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Abstract
1. Neighborhood competition models are powerful tools to measure the effect of in-

terspecific competition. Statistical methods to ease the application of these mod-
els are currently lacking.

2. We present the forestecology package providing methods to (a) specify neigh-
borhood competition models, (b) evaluate the effect of competitor species iden-
tity using permutation tests, and (cs) measure model performance using spatial 
cross- validation. Following Allen and Kim (PLoS One, 15, 2020, e0229930), we im-
plement a Bayesian linear regression neighborhood competition model.

3. We demonstrate the package's functionality using data from the Smithsonian 
Conservation Biology Institute's large forest dynamics plot, part of the ForestGEO 
global network of research sites. Given ForestGEO’s data collection protocols and 
data formatting standards, the package was designed with cross- site compatibility 
in mind. We highlight the importance of spatial cross- validation when interpreting 
model results.

4. The package features (a) tidyverse- like structure whereby verb- named functions 
can be modularly “piped” in sequence, (b) functions with standardized inputs/
outputs of simple features sf package class, and (c) an S3 object- oriented imple-
mentation of the Bayesian linear regression model. These three facts allow for 
clear articulation of all the steps in the sequence of analysis and easy wrangling 
and visualization of the geospatial data. Furthermore, while the package only has 
Bayesian linear regression implemented, the package was designed with extensi-
bility to other methods in mind.
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cross- validation, tree growth
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1  | INTRODUC TION

Repeat- censused forest plots offer excellent opportunities to test 
neighborhood models of the effect of competition on the growth of 
trees (Canham et al., 2004). Neighborhood models of competition 
have been used to test whether the species identity of a competitor 
matters Uriarte et al. (2004); measure species- specific competition 
coefficients (Das, 2012; Tatsumi et al., 2016); test competing models 
to see what structures competitive interactions, for example, traits 
or phylogeny (Allen & Kim, 2020; Uriarte et al., 2010); and inform 
selective logging practices (Canham et al., 2006). Although these 
are well- described methods, few methods are currently available for 
easy application.

We address this shortcoming with the forestecology R pack-
age providing methods and data for forest ecology model fitting and 
assessment, available on CRAN (https://cran.r- proje ct.org/packa 
ge=fores tecology) and on GitHub (https://github.com/rudeb oyber 
t/fores tecology). The package is written to model stem diameter 
growth between two censuses based on neighborhood competition, 
largely following the methods in Allen and Kim (2020).

Let i = 1,…, nj index all nj trees of “focal” species j; let j = 1,…, 
J index all J focal species; and let k = 1,…, K index all K “competi-
tor” species. The average annual growth in diameter at breast height 
(DBH) yij (in centimeters/year) of the ith tree of focal species j is mod-
eled as

where β0,j is the diameter- independent growth rate of species j; dbhij is 
the DBH of the focal tree at the earlier census and βdbh,j the slope of 
that species's diameter– growth relationship; xcomp

ijk
 is the sum of some 

numerical explanatory variable of all trees of competitor species k, and 
λjk quantifies the corresponding change in growth for individuals of 
species j from these competitors; and εij is a random error term distrib-
uted Normal (0, σ2).

Allen and Kim (2020) use the sum of the basal area of all trees of 
competitor species k as xcomp

ijk
. Furthermore, they estimate all param-

eters via Bayesian linear regression, while exploiting Normal/Inverse 
Gamma conjugacy to derive closed- form solutions to all posterior dis-
tributions.1 These closed- form solutions are not as computationally ex-
pensive as approximations from Markov chain Monte Carlo algorithms.

To evaluate whether competitor species identity matters, Allen 
and Kim (2020) run a permutation test where a null hypothesis of no 
species grouping- specific effects of competition is assumed; thus, 
the species identity of all competitors can be permuted:

Furthermore, to account for the spatial autocorrelation in their 
estimates of out- of- sample model error, Allen and Kim (2020) 
use spatial cross- validation. Estimates of model error that do not 

account for this dependence tend to underestimate the true model 
error (Roberts et al., 2017).

The package is designed with “tidy” design principles in mind 
(Wickham et al., 2019). Much like all tidyverse packages, fores-
tecology has verb- named functions that can be modularly com-
posed using the pipe %>% operator to sequentially complete all 
necessary analysis steps (Bache & Wickham, 2020).

Furthermore, the inputs and outputs of most functions use the 
same “simple features for R” data structures for spatial data from the 
sf package (Pebesma, 2018). Previously, sp package classes were 
commonly used for storing spatial data and interfacing with geospa-
tial libraries (Bivand et al., 2013); the sf package aims to improve on 
the sp package by:

1. Using simple feature access as the base standard for representing 
and encoding spatial data, rather than shapefiles (Herring, 2011).

2. Leveraging improvements in external libraries for reading and 
writing spatial data (GDAL) and for geometrical operations (GEOS) 
(GEOS Development Team, 2017; Warmerdam, 2008).

3. Integrating closely with the popular tidyverse suite of pack-
ages for data science (Wickham et al., 2019).

By using the sf package classes to represent spatial data 
rather than the sp package, the implementation and use of the 
forestecology package's spatial algorithms was greatly simplified.

2  | forestecology  WORKFLOW: A C A SE 
STUDY

We present a case study of forestecology's functionality on data 
from the Smithsonian Conservation Biology Institute (SCBI) large 
forest dynamics plot in Front Royal, VA, USA, part of the ForestGEO 
global network of research sites (Anderson- Teixeira et al., 2015; 
Bourg et al., 2013; Davies et al., 2021). The 25.6- ha (640 × 400 m) 
plot is located at the intersection of three of the major physiographic 
provinces of the eastern United States— the Blue Ridge, Ridge and 
Valley, and Piedmont provinces— and is adjacent to the northern end 
of Shenandoah National Park.

The package has the following goals: to evaluate (a) the effect of 
competitor species identity using permutation tests and (b) model 
performance using spatial cross- validation. We outline the four- step 
basic analysis sequence:

1. Compute the growth of stems based on two censuses.
2. Add spatial information:

a. Define a buffer region of trees.
b. Add spatial cross- validation block information.

3. Identify all focal trees and their competitors.
4. Apply model, which includes:

a. Fit model.
b. Compute predicted values.
c. Visualize posterior distributions.

(1)yij=�0,j+�dbh,j ⋅dbhij+

K
∑

k=1

�jk ⋅x
comp

ijk
+�ij

(2)
H0: �jk=�j for all k=1,…,K

vs. HA: at least one �jk is different

https://cran.r-project.org/package=forestecology
https://cran.r-project.org/package=forestecology
https://github.com/rudeboybert/forestecology
https://github.com/rudeboybert/forestecology
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We start by loading all packages (all code in this paper can be 
copied from here https://github.com/rudeboybert/forestecology/
blob/master/paper/paper.R).

2.1 | Step 1: Compute the growth of trees based on 
census data

We first compute the growth of trees using data from two censuses. 
compute _ growth() computes the average annual growth based 
on census data that roughly follows ForestGEO standards. Despite 
such standards, minor variations will still exist between sites, thereby 
necessitating some data wrangling. For example, the SCBI site re-
cords all DBH values in millimeters (Bourg et al., 2013), whereas the 
Michigan Big Woods site used in Allen and Kim (2020) records them 
in centimeters (Allen et al., 2020).

We load both 2008 and 2014 SCBI census.csv files as they ex-
isted on GitHub on 2021/08/02 and perform minor data wrangling 
(Gonzalez- Akre, McGregor, et al., 2020). We then only consider a 
9- ha subsection of the 25.6 ha of the site to speed up computation 
for this example: gx from 0– 300 instead of 0– 400 and gy from 300– 
600 instead of 0– 640.

These two data frames are then used as inputs to compute _

growth(), along with id specifying the variable that uniquely identifies 
each tree- stem. We also discard all resprouts with code == R in the 
later census, since we are only interested in the growth of surviving, 
and not resprouted, stems.

The output growth_scbi is a data frame of class sf that includes 
among other variables the species variable sp converted to a factor, 
the average annual growth in DBH (cm·y−1) for all stems that were 
alive at both time points, and the sf package's encoding of geoloca-
tions of geometry type <POINT>. Given that growth _ scbi is of 
class sf, it can be easily plotted in ggplot2 using geom _ sf() as seen 
in Figure 1.

We also load species information as it existed on GitHub on 
2021/08/02, which includes family, genus, and species information, 
as well as classifications of the canopy position (canopy, canopy 
emergent, understory, shrub layer), drought tolerance (intolerant, 
resistant), and other characteristics of the species.

We join this species information to our growth_scbi data frame and 
convert the species variable to a factor.

F I G U R E  1   Step 1— Compute growth of trees based on census 
data. A map of the growth of a random sample of 500 trees from a 
9- ha subsection of the Smithsonian Conservation Biology Institute 
(SCBI) forest plot

https://urldefense.com/v3/__https:/github.com/rudeboybert/forestecology/blob/master/paper/paper.R__;!!N11eV2iwtfs!8n71aLKCBnptraC-Fhk7bt8FdPqstZx59HOshfOPFcLZIjrJ9bom06mOfxDx0Dk$
https://urldefense.com/v3/__https:/github.com/rudeboybert/forestecology/blob/master/paper/paper.R__;!!N11eV2iwtfs!8n71aLKCBnptraC-Fhk7bt8FdPqstZx59HOshfOPFcLZIjrJ9bom06mOfxDx0Dk$
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Furthermore, we compute two potential competitor explanatory 
variables xcomp

ijk
 from Equation 1. First, the basal area of each tree as 

a function of its DBH in the earlier census. Second, the aboveground 
biomass as estimated by allometric equations encoded in the get _

biomass() function from the allodb package (Gonzalez- Akre 
et al., 2020); this function has DBH, species, and geographic coordi-
nates as arguments.

2.2 | Step 2: Add spatial information

We then add spatial information to growth _ scbi. We first add 
a “buffer region” to the periphery of the study region. Since some 
of our model's explanatory variables are cumulative, we must en-
sure that all trees being modeled are not biased to have different 
neighbor structures. This is of concern for trees at the boundary 
of the study region who will not have all their neighbors included 
in the census stems. To account for such edge effects, only trees 
that are not part of this buffer region, that is, are part of the inte-
rior of the study region, will have their growth modeled (Waller & 
Gotway, 2004).

Our model of interspecific competition relies on a spatial defini-
tion of who competitor trees are: all trees within a distance comp _

dist of a focal tree. Here, we set comp _ dist to 7.5m, a value 
informed by other studies (Canham et al., 2004; Canham et al., 2006; 
Uriarte et al., 2004), but the package could also be used to compare 
multiple distances and see which is best supported (see Appendix 1). 
We use comp_dist and a manually constructed sf representation of 
the study region's boundary as inputs to add _ buffer _ vari-

able() to add a buffer Boolean variable to growth _ scbi. All 
trees with buffer equal to FALSE will be our focal trees whose 
growth will be modeled, whereas those with TRUE will only act as 
competitor trees.

The second element of spatial information we add are blocks corre-
sponding to folds of a spatial cross- validation algorithm. Conventional 
cross- validation algorithms assign individual observations to folds by 

randomly resampling them all while assuming they are statistically in-
dependent. In the case of forest census data however, observations 
exhibit spatial autocorrelation. We therefore incorporate this depen-
dence into the cross- validation algorithm by resampling spatial blocks 
of trees (Pohjankukka et al., 2017; Roberts et al., 2017).

We first manually define an sf object defining four folds that 
partition the study region. We then use the output of the spatial-
Block() function from the blockCV package to associate each tree 
in growth _ scbi to the correct foldID (Valavi et al., 2019). This 
foldID variable will be used in Section 2.6.

Figure 2 illustrates the net effect of adding these two elements 
of spatial information to growth _ scbi.

F I G U R E  2   Step 2— Add spatial information. A buffer region and 
spatial cross- validation blocks 1 through 4. The location of each 
tree is marked with its fold number where the folds are delineated 
with solid lines. The color of each digit indicates whether the 
tree is part of the buffer region (thus will only be considered as a 
competitor tree) or is part of the interior of the study region (thus is 
a focal tree whose growth is of modeled interest)
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2.3 | Step 3: Identify all focal and corresponding 
competitor trees

We then identify all focal trees and their corresponding competitor 
trees and, more specifically, identify all trees that are not part of the 
buffer region, have a valid growth measurement, and have at least 
one neighbor within 7.5 m. We do this using create _ focal _

vs _ comp(), which takes the previously detailed comp _ dist and 
id arguments, the sf representation of the spatial cross- validation 
blocks blocks _ scbi, and a specification comp _ x _ var of the 
basal _ area variable we use as the competitor explanatory vari-
able xcomp

ijk
 from Equation 1. This function returns a new data frame 

focal _ vs _ comp _ scbi.

The resulting focal_vs_comp_scbi has 6,296 rows, representing 
the subset of the 7,954 trees in growth_scbi that will be considered 
as focal trees. The variables focal_ID and focal_sp relate to tree- 
stem identification and species information. Most notably however is 
the variable comp, which contains information on all competitor trees 
saved in tidyr package list- column format (Wickham, 2020). To in-
spect this information, we flatten the comp list- column for the tree with 

focal_ID 4 in the first row, here a tibble [20 × 4], into regular columns 
using  unnest() from the tidyr package.

We observe 4 variables describing 20 competitor trees: the unique 
tree- stem ID, the distance to the focal tree (all ≤7.5 m), the species, and 
the basal area (in m2) calculated as � × (DBH∕2)2

10000
 for the DBH in cm from the 

earlier census. Saving competitor information in list- column format min-
imizes redundancy since we do not need to repeat information on the 
focal tree 20 times. We visualize the spatial distribution of these trees 
in Figure 3.

Here, we use basal area as the continuous competitor explana-
tory variable, but the package is flexible to allow the user to spec-
ify any competitor explanatory variable (basal area, biomass, tree 
height, a soil nutrient value). The package can also be used to com-
pare competitor explanatory variables and see which best explains 
tree growth, see Appendix 2 for an example comparing basal area 
and above- ground biomass. Similarly, the package can use any cat-
egorical variable as an explanatory variable and compare between 
different categorical variables. For example, in Allen and Kim (2020), 
we compare grouping individuals based on species, family, and based 
on trait- based groups. In Appendix 3, we give another example and 
compare grouping individuals by species or by potential canopy po-
sition (canopy, understory, shrub layer).

F I G U R E  3   Step 3— Identify all focal 
and corresponding competitor trees. The 
dashed circle extends 7.5m away from the 
focal tree 4, while all 20 competitor trees 
are within this circle
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2.4 | Step 4: Fit model

Lastly, we fit the competition Bayesian linear regression model for 
tree growth outlined in Equation 1 using comp _ bayes _ lm(). This 
function has an option to specify prior distributions of all parameters, 
chosen here to be the defaults detailed in ?comp _ bayes _ lm.

The resulting comp _ bayes _ lm _ scbi is an object of S3 class 
type comp _ bayes _ lm containing the posterior values of all pa-
rameters. Furthermore, this class includes generics for three methods. 
First, the generic for print() displays the names of all prior and pos-
terior parameters and the model formula:

Next, the generic for predict() takes the posterior parameter 
values in comp _ bayes _ lm _ scbi and a newdata data frame and 
outputs a vector growth _ hat of predicted DBH values ŷij computed 
from the posterior predictive distribution.

We can now compare the observed and predicted growths to com-
pute the root mean squared error (RMSE) of our model:

Lastly, the generic for ggplot2::autoplot() allows us to vi-
sualize all posterior distributions, as seen in Figure 4. Setting type 
to “intercepts” and “dbh _ slopes” returns species- specific 

F I G U R E  4   Step 4— Fit model. Posterior 
distributions of all parameters. For 
compactness, we include only three 
species
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posterior distributions for β0,j and βdbh,j, respectively, while setting 
type = “competition” returns competition coefficients λj,k.

For many users, the visualizations of λj,k will be of particular in-
terest as they provide insight into species- specific competitive inter-
actions, where negative values indicate a competitor species which 
slows the growth of a focal species. Here, for example, we see that 
tulip poplars (litu) have a strong negative effect on the growth of 
conspecifics but relatively lesser effect on pignut hickory (cagl) and 
red oak (quru) neighbors.

Currently, the forestecology package can only fit the com-
petition Bayesian linear regression model in Equation 1. However, 
it can be extended to any model as long as it is implemented in a 
function similar to comp _ bayes _ lm().

2.5 | Evaluate the effect of competitor species 
identity using permutation tests

To evaluate the effect of competitor species identity, we use the 
above four steps along with the permutation test in Equation 2. Under 
a null hypothesis where competitor species identity does not matter, 
we can permute the competitor species identities within each focal 
tree, compute the RMSE test statistic, repeat this process several 
times to construct a null distribution, and compare it to the observed 
RMSE to assess significance. Going back to our example in Section 2.3 
of focal tree with focal _ ID 4 and its 20 competitors, the permuta-
tion test only randomly resamples the comp _ sp variable without re-
placement, leaving all other variables intact. This resampling is nested 
within each focal tree in order to preserve neighborhood structure. 
We perform this permutation test once again using comp _ bayes _

lm() but by setting run _ shuffle = TRUE.

The resulting permutation test RMSE of 0.131 is larger than the 
earlier RMSE of 0.128, suggesting that models that do incorporate 
competitor species identity better fit the data.

2.6 | Evaluate model performance using spatial 
cross- validation

To evaluate model performance, we use spatial cross- validation. The 
model fit in Section 2.4 uses the same data to both fit and assess 
model performance. Given the spatial- autocorrelation of our data, 
this can potentially lead to overfit models (Roberts et al., 2017). 
To mitigate this risk, we use the spatial cross- validation blocking 
scheme encoded in the foldID variable from Section 2.2 and visual-
ized in Figure 2.

At each iteration of the cross- validation, one fold acts as the test 
set and the remaining three act as the training set. We fit the model 
to all focal trees in the training set, apply the model to all focal trees 
in the test set, compute predicted values, and compute the RMSE. 
Furthermore, to maintain spatial independence between the test 
and training sets, a “fold buffer” that extends 7.5 m outward from 
the boundary of the test set is considered; all trees within this “fold 
buffer” are excluded from the training set (see Figure 5).

This process is repeated for each of the four folds acting as the 
test set, and then, the four RMSE’s are averaged to provide a single 
estimate of model error. This algorithm is implemented in run _ cv(), 
which acts as a wrapper function to both comp _ bayes _ lm() that 
fits the model and predict() that returns predicted values.

F I G U R E  5   Schematic of spatial cross- validation. Using the k = 1 
fold (bottom- left) as the test set, k = 2 through 4 as the training 
set, along with a fold buffer extending outward from the test set to 
maintain spatial independence between it and the training set
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The resulting RMSE of 0.14 computed using cross- validation is 
larger than the earlier RMSE of 0.128, suggesting that models that do 
not account for spatial autocorrelation generate model error estimates 
that are overly optimistic, that is, RMSE values that are too low.

3  | IMPORTANCE OF SPATIAL CROSS- 
VALIDATION

run _ cv() also accepts the run _ shuffle argument in order to 
permute competitor species identity as described in Section 2.5. 
Figure 6 compares model performance for 49 permutations of 
competitor species and RMSE calculations, both with and without 
cross- validation. Without cross- validation, competitor species iden-
tity does matter as the observed RMSE was significantly lower than 
the permutation null distribution of RMSE. However, once we incor-
porate spatial cross- validation, this improvement disappears. These 
results suggest that in this 9 ha subplot of the SCBI plot, competitive 
interactions do not depend on the identity of the competitor, which 
is the opposite of what has been observed in other locations (Allen & 
Kim, 2020; Uriarte et al., 2004). This provides a striking example of 
the importance of cross- validation, as without it the over- fit model 
gives rise to an incorrect conclusion.

4  | CONCLUSION AND FUTURE WORK

The forestecology package provides an accessible way to fit and 
test models of neighborhood competition. The package follows the tidy 
data design principles, leverages the sf package for spatial data, and 
S3 open- oriented model implementation structure (Pebesma, 2018). We 
hope that the package will increase the use of neighborhood competi-
tion models to better understand what structures plant competition.

While the package is designed with ForestGEO plot data in mind, 
we envision that it can be modified to work on any single large, 
mapped forest plot in which at least two measurements of each indi-
vidual have been taken. Furthermore, we hope that future versions 

of the package will be flexible to other plot layouts, for example, 
inventory plot- structure with many spatially separated plots like the 
US Forest Service Forest Inventory and Analysis plots (Smith, 2002).

We also hope to extend the forestecology package's function-
ality to account for a larger variety of models for tree growth. One 
clear future direction would be to allow competition based on species 
trait values rather than species identity. There is evidence that traits 
predict competitive outcomes (Kunstler et al., 2012; Lasky et al., 2014; 
Uriarte et al., 2010). Thus, an extension of the model would allow λ val-
ues from Equation 1 to be a function of the traits of competing species.

Lastly, the forestecology package current uses the blockCV 
package behind the scenes to create the spatial blocks acting as folds 
for our spatial cross- validation algorithm detailed in Sections 2.2 and 
2.6 (Valavi et al., 2019). This back- end functionality could be sub-
stituted with the spatialsample package for spatial resampling 
infrastructure; a tidymodels package under active development 
as of 2021 (Kuhn & Wickham, 2020; Silge, 2021).

Lastly, currently, the package only implements the Bayesian lin-
ear regression model detailed in Equation 1. As we demonstrate in 
Section 2.4 however, the fitting of this model is self- contained in a 
single function comp _ bayes _ lm() which returns an object of S3 
class type comp _ bayes _ lm. This class has generic methods im-
plemented to print, make predictions, and plot all results. Therefore, 
the package can be modularly extended to fit other models as long 
as they are coded similarly to comp _ bayes _ lm() and have 
equivalent generic methods implemented.
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APPENDIX 1

Compare different competitive distances
For all the above analyses, we set the cutoff distance (comp _ dist) 
for two stems to compete as 7.5m. This distance has been estimated 
in previous neighborhood competition studies in forests (Canham 
et al., 2004; Canham et al., 2006; Uriarte et al., 2004). We used 7.5 
m in Allen and Kim (2020) as an average of the values estimated in 
other studies, but our package can be used to find which distance 
is best supported by the data. Here, we provide an example using 
another section of the SCBI plot to provide an additional example 
of the cross- validation block layout. To speed computation, we do 
not consider species differences in competitive effects and treat all 
species as the same.

We observe in Figure 7, that a cutoff distance of approximately 
6m minimizes the cross- validation estimated RMSE.
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F I G U R E  7   Cross- validated RMSE estimates for 5 competitive distances
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APPENDIX 2

Compare competitor explanatory variables
In the above code, we use the basal area of an individual as a continu-
ous competitor explanatory variable, but the package allows the user 
to specify any competitor explanatory variable in the comp _ x _

var argument of create _ focal _ vs _ comp function. Here, we 
use the cross- validated model comparison to see which of two possi-
ble competitor explanatory variables computed in Section 2.1, basal 
area or aboveground biomass, best explains growth.
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Here, we observe that basal area is a better competitor explanatory 
variable competitor explanatory variables xcomp

ijk
 from Equation 1 than 

aboveground biomass as suggested by the lower estimated RMSE.

APPENDIX 3

Compare grouping variables
The package also allows the user to specify the categorical explana-
tory grouping variable. Here, we compare two different such vari-
ables: species and the potential canopy position of that species. If we 
had individual- level crown classes (Smith (1986) dominant, codomi-
nant, intermediate and suppressed) that could also be used.

We find that species identity has a lower RMSE, so does a better 
job. We still however plot the competition posteriors for the canopy 
position groupings in Figure 8. Unsurprisingly, we see that canopy and 
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canopy emergent competitors generally have negative effects on their 
neighbors, while shrubs and understory competitors have neutral or 
even positive effects.

F I G U R E  8   Posterior distributions of all competition parameters
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APPENDIX 4

Replicate RMSE comparison
This code replicates Figure 6: A comparison of root mean squared 
error of models for standard, permuted, and spatial cross- validated 
error estimates.
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