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Abstract Microbes from two of the three domains of life,

the Prokarya, and Eukarya, continue to serve as rich

sources of structurally complex chemical scaffolds that

have proven to be essential for the development of anti-

cancer therapeutics. This review describes only a handful

of exemplary natural products and their derivatives as well

as those that have served as elegant blueprints for the

development of novel synthetic structures that are either

currently in use or in clinical or preclinical trials together

with some of their earlier analogs in some cases whose

failure to proceed aided in the derivation of later com-

pounds. In every case, a microbe has been either identified

as the producer of secondary metabolites or speculated to

be involved in the production via symbiotic associations.

Finally, rapidly evolving next-generation sequencing

technologies have led to the increasing availability of

microbial genomes. Relevant examples of genome mining

and genetic manipulation are discussed, demonstrating that

we have only barely scratched the surface with regards to

harnessing the potential of microbes as sources of new

pharmaceutical leads/agents or biological probes.

Keywords Microbial natural product � Microbial

genome � Cancer drugs � Clinical trial

Introduction

Although Man has used natural product extracts to treat

diseases for thousands of years, the era of modern che-

motherapy began in the 1940s with the use of nitrogen

mustards, hormones, and folic acid antagonists. During

World War II (1939–1945), the demand for penicillin, in

addition to other new antibiotics, led to major pharma-

ceutical companies forming large research programs cen-

tered on natural products discovery. These programs aimed to

identify new secondary metabolites with a variety of novel

biological activities, including anticancer activities. During

this time, academic laboratories and government agencies,

such as the National Cancer Institute, also assisted pharma-

ceutical companies and spearheaded research programs that

led to the discovery of many natural products, which are either

currently used in the clinic or in active development.

The fields of microbiology, chemistry, and pharmacol-

ogy have been instrumental in the search for novel agents

that treat or ameliorate cancer. Throughout the last

70 years, natural products from the Prokarya predomi-

nately the actinomycetes, and Eukarya or their corre-

sponding derivatives have played extremely important

roles in drug discovery. Notably, microbial secondary

metabolites, especially now from the marine environment,

are the major source of drugs used for direct treatment as

well as scaffolds upon which chemists can selectively

modify to modulate activities against tumor cell growth. As

a result of these efforts, there are currently 189 small

molecule agents (excluding biologicals or vaccines, but

including warheads on monoclonal antibodies) available

worldwide that can be categorized as the following : N (29;

16 %), NB (1, 0.5 %), ND (59; 31 %), S (44; 23 %), S/NM

(19; 10 %), S* (20; 11 %), and S*/NM (17; 9 %) [150–

152]. The definitions are given as a footnote in Table 1.
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Table 1 lists the 189 approved (by the FDA or equiva-

lent) small molecule drugs, of which 89 (47 %) fall under

the N, NB or ND classifications (see footnote in Table 1 for

definitions) and to this number we have added Ara-C,

which has also been reported from microbes, thus

increasing the denominator to 90. Of these 90 natural

product-related approved antitumor drugs, 30 (33 %) are

either directly produced by microbes or are derivatives of

microbial secondary metabolites. Of the remaining drugs

on the list, some are based on pharmacophores derived

from microbial natural products (e.g., vorinostat/mitoxan-

trone HCl), and nucleoside derivatives, which, with the

exception of floxuridine (5-FU) and mercaptopurine, can

be traced back to Bergmann’s reports in the 1950s on

sponge-derived arabinoside nucleosides [15–17], and thus

the recognition that one can modify the sugar while still

maintaining biological activity.

Since the 1990s, large pharmaceutical companies have

deemphasized natural product discovery due to the advent

of high-throughput screening programs based on molecular

targets and combinatorial chemistry. These research pro-

grams were projected to speed up the drug development

process and reduce costs. Ironically, instead of creating

large libraries, combinatorial chemistry is now used to build

small, focused collections that resemble the core scaffolds

of natural products. In addition, even with this shift in focus,

there is still a shortage of lead compounds entering clinical

trials. Approximately 50 % of all small molecules that were

approved by the FDA between 2000 and 2006 were not the

new chemical entities derived from combinatorial chemis-

try but rather based upon natural products [150]. With

increasingly available genomic sequences and the recent

advances in metagenomic analyses, we now have more

access to the sequences of biosynthetic gene clusters,

especially those that are silent, which often may comprise a

significant fraction of the microbial genome [181]. This

review describes the brief history of nominally terrestrial

microbial-sourced antitumor agents (secondary metabolites

and derivatives based upon either their basic structure and/

or pharmacophores), new agents based upon these scaf-

folds, and marine-sourced materials that are either pre-

sumptively by structural analogy or directly from microbes

due to their chemical novelty and potency. Lastly, the

influence of microbial genomic information on the discov-

ery of new secondary metabolites as well as the potential

sources of well-known plant-sourced anticancer agents and

their implications will be discussed.

Terrestrial sources

During the 1950s to 1990s, pharmaceutical companies led

an exhaustive search for new drugs produced by microbes

Table 1 All world-wide approved (1930s to 31DEC2012) small

molecule antitumor drugs with identification of those either directly

produced by microbes or are derivatives of microbial secondary

metabolites

Generic name Year

introduced

Source Microbe

Testosterone Pre-1970 N

Streptozocin Pre-1977 N Yes

Leucovorin 1950 N Yes

Carzinophilin 1954 N Yes

Sarkomycin 1954 N Yes

Mitomycin C 1956 N Yes

Chromomycin A3 1961 N Yes

Mithramycin 1961 N Yes

Vincristine 1963 N

Actinomycin D 1964 N Yes

Vinblastine 1965 N

Bleomycin 1966 N Yes

Doxorubicin 1966 N Yes

Daunomycin 1967 N Yes

Asparaginase 1969 N Yes

Neocarzinostatin 1976 N Yes

Aclarubicin 1981 N Yes

Peplomycin 1981 N Yes

Masoprocol 1992 N

Pentostatin 1992 N Yes

Paclitaxel 1993 N

Angiotensin II 1994 N

Arglabin 1999 N

Paclitaxel nanoparticlesa 2005 N

Trabectedin 2007 N Yes

Paclitaxel nanoparticlesa 2007 N

Romidepsin 2010 N Yes

3-Angeloylingenol 2012 N

Homoharringtonine 2012 N

Solamargines 1989 NB

Ethinyl estradiol Pre-1970 ND

Fluoxymesterone Pre-1970 ND

Hydroxyprogesterone Pre-1970 ND

Prednisone Pre-1970 ND

Fosfestrol Pre-1977 ND

Norethindrone acetate Pre-1977 ND

Prednisolone Pre-1977 ND

Methylprednisolone 1955 ND

Dexamethasone 1958 ND

Medroxyprogesterone acetate 1958 ND

Triamcinolone 1958 ND

Nandrolone phenylpropionate 1959 ND

Dromostanolone 1961 ND

Teniposide 1967 ND

Testolactone 1969 ND
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Table 1 continued

Generic name Year

introduced

Source Microbe

Megestrol acetate 1971 ND

Calusterone 1973 ND

Methyltestosterone 1974 ND

Mitobronitol 1979 ND

Vindesine 1979 ND

Estramustine 1980 ND

Etoposide 1980 ND

Elliptinium acetate 1983 ND

Epirubicin hydrochloride 1984 ND Yes

Triptorelin 1986 ND

Pirarubicin 1988 ND Yes

Vinorelbine 1989 ND

Idarubicin hydrochloride 1990 ND Yes

Cladribine 1993 ND

Cytarabine ocfosfate 1993 ND Yes

Formestane 1993 ND

Miltefosine 1993 ND

Irinotecan hydrochloride 1994 ND

Zinostatin stimalamer 1994 ND

Docetaxel 1995 ND

Etoposide phosphate 1996 ND

Topotecan hydrochloride 1996 ND

Alitretinoin 1999 ND

Exemestane 1999 ND

Valrubicin 1999 ND Yes

Gemtuzumab ozogamicin 2000 ND Yes

Amrubicin hydrochloride 2002 ND Yes

Fulvestrant 2002 ND

Belotecan hydrochloride 2004 ND

Hexyl aminolevulinate 2004 ND

Talaporfin sodium 2004 ND

Vapreotide acetate 2004 ND

Temsirolimus 2007 ND Yes

Ixabepilone 2007 ND Yes

Pralatrexate 2009 ND

Mifamurtide 2010 ND Yes

Vinflunine 2010 ND

Cabazitaxel 2010 ND

Eribulin 2010 ND

Abiraterone acetate 2011 ND

Brentuximab vedotin 2011 ND

BF-200 ALA 2012 ND

Carfilzomib 2012 ND Yes

Pasireotide 2012 ND

Diethylstilbestrol Pre-1970 S

Razoxane Pre-1977 S

Semustine (MCCNU) Pre-1977 S

Chlorotrianisene Pre-1981 S

Table 1 continued

Generic name Year

introduced

Source Microbe

Levamisole Pre-1981 S

Nimustine hydrochloride Pre-1981 S

Triethylenemelamine Pre-1981 S

Busulfan 1954 S

Chlorambucil 1956 S

Cyclophosphamide 1957 S

Mechlorethamine 1958 S

Thiotepa 1959 S

Melphalan 1961 S

Pipobroman 1966 S

Hydroxyurea 1968 S

Procarbazine 1969 S

Mitotane 1970 S

Dacarbazine 1975 S

Ifosfamide 1976 S

Lomustine (CCNU) 1976 S

Carmustine (BCNU) 1977 S

cis-Diamminedichloroplatinum 1979 S

Hexamethylmelamine 1979 S

Aminoglutethimide 1981 S

Flutamide 1983 S

Carboplatin 1986 S

Amsacrine 1987 S

Lonidamine 1987 S

Nilutamide 1987 S

Ranimustine 1987 S

Fotemustine 1989 S

Bisantrene hydrochloride 1990 S

Porfimer sodium 1993 S

Sobuzoxane 1994 S

Nedaplatin 1995 S

Oxaliplatin 1996 S

Lobaplatin 1998 S

Heptaplatin/SK-2053R 1999 S

Arsenic trioxide 2000 S

Zoledronic acid 2000 S

Sorafenib 2005 S

Plerixafor hydrochloride 2009 S

Miriplatin hydrate 2010 S

Vismodegib 2012 S

Nafoxidine Pre-1977 S/NM

Tamoxifen 1973 S/NM

Camostat mesylate 1985 S/NM

Toremifene 1989 S/NM

Anastrozole 1995 S/NM

Bicalutamide 1995 S/NM

Fadrozole hydrochloride 1995 S/NM

Letrozole 1996 S/NM
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from a variety of terrestrial environments. Based on the

biological activities of the novel metabolites identified

from these microbes, the bacteria of the order Actinomy-

cetales have undoubtedly produced some of the most uti-

lized structures directly from nature and semisynthetic

modifications. These soil bacteria have been the leading

producers of medically useful drugs and have provided also

basic templates for synthetic modifications. Other rich

sources of secondary metabolites include fungi and my-

xobacteria. Here, we highlight some of the key secondary

metabolites isolated from terrestrial microbes that have

been approved as drugs or provided significant leads in the

drug discovery process.

Actinomycins, anthracyclines, and bleomycins

Waksman’s discovery of the actinomycins in various spe-

cies of soil Streptomyces [226] in 1940 led to many firsts in

1952, namely actinomycin C was the first crystalline

antibiotic as well as the first antibiotic to demonstrate

in vitro antitumor activity [76]. That same year, Schulte

reported the first clinical studies with these agents [183]. In

1963, actinomycin D (Act D, 1; Fig. 1) was approved for

the treatment of highly malignant tumors. However, its use

has been limited by its extreme cytotoxicity, thus doses of

Act D are carefully calculated for each patient to primarily

treat rhabdomyosarcoma and Wilms’ tumor in children or

for use in combination regimens.

Act D consists of a planar 2-aminophenoxazin-3-one

chromophore and two large cyclic pentapeptide lactones.

This agent is a DNA intercalator that competes for tran-

scription factor DNA binding sequences, thereby inhibiting

RNA and protein synthesis [70]. The antitumor activity of

Act D has been reported to be attenuated by polyamines,

such as spermine, but if a polyamine inhibitor such as

methyl glyoxal-bis(guanylhydrazone) (MGBG) was added

to the Act D treatment, then a synergistic effect was seen in

a cell proliferation assay. Thus it is possible that such a

combination can be exploited to enhance the anticancer

Table 1 continued

Generic name Year

introduced

Source Microbe

Imatinib mesylate 2001 S/NM

Gefitinib 2002 S/NM

Temoporfin 2002 S/NM

Bortezomib 2003 S/NM

Erlotinib hydrochloride 2004 S/NM

Sunitinib malate 2006 S/NM

Dasatinib 2006 S/NM

Lapatinib ditosylate 2007 S/NM

Nilotinib hydrochloride 2007 S/NM

Pazopanib 2009 S/NM

Enzalutamide 2012 S/NM

Azacytidine Pre-1977 S*

Mercaptopurine 1953 S*

Methotrexate 1954 S*

Fluorouracil 1962 S*

Thioguanine 1966 S*

Uracil mustard 1966 S*

Cytosine arabinoside 1969 S* Yes

Floxuridine 1971 S*

Ftorafur 1972 S*

Carmofur 1981 S*

Enocitabine 1983 S*

Mitoxantrone hydrochloride 1984 S*

Doxifluridine 1987 S*

Fludarabine phosphate 1991 S*

Gemcitabine hydrochloride 1995 S*

Capecitabine 1998 S*

Azacytidine 2004 S*

Clofarabine 2005 S*

Nelarabine 2006 S*

Decitabine 2006 S*

Pixantrone maleate 2012 S*

Raltitrexed 1996 S*/NM

Temozolomide 1999 S*/NM

Bexarotene 2000 S*/NM

Abarelix 2004 S*/NM

Pemetrexed disodium 2004 S*/NM

Tamibarotene 2005 S*/NM

Vorinostat 2006 S*/NM

Degarelix 2009 S*/NM

Vandetanib 2011 S*/NM

Crizotinib 2011 S*/NM

Vemurafenib 2011 S*/NM

Ruxolitinib phosphate 2011 S*/NM

Axitinib 2012 S*/NM

Bosutinib 2012 S*/NM

Cabozantinib S-malate 2012 S*/NM

Table 1 continued

Generic name Year

introduced

Source Microbe

Regorafenib 2012 S*/NM

Radotinib 2012 S*/NM

N natural product, NB natural product botanical (a defined mixture of

compounds), ND derived from a natural product; usually a semi-

synthetic modification, S totally synthetic drug, S* made by total

synthesis; pharmacophore from a natural product, NM natural product

mimic (sub-category) [150, 152]
a Quite different preparations
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activity of the drug [228]. Several derivatives have been

identified in various soil Streptomyces [19] and developed

using precursor-directed biosynthesis and synthetic meth-

ods to modulate their cytotoxicity [134, 135]. In addition to

terrestrial sources, Act D has also been isolated from a

marine-derived strain (Streptomyces sp. MS449) from a

sediment sample collected from the South China Sea [32].

Anthracyclines

Following the discovery of the actinomycins, a wide

variety of antibiotics, including the bleomycins, mito-

mycins, mithramycins, and anthracyclines, from terrestrial

microbial sources were tested for antitumor activity and

their core structures were subsequently developed for

clinical use. Two of the most useful anthracyclines are

daunorubicin (2; Fig. 1) and doxorubicin (adriamycin, 3;

Fig. 1) isolated from Streptomyces peucetius and various

related strains. The FDA approved the use of daunorubicin

and doxorubicin for cancer therapy in the 1960s. Dauno-

rubicin is used in the treatment of acute lymphoblastic or

myeloblastic lymphoma, whereas doxorubicin, which ter-

minates in a primary alcohol instead of a methyl group, is

used in the treatment of breast cancer, solid tumors in

children, soft tissue sarcomas, and aggressive lymphomas.

The major drawbacks to these compounds are their sig-

nificant cardiotoxicity, which can lead to congestive heart

failure, the development of resistance by tumor cells, and

the fact that there is lifetime limit on the gross amounts

used for treatment. To circumvent these problems, thou-

sands of analogs of anthracyclines have been structurally

modified or synthesized through semi- or total synthesis,

but only a few compounds have reached the stage of

clinical development and approval. These include the

anthracycline analogs epirubicin (4; Fig. 1), pirarubicin (5;

Fig. 1), idarubicin (6; Fig. 1), valrubicin (7; Fig. 1), am-

rubicin (8; Fig. 1), aclarubicin (9; Fig. 1), and a combi-

nation of anthracycline and anthracene dione structural

classes, mitoxantrone hydrochloride (10; Fig. 1) and pix-

antrone dimaleate (11; Fig. 1). A comprehensive review of

anthracyclines can be found in the two recent volumes

edited by Krohn [115, 116].

The following chemical modifications of the basic

doxorubicin skeleton are currently being investigated in

Phase I–II trials: sabarubicin hydrochloride (Menarini;

ClinicalTrials.gov identifiers: NCT00027781, NCT0000

3982, and NCT00003028; 12; Fig. 1), in which the major

structural modification is the addition of a sugar moiety,

completed Phase II clinical trials for the treatment of

prostate cancer; annamycin, a liposomal variant of doxo-

rubicin (Callisto Pharmaceuticals Inc; NCT00271063; 13;

Fig. 1) is in Phase I/II clinical trials for the treatment of

leukemia; and berubicin hydrochloride (Reata Pharma-

ceuticals Inc; NCT00538343; 14; Fig. 1), in which a ben-

zyl ether is attached to the sugar moiety, completed Phase I

clinical trials (NCT00538343) but is no longer in Phase II

clinical trials for breast cancer patients with recurrent brain

metastases due to low enrollment. In addition, several

liposomal and PEGylated formulations are currently being

explored. The FDA approved the use of the liposome-

encapsulated doxorubicin Doxil� in combination regimens

for the treatment of mainly recurrent ovarian cancer;

however, the side effects are similar to those of free

doxorubicin. As a result, other drug delivery systems,

such as monoclonal antibody (NCT01101594) and peptide

conjugates (NCT01698281), nanoparticles (NCT01

655693), liposomes (NCT01170650) [30], and carbohy-

drates [202], several of which are currently in Phase I–III

clinical trials, are now being explored for increased effi-

ciency and direct uptake by cancer cells.

Bleomycins

Another series of extremely important molecules from the

Actinomycetales are the family of glycopeptide antibiotics

known as the bleomycins, particularly bleomycin A2 sul-

fate (15; Fig. 2). Bleomycins share a core structure but

differ based on the presence of various positively charged

functional groups and disaccharides. These molecules were

originally isolated from Streptomyces verticillus by

Umezawa’s group at the Institute of Microbial Chemistry

in Tokyo, and were developed as antitumor agents by

Bristol Myers. Bleomycins are currently used in the treat-

ment of squamous cell carcinomas, germ cell tumors, and

select lymphomas. Their original mechanism of action was

elucidated by Hecht and coworkers who demonstrated that

a metal ion (Cu2? or Fe2?) is required to activate the

sequence-specific oxidative cleavage of the DNA [83, 196]

and RNA [84]. The early work in the synthesis, mecha-

nism, and DNA–RNA interactions of bleomycins were

described by Hecht in a 2005 review [85] with an update in

2012 [86]. In 2006 a potential RNA target for bleomycins

was reported [205], and in 2008, strong DNA-binding

motifs for metal-free bleomycins (since the clinical rele-

vance of zinc and iron-bound bleomycin is unknown) were

identified [5]. The therapeutic efficacy of bleomycin(s) is

limited due to its extreme pulmonary toxicity. A new

bleomycin antibiotic, NC-0604 (16; Fig. 2), was isolated

from the fermentation broth of Streptomyces verticillus var.

pingyangensis n. sp. and reported to exhibit stronger

cytotoxicity in a variety of human tumor cell lines com-

pared to bleomycin [31]. Notably, NC-0604 has lower

pulmonary toxicity compared to other bleomycins and is

currently in preclinical trials. Alternative drug delivery
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methods, such as photochemical internalization, are also

currently being investigated in Phase II clinical trials to

improve the incorporation of bleomycins into endosomal

membranes for the treatment of recurrent squamous cell

carcinoma (NCT01606566).

Fig. 1 The chemical structures of actinomycin D and representative

anthracyclines. (1) Actinomycin D, (2) daunorubicin, (3) doxorubicin,

(4) epirubicin, (5) pirarubicin, (6) idarubicin, (7) valrubicin, (8)

amrubicin, (9) aclarubicin, (10) mitoxantrone hydrochloride, (11)

pixantrone maleate, (12) sabarubicin hydrochloride, (13) annamycin,

and (14) berubicin hydrochloride
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Fig. 2 The chemical structures

of representative bleomycins

and enediynes. (15) Bleomycin

A2 sulfate, (16) NC-0604, (17)

calicheamicin-c10, (18)

sporalide A, (19) sporalide B,

(20) cyanosporaside A, and (21)

cyanosporaside B
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Enediynes

The enediynes are a structurally unique class of antitumor

antibiotics, containing one of the most important approved

microbial compounds, calicheamicin c1I (17; Fig. 2). The

ten-membered calicheamicins were first reported in 1987

from the bacterium Micromonospora echinospora spp.

calichensis. Although calicheamicin c1I has sub-picomolar

in vitro cytotoxic activity it was not developed for many

years due to its extreme cytotoxicity. It and a close relative,

dynemicin A, became the progenitors of a new chemical

class of natural products, the enediynes. This class now

comprises 13 enediynes, including the recognition of the

much older neocarzinostatin chromophore [79] and the

rearrangement products of the putative enediynes sporo-

lides A and B (18 and 19, respectively; Fig. 2) and cy-

anosporasides A and B (20 and 21, respectively; Fig. 2).

The enediyne core is composed of two acetylenic groups

conjugated by a double bond within either a nine- or ten-

membered ring. Enediynes have been thoroughly investi-

gated as both warheads and from a biosynthetic perspective

by the Wyeth discoverers [79] with an update in 2012 [80],

who described calicheamicin c1I as a representative ten-

membered enediyne core, and members of Shen’s research

group at the University of Wisconsin-Madison [218].

The biosynthesis of the enediyne core structure remains

to be fully elucidated. Shen’s group demonstrated the lack

of biosynthetic divergence between the enediyne-specific

iterative type I polyketide synthases involved in the bio-

synthesis of nine- and ten-membered enediynes, by dem-

onstrating that the same major product (a heptaene

metabolite) was made with all combinations of nine- and

ten-membered polyketide synthases and cognate thioes-

terase domains, indicating that there were no pathway-

specific interactions [95]. However, more recently, Belecki

et al. [14] speculated that heptaene was a shunt product and

showed that, in the absence of its cognate thioesterase

domain, a heterologously expressed CALE8 polyketide

synthase produces the expected octaketide polyene product

with a beta-hydroxy moiety. The biosynthesis of the

enediyne core will become clearer in the near future as the

role of the unique beta-hydroxy group in the cyclization of

enediynes is fully elucidated.

Upon activation, enediynes undergo an unprecedented

rearrangement and interact with DNA, resulting in cleaved

double-stranded DNA and subsequent cell death. In 2000,

the FDA approved gemtuzumab ozogamicin, an anti-CD33

humanized antibody linked to a semi-synthetic caliche-

amicin derivative as the first antibody-warhead conjugate

for use against chronic myeloid leukemia and possibly the

most potent approved antitumor drug to date. This partic-

ular construct was subsequently withdrawn by Wyeth in

2010 from the US market. However, at the time of writing,

the compound is still in use in Japan and there are at least

six clinical trials in the USA and other countries currently

recruiting patients for Phase II to Phase IV trials. Cali-

cheamicins linked to other monoclonal antibodies are also

being investigated. Phase I clinical trials of CMD-193, an

anti-Lewis Y antigen linked to a calicheamicin toxin for the

treatment of solid tumors were completed [88]. CMC-544

(inotuzumab ozogamicin), an anti-CD22 monoclonal anti-

body conjugated to N-acetyl-c calicheamicin 1,2-dimethyl

hydrazine dichloride is in Phase III trials in combination with

rituximab (NCT01232556 and NCT01564784) coupled to

other cytotoxic drugs. The conjugate was also in a recently

completed Phase II trial (NCT00868608) for the treatment of

indolent non-Hodgkin’s lymphoma. The detailed review by

Ricart [171] should be consulted for further information on

the impacts of monoclonal antibodies attached to N-acetyl-c
calicheamicin 1,2-dimethyl hydrazine dichloride and read

together with information in the 2012 update by Hamann

et al. [80].

Rapamycins and epothilones

The rapamycins and epothilones are two exemplary fami-

lies of compounds that have demonstrated how modern

medicinal chemistry can be used to produce microbial

antitumor agents and other pharmaceuticals that are cur-

rently either approved for use or in clinical trials.

Rapamycins

The 31-membered macrocyclic antibiotic rapamycin (22a)

was originally reported in 1975 to be a potential antifungal

agent produced by the fermentation of Streptomyces hyg-

roscopicus isolated from soil samples in Rapa Nui (Easter

Island) [11, 185, 220]. Rapamycin was unsuccessful as an

antifungal agent due to its immunosuppressant effects.

However, its potential as an antitumor agent against syn-

geneic murine tumors was later reported in 1984 by Sehgal

and coworkers [58] at Ayerst Research Laboratories. At

this time, the initial antitumor activity of rapamycin was

not further developed, but the rapamycin base structure

(22) has since led to the production of several molecules

with a variety of different pharmacological activities. In the

early 1990s, rapamycin’s molecular target (target of rapa-

mycin, TOR) in yeast [87] and its mammalian homolog

(mTOR) [24] were discovered, leading to the development

of a wide variety of anticancer agents.

Initially, modifications were made at the carbon atom at

C43 on the rapamycin base structure (numeration as in Zech

et al. [243] rather than the alternative numbering system of

McAlpine et al. [136] based upon a comparison with

FK506, which would be a C40 substitution), leading to a
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total of four clinically approved drugs, sirolimus, everoli-

mus, temsirolimus, and zotarolimus. In 1999, sirolimus

(rapamycin) (22a; Fig. 3) was approved as an immuno-

suppressive agent and now the same molecule is in Phase

I/II and II trials for the treatment of various cancers.

Similarly, everolimus (22b; Fig. 3) was initially launched

in 2004 as an immunosuppressive agent and subsequently

in 2009, 2010, 2011, and 2012 approved for the treatment

of kidney, brain, pancreatic, and breast cancers, respec-

tively. In 2012, everolimus was released by Abbot to be

used as a stent in the treatment of coronary and peripheral

arterial diseases in the USA. This compound is also in

Phase III trials for diffuse large B cell lymphoma

(NCT00790036), liver (NCT01035229), and stomach

(NCT00879333) cancers. Temsirolimus (CCI-779) (22c;

Fig. 3) was approved as a treatment for renal carcinoma in

the USA in 2007, later approved in Japan in 2010, and is

currently in Phase II trials for the treatment of various

carcinomas in the USA, mainly under the support of the

National Cancer Institute. Zotarolimus (22d; Fig. 3) was

launched in the USA in 2005 for the treatment of arterial

restenosis and recently, the EU approved a stent containing

novolimus, a metabolite of rapamycin that has a C7-

hydroxy group.

Currently, Merck & Co. and Ariad Pharmaceuticals

have collaborated to develop another rapamycin derivative,

ridaforolimus (AP-23573); 22e; Fig. 3), which is in Phase

III clinical trials for the treatment of soft tissue carcinoma

(NCT00538239) and bone cancer (NCT00538239). Wyeth

Pharmaceuticals developed a rather interesting derivative

of rapamycin with a modified ring structure (23; Fig. 3),

ILS-920. The modification of the triene portion of the

molecule was designed to disrupt mTOR binding. How-

ever, ILS-920 appears to have a different target as it is a

non-immunosuppressive neurotrophic rapamycin analog

that has been reported to exhibit over a 900-fold higher

binding affinity for FKBP52 over FKBP12 compared to

that of rapamycin, promotes neuronal survival and out-

growth in vitro, and binds to the b1 subunit of L-type

calcium channels (CACNB1) [179]. ILS-920 was under

development for treating stroke [2] and a Phase I clinical

trial for the treatment of acute ischemic stroke

(NCT00827190) was completed. Interestingly, FKBP52

inhibition affects tubulin interactions in cells [28] and has

been exploited to screen natural products that inhibit the

formation of a complex between FKBP52 and androgen

receptors, which play a role in the progression of prostate

cancer [48]. Thus, ILS-920 may exhibit antitumor activity,

although no reports of such activity have been published

yet.

In addition, there are two prodrugs of rapamycin, Abr-

axis’ ABI-009 (a nanoparticle encapsulated formulation of

rapamycin) and Isotechnika’s TAFA-93 (structure not yet

published), both in Phase I clinical trials. The structures of

these molecules either include the rapamycin core structure

or only have modifications at the C43 hydroxyl group,

avoiding both the FKBP-12 and TOR binding sites as

modifications anywhere else are thought to negate the basic

biological activity of these derivatives [111, 148].

Epothilones

The identification of the 16-membered macrolides epo-

thilones A and B (24 and 25, respectively; Fig. 3) from

Sorangium cellulosum So ce90 by Reichenbach and Hoefle

in the mid to late 1980s [92, 93, 169], and their activity as

tubulin stabilizers (a similar mechanism to that of paclit-

axel) [20], led to a surge in the number of chemical, bio-

chemical, and genomic modifications to further explore the

utility of the epothilone base skeleton. These efforts led to

the FDA approval of Bristol-Myers’ 16-aza-epothilone B

(26; Ixabepilone; Fig. 3), a semisynthetic epothilone,

where the lactone bridge was replaced by an amide linkage,

for the treatment of breast cancer in October 2007.

Epothilone A was determined to be less active in pre-

clinical trials than epothilone B [112], which has subse-

quently advanced to further stages of clinical development.

Interestingly the only difference between these two com-

pounds is the presence of a methyl group at C12. Epothilone

B was in Phase III clinical trials for the treatment of

ovarian cancer, but these trials were discontinued by

Novartis Oncology in 2010 because the product did not

demonstrate a significant overall survival advantage. Cur-

rently, epothilone B is in Phase II trials for the treatment of

various cancers, including central nervous system metas-

tases (NCT00450866), as well as prostate (NCT00411528)

and brain (NCT00219297). In addition, a synthetic epo-

thilone derivative, sagopilone (ZK-EPO, 27; Fig. 3), a

close chemical relative of epo B is in Phase II trials under

Bayer-Schering for the treatment of melanomas

(NCT00598507) and other cancers. For further details on

the epothilones and their mechanisms of action, see the

latest review by Ferrandina and colleagues [64] in addition

to those by Danishefsky [45] and Altmann and colleagues

[6], which describe opportunities for the synthesis of epo-

thilones and other derivatives.

Additional agents have been derived from work origi-

nating in Danishefsky’s laboratory at Memorial Sloan-

Kettering and further developed by Kosan Biosciences.

Phase II trials with (E)-9,10-didehydroepothilone D or

KOS-1584 (28; Fig. 3) for the treatment of non-small cell

lung cancer were completed but no recent development of

this compound has been reported [232]. Isoxazolefludelone

or KOS-1803 (29; Fig. 3) is another derivative that has

been jointly developed by Memorial Sloan Kettering and

Kosan Biosciences [37]. This compound is currently in
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Fig. 3 The chemical structures of representative rapamycins and

epothilones. (22a) Sirolimus, (22b) everolimus, (22c) temsirolimus,

(22d) zotarolimus, (22e) ridaforolimus, (23) ILS-920, (24) epothilone

A, (25) epothilone B, (26) 16-aza-epothilone B, (27) sagopilone, (28)

KOS-1584, (29) KOS-1803, and (30) epofolate

1190 J Ind Microbiol Biotechnol (2013) 40:1181–1210

123

D
ow

nloaded from
 https://academ

ic.oup.com
/jim

b/article/40/11/1181/5994885 by guest on 21 February 2022



Phase I clinical trials (NCT01379287) for the treatment of

solid tumors. A discussion of the chemistry leading to

KOS-1803 and other derivatives was published by Dani-

shefsky’s research group in 2008 [38].

A collaboration between Endocyte (folate targeting) and

Bristol-Myers Squibb (epothilone derivative) led to the

development of a folate receptor-targeted molecule, epof-

olate (BMS-753493; 30; Fig. 3), in which folic acid was

linked to an aza-modified epothilone [119], with the syn-

thetic information covered in a 2010 publication from

Endocyte (folate linker) and Bristol-Myers Squibb (aza-

epothilone) [222]. Epofolate was in early clinical trials at

Bristol-Myers Squibb for the treatment of patients with

advanced solid tumors. However, these trials terminated in

2011 but to date there have been no publications covering

the results or reasons for cessation.

With the availability of the genetic sequence of the S.

cellulosum myxobacterium, more combinatorial biosyn-

thetic products with modifications to the epothilone base

skeleton are being reported. For example, Menzella and

coworkers [139] have reported the whole-cell biocatalysis

of novel epothilone analogs using Escherichia coli. In

addition, Tang and colleagues have reengineered epothi-

lone polyketide synthases found in S. cellulosum and

introduced them into another myxobacterium (Myxococcus

xanthus) that is more amenable to genetic manipulation

[204]. For additional details on epothilones produced via

genetic engineering, see the review by Park and coworkers

[161].

Geldanamycin derivatives and HSP90 inhibitors

The production of the benzoquinone ansamycin antibiotic

geldanamycin (31; Fig. 4) by Streptomyces hygroscopicus

var geldanus was first reported by The Upjohn Company in

1970 [50]. Subsequent studies revealed that this compound

had antitumor properties, which were initially thought to

result from the inhibition of the tyrosine specific kinase (v-

Src) involved in regulating growth and cell proliferation as

well as several signal transduction pathways [216, 217]. In

1994 however, this compound was determined to bind to

heat shock protein 90 (HSP90) by Whitesell and coworkers

[233]. In 1997, Stebbins et al. reported that geldanamycin

specifically binds to an ATP site on HSP90, altering its

chaperone activity and indirectly leading to cell death

[192]. The history of the various modifications of gel-

danamycin and the initial development of tanespimycin

(17-AAG; Kosan Biosciences/Institute of Cancer Research

UK/NCI; 32) was described by Snader in 2005 [190], with

further details of the biological activity reported by

Kingston and Newman [109] in 2008, culminating in a

2012 review by Snader [191].

The geldanamycin derivative tanespimycin entered

clinical trials in 1999 as the first example of a signal

transduction modulator under the auspices of the NCI and

was subsequently licensed to Kosan Biosciences for

development. Phase III trials of tanespimycin for the

treatment of relapsed and refractory multiple myeloma

were completed and the compound is still in Phase II trials

for the treatment of thyroid cancer. The 18,21-dihydro-

derivative of tanespimycin, IPI-504 or retaspimycin

(Infinity Pharmaceuticals; 33; Fig. 4) [200], is in Phase II

clinical trials for the intravenous treatment of relapsed or

refractory stage IIIb or stage IV non-small cell lung cancer

(NSCLC) and other solid tumors. Due to the superiority of

retaspimycin, Infinity Pharmaceuticals is no longer devel-

oping the oral formulation of 17-aminogeldanamycin (34;

Fig. 4; IPI-493), which was in Phase I trials for the treat-

ment of advanced malignancies [121]. In the future, we

expect reports of several other derivatives as the genes

involved in geldanamycin biosynthesis are known. Novel

analogs, such as thiazinogeldanamycin (35; Fig. 4) and

19-hydroxy-4,5-dihydrogeldanamycin (36; Fig. 4), have

already been reported from engineered strains of S. hyg-

roscopicus JCM4427 in addition to other known deriva-

tives [34].

Staurosporine derivatives

The indolocarbazole alkaloid staurosporine (37; Fig. 4)

was first identified as an antifungal agent by Omura et al. in

1977 [159] and later reported as a nanomolar protein kinase

C (PKC) inhibitor by Tamaoki et al. [201] in 1986. These

results led to several pharmaceutical companies searching

for selective PKC inhibitors via synthesis and screening

indolocarbazole compounds. For an in-depth review of the

discovery, biosynthesis, and biological activity of stauro-

sporine and derivatives, one should consult the 2009

review by Nakano and Ōmura [147].

Currently, there are several variations of staurosporine

in clinical trials. The first is the rebeccamycin (a naturally

occurring halogenated staurosporine-like molecule) deriv-

ative becatecarin (38; Fig. 4), which has been in early

clinical trials at the NCI for the treatment of acute lym-

phocytic leukemia [22], small cell lung cancer [184], and

solid tumors [154]. Becatecarin was also in Phase III

clinical trials by Exelixis and Helsinn for the treatment of

bile duct tumors, but another antitumor agent exhibited

superior activity and the trials were discontinued. No recent

development has been reported for becatecarin. The second

variation is N-benzoyl staurosporine or midostaurin (39;

Fig. 4), which is a potent inhibitor of FMS-like tyrosine

kinase-3 (FLT-3) and is in Phase III clinical development

in combination with other antitumor agents for the
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Fig. 4 The chemical structures of geldanamycin and representative

HSP90 inhibitors, staurosporine derivatives, HDAC inhibitors, and

derivatives. (31) Geldanamycin, (32) tanespimycin, (33) retaspimy-

cin, (34) 17-aminogeldanamycin, (35) thiazinogeldanamycin, (36)

19-hydroxy-4,5-dihydrogeldanamycin, (37) staurosporine, (38) beca-

tecarin, (39) midostaurin, (40) lestaurtinib, (41) enzastaurin, (42)

K-252A, (43) suberoylanilide hydroxamic acid (SAHA), (44)

trichostatin A, and (45) romidepsin
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treatment of acute myeloid leukemia (NCT00651261) [65].

Midostaurin is also in Phase I and II trials for the treatment

of systemic mastocytosis (NCT00233454) [72] and ade-

nocarcinoma (NCT01282502), respectively. Lestaurtinib

(40; Fig. 4) is another derivative that has completed several

Phase II trials at Cephalon for the treatment of myelopro-

liferative diseases. This agent is also in Phase I trials at the

NCI for the treatment of recurrent or refractory high-risk

neuroblastoma in pediatric patients (NCT00084422). En-

zastaurin (41; Fig. 4), an open-ringed, derivatized version

of the base staurosporine carbocycle, is a selective PKC-b
inhibitor in Phase III clinical development at Eli Lilly &

Co as oral treatment of diffuse large B-cell lymphoma

(NCT00332202). This agent was compared to the alkylat-

ing drug lomustine (CCNU) in Phase III trials

(NCT00295815) after a successful Phase II trial for patients

with recurrent glioblastoma multiforme. However, the

study was terminated due to the low median overall sur-

vival. Because enzastaurin was more tolerated than lomustine,

enzastaurin may be more successful in other combination

therapies [234]. Enzastaurin is also in Phase II trials both alone

and in combination with other agents for the treatment of

gliomas (NCT00475644), renal cancer (NCT00709995), and

a variety of lymphomas (NCT00475644, NCT00542919, and

NCT00451178). Finally, a PEGylated version of the known

indocarbazole K252a (42; Fig. 4) has completed Phase II

clinical trials for the treatment of the proliferative disease

psoriasis vulgaris at Creablis SA (NCT00995969 and

NCT01465282).

New derivatives with biological activity are still being

synthesized via synthetic modifications to a variety of

positions on the indocarbazole base structure [7, 8].

However, with the increasing number of known gene

clusters and reduced specificity of their corresponding

biosynthetic enzymes, combinatorial biosynthesis can be

expected to provide a wider pool of structurally diverse

indocarbazoles candidates with antitumor properties [180].

Histone deacetylase inhibitors

Histone deacetylases (HDACs) are typically found in multi-

protein complexes that regulate transcription by altering the

acetylation of histone proteins and other non-histone targets

[96, 100, 238]. The expression of HDACs is altered in tumors,

making them useful targets for preventing epigenetic abnor-

malities that lead to cancer. A total of 18 human HDACs [49,

54, 75, 104, 114, 160] have been identified and can be divided

into four classes (I–IV) based on their homology to known

yeast HDACs, subcellular localization, and enzymatic activ-

ities. Class I and II are Zn2?-dependent amidohydrolases that

share some degree of sequence homology and are homologous

to yeast Rpd-3 and Hda1, respectively. Class IV is also Zn2?-

dependent, homologous to yeast HDAC HOS3, and has a

known member, HDAC11, that shares weak homology with

the catalytic core regions of Class I and II enzymes [160]. The

Class III sirtuins are outliers as they require the cofactor

NAD?, have different cellular localizations depending upon

the isoform(s), and are homologous to the Sir2 yeast protein

[140].

HDAC inhibitors (HDACis) typically consist of a tri-

partite structure consisting of an aromatic enzyme binding

group, a hydrophobic spacer group, and an inhibitor group

[170, 239, 241]. Suberoylanilide hydroxamic acid (SAHA,

43; Fig. 4) is a good example of an HDACi with this tri-

partite structure as it consists of a 6-carbon aliphatic chain

(the spacer), the inhibitory end being the zinc-binding

hydroxamic acid, and the aromatic enzyme binding group

being the phenyl-amino ketone group. SAHA is a synthetic

hybrid polar compound structurally related to the potent

(nanomolar level) microbial HDACi trichostatin A (TSA,

44; Fig. 4) [172, 173, 240], which was isolated from S.

hygroscopicus in 1976 and determined to be an antifungal

agent [212]. By combining the structure of TSA and data

from hybrid polar compounds, SAHA was synthesized and

tested as an HDACi. In 2006, SAHA was approved by the

FDA to be used as an oral treatment for lymphoma under

the generic name vorinostat. SAHA is currently in multiple

Phase I–III trials for the treatment of a variety of cancers.

The only other approved HDACi is romidepsin

(FK228), a fermentation product isolated in 1994 from the

Gram-negative bacterium Chromobacterium violaceum

isolated from a Japanese soil sample [215]. Romidepsin is a

bicyclic depsipeptide with an unusual disulfide bond con-

nection between a thiol and D-cysteine. In 1998, romidep-

sin was identified as a broad-spectrum HDACi that induces

epigenetic changes in a variety of cancer cells [146].

Furumai et al. [67] demonstrated that romidepsin was a

naturally occurring prodrug that inhibited Class I HDACs

presumably by the reduced sulfhydryl group(s) interacting

with the active site Zn2?. In 2009 and 2011, romidepsin

was approved by the FDA for the treatment of relapsed

cutaneous cell lymphoma and relapsed/refractory periphe-

ral T-cell lymphoma, respectively. Romidepsin has also

completed early clinical trials for the treatment of several

cancers, including solid tumors (NCT00019318), lung

(NCT00086827), thyroid (NCT00098813), and prostate

(NCT00106418) cancers, mainly under the auspices of the

NCI. For an in-depth overview of the preclinical and

clinical development of romidepsin, see the 2012 review by

Harrison and coworkers [82].

With the sequence of the gene clusters involved in

romidepsin biosynthesis now known, reengineering strate-

gies are predicted to produce several analogs via fermen-

tation [36, 167]. A patent (PCT/US2008/053473) was filed

by Cheng on the sequences involved in romidepsin
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biosynthesis to generate analogs [35]. In the meantime, a

variety of synthetic methods have been employed [73,

122]. In 2008, Wen and colleagues used a macrolactami-

zation protocol to form the amide bond in the larger ring

last instead of macrolactonization to form the lactone last,

bypassing the challenges in the macrolactonization of less

reactive substrates to produce synthetic romidepsin analogs

[229]. Additional modifications are also being made to the

HDACi tripartite skeleton to develop more selective

inhibitors [178, 193, 206], including those without a Zn2?-

chelating group in order to prevent undesirable interactions

with other metalloenzymes [221]. For a summary of other

reported HDACis produced by bacteria, see the 2012

review by Ho and coworkers [91].

In addition, Di Maro et al. [52] demonstrated the isos-

teric replacement of the synthetically challenging (3S,4E)-

3-hydroxy-7-mercaptoheptenoic acid (shown in red in 45;

Fig. 4) in order to make romidepsin analogs from the easily

assembled starting materials, L-aspartic acid and a cyste-

amine. To accomplish this, the trans double bond was

replaced by an isosteric amide group and the macrolide

lactone was replaced by an amide linkage. However, the

resulting isosteres were not as potent as romidepsin. In

2009, Bowers and coworkers [23] also reported the syn-

thesis of an amide isostere of romidepsin but the compound

exhibited 50-fold lower inhibition against HDACis. Based

on computational analysis, these results were speculated to

arise from small differences in the position of the free thiol

group when the molecule was docked in the enzyme active

site. Thus, understanding the subtle differences between

the structures of HDACi analogs may confer changes in

their potency and provide direct routes to inhibitors with

enhanced activity.

Marine sources

The ocean continues to be one of the largest unexplored

sources of specialized metabolites due to its inaccessibility

as more than 70 % of the Earth is covered by water. The

rich diversity found in the world’s oceans has provided a

plethora of structurally diverse specialized metabolites

with a variety of carbon skeletons and degrees of haloge-

nation. Although numerous compounds have been reported

with cytotoxic activities, very few have been definitively

proven to originate from invertebrates, but there is suffi-

cient evidence invoking microbial production of a signifi-

cant number of these bioactive metabolites [124]. A

significant number of compounds have been isolated from

blue-green algae (cyanobacteria), other bacteria [145], and

fungi that were isolated from sediments (both shallow and

abyssal) or from invertebrates, where there is no question

of the actual producer as fermentations produced the

compounds of interest. Over the past 30–40 years, a

number of these cytotoxic compounds have been isolated

and tested for biological activity by the NCI. Here, we

describe a select number of marine natural products that

entered, are still in clinical trials, or have been approved by

the FDA (or corresponding agencies in other countries) and

who either have or may well have, a microbe involved in

their production.

Bryostatins, dolastatins, and analogs

Bryostatin and analogs

Bryostatin 1 (46; Fig. 5) and dolastatin 10 (47; Fig. 5)) are

two prime examples of marine-derived compounds that

required heroic efforts to isolate enough material for initial

clinical trials from the invertebrate Bugula neritina and

nudibranch Dolabella auricularia, respectively. Details of the

early to relatively late history of the bryostatins can be found in

reviews by Newman [149] and Trindade-Silva [208], and by

Flahive and Srirangam [66] for the dolastatins.

Bryostatins are a family of 20 macrocyclic lactones that

originate from the marine invertebrate Bugula neritina. All

metabolites in this family generally share a 20-member

macrolactone core and three remotely functionalized

polyhydropyran rings. Bryostatins differ from one another

by substitution at C7 and C20 and placement of the c-lac-

tone at either C19 or to C23 in the polyhydropyran ring.

These metabolites are thought to be produced by the

uncultured microbe Candidatus Endobugula sertula, but

definitive proof was lacking at the time of the discovery of

this microbe. The most promising piece of evidence at that

time was the reduction of the amount of bryostatin 1 in B.

neritina colonies treated with antibiotic-treated larvae [46,

126]. However, later work by Haywood and coworkers led

to the isolation and cloning of the gene cluster involved in

the biosynthesis of the base ring structure of bryostatins but

the large, trans-AT PKSs have deterred their heterologous

expression at this time [127].

The most studied member of the bryostatin family is

bryostatin 1. Phase I and II trials against hematological

cancers have been completed with this agent either alone or

in conjunction with a cytotoxin. As a result of these trials,

bryostatin 1 appeared to be more promising when admin-

istered in combination with other antitumor agents, such as

paclitaxel and vincristine [13, 143]. Currently, there are

three Phase II trials with bryostatin plus a cytotoxin or

signal transduction inhibitor listed in the NCT clinical trials

database but all have an ‘‘unknown’’ status. Thus, these

trials have probably ceased, though there is one Phase I

trial (NCT00112476) with temsirolimus and bryostatin

listed as recruiting as of the end of 2012.
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Fig. 5 The chemical structures of trabectedin as well as representa-

tive bryostatins, dolastatins, and derivatives. (46) Bryostatin 1, (47)

dolastatin 10, (48) bryostatin 2, (49) bryostatin 3, (50) bryostatin 7,

(51) auristatin PE, (52) trabectedin, (53) cyanosafracin B, (54)

lurbinectedin, (55) zalypsis, (56) saframycin A, and (57) safracin A
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Several bryostatins and analogs have been synthesized

using methods such as function-oriented synthesis as

employed by Wender and other workers to develop sim-

plified analogs with comparable or improved activities [51,

209, 230, 231], but the economical production of bryosta-

tins via synthesis requires further investigation. Bryostatins

2 (48; Fig. 5) [61], 3 (49; Fig. 5) [157], and 7 (50; Fig. 5)

[105, 132] have been made via total synthesis utilizing

more than 70 steps. To address this problem, Trost and

coworkers [210] have developed a 39-step, stereoselective

synthesis of the bryostatin polyhydropyran ring C and the

Keck group recently published an impressive, asymmetric

60-step synthesis of bryostatin 1 [107].

Bryostatins have a high binding affinity for protein

kinase C (PKC) isozymes [113], which have been used to

identify specific targets and develop other analogs [106].

Furthermore, PKC activity plays a major role in learning

and memory [1], and from animal studies, bryostatin 1 may

have potential to treat cognitive diseases [198, 199, 227].

Bryostatin 1 was approved for a Phase II trial

(NCT00606164) for the treatment of Alzheimer’s disease

at the Blanchette Rockefeller Neurosciences Institute, but

there have been no updates on the progress of this study.

Dolastatins and analogs

The linear pentapeptide dolastatin-10 was initially isolated

from the sea hare Dolabella auricularia, and then isolated

from a cyanophyte of the genus Symploca many years later

[130]. Thus, in contrast to the bryostatins, the actual pro-

ducing organism could be isolated and identified. Dolast-

atin 10 was later found to inhibit the assembly of

microtubules [56] and Phase II clinical trials for the treat-

ment of several solid tumors, including pancreatic

(NCT00003677) and kidney (NCT00003914) were com-

pleted. However, these trials revealed that dolastatin 10

exhibited minimal responses in cancer patients and no

recent development of this compound has been reported

[108, 165, 224]. Phase II clinical trials for the treatment of

non-small cell lung cancer (NCT00061854) and metastatic

soft tissue sarcoma (NCT00064220) of auristatin PE (51;

Fig. 5), a synthetic derivative of dolastatin 10, have been

completed, but no recent developments has been reported

for this agent. However, an anti-CD30 antibody-conjugated

monomethyl auristatin E (brentuximab vedotin or SGN-35,

Seattle Genetics) was approved by the FDA in 2011 for the

treatment of various lymphomas. The details of the

development of brentuximab vedotin are discussed in the

2012 review by Younes and colleagues [242].

Currently, several other antibody-conjugates using a

variety of stable linker systems attached to monomethyl-

auristatin E (licensed from Seattle Genetics) are either in or

approaching clinical trials. Phase II clinical trials for the

treatment of breast cancer (NCT01156753 and

NCT00704158) and resectable stage III or stage IV mela-

noma have been completed for CR011-vcMMAE (Curagen

Corp), where monomethyl aurostatin E is linked to a

CR011 antibody against the melanoma antigen glycopro-

tein NMB, which is also expressed in some metastatic

breast cancers. The results of NCT01156753 were prom-

ising as efficacy was shown in the following cohorts:

patients with triple-negative breast cancer, triple-negative

breast cancer and significant glycoprotein NMB expres-

sion, and only high levels of glycoprotein NMB [27].

Triple negative breast cancers do not express any of the

three receptors (estrogen, progesterone or her-) commonly

found in most breast carcinomas and are therefore difficult

to treat with current receptor-targeted drugs. Thus these

findings are of definite import for the design of treatment

protocols.

A Phase II trial for the treatment of prostate cancer

(NCT1695044) using PSMA-ADC (Progenics), where

monomethyl auristatin E is tethered to a prostate-specific

membrane antigen, is in progress. A Phase I trial of DCDS-

4501A (an anti-CD79b monoclonal antibody linked to

monomethyl auristatin E via a protease cleavable linker;

Genentech) in conjunction with rituximab is underway for

the treatment of non-Hodgkin’s lymphoma and chronic

lymphocytic leukemia (NCT01290549). Using the same

linker and warhead, but to a different monoclonal antibody,

a humanized IgG1 anti-CD-22, Genentech are sponsoring a

Phase II trial of this agent (DCDT-2980S) against follicular

and diffuse large B-cell lymphomas, in conjunction with

other monoclonal antibodies as part of a complex treatment

regimen (NCT01691898). Phase I clinical trials for the

treatment of a variety of cancers using other antibody-au-

ristatin conjugates utilizing different linkers, such as MLN-

0264 (Millenium Pharmaceuticals), DSTP-3086S (Genen-

tech), AGS-22M6E (Astellas Pharmas Inc/Seattle Genetics/

Agensys Inc), and AGS-5 ADC (Seattle Genetics/Agensys

Inc), are also underway or actively recruiting. Thus, the

promising concept of linking auristatin and derivatives to

monoclonal antibodies targeted at specific epitopes may

lead to an increase in the number of agents and derivatives

in cancer therapy in due course.

Trabectedin

The tetrahydroisoquinoline alkaloid trabectedin (ET-743,

PharmaMar; 52; Fig. 5) is the first compound ‘‘directly

from the sea’’ to be approved for the treatment of cancer. In

1969, ethanol extracts of the Caribbean tunicate Ecteina-

scidia turbinata were first reported to have antiproliferative

properties by Sigel and colleagues [188]. It took at least

another 17 years for the first report of the isolation and
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structural characterization of ecteinascidin derivatives to be

published [94], followed by two papers in 1990 [175, 235].

The compound was later licensed to the Spanish pharma-

ceutical company PharmaMar where its isolation was

optimized from large-scale collections from marine envi-

ronments and also from in-sea and on-land aquaculture of

the source tunicate. Several years of aquaculture/isolation

provided enough material for the initial and early clinical

trials [41]. Simultaneously, synthetic efforts were also

made to obtain more trabectedin. The first total synthesis

was accomplished by Corey’s research group, which was

inspired by the probable biosynthetic route to trabectedin

[40]. Several other syntheses of trabectedin were published

but ultimately did not meet the requirements for the com-

mercial production of trabectedin. However, PharmaMar

developed a short, semisynthetic synthesis to produce gram

quantities of trabectedin [43] starting with the antibiotic

cyanosafracin B (53; Fig. 5) [99], a fermentation product

of a marine-derived Pseudomonas fluorescens [42].

Trabectedin has since been developed by PharmaMar

and approved by the EMEA in September 2007 for the

treatment of sarcoma and in 2009 for the treatment of

ovarian cancer. For more information about the discovery

and mechanism of action of trabectedin, see these recent

reviews [44, 162]. In 2009, PharmaMar also launched this

drug in the Philippines for the treatment of ovarian cancer,

then in 2011 trabectedin was approved in Japan for the

treatment of malignant soft tissue tumors accompanied

with chromosomal translocation. In the US, an application

was filed for the approval of the use of trabectedin in

combination with docetaxel for the treatment of recurrent

ovarian cancer. However, the FDA recommended that an

additional Phase III trial be conducted, which led to the

voluntary withdrawal of the New Drug Application by

Johnson & Johnson.

Trabectedin is still in many Phase III and earlier clinical

trials for the treatment of various cancers. PharmaMar has

also developed the trabectedin analog lurbinectedin

(PM01183, 54; Fig. 5), which has a tetrahydro-b-carboline

moiety instead of the tetrahydroisoquinoline present in ring

C. Phase I and II clinical trials with lurbinectedin are

currently underway for the treatment of advanced tumors

(NCT01405391) and metastatic breast cancer

(NCT01525589), respectively. A Phase II trial against

Ewing’s sarcoma (NCT01222767) using the closely related

compound zalypsis (PM00104, 55; Fig. 5), bearing struc-

tural similarities to ET-743 and the jorumycins with a tri-

fluoromethyl-phenyl substituent on the Southern edge, just

completed. This compound was also in two European

Phase II trials EudraCT Number 2010-020994-18 for the

treatment of cervical carcinoma (completed but no pub-

lished details as yet) and EudraCT Number 2009-016054-

40 against refractory melanoma.

Trabectedin is structurally related to the saframycin and

safracin classes of known antibiotics (see 56 and 57 in

Fig. 5 for examples of these structural classes, respec-

tively), which share similar tetrahydroisoquinoline frame-

works. Thus, trabectedin and other compounds were

thought to have microbial components involved in their

production. Recently, Rath and coworkers [168] have

demonstrated that a microbial consortium derived from

Ecteinascidia turbinata via metagenomic sequencing was

the probable producer of trabectedin. Using the known

gene clusters of the saframycin [123] and safracin [219]

metabolites as markers, the contig encoding the NRPS

biosynthetic enzymes involved in trabectedin production

was identified as well as the producing organism c-prote-

obacterium Candidatus Endoecteinascidia frumentensis

(AY054370). These results confirm previous reports spec-

ulating that bacterial candidates from Caribbean and

Mediterranean E. turbinata [144, 164] are involved in

trabectedin production as Candidatus Endoecteinascidia

frumentensis was found in E. turbinata in both geographic

locations. With these new findings, we expect to see more

reports on the genetic engineering of the trabectedin bio-

synthetic genes to produce several new analogs with

promising biological activity.

Kahalalide F

The cyclic depsipeptide kahalalide F (58; Fig. 6) is one of

the most active antitumor metabolites of the kahalalide

family that was first isolated from the herbivorous Saco-

glossan mollusk, Elysia rufescens, which grazes on the

green macroalga, Bryopsis sp. [78]. Following its isolation

and identification, kahalalide F was also reported to be

found in less concentrated amounts in the alga compared to

the mollusk based on wet weight [77]. These observations

suggest that this compound is likely to be a specialized

metabolite produced by a symbiont. Total synthesis has

mainly been used to access kahalalide F and derivatives

using solid phase peptide techniques [101, 103, 128].

However, Hill and coworkers filed an international PCT

application, in which they describe the isolation of kaha-

lalide F and other analogs from Vibrio mediterranei/

shilonii isolated from Bryopsis and E. rufescens [89].

Therefore, large-scale fermentation may be able to gener-

ate renewable supplies of the depsipeptide. For more

details on the isolation, structural elucidation and biologi-

cal activity of kahalalide F and analogs, see the 2011

review by Gao and Hamann [68].

In the 1990s, kahalalide F (PM-92102) was licensed to

PharmaMar by the University of Hawaii and entered pre-

clinical development. Kahalalide F entered Phase I clinical

trials in Europe in December 2000 for the treatment of
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androgen-independent prostate cancer and is currently in

Phase II clinical trials against a variety of cancers includ-

ing, hepatocellular carcinoma, non-small cell lung cancer,

androgen-independent prostate cancer, and malignant

melanoma. However, aside from a Phase II trial in Spain

(EudraCT Number 2004-001253-29) for the treatment of

non-small cell lung cancer that has been ongoing since

2004, there have been no recent developments reported for

this compound for the treatment of cancer. Most antitumor

agents induce programmed cell death or apoptosis, but

kahalalide F appears to have a unique mechanism of action

of primarily inducing oncosis [186, 197], which is the

process of passive cell death accompanied by swelling.

Several other kahalalide F targets have been identified to
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Fig. 6 The chemical structures of representative kahalalides, didem-

nins, salinosporamides, and derivatives. (58) Kahalalide F, (60)

isokahalalide F, (61) aplidine, (62) didemnin B, (63) salinosporamide

A, (64) lactacystin, (65) omuralide, (66) fluorosalinosporamide A, and

(67) salinosporamide X7
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play a role in inducing cytotoxic activity, such as lyso-

somes [69, 197], plasma membrane [197], and proteins

involved in the Erb3 and phosphatidylinositol 3-kinase-

Akt/PKB signal pathways [102, 166].

A closely related isomer of kahalalide F, isokahalalide F

(PM-02734, elisidepsin, 59; Fig. 6) has also been reported

to be cytotoxic and was produced by solid-phase synthesis

and developed at PharmaMar [42]. A completed Phase I

clinical trial (NCT00884845) with this compound in

combination with erlotinib for the treatment of solid tumors

demonstrated that the combination was not efficacious

[71].

Aplidine

The isolation of the cytotoxic depsipeptide aplidine (de-

hydrodidemnin B, 60; Fig. 6; PharmaMar) from the

ascidian Aplidium albicans was first reported by Rinehart

and colleagues in 1991 [174]. This compound is structur-

ally similar to didemnin B (NSC-325319, 61; Fig. 6),

which was isolated from the Caribbean tunicate Tridi-

demnum solidum and reported to have antitumor and

antiviral properties [176]. A detailed history of the isola-

tion, biological activity, and clinical development of the

didemnin family as well as aplidine can be found in the

2012 review by Lee and coworkers [120].

The only difference between the structures of aplidine

and didemnin B is the presence of a lactyl hydroxyl group

in the terminal side chain of didemnin B instead of its

corresponding ketone form in aplidine. Interestingly, this

small structural difference has resulted in aplidine exhib-

iting stronger antitumor effects and lower cardiotoxicity

compared to didemnin B [125], which was the first marine

natural product to enter clinical trials. Didemnin B was not

further developed beyond Phase II clinical trials due to the

lack of response, acute cardiotoxicity, and neurotoxicity

[117]. Aplidine has become PharmaMar’s second most

advanced compound behind trabectedin as it has completed

Phase II trials for the treatment of aggressive non-Hodgkin

lymphoma (NCT00884286) and Phase III trials in combi-

nation with dexamethasone (NCT01102426) for the treat-

ment of multiple myeloma [42].

Chemical synthesis has been used to produce aplidine

[177] for clinical studies however bacterial fermentation

may eventually be used to produce this compound, as other

tunicate-derived didemnins have recently been demon-

strated to be produced by free-living and potentially sym-

biotic bacteria [213]. Xu and coworkers [237] sequenced

the genome of the marine a-proteobacteria Tistrella mo-

bilis, revealing the didemnin gene cluster, and using

imaging mass spectrometry, the real time conversion of

didemnin X and Y precursors to didemnin B was observed.

With the identification of the didemnin B gene cluster, it

may be feasible to use genetic engineering to create

renewable supplies of aplidine via microbial fermentation.

Furthermore, metagenomic analyses of Aplidium albicans

using Tistrella mobilis gene clusters as markers, may lead

to the identification of the bacterial genes involved in

aplidine biosynthesis in the tunicate as it has not yet been

proven that the same free-living microbe produces both

aplidine and its reduced congener, didemnin B.

Salinosporamide A

The cytotoxic proteasome inhibitor salinosporamide A

(NPI-0052, 62; Fig. 6; Nereus Pharmaceuticals) is one of

the most interesting natural products as it has been isolated

from cultivatable deep-sea, free-living microbes [62]. Its

producing strain, Salinispora tropica, was isolated from

deep-sea sediment collected in the Bahamas. Salinispora

tropica is a marine streptomycete that can be propagated

via saline fermentation and has truly showcased the capa-

bilities of marine bacterial fermentation of natural prod-

ucts. Notably, bacterial fermentation afforded enough

material (450 mg/l) for the clinical development of this

compound [211], representing the first time in which saline

fermentation was successfully performed on any scale with

a marine-sourced microbe.

Salinosporamide A is structurally similar to the terres-

trial bacterial product lactacystin (63; Fig. 6) and the lac-

tacystin-biorearrangement derivative, omuralide (64;

Fig. 6), the prototypical inhibitor of the 20S proteasome

[53, 63]. The cytotoxicity of salinosporamide A is derived

from its irreversible binding to the 20S proteasome through

an ester linkage between its b-lactone carbonyl carbon and

the hydroxyl group of an N-terminal threonine residue in

the proteasome. Subsequent hydrolysis of the b-lactam of

salinosporamide A leads to an intramolecular nucleophilic

addition to the chloroethyl group, resulting in the elimi-

nation of chlorine to form a cyclic ether, which prevents

the cleavage of the proteasome-inhibitor ester bond [74]. In

addition, the unusual cyclohexene ring in salinosporamide

A enhances its hydrophobic interactions with the protea-

some S1 specificity pocket, further preventing the hydro-

lysis of the proteasome-inhibitor ester bond.

Salinosporamide A also inhibits NF-jB activation, which

is activated by proteasome activity [3].

Phase I clinical trials sponsored by Nereus Pharmaceu-

ticals with Salinosporamide A commenced only 3 years

after the report of its discovery, for the treatment of

advanced malignancies (NCT00629473) and multiple

myeloma (NCT00461045). A Phase I trial for the treatment

of solid tumors and lymphoma has been completed

(NCT00396864). Because studies have shown that
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combinations of HDAC and proteasome inhibitors have

significant therapeutic potential [142, 163], Phase I clinical

trials are also being performed in combination with vori-

nostat for the treatment of non-small cell lung cancer,

pancreatic cancer, and melanoma (NCT00667082). Thus

far, the results of this combination have been positive as it

exhibited highly synergistic antitumor activity and was

deemed to be as safe as taking salinosporamide A and

vorinostat separately [141].

Several synthetic methods have been used to generate

many salinosporamide A derivatives [33, 153, 182]. However,

the most interesting analog has been derived via the genetic

engineering of the salinosporamide A gene cluster. Notably,

the production of the fluorinated metabolite fluorosalinos-

poramide A (65; Fig. 6) and salinosporamide X7 (66; Fig. 6)

by the Moore group demonstrated the utility of genetic engi-

neering and chemical synthesis to produce novel marine-

derived analogs [59]. Fluorosalinosporamide A was deter-

mined to be a slow reversible inhibitor of the 20S proteasome,

whereas salinosporamide X7 was nearly three times more

cytotoxic than salinosporamide A.

Carfilzomib

In 1992, Hanada et al. reported [81] the isolation and

antitumor properties of the tetrapeptide epoxomicin (67;

Fig. 7), a metabolite of an unidentified actinomycete strain

No. Q996-17 with an epoxy-b-aminoketone moiety similar

to that of eponemycin (68; Fig. 7). Epoxomicin entered

preclinical trials with Bristol-Myers Squibb Research

Institute in Tokyo but was dropped due to its unknown

mechanism of action. In 1999, the Crews’ group at Yale

University published both the synthesis of epoxomicin

[189] as they were not able to obtain its producing strain

and the results of a labeling study [138], in which they

were able to demonstrate that this compound inhibited the

20S proteasome. Notably, they did not observe any cross-

inhibition with other proteases.

An N-terminal threonine residue in the proteasome was

determined to covalently attach to epoxomicin by forming

a morpholino ring adduct with the carbonyl of the epoxy

ketone moiety. Other proteases typically do not have active

sites at the N-terminus to form an N-morpholino ring.

Thus, epoxomicin is very specific for the 20S proteasome.

With this mechanism of inhibition in mind, the Crews’

group in conjunction with Proteolix synthesized many ep-

oxomicin derivatives. The final drug candidate, carfilzomib

(69; Fig. 7), was the initial compound designed by Crews

(YU-101, 70; Fig. 7) [57] with a morpholino end group

attached to improve its solubility, oral availability, and

ADME properties [47]. This compound was approved by

the FDA in July of 2012 for the treatment of multiple

myeloma, with an analysis of the clinical trials leading to

FDA approval published by McCormack [137]. As of July

2013, there are 53 ongoing clinical trials covering the

treatment of hematological cancers at Phases I–III.

The story of carfilzomib demonstrates the power of modern

synthetic chemistry coupled with key biochemical pull-down/

binding experiments to identify a previously unknown target

of a microbial product. In addition, synthesis enabled sub-

sequent modification of the base molecule to produce a viable

drug candidate. Effectively 90 % of the epoxomicin back-

bone, including the ‘‘warhead end’’, is a part of the structure of

the synthetic drug, representing a prime example of a modified

natural product skeleton leading to a drug entity. Importantly,

carfilzomib is the second approved protease inhibitor after

bortezomib (71; Fig. 7) but the first to not cause painful side

effects, such as peripheral neuropathy [9].

Halichondrin B

In 1986, Uemura and coworkers [90] reported the isolation

of the structurally complex natural product halichondrin B

(72; Fig. 7) from 600 kg of marine sponge Halichondria

okadai. The structural class of this molecule implied that it

may well be produced by a protist, though the involvement

of other microbes is possible. This compound exhibited

potent cytotoxic activity against B-16 melanoma cell lines

(IC50 = 0.09 nM) and in 1991, Bai and coworkers [10]

demonstrated that halichondrin B functioned as a tubulin

destabilizing agent.

At that time, total synthesis of halichondrin B seemed

impossible. However in 1992, Kishi and coworkers [4]

reported that they had synthesized halichondrin B and later

worked with chemists and biologists at Eisai to develop

over 200 derivatives of the natural product and evaluate

their in vitro and in vivo activities. During this time, sci-

entists at the NCI were also independently working with

New Zealand scientists to isolate enough halichondrin B

from the deep water New Zealand sponge Lissodendoryx

sp. for preclinical studies. In 1998, scientists at both the

NCI and Eisai collaborated to evaluate the two best syn-

thetic analogs from Eisai and pure halichondrin B from the

deep-water New Zealand collections. One of the synthetic

compounds, a truncated halichondrin B analog, now known

as eribulin (73; Eisai; structural similarities to 72 are shown

in red in Fig. 7), showed significantly more potent activity.

Specifically, eribulin exhibited an order of magnitude

higher potency than halichondrin B against DLD-1 human

colon cancer cells [110] and similar profiles against the

NCI60 tumor cell lines. Based on its antitumor activity,

eribulin was evaluated in clinical trials as a mesilate salt.

In 2010, eribulin mesilate was approved and launched in

the US for the treatment of patients with metastatic breast
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cancer who have received and failed at least two chemo-

therapeutic regimens. A year later, this compound was

approved in the EU and Japan for the treatment of breast

cancer and later launched in Japan. Eribulin mesilate is

currently in many clinical trials against various carcinomas

either as a single agent (NCT01676818) or in combination

with other compounds (NCT01534455, NCT01554371).

To date, the actual producer is not yet identified but the fact

that halichondrins have been isolated from many different

classes of the Porifera from many geographical sites and

depths, points to a microbial and or protist source.

Genetic blueprints for the production of microbial

metabolites

For over 50 years, large and small pharmaceutical com-

panies fermented millions of soil isolates in order to find

new microbial agents and over time realized that they were

isolating the same metabolites. This chemical redundancy

is reflected by the significant decrease in the number of

new secondary metabolites from terrestrial microbes that

have been reported since the late 1960s. For a multiplicity

of reasons, most companies decided to jettison their fer-

mentation-based discovery programs from roughly the

middle of the 1980s to early 2000s. However, with the

development of new sequencing technologies, we now

have access to microbial genomes and can use a variety of

tools to fully elucidate and activate biosynthetic pathways.

Rapidly evolving next-generation sequence (NGS, post-

Sanger sequencing) technologies have led to the quick and

inexpensive high-throughput sequencing of multiple

microbial genomes in parallel, providing biologists and

chemists with high volumes of sequence data for genes

involved in natural product biosynthesis. Sanger sequenc-

ing can provide read lengths of approximately 1,000 bp/

read at a cost of at least $500/Mbp, but now some NGS

technologies can rapidly produce at least 13–36 bps/read
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for well under $3.00/Mbp [187]. As a result of the plum-

meting costs of sequencing, several large-scale sequencing

initiatives have been initiated, such as the Genomic

Encyclopedia of Bacteria and Archea [236] and the Human

Microbiome Project [18]. As a result, the number of

complete whole microbial genome sequences has skyroc-

keted, providing more opportunities for genome mining to

discover novel new natural products.

We can now begin to fully exploit combinatorial bio-

synthesis by either utilizing unnatural starting substrates in

order to alter the final product or mixing and matching gene

clusters with the aim of producing novel structures. A

prime example of the latter is the aforementioned engi-

neering of fluorosalinosporamide from S. tropica. This

fluorinated analog was generated by replacing the fluori-

nation gene flA from Streptomyces cattleya with the salL

chlorinase gene in S. tropica and growing the salL- flA?

mutant strain in the presence of inorganic fluoride [60].

Fluorinated natural products are rare, yet 15 % of all

marketed drugs contain fluorine, demonstrating how useful

genetic engineering can be in incorporating unique and

essential functionalities in molecules.

Furthermore, many genomic studies have revealed that

most of the biosynthetic gene clusters in microorganisms

are cryptic or silent. For example, sequencing Streptomyces

genomes has revealed that each strain has the potential to

produce at least 20 or more secondary metabolites, when

only a fraction of these are produced by conventional fer-

mentation methods [158]. The genetic capability of fungi

has also been underestimated as the model soil fungus

Aspergillus nidulans has 28 putative PKS and 24 NRPS

gene clusters, demonstrating the potential to produce at

least 52 secondary metabolites [223] and in a 2012 review,

the Keller group at Wisconsin extended the analyses to

eight other species of Aspergillus identifying between 33

and 79 putative clusters excluding any terpene synthases,

on the eight chromosomes of this genus [181], thus the

potential is immense.

We now have access to cryptic gene clusters and can

focus on ways to activate them. One method reported by

Tanaka et al. [203], was the addition of rare metals to the

fermentation broth of Streptomyces sloyaensis thus acti-

vating the expression of nine genes that were previously

silent or poorly expressed in Streptomyces coelicolor

A3(2). In 2007, Udwary et al. [214] reported the sequence

of S. tropica, identifying 17 potential biosynthetic gene

clusters, including the salinosporamide locus, leading to

studies by Fenical and coworkers eliciting the products of

the products of some of these clusters via specific fer-

mentation conditions, and now that the positions of the

potential producing clusters have been identified, a com-

bination of cloning, expression, and fermentation is being

used to ‘‘unlock’’ these metabolites. Cocultivation with

other microbes has been a successful method for ‘‘awak-

ening’’ cryptic gene clusters. Recently, Nützmann and

coworkers [155] reported the cocultivation of the soil-

dwelling Streptomyces rapamycinicus (formerly S. hygro-

scopicus) with the fungus A. nidulans, activating a silent

fungal polyketide synthase gene cluster involved in pro-

ducing orsellinic and lecanoric acids as well as the

cathepsin inhibitors F-9775A and F-9775B. The 2013

review by Ochi and Hosaka [156] should be consulted for

an in-depth analysis of the current methods used to activate

cryptic gene clusters.

The limited diversity of currently ‘‘culturable’’ microbes

also contributed to the decline in the discovery of new

natural products. Now, metagenomic sequencing has

become very powerful in identifying gene clusters from

environmental samples of mixed, unculturable organisms,

providing further insight on the interactions between

organisms within a community [225]. This will be extre-

mely useful for identifying the biosynthetic gene clusters of

marine natural products, for which one major challenge is

working with unculturable organisms. Recently, Donia and

coworkers [55] sequenced the complex microbiome

underlying the symbiosis between the tunicate Lissoclinum

patella and the uncultivated cyanobacterium Prochloron

didemni, which demonstrated the secondary metabolite

symbiosis between these organisms and also helped to

identify other symbiotic bacteria for future studies. Me-

tagenomic sequencing has also been used to direct cultur-

ing conditions such as the microbiota of the medicinal

leech Hirudo verbena, which includes Aeromonas veronii

and a Rikenella-like bacterium. High expression levels of

mucin and glycan utilization genes were found in the Ri-

kenella-like bacterium, and growing the microbe in media

containing mucin instead of glucose led to the growth of

pure cultures of this microbe [21]. Lastly, with the amount

of data generated by NGS technologies, we expect an

increase in the number of new databases thus facilitating

the search for genes involved in the production of specific

metabolites [26, 39, 97].

Plant metabolites and endophytes

Within the past two decades, there has been a significant

increase in the number of reports of endophytes (microbes

that live inside the living tissues of plants without having

deleterious effects) producing valuable therapeutic plant

secondary metabolites. For every one of the approximately

350,000 plant species on earth, each plant serves as a host

to one or more endophytes [194]. This is a trend that was

identified in the marine area where natural products that

were initially thought to be invertebrate-derived were later

found to be produced by symbiotic or commensal
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microbes. Scientific data from the People’s Republic of

China has revealed a significant number of reports demon-

strating that endophytic fungi produce the following four

major classes of ‘‘plant-derived’’ natural products: taxanes,

podophyllotoxins, camptothecins, and vinca alkaloids. Sum-

maries of the known endophytic fungi that produce plant

secondary metabolites were published in 2012 [29, 118].

In addition to endophytic fungi, there have also been

reports of endophytic actinobacteria, albeit limited that

enhance [207] and/or produce new secondary metabolites

[195, 244]. In 2007, Lu and Shen [129] reported a new

cytotoxic ansamycin, napthomycin K, produced by the

endophytic Streptomyces sp. CS isolated from the medici-

nal plant Maytenus hookeri. More recently, Igarashi and

coworkers [98] have identified the new anthraquinone

lupinacidin C from the endophytic actinomycete, Micro-

monospora lupini, coexisting in the root nodules of the

legume Lupinus angustifolius, which exhibits anti-invasive

activity against murine colon cancer cells. These examples

highlight the exciting new possibilities of endophytic

microbes serving as an inexhaustible reservoir of new

secondary metabolites with novel bioactivities.

Only a handful of mostly higher plants and their corre-

sponding endophytes have been investigated, leaving the

vast majority of plants to be studied. Not only can endo-

phyte–plant interactions induce the production of new

compounds, but endophyte–endophyte interactions within

plants also have the potential to produce new secondary

metabolites as plants are unlikely to be colonized by just a

single microbe. Biosynthetic genes can be up- or down-

regulated in endophytes as a result of interacting with other

microorganisms within their environment [12, 155]. Sig-

naling molecules analogous to bacterial quorum sensors

and other elicitors are thought to be involved in activating

cryptic biosynthetic gene clusters.

Recently, two papers were published in Nature that

described using 454 sequencing to identify the bacterial

microbiota colonizing the root rhizosphere, soil, and

endophytic compartments (within the roots) of Arabidopsis

thaliana [25, 131]. Both studies identified similar phyla of

bacteria inhabiting the endophytic compartments of A.

thaliana and demonstrated that they are significantly dis-

similar compared to those found in plant-free soil and the

root rhizosphere. Notably, the microbiota of the endophytic

compartment is influenced by soil type, and some variation

was observed among plants of different genotypes and

developmental stages. All of these observations suggest that

there is a large possibility of finding more unique endophytic

microbes and symbiotic interactions that have the capability

of producing new secondary metabolites. As more reports on

the metagenomic sequencing of plant microbiomes are pub-

lished, these will facilitate the dissection of endophyte-

endophyte and endophyte–plant interactions.

Conclusions

Organisms from two of the three domains of life are not

only producers of secondary metabolites with significant

activity as both drugs and leads, but in the last few years,

the investigation of the genomic sequences of such

microbes has shown that we have overlooked most bio-

synthetic gene clusters by using axenic monoculture con-

ditions. With the development of NGS technologies and the

increasing availability of genetic blueprints, we can now

make informed decisions (e.g., in silico predictions) [133]

about how to characterize and fine tune the expression of

genes, molecular interactions, cross-species gene expres-

sion, signal transduction, as well as the activation and

silencing of various genes involved in the production of

bioactive secondary metabolites. Most importantly, we are

now developing the tools needed to uncover unexplored

microbial genes and, correlating with the increasing num-

bers of genomic sequences available we also expect to see

an increase in the number of new microbial-derived

pharmaceuticals.
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