress average
theorem

σ = Σ, (2.44)

which holds for any equilibrated (divergence free) stress fields that obey Eq. (2.43).
It is worth noting that the uniform boundary conditions just described pro-

duce statistically homogeneous fields. Specifically, fields whose averages are spa-
tially invariant with respect to an REV. The importance of this statement together
with the statistically homogeneous body assumption, is that both conditions en-
sure reciprocity between effective moduli (Hashin 1972). Accordingly, the homo-
genised behaviour can be predicted from either of the uniform boundary con-
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ditions. Further, both of the aforementioned points imply that averaged fields,
such as stress, are approximately equal for both of the homogeneous boundary
conditions (Dormieux et al. 2006).

2.3.3 Hill-Mandel condition

The final averaging theorem comes by way of the Hill-Mandel condition (Hill
1963). This condition expresses the strain energy density equivalence between
the micro and macroscales. As a result, we need to find the assumptions that
allow the following to hold

σ : ε = σ : ε. (2.45)

One can show (e.g. Hashin 1972; Nemat-Nasser and Hori 1993) for a compatible
strain field corresponding to Eq. (2.39) and using Eq. (2.40)

σ : ε = σ : E = σ : ε. (2.46)

Similarly, for an equilibrated stress field corresponding to Eq. (2.43) and using
Eq. (2.44) we obtain

σ : ε = Σ : ε = σ : ε. (2.47)

Thus the Hill-Mandel condition is satisfied for compatible strain fields and equi-
librated stress fields using either of the uniform boundary conditions (Zaoui
2002).

2.3.4 Effective properties

The final part of this section concerns the averaging results for the microscopic
linear elasticity constitutive relations

σ = C : ε, (2.48)

ε = S : σ, (2.49)

where C and S denote the microscopic stiffness and compliance tensors respect-
ively. Note, S = C−1.

Following Dormieux et al. (2006) we consider the following local uniform
strain boundary problem

∇ ·σ = 0 in Ω, (2.50)

σ = C(x) : ε in Ω, (2.51)
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u(x) = E · x on ∂Ω, (2.52)

where σ = C(x) : ε↔ ε = S(x) : σ.
Owing to the linearity of Eq. (2.50) we can define a linear relation between ε

and E

ε(x) = A(x) : E. (2.53)

where A(x) is the fourth-order strain concentration tensor (Hill 1963). The con-
centration tensor A(x) represents a mapping between the macroscopic strain
tensor E to its local counterpart ε(x). Due to the linearity of elasticity, A(x) in
fact represents the strain solution to an elasticity problem for which the mac-
roscopic strain components are unit strains (Hashin 1972). As a result, A(x) is
dependent on the geometry and phase moduli at the microscale (Hill 1963).

Combining Eq. (2.53) with Eq. (2.34) whilst using the strain average theorem
it can be shown

ε = E = v1A1 : E+ v2A2 : E, (2.54)

where Aα denotes the intrinsic average of the strain concentration tensor over
constituent α. From Eq. (2.54) we can see

I = A = v1A1 + v2A2 (2.55)

where I is the fourth-order identity tensor. Next, using Eq. (2.53) in Eq. (2.48)
and then taking the volume average leads to

Σ = C : A : E = C∗ : E, (2.56)

where

C∗ = C : A, (2.57)

denotes the homogenised (or effective) stiffness tensor. Note, we adopt the defin-
ition Σ = σ within the framework of uniform strain boundary conditions owing
to the statistical homogeneity assumptions described previously. Eq. (2.56) then
represents the macroscopic linear stress-strain constitutive relation for a hypo-
thetically homogeneous material arising after homogenisation of a heterogen-
eous microstructure.

We can express C∗ in terms of constituent stiffnesses C1 and C2. From Eq. (2.55)
and the definition in Eq. (2.57), it can be shown that (Hashin 1972),

C∗ = v1A1 : C1 + v2A2 : C2. (2.58)
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Next, comparison of Eq. (2.54) with Eq. (2.34) yields the following relations

ε1 = A1 : E, ε2 = A2 : E. (2.59)

In situations where experimental determination for the entries of C∗ are prohibit-
ive, we seek alternative approaches. Accordingly, from Eq. (2.58), if we can calcu-
late either A1 or A2, provided we know the phase moduli, we can calculate C∗.
However, determination of Aα is nontrivial owing to the often complex nature
of the microstructure. Instead Aα can be approximated, which is the goal of ana-
lytical techniques such as the self-consistent scheme and Mori-Tanaka method
mentioned in Section 1.2. Alternatively, one could approach the determination of
Aα numerically (e.g. Brassart et al. 2010). However, in this context, the standard
approach with numerical approaches is to setup virtual experiments to calculate
directly C∗ (e.g. using computational homogenisation), as oppose to calculating
Aα.

We can derive similar relations to Eqs. (2.53) to (2.59) following averaging of
Eq. (2.49). To do so, we consider a boundary value problem as per Eqs. (2.50)
to (2.52) where instead we use the uniform stress boundary conditions Eq. (2.43)
in place of the uniform displacement boundary conditions in Eq. (2.52). Again,
due to linearity, we define the following mapping between σ and Σ

σ(x) = B(x) : Σ. (2.60)

where B(x) is the fourth-order stress concentration tensor (Hill 1963). Combining
Eq. (2.60) with Eq. (2.35) whilst using the stress average theorem it can be shown

σ = Σ = v1B1 : Σ+ v2B2 : Σ. (2.61)

where Bα denotes the intrinsic average of the stress concentration tensor over
constituent α. Using Eq. (2.60) in Eq. (2.49) and then taking the volume average
leads to

E = S : B : Σ = S∗ : Σ, (2.62)

where

S∗ = S : B, (2.63)

denotes the homogenised compliance tensor. Due to the statistical homogeneity
assumptions described previously in Section 2.3, S∗ ≈ (C∗)−1. Finally, we can
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show an analogous expression to Eq. (2.58) for S∗ by using Eq. (2.55) and the
definition in Eq. (2.63)

S∗ = v1B1 : S1 + v2B2 : S2. (2.64)

Lastly, in analogy to Eq. (2.59) we define the following

σ1 = B1 : Σ, σ2 = B2 : Σ. (2.65)

2.4 Homogenisation for a dual-continuum

In the final part of this chapter, we develop the DC poroelastic constitutive model.
To start, we introduce the underlying modelling assumptions, whilst consider-
ing the material symmetry and mechanical properties of the constituents in the
process. With respect to the latter, previous DC poroelastic models have, for the
most part, assumed isotropy of the continua and bulk material (Berryman and
Wang 1995; Khalili and Valliappan 1996; Loret and Rizzi 1999; Choo and Borja
2015). However, rock formations are well known to exhibit anisotropic proper-
ties (Snow 1969; Price and Cosgrove 1990; Babuska and Cara 1991). Recent work
by Zhang et al. (2019) showed that anistotropic permeabilities can have meas-
urable impacts on the flow-patterns in poroelastic dual-continuum materials.
Further to anisotropy, and in the case of fractured materials, the fractures them-
selves can have intrinsic mechanical properties owing to local asperities and/or
bridging material between fracture faces (Olsson and Barton 2001; Lemarchand
et al. 2009; Jaeger et al. 2009). Intrinsic mechanical properties of both continua
have been considered for isotropic materials in the works of Elsworth and Bai
(1992), Berryman (2002), Berryman and Pride (2002) and Nguyen and Abouslei-
man (2010). Further, despite works such as Olsson and Barton (2001) and Jaeger
et al. (2009) considering the nonlinearity of fracture deformation, incorporat-
ing such effects within a continuum framework is nontrivial. The starting point
considered within this work, is therefore to consider fracture deformation un-
der infinitesimal deformations at the microscale. Indeed this is the modelling
assumption made by previously introduced dual-continuum poroelastic con-
stitutive models. Such an assumption could be valid within fractures containing
a significant portion of stiff infill material.

To derive the constitutive relations, we add to a micromechanically derived an-
isotropic constitutive model by Dormieux et al. (2006). Contrary to the model by
Dormieux et al. (2006) (Section 5.6, pg. 161), we incorporate linear (poro)elastic
properties for the fracture continuum at the microscale. In this case both the mat-
rix and the fracture continua are considered to have intrinsic stiffness properties.
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Following homogenisation, the resulting model, complete with expressions for
the effective parameters, is an anisotropic, dual-stiffness constitutive model.

2.4.1 Microscale problem definition

To extend the homogenisation problem introduced by Dormieux et al. (2006)
we consider the domain Ω over an REV in which there exists a porous matrix
Ωm ⊂ Ω, and porous fracture domain Ωf ⊂ Ω. Accordingly, each domain rep-
resents a continuum at the microscale. We assume linear poroelasticity for each
continuum domain (Biot 1941, Coussy 2004), and that the continua are satur-
ated by the same slightly compressible fluid. Further, following Section 2.2 we
assume isothermal evolutions and zero initial stress and pressure conditions.

An important assumption is that we consider microscopic fluctuations in pres-
sures are negligible with respect to the macroscopic continuum pressures (Dormieux
et al. 2006). As a result, fluids are assumed to be in steady-state, but at different
equilibrium pressures, within the respective domains in the REV. Consequently,
we model solid-fluid interactions at the microscale using uniform continuum
pressures (Van den Eijnden et al. 2016). In situations when hydrostatic equilib-
rium within each phase is not fulfilled, one could expect the aformentioned
microscale pressure assumption to lead to measurable inaccuracies at the mac-
roscale. An example of one such situation would be for the case of highly com-
pressible fluids. We explore the impacts of this microscale pressure assumption
in further detail in Chapter 5. As is customary we take stress and strain as posit-
ive in the tensile direction. Finally, to ease notation in the forthcoming derivation,
we consider reference states to coincide with natural initial states. Accordingly,
the initial micro and macro stresses, strains and pressures are zero. However,
extensions to the derivation herein to include prestressed states can be made
following the working of Dormieux et al. (2006) (Section 5.5, pg. 160).

With the given assumptions, the local constitutive model for a microscopic
continuum α is then

σα = Cα : εα −bαPα in Ωα, (2.66)

dϕα = bα : εα +
Pα

nα
in Ωα. (2.67)

where Cα [α = m, f] is the intrinsic fourth-order stiffness tensor for continuum
α, and the second-order tensors, σα, εα, bα, are the microscopic Cauchy stress
and linearised strain tensors, and intrinsic Biot coefficient for continuum α re-
spectively. Parameter nα is the microscopic Biot modulus, and dϕα = ϕα−ϕ

0
α is

the evolution of the local Lagrangian porosity from the reference state, all writ-
ten in terms of continuum α. The local Lagrangian porosity is the ratio of the
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continuum pore volume |Ω
p
α|, to the bulk volume of the undeformed continuum

configuration |Ω0α|. Accordingly, the relation between the micro and macroscopic
continuum Lagrangian porosities is given as

φα = vαϕα. (2.68)

The intrinsic Biot coefficient and Biot modulus in Eqs. (2.66) to (2.67) are given
as

bα = 1− Cα : (Csα)
−1 : 1, (2.69)

1

nα
=
(
bα −ϕ

0
α1
)
: (Csα)

−1 : 1, (2.70)

where Csα is the fourth-order stiffness tensor related to the solid material in
continuum α.

It is useful to re-write Eqs. (2.66) to (2.67) in a unified way as follows (Dormieux
et al. 2006),

σ(x) = C(x) : ε(x) +σp(x) ∀x ∈ Ω, (2.71)

where C(x), and the prestress tensor distribution related to the fluid pressure
σp(x) (Chateau and Dormieux 2002), are given by

C(x) =

Cm in Ωm

Cf in Ωf
, (2.72)

σp(x) =

−bmPm in Ωm

−bfPf in Ωf
, (2.73)

respectively.
The essence of the homogenisation approach is to define a boundary value

problem on the REV, the solution to which allows for the determination of mac-
roscopic constitutive properties. Accordingly, the momentum balance boundary
value problem is defined as

∇ ·σ = 0 in Ω, (2.74)

σ = C(x) : ε+σp(x) in Ω, (2.75)

û = E · x on ∂Ω, (2.76)
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where quantities denoted by ˆ are boundary assigned values i.e. u(x) = û on
∂Ω. With the definition of the microscopic boundary value problem and the
underlying modelling assumptions we now proceed to homogenisation.

2.4.2 Recovery of the constitutive system

From the superposition property in linear systems, Eqs. (2.74) to (2.76) can be de-
composed into two subproblems. Subproblem I can be interpreted as a drained
poroelastic problem:

∇ ·σI = 0 in Ω, (2.77)

σI = C(x) : εI in Ω, (2.78)

ûI = E · x on ∂Ω, (2.79)

with ΣI = σI = C∗ : E (2.80)

where we have used the results and assumptions from Section 2.3 in defining
Eq. (2.80). Subproblem II defines a constrained material (E = 0) subject to load-
ing via the prestress field σp:

∇ ·σII = 0 in Ω, (2.81)

σII = C(x) : εII +σp(x) in Ω, (2.82)

ûII = 0 on ∂Ω, (2.83)

with ΣII = σII = C(x) : εII +σp(x) (2.84)

In fact, we can show Eq. (2.84) is equivalent to

ΣII = Σp = σp : A, (2.85)

Following Dormieux et al. (2006), by considering the Hill-Mandel condition for
the stress field σII and strain field εI

σII : εI = ΣII : E. (2.86)

Rewriting the left-hand side of Eq. (2.86) following the definition for σII in
Eq. (2.82)

σII : εI = εII : C(x) : εI +σp : εI. (2.87)
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Applying the Hill-Mandel condition to the first term on the right-hand side of
Eq. (2.88), whilst noting εII = 0 due to Eq. (2.83) leaves

σII : εI = σp : εI. (2.88)

Finally, from Eq. (2.86), and with Eq. (2.53) in Eq. (2.88), we obtain the relation
shown in Eq. (2.85).

Eq. (2.85) is a part of a classical result in micromechanics referred to as Levin’s
theorem (Levin 1967). That is, the macroscopic constitutive equation follows the
form of the linear local constitutive relation Eq. (2.66),

Σ = ΣI +ΣII = C∗ : E+Σp, (2.89)

where we make use of the linearity of the problem to superpose subproblems
I and II. Owing to the definition of C(x), and from Eq. (2.58) together with
Eq. (2.55), the homogenised stiffness tensor of the composite dual-material is
defined as

C∗ = vmAm : Cm + (I − vmAm) : Cf, (2.90)

where subscripts 1 and 2 in Eq. (2.58) have been replaced with m and f respect-
ively. Similarly, the homogenised prestress tensor is given as

Σp = −vmAm : bmPm − (I − vmAm) : bfPf. (2.91)

Intuitively, Eq. (2.91) can be interpreted as a weighted sum of the continuum
pressures. In the work of Borja and Koliji (2009), the authors derive a pore
fraction weighting formulation that is thermodynamically consistent. Such an
approach was also proposed in Coussy (2004). Given the thermodynamic con-
sistency, it would be interesting to see how one could recover a pore fraction
weighted formulation within the general framework of micromechanics.

To proceed, using Eq. (2.91), and with the result from Eq. (2.90), we can
identify the first of the macroscopic constitutive parameters, that is the effect-
ive Biot coefficients

Bm =
[
(C∗ − Cf) : (Cm − Cf)

−1
]
: bm, (2.92)

Bf = bf : I −
[
(C∗ − Cf) : (Cm − Cf)

−1
]
: bf. (2.93)
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From Section 2.2.5 we showed the dual-continuum model requires state equa-
tions for the evolutions of macroscopic Lagragian porosity. Accordingly, for sub-
problem I

dφI
α = vαdϕα = vαAα : bα : E

= Bα : E. (2.94)

where we have used Eq. (2.67) in defining Eq. (2.94).
Given subproblem II we have

dφII
m = vmbm : εII

m +
vm

nm
Pm, (2.95)

dφII
f = −vmbf : ε

II
m +

vf
nf
Pf, (2.96)

where we have used Eq. (2.34) together with εII = 0 to eliminate vfεf. To advance,
we must substitute for vmεII

m. Following Dormieux et al. (2006), vmεII
m can be

expressed as

vmε
II
m = (Cm − Cf)

−1 : [(vmbm −Bm)Pm + (vfbf −Bf)Pf]. (2.97)

With Eq. (2.97) in Eqs. (2.95) to (2.96) we recover

dφII
m =

Pm

Nm
+
Pf
Qm

, (2.98)

dφII
f =

Pm

Qf
+
Pf
Nf

, (2.99)

where the effective constitutive parameters N−1
α and Q−1

α are defined as

1

Nm
=
[
(vmbm −Bm) : (Cm − Cf)

−1
]
: bm +

vm

nm
, (2.100)

1

Qm
=
[
(vfbf −Bf) : (Cm − Cf)

−1
]
: bm, (2.101)

1

Nf
=
[
(Bf − vfbf) : (Cm − Cf)

−1
]
: bf +

vf
nf

, (2.102)

1

Qf
=
[
(Bm − vmbm) : (Cm − Cf)

−1
]
: bf. (2.103)

Provided the storage and transport continua are isotropic, Q−1 = Q−1
m = Q−1

f

since bα[α = m, f] = bα1 where 1 is the second-order identity tensor (Dormieux
et al. 2006).

Through superposition of subproblems I and II for the macroscopic variables
Σ and dφα, we finally recover the anisotropic, dual-stiffness constitutive model
for the poroelastic dual-material as given in Eqs. (2.22) to (2.24). Subsequently,
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expressions for the effective constitutive parameters C∗, Bm, Bf, N−1
m , Q−1

m , N−1
f ,

and Q−1
f are given by Eq. (2.82), Eqs. (2.92) to (2.93), and Eqs. (2.100) to (2.103)

respectively.

2.5 Relation to the single-porosity constitutive model

In this section we provide the link between the constitutive model derived herein
and the well-known single-porosity poroelastic constitutive model (Biot 1941;
Coussy 2004).

Under long-term drainage P = Pm = Pf. We therefore anticipate dual-continuum
models to reduce to single-continuum equivalents under certain assumptions of
the moduli involved, for the long-term drainage case. To enable this contraction,
we require the following compatibility relations:

B = 1− C∗ : C−1
s : 1 = Bm +Bf, (2.104)

1

N
= (B−φ1) : C−1

s : 1 =
1

Nm
+
1

N f
+
1

Qm

+
1

Q f

, (2.105)

where Cs is the homogeneous solid-grain stiffness tensor and φ = φm + φf.
From, Eqs. (2.92) to (2.93) and Eqs. (2.99) to (2.103), Eqs. (2.104) to (2.105) hold
provided Cs = Csm = Csf. Accordingly, applying the long-term drainage con-
dition, and contracting Eqs. (2.22) to (2.24) we recover the single-porosity con-
stitutive model originally proposed in Biot (1941), albeit for anisotropic mater-
ials. If the equality between solid stiffnesses does not hold, then under long-
term drainage, the contracted DC model does not reduce to the conventional
single-porosity constitutive model as we know it. However, as an alternative
to the long-term drainage condition and solid stiffnesses assumption, we can
achieve the contraction to the single-porosity model by setting vf = 0. Accord-
ingly, Cf = Csf = 0, C∗ = Cm, and Cs = Csm.

Similar to this current section, in the next chapter we show how previously
introduced DC constitutive models, and expressions for the effective parameters
therein, can be obtained from the model just derived under certain material
assumptions.

2.6 Discussion

This chapter presented the system of equations necessary for uncoupled (flow
only) and poroelastically coupled dual-continua. With regards to the latter, we
used a micromechanics approach to derive the poroelastic constitutive model. In
doing, we highlighted the various assumptions at the microscale that enable the
homogenisation approach herein. Further, by starting at the microscale we can
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directly see how effective constitutive parameters are related to intrinsic constitu-
ent parameters. In the next chapter we see how several previously introduced
DC poroelastic constitutive models are related to the one derived in this chapter.

Going beyond the work in this chapter, and this thesis more generally, we
identify several challenges related to several simplifying assumptions with re-
gards to the fracture material. First, at the microscale we have treated the frac-
ture morphology as a poroelastic continuum. However, a key challenge is how to
map individual fracture measurements to continuum properties. This challenge
is not unique to this work and is one faced by the subsurface community more
generally (Berkowitz 2002). In the context of this challenge, a micromechanical
framework could provide useful insights into experimental and theoretical meth-
odologies for mapping such quantities (e.g. Lemarchand et al. 2009).

Second, we considered linear deformations at the microscale through infin-
itesimal strain theory. Such an assumption could be valid under the influence of
significant amounts of stiff infill or bridging material. However, in general, frac-
tures (and soil aggregate) are well known to deform in a geometrically nonlinear
(and irreversible) fashion at the microscale (Bemer et al. 2001; Deude et al. 2002;
Bidgoli et al. 2013; Borja and Choo 2016). As a result, we expect nonlinearities
at the microscale to have measurable impacts at the macroscale due to material
nonlinearities. An example of the latter, is the well known phenomena of stress-
dependent permeability. Whilst a first step toward understanding phenomena
such as stress-dependent permeability could be achieved within a linear frame-
work, such an approach would be limited in high cost applications where the
need for greater accuracy is important (Min et al. 2004). However, developing
nonlinear macroscopic constitutive models is nontrivial using experimental and
analytical approaches. We thus envisage that useful progress could be made by
using the model derived here, within a comprehensive computational multiscale
setting. In this case, we would model with infinitesimal deformation at the mac-
roscale, but finite strain at the microscale. The latter would then lead to ma-
terial nonlinearities at the macroscale. Information passing between scales then
needs to be addressed within the computational framework. Such multiscale
frameworks within the context of dual-continuum materials have been investig-
ated in Wang and Sun (2018, 2019). However, in these works the authors make
use of a volume fraction based formulation to the dual-continuum constitutive
model (Borja and Koliji 2009). In the following chapter, we investigate differ-
ences between volume fraction based constitutive formulations and those based
on intrinsic mechanical properties such as derived here.

Despite the assumptions above, we anticipate the poroelastic model derived
in this chapter to be a good starting point for modelling contexts where an
REV approach could be justified. A good example of the latter would be dense
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fracture corridors. We suggest this model as a starting point for such cases due
to its relative simplicity in comparison to more detailed, explicit fracture models.
Accordingly, we can gain a useful qualitative understanding in to the complex
behaviours of coupled flow and deformation phenomena before adding more
physics. Lastly, the micromechanical framework used to obtain the model serves
as a reference to understanding the otherwise implicit assumptions made on
previously introduced phenomenological constitutive models.

34



3
Poroelastic constitutive model
formulations and their impacts

In this chapter we investigate the relationships between, and assumptions on, previous
models presented in literature, as well as the impacts of their use on a poroelastic model
problem. In Section 3.1, we provide the contextual motivation behind the investigations
carried out in this chapter. Subsequently, in Section 3.2 we introduce and review the
various models presented previously in literature. In doing, we highlight decoupling as-
sumptions that have been made by previous users of these models. In Section 3.3, we
link the different DC poroelastic constitutive models described in Section 3.2 to the one
derived in the previous chapter. In Section 3.4, we study the various decoupling assump-
tions, investigating their impacts and links to well established micromechanical results.
In Section 3.5, we conduct a series of qualitative experiments using a poroelastic model
problem to further asses the impacts of the different modelling concepts and decoupling
assumptions. In Section 3.6, we present the subsequent results and discussion for these
tests. Lastly, in Section 3.7 we offer conclusions and recommendations for model use. The
contents of this chapter are based on work done mainly in Ashworth and Doster (2019b)
and partly in Ashworth and Doster (2020).

3.1 Background

Following on from Chapter 1, we highlighted several works in which poroelastic
cross coupling between the two continua was implicitly neglected. As a result,
we term these models as implicitly decoupled. However, several ‘fully coupled’
phenomenological models, namely those coming from Berryman and Wang (1995),
Khalili and Valliappan (1996), Berryman (2002) and Berryman and Pride (2002)
have since rectified these coupling deficiencies. The differences between these
fully coupled models come from the information used to calculate their con-
stitutive parameters. We refer to the expressions used for effective parameter
calculations as coefficient models.
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More recent users of the constitutive/coefficient models introduced by Berry-
man 2002 (resp. Berryman and Pride 2002), have explicitly decoupled pore domain
pressures when expressing the constitutive relations in terms of stress and con-
tinuum pressures (pure stiffness setting) (Nguyen and Abousleiman 2010; Kim
et al. 2012; Mehrabian and Abousleiman 2014; Mehrabian 2018). In these works,
the decoupling has been done as a form of non-algebraic closure. Additionally,
these decouplings provide explicit relations between effective and constituent
properties resulting in simplified coefficient models. However, such assumptions
have been made without discussing the origin and sensitivities that may arise as
a result.

The constitutive/coefficient models introduced above are based on constituent
mechanical property information. However, Borja and Koliji (2009) derive coef-
ficient models based on very different information. Instead, the authors define
effective parameters in terms pore fractions coming from their constitutive re-
lation for macroscopic effective stress. Further, Borja and Koliji (2009) identify
the constitutive requirement for variations in pore fraction through an energy
conjugacy with pressure. However, the authors do not provide explicit relations
for this property. Instead, later users of this model (Choo and Borja 2015; Choo
et al. 2016; Zhang et al. 2019), assume a non-algebraic closure condition for the
pore fraction variations. Given the differences in formulation it is interesting to
understand how this model may relate to the mechanical property based coeffi-
cient models.

In the remainder of this chapter we explore in further detail the various con-
stitutive modelling concepts, decoupling assumptions in light of micromechan-
ical results, and the resulting impacts of modelling differences.

3.2 Poroelastic dual-continuum constitutive models from literature

In the following we compare three modelling concepts that make use of different
properties for the calculation of the constitutive parameters:

1. Khalili and Valliappan (1996) - Constituent mechanical properties, assum-
ing the high permeability, low storage continuum is all void space (no
intrinsic fracture properties),

2. Borja and Koliji (2009) - Constituent pore fractions, assuming the high per-
meability, low storage continuum is all void space,

3. Berryman (2002) - Constituent mechanical properties, including intrinsic
fracture properties.

We recognise these models, to the best of our ability, as the most dominant
within the literature. They have been used in the works of Khalili et al. (2000),
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Callari and Federico (2000), Pao and Lewis (2002), Fornells et al. (2007), Taron
et al. (2009), Kim et al. (2012), Mehrabian and Abousleiman (2014), Choo and
Borja (2015),Choo et al. (2016), Wang and Sun (2018) and Zhang et al. (2019). It
should be stressed that in most cases the modelling concepts introduced in this
section build on, or are aligned with, previous works and concepts introduced
by Aifantis (1977, 1979); Wilson and Aifantis (1982); Elsworth and Bai (1992);
Berryman and Wang (1995); Tuncay and Corapcioglu (1995, 1996); Loret and
Rizzi (1999); Dormieux et al. (2006) to name but a few. These works should thus
be borne in mind in the remainder of this section.

3.2.1 Preliminaries

In the following, we give relations that will be useful for the analyses in this
chapter given the isotropy of the constituent and bulk materials assumed in
the models to follow. Accordingly, tensorial quantities within the constitutive
equations are given in terms of their scalar invariants. As a result, we introduce
the mean stress Σ and volumetric strain E as

Σ =
1

3
tr(Σ), (3.1)

E = tr(E). (3.2)

Further, mappings for the second order and fourth order (poro)elastic tensors to
their scalar equivalents are given as

K =
1

d 2
1 : C : 1, (3.3)

B =
1

d
B : 1, (3.4)

where we drop subscripts and superscripts to highlight the generality of the
mappings. Notation d denotes the spatial dimension i.e. d = 2 or 3. Based on
the relations and mappings in Eqs. (3.1) to (3.4) we give Eqs. (2.19) to (2.21) in
terms of their scalar invariants such that

dΣ = K∗dE−BmdPm −BfdPf, (3.5)

dφm = BmdE+
dPm

Nm
+
dPf
Qm

, (3.6)

dφf = BfdE+
dPm

Qf
+
dPf
Nf

. (3.7)
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Analogously, Eqs. (2.28) to (2.29) are given as

dξm = BmdE+
dPm

Mm
+
dPf
Qm

, (3.8)

dξf = BfdE+
dPm

Qf
+
dPf
Mf

. (3.9)

Note, in Eqs. (3.5) to (3.9), we make use of the variation formulation for the
constitutive system. We do this to aid in the analyses conducted later in this
chapter.

Next, we give the isotropic equivalent relation to Eq. (2.90), doing the same
also for the homogenised isotropic compliance, such that

K∗ = Km + vf(Kf +Km)Af, (3.10)

S∗ = Sm + vf(Sf + Sm)Bf, (3.11)

where we have replaced vm in favour of vf in the current formulations com-
pared to Eq. (2.90). Notations Aα and Bα are the scalar equivalents to the in-
trinsically averaged concentration tensors introduced in Eq. (2.59) and Eq. (2.65)
respectively. These scalar concentration factors thus provide mappings between
the macroscopic volumetric strain and mean stress to their intrinsicly averaged
counterparts respectively. Accordingly,

εm = AmE, εf = AfE, (3.12)

σm = BmΣ, σf = BfΣ. (3.13)

As per Section 2.3.4, provided we can estimate Af (resp. Bf) we can calculate
K∗ (resp. S∗). Estimating the concentration factors can be done using analytical
approaches such as those mentioned in Section 2.3.4 (see Watt et al. 1976 for a
review of such approaches). Alternatively, for special microscopic distributions
of strain and stress, the concentration factors are shown to equal unity (Hill 1963).
Accordingly, Eqs. (3.12) to (3.13) lead to the well known bounding theorems
corresponding to the Voigt and Reuss averages for effective moduli respectively.
These moduli bounds, and their associated physical behaviours, are explored in
further detail within this chapter.

Finally, due to isotropy Q−1 = Q−1
m = Q−1

f (see Section 2.4.2). With the above
relations, we are now ready to investigate the various modelling concepts and
decoupling assumptions in further detail.
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3.2.2 Khalili and Valliappan (1996)

The authors take a top-down approach by first presenting the governing equa-
tions for a poroelastic DC material. The quantities requiring closure are sub-
sequently identified in the process. Constitutive behaviours are then sought
through thought experiments that isolate volumetric changes of the constituents.
Superposition due to linearity, and Betti’s reciprocal work theorem finally allow
for recovery of the macroscopic behaviour in terms of constituent responses. In
doing, expressions for the effective coefficients are identified.

Khalili and Valliappan (1996) implicitly assume that the fracture phase is all
void space. Additionally, the following assumption is also made: Bmφ0f = Bfφ

0
m.

This relation is restrictive, and is later removed in Khalili (2003) and Khalili
and Selvadurai (2003), due to the resulting compatibility enforced between bulk
moduli (Loret and Rizzi 1999). We present coefficient models derived by the
authors without this assumption (Table 3.1). The coefficient models from Khalili
and Valliappan (1996) (Table 3.1), are then consistent with results from Berryman
and Wang (1995), Loret and Rizzi (1999), and Dormieux et al. (2006) (the latter
whilst assuming isotropy).

3.2.3 Borja and Koliji (2009)

In Borja and Koliji (2009), the authors consider the evolution of internal energy
density and derive a thermodynamically consistent effective stress expression.
Aggregate material is used as their reference material. The void space assump-
tion is thus implicit. We present the effective stress expression from Borja and
Koliji (2009) for an isotropic single phase dual-continuum system as follows

dΣ ′ = dΣ+ψmBdPm +ψfBdPf, (3.14)

where B = 1 − K∗/Ks is the equivalent single-porosity Biot coefficient for an
isotropic material in which Ks denotes the bulk modulus of the solid matrix
(grain) material. Notation ψα is the pore fraction of continuum α such that

ψα =
ϑα

ϑ
, (3.15)

where ϑα is the Eulerian porosity for continuum α. ϑα is defined as the ratio
of the current continuum pore volume |Ω

p
α| to the bulk volume of the current

(deformed) configuration |Ω|. Notation ϑ = ϑm + ϑf is the equivalent single
Eulerian porosity. In the limit of infinitesimal transformations ϑα ≈ ϑ0α = φ0α

(Dormieux et al. 2006; Choo et al. 2016). As a result ψα ≈ ψ0α. Finally, com-
parison of Eq. (3.14) with Eq. (3.5) leads to the following relations for effective
(isotropic) Biot coefficients Bm = ψ0mB and Bf = ψ0fB.
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Borja and Koliji (2009) identify the requirement for a constitutive expression
for variations in ψα based on energy conjugacy with Pα (their Eq. (76)). However,
explicit constitutive equations for ψα remain, to the best of the current authors’
knowledge, an open question. We do note, however, that Borja and Choo (2016)
develop a framework that allows for the tracking of pore fraction evolutions
numerically.

As an initial approach to deriving an algebraic expression for variations in ψα
we first consider the following mass balance equation given in Borja and Koliji
(2009) (see also Choo and Borja 2015),

Bα
∂E

∂t
+φ0

∂ψα

∂t
+
φ0α
Kl

∂Pα

∂t
+
qα

Kl
∇Pα +∇ ·qα =

γα

ρ0l
. (3.16)

where we have used the small perturbation assumptions described in Sections
2.2.3 and 2.2.4, allowing us to set ρl ≈ ρ0l and φα ≈ φ0α.

We can derive an alternative form of the mass balance here by substitution
of Eq. (3.8) or Eq. (3.9), together with Darcy’s law, into Eq. (2.2) (resp. Eq. (2.3))
such that

Bα
∂E

∂t
+ (

1

Nα
+
φ0α
Kl

)
∂Pα

∂t
+
1

Q

∂Pβ

∂t
+∇ ·qα =

γα

ρ0l
, (3.17)

where we have used Eq. (2.30) to decompose M−1
α .

Under the assumption of small variations in fluid density (low compressibil-
ity), the fourth term on the left-hand side of Eq. (3.16) can be neglected. Com-
paring Eq. (3.16) and Eq. (3.17) leads to the following identity

φ0
∂ψα

∂t
=

1

Nα

∂Pα

∂t
+
1

Q

∂Pβ

∂t
(3.18)

In the works of Choo and Borja (2015) and Choo et al. (2016), the authors achieve
non-algebraic closure of the mass balance equations for each continuum by as-
suming ∂ψα/∂t ≈ 0. This assumption is equivalent to

1

Nα
=
1

Q
= 0 or

∂Pα

∂t
= −

Nα

Q

∂Pβ

∂t
, (3.19)

in Eq. (3.18). In this work we focus on the first relation in Eq. (3.19), given our
interest in the parameters themselves. Accordingly, we identify the closure con-
dition ∂ψα/∂t ≈ 0 with values for material coefficients N−1

α and Q−1 of zero.
A summary of the coefficient models from Borja and Koliji (2009), under the

explicit assumption ∂ψα/∂t ≈ 0, mapped to the constitutive model of Eq. (3.5)
and Eqs. (3.8) to (3.9) is shown in Table 3.1.

41



3.2.4 Berryman (2002)

The motivation behind the approach by Berryman (2002) is to formulate coeffi-
cient models using intrinsic (continuum) fracture properties such as the fracture
bulk modulus Kf. Accordingly, the authors use a top-down approach whose
starting point is the macroscopic constitutive model written within a pure stiff-
ness setting (Σ and Pα as primary variables, contrary to conventional poroelastic
modelling)

dE

dξm

dξf

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



dΣ

dPm

dPf

 . (3.20)

The goal is then to find expressions for coefficients A11 − A33. Symmetry of
the coefficient matrix in Eq. (3.20) is implied. A comparison of Eq. (3.20) with
Eq. (3.5) and Eqs. (3.8) to (3.9) reveals the following relations

K∗ =
1

A11
, Bm =

A12
A11

, Bf =
A13
A11

,

1

Mm
= A22 −

(A12)
2

A11
,

1

Q
= A23 −

A12A13
A11

,
1

Mf
= A33 −

(A13)
2

A11
.

(3.21)

To identify expressions for the parameters in Eq. (3.20), Berryman (2002) con-
siders scenarios of uniform expansion (or contraction). These scenarios are equi-
valent to asking whether we can find combinations of dΣ = dσm = dσf and
pore pressures dPm and dPf, such that expansion or contraction is self-similar,
i.e. dE = dεm = dεf (Berryman 2002). Note, intrinsic averages are implied, but
not explicitly mentioned by Berryman (2002). As a result of the expansion/con-
traction thought experiments, the authors are able to relate Eq. (3.20) to (av-
eraged) microscale constituent equations. To define these averaged equations
we consider arguments posed by Hashin (1972) for intrinsic averaging over the
microscopic stress-strain relation for phase α. Accordingly, following intrinsic
averaging over a local stress-strain relation as per Hashin (1972),

σα = (Cα : εα)α = Cαεα. (3.22)

From Eq. (3.22) we see that the parameters from the local constituent constitutive
relation following intrinsic averaging remain unchanged. Consequently, using
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and extending the arguments carried by Eq. (3.22), the averaged microscale equa-
tions used in Berryman (2002) are posed in the pure stiffness formulation as

dεα =
1

Kα
(dσα − bαdPα) (3.23)

dξα =
vα

Kα

(
bαdσα +

dPα

Bα

)
(3.24)

where Bα denotes the microscopic Skempton coefficient, given as (Cheng 2016),

Bα =
bαmα

Kα + (bα)2mα
(3.25)

where Ksα is the bulk modulus of the solid material in continuum α and the
microscopic Biot modulus (mα)

−1 is given as (Cheng 2016),

1

mα
=
ϕ0α
Kl

+
bα −ϕ

0
α

Ksα
(3.26)

Expressions for A11 −A33 are finally recovered (Table 3.2), using the uniform ex-
pansion/contraction thought experiments described above. With the relations in
Eq. (3.21) we get material coefficient formulations pertaining to the conventional
mixed compliance setting (E and Pα as primary variables) (Table 3.1).

Coefficient Berryman (2002) Formulation

A11
1
K∗

A12
bm
Km

1−Kf/K
∗

1−Kf/Km

A13
bf
Kf

1−Km/K
∗

1−Km/Kf

A22
vmbm
BmKm

− ( bm
1−Km/Kf

)2{ vm
Km

+ vf
Kf

− 1
K∗ }

A23
KmKfbmbf
(Kf−Km)2

{ vm
Km

+ vf
Kf

− 1
K∗ }

A33
vfbf
BfKf

− ( bf
1−Kf/Km

)2{ vm
Km

+ vf
Kf

− 1
K∗ }

Table 3.2: Berryman (2002) material coefficient formulations for the pure stiffness con-
stitutive model.

As a final note on the Berryman (2002) coefficient models, recent users have
explicitly assumed A23 = A32 = 0 as a closure condition to generalise the dual-
continuum system to a multi-continuum one (Kim et al. 2012; Mehrabian and
Abousleiman 2014; Mehrabian 2018). Subsequently, this condition provides ex-
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plicit relations between material properties and simplifies the coefficient models.
It is still unclear how this assumption may affect the system.

3.2.5 In sum

Coefficient models from Khalili and Valliappan (1996) and Borja and Koliji (2009)
both make an underlying void space assumption for the high permeability, low
storage continuum. Subsequently, under the void space assumption Kf = 0 and
vf = φf. Models from Borja and Koliji (2009) make use of continuum pore frac-
tions, but still require a final closure relationship for the evolution of each pore
fraction. Finally, models from Berryman (2002) make no underlying assumption
on the microscopic porosity, and thus the stiffness of the high permeability, low
storage continuum. Consequently, Kf > 0 and ϕf = φf/vf from Eq. (2.68).

In terms of pressure decoupling assumptions we have two types: The first are
implicit assumptions for which the constitutive relations are postulated without
inter-continuum pressure coupling. The second are explicit assumptions for which
the full constitutive model is the starting point (or the requirement for con-
stitutive expressions are at least identified in the case of Borja and Koliji (2009)).
The explicit decoupling assumptions are then made so as to provide relations
between material properties and to simplify coefficient models (e.g. due to non-
algebraic closure). However, the physical justifications and/or implications of
these assumptions still remain an open question. We explore these implications
in the remainder of this chapter, after a brief detour to reconcile several of the
constitutive models just introduced with the one derived in Chapter 2.

3.3 Constitutive model equivalencies

Under certain conditions, the coefficient models introduced in Eqs. (2.92) to (2.93)
and Eqs. (2.100) to (2.103) reduce to the mechanical property based parameter
models discussed in Section 3.2. For the latter, we assume a natural reference
state for stress, strain and continuum pressures such that the constitutive forms
coincide. Lastly, to provide equivalences we make use of the decomposition in
Eq. (2.30).

In the case of soils, the high permeability (transport) continuum is all void
space (Koliji et al. 2008). As a result Cf = 0, and we recover the original aniso-
tropic parameter models proposed by Dormieux et al. (2006). For an isotropic
material, the constitutive system is written in terms of scalar invariants of the
tensorial quantities. Accordingly, with a change from the mixed compliance con-
stitutive formulation to a pure stiffness formulation, we recover the dual-stiffness
models introduced by Berryman (2002) (Table 3.1). Finally, combining the void
space transport and isotropic dual-material assumptions, allows us to recover
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parameter models originally proposed by Berryman and Wang (1995) and Khalili
and Valliappan (1996) (Table 3.1).

By highlighting equivalences between the micromechanically derived model
and the phenomenological models, we can see how explicit modelling assump-
tions made in the former arise implicitly in the latter. Such insights highlight
the benefits of a micromechanical approach. We extend these insights in the next
section where we study explicit constitutive decoupling assumptions.

3.4 Explicit decoupling and parameter bounds

In the following, we explore the implications of various explicit decoupling as-
sumptions such as those where A23 = A32 = 0 in Eq. (3.20). To do so, we use
arguments from micromechanics to show heuristically that the inverse to explicit
decoupling is to assume that Eq. (3.10) or Eq. (3.11) can be calculated directly by
considering certain limiting behaviours. These limiting behaviours correspond
to bounds on K∗. Accordingly, bounds on the effective constitutive coefficients
then follow from bounds on K∗. Such bounds on parameters are attractive as they
provide simple estimates of effective properties of interest, as well as a means to
verify the values of these properties (Torquato 1991).

3.4.1 Isostrain: Q−1 = 0

Whilst this explicit assumption has not been used within literature its consid-
eration remains instructive. We define assumption Q−1 = 0 in terms of dφm
(although converse arguments may be used for dφf). From Eq. (3.6), the term
Q−1 = 0 is then equivalent to

1

Q
=
∂φm

∂Pf

∣∣∣ dE=0
dPm=0

= 0. (3.27)

Next we define the following intrinsic average over the variation form of the
constitutive model in Eqs. (2.66) to (2.67), whilst also assuming isotropy such
that

dσα = Kαdεα − bαdPα, (3.28)

dφα = vα

(
bαdεα +

dPα

nα

)
. (3.29)

We consider Eqs. (3.28) to (3.29) for the case α = m. Under a drained matrix,
dPm = 0. Subsequently, Eq. (3.29) shows that a zero matrix porosity variation
(dφm = 0) can only hold if the average volumetric matrix strain variation is zero
(dεm = 0). Further, we can see from Eq. (3.28) that if the matrix is drained and
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does not deform, the average mean matrix stress variation is also zero (dσm =

0). This latter result will be useful for discussions on the explicit decoupling
assumption A23 = 0.

Proceeding with Eq. (3.27) and the macroscopic strain constraint dE = 0 (or
E = E0), the strain partition in Eq. (2.34) suggests that if dE = dεm = 0 then dεf =
0. Accordingly, Q−1 = 0 holds under a strain distribution condition referred to
as isostrain

dE = dεm = dεf, Am = Af = 1. (3.30)

Several interesting features can be observed from Eq. (3.30). First, we consider
isostrain in the variation form holding such that E0 = ε0m = ε0f and E = εm = εf.
Further, we restate that the first equality in Eq. (3.30) is only equal to zero under
a constrained macroscopic strain condition of dE = 0 such as that in Eq. (3.27).
Accordingly, from these strain equalities, and the zero strain variation constraint,
we see Q−1 = 0 holds when

[
E0 = ε0m = ε0f

]
≡ [E = εm = εf]. Evidently, in the

case with an initial strain state of zero, the latter equivalence is trivially satisfied
by E = εm = εf = 0. Lastly, equivalence of microscopically averaged strains and
macroscopic strain under isostrain in Eq. (3.12), gives rise to the average strain
concentration factors relation in Eq. (3.30).

The isostrain distribution can be obtained when elements are set in parallel to
the direction of loading (Fig. 3.1). Under isostrain, the upscaled bulk modulus is
then the Voigt average of the constituent moduli (Voigt 1887, 1928),

K∗ = KV = vmKm + vfKf. (3.31)

Hill (1963) used variational principles to show that the Voigt average represents
an upper bound on K∗, and is naturally obtained by substitution of Af = 1 into
Eq. (3.10). As a result, effective coefficients calculated with KV correspond to
bounds on these parameters. To explore this further we consider the case for the
effective Biot coefficients under the the void space assumption.

Assuming a drained void fracture continuum (dPf = 0) and from Eq. (3.29),
the average volumetric fracture strain variation is equal to the effective fracture
pore strain (dεf = dφf/φ0f ). Note, the void space assumption means bf = 1 since
Kf = 0, and φ0f = vf from Eq. (2.68) since ϕ0f = 1. Thus, in analogy to Eq. (3.30),
isostrain can be summarised for this case as

dE = dεm =
dφf

φ0f
. (3.32)
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From Eq. (3.7) with drained matrix and fracture continua, together with the void
space isotrain condition Eq. (3.32), we get the following lower bound on Bf

Bf =
∂φf
∂E

∣∣∣dPm=0
dPf=0

= φ0f . (3.33)

From Eq. (2.104), B = Bm + Bf, the lower bound on Bf corresponds to an upper
bound on Bm

Bm = vm

(
1−

Km

Ks

)
, (3.34)

where vm = 1−φ0f , and where we have used K∗ = KV = vmKm.
From the first equality in Eq. (3.27) we expect Q−1 6 0 since matrix porosity

must reduce in order to accommodate the pressure driven fracture expansion
(see also similar arguments in Berryman and Wang (1995)). Thus, based on the
arguments described in this section we can infer that the explicit decoupling
assumption Q−1 = 0 is concurrent with an upper bound on Q.

−Σ ·n

−Σ ·n

Figure 3.1: Constituent arrangements in the isostrain condition.

3.4.2 Incompressible grain isostrain: (Nα)−1 = Q−1 = 0

We now investigate the coefficient models from Borja and Koliji (2009) under the
assumption ∂ψα/∂t ≈ 0 made by Choo and Borja (2015) and Choo et al. (2016).

In Section 3.2.3, we considered the case ∂ψα/∂t ≈ 0 amounting to (Nα)
−1 =

Q−1 = 0when mapping to the constitutive model shown in Eqs. (3.5) to (3.7). It is
of interest to see under what conditions the result (Nα)−1 = Q−1 = 0 arises when
starting from the void space coefficient models built from constituent mechanical
properties (e.g. those from Khalili and Valliappan (1996)).
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The set of explicit assumptions: (Nα)
−1 = Q−1 = 0, can easily be derived

from the microscale by first considering isostrain (and thus Q−1 = 0). With
the resulting bounds arising from isostrain, Eqs. (3.33) to (3.34), along with the
assumption Ks = ∞, we obtain (Nα)

−1 = 0 using the coefficient models of
Khalili and Valliappan (1996) (Table 3.1, with Eq. (2.30) to decompose (Mα)

−1).
We therefore refer to conditions resulting in (Nα)

−1 = Q−1 = 0 as incompressible
grain isostrain.

As far as parameters in the balance of mass are concerned, Eq. (3.16) and
Eq. (3.17) are identical when assuming ∂ψα/∂t ≈ 0 in the former and incom-
pressible grain isostrain in the latter. However, differences in mass balance beha-
viour may be introduced through the way in which Bα is modelled. It is therefore
of interest to see how the effective Biot coefficients calculated using the respect-
ive void space coefficient models under incompressible grain isostrain compare
to the bounds established in Eqs. (3.33) to (3.34).

Under the incompressible grain assumption the upper bound for Bm now
reads Bm = vm. Accordingly, when using KV = vmKm and Ks = ∞ in the coef-
ficient models of Khalili and Valliappan (1996) we can see that the bounds on
Bm = vm and Bf = φ0f are naturally recovered (Table 3.1). In contrast, from
Table 3.1 the effective Biot coefficients calculated using the models of Borja and
Koliji (2009) are Bm = ψm and Bf = ψf, since B = 1 for incompressible solid
material. Due to the differences in effective Biot coefficients (and thus other con-
stitutive parameters), we expect disparity in poroelastic behaviour when using
the two sets of void space coefficient models.

3.4.3 Isostress: A23(= A32) = 0

Finally, we study the pure stiffness setting with the condition A23 = 0 in light of
the assumptions made in Nguyen and Abousleiman (2010), Kim et al. (2012),
Mehrabian and Abousleiman (2014) and Mehrabian (2018). Given that cross
coupling coefficients are equivalent in both the variation in fluid volume con-
tent and variation in Lagrangian porosity formulations, we write

A23 =
∂ξm

∂Pf

∣∣∣ dΣ=0
dPm=0

≡ ∂φm
∂Pf

∣∣∣ dΣ=0
dPm=0

= 0. (3.35)

In Section 3.4.1 we established that a drained matrix experiencing no deform-
ation is concurrent with a average mean matrix stress variation of zero. Con-
sidering the macroscopic stress constraint in Eq. (3.35) (dΣ = 0) and the stress
partition in Eq. (2.35), if dΣ = dσm = 0 then dσf = 0. Accordingly, (A23)−1 = 0

holds under a stress distribution condition referred to as isostress

dΣ = dσm = dσf, Bm = Bf = 1. (3.36)
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Following similar logic as for the isostrain case, we deduce that (A23)
−1 = 0

holds when
[
Σ0 = σ0m = σ0f

]
≡ [Σ = σm = σf]. Further, in the case with an initial

stress state of zero, the stress equivalence at the updated state is trivially satisfied
by Σ = σm = σf = 0. Lastly, equivalence of microscopically averaged stresses and
macroscopic stress under isostress in Eq. (3.13), gives rise to the average stress
concentration factors relation in Eq. (3.36).

The classical configuration for the isostress condition, are constituent elements
arranged transversely to the direction of applied load (Fig. 3.2a). For isotropic
fracture networks, a more frequent configuration that shows isostress behaviour
is within a solid-fluid suspension (Fig. 3.2b). Such a situation may occur if a net-
work of open fractures totally permeates the solid, thus completely dissociating
the matrix material.

−Σ ·n

−Σ ·n
(a) Transverse arrangement

−Σ ·n

−Σ ·n
(b) Solid-fluid suspension

Figure 3.2: Constituent arrangements leading to the isostress condition.

Under isostress, the bulk modulus of the heterogeneous material is then the
Reuss average of the constituent bulk moduli (Reuss 1929),

1

K∗
=

1

KR
=
vm

Km
+
vf
Kf

. (3.37)

Hill (1963) showed that the Reuss average is a lower bound on K∗, and is nat-
urally obtained by substitution of Bf = 1 into Eq. (3.11), or from A23 = 0 in
Table 3.2. In the former we assume S∗ ≈ (K∗)−1 on the basis of the statistical
homogeneity assumptions introduced in the previous chapter. In analogy to KV,
use of KR for the calculation of the effective constitutive parameters will result
in bounds on these parameters. We investigate this statement in the remainder
of this section.
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We consider the case when Kf is zero (void space fracture phase). Accordingly,
from Eq. (3.37) K∗ is also zero. From Eq. (3.36) with Eq. (3.5) for dΣ, and Eq. (3.28)
for dσm and dσf, we obtain

BmdPm −BfdPf = Kmdεm − bmdPm = −1dPf. (3.38)

From the required isostress equality dΣ = dσf and thus from Eq. (3.38) we have
BmdPm−BfdPf = −1dPf. Consequently, Eq. (3.38) followed by Eq. (2.104) allows
us to establish the following parameter bounds under isostress

Bm = 0, Bf = 1. (3.39)

From Eq. (3.39) we see that use of the Reuss bound corresponds to an upper
bound on Bf and a lower bound on Bm. Interestingly, the bounds on Bf from
this section and Section 3.4.1 (φ0f 6 Bf 6 1), are very similar to those established
on B for the single-porosity model (φ0 6 B 6 1) (Dormieux et al. 2006).

3.4.4 On moduli upscaling

In Nguyen and Abousleiman (2010), Kim et al. (2012), Kim and Moridis (2013),
Mehrabian and Abousleiman (2014, 2015) and more recently Mehrabian (2018),
isostress is implicitly assumed. Upscaling of constituent moduli is then admit-
ted through the Reuss average. This raises the question as to whether this is a
reasonable approach to upscaling or not?

In the previous section we stated that the Reuss and Voigt average repres-
ent lower and upper bounds for effective moduli respectively. Specifically, these
bounds represent a minimum and maximum limit, between, or at which, effect-
ive moduli arise. However, for the effective bulk modulus of isotropic heterogen-
eous materials, variational bounds by Hashin and Shtrikman (1963) have been
shown in the same paper to be the best possible, given only constituent moduli
and volume fractions. This result is obtained by solving exactly for the effective
bulk modulus of a specific heterogeneous material geometry (composite sphere
assemblage). One then observes that the resultant solution coincides with either
bound, depending on the stiffness of the inclusion relative to the host material.
The lower Hashin-Shtrikman (HS) effective bulk modulus bound is given as

KH− = Kf +
vm

(Km −Kf)−1 + vf(Kf +
4
3Gf)

−1
, (3.40)

where Gf denotes the shear modulus of the fracture material. The upper bound,
KH+ can be determined by swapping subscripts f and m in Eq. (3.40).
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When Gf = 0, such as in a fluid suspension geometry, the HS lower bound
and the Reuss bound coincide. It follows that in this geometry, with the stiffness
of a void space fracture phase (Kf = 0), both the Reuss and HS lower bound
result in KR = KH− = 0. However, in situations when the fracture phase has an
intrinsic stiffness, the Reuss and HS lower bounds may be significantly different
(Watt et al. 1976).

Bounds can be used as a first approach to upscaling under certain geomet-
ries. If a fracture network completely percolates a matrix then it will have the
maximum effect of weakening the rock (Watt et al. 1976). The effective bulk mod-
ulus of the heterogeneous material will then coincide with the HS lower bound
(Boucher 1974; Watt et al. 1976). In the general case fractures are likely to have an
associated stiffness (Jaeger et al. 2009). We thus recommend using the HS lower
bound over the Reuss average as a first approach to upscaling for such geomet-
ries. This procedure is also in line with the assumptions built into the continuum
approach: The continuum assumption is linked to ones ability to define an REV
over which properties can be averaged. For a fractured system, such an REV
cannot be justified if the system is poorly connected (Berkowitz 2002). Use of
the HS lower bound, as a first approach to moduli averaging, thus supports the
notion of a well-connected isotropic dense fracture network, over which an REV
could be defined.

When the underlying material geometry precludes the use of bounds as meth-
ods for upscaling, one must use other homogenisation methods. Comprehens-
ive summaries of such approaches can be found in the works of Aboudi (1991),
Nemat-Nasser and Hori (1993) and Torquato (2002) for example.

3.5 Qualitative analysis using the Mandel problem

In this section we further investigate the physical impacts of different coeffi-
cient modelling concepts and assumptions on the poroelastic response of a dual-
continuum material. To do so we use solutions to the dual-continuum Mandel-
problem from Nguyen and Abousleiman (2010) (Appendix B).

First, we study the effects of including intrinsic fracture properties or not, as
assumed by the coefficient models of Berryman (2002) and Khalili and Valliap-
pan (1996) respectively. Secondly, we consider the effects of implicit decoupling
assumptions, where the constitutive model starts with no pressure coupling. Fi-
nally, we investigate the effects of explicit decoupling assumptions, where the
full constitutive model Eqs. (3.5) to (3.7) is the starting point but inter-continuum
pressure coupling is neglected. As a result, bounds are used for the calculation
of K∗ (and thus the calculation of the effective constitutive coefficients).
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Finally, in the remainder of this analysis we assume our dual-continuum to be
a dual-porosity material. Subsequently, the effective permeability of the matrix
is zero. Further, we assume a natural reference state for which the initial stress,
strain and continuum pressures are zero.

3.5.1 Dual-continuum Mandel problem

The problem geometry is described as an infinitely long cuboid such that the
plane-strain condition holds (i.e. uz = 0 and qm,z = qf,z = 0) (Fig. 3.3). The
domain is sandwiched between two impermeable rigid plates, and is free to dis-
place both laterally and vertically. A constant compressive force,

∫h1
−h1

−Σyy dx =

F, is applied at the rigid plate boundaries, ΓN and ΓS (north and south boundar-
ies respectively). The east and west boundaries, ΓE and ΓW respectively, are then
free to drain such that Pm = Pf = 0 at these boundaries.

In summary the boundary conditions are,

Σxx = Σxy = 0 on ΓE ∪ ΓW , (3.41)

Pm = Pf = 0 on ΓE ∪ ΓW , (3.42)

Σxy = 0 on ΓN ∪ ΓS, (3.43)

qm,y = qf,y = 0 on ΓN ∪ ΓS, (3.44)∫h1
−h1

−Σyy dx = F on ΓN ∪ ΓS, (3.45)

where only a quarter of the domain need be considered due to the symmetry of
the problem (Fig. 3.3).

For an isotropic dual-continuum material Eq. (2.22) can be rewritten (using
Voigt notation for the tensors), as

Σ = 2G∗E+ λ∗E1−
∑
α=m,f

BαPα1 (3.46)

where λ∗ = (2G∗v∗)/(1− 2v∗) is the macroscopic Lamé constant, in which G∗ and
v∗ are the macroscopic shear modulus and Poisson’s ratio respectively. Further,
we define the macroscopic strain-displacement compatibility relation

E = ∇U =
1

2

(
∇U+∇>U

)
. (3.47)

Substitution of Eq. (3.47) into Eq. (3.46), followed by injection of the result into
Eq. (2.4) yields

G∗∇2U+ (λ∗ +G∗)∇E =
∑
α=m,f

Bα∇Pα1− ρg, (3.48)
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Figure 3.3: Mandel problem setup.

assuming γ ′ ≈ 0. It can be shown that ∇2U = ∇E, with which, and in the
absence of body forces, Eq. (3.48) reduces to

∇E =
∑
α=m,f

Cα∇Pα, (3.49)

where Cα = [Bα(1− 2v
∗)]/[2G∗(1− v∗)] is the consolidation coefficient belonging

to material α.
Integration of Eq. (3.49) leads to

E =
∑
i=m,f

CαPα + I(t), (3.50)

where I(t) is an integration function. Use of Eq. (3.50) in Eq. (3.17) leads to
a set of diffusion equations written entirely in terms of continuum pressures.
Solutions to the resulting system of equations are presented in Appendix B,
which are based on the original works of Nguyen and Abousleiman (2010).

3.5.2 Data for analysis

For the qualitative analysis we use a quarter of a 2 m × 2 m deformable por-
ous domain. The studied domain is subjected to a constant top boundary force,∫1
0 −2×10

6 Pa dx = −2 MPa ·m. Where possible we use values for material prop-
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erties that are typically encountered in naturally fractured carbonate reservoirs.
We specify the following mechanical properties for all test cases: Km = 20 GPa,
Ks = 70 GPa, and v∗ = 0.2 (Wang 2000). Values for K∗ and Kf are problem de-
pendent. In cases where no rigorous justification is used, we choose values for K∗

and Kf without any strict upscaling procedure. In these instances, parameter val-
ues are chosen either arbitrarily (but still lying between modulus bounds) or as
fractions of already used stiffness moduli. Accordingly, we denote stiffness mod-
uli, whose values are specified without a rigorous justification, by a superscript
†.

In all test cases we set fluid properties typical for those of water, such that
ρ0l = 1000 kg m-3, µl = 1 cp and Kl = 2.5 GPa. Rock properties related to fluid
storage and flow for the test cases are φ0m = 0.05, km = k ′ = 0.01 md 1 and
φ0f = 0.01 (Nelson 2001). Volume fractions of each material are given as vf = 0.01
and vm = 1 − vf = 0.99. We assume a dual-porosity material, thus Km = 0.
For the effective fracture permeability we use the cubic law (Witherspoon et al.
1980), using a fracture aperture of af = 1.4× 10−5 m and fracture spacing ` =
2.8× 10−3 m. Accordingly, we calculate Kf ≈ 1000 md. Note, af and ` were also
used for the calculations of φ0f and vf.

3.5.3 Test cases

We consider one test case to investigate the differences between void space and
stiff fracture coefficient models, and three test cases to investigate implicit and
explicit decoupling assumptions. To calculate the effective constitutive paramet-
ers we make use of the models provided in Table 3.1. For each case, analytical
solutions to the dual-continuum Mandel problem are compared. Differences in
solutions for each case then arise due the parameter permutations described in
the case descriptions that follow.

Case 1: Intrinsic fracture properties

In Case 1, we are interested in comparing the differences that arise when con-
sidering intrinsic fracture properties. In particular, it is of interest to investigate
if coefficient models from Khalili and Valliappan (1996) could still be used even
when a fracture has an associated phase stiffness.

To build a hypothesis for when to use Khalili and Valliappan (1996), we con-
sider situations for which we are close to the void space approximation for
the fracture phase. In these cases, the initial intrinsic porosity is close to unity
(ϕ0f ≈ 1), and the fracture phase stiffness is likely to be orders of magnitude
lower than the grain stiffness (Kf � Kfs). As a result, from Eq. (2.69) and Eq. (3.26),

1
1 darcy (d) = 9.87 ×10−13 m2.
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we expect the intrinsic fracture Biot coefficient and modulus respectively to ap-
proach the following: bf = 1 and (mα)

−1 = (Kl)
−1. Accordingly, we anticipate

that void space coefficient models could substitute coefficient models using in-
trinsic fracture properties, when the fracture phase approaches the void space
approximation.

To test our hypothesis we consider various combinations of ϕf and Kf, whilst
using coefficient models from Khalili and Valliappan (1996) and Berryman (2002).
In the former, ϕf and Kf are not explicitly included in the parameter formu-
lations. However, if ϕf and Kf are close to their void space estimates, we ex-
pect differences between models to be negligible. We vary fracture moduli mag-
nitude with respect to the solid grain modulus. Accordingly, we consider one
case where K†f = Kfs/1750 and another case where K†f = Kfs/35. For the fracture
solid stiffness we take Kfs = Ks.

We consider a heterogeneous material with a network of fractures that com-
pletely dissociates the matrix. Upscaling for K∗ is then done using the HS lower
bound. As a note, use of void space coefficient models implies Kf = 0. However,
we relax this requirement for the upscaling procedure and use the same effective
bulk modulus for both coefficient model cases. The only differences between the
constitutive models then come from the inclusion of intrinsic fracture properties
in the other effective coefficient models.

Case 2: Implicit decoupling assumptions

For Case 2, we investigate the impact of implicit decoupling assumptions. This
is particularly relevant given the use of such decoupled constitutive models in
the recent works of Cordero et al. (2019) and Hajiabadi and Khoei (2019). Fur-
ther, in Khalili (2003) the author showed that implicit decoupling led to non-
physical matrix and fracture pressure responses for the uniaxial case considered
therein. However, the precise link between implicit decoupling and the observa-
tions made by Khalili (2003) still remains an open question.

To mimic implicit assumptions we consider Q−1 = 0 and A23 = 0 separately,
and make no acknowledgement of these assumptions with respect to relations
between mechanical properties. When considering Q−1 = 0 we use coefficient
models from Khalili and Valliappan (1996). When considering A23 = 0 we use
coefficient models Berryman (2002) with with Kf = 0. We reference results calcu-
lated using the described parameter models against ones for which no decoup-
ling is made with coefficient models from Khalili and Valliappan (1996).

Since we do not enforce relations on K∗ through implicit decoupling we take
an arbitrary value of K∗,† = 10 GPa. As a result bounds on the effective con-
stitutive coefficients are not enforced.
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Case 3: Explicit decoupling assumption: Isostrain

For Case 3, we investigate the effect of assuming isostrain at the microscale
whilst making use of coefficient models from Khalili and Valliappan (1996). Un-
der isostrain the effective and constituent bulk moduli are linked by the Voigt
average (KV = 19.8 GPa using the volume fractions defined in Section 3.5.2).
This leads naturally to bounds on the effective constitutive coefficients, with
Q = 0 representing an upper bound. We compare the isostrain results to those
computed when using coefficient models with a homogenised bulk modulus co-
inciding with the HS upper bound and an arbitrary value (KH+ = 19.5 GPa and
K∗,† = 10 GPa respectively).

Following Section 3.4.2, we also compare results when using the void space
coefficient models of Borja and Koliji (2009) under the assumption of ∂ψα/t = 0,
and Khalili and Valliappan (1996) under the assumption of incompressible grain
isostrain. We use KV = 19.8 GPa and Ks = ∞ for both sets of coefficient models
in this latter isostrain investigation.

Case 4: Explicit decoupling assumption: Isostress

For Case 4, we study the effect of assuming isostress at the microscale. In pre-
vious works the coefficient models of Berryman (2002) have been used with an
explicit decoupling assumption (A23 = 0) that implies isostress (Kim et al. 2012;
Mehrabian and Abousleiman 2014; Mehrabian 2018).

To avoid cases where K∗ = 0 we consider the fracture phase to have the fol-
lowing properties: ϕf = 0.7 with Kfs = Ks and K†f = Km/500. Coefficient models
from Berryman (2002) are then used.

We compare results between models parameterised by calculating the effective
bulk modulus with the Reuss average (KR = 3.3 GPa), the HS lower bound
(KH− = 5.7 GPa) and an arithmetic average of the HS bounds (KAH = 12.7 GPa).
The latter modulus is tested in analogy to a dual system with inclusions that
do not have the maximum weakening effect on the host material. One example
would be a fracture system composed of a network of open and closed fractures.
Another would be aggregate material.

3.6 Results and discussion

In the following, we show results of the test cases described above for the dual-
continuum Mandel problem. Results are given in terms in evolutions of matrix
and fracture pressures, and vertical strain with time.

To aid in our analysis for pressure and vertical strain we introduce the follow-
ing notions of the instantaneous problem and the time-dependent problem. In both
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cases, mechanical equilibrium is governed for this system by Eq. (3.48). In the in-
stantaneous problem, fluid pressure for continuum α can be shown to be a state
function of total stress and fluid pressure Pβ. In the time-dependent problem,
continuum pressures are governed by way of the diffusion equation, Eq. (3.17).

The instantaneous problem considers the change of the system from an un-
loaded state t0 to a loaded state t0+ upon application of instantaneous loading.
Under such conditions the rate of loading is infinitely faster than the rate of
inter-continuum fluid transfer (Coussy 2004). Consequently, each continuum is
undrained m

t0+
l,α = m

t0
l,α. From Eqs. (3.8) to (3.9), together with the undrained

condition (dml,α = 0) we can recover

Pα =

(
1

Mα
−
Mβ

(Q)2

)−1(MβBβ

Q
−Bα

)
E. (3.51)

We note that Eyy ∝ E. Substitution of Eq. (3.5) into Eq. (3.51) leads to

Pα = −
Mαbα

[K∗ +Mα(Bα)2]

[
Σ+

(
Bβ +

K∗

BαQ

)
Pβ

]
. (3.52)

3.6.1 Case 1: Intrinsic fracture properties

Fig. 3.4a and Fig. 3.4c show matrix and fracture pressure evolutions with varying
intrinsic fracture properties. We find a good match in both matrix and fracture
pressure evolutions using coefficient models from Khalili and Valliappan (1996)
and Berryman (2002) when the fracture is almost all void space (ϕf ≈ 1). In
this case the fracture phase stiffness is orders of magnitude lower than the solid
grain stiffness (Kf � Kfs) (Fig. 3.4a). Even when the intrinsic fracture porosity is
diminishing (ϕf = 0.2), provided the fracture phase stiffness is orders of mag-
nitude lower than the solid stiffness, the difference between early time matrix
pressures with the different coefficient model formulations is small (Fig. 3.4a).
However, when the fracture bulk modulus is only an order of magnitude lower
than the solid modulus (Kf 6� Kfs), early time fracture pressure differences be-
come measurable as intrinsic porosity decreases (Fig. 3.4c). This phenomenon
can be explained by considering the intrinsic Skempton coefficient. Accordingly,
we consider an alternative formulation for Bf to that shown in Eq. (3.25) (Cheng
2016),

Bf = 1−
ϕfKf(K

f
s −Kl)

Kl(Kfs −Kf) +ϕfKf(K
f
s −Kl)

. (3.53)
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Use of Eq. (3.53) allows us to cast our observations as a bounding problem such
that

Bf(ϕf = 1,Kf) < Bf(ϕf < 1,Kf) 6 1. (3.54)

The lower bound in Eq. (3.54) is a fictitious one in that technically materials with
an intrinsic porosity of one should also have a zero stiffness. However, accepting
this contradiction is useful in approaching the bounding problem from a purely
quantitative point of view. For the upper bound, Eq. (3.54) shows that as ϕf
approaches zero, Bf must asymptotically approach one.

If the lower bound in Eq. (3.54) for a given Kf is close to one then changes in
intrinsic fracture porosity are negligible due to the proximity of the lower and
upper bounds. This is the case when Kf � Kfs. If the fracture phase stiffness
is not orders of magnitude lower than the solid stiffness, then the lower bound
of Bf may be significantly less than one. In this case, changes in Bf cannot be
captured when using void space coefficient models alone. Consequently, with
these models early time fracture pressure is underestimated as ϕf decreases
(Fig. 3.4c).

Fig. 3.4b and Fig. 3.4d show the variation in vertical strain for the softer and
stiffer fracture phases respectively. In Fig. 3.4b, the strain evolutions are almost
identical when using the more compliant fracture phase for the range of intrinsic
fracture porosities. This observation is coupled to the similarity in pressure evol-
utions. Whilst induced fracture pressures are significantly larger when fracture
stiffness and intrinsic porosity are non-negligible, Fig. 3.4d shows very little dif-
ferences in vertical strain across the whole intrinsic porosity range. This is a dir-
ect consequence of the algebraic coefficient of strain in Eq. (3.51) for the fracture
phase, which scales proportionally with the variation in fracture pressure.

3.6.2 Case 2: Implicit decoupling

Fig. 3.5 presents the pressure and vertical strain results for the implicit decoup-
ling assumptions test case. When assuming A23 = 0, the matrix and fracture
pressure evolutions are almost identical to the reference case (Fig. 3.5a). Con-
sequently, vertical strains are also very similar to the reference for this decoup-
ling case (Fig. 3.5b). When assuming Q−1 = 0, the early time matrix and fracture
pressures are measurably lower than the reference case (Fig. 3.5a). Accordingly,
the early time vertical strain is also greater than the reference when Q−1 = 0

(Fig. 3.5b).
The results in Fig. 3.5a suggest that the assumption Q−1 = 0 has the most

noticeable effect on the poroelastic behaviour of the dual-medium. As discussed
in Section 3.4.1 we would expect Q−1 < 0. From Eq. (3.52), setting Q−1 = 0
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Figure 3.4: Matrix (‘M’) and fracture (‘F’) pressure (a, c), and vertical strain (b, d) evolu-
tions for the dual-continuum Mandel problem whilst considering the effects
of intrinsic fracture properties. ‘K&V’ denote models from Khalili and Val-
liappan (1996). Different values of intrinsic fracture porosity ϕf = 1 (‘K&V’),
ϕf = 0.8, ϕf = 0.2, and hence different coefficient models, are tested for
K
†
f = K

f
s/1750, (a, b), and K†f = K

f
s/35, (c, d).

thus has the effect of removing a pressure source from continuum α. Removal of
this poroelastic coupling explains the lower than expected induced matrix and
fracture pressures. Accordingly, these results and discussion provide an explana-
tion for the results observed in Khalili (2003). Specifically, removal of the matrix
pressure source explains the discontinuous pressure drop shown by the fracture
phase in their Fig. 1. Additionally, removal of the fracture pressure sink explains
the nonphysical pressure excitation shown by the matrix phase in their Fig. 1.
Lastly, from Eq. (3.51) we can see Pα ∝ E−1. Underestimated pressures therefore
explain the over estimated strain in the current work when taking Q−1 = 0.

In contrast, Eq. (3.21) shows that although A23 = 0, Q−1 6= 0. The pressures
in each continuum therefore remain poroelastically coupled with respect to the
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mixed compliance setting. This coupling explains why we still observe good
matches when A23 = 0 versus the reference.
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Figure 3.5: Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions
for the dual-continuum Mandel problem whilst considering macroscale as-
sumptions Q−1 = 0 and A23 = (A32) = 0. Results are referenced against
the set of coefficient models from Khalili and Valliappan (1996) for which no
assumptions have been made.

The current results suggest that assuming A23 = 0 is a reasonable implicit
assumption to make. However, we advise caution when interpreting this result.
Based on the results in this section it would be easy, and incorrect, to use them
as a justification for assumptions made at the microscale. In Section 3.4 it was
shown that explicit assumptions affect all of the constitutive coefficients due to
bounds on bulk moduli. The remainder of this results section aims at qualitat-
ively supporting these findings.

3.6.3 Case 3: Explicit decoupling - isostrain

Fig. 3.6 gives the results for the first isostrain test case. Specifically, we compare
results between models parameterised by calculating K∗ with the Voigt average
(isostrain), the HS upper bound and an arbitrary value. Fig. 3.6a shows in the
isostrain and HS upper bound cases, matrix pressure evolutions appear to be
almost identical. However, for the case using K∗,†, the fracture pressures are sig-
nificantly higher. Further, for this case the matrix pressures are slightly higher
at early to middle times relative to the aforementioned upper bound cases. The
contrast in fracture pressures is most pronounced between the isostrain and ar-
bitrary effective bulk modulus cases. For the induced problem, different values
of K∗, which go on to affect constitutive coefficient calculations, explain the dif-
ferences in pressure by way of Eq. (3.52).
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An alternative, heuristic approach to explaining the pressure distributions in
Fig. 3.6a can be achieved by considering the required geometry that would be
necessary to give a K∗ that is lower than the Voigt average. Departure from
this upper bound occurs when inclusions are arranged so as to weaken the host
material. These inclusions then take on a greater portion of the distributed stress.
As a result, we observe a greater induced fracture pressure when using a lower
value of K∗ compared to the Voigt bound, due to the proportionality between
stress and pressure.

The early time vertical strains in Fig. 3.6b can be explained by way of Eq. (3.51)
or through the heuristic argument. With the latter, towards the upper bounds of
K∗ the matrix supports the majority of deformation. Since the matrix is stiff,
deformation is low. In contrast, when fractures are arranged such that they have
a greater weakening effect on the host material, deformation is high.

At later times, vertical strain between both the upper bound and the K∗,† cases
diverge. Towards the upper bounds for K∗, Bf < Bm. In the case of isostrain this
fact is easily seen from the relations in Eqs. (3.33) to (3.34). The magnitude of Bm
means that deformation is more strongly coupled to differences in matrix pres-
sure relative to fracture pressure by way of momentum balance Eq. (3.48). This
explains the growth in vertical strain separation at later times shown in Fig. 3.6b.
Of further interest, considering these both represent upper bounds on the ef-
fective bulk modulus, is the difference in early time fracture pressures between
the isostrain and HS upper bound cases. The early time fracture pressure asso-
ciated with the HS upper bound is over double that of the isostrain case. This
highlights the need for caution before making assumptions on the distribution
of strain between constituents.

Fig. 3.7a displays the results for the incompressible grain isostrain investiga-
tion. For the case of coefficient models from Khalili and Valliappan (1996), the in-
duced matrix pressure is significantly larger than the induced fracture pressure.
Conversely, when using coefficient models from Borja and Koliji (2009) with the
assumption ∂ψα/∂t ≈ 0, induced matrix and fracture pressures are equal. This
can be explained by considering Eq. (3.51) which allows us to equate induced
variations in matrix and fracture pressures such that

(
1

Mm
−
Mf

(Q)2

)(
MfBf
Q

−Bm

)−1

Pm

=

(
1

Mf
−
Mm

(Q)2

)(
MmBm

Q
−Bf

)−1

Pf.

(3.55)
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Figure 3.6: Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions
for the dual-continuum Mandel problem considering isostrain. ‘KV’ denotes
coefficient models for which isostrain is assumed (KV = 19.8 GPa). ‘KH+’
are models calculated using the upper Hashin-Shtrikman bound for KH+

(19.5 GPa). ‘K∗,†’ are coefficient models calculated with an arbitrary bulk
modulus of 10 GPa.

Assuming ∂ψα/∂t ≈ 0 together with the effective Biot coefficient expressions
from Borja and Koliji (2009) (Table 3.1), Eq. (3.55) reduces to

(
φ0m
Kl

1−φs
φ0m

)
Pm =

(
φ0f
Kl

1−φs

φ0f

)
Pf, (3.56)

from which it is easy to see that Pm = Pf.
Under isostrain, we would expect the distribution of stress required to main-

tain strain uniformity between matrix and fractures to lead to disparate matrix
and fracture pressures. The result Pm = Pf therefore suggests that the closure
condition ∂ψα/∂t ≈ 0 may be an even stronger assumption than incompressible
grain isostrain alone.

Fig. 3.7b shows vertical strain is lower at early times when using coefficient
models from Khalili and Valliappan (1996) under incompressible grain isostrain.
This can be explained by Eq. (3.51), which is affected by differences in Bα arising
from each set of coefficient models.

In light of the discussions in Section 3.4.2 and the results presented herein,
assuming ∂ψα/∂t ≈ 0 appears to be a strong closure assumption to make. Thus,
we suggest further development of a constitutive model for variations in ψα,
along with its relationship to the constitutive model shown in Eqs. (3.5) to (3.7).
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Figure 3.7: Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions
for the dual-continuum Mandel problem considering incompressible grain
isostrain. ‘K&V’ and ‘B&K’ denote coefficient models associated with Khalili
and Valliappan (1996) and Borja and Koliji (2009) respectively. The latter in-
cludes the assumption ∂ψα/∂t ≈ 0. This allows us to map the effective stress
model from Borja and Koliji (2009) onto the constitutive model Eqs. (3.5)
to (3.7).

3.6.4 Case 4: Explicit decoupling - isostress

Fig. 3.8 gives the results for the isostress test case. From Fig. 3.8a, we see up-
scaling methods leading to a stiffer homogenised bulk modulus lead to a lower
induced fracture pressure. Subsequently, pressure diffusion occurs earlier in the
same continuum. This is the case when using the arithmetic mean of the HS
bounds. Non-monotonic rises in matrix and fracture pressures are more pro-
nounced for more compliant heterogeneous materials. This is the case when
assuming isotress (Reuss average) and the HS lower bound. Additionally, more
compliant materials exhibit a faster decrease in matrix pressure at later times
when compared to the stiffer modulus case.

Non-monotonic pressure rises are often referred to as the Mandel-Cryer effect
within literature (Wang 2000; Cheng 2016). We predict that such rises lead to
greater pressure differentials at middle to late times between the matrix and
fracture domains. This would explain the higher rate of matrix pressure diffusion
in the compliant material cases.

Fig. 3.8b shows pronounced distinctions in vertical strain for the three differ-
ent upscaling cases. As expected, the (stiffer) arithmetic mean of the HS bounds
shows the lowest deformation. Of more interest, considering that they both cor-
respond to lower bounds, are the difference in strains between the cases of
isostress and HS lower bound. Vertical strain at late times is approximately 75%
larger when assuming isostress compared to when using the HS lower bound.
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Figure 3.8: Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions
for the dual-continuum Mandel problem whilst considering isostress (Reuss
average) and other upscaling approaches. ‘KR’ denotes coefficient models for
which isostress is assumed (KR = 3.3 GPa). Notation ‘KH−’ and ‘KAH’ are
models calculated using the lower Hashin-Shtrikman bound and the arimth-
metic mean of the Hashin-Shtrikman bounds for K∗ respectively (5.7 GPa
and 12.7 GPa respectively).

The cause of the difference in vertical strains between the isostress and HS
lower bound cases can be explained using similar discussions as to those used in
Sections 3.6.2 and 3.6.3. First, using the heuristic argument the HS lower bound is
higher than the Reuss bound suggesting that the matrix is capable of supporting
a greater distribution of strain. This explains the difference in vertical strain at
early times. Late time differences can be explained by the differences in fracture
pressure. In contrast to Section 3.6.3, towards the lower bounds for K∗, Bf >
Bm. The magnitude of Bf means that deformation is more strongly coupled to
differences in fracture pressure relative to matrix pressure by way of momentum
balance Eq. (3.48).

With a view toward multi-continuum generalisations, based on the results in
Section 3.4.3 and the qualitative results herein we recommend care before assum-
ing isostress. This stress distribution has strong geometrical implications that,
without experimental substantiation to prove otherwise, would seem unlikely to
hold within a multi-continuum material.

3.7 Conclusions

This chapter investigated the relationships between previously introduced con-
stitutive models and the impacts of various methods of decoupling used within
the literature. In summary, we identified three main modelling approaches. These
approaches differ in the quantities, and/or modelling assumptions, used for the
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calculation of the effective constitutive coefficients. The quantities and modelling
assumptions used in these approaches are summarised as follows:

1. Constituent mechanical properties; assuming the high permeability, low
storage continuum is all void space (no intrinsic fracture properties),

2. Constituent pore fractions; assuming the high permeability, low storage
continuum is all void space,

3. Constituent mechanical properties, including intrinsic fracture properties.

With respect to 1. and 3. above, we showed how these previously introduced
constitutive models are special cases of the one derived in Chapter 2.

Based on the findings in this chapter we recommend further work on algeb-
raic closure conditions for models built using continuum pore fractions (type 2.
models). Comparing coefficient models 1. and 3. we found the effects of intrinsic
fracture properties become measurable when there are significant deviations
from the intrinsic poroelastic constitutive coefficients of a void space fracture
continuum. In this case ϕf < 1 and Kf 6� Kfs, and it is advisable to use coefficient
models where intrinsic fracture properties are naturally incorporated. We envis-
age the aforementioned conditions, and thus real benefit of using models type 3.
models, to be observed when considering nonlinear poromechanics, where the
internal structure of the high permeability, low storage continuum is evolving
(e.g. fracture closure) thus leading to cases where ϕf < 1 and Kf 6� Kfs. However,
in the linear case, our results show models of type 1. give very good matches to
models of type 3. even when ϕf < 1, provided Kf � Kfs. Therefore as a first ap-
proach we recommend the use of type 1. models for poroelastic dual-continuum
modelling given that we expect the high permeability, low storage continuum to
be mechanically weaker than solid grains.

The second set of recommendations is formed on the basis of our investiga-
tions into implicit and explicit decoupling assumptions. In both cases mechanical
coupling between continuum pressures is neglected. In the former we showed
that implicit assumptions can lead to the removal of pressure sources leading
to physically unreliable results. We therefore recommend the use of a full con-
stitutive system where possible.

Even with a full constitutive system, explicit assumptions have been made
as a passage to simplifying relations between effective and constituent mod-
uli without considering the physical implications of their use. In this case we
showed that explicit decoupling assumptions are coincident with bounds on ef-
fective moduli that arise naturally under end-member states of isostrain and
isostress. However, for isotropic heterogeneous materials it is well known that
the bounds obtained under isotrain and isostress can be loose, and that tighter
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bounds using similar quantities are readily available within literature. Our qual-
itative investigations showed clear differences in poroelastic behaviour when
using these different bounds.

To conclude, bounds arising from isostrain and isostress states, which are
concurrent with explicit decoupling assumptions, can provide a useful means
for guiding our intuition into multiscale poroelastic behaviour, given their ease
of computation. However, for practical subsurface applications, we recommend
against the use of explicit decoupling assumptions. Specifically, these assump-
tions have physical and geometrical implications that are unlikely to be justified
within isotropic multiscale materials.
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Part II

Numerical modelling



4
Numerical modelling framework

In this chapter we provide the details of the framework used for the numerical mod-
elling of poroelastic dual-continua. In Section 4.1, starting from equations introduced
in the first chapter, we give the discrete set of equations that encompass the numerical
framework used herein. In doing, we introduce the various discretisation and solution
strategies necessary for our numerical approach. In Section 4.2, we benchmark our code
against the analytical solutions for the poroelastic model problem introduced in the third
chapter. In Section 4.3, we then demonstrate the flexibility of the modelling approach on
a non-conforming geological grid. In Section 4.4, we summarise this chapter whilst of-
fering recommendations for future work. The contents of this chapter are based on work
done in Ashworth and Doster (2019a) and Ashworth and Doster (2020). Finally, the
framework in this chapter has been written as a module for the open-source Matlab

Reservoir Simulation Toolbox (Lie 2019). The contents of the module can be found in:
https://bitbucket.org/mashworth92/dual-continuum-mech

4.1 Numerical framework

Within the reservoir simulation community, the numerical modelling of coupled
flow and deformation processes is generally done using dedicated software for
each subproblem. For flow, the finite-volume method (FVM) is typically used,
and for deformation (mechanics) the finite-element method (FEM). The former
guarantees local mass conservation whilst the latter is naturally suited for the dis-
cretisation of the self-adjoint mechanical problem. For flow problems the mass
conservation property is attractive. In particular, for highly permeable media
such as a fractures there is significant potential for discontinuities at sharp pres-
sure interfaces (e.g. a drainage boundary) (Yoon and Kim 2018). Coupling dif-
ferent software is an important consideration and is the goal behind sequential
coupling strategies (Kim et al. 2009). Alternatively, provided we have easy ac-
cess to the full multiphysics system of equations, we can solve the system mono-
lithically (fully coupled). To date, the vast majority of poroelastically coupled
dual-continuum implementations have been fully coupled finite-element codes
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(Lewis and Ghafouri 1997; Bai et al. 1999; Khalili et al. 2000; Pao and Lewis 2002;
Fornells et al. 2007; Choo and Borja 2015; Choo et al. 2016).

The heterogeneous nature of subsurface geology makes the use of unstruc-
tured grids desirable to honour complex features such as faults and explicitly
defined fractures (Karimi-Fard et al. (2003); Prévost et al. (2005)). However, in
FEM the user is limited by the availability of basis functions, which for gen-
eral polyhedral cells are restricted to certain geometries or require costly com-
putation (Chi et al. 2017). A generalisation of FEM to general polygonal and
polyhedral cells called the Virtual Element Method (VEM) has been introduced
(Beirão da Veiga et al. 2013, 2014). In this, the basis functions are never expli-
citly called. Instead the method is understood entirely through its degrees of
freedom, which are well defined. This feature makes VEM an attractive discret-
isation for mechanical problems on grids which would otherwise challenge the
basis function requirements in FEM.

With the benefits of FVM for flow and VEM for mechanical problems on com-
plex grids, a hybrid FVM-VEM framework has been previously introduced by
Andersen et al. (2017a,b), for single-porosity materials. In this chapter we extend
this framework to dual-continuum materials. Accordingly, we introduce the key
components of the framework therein, benchmark it against analytical solutions,
and test it on a geological grid.

4.1.1 Strong form

To start, we consider the conservation statements Eqs. (2.2) to (2.4) introduced in
Section 2.2. Introducing the constitutive relations from the remainder of Chapter 2

into these balance laws, whilst also maintaining the assumptions introduced in
Section 2.2, leads to the following set of equations

∇ · (C∗ : E−BmPm −BfPf) = 0, (4.1)

∂

∂t

(
Bm : E+

Pm

Mm
+
Pf
Q

)
−∇ ·

(Km
µl
· ∇Pm

)
=

κk ′
µl

(Pf − Pm) +Ψm, (4.2)

∂

∂t

(
Bf : E+

Pm

Q
+
Pf
Mf

)
−∇ ·

(Kf
µl
· ∇Pf

)
=

κk ′
µl

(Pm − Pf) +Ψf, (4.3)

where we have included volumetric source terms Ψα for continuum α and as-
sume isotropy of the underlying matrix material.

We consider the conservation equations over a domain, ΩD ⊂ Rd bounded by
∂ΩD. The domain boundary is separated into disjoint boundary segments cor-
responding to Dirichlet and Neumann boundary conditions for the mechanical
and flow problems. For the mechanical problem this implies displacement (Γu)
and traction (Γ t) boundary conditions. To ensure well-posedness Γu ∪ Γ t = ∂ΩD
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and Γu ∩ Γ t = ∅. For the flow problem the boundary conditions for a given con-
tinuum are pressure (Γpα ) and flux (Γqα ). Again, for a well-posed problem we have
Γ
p
α ∪ Γqα = ∂ΩD and Γpα ∩ Γqα = ∅.

The strong form is finally defined as: Find U, Pm and Pf that satisfy Eqs. (4.1)
to (4.3) subject to boundary conditions:

U = Û on Γu, (4.4)

Σ ·n = T̂ on Γ t, (4.5)

Pm = P̂m on Γpm, (4.6)

qm ·n = q̂m on Γqm, (4.7)

Pf = P̂f on Γpf , (4.8)

qf ·n = q̂f on Γqf , (4.9)

with initial conditions

U = U0, Pm = P0m, Pf = P
0
f , (4.10)

for all (X, t) ∈ (ΩD × t = 0).
The single-porosity linear poroelastic model can be recovered from Eqs. (4.1)

to (4.10) under the assumption P = Pm = Pf and combining Eq. (4.2) and
Eq. (4.3).

4.1.2 Weak form

The weak formulation of the strong form introduced previously requires the
definition of the appropriate function spaces. Accordingly, solution spaces for
continuum pressure and the displacements are SPα = L2(ΩD) and SU = {U ∈
H1(ΩD)d : U = Û on Γu} respectively, where L2 and H1 are the typical square
integrable and first-order Sobolev function spaces. Weighting function spaces
are then defined as WPα = L2(ΩD) and WU = {η ∈ H1(ΩD)d : η = 0 on Γu}.

To progress, we compare trial functions against weight functions, leading to
the weak form defined as: Find (U,Pm,Pf) ∈ (SU × SPm × SPf) such that for all
(η,ωm,ωf) ∈ (WU ×WPm ×WPf)

g(η,U) −

∫
ΩD

(∇η) ·BmPm dV −

∫
ΩD

(∇η) ·BfPf dV

=

∫
Γt
η · T̂ dS, (4.11)∫

ΩD

∂

∂t
ωm

(
Bm : ∇U+

Pm

Mm
+
Pf
Q

)
dV
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−

∫
ΩD
ωm∇ ·

(Km
µl
· ∇Pm

)
dV =

∫
ΩD
ωm

κk ′

µl
(Pf − Pm) +ωmΨm dV ,

(4.12)∫
ΩD

∂

∂t
ωf

(
Bf : ∇U+

Pm

Q
+
Pf
Mf

)
dV

−

∫
ΩD
ωf∇ ·

(Kf
µl
· ∇Pf

)
dV =

∫
ΩD
ωf

κk ′

µl
(Pm − Pf) +ωfΨf dV . (4.13)

The bilinear form g(·, ·) in Eq. (4.11) is given by

g(η,U) =

∫
ΩD
∇η : Σ ′(U) dV , (4.14)

where Σ ′(U) = C∗ : ∇U.

4.1.3 Discrete block matrix form

The discrete counterpart to Eqs. (4.11) to (4.13) is formulated using FVM for
flow, VEM for mechanics, and the backward Euler method for time. This hybrid
FVM-VEM numerical approach to poroelasticity was originally developed using
the Matlab Reservoir Simulation Toolbox (MRST) (Lie et al. 2012; Lie 2019), by
Andersen et al. (2017a,b) for single-continuum materials. Here we expand the
work by these latter authors to dual-continuum materials.

We partition our domain into disjoint elements (or cells). Subsequently, for
the DC problem ΩD = ∪nelemj=1 ΩD

j , where nelem is the number of elements. Nota-
tion ΩD

j denotes the dual-continuum element for which there are two pressure
degrees of freedom, corresponding to each continuum.

We define the following discrete solution spaces for the DC problem as ShPα ⊂
SPα and ShU ⊂ SU. Discrete weighting spaces are given as Wh

Pα
⊂ WPα and

Wh
U ⊂ WU. Discrete continuum pressure fields Phα ∈ ShPα and discrete displace-

ment fields Uh ∈ ShU are given according to the following interpolation relations
respectively

Phα =

nelem∑
j=1

IjP̃jα, (4.15)

Uh =

nnode∑
b=1

NbŨb, (4.16)

where nnode denotes the total number of vertices associated to element j. Nota-
tions P̃jα and Ũb are pressure and displacement degrees of freedom respectively,
with the corresponding basis functions denoted by Ij and Nb.
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In FVM we consider P̃jα to be cell-centred quantities. Notation Ij is then an
indicator function for continuum α given as

Ij(X) =

1 if X in ΩD
j

0 otherwise
, (4.17)

Further, we replace discrete pressure weight functions ωhα ∈ Wh
Pα

by the in-
dicator function whilst also using Eq. (4.15) such that Eqs. (4.12) to (4.13) can
be interpreted as element-wise conservation statements. Using Gauss’s theorem,
element-wise divergence of flux volume integrals in Eqs. (4.12) to (4.13), are
turned into face-wise surface integrals. In this work we use the two-point flux
approximation to calculate these face-wise flux integrals (see Lie (2019) for fur-
ther details).

The nodal basis function matrix Nb takes the identity matrix 1 when loc-
ated at node b and 0 at all other nodes. Next, we introduce the following re-
lation between global and element-wise bilinear forms as is customary for finite-
element procedures

g(ηh,Uh) =
nelem∑
j=1

gj(η
h,Uh). (4.18)

On regular grids one can compute gj(ηh,Uh) exactly for first-order finite-element
methods, since basis functions used to interpolate the solution are known. How-
ever, on general grids, such basis functions are limited in their availability, and
are in general, non-polynomial functions (Gain et al. 2014). This can make us-
ing quadrature formulas prohibitively expensive. In contrast, for VEM the basis
functions are never explicitly defined, and thus gj(ηh,Uh) is never explicitly
computed. Due to the former, VEM can be interpreted as a generalisation of
the finite-element method to arbitrary polygonal and polyhedral meshes. Such
a property is desirable for subsurface modelling, where degenerate cells and
hanging nodes are encountered (Andersen et al. 2017b). Instead the idea is to
approximate gj(ηh,Uh) ≈ ghj (ηh,Uh), whilst ensuring the order of accuracy is
maintained. To go into the details of VEM is beyond the scope of this work. For
more details the interested reader is directed towards the works of Beirão da
Veiga et al. (2013, 2014), and for elasticity Gain et al. (2014) and Andersen et al.
(2017b). Nonetheless, it is useful to gain some insight into the method. Accord-
ingly, we give an heuristic interpretation of VEM for which we consider only
piecewise linear fields over each element. We define the following expression for
the construction of ghj (η

h,Uh) by way of VEM,

ghj (η
h,Uh) = gj(πηh,πUh) + sj[(ηh −πηh), (Uh −πUh)], (4.19)
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where π is a local projection operator. The use of a projection operator is funda-
mental to VEM. Next, we define the following local virtual element space

Vhj = {V ∈ H1(ΩD
j )

d : ∇2V = 0 in ΩD
j , V|Γ ∈ P(Γ)d

1 ∀Γ ∈ ∂Ω
D
j }, (4.20)

where P(Γ)d
1 is the space of linear displacements on the edge Γ . Further,Uh ∈ Vhj .

The projection operator then acts to extract the linear displacements over an ele-
ment, belonging to the subspace P(Γ)d

1 ⊂ Vhj from the virtual element space
Vhj . This operation is exactly what is defined when computing the projection in
gj(πη

h,πUh). The first term on the right hand side of Eq. (4.19) therefore ensures
that the polynomial consistency of the method is fulfilled with respect to linear
fields. In engineering literature, methods that are consistent with the desired de-
gree of accuracy imply satisfaction of the patch test (Taylor et al. 1986). In extract-
ing first-order terms from the displacement field we ‘leave behind’ higher-order
and/or non-polynomial terms. The second term in Eq. (4.19), i.e. sj(·, ·), ensures
the stability of the method with respect to these terms. Specifically, that the dis-
crete problem inherits the coercivity of the continuous problem. In Beirão da
Veiga et al. (2013) and Gain et al. (2014) it is noted that sj(·, ·) need only be
approximated to ensure stability.

Computation of the element-wise bilinear forms gj(πηh,πUh) and sj[(η
h −

πηh), (Uh−πUh)] can be found in Gain et al. (2014) and Andersen et al. (2017b).
Finally, as part of the VEM assembly, the constitutive relation Eq. (4.14) need
only be computed once, similar to a one-point quadrature finite-element scheme
(Da Veiga et al. 2015).

Replacing solutions and weighting functions with their discrete counterparts,
and using the time discretisation, the discrete residual equations from Eqs. (4.11)
to (4.13) are

RaU = gh(Na,Uh,t+1) −

∫
ΩD

(∇Na) ·BmPh,t+1
m dV

−

∫
ΩD

(∇Na) ·BfPh,t+1
f dV −

∫
Γt
Na · T̂ dS

= 0, ∀a = 1, ...,nnode, (4.21)

RiPm =

∫
ΩD
i

Bm ·∆(∇Uh,t+1) +
1

Mm
∆Ph,t+1

m +
1

Q
∆Ph,t+1

f dV

−∆t

∫
∂ΩD

i

(Km
µl
· ∇Ph,t+1

m

)
·ni dS

−∆t

∫
ΩD
i

κk ′
µl

(Ph,t+1
f − Ph,t+1

m ) +Ψm dV

= 0, ∀i = 1, ...,nelem, (4.22)
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RiPf =

∫
ΩD
i

Bf ·∆(∇Uh,t+1) +
1

Q
∆Ph,t+1

m +
1

Mf
∆Ph,t+1

f dV

−∆t

∫
∂ΩD

i

(Kf
µl
· ∇Ph,t+1

f

)
·ni dS

−∆t

∫
ΩD
i

κk ′
µl

(Ph,t+1
m − Ph,t+1

f ) +Ψf dV

= 0, ∀i = 1, ...,nelem, (4.23)

where we make use of Voigt notation for tensor representation. Notation ∆zt+1 =
zt+1 − zt. Details of the VEM calculations for the boundary and gradient terms
involving Na in Eq. (4.21) can be found in Andersen et al. (2017b). To compute
the flux terms in Eqs. (4.22) to (4.23), the surface integrals are computed as a
face-wise summations such that∫

∂ΩD
i

(Km
µl
· ∇Ph,t+1

α

)
·ni dS =

nface∑
j=1

∫
Γij

(Km
µl
· ∇Ph,t+1

α

)
·ni dS, (4.24)

where nface denotes the total number of faces associated to element i. The face-
wise summation in Eq. (4.24) can then be computed according to various flux
approximation schemes such as the two-point or multipoint flux approximations
(Lie 2019).

Even though we assume linearity in the current work, poroelastic problems are
generally nonlinear due to material and geometric nonlinearities. For example,
one common example of the former nonlinearity type is stress-dependent per-
meability. To provide a general numerical framework we therefore present the
discrete equations describing the DC problem following application of Newton’s
method. In MRST this is handled naturally using an automatic differentation
framework to generate the Jacobian. We give the discrete system of equations in
block matrix form as

K −L>m −L>f

Lm Fm Gm

Lf Gf Ff


(k) 

δŨ

δP̃m

δP̃f


t+1,(k+1)

= −


RU

RPm

RPf


t+1,(k)

, (4.25)

where RU = [R1U, ...,RnnodeU ]> and RPα = [R1Pα , ...,RnelemPα
]>. Notations δ and k

denote the change in solution and current iteration levels respectively. Further,
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Ũ = [Ũ1, ..., Ũnnode ]> and P̃α = [P̃1α, ..., P̃nelemα ]> with the solution at level k re-
lated to the solution at k+ 1 by the change in solution as


Ũ

P̃m

P̃f


t+1,(k)

+


δŨ

δP̃m

δP̃f


t+1,(k+1)

−→


Ũ

P̃m

P̃f


t+1,(k+1)

. (4.26)

Finally, the individual matrices comprising the Jacobian in Eq. (4.25) are given
as

Kab =
∂RaU
∂Ũb

= gh(Na,Nb), (4.27)

Lib,α =
∂RiPα
∂Ũb

=

∫
ΩD

Ii(Xi)Bα · ∇Nb dV , (4.28)

Gij,α =
∂RiPα

∂P̃
j
β

=

∫
ΩD

Ii(Xi)
1

Q
Ij(Xi) dV

−∆t

∫
ΩD

Ii(Xi)
κk ′

µl
Ij(Xi) dV , (4.29)

Fij,α =
∂RiPα

∂P̃
j
α

=

∫
ΩD

Ii(Xi)
1

Mα
Ij(Xi) dV

+∆t

∫
ΩD

Ii(Xi)
κk ′

µl
Ij(Xi) dV +∆tTij,α, (4.30)

where Xi denotes the centroid of element ΩD
i . Notation Tij,α is the transmissib-

ility matrix for continuum α arising from the two-point flux approximation (Lie
2019), such that we obtain the following discrete relation

nface∑
j=1

∫
Γij

(Km
µl
· ∇Ph,t+1

α

)
·ni dS = Tij,α(P̃

i
α − P̃

j
α). (4.31)

4.1.4 Solution

We solve Eq. (4.25) using a fully coupled approach (Lewis and Schrefler 1998),
although extensions to sequential solution strategies for DC materials have been
shown in Kim et al. (2012).

4.2 Analytical benchmark

For single-continuum poroelastic codes the Mandel problem is the canonical
method of code verification (e.g. Kim et al. 2009; Jha and Juanes 2014). Accord-
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ingly, we validate our framework against the dual-continuum Mandel problem
introduced in the previous chapter.

4.2.1 Problem setup and data

The problem geometry is as described in Section 3.5.1. Specifically, we consider
a quarter of 2 m× 2 m domain subjected to a constant top boundary force of
−2 MPa ·m on this quarter (Fig. 3.3).

We consider isotropy at the macroscopic scale, as well as void-space frac-
tures. Consequently, the poroelastic constitutive model introduced in Chapter 2

reduces to the Khalili and Valliappan (1996) constitutive model introduced in
Chapter 3. Next, we assume dual-porosity materials meaning the macroscopic
matrix permeability is zero with (macroscopic) transport taking place solely
through the fractures. The fluid properties are given as ρ0l = 1000 kgm−3, µl =
1 cp, and Kl = 2.5 GPa. Matrix properties are given as φ0m = 0.1, vm = 0.995,
km = k ′ = 0.01 md. Fracture properties are given as φ0f = 5× 10−3, φ0f = 5× 10−3,
` = 0.03 m, and Kf = 1000 md. Finally, mechanical properties are assigned as
Km = 20 GPa, Ks = 70 GPa, and v∗ = 0.2. K∗ is chosen arbitrarily as K∗ = 10 GPa.

For the numerical domain we use a 20× 20 Cartesian mesh. The observation
point for the solutions is then located in the first grid cell, with cell ordering
progressing from left to right, bottom to top.

One of the challenges when verifying code against the Mandel problem is en-
suring the boundary conditions in the numerical problem are consistent with
the rigid boundary conditions specified in the analytical solution. Instead of
imposing a rigid plate directly within the numerical domain, we do this im-
plicitly. Specifically, we use analytical solutions for the vertical stress along ΓN
(Appendix B). Accordingly, the vertical stresses are calculated at every spatial
point corresponding to the locations of the vertices along this top boundary. At
each time-step we then update the boundary conditions corresponding to ΓN
with the corresponding nodal stresses coming from the analytical solution. We
then compare numerical continuum pressure and vertical strain results to those
coming from the analytical solutions.

We note that under plane strain, the stiffness tensor written in Voigt notation
is given as

C =
E

(1+ ν)(1− 2ν)


1− ν ν 0

1− ν 0

sym G

 (4.32)
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where the shear modulus G = E/(2(1+ ν)), in which E is the Young’s modulus.
From Eq. (4.32) it follows

4K = 1 : C : 1 =
2E

(1+ ν)(1− 2ν)
. (4.33)

4.2.2 Results

Fig. 4.1 shows the pressure and vertical strain results for the analytical bench-
mark problem described above. The numerical results are taken from the first
grid cell in the discretised domain. In Fig. 4.1a, we see the induced fracture
pressure is significantly higher than the induced matrix pressure. Following a
slight rise from early to middle times (Mandel-Cryer effect), fracture pressure
decreases rapidly. This rapid diffusion is followed by a steady decrease of mat-
rix pressure. In Fig. 4.1b, we see a steep increase in vertical strain associated with
the drainage of the fractures. This period is followed by a steadier increase in
strain due to the drainage of the (stiffer) matrix.

Importantly, Fig. 4.1 shows there is a good match between the analytical and
numerical solutions. Slight discrepancies between the two can be observed in the
pressure and vertical strain results between middle to late times. This could be
caused by numerical errors or due to not using enough Fourier series terms in
the analytical solution (Appendix B). Nonetheless, the quality of match between
the analytical and numerical solutions is good enough for us to proceed.
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Figure 4.1: Pressure (a) and vertical strain (b) results for the analytical benchmark. ‘A’
and ‘N’ denote analytical and numerical solutions respectively.
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4.3 Modelling on a geological grid

Here we test the numerical framework on a geological grid taken from Open
Porous Media Initiative (2015) (Fig. 4.2). The domain is constructed using corner
point gridding to account for complex structural features therein. As a result, the
grid is a non-conforming mesh containing hanging nodes (Fig. 4.2). In classical
FEM based approaches, such a grid would be challenging due to the difficulty
in defining explicit basis functions for the non-conforming elements.

View 1 View 2

N

S

B

T

W

E

Hanging nodes

W

E
B

T

S

N

Figure 4.2: Geological grid used in the numerical study. Examples of hanging nodes are
circled.

4.3.1 Problem setup and data

In addition to the north, south, east and west boundaries, we also have top and
bottom boundaries, ΓT and ΓB respectively (Fig. 4.2). We apply a compressive
stress of Σ · n = −50 MPa along ΓT . We constrain horizontal displacements and
fix the bottom boundary. The remaining boundaries are then free to displace
vertically. Initialisation is done by allowing the applied load to induce the matrix
and fracture pressures. However, contrary to previous examples we allow the
continuum pressures to equilibrate. At the point of equilibration, drainage is
then supplied by a vertical well located at the center of the domain. The well is
maintained with a bottom hole pressure of 10 KPa.

As per the analytical benchmark we consider isotropy at the macroscopic scale,
as well as void-space fractures and dual-porosity materials. The fluid properties
are given as ρ0l = 850 kgm−3, µl = 5 cp, and Kl = 0.5 GPa. Matrix properties
are given as φ0m = 0.1, vm = 0.99, km = k ′ = 1× 10−3 md. Fracture properties
are given as φ0f = 0.01, vf = 0.01, ` = 1 m, and Kf = 10 d. Finally, mechanical
properties are assigned as Km = 1 GPa, Ks =∞, and v∗ = 0.2. The effective bulk
modulus is chosen arbitrarily as K∗ = 0.1 GPa.
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4.3.2 Results

Figs. 4.3 to 4.5 show continuum pressure and volumetric strain results at t =

0, 1, 5 and 40 days for the geological grid test case described above. To start,
Fig. 4.3 shows the matrix pressure change across the aforementioned time in-
terval. We can see a slight pressure change over the first day at the producer, but
very little away from this point. A similar trend is observed at t = 5 days with a
noticeable pressure change across the domain by t = 40 days.

Next, Fig. 4.4 shows fracture pressure over t = 0, 1, 5 and 40 days. Contrast to
Fig. 4.3 at t = 0, Fig. 4.4 shows the fracture pressure at the producer is several
MPa lower than the matrix pressure. This is due to the high fracture permeability.
From t = 1 day to t = 5 days there is a noticeable change in the overall pressure
across the domain, again due to the high fracture transmissivity. Past day five,
the matrix and fracture continua begin to equilibrate with pressure differences
between the two becoming harder to differentiate (see t = 40 days).

t = 0 days t = 1 day

t = 40 dayst = 5 days

Figure 4.3: Matrix pressure results on the geological model. The red line represents the
producer.

Finally, Fig. 4.5 shows the volumetric strain results over the same time interval
considered previously. At t = 0 we can see high strains at the edges of the grid
and lower strains toward the center. The high edge strains seem to be a result of
the cell geometry and elevation with respect to the top load. At t = 1 day there
is a subtle change in colour at the central cells associated with contraction due to
depletion from the producer. The plots corresponding to t = 5 and 40 days show
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t = 0 days t = 1 day

t = 40 dayst = 5 days

Figure 4.4: Fracture pressure results on the geological model. The red line represents the
producer.

increasing contraction associated with depletion of the pressure support across
the whole domain. In summary, despite the complexity of the grid, the volu-
metric strains are physically reasonable. In particular, looking at the cells with
non-neighbouring connections, the strains across adjacent cells seem consistent.
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t = 0 days t = 1 day

t = 40 dayst = 5 days

Figure 4.5: Volumetric strain results on the geological model. The red line represents the
producer.

4.4 Conclusions

In this chapter, we introduced the numerical framework used for the (macro-
scopic) modelling of poroelastic dual-continua. The features of the framework
are that it is locally mass conservative with respect to the flow problem and flex-
ible with respect to gridding. This latter property owes to the virtual-element dis-
cretisation used for mechanics, which when used with the finite-volume method
for flow allows for simulation on unstructured polygonal grids. We tested the
resulting framework on an analytical benchmark and a ‘challenging’ geological
grid. In the former we achieved a good match to the analytical solution. In the
latter our results were physically reasonable.

For future work, the FVM-VEM approach could be an interesting tool for con-
current multiscale approaches. In this, nonhomogenisable features such as faults
or other discontinuities could be modelled explicitly, leveraging the flexibility of
VEM, whilst homogenisable materials could be represented using the continuum
framework presented here. Examples of this type of work can be found in Moin-
far et al. (2013), Vernerey and Kabiri (2014) and Jiang et al. (2016).
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5
Application to a micro-macro study

In this chapter we use the numerical framework introduced in Chapter 4 to further study
the relations between poroelastic microscopic and dual-continuum models, given material
and modelling assumptions made at the former. In Section 5.1, we introduce the tests
studied in this chapter. Our tests increase in complexity from an uncoupled isotropic
case to several anisotropic poroelastic cases. In Section 5.2, we introduce the various
modelling considerations that enable a meaningful comparison between the micro and
macroscales. In Section 5.3 we present and discuss the results for the considered tests.
Finally, we finish the chapter with the conclusions and recommendations for future work
in Section 5.4. The contents of this chapter are based on work done in Ashworth and
Doster (2020).

5.1 Test cases

Following Section 1.3, work has gone into testing and validating the DC concept
for the flow problem. However, little has been done to asses validity of the
poroelastically coupled DC approach, particularly whilst considering various
assumptions made at the microscale.

With the numerical framework in-hand, in this chapter we present and con-
duct several numerical tests to investigate whether the macroscopic dual-continuum
poroelastic model can capture global flow and deformation behaviours of a mi-
croscale model (MS). We do this study given the modelling assumptions made
as part of the homogenisation procedure in Chapter 2, and considering various
material assumptions at the microscale. For this work, the latter concerns an-
isotropic effects. Further, we review several considerations in order to ensure
meaningful result comparisons between modelling scales.

To start, we introduce the four numerical experiments used to carry out our
tests in light of various microscopic modelling and material assumptions. In each
case we consider an idealised representation of a naturally fractured rock sample.
Our idealisation comes in that we assume the fracture fabric to be periodic. To
start we consider an undeformable isotropic material to understand the physics
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of the flow problem. We progress by introducing mechanics to the isotropic
system, and then adding complexity by considering anisotropic material cases.

In every case we consider the dimension of the domain to be 1 m× 1 m. Each
experiment then represents a thin 2D slice taken from a 3D sample such that, in
the case of the mechanical problem, the plane stress assumption applies.

5.1.1 Case 1: Undeformable isotropic

For this test we study an (isotropic) undeformable matrix permeated by an iso-
tropic undeformable fracture network. The test is setup as a uniaxial drainage
problem, such that the north boundary is open to flow, P̂m = P̂f = 0, whilst the
east, west and south boundaries are zero flux boundaries (Fig. 5.1a). Initial pres-
sures for the continua are set at P0m = P0f = 2 MPa. Volume fractions for matrix
and fracture material are vm = 0.998 and vf = 0.002 respectively, given a fracture
spacing ` = 0.1 m. Local porosities for the two continua are then prescribed as
ϕm = 0.1 and ϕf = 0.9, where the volume fractions link the global and local Lag-
rangian porosities so that φα = vαϕα. Intrinsic matrix permeability km is taken
as 0.01 md, whilst individual fracture permeability kf is calculated using the par-
allel plate model with a fracture aperture of af ≈ 1.05× 10−4 m (Witherspoon
et al. 1980). The resulting permeability is 950 d for each fracture. Fluid proper-
ties are ρ0l = 1000 kgm−3, µl = 1 cp, and Kl = 2.5 GPa. Upscaling individual
fracture permeability to a continuum permeability for use in the DC model is
done using the cubic law (Witherspoon et al. 1980). The resulting isotropic frac-
ture continuum permeabitity is Kf ≈ 1000 md. Finally, due to the dissociation by
the fracture network, the macroscopic matrix permeability is zero.

Pm = Pf = 0 Pm = Pf = 0
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Figure 5.1: Test case setup for the undeformable isotropic problem (a) and the deform-
able isotropic problem (b).
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5.1.2 Case 2: Deformable isotropic

We now consider a deformable counterpart to the experiment described in Sec-
tion 5.1.1 (Fig. 5.1b). Accordingly, the Young’s moduli for the matrix and fracture
materials are Em = 36 GPa and Ef = 36 MPa respectively. The latter is chosen for
illustrative purposes as Ef = Em/1000. Both continua are assigned a Poisson’s
ratio of ν = 0.2. For an isotropic medium under the plane stress assumption, the
stiffness tensor written with Voigt notation is given as

C =



E
1− ν2

νE
1− ν2

0

E
1− ν2

0

sym G

 (5.1)

Entries for Cm and Cf can be calculated with Eq. (5.1) and the defined intrinsic
parameter values.

For C∗, parameters must be calculated by homogenisation. In Section 3.4.4
we suggested using the Hashin-Shtrikman lower bounds, as an initial homo-
genisation approach for the estimation of the mechanical properties of densely
fractured rock. The lower HS bound for the bulk modulus is given in Eq. (3.40),
whilst the shear modulus is given here as

GH− = Gf +
vm

[(Gm −Gf)−1 + 6vf(Kf + 2Gf)(5Gf(3Kf + 4Gf))−1]
, (5.2)

We map between the 3D bulk modulus calculated in Eq. (3.40) and the 2D ho-
mogenised bulk modulus under plane stress using the following relation (e.g.
Torquato 2002),

K∗ =
9KH−GH−

3KH− + 4GH−
. (5.3)

The Poissons ratio for the composite dual-continuum under plane stress is given
by

ν∗ =
K∗ −GH−

K∗ +GH−
. (5.4)

Finally, the homogenised Young’s modulus E∗ can be recovered from

4K∗ = 1 : C∗ : 1 =
2E∗

(1− ν∗)
. (5.5)

With Eqs. (5.4) to (5.5) the homogenised parameters are ν∗ = 0.2 and E∗ =

18.0 GPa.
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We assume the matrix and fracture skeletons to be made up of the same solid
material. We then assign a solid modulus Ks of 70 GPa for both continua.

For the coupled mechanics and flow problem, initialisation is done by letting
the applied load induce the continuum pressures. Accordingly, we define the
starting point for the experiment to be the undrained, loaded configuration, P0+m ,
P0+f , U0+. The load is prescribed as −Σ · n = −2 MPa on the north boundary.
The domain is horizontally constrained at the boundaries, but remains free to
move along the vertical axis apart from at the south boundary where the sample
is fixed. The parameters for flow are as defined in Section 5.1.1

5.1.3 Case 3: Geometry-induced anisotropy - explicit computation of C∗

The third experiment is concerned with an anisotropic deformable material. An-
isotropy has recently been studied in poroelastic DC materials in the context of
flow properties (Zhang et al. 2019). However, here we consider the directional de-
pendence of both mechanical and flow properties. Accordingly, anisotropy in this
example is introduced geometrically by considering just a single vertical fracture
set which is aligned with the second principal axis (Fig. 5.2a). The 2D domain is
then orthotropic. Whilst anisotropy exists at the macroscale, the intrinsic mech-
anical parameters remain isotropic for each continuum and are as described in
Section 5.1.2. The plane stress stiffness tensor for an orthotropic material is given
by

C =



E1
1− ν12ν21

ν21E1
1− ν12ν21

0

E2
1− ν12ν21

0

sym G12

 , (5.6)

Parameters of the homogenised stiffness tensor may be approximated explicitly
for this geometry, using the Reuss and Voigt mixture theory rules introduced in
Section 3.4. Subsequently, for the Young’s moduli

E∗1 =
(
vm

Em
+
vf
Ef

)−1

, E∗2 = vmEm + vfEf, (5.7)

where having removed a fracture set, the volume fraction of the fracture con-
tinuum is now vf = 0.001 (resp. vm = 0.999). For the homogenised Poisson’s
ratio ν∗21 and shear modulus G∗12 mixture theory gives

ν∗21 = vmνm + vfνf, G∗12 =

(
vm

Gm
+
vf
Gf

)−1

. (5.8)
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The other Poisson’s ratio ν∗12 is readily determined by the symmetry in Eq. (5.6)
which requires ν12E2 = ν21E1. From Eqs. (5.7) to (5.8) and the aformentioned
symmetry relation, the mechanical parameters are given as E∗1 = 18.0 GPa, E∗2 =
36.0 GPa, ν∗21 = 0.200, ν

∗
12 = 0.100 and G∗12 = 7.50 GPa.

The anisotropic fracture continuum leads to an anistropic permeability tensor
so that permeability in the x and y directions are Kf,x = 0 and Kf,y ≈ 1000 md
respectively. For the matrix, the macroscopic permeability is also anisotropic
with Km,x = 0 and Km,y ≈ 0.01 md. The remaining flow parameters, boundary
conditions and initialisation are as described in Sections 5.1.1 and 5.1.2.
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Figure 5.2: Test case setup for the anisotropic problem with one fracture set (and explicit
computation of C∗) (a) and the anisotropic problem with two fracture sets
(and numerical computation of C∗) (b).

5.1.4 Case 4: Material-induced anisotropy - numerical computation of C∗

The final experiment is on an anisotropic material with two fracture sets aligned
with each of the principal axes (Fig. 5.2b). Anisotropy is now introduced through
the fracture material, with each fracture set having different intrinsic mechanical
and flow properties. These property differences are in analogy to fractures con-
taining different amounts of infill material. To represent this conceptually within
the model we assign different intrinsic porosities to the individual fracture sets.
Further, we separate the intrinsic Young’s moduli and permeabilities of each
fracture set by two orders of magnitude. For the horizontal fracture set we as-
sign ϕf,x = 0.9, Ef,x = 3.6 MPa and an intrinsic fracture permeability of 950 d.
For the vertical fracture set we assign ϕf,y = 0.4, Ef,y = 360 MPa and an intrinsic
permeability of 9.5 d. Upscaling the fracture permeability remains trivial, with
Kf,x ≈ 1000 md and Kf,y ≈ 10 md. However, homogenistion for the parameters in
the homogenised stiffness tensor now cannot be done by explicit approximation.
Instead we use a deformation-driven computational homogenisation approach:

86



We generate unit strains for a sequence of linear displacement boundary con-
ditions, and in doing, determine the entries of C∗ (Daniel et al. 1994). Linear
displacements are chosen as they produce better estimates for effective stiffness
tensors for materials with a stiff matrix and weaker inclusion material (Pecullan
et al. 1999), as is the case here.

With the computational homogenisation approach, the mechanical parameters
in C∗ are calculated as E∗1 = 32.7 GPa, E∗2 = 3.40 GPa, ν∗21 = 0.019, ν∗12 = 0.173
and G∗12 = 1.28 GPa.

The overall volume fraction for the fracture continuum is the same as in exper-
iment two. However, the intrinsic Lagrangian fracture porosity is now the arith-
metic average of the two intrinsic fracture set porosities (ϕf = 0.65). Fluid and
matrix properties remain the same as those for the other experiments. Boundary
conditions and initialisation are the same as in experiments two and three.

5.2 Modelling considerations

Here we review several considerations to enable the interpretation of the test
results to follow.

5.2.1 On the REV

Our periodic assumption of the underlying microstructure eases the require-
ments on our definition for an REV. In this periodic case, all the necessary geo-
metrical and physical process information is captured within an elementary cell
that is the size of the heterogeneity (`) (Royer et al. 2002; Dormieux et al. 2006).
Accordingly, the separation of scales is now defined as ` � L. The elementary
cell definition of our REV will be useful for interpreting the discretisation choice
of the DC problem.

5.2.2 Meshing

For the four tests we discretise the microscale problem with a 200×200 Cartesian
mesh, that is locally refined around the fractures (Fig. 5.3). For the dual-continuum
problem we discretise the domain using a 10× 10 Cartesian mesh. In the latter
case, each element then coincides with an elementary cell (in the geometrical
sense) (Fig. 5.3).

Microscale and dual-continuum fields are compared at an observation point at
the base of our samples. At this point we assume that our pressure solutions are
sufficiently smooth, thus satisfying the physical process scale separation require-
ment. Further, the observation point coincides with the macroscopic material
point, in this case the element centroid (Fig. 5.3).
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Figure 5.3: Representations of the isotropic test problem: (a) the dual-continuum grid
containing the observation point where the two modelling approaches are
compared, (b) an elementary cell and (c) an equivalent microscale represent-
ation of the elementary cell.

5.2.3 Quantities of interest

At the observation point for each test we consider the element-wise total and
continuum volumetric strains, and continuum pressures. Element-wise total and
continuum volumetric strains are defined as Ej = tr(Ej) = ∆|ΩD

j |/|Ω
D,0
j |, and

Ej,α = ∆|ΩD
j,α|/|Ω

D,0
j,α |, respectively. We compare averaged results over the micro-

scale to element level results from the dual-continuum. To enable the former, we
define the following discrete counterpart to Eq. (2.36)

zDj,α =
1

|ΩD,0
j,α |

∫
ΩD
j,α

zh(x) dV , (5.9)

Continuum averaged pressures and volumetric strains can then be recovered
using Eq. (5.9) with discrete microscopic fields ph or εh in place of zh. Total
volumetric strain is likewise obtained using Eq. (5.9) by replacing |ΩD

j,α| with
|ΩD
j |.
For the DC problem, pressures and element-wise total volumetric strain are

recovered naturally from the element centroid (Andersen et al. 2017a). To get
continuum strains, however, we must take a different approach. Starting with the
matrix continuum, and comparing a volume averaged change in local porosity
Eq. (2.67) to the effective change in matrix porosity given by Eq. (2.23), such that
dφm = vmdϕm, allows us to derive the following expression for the volumetric
matrix strain

Em = 1 : εm =
1

bm

[
1

vm

(
Bm1 : E+

Pm

Nm
+
Pf
Q

)
−
Pm

nm

]
. (5.10)

88



We note the expression for Em in Eq. (5.10) is only possible for an isotropic matrix
as the inverse contraction map involving bm is otherwise ill-posed. With E and
Em we can recover the fracture volumetric strain Ef for the DC model using
Eq. (2.34).

5.3 Results and discussion

Here we present the results and analyses for the numerical test cases described
in Section 5.1 under the modelling considerations described in Section 5.2. All
results are given from observation points such as that shown in Fig. 5.3.

5.3.1 Case 1: Undeformable isotropic

Fig. 5.4 shows the element averaged pressure evolutions from both microscale
and dual-continuum simulations for the undeformable isotropic material case.
Both models show a rapid decrease in fracture pressure within the first milli-
second followed by a delayed pressure response in the matrix. These general
patterns can be attributed to the contrast in continuum permeabilities. Whilst
both models show general decreasing trends, the rate of MS fracture pressure
change begins to smooth out at middle times. Coupled to this smoothing is the
onset of microscale matrix pressure diffusion. In contrast, matrix pressure dif-
fusion occurs later in the DC model. Further, compared to the microscale case,
the DC matrix diffusion process occurs more rapidly (indicated by a steeper
gradient).
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Figure 5.4: Matrix and fracture continuum element averaged pressure evolutions for the
undeformable isotropic test case. ‘MSα’ and ‘DCα’ denote quantities related
to microscale and dual-continuum models for continuum α respectively.

The disparities in matrix and fracture pressure diffusion between the two
modelling approaches arise from the first-order transfer term Eq. (2.7) used by

89



the dual-continuum model. In using a linear mass transfer model one impli-
citly places a pseudosteady-state diffusion assumption on the communication
between matrix and fracture continua. As a result, transient matrix drainage ef-
fects are neglected by the DC approach. Neglecting transient effects leads to the
delay in DC matrix pressure diffusion we see in Fig. 5.4, and the loss of pressure
support in the fractures.

Shortcomings of using simplified transfer concepts have been well documented
in literature (e.g. Berkowitz et al. 1988; Lemonnier and Bourbiaux 2010). Previous
works have thus sought to improve on the linear inter-continuum flow coupling
term by including transient effects (Zimmerman et al. 1993; Sarma et al. 2004;
March et al. 2016; Zhou et al. 2017). In the next chapter, we use a data-driven
approach to alleviate the problems posed by a linear transfer model. However,
in the current chapter, we acknowledge the shortcomings of the transfer term
used herein, with the focus being on understanding the coupled poroelastic be-
haviour.

5.3.2 Case 2: Deformable isotropic

Pressure and total element volumetric strain results for the deformable isotropic
case are shown in Fig. 5.5. In Fig. 5.5a both modelling approaches predict higher
induced initial pressures in the fracture than in the matrix. Further, both ap-
proaches show rapid decreases in fracture pressure and gradual decreases in
matrix pressure. In Fig. 5.5b the MS and DC models show increasing volumet-
ric strain evolution behaviours. However, for both pressure and strain, specific
differences of the variable fields between the two modelling approaches may be
observed at both early and late times. The disparity in late-time matrix pres-
sure evolution (Fig. 5.5a), is again due to the first-order inter-continuum transfer
model (see Section 5.3.1). Over the same late-time period, we also observe a
difference in volumetric strain (Fig. 5.5b).

Of more interest in Fig. 5.5 are the early-time results for continuum pressures.
In Fig. 5.5a both microscale matrix and fracture pressures exhibit non-monotonic
behaviour, known as the Mandel-Cryer effect. These pressure rises are not seen
in the dual-continuum pressure responses. A similar observation was also made
in the work of Zhang et al. (2019), albeit for a different problem.

Fig. 5.6 shows individual continuum volumetric strain evolutions. In Fig. 5.6b
both modelling approaches show similar increasing strain behaviour with time.
However in Fig. 5.6a, we observe the MS matrix strain shows early-time non-
monotonic behaviour, contrary to DC matrix strain.

The early non-monotonic differences in pressure and matrix strain between
the two modelling approaches result from the underlying pressure assumption
made for the DC model. In the derivation of the constitutive model in Section
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Figure 5.5: Matrix and fracture continuum element averaged pressure (a) and total ele-
ment volumetric strain (b) evolutions for the deformable isotropic test case.
‘MSα’ and ‘DCα’ denote quantities related to microscale and dual-continuum
models for continuum α respectively.
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(a) Matrix vol. strain, Em
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(b) Fracture vol. strain, Ef

Figure 5.6: Matrix (a) and fracture (b) volumetric strain evolutions for the deformable
isotropic test case. ‘MS’ and ‘DC’ denote quantities related to microscale and
dual-continuum models.

2.4 we assumed a local equilibrium of pressure within each continuum over an
REV. The induced response predicted in by the DC model is thus for a system
in mechanical and hydrostatic equilibrium. Instead, the microscale model makes
no such pressure assumption. To understand the specific impacts of the latter it
is interesting to look at the local flow and deformation behaviours shown at the
microscale.

Fig. 5.7 shows the MS pressure and volumetric strain responses within the
first 100 microseconds at the observation point. At t0+ in Fig. 5.7a, we observe
pressure in the horizontal fracture is higher than the vertical fracture. This dis-

91



equilibrium is concurrent with the negative and positive fracture strains for the
horizontal and vertical fractures respectively (Fig. 5.7b). From t0+ to t1, Fig. 5.7a
shows, away from the fracture intersection, horizontal fracture pressure drops
slightly. However, vertical fracture pressure increases. These pressure changes
occur with further contraction and expansion respectively (Fig. 5.7b). Over the
same time period matrix strain increases (Fig. 5.7c). From t1 to t5 the pressure
in both fractures is increasing (Fig. 5.7a), with matrix and fracture deformations
following the same evolution paths described previously. Finally, at t10 the frac-
tures reach a pressure equilibrium (Fig. 5.7a).

t0+ = 0 s t1 = 1× 10−6 s t5 = 5× 10−6 s t10 = 8.5× 10−5 s

t0+ = 0 s t1 = 1× 10−6 s t5 = 5× 10−6 s t10 = 8.5× 10−5 s

t0+ = 0 s t1 = 1× 10−6 s t5 = 5× 10−6 s t10 = 8.5× 10−5 s

(a) Pressure (Pa)

(b) Volumtric strain (colour scale for fracture strain highlighted)

(c) Volumtric strain (colour scale for matrix strain highlighted)

Figure 5.7: Pressure (a) and volumetric strain (highlighted for fractures and matrix, (b)
and (c) respectively) fields at different time levels ti for the MS represent-
ation of the deformable isotropic material. Each field plot is 5 mm× 5 mm
and is located at the observation point. Subscript 0+ denotes the time level
corresponding to the undrained, loaded configuration.

We can now explain the early-time non-monotonic behaviours in Fig. 5.5a and
Fig. 5.6a with the description of the local processes shown in Fig. 5.7. Follow-
ing t0+, intra-fracture flow is driven by the pressure disequilibrium between the
horizontal and vertical fractures. Between t0+ and t1, horizontal fracture con-
traction occurs primarily due to the dissipation of the fluid pressure support.
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Vertical fracture expansion follows due to poroelastic coupling to accommodate
incoming fluid from the horizontal fracture. As the vertical fracture expands it
forces the contraction of the matrix, and thus the increasing matrix strain shown
in Fig. 5.6a and Fig. 5.7. After t1, deformation drives the horizontal fracture
pressure increase due to fluid compressibility. The overall fracture continuum
pressure increases (Fig. 5.5a), with strain generating pressure in the horizontal
fracture, whilst the pressure change associated with vertical fracture expansion
slows. The latter occurs due to the low matrix permeability which prohibits dis-
sipation of excess matrix pressure, until later times. As a result, the undrained
matrix stiffness increases with its progressive contraction, slowing vertical frac-
ture expansion until a mechanical equilibrium is reached. The overall fracture
continuum pressure rise finally stops when the fractures have reached mechan-
ical equilibrium with the matrix and an internal hydrostatic equilibrium.

The local processes shown by the MS model are not captured by the DC model
due to the underlying modelling assumptions made at the microscale as part of
the homogenisation procedure for the latter. However, Figs. 5.5 to 5.6 do show
that, aside from the local equilibration processes, the DC model can capture the
global poroelastic behaviours of the MS model.

5.3.3 Case 3: Geometry-induced anisotropy - explicit computation of C∗

Here we show the results for the geometry-induced (single-fracture set) aniso-
tropy case. Pressure and total volumetric strain are given in Fig. 5.8, whilst
Fig. 5.9 shows the individual continuum volumetric strains.
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Figure 5.8: Matrix and fracture continuum element averaged pressure (a) and total ele-
ment volumetric strain (b) evolutions for the geometry-induced anisotropy
test case. ‘MSα’ and ‘DCα’ denote quantities related to microscale and dual-
continuum models for continuum α respectively.
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(a) Matrix vol. strain, Em
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Figure 5.9: Matrix (a) and fracture (b) volumetric strain evolutions for the geometry-
induced anisotropy test case. ‘MS’ and ‘DC’ denote quantities related to mi-
croscale and dual-continuum models.

In Fig. 5.8a, both models show a smaller difference between the initial matrix
and fracture pressures compared to the previous cases. Now, the average fracture
pressure is only slightly higher than the corresponding matrix pressure. Further,
we do not observe the early-time Mandel-Cryer effect seen previously in the
MS model. However, beyond early-time pressures, the general trends we see in
Fig. 5.5a can still be observed in Fig. 5.8a. Specifically, a rapid decrease in fracture
pressure followed by a smoother matrix pressure decrease. As expected, the
late-time differences in matrix pressure observed previously are present in the
current test. For both modelling approaches there is a good agreement in matrix
and fracture pressure evolutions. The total element volumetric strain evolutions
are also similar between the two modelling approaches, with an overall increase
in strain as the material compacts.

The similarity in total volumetric strain between the two approaches is reflec-
ted in the individual continuum strains (Fig. 5.9). The matrix shows early-time
expansion behaviour followed by contraction. Fracture deformation is coupled
to matrix deformation (and vice versa). Fracture contraction is therefore followed
by a period of expansion as the matrix drains and contracts.

The small difference between initial matrix and fractures pressures shown by
both models in Fig. 5.8a is explained by considering the geometry of the fractures
in this anisotropic case. With the fracture set being aligned with the direction of
loading (Fig. 5.2a), the stiffer matrix acts like a series of columns, supporting
a significant portion of the applied load. Through the coupling between stress
and pressure, the low portion of stress ‘seen’ by the fracture phase leads to the
low induced fracture pressure shown in Fig. 5.8a. Finally, the absence of the
Mandel-Cryer effect in the current case is due to the pressure being at equi-
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librium within the single-fracture set. As a result local processes do not drive
early-time poroelastic intra and inter-continuum pressure generation.

5.3.4 Case 4: Material-induced anisotropy - numerical computation of C∗

Fig. 5.10 and Fig. 5.11 show pressure and total strain, and individual continuum
strain results respectively, for the material-induced anisotropy case. Both models
in Fig. 5.10a show a strong difference in the early-time magnitudes of matrix
and fracture pressures. The MS model shows similar early-time Mandel-Cryer
fracture pressure behaviour to what we observed in Fig. 5.5a. In contrast, the
early-time MS matrix non-monotinicity is negligible in Fig. 5.10a compared to
the isotropic case. However, at later times we see a significant non-montonic
evolution in matrix pressure that is shown by both modelling approaches. This
non-monotonic matrix pressure rise starts earlier in the MS model than the DC
model. Finally, we observe in both models fracture diffusion due to the boundary
is delayed, compared to previous cases. Instead, matrix and fracture diffusion
start at similar times, indicating a single-continuum response. Coupled to the
delayed fracture diffusion response is the delayed increase in total volumetric
strain (Fig. 5.10b).
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Figure 5.10: Matrix and fracture continuum element averaged pressure (a) and total ele-
ment volumetric strain (b) evolutions for the material-induced anisotropy
test case. ‘MSα’ and ‘DCα’ denote quantities related to microscale and dual-
continuum models for continuum α respectively.

In Fig. 5.11 both modelling approaches give similar continuum strain evolu-
tions. Similar to Fig. 5.6a, Fig. 5.11a shows the DC approach misses the early-
time matrix strain non-monotinicity displayed by the MS approach. However,
contrast to Fig. 5.6a, Fig. 5.11a shows a smoother early-time MS matrix strain
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Figure 5.11: Matrix (a) and fracture (b) volumetric strain evolutions for the the material-
induced anisotropy test case. ‘MS’ and ‘DC’ denote quantities related to
microscale and dual-continuum models.

non-monotinicity, whilst the late-time matrix strain non-monotinicity for both
approaches is much sharper.

Results in Figs. 5.10 to 5.11 can be explained by considering the material aniso-
tropy in the fracture continuum. The smoother early-time non-monotinicity in
MS matrix strain occurs because the vertical fractures are stiffer. These fractures
then expand less with incoming fluid, reducing poroelastic coupling (and thus
deformation) with the matrix compared to the isotropic case. As a result, since
MS matrix pressure does not change significantly, the initial matrix pressures for
the two modelling approaches are similar. This result suggests mechanical aniso-
tropy can noticeably affect the degree of inter-continuum coupling. The delay in
fracture pressure diffusion occurs due to the low vertical fracture permeability.
Accordingly, we see the non-monotonic rise in matrix pressure with local inter-
continuum equilibration processes occuring at similar timescales to macroscopic
fracture flow. Further, the pseudosteady-state mass transfer assumption leads
to the delayed response of this non-monotinicity in the DC model. The influx
of fluid from the fractures into the matrix is accompanied by expansion of the
matrix material, followed by contraction as fluid drains out (Fig. 5.11a).

The results in the current test show again how the DC model misses early-time
effects due to local equilibration processes. Neglecting these local processes is
implicit due to the microscopic steady-state pressure assumption made during
homogenisation. However, once local equilibration is reached, the DC model
does predict the general poroleastic behaviours of the MS model.
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5.4 Conclusions

In this chapter, we used the numerical framework introduced in Chapter 4 to
further study the links between micrscopic and dual-continuum models, given
various modelling and material assumptions made on the former. We considered
several tests, starting with a study on isotropic materials. Subsequently, we pro-
gressed to anisotropic cases where anisotropy was introduced at the microscale
either geometrically or through property variations within the underlying ma-
terial itself.

Overall, we observed that anisotropy can have measurable impacts on flow
and deformation behaviour. However, we showed the DC approach is capable
of capturing the global poroelastic behaviours for both isotropic and anisotropic
MS equivalents. Discrepancies between the two model representations arise when
local equilibration processes not accounted for in the homogenisation approach,
are significant.

Following on from the discussions and numerical framework in Chapter 2 and
Chapter 4 respectively, a natural extension to this work is to look at nonlinear
behaviours. In particular, material nonlinearities arising from geometric nonlin-
earities at the microscale. Analytical methods such as those used here could
provide a first approach to deriving such nonlinear effective constitutive models
in simple cases. However, when such methods prove intractable, computational
multiscale methods become attractive. Sequential multiscale strategies have been
applied to single-continuum materials in Frey et al. (2013) and Van den Eijnden
et al. (2016), and dual-continuum materials in Wang and Sun (2016, 2018, 2019).
However, in these works the discretisation of choice is the finite-element method.
Given the complexity of geological microstructures, it is interesting to leverage
the capabilities of VEM (e.g. Rivarola et al. 2019). Further, to the best of the au-
thor’s knowledge, little work has been done in applying sequential multiscale
methods to frameworks involving mixed discretisations. Given the propensity
for using dedicated software for the different subproblems it would be interest-
ing to apply multiscale methods in these settings, exploring the various chal-
lenges and considerations therein.
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Part III

Data-driven modelling



6
Machine learning-based multiscale
constitutive modelling

In this chapter we introduce and apply a machine learning-based approach to a hier-
archical multiscale modelling problem. In Section 6.1, we start by providing the contex-
tual motivation behind the work done in this chapter. In Section 6.2, we subsequently
introduce the machine learning-based multiscale constitutive modelling framework. In
doing, we describe the key components and considerations therein. We then apply this
framework to a model problem. Accordingly, in Section 6.3 we introduce our problem
of interest (modelling inter-continuum mass transfer). In Section 6.4, given the model
problem we generate the data that will be used for training and testing the subsequent
machine learning algorithms. In Section 6.5, we then introduce the learning algorithms
used in this work. In Section 6.6, we show how we couple our data-driven model to
a physics-based model for use in simulation, and demonstrate the resulting hybrid ap-
proach on several test cases. In Section 6.7, we finish with conclusions and recommend-
ations for future work. The work done in this chapter can be found in:

https://github.com/mashworth11/ML-MM

6.1 Background

Throughout this thesis we have considered hierarchical multiscale problems. In
these situations constitutive relations are needed at the macroscale to provide
closure and information about the material in question. However, often these
constitutive models are based on empiricism using simple considerations such
as linearity (Weinan 2011). Whilst useful, these models can therefore be overly
simple in many applications. This deficiency motivates the multiscale approaches
reviewed in Chapter 1.

In situations where analytical methods are impractical or intractable, it is de-
sirable instead to use multiscale algorithms (Matouš et al. 2017). Following on
from the discussions in Chapter 1, machine learning offers exciting opportunities
for further developments of computational multiscale approaches. For example,
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in Alber et al. (2019) and Peng et al. (2020), the authors suggest the use of ML
methods in multiscale domains for managing ill-posed problems, identifying
missing information, quantifying uncertainty and as a means to bridge between
scales. In this chapter we focus on the latter point, where ML is used to construct
surrogate constitutive models to be used in sequential multiscale algorithms. In
this context, we are interested in systems for which formulating a constitutive
model is nontrivial. Examples of cases where we may meet such challenges are
with systems exhibiting high-degrees of nonlinearity and/or time-dependence.

Data-driven approaches to generating surrogate constitutive models can be
traced back several decades. For example, in the pioneering work of Ghaboussi
et al. (1991) the authors used so-called neural networks to represent the con-
stitutive behaviour of concrete under various loading conditions. From this and
other similar early works (e.g. Goh 1995; Ghaboussi et al. 1998), users have in-
corporated data-driven surrogate models within multiscale modelling strategies
for a variety of applications (e.g. Unger and Könke 2009; Hambli et al. 2011; As-
proulis and Drikakis 2013). More recently, work has been done for modelling
hysteretic constitutive information using so-called recurrent neural networks
(Wang and Sun 2018; Ghavamian and Simone 2019). Despite the success of these
recurrent algorithms for sequential modelling, they can be challenging to im-
plement and to understand (Pascanu et al. 2013; Bai et al. 2018). Recently, Bai
et al. 2018 showed that autoregressive algorithms can lead to superior perform-
ance compared to recurrent structures for a wide variety of sequence modelling
tasks. Given the variety of multiscale problems and machine learning methods
it would be useful to have a framework detailing the key questions and con-
siderations for the generation and use of surrogate constitutive models within
sequential multiscale approaches.

In the next part of this chapter we introduce and describe an ML-based multiscale
modelling framework for hierarchical multiscale problems. We subsequently ap-
ply this framework to a model problem in which the widely adopted constitutive
model is based on linearity of the quantities involved. More precisely, we look
to address the problem of modelling inter-continuum mass transfer within dual-
continuum models. The explicit time dependence of this process makes its im-
plementation challenging in simulation. Subsequently, it is common to remove
explicit time by modelling this process as a linear relation Eq. (2.7). Instead, in
this chapter, we take a different and novel approach to representing this time-
dependent process. Specifically, we model this process using machine learning.
Accordingly, we remove explicit time-dependence by treating the problem as
an autoregressive learning problem. Consequently, time-dependence is captured
implicitly using quantities from previous timesteps that are readily available
during simulation. Then, having learnt a surrogate constitutive model, we in-
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corporate it within an uncoupled (flow only) version of the macroscopic nu-
merical framework introduced in Chapter 4. We compare the resulting hybrid
ML-physics model approach to the traditional physics-based approach using the
linear constitutive model on several test cases.

6.2 Machine learning-basedmultiscale constitutivemodelling framework

Here we introduce the ML-based multiscale constitutive modelling framework
and the key concepts therein. The framework itself can be broken into three key
components: Data generation, surrogate constitutive model learning and ML and
physics model coupling (Fig. 6.1). However, we stress that these components are
all interrelated and should be understood in parallel rather than in series.

Data generation
Surrogate constitutive

model learning Model coupling

f̃(x)→
f(X)

f̃(X)
≈

f̃(·)(X,y)
where y = f(X)

Figure 6.1: The machine learning-based multiscale constitutive modelling framework.

6.2.1 Data generation

Data generation is concerned with the question: How will we generate sample
data for our learning algorithm? Microscale results can be expensive when nu-
merically derived due to limited computational resources and/or high problem
dimensionality. Managing this trade-off to ensure the dataset (sample set) is as
informative as possible is referred to as experimental design (or design of exper-
iments) (Razavi et al. 2012). Traditional approaches to experimental design in-
volve the use of various sampling strategies (e.g. Monte Carlo, Latin hypercube,
quasi-Monte Carlo methods) to build the dataset prior to learning. However,
these so-called one-shot strategies can either contain too few samples for an ac-
curate surrogate (undersampling) or more samples than we need, thus wasting
precious resources (oversampling) (Xiao et al. 2018). An alternative to one-shot
approaches is to use feedback from the ML training process to find samples
that provide the maximum information gain when labelled and used to update
the model. These so-called active learning (or sequential sampling) approaches
can address the under/oversampling trade-off described previously (Crombecq
2011).
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In addition to data-driven ML approaches, recent advances have seen the de-
velopment of theory-driven ML approaches. Here the idea is to use physics such
as partial differential equations, initial and boundary condition information, and
symmetry or invariance properties (Ling et al. 2016; Wang and Sun 2018; Raissi
et al. 2019; Zhu et al. 2019) to constrain the learning process. Accordingly, we
can supplement missing or difficult to obtain data. Further, theory-driven ap-
proaches also act to regularise the learning process and ensure the physical con-
sistency of our model. However, in this work we consider purely data-driven
methods and save the incorporation of theory into the learning process for fu-
ture studies.

6.2.2 Surrogate constitutive model learning

Surrogate constitutive model learning is concerned with the question: Given the
properties of our data, the type of prediction problem and the end use for the
resulting ML model, what is the most appropriate learning strategy to use? Train-
ing ML algorithms can be expensive from both data and computational points
of view. If our sample set is poor, complex algorithms run the risk of failing
to generalise when given new data (overfitting). Conversely, if our model is too
simple we risk failing to extract meaningful relationships from our data (un-
derfitting). Besides addressing underfitting and overfitting, we may also want
algorithms that are intrinsically interpretable and quick to retrain in light of new
data (e.g. linear regression, tree-based methods); give us an insight into aleatoric
(data) and/or epistemic (model) uncertainties (e.g. Gaussian processes, Bayesian
learning); and provide an embedded approach to feature (input) engineering in
light of complex and/or high dimensional data (e.g. deep learning). Ultimately,
within the context of multiscale modelling, the choice of learning method should
be guided by considering the interdependence between data quality and avail-
ability, ML model accuracy and practicality, and the model’s end use in physics-
based simulation.

6.2.3 Model coupling

Model coupling is concerned with the question: How will we use our learnt
constitutive model in our macroscopic physics simulator? Ideally, the ML model
can be implemented within a numerical solver without significant intrusion. Ac-
cordingly, important considerations at this stage may be the accessibility of data
during simulation to pass to the ML model; the time taken to predict by the
ML model; how these predictions will be inputted into the numerical model;
and in the case of nonlinear materials, how we extract state-dependent mater-
ial properties such as permeability and stiffness from our surrogate constitutive
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model. These latter points will depend on whether the constitutive model is to
be used in an explicit or implicit manner. We describe the former, as those predic-
tions made using previously observed and converged quantities. Subsequently,
in a nonlinear solver the resulting surrogate constitutive model will only ap-
pear in the residual. Alternatively, if the prediction also depends on quantities at
the current iteration level, parameters from the surrogate associated with these
quantities will be needed in the Jacobian. For example, in Hashash et al. (2004)
the authors consider nonlinear deformation problems and derive a closed-form
expression for calculating the tangent stiffness tensor from a neural network. Ac-
cordingly, the authors provide consistent Jacobian entries for use in a Newton-
Raphson scheme. For this work, our surrogate will be explicitly coupled due to
the nature of the constitutive relation being injected. Nonetheless, the example
above highlights the type of considerations we need to make in order to embed
ML models within traditional physics-based simulations.

6.3 Multiscale problem setting: double-porosity mass transfer

Here we introduce an example of the type of multiscale problem that we wish to
address with the framework described above. Subsequently, our model problem
is that of inter-continuum mass transfer. In Section 5.3, we saw how the use of the
linear constitutive model Eq. (2.7) can lead to the underprediction of matrix flux.
As a result, we observe measurable errors in the flow behaviour when compared
to a microscale simulation (Fig. 5.4). In the remainder of this section, we outline
this problem in more detail.

6.3.1 Problem setup

Our model problem considers a two-dimensional domain, bounded on the east
and west by a single fracture set. The north and south boundaries remain un-
drained (Fig. 6.2a). Initially, at time t0 the matrix and fracture continua are in
hydrostatic equilibrium (Fig. 6.2b). At a time t0+ we introduce an instantan-
eous step in the fracture pressure and let the matrix equilibrate due to inter-
continuum mass transfer (Fig. 6.2b). Our goal is to see if we can capture these
dynamics using a machine learnt surrogate constitutive model, and if it is an
improvement over traditional linear transfer approximations (e.g. Warren and
Root 1963).

The field equations are for the uncoupled dual-continuum mass balance equa-
tions introduced in Section 2.2.1, under the dual-porosity assumption. Accord-
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Figure 6.2: Model problem setup including geometry (a) and the pressure step (b).

ingly, using Darcy’s law, and the fluid and porosity compressibility relations in
Eq. (2.9) and Eq. (2.11) respectively we recover the following

φ0mcm
∂Pm(X, t)

∂t
= γm(X, t), (6.1)

φ0fcf
∂Pf(X, t)
∂t

−∇ ·
(Kf
µl
· ∇Pf(X, t)

)
= −γm(X, t), (6.2)

where cα = K−1
l +K−1

φ,α.
The inter-continuum mass transfer term γm(X, t) is linked to the microscale

according to the local matrix pressure diffusion given as

ϕ0mcm
∂pm(x, t)

∂t
= ∇ ·

(
km
µl
∇pm(x, t)

)
, (6.3)

assuming isotropic matrix material. We assume a separation of scales between
the matrix, fracture and macroscopic scales (Royer et al. 1996), and thus con-
sider an REV (or elementary cell) over our domain. We now link between micro
and macroscales using the volume averaging operation, as done throughout this
thesis. Applying Eq. (2.36) to Eq. (6.3) then leads to

φ0mcm
∂pm(X, t)

∂t
=

1

|Ω0|

∫
Ωm

∇ ·
(
km
µl
∇pm(x, t)

)
dV , (6.4)

where we note pm = Pm. Following Eq. (6.4), γm(X, t) is defined as (Zimmerman
et al. 1993),

γm(X, t) = φ0mcm
∂pm(X, t)

∂t
=

1

|Ω0|

∫
∂Ωm

(
km
µl
∇pm(x, t)

)
·n dS, (6.5)
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where we have used Gauss’s theorem in defining Eq. (6.5). From Eq. (6.5), provided
we can calculate the flux across the matrix we can calculate γm. This calculation
could be done using numerical models. However, in this work we take a differ-
ent approach: We find the analytical solution to Eq. (6.3), average this solution
over our REV and insert the result in Eq. (6.5).

6.3.2 Analytical solution

To derive the analytical solution, we consider a 2D matrix block such as that
shown in Fig. 6.2a subject to the following boundary and initial conditions:

pm = p̂m on Γpm, (6.6)

qm ·n = q̂m on Γqm, (6.7)

pm(x, t = 0) = p0m(x) in Ω. (6.8)

We consider a 1D diffusion problem such that p̂m = Pf on the east and west
boundaries, and q̂m = 0 on the north and south boundaries. Accordingly, the
analytical solution to the described 1D diffusion problem is found in Crank
(1979), and following averaging over the REV is given as

pm = p0m + (Pf − p
0
m)

{
1−

∞∑
n=0

8

(2n+ 1)2π2
exp

[
−(2n+ 1)2π2kmt

φ0mµlcm`
2

]}
. (6.9)

Differentiating Eq. (6.9) with respect to time leads to

∂pm
∂t

= (p0m − Pf)

∞∑
n=0

8km
φ0mµlcm`

2
exp

[
−(2n+ 1)2π2kmt

φ0mµlcm`
2

]
, (6.10)

with substitution of Eq. (6.10) into Eq. (6.5) giving γm. However, the resulting
mass transfer expression is unsuitable for simulation purposes given the pres-
ence of explicit time and the infinite series. To alleviate these dependencies we
can recover a first-order approximation to Eq. (6.10). Accordingly, taking the first
term from Eq. (6.10) and eliminating t using the first term from Eq. (6.9) gives

∂pm
∂t

=
π2km

φ0mµlcm`
2
(Pf − pm). (6.11)

Substitution of Eq. (6.11) leads to the mass transfer model and shape factor
shown in Eqs. (2.7) to (2.8) respectively. However, as shown in Section 5.3.1, use
of this linear constitutive model can lead to measurable errors in flow behaviour.
One common way to alleviate these inaccuracies is to use multi-rate transfer
models (Haggerty and Gorelick 1995; Geiger et al. 2013). However, in this work
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we treat the problem differently. The novelty here is to encode the complex,
time-dependent function in Eq. (6.10) into a machine-learning model. The ML
model is formulated without explicit time, using quantities directly available
during simulation. Accordingly, our ML model is used as part of a sequential
multiscale modelling strategy with machine learning to bridge the scales in the
form of a surrogate constitutive model.

6.4 Application of the framework: data generation

We use machine learning to learn a mapping from quantities available during
simulation to an output aligned with our constitutive property. To do so we
consider a dataset D of n samples, D = {(xi, yi) | i = 1, ...,n}, where xi ∈ Rdin is
a vector of inputs and yi ∈ R is a quantity derived from the microscale. Learning
a mapping between inputs and outputs then equates to learning a function of
the form

yi = f(xi) ≈ f̃(xi). (6.12)

As a result, we can incorporate local scale physics, such as those coming from
the analytical solution, or numerical simulations, within macroscopic models
without having to formulate explicit phenomenological expressions.

We frame our learning problem considering the physics of the process, in-
puts coming from simulation and an output that is aligned with the discrete
structure of the numerical problem. For the latter, we specify our output as the
discrete equivalent to the continuous rate of change according to a backward
Euler method commonly used for time discretisation in numerical modelling.
Specifically

∂pm
∂t
≈ ∆tpm(t+ 1) =

pm(t+ 1) − pm(t)

∆t
= yi(t+ 1). (6.13)

Our learning problem is formulated on the basis of time-series calculated using
Eq. (6.9) and Eq. (6.13). Each individual time-series corresponds to a different
initial matrix pressure p0m. We take 120 different p0m, sampled with logarithmic
spacing from the interval of [1, 1× 106] Pa. Every series starts from 0 and finishes
at 100 s with a uniform stepping interval of 0.1 s. The remaining parameters in
Eq. (6.9) are fixed as km = 1 md, φ0m = 0.2, cm = 1.4 GPa−1, µl = 1 cp, ` = 1 m
and following the step in Pf at t0+, Pf = 1 MPa. A plot of each series s as
time vs ys is shown in Fig. 6.3a. Further, Fig. 6.3b shows how this time-series
data is split into training and testing data using a 2/3 : 1/3 split respectively.
Accordingly, every third sequence corresponds to a test series. In the following
section we describe how these series data are organised into D. Specifically, how
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we structure D will depend on our learning method of choice, as well as the
need for any engineered features.
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Figure 6.3: Time-series data (a) and training and test data split (b) for the learning prob-
lem.

6.5 Application of the framework: surrogate constitutive model learning

In the following we review the learning methods used to generate our surrogate
constitutive model.

6.5.1 Autoregressive approaches

To account for the series nature of our data, we need a learning approach equipped
to handle sequential dependencies. In the works of Wang and Sun (2018) and
Ghavamian and Simone (2019), the authors used recurrent neural networks (RNN).
Specifically, the authors use a variant of the RNN called a Long short-term
memory (LSTM) network. The latter was developed to combat the difficulties
in training conventional RNNs in the face of long-term sequential dependencies
within series data. Further, LSTMs have been shown to give a state-of-the-art res-
ults for a variety of sequence modelling tasks (Chung et al. 2014; Jozefowicz et al.
2015). However, more recently, authors have found autoregressive approaches to
be competitive and even outperform LSTMs for a variety of sequence modelling
benchmarks (Lea et al. 2017; Bai et al. 2018). In a (multivariable) autoregressive
setting f̃(·) uses previous series outputs to predict the next output in the series.
Accordingly, for a two variable autoregressive model

ỹi(t+ 1) = f̃[xi(t)] = f̃[ỹi(t), ..., ỹi(t− dy + 1),ui(t), ...,ui(t− du + 1)], (6.14)
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where u denotes an external series, and dy and du denote the number of se-
quence terms, or dependency length, for the internal and external series vari-
ables respectively. Here our external series is given as the difference between
the boundary pressure Pf and pm such that u(t) = ∆ppm(t) = Pf − pm(t). The
pressure difference acts as a driver for mass exchange, and at time t, indicates
when a step in boundary pressure has occurred. Accordingly, we can learn to
differentiate between early and late-time dynamics.

Following above, Gers et al. (2002) recommend autoregressive approaches us-
ing only short-term dependencies as a good starting point to time-series mod-
elling. Accordingly, in the section to follow we consider two popular ML al-
gorithms for autoregressive modelling given short histories. Specifically, polyno-
mial regression (PR) and a fully-connected neural network (FC-NN). If longer
histories are needed then more complex autoregressive architectures such as the
convolutional neural network implemented by Bai et al. (2018), or the (recurrent)
LTSM, can be used.

To train our algorithms we treat the training task as a single-step ahead pre-
diction problem. In this strategy, the idea is to create D a-priori using lagged
ground truths (targets) y in place of the predicted values ỹ in Eq. (6.14). Testing
is then treated according to how the ML model will be used when coupled to
the (macroscopic) simulator. That is, as a multi-step ahead prediction problem. Ac-
cordingly, predictions ỹ will be fed back into the algorithm to predict the next
timestep, as per Eq. (6.14). This training and testing strategy can work provided
the training error is sufficiently small such that accumulated errors do not ex-
plode when using the model as a multi-step ahead predictor.

Finally, under the autoregressive framework we express D as D = (X,y) where
X = [x11,x12, ...,xS1000]> and y = [y11, y12, ..., yS1000]>. Superscripts then denote the
time-series label, with S(= 120) being the total number of series, whilst sub-
scripts denote the timestep within a given series.

6.5.2 Polynomial regression

Here we introduce the polynomial regression algorithm. These aglorithms are
attractive because they are easy to understand and fast to train. The downside to
these methods is the curse of dimensionality for large input vectors. Nonetheless,
PR algorithms are a good place to start for many regression tasks, and serve as
a good baseline model. Accordingly, under PR f̃(·) is formulated as

ỹ = f̃(xi) = w>θ(xi), (6.15)

where θ = [θ1, ..., θnp] is the vector of polynomial basis functions acting on xi
and w ∈ Rnp is a vector of weights (parameters) of the model. In this work we
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use a second order polynomial transformation, which comes as a standard tool
in many machine/statistical learning packages.

Whilst the inputs are polynomial (following a transformation) in Eq. (6.15), the
weights remain linear. Finding w is simply then a linear regression problem and
is the goal of training. In supervised learning problems, training corresponds to
minimising a loss function L(·) that represents the error in approximating f(·)
by f̃(·) on our data. For the regression problem we use a squared loss such that

L(w) =
1

n
‖y− f̃(Θ;w)‖22, (6.16)

where Θ = [θ(x1),θ(x2), ...,θ(xn)]>. Finding the optimal set of weights that
minimise Eq. (6.16) is defined formally as

arg min
w

L(w) = arg min
w

1

n
‖y− f̃(Θ;w)‖22. (6.17)

The squared loss in linear regression is a convex function which admits a global
minimum in w at the point ∇L = 0. Accordingly

Θ>Θw =Θ>y, (6.18)

leading to

w =Θ†y, (6.19)

where Θ† = (Θ>Θ)−1Θ>.
PR is well known to suffer from high degrees of multicollinearity (Dalal and

Zickar 2012). As a result, Θ>Θ is ill-conditioned and the solution in Eq. (6.19)
is non-unique. For prediction problems such ill-conditioning is generally not a
concern (Dormann et al. 2013), since new data comes from the same population
as the training data. However, for problems of extrapolation such as multi-step
ahead prediction, collinearity between inputs can change due to accumulating er-
rors. Such changes can affect predictions on models arising from ill-conditioned
matrices and should be addressed (Dormann et al. 2013). We therefore address
multicollinearity between inputs using regularisation, which aims to restrict the
space of viable models that fit our data (e.g. in the face of ill-conditioning). There
are various forms of regularisation, however in this work we use pivoted QR fac-
torisation (Strang 2019). This method is implemented as standard in Matlab’s
linear solver. The benefits of the pivoted QR approach are that it yields parsi-
monious models and is relatively cheap to compute (Strang 2019). Note, we also
found ridge regression (an L2 norm penalty on the weights) to work equally
well, but chose the pivoted QR method purely for convenience.
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6.5.3 Fully-connected neural networks

Here we introduce the fully-connected neural network model. Aside from the
FC-NN considered here, neural networks more generally have become a popular
choice for surrogate modelling due to their great flexibility, scalability and signi-
ficant advancement within research communities. Further, contrary to the poly-
nomial regression where the feature transforms are defined a-priori, in neural
networks these transformations are implicit within the algorithm and learnt from
the data.

To proceed, within an FC-NN information is fed forward from an input layer
(l = 0) through hidden layers (l = 1, ...,L− 1) finishing at an output layer (l = L).
Accordingly, under an FC-NN f̃(·) is formulated as

ỹ = f̃(xi) = s[L]
(
s[L−1]

(
...
(
s[1] (xi)

)
...
))

. (6.20)

For a given layer 0 < j, s[j] is given as an affine transformation followed by an
element-wise nonlinear function such that

s[j](x) = h[j]
(
W[j]>x+b[j]

)
, (6.21)

where W[j] ∈ Rnj−1×nj and b[j] ∈ Rnj are the weight matrix and bias parameter
vector associated with layer j respectively. Evidently, for the univariate prediction
considered herein, the weight matrix for the last layer will be a weight vector
W[L] = w[L]. Notation h(·) is the nonlinear function referred to as an activation
function. In this work, we take h[L] as a linear activation and all others as so-
called rectified linear units. In training the FC-NN our objective is to minimise a
squared loss of the form

L(λ) =
1

n
‖y− f̃(X;λ)‖22, (6.22)

where λ = [W[1];b[1], ...,W[L];b[L]]. However, unlike Eq. (6.17), with neural net-
works the loss function is non-convex. As a result, weights and biases are up-
dated iteratively using a chosen optimiser together with the backpropogation
algorithm. In this work, we found stochastic gradient descent with Nesterov mo-
mentum to work the best. Finally, we implement the FC-NN using the Keras
API.

6.5.4 Training and testing

In the following we present further details and results for the single-step ahead
(training) and multi-step ahead (testing) prediction problems.
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Considerations

To train our models we consider a dependency length of dy = 2 in order for
our problem to be well-defined. With dy = 2, we use du = 3 given that three
pressure steps make up the two difference steps ∆tpm. Although not studied in
detail here, dy (resp. du) is a hyperparameter that can be tuned according to the
trade-off between gain in accuracy and complexity.

For the polynomial regression, to highlight the effects of multicollinearity, we
present results both with and without regularisation. For the FC-NN we trained
our model using a batch size of 64 over 500 epochs. We experimented with vari-
ous model depths and widths, and found the best results came using a simple
single hidden layer FC-NN with 20 hidden units. Additionally, with this archi-
tecture there was little overfitting, and hence no need for regularisation. Finally,
to evaluate between the different models we consider one minus the normalised
root-mean-square error given as

1−NRMSE = 1−
RMSE

SD
=

√
(n)−1

∑n
i=1(yi − ỹ)2√

(n− 1)−1
∑n
i=1(yi − y)2

, (6.23)

where SD and y represent the sample standard deviation and mean of the target
set respectively. From Eq. (6.23) the closer the value to one, the more accurate
the algorithm.

Results

Fig. 6.4 shows the train and test results using the unregularised polynomial
regression algorithm. From Fig. 6.4a we can see there is a good match when
training as a single-step ahead prediction problem. The quality of this match is
corroborated by the high evaluation metric (and low RMSE respectively) shown
in Table 6.1. However, Fig. 6.4b shows for lower initial rates of change (associated
to higher initial pressures) the prediction is extremely poor giving rise to large
positive and negative values. Accordingly, the evaluation metric for this test is
unbounded resulting in the missing entry shown in Table 6.1. Even for higher
initial rates of pressure change, the early-time results in Fig. 6.4b show the un-
regularised PR begins to underpredict the rates of change after a few timesteps.
Interestingly however, the prediction seems to recover from mid to late times. We
hypothesised these errors to be caused by the multicollineriaty existing between
the transformed features, as described in Section 6.5.2. Accordingly, to address
this problem we introduced a regularised PR by way of a pivoted QR factorisa-
tion.

Results for the regularised PR are shown in Fig. 6.5 and Table 6.1. The training
results shown in Fig. 6.5a are identical to those shown in Fig. 6.4a for the unreg-
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Figure 6.4: Single-step ahead training (a) and multi-step ahead testing (b) using unregu-
larised polynomial regression.
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Figure 6.5: Single-step ahead training (a) and multi-step ahead testing (b) using regular-
ised polynomial regression.

ularised PR case (Table 6.1). However, we can observe significant differences on
the multi-steap ahead test between the two polynomial regression models. From
Fig. 6.5b we see that the regularised PR predictions are very close to the targets.
We see slight discrepancies observable at middle times, in particular for those
series corresponding to low initial rates of pressure change. However, these dis-
crepancies diminish toward late times as the predictions converge back to the
target. We hypothesise that it will be possible to remove these small discrep-
ancies altogether using even longer dependencies (and possibly more complex
algorithms) than those considered currently.

Lastly, Fig. 6.6 and Table 6.1 show the train and test results using the FC-NN.
From Fig. 6.6a we see a good match between the training predictions and target.
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Figure 6.6: Single-step ahead training (a) and multi-step ahead testing (b) using the fully-
connected neural network.

However, for the time-series corresponding to the lowest initial rate of change we
can see a slight discrepancy in the match during middle-times. Fig. 6.6b shows
this discrepancy to lead to a noticeable mismatch between the predictions and
the target for this test series during the multi-step ahead test. However, despite
the observed discrepancy, Table 6.1 shows the overall performance of the FC-NN
to be superior to the regularised PR during testing, as indicated by the higher
evaluation metric (and lower RMSE respectively). This result, whilst also com-
paring Fig. 6.6b to Fig. 6.5a, suggests the performance of the FC-NN in regions
of higher data density to be superior to that of PR. For our dataset, regions of
higher data density correspond to series with high initial rates of change. In
these regions, we expect the errors of the linear transfer to be high compared
to when the initial rate of change is small (initial matrix pressure is close to the
fracture pressure). Accordingly, the accuracy of the FC-NN compared to PR in
modelling otherwise challenging regions for the linear transfer model, makes it
preferable for use in the next step of the multiscale framework.

Algorithm (RMSE)train (1− NRMSE)train (RMSE)test (1− NRMSE)test

UPR 21.4 0.999 – –
RPR 21.4 0.999 152 0.991

FC-NN 28.1 0.998 99.7 0.994

Table 6.1: Train and test evaluations for the different learning algorithms. UPR, RPR and
FC-NN denote the unregularised and regularised polynomial regression, and
fully-connected neural network respectively. The missing entry for UPR on
the test is due to the unbounded predictions.

To summarise, for multi-step ahead prediction problems we need to be wary
of accumulating errors introduced during simulation. This problem was shown
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to be bad for a PR model suffering from high multicollinearity. Accordingly, for
PR we had to address this problem explicitly using regularisation. However, for
the FC-NN, multicollinearity seemed to be handled implicitly by the model. Fur-
ther, the FC-NN was shown to perform better than PR in the regions where
we would expect to have the highest error when using a linear transfer model.
Given the performance of the FC-NN herein, its robustness within the multi-step
ahead setting, and the general flexibility of neural network architectures for fur-
ther extensions (e.g. theory-driven ML), we choose this model as our surrogate
constitutive model for further use.

6.6 Application of the framework: model coupling

Here we couple our trained surrogate constitutive model to a macroscopic physics-
based model. We test the subsequent hybrid ML-physics against a traditional
physics-based model using the linear transfer and a microscale model, for a vari-
ety of different test cases.

6.6.1 Hybrid ML-physics model

With the trained ML model we now look to couple it to a physics-based model.
Given the propensity for nonlinear phenomena in a variety of physics settings
including subsurface flow it is common to use nonlinear solvers. Accordingly,
following Eq. (4.24) we give Eqs. (6.1) to (6.2) in discrete block matrix as

Fm Gm

Gf Ff

(k) δP̃m
δP̃f

t+1,(k+1) = −

Rm
Rf

t+1,(k) . (6.24)

Without mechanics the flow matrix for continuum α is Fα = Qα +∆tTα, where
Qα is the compressibility matrix and Tα is the transmissibility matrix (see Lie
2019 for details). For the matrix material in the dual-porosity setting, the trans-
missibility matrix has zero entries. MatrixGα is the coupling matrix arising from
an inter-porosity flow expression such as the linear approximation in Eq. (2.7).
Notation δP̃t+1,(k+1)α are as described in Eq. (4.25). Lastly, Rt+1,(k)α is the residual
vector such as that in Eqs. (4.22) to (4.23). Intuitively, Rt+1,(k)α provides the differ-
ence between the rate of change of fluid mass within a volume to that generated
by sources and/or fluid movement through its boundaries at iteration level k.
Finally, we inject our machine learning model into Eq. (6.24) through an explicit
approach. As a result, following a Newton iteration the coupling matrices Gα in
Eq. (6.24) are zero entries, whilst the prediction for γm appears in the residuals.
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6.6.2 Tests

To test the hybrid ML-physics model we consider several realisations of the 1D
diffusion problem described in Section 6.3.1. For these realisations, we test our
framework on initial and boundary conditions not used for training our model.
Further, we also consider an application of the framework to a geological model.
For the former, we compare the hybrid approach against a microscale model
and a physics-based model using the first-order mass transfer constitutive rela-
tion. For brevity in the remainder of this section, we refer to the latter method
as the ‘traditional’ approach to dual-continuum modelling. Lastly, for the geolo-
gical model case, we compare only the hybrid and traditional dual-continuum
approaches.

For the 1D problem test cases we discretise the DC problem using a single ele-
ment. For the microscale model we resolve the matrix using 40 elements along
the first principal axis. Within the DC model we initialise the fracture pressure
as P0f = 1 MPa. Further, to mimic the fracture boundary within the DC model,
we set fracture permeability to 10 d. As a result, the fracture pressure equilib-
rates almost instantaneously with the external boundary in response to changes
induced by inter-continuum flow. The remaining properties are as described in
Section 6.4. Specifically, φ0f = 1× 10−3, cf = cm = 1.4 GPa−1, φ0m = 0.2, µl = 1 cp,
Nf = 1, ` = 1 m and km = k ′ = 1 md . With respect to φ0f and cf these are
chosen somewhat arbitrarily since we do not consider fracture dynamics for the
problems herein. Lastly, to interpret micro and macro matrix pressure results
we make use of the considerations and averaging operation introduction in Sec-
tion 5.2.

For the geological model, we use the same model as considered in Chapter 4.
Accordingly, each REV now corresponds to a 3D domain involving three ortho-
gonal fracture sets leading to a 3D diffusion problem within the matrix. As a res-
ult, the analytical solution used to generate data is slightly different to Eq. (6.9).
Further details of this solution, and the parameterisations used for this test, are
described below.

Case 1: p0m ∈ [1, 1× 106] Pa

For the first set of tests we consider two initial pressures not used when con-
structing D, but coming from [1, 1× 106] Pa. Specifically, we sample the initial
pressures such that p0,Im < 10 Pa and 0.1 MPa < p0,IIm , where superscripts I and
II correspond to the two tests respectively. The boundary pressure is fixed as
Pf = 1 MPa.
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Case 2: Pf ∈ {2, 8} MPa

Here we consider tests where we extrapolate outside of the training set by using
different conditions to those used during training. In this case we are interested
in cases with boundary pressures Pf > 1 MPa. Accordingly, we consider two
tests where we set Pf = 2 MPa and Pf = 8 MPa. The initial matrix pressure is set
as p0m = 1 Pa, whilst the rock and fluid properties are as described for the other
1D diffusion test cases.

Case 3: Application to a geological model

Following Eqs. (6.6) to (6.8), the 3D diffusion problem is described such that
p̂m = Pf on all the boundaries of a 3D matrix block. In this case the analytical
solution for the resulting diffusion problem is given as (Lim and Aziz 1995),

pm = p0m + (Pf − p
0
m)

{
1−

∞∑
n=0

(8/π2)3

(2n+ 1)
exp

[
−3(2n+ 1)2π2kmt

φ0mµlcm`
2

]}
, (6.25)

where we parameterise Eq. (6.25) using Pf = 1 MPa, cm = 3 GPa−1, φ0m = 0.2,
µl = 5 cp, ` = 1 m and km = 1× 10−4 md. As before, we take 120 different p0m
sampled from the interval [1, 1 × 106] Pa. Further, we generate a series corres-
ponding to 100 hours where t0+ = 0 and ∆t = 1 hour. Finally, we train and test
on the resulting data using an FC-NN, which is subsequently injected into our
physics-based simulator.

For the geological model, we initialise the fracture pressure as P0f = 1 MPa and
specify the permeability as 10 d. The boundaries of the model are then specified
as pressure boundaries set at 1 MPa. Accordingly, the high fracture permeability
and initial conditions ensures our test problem is consistent with our learning
problem. We initialise the matrix as p0m = 1 Pa. Finally, to complete the DC
model we assign φ0f = 1× 10−3 and cf = 3 GPa−1.

We compare results over the geological model between the hybrid ML-physics
model and the physics-based model using the linear transfer. For the latter, the
transfer function is parameterised using Nf = 3 and k ′ = 1× 10−4 md. Finally,
despite only training for a series corresponding to 100 hours we run each simu-
lation for a 1000 hours, thus extrapolating outside of the training conditions.

6.6.3 Results

Here we present the matrix pressure evolution results for the test cases described
above.
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Case 1: p0m ∈ [1, 1× 106] Pa

Results for the first test case are shown Fig. 6.7. In all cases we see pressure in-
creasing with time as the matrix equilibrates with the boundary pressure. We can
see for both tests there is a measurable discrepancy between the DC model using
a linear transfer and the equivalent microscale description. This discrepancy is
particularly pronounced for test I (Fig. 6.7a). For this test case, the linear transfer
is a particularly poor early-time model when the difference between continuum
pressures is several orders of magnitude. In contrast, the DC approach with the
ML transfer produces high quality matches for both test cases without the com-
putational expense taken to run the microscale models. In Fig. 6.5b we observed
small errors in the middle-time FC-NN predictions for test series corresponding
to low initial rates of change. However, Fig. 6.7b shows despite these discrepan-
cies, the FC-NN still outperforms the linear transfer model with respect to the
microscale solution.
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Figure 6.7: Average matrix pressure evolutions for test case 1 with p0,I
m = 3 Pa (a)

and p0,II
m = 0.8 MPa (b). Notations ‘DC-L’ and ‘DC-ML’ denote the dual-

continuum model equipped with the linear and machine learning con-
stitutive transfer models respectively.

Lastly, for both tests we also provide the analytical solutions (Fig. 6.7). The be-
nefit of this addition is most clear from from Fig. 6.7a. From Fig. 6.7a we observe
a small discrepancy between the microscale model and the analytical solution
for the first few timesteps. This discrepancy arises due to the timestep discretisa-
tion error in the microscale model. Remarkably, we do not see this discrepancy
between the ML-based approach and the analytical solution, since the learnt
model comes from data unaffected by these discretisation errors. This subtle
result corroborates the aim of multiscale approaches. Specifically, to combine
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the accuracy of microscopic representations with the practicality of macroscopic
models.

Case 2: Pf ∈ {2, 8} MPa

Results for the second test case are shown in Fig. 6.8. As before we see pres-
sure increasing with time in response to the pressure step. Similar to Fig. 6.7a,
Fig. 6.8 shows the DC model with the linear transfer to underpredict early time
average pressure by up to an order of magnitude. However, despite not having
learnt with data containing such a big pressure jump, the hybrid ML-physics
approach still manages a good match to the microscale results across the whole
time range. These results thus suggest some form of self-similarity in the solu-
tion that is well approximated by the learnt model. Generalisability such as that
shown in Fig. 6.8 is highly desirable, although perhaps more difficult to obtain
in more complex scenarios. In this regard, theory-driven ML approaches have
been shown to have good generalisibility performance compared to purely data-
driven methods (Zhu et al. 2019; Wang, Zhang, Chang and Li 2020; Wang, Kash-
inath, Mustafa, Albert and Yu 2020). Accordingly, it is interesting to incorporate
these techniques in future work.
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Figure 6.8: Average matrix pressure evolutions for test case 2 with Pf = 2 Pa (a) and
Pf = 8 MPa (b). Notations ‘DC-L’ and ‘DC-ML’ denote the dual-continuum
model equipped with the linear and machine learning constitutive transfer
models respectively.

Case 3: Application to a geological model

Figs. 6.9 to 6.10 show the results for the geological model test case using the tra-
ditional and ML-physics model respectively. In both figures we can see matrix
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pressure rising over time in response to diffusion driven equilibration with the
fractures. However, we can see significant differences between the two model-
ling approaches following the initial conditions up until equilibrium conditions.
Comparing Figs. 6.9 to 6.10 at t = 1 hour, we can see the matrix pressures are
noticeably higher when using the hybrid ML-physics approach. This observa-
tion is consistent with the results in the previous test which showed the matrix
pressures to be significantly underestimated when using a linear approxima-
tion. Accordingly, matrix fluxes are underpredicted when using this approach.
Such errors could be significant in geological settings such as groundwater re-
mediation (Haggerty and Gorelick 1995). Similar differences between the two
approaches to those just described are observed at t = 50, 100 hours, with the
ML-physics approach predicting higher pressures than the traditional approach.

t = 0 hours t = 1 hour

t = 100 hourst = 50 hours

t = 1000 hourst = 500 hours

Figure 6.9: Matrix pressure evolutions on a geological model using the linear transfer
model.
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Figure 6.10: Matrix pressure evolutions on a geological model using the machine
learning-based transfer model.

When extrapolating outside of the training conditions, the hybrid approach
shows physically reasonable results (consistent with the previous timesteps) at
t = 500 hours. Accordingly, at this timestep, matrix pressures coming from the
hybrid approach are higher compared to the traditional approach. However, by
t = 1000 hours, the two models have converged to the equilibrated pressure
state. This last result shows the hybrid approach is capable of converging to an
equilibrated state.

In summary, the results presented for the described tests show the potential
for the ML-physics approach for multiscale modelling. With this framework we
can capture the accuracy of microscopic representations with the practicality of
macroscopic models. Although we consider relatively simple examples in this
work, a number of interesting extensions could be investigated using this hybrid
approach.
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6.7 Conclusions

This chapter introduces and applies a machine learning-based multiscale con-
stitutive modelling framework. We detail the key components of the frame-
work as: data generation, surrogate constitutive model learning and ML-physics
model coupling. In doing, we describe various considerations that the user should
make at each step. To test the framework we consider a model multiscale pres-
sure diffusion problem. Specifically, that of inter-continuum mass transfer in
double-porosity materials. In practice, it is common to describe this constitutive
relation using a simple linear model. When applying the framework we in-
troduce the various machine learning methods used to create the surrogate
constitutive model. We account for time-dependence using autoregressive ap-
proaches, considering both polynomial and neural network regressors. We found
the latter to be more robust and give higher accuracy when used as a multi-step
ahead predictor. Accordingly, we integrated the resulting data-driven surrog-
ate into a physics-based model, creating a hybrid ML-physics approach. We
showed the resulting hybrid approach to give high quality results for a num-
ber of test cases compared to the traditional approach based on the linear con-
stitutive model.

There are a number of exciting possibilities for future work. We hypothesise
the real benefit of this framework to come when using data coming from more
complex microscale scenarios (e.g. dynamic boundary conditions) than the ones
considered here. In such cases data is likely to be obtained numerically. How-
ever, numerical data can be expensive, leading to sparse datasets. Accordingly,
different sampling and learning strategies such as active learning, theory-driven
ML and probablistic approaches will be useful to improve learning efficiency,
generalisability and to understand uncertainty in multiscale settings.
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7
Closure

7.1 Summary

The goal of this thesis was to apply multiscale and multiphysics modelling con-
cepts to the study of strongly heterogeneous (deformable) porous media, to bet-
ter understand and represent the links between various scales of interest. For
the multiscale component we were interested in the coupling between micro-
scale and (macroscopic) dual-continuum representations. For the multiphysics
component we were interested in the coupling between linear deformation and
flow, referred to as poroelasticity. To address our goal we split this thesis into
three parts concerned with the following objectives:

1. Investigate the relations between microscale and dual-continuum poroelastic
consitutive models, including previously introduced phenomogelogical mod-
els, using micromechanical approaches.

2. Introduce a numerical framework for dual-continuum poroelastic model-
ling. Use the resulting framework to further study the links between dif-
ferent modelling scales given various material and modelling assumptions
made at the microscale.

3. Establish a machine learning-based multiscale modelling approach to im-
prove the accuracy of macroscopic models. Apply the resulting framework
to the modelling of inter-continuum mass transfer.

Accordingly, in Part I we investigated the relations between microscopic and
dual-continuum poroelastic constitutive behaviour using the framework of mi-
cromechanics. We derived a dual-continuum poroelastic constitutive model through
homogenisation. We then showed how the resulting model reduces to previously
introduced phenomological models under assumptions of material isotropy and
stiffness properties of the fracture phase. For the remainder of Part I, we studied
in further detail those previously introduced phenomenological models. In do-
ing, we considered simplifying decoupling assumptions made by past users on
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these models. Using micromechanical arguments we showed these decoupling
assumptions to coincide with bounds on effective properties arising from geo-
metric assumptions at the microscale. Using analytical solutions to a poroelastic
model problem, we also demonstrated qualitatively the effects of using these
decoupling assumptions (and resulting parameter bounds). Consequently, we
recommended against the use of explicit decoupling assumptions without fully
understanding their microscopic implications. Finally, through further qualitat-
ive studies, we showed that expressions for the effective constitutive parameters
without intrinsic mechanical fracture properties (void space assumption) to be
good starting points for using poroelastic constitutive models. Specifically, given
the compliance of fractures compared to the stiffnesses of the other constituents,
it is fair to neglect fracture stiffness effects.

In Part II we introduced a numerical framework for poroelastic dual-continuum
modelling. The framework combines the finite-volume method for flow and
the virtual-element method for mechanics. The former ensures local mass con-
servation with respect to the flow problem. The latter ensures the flexibility
of the hybrid approach with respect to the complex grids encountered within
the subsurface. We benchmarked the hybrid approach against analytical solu-
tions and tested it on a geologic grid. We observed good results in both cases.
With our framework, we further investigated links between microscale and dual-
continuum poroelastic materials. In particular, we studied these links given vari-
ous modelling and material assumptions made at the microscale. For the latter,
we considered anisotropic effects. Through several tests of varying complexity
we observed that anisotropy can have measurable impacts on flow and deform-
ation behaviour. However, in all the cases considered, we showed the DC ap-
proach is able to capture the global poroelastic behaviours of equivalent mi-
croscale representations. Discrepancies between the two modelling approaches
arose when local equilibration processes not accounted for in the homogenisa-
tion approach, were significant.

Finally, in Part III we presented a machine-learning based multiscale con-
stitutive modelling framework. The framework itself is inspired by sequential
computational multiscale approaches, where the machine learning model then
acts as a bridge between scales. Accordingly, we introduced the framework de-
scribing the key components and considerations therein. We then applied the
framework to the problem of modelling inter-continuum mass transfer for un-
coupled (flow only) dual-materials. We reviewed various machine learning meth-
ods for modelling the time-dependent problem and injected the ensuing data-
driven model into a physics-based simulator. We tested the resulting hybrid
machine learning-physics-based approach against a dual-continuum model us-
ing the conventional linear transfer approximation and a microscale model. The
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hybrid approach gave high quality results compared to the microscale reference
solutions, without the computational expense of the latter.

7.2 Recommendations for future work

Throughout the course of this thesis we have endeavoured to highlight open
questions and potential areas for future work. We summarise these accordingly.

7.2.1 Parameter measurement

In analogy to Biot and Willis (1957), it is highly desirable to develop methods of
measurement for the parameters introduced in this work. However, this poses
several challenges particularly to the current constitutive framework where we
consider fractures as poroelastic continua at the microscale. Specifically, it is not
clear how to map commonly measured planar properties such as the fracture
normal and shear stiffnesses to continuum properties such as Young’s modu-
lus and Poisson’s ratio. One possible solution to this is to model fractures as
lower-dimensional objects at the microscale as done in discrete fracture network
models (Berre et al. 2019). Such lower-dimensional objects naturally align with
the planar properties typically measured on fractures (Garipov et al. 2016). At
the macroscale we could then treat the dual-continuum model using the void
space constitutive/coefficient models as a first approximation. Fracture stiffness
effects would then be captured in the homogenised stiffness tensor. Addition-
ally, analytical micromechanical approaches may also provide useful insights
into experimental and theoretical methodologies for mapping such quantities
(Lemarchand et al. 2009; Dormieux and Kondo 2016).

7.2.2 Multiscale effects

Nonlinear deformation and impacts on multiphysics

It is well recognised that heterogeneities such as fractures and inter-aggregate
pores deform nonlinearly, and irreversibly, even under small deformations (Be-
mer et al. 2001; Deude et al. 2002; Lemarchand et al. 2009; Bidgoli et al. 2013;
Borja and Choo 2016). As a result, we can expect geometric nonlinearities at the
microscale to lead to material nonlinearities at the macroscale. Examples of such
effects include hardening, stress-dependent permeability and evolving material
anisotropy. Accordingly, impacts on flow are likely to be significant. Whilst incor-
porating nonlinear multiscale coupling effects is a necessary step towards more
realistic models, doing it in practice is nontrivial. Multiscale analytical methods
exist for nonlinear deformations within poroelasticity (Brown et al. 2014; Col-
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lis et al. 2017). However, their use for practical applications remains limited at
present (Concha and Hurtado 2020). Instead, the most promising approach to
consider such phenomena is to use computational multiscale strategies (Geers
et al. 2017). Challenges and recommendations for these latter approaches are
discussed below.

Multiphase flows

Despite considering only single-phase flows in this work, extensions to mul-
tiphase systems are desirable given their propensity in the subsurface. However,
the key challenge here is the formulation of an appropriate constitutive model in
light of additional multiphysics couplings due to capillarity and surface energy
effects between components at the microscale (Coussy 2004). Micromechanical
approaches have been successfully applied to deriving such constitutive models
in the case of single-porosity materials (Chateau and Dormieux 2002; Dormieux
et al. 2006). However, the extension of these methods to the dual-continuum case
still remains an open. One potential barrier to such developments in the case of
fractures, is the paucity of experimental studies on multiphase flow through
these materials.

7.2.3 Computational multiscale approaches

Numerical modelling

The main challenge for computational approaches to nonlinear hierarchical prob-
lems is the need for potentially significant developments in methods and soft-
ware for modelling each scale. For example, realistic microscale simulations of
fractures require specialised methods (e.g. discrete-element methods) to account
for phenomena such as contact and sliding (Sun et al. 2013; Wang and Sun 2019).
Additionally, finding efficient ways to couple between scales is a recurring theme
when considering such approaches, particularly when realistic microscale simu-
lations are considered. One possible solution to this latter problem is the use of
machine learning. For the methods and software problem, despite the complex-
ities of physics such as fracture mechanics (and assigning meaningful properties
therein), treating fractures as continua at the microscale still provides useful
insight into multiscale couplings. Accordingly, a good first step toward under-
standing the impacts of nonlinear microscale deformation would be to extend
the numerical framework considered here to finite deformations (Chi et al. 2017).

With respect to the numerical methods used in this work, several interest-
ing paths could be explored. For example, complex microstructures in hierarch-
ical problems can pose challenges for conventional finite-element methods in
terms of grid requirements (Rivarola et al. 2019). Such challenges may also be
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encountered in concurrent multiscale settings. For example, when modelling
nonhomogenisable phenomena such as the interface problems in faults or con-
structing the traces of large scale fractures (Benedetto et al. 2016; Wriggers et al.
2016). The flexibility of VEM could be used to address such issues in both hier-
archical and concurrent multiscale settings. Further, several works, including
this one, have shown the suitability of mixed discretisations to address coupled
flow and deformation problems (Kim et al. 2009; Jha and Juanes 2014). However,
previous computational multiscale studies applied to poroelasticity problems
have used nested finite-element methods (e.g. Van den Eijnden et al. 2016). Ac-
cordingly, applying mixed discretisations for nested sequential multiscale and
multiphysics problems still remains open.

Machine learning

Lastly, one of the fundamental challenges when using computational multiscale
approaches is efficient information passing between scales. To address this, as
well as other challenges, we could leverage the remarkable advances being made
in machine learning. For future work, an exciting development building on the
work done in this thesis, would be using theory-driven learning approaches
to supplement microscale data. For example, given the mass-transfer case con-
sidered here, an interesting experiment is to see if we can supplement (or com-
pletely bypass) the data generation process by embedding the physics of the
problem within the constitutive model learning step. Alternatively, we could ex-
plore if so-called generative models could be used to supplement expensive-to-
compute training data using semi-supervised learning procedures. Finally, prob-
ablistic machine learning methods could further enhance multiscale capabilities.
For example, using Bayesian inference we could provide feedback into when sur-
rogate constitutive predictions are uncertain. In cases of high model (epistemic)
uncertainty we could run the required explicit microscale simulation, feeding
the results into a macroscale model whilst also adding them to an offline data-
base for model retraining. Further, in high cost applications, such as those in
the subsurface, understanding uncertainties is invaluable, especially if we can
propagate aleatoric (data) uncertainties coming from the microscale as well.

Examples such as the above, are just some of the ways in which we could
utilise the vast capabilities of machine learning within multiscale systems. We
predict the intersection of these two fields to be an exciting area for future devel-
opments.
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7.3 Final remarks

In science and engineering, developments are driven by our desire for greater
understanding, accuracy and efficiency. Accordingly, multiscale approaches are
indispensable in light of these goals, particularly as we seek to incorporate more
scales of interest and (multi)physical phenomena when modelling. However, a
key challenge is how to make multiscale methods efficient enough to be used at
large scales or for computationally demanding tasks such as uncertainty quan-
tification. Addressing this challenge will require further work in computational
approaches, informed by analytical techniques where necessary. In this regard,
we hope this thesis can be a stepping stone to further developments in multiscale
methods and their applications to the subsurface.
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A
Appendix: Maxwell symmetry
relations

Here we present the Maxwell symmetry relations for a dual-continuum owing
to the state equations in Eq. (2.18). Accordingly,

∂2Fs
∂Eij∂Ekl

:
∂Σij

∂Ekl
=
∂Σkl
∂Eij

, (A.1)

∂2Fs
∂Pm∂Eij

:
∂Σij

∂Pm
= −

∂φm

∂Eij
, (A.2)

∂2Fs
∂Pf∂Eij

:
∂Σij

∂Pf
= −

∂φf
∂Eij

, (A.3)

∂2Fs
∂Pm∂Pf

:
∂φm

∂Pf
=
∂φf
∂Pm

, (A.4)

Note, Eq. (A.4) suggests Qm = Qf in Eqs. (2.20) to (2.21) (resp. Eqs. (2.23)
to (2.24)). However, from Eq. (2.101) and Eq. (2.103) we show this equivalence
only holds when the matrix and fracture materials are isotropic.
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B
Appendix: Dual-continuum Mandel
solution

Here we present the solutions to the dual-continuum Mandel problem following
the work of Nguyen and Abousleiman (2010). To start we present the poroelastic
governing equations under assumptions of material isotropy, no gravity, use of
a linear inter-continuum mass transfer model and assuming γ ′ ≈ 0 such that

Σ = 2G∗E+ λ∗E1−
∑
α=m,f

BαPα1 = 0, (B.5)

∂

∂t

(
BmE+

Pm

Mm
+
Pf
Q

)
−∇ ·

(
Km
µl
∇Pm

)
= χ(Pf − Pm), (B.6)

∂

∂t

(
BfE+

Pm

Q
+
Pf
Mf

)
−∇ ·

(
Kf
µl
∇Pf

)
= χ(Pm − Pf), (B.7)

where we have replaced the coefficient of the linear transfer model coming from
Eq. (2.7) with χ. Next, we give expressions for Σyy(x, t) and Eyy(y, t), which are
used in the analyses in Chapter 3 and Chapter 4. First, integrating Eq. (2.4) in
the x-direction given the assumptions above, whilst noting there is no applied
stress at the boundaries ±h1 leads to

Σxx = 0. (B.8)

From Eq. (B.5) and Eq. (B.8) we express the horizontal and vertical components
of stress as

Σxx = 0 = 2G
∗Exx + λ

∗E−BmPm −BfPf. (B.9)

Σyy = 2G
∗Eyy + λ

∗E−BmPm −BfPf. (B.10)

Using Eq. (3.50) in Eq. (B.10) to eliminate E leads to

Σyy = −2G∗CmPm − 2G∗CfPf + (2G∗ + 2λ∗)I(t), (B.11)
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where we eliminate Eyy = E− Exx. Finally, combining Eq. (B.10) with Eq. (B.11)
leads to

Eyy = (2G∗ + λ∗)I(t). (B.12)

Accordingly, to calculate Σyy and Eyy we require expressions for Pm(x, t), Pf(x, t)
and I(t). With this goal in mind, we substitute Eq. (3.50) into Eqs. (B.6) to (B.7)
leading to

(
M
∂

∂t
−K∇2 + χ

)Pm
Pf

 = −

Bm
Bf

 ∂I(t)
∂t

, (B.13)

where M, K and χ in Eq. (B.13) are given as

M =

M−1
m +BmCm Q−1 +BmCf

Q−1 +BfCm M−1
f +BfCf

 , (B.14)

K =
1

µl

Km 0

0 Kf

 , (B.15)

χ = χ

 1 −1

−1 1

 , (B.16)

Following Nguyen and Abousleiman (2010), the pressure solutions can be defined
in terms of infinite series through combined Fourier and Laplace transforma-
tions. We do not go into details of this solution procedure but instead refer
the interested reader towards Appendix D in Nguyen and Abousleiman (2010).
However, we do provide resulting solutions for I(t) and Pα. Accordingly, I(t) is
given as

I(t) =
F

2h1τ

{
1+

∞∑
i=1

[
(eωit − 1)

ωiQ ′(s = ωi)

]}
, (B.17)

where s, Q ′(s) and ωi denote the Laplace transform parameter, dQ(s)/s and the
roots of the equation 1−Q(s) = 0, respectively. Q(s) is given by

Q(s) =
2

(h1)2τ

∞∑
n=1

1

η2

(
Φm,nsm,n

s+ sm,n
−
Φf,nsf,n

s+ sf,n

)
, (B.18)

where η = (2n− 1)π/2h1 denotes the Fourier transform parameter (for a given
Fourier term n). The remaining parameters appearing in Eqs. (B.17) to (B.18)
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will be given following the presentation of the solution for Pα. Accordingly, the
solution for Pα is

Pα(x, t) =
Fqα

(h1)2τ

∞∑
n=1

(−1)n

η(sm,n − sf,n)

{[
(sm,n − rα,n)e

−sm,nt

− (sf,n − rα,n)e
−sf,nt

] [
1+

∞∑
i=1

(
eωit − 1

)
ωiQ ′(ωi)

]}
cos(ηx). (B.19)

The remaining parameters appearing in Eqs. (B.17) to (B.19) are defined as

qm =
M22Bm −M12Bf

det(M)
, qf =

M11Bf −M21Bm

det(M)
, (B.20)

rm,n =
[Bm(η

2M22 + χ) +Bfχ)]

qm det(M)
, rf,n =

[Bf(η
2M11 + χ) +Bmχ)]

qf det(M)
, (B.21)

sα,n = −

(
−D±

√
∆
)

2 det(M)
, (B.22)

D = (M11 +M22 +M12 +M21)χ+ η
2(M11K22 +M22K11), (B.23)

∆ = D2 − 4 det(M)[(η2K11 + χ)(η
2K22 + χ) − χ

2], (B.24)

τ = G∗Cmqm +G∗Cfqf +
G∗

1− 2ν∗
, (B.25)

Φα,n =
G∗Cmqm(sα,n − rm,n) +G

∗Cfqf(sα,n − rf,n)

(sm,n − sf,n)
, (B.26)

where det(·) denotes the determinant of a matrix.
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