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Abstract: Recent discoveries of the purpose and potential of microbial interactions with humans
have broad implications for our understanding of metabolism, immunity, the host–microbe genetic
interactions. Bioavailability and bioaccessibility of phytonutrients in foods not only enrich microbial
diversity in the lower human gastrointestinal tract (GIT) but also direct the functioning of the
metagenome of the microbiota. Thus, healthy choices must include foods that contain nutrients that
satisfy both the needs of humans and their microbes. Physical activity interventions at a moderate
level of intensity have shown positive effects on metabolism and the microbiome, while intense
training (>70% VO2max) reduces diversity in the short term. The microbiome of elite endurance
athletes is a robust producer of short-chain fatty acids. A lifestyle lacking activity is associated
with the development of chronic disease, and experimental conditions simulating weightlessness in
humans demonstrate loss of muscle mass occurring in conjunction with a decline in gut short-chain
fatty acid (SCFA) production and the microbes that produce them. This review summarizes evidence
addressing the relationship between the intestinal microbiome, diet, and physical activity. Data from
the studies reviewed suggest that food choices and physical fitness in developed countries promote a
resource “curse” dilemma for the microbiome and our health.

Keywords: microbiome; diet; lifestyle; physical activity; microbial diversity; microbial density

1. Introduction

Microbial species in the gut, including fungi, viruses, and bacteria, are key influencers
in human development, immune function, and health. The gut microbiome functions
as both a nutritional competitor and supplier of nutraceuticals and facilitates human
metabolism. In this way, the microbiome behaves as an economy that trades in nutrients and
the end products of fermentation; thus, supply and demand forces may apply. Economists
have observed that developing countries often suffer from the paradox of plenty, such that
resource riches lead to marginalization and poverty in some groups [1]. The “resource
curse” framework can be applied to the human microbiome, where richness in some
nutritional components leads to bacterial overgrowth of certain species, thus crowding
out the growth and sustainability of others [2]. The western pattern diet (WPD) due to
its nutrient resources which are low in fiber and carbohydrate polymers of 10 or more
monomeric units, disrupts microbial populations resulting in damage to the intestinal
epithelial barrier (IEB)–the gatekeeper of nutrient permeability into the endothelium [3].
Once the intercellular junction has been breached, inflammation and tissue injury occur.
Pathogens take advantage of this disruption, while commensal bacteria become displaced
by dysregulation. Resource imbalance creates a lack of “leadership” among microbes and
results in a lawless state of dysbiosis where some species go into decline.

The formation of the protective mucous barrier on the lining of the intestinal lumen
creates a physical space for the host–microbe exchange of nutrients and metabolites [4]. In
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addition, the production of short-chain fatty acids (SCFAs) through the fermentation of
polysaccharides supports the energy needs of endothelial cells [5]. Commensal bacteria
also play a key role in the post-natal development of the gut-associated immune system
by regulating immune homeostasis, thus providing another defense mechanism against
invading pathogens [6]. The adoption of dietary patterns must be viewed within a broader
context of a system of interactions between the host and its microbiome.

Physical activity (PA) has been shown to prevent and treat a number of chronic
diseases, including heart disease, type 2 diabetes, high blood pressure, some cancers, de-
pression, and dementia [7]. In an experiment using dry immersion to simulate extreme
inactivity while controlling for diet, researchers observed that participants not only devel-
oped muscle loss, but experienced a reduction in microbial production of propionate and
an increase in Firmicutes [8]. Studies on habitual athletes have shown that they also have
high levels of Firmicutes, but individual species vary by sport and activity level [9]. The gut
microbiome of sedentary adults in a short-term exercise intervention given supplemental
protein developed an increase in microbial and viral diversity [10]. However, one would
expect that when athletes are compared to sedentary individuals that bacterial species
associated with health would be more abundant in the more active group, as well as a
greater consumption of fruits and vegetables [9].

The literature on lifestyle patterns, including diet and physical activity, and their
effect on the microbiome, identifies some differences by activity level and microbe–food
matrix preferences and supports a resource environmental theoretical framework for fu-
ture research. This scoping review seeks to review the role of diet and exercise-induced
adaptations in shaping the gut microbiome to reveal the current state of our knowledge of
their impact on health.

2. Methods

This scoping review of systematic is reported using guidelines from Joanna Briggs
Institute Reviewer’s Manual and managed with JBI System for the Unified Management,
Assessment, and Review of Information (SUMARI) [11,12].

2.1. Eligibility Criteria

As presented in the Table 1 PICOS chart, papers selected for inclusion were English
language systematic reviews of cross-sectional, prospective cohort studies, randomized-
controlled trials of either parallel or crossover design with healthy adult subjects aged
18 years or older. The exposure or intervention had to include diet pattern (Western-style,
plant-based, vegan, omnivore, carbohydrate exclusion) and/or physical activity or exercise.
Therapeutic interventions using pre- and pro-biotics as therapeutic agents were rejected,
but studies using fermented whole foods were included. Studies should include compar-
isons between the type of diet and/or physical activity levels and changes in microbial
composition of the gastrointestinal tract (GIT). Reviews examining probiotics outside of
the context of dietary pattern and non-interventional reviews were excluded. Outcomes
of the intervention or exposure should include gut microbiota composition through fecal
samples and abundance composition or abundance of specific intestinal bacteria.

2.2. Search Strategy

A systematic search for systematic reviews was conducted on PubMed, CINAHL-
EBSCO, Cochrane Database of Systematic Reviews, Prospective Register of Systematic
Reviews (PROSPERO), PEDro, and PubMed was conducted in June 2022 from January
2012 to June 2022. The search aimed to identify systematic review papers investigating the
influence of diet and/or physical activity on the microbiota composition of gut microbiota
of healthy adults using a combination of MeSH and individual search terms. The search
terms were microbiome OR microbiota OR gut microbiome in combination with diet
AND/OR exercise AND/OR physical activity resulting in 282 articles after the elimination
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of duplicates. Study identification and selection are detailed in the PRISMA-ScR flow
diagram (Figure 1) PRISM-ScR [13].

Table 1. PICOS criteria for inclusion.

PICOS Format Description

Population Healthy subjects
Adult humans aged 18 years or older

Intervention or exposure Diet (Western-style, plant-based, vegan); and/or Physical activity or exercise

Comparisons Diet (omnivore, Western-type, vegetarians, vegans) and/or Physical Activity level; reviews of
interventions examining probiotics solely and non-interventional reviews were excluded

Outcome Gut microbiota composition through fecal samples; abundance composition or abundance of specific
intestinal bacteria

Study design
Systematic reviews of cross-sectional, prospective cohort studies, randomized-controlled trials of
either parallel or crossover design; and reviews or studies for background information on food or
physical activity
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Figure 1. PRISMA-ScR flow diagram.

The initial searches produced several papers with questionable authority due to het-
erogeneity in reporting outcomes. Strengthening The Organization and Reporting of
Microbiome Studies (STORMS) was developed from STROBE and STREGA (STrengthening
the REporting of Genetic Association Studies) guidelines in 2021 to standardize the organi-
zation of essential information for papers reporting on the microbiome with the purpose of
reducing reporting heterogeneity [14–16].
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2.3. Study Selection and Data Extraction Process

Two reviewers (PGF and HF) independently screened the titles and abstracts, as well
as assessed papers for eligibility. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA-SCR) guideline was used as a basis for reporting. As study
designs and outcome assessments varied, results are presented in a narrative way. Results
are presented based on the PICOS criteria in Table 1 and PRISMA 2020 flow diagram in
Figure 1 for new systematic reviews [13]. JBI Critical Appraisal Checklist was used to
evaluate the risk of bias in the systemic reviews.

2.4. Results

Table 2 summarizes the characteristics of the included studies and the relevant results.
Over time the quality of papers that reported on the effect of lifestyle on the gut microbiota
has improved, but there remains an elevated level of heterogeneity in treatment outcomes
making it difficult to generalize findings.

Table 2. Summary of systematic reviews and metanalyses on the effect of diet or exercise on
the microbiome.

Aim and Design of
Studies

Number of
Studies Quality Effect on

Microbiome

First
Author/Study

Name

Influence of a healthy diet
pattern on the microbiome
and inflammatory markers
Interventional human trials

18 Critical appraisal not
reported

Due to heterogeneity in study
design and type of subjects, no
conclusions could be made

Telle-Hansen
(2018) [17]

Vegan and vegetarian diet
association with gut
microbiota composition
Cross-sectional/
cohort/RCT

37

a Newcastle–Ottawa
scale
NOS: 4.6 out of 10
points

No consistent association
between a vegan or vegetarian
diet and microbiota
composition

Trefflich
(2019) [18]

Effect of wine and grape
polyphenols on human gut
microbiota.
Meta-analysis
RCTs

7

b Cochrane Risk of Bias
Low (5)
(1) unclear
(1) high risk

Increased Proteobacteria,
Fusobacteria, Firmicutes,
Bacteroidetes, and B. uniformis
after red wine intake; Decrease
in dysbiosis-associated species:
Clostridum, Eubacterium, and
Bacteroides

Nash (2018) [19]

Dietary fiber intervention
on microbiome
Meta-analysis of RCTs

64-reviewed
58-retained for
meta-analysis

12 studies focused
on whole-grain diet
versus a low-fiber

diet

b Cochrane Risk of Bias
Low to moderate risk
of bias (n = 64)

Dietary fiber intervention
compared to placebo/low fiber
diet did not significantly
increase α-diversity, but
increased abundance of
Bifidobacterium spp.
No difference in Lactobacillus
spp. Abundance with food
intervention, but significant in
fiber supplement group

So (2018) [20]

Dietary fat and gut
microbiota
Cross-sectional, cohort;
interventional studies
and randomized
controlled trials

16

b Cochrane Risk of Bias
14 RCT-low risk; 2
RCT-high-risk
a Newcastle-Ottawa
NOS: 3 = 8, 3 = 7, 1 + 6,
and 2 = 5

n3, n6 PUFA increase beneficial
bacteria; high fat/saturated fat
diets reduced richness and
diversity and had negative
metabolic health outcomes;
observational studies show an
association between fat and
health outcomes

Wolters (2019)
[21]
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Table 2. Cont.

Aim and Design of
Studies

Number of
Studies Quality Effect on

Microbiome

First
Author/Study

Name

Association between
exercise and gut microbial
composition in mammals
RCT, cross-sectional, and
cohort studies

Human—20
Animal—5

b Cochrane Risk of
Bias–unclear
Low Quality
Lack of appraisal tools
for heterogeneous
models

Exercise was associated with
changes in gut microbial
composition, an increase in
butyrate-producing bacteria,
and fecal butyrate

Mitchell (2019)
[22]

Effects of intact cereal grain
fibers on microbiome
RCT, RCT crossover,
non-randomized

40 Critical appraisal not
provided

Cereal fiber (6–8 g) increases
diversity and abundance;
increase in bacterial
metabolites

Jefferson (2019)
[23]

Influence of exercise on the
human gut microbiota in
healthy adults
Observational and
case-control

18
d PEDro
18—Medium

4/9 observational studies
showed higher levels of
physical activity or
cardiorespiratory fitness were
positively associated with
α-diversity

Ortez-Alvarez
(2020) [24]

Influence of endurance
training intervention and
gut microbiome
Interventional studies > 4
weeks duration

5

d PEDro
4 studies score ≥
4—Fair quality
1 study was rated Poor

PA significantly lowers
abundance of Bacteroidetes
and increases Firmicutes and β

diversity in some studies

Shahar (2020)
[25]

Effects of dairy and dairy
derivatives on the gut
microbiota
(Bovine, yogurt, soy)

8

b Cochrane risk-of-bias
2—low
5—some concerns
1—high risk

Richness and diversity
declined in all types of milk,
Lactobacillus increased in
bovine milk; fermented yogurt
and kefir increased
Lactobacillus and Bifidobacterium

Aslam (2020)
[26]

Effect of nut consumption
on gut microbiome and gut
function
RCTs

8

b Cochrane risk-of-bias
No studies were low
risk of bias; variable
across categories of
analysis

Meta-analysis found no effect
on β-diversity; no effect of nut
type, dose, duration of
intervention;
increased abundances of
Clostridium, Lachnospira and
Roseburia

Creedon (2020)
[27]

Effect of dietary pulses on
microbial populations
RCT-C, (cross-over);
Interventions with control
or placebo group

5 Critical appraisal not
provided

Bacteroides fragilis OUT↓ i for
navy bean pulse flour; No
difference in Shannon index
for diet with chickpeas; lupin
fiber consumption decreased
abundance of
Bacteroides-Prevotella

Marinangeli
(2020) [28]

Effect of nut consumption
on gut microbiome
RCT-C, (cross-over);
RCT parallel design, and
pre/post-test studies

8

f Quality Criteria
Checklist and g Risk of
Bias Assessment Tool
6/8 positive quality
2 neutral

Nuts in general, but especially
walnuts, had an impact on gut
microbial composition

Fitzgerald
(2021) [29]
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Table 2. Cont.

Aim and Design of
Studies

Number of
Studies Quality Effect on

Microbiome

First
Author/Study

Name

Association between
physical activity and
changes in intestinal
microbiota composition
Cross-sectional and
longitudinal studies

17

h ROBINS-I
6—low
7—moderate
1—serious
3—not reported

Increase in SCFAs
concentration after the training
period in lean athletes only;
composition and diversity
differ by sport

Aya (2021) [30]

Physical activity influences
on human gut microbiota
independent of diet
observational

10
4/10 studies

controlled for diet

e JBI Critical Appraisal
Checklist-criteria met
b Cochrane Risk of Bias
−2/20 some concerns

Variability is affected by
dietary factors and physical
characteristics; use of high
protein diets contributes to
greater variability
among athletes

Dorelli (2021)
[31]

Dietary habits and gut
microbiota in healthy
adults
cross-sectional and RCT
Diet regimen studies

16

a Newcastle-Ottawa
scale
Mean score for
cross-sectional studies
was 5/10;
b Cochrane
Collaboration tool risk
of bias-Low

Significant impact on some
bacterial genera from a rich
and varied omnivore diet, such
as Mediterranean

Gibiino (2021)
[32]

Vegan diet and gut
microbiota
Cross-sectional studies

9

a Newcastle-Ottawa
scale
Most studies scored
“medium” quality

Firmicutes/Bacteroidetes ratio is
lower in vegans compared to
omnivores;
Abundance of Bacteriodetes and
Prevotella in vegans

Losno (2021)
[33]

a- and β-diversity in obese
and non-obese adults
Intervention studies
and RCT

32
22 reported

Shannon Index
(diversity)
25 studies

investigated
diversity; 2 did not;
5 did not stratify by

BMI

h Adapted ROBINS-I
Serious risk in one
domain: 22
Moderate: 10

Higher levels of PA and
cardiorespiratory fitness are
associated with greater
α-diversity and increases in
some phyla and certain
short-chain fatty acids

Pinart (2021)
[34]

Effects of exercise and
physical activity on the gut
microbiome in older adults
Observational and
interventional studies

7 Critical appraisal not
provided

PA had beneficial impact on
the gut microbial composition
of older adults

Ramos (2022)
[35]

Physical activity and
human gut microbiota in
healthy and unhealthy
subjects
Observational and
interventional studies

25

h ROBINS-I
8 studies scored 4–5
c Jadad Scale
4/5 studies:
Moderate
e JBI Critical Appraisal
Checklist for
Analytical
Cross-Sectional
Studies
12/12 Included

No significant change in
richness and diversity in gut
microbiota for minimum PA
recommendations
Microbial diversity is
associated with
aerobic exercise

Cataldi (2022)
[36]
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Table 2. Cont.

Aim and Design of
Studies

Number of
Studies Quality Effect on

Microbiome

First
Author/Study

Name

Effect of MedDiet on
microbiota and metabolites
RCT and
Observational studies

34
17-RCT

17-Observ

b Cochrane (RCT)
Mixed Quality
a Newcastle-Ottawa
scale (Observational)
Prospective Studies:
High 2
Moderate 1
Low 2
Cross-sectional
High 6
Moderate 6
Low 2

Overall positive impact of
Mediterranean diet on
Firmicutes/Bacteroidetes ratio.
but effects are not consistent
between studies due to
adherence differences and
fewer species that utilize
oligosaccharides and
simple sugars

Kimble (2022)
[37]

a Newcastle–Ottawa scale (NOS) [38]; b Cochrane risk of bias [39]; c Jadad Scale or Oxford Quality Scoring
System Scale [40]; d PEDro scale (Maher, 2003); e JBI Critical Appraisal Checklist for Analytical Cross-Sectional
Studies [41]; f Quality Criteria Checklist; g Risk of Bias Assessment Tool [42], h ROBINS-I [43] and i ↓ indicates
a decrease.

3. Microbiome

The microbiome is a collection of bacteria, fungi, and viruses that varies by location,
age, health status, diet, and physical activity levels. The dominant bacterial phyla in the
human microbiome are Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verru-
comicrobia [44]. Most fungi are poor colonizers of the gastrointestinal tract (GIT), but seven
taxa have been found: C. albicans, Saccharomyces cerevisiae, A. niger, Penicillium sp., Pichia,
Aspergillus, and Mucor and are influenced by diet and alcohol consumption [45]. Candida
is the most abundant genus in the first six weeks of life in infants, with colonization being
greater in those delivered vaginally [46]. Bacteria reside in the gut, as well as other body
sites (genital, skin, airway)—each with its own distinct population of archaea, viruses, and
eukaryotes [47]. A healthy microbiome exhibits greater microbial diversity. Low micro-
bial diversity is observed in disease states such as cardiovascular disease, cancer, obesity,
and metabolic and immune disorders. The reduction in populations within the human
microbial ecosystem or intestinal dysbiosis is associated with negative health effects [48].

The viruses (virobiota) and their communities (viromes) cross the IEB and are be-
lieved to have a cooperative evolution and symbiotic relationship with their host [49].
Viral colonization of the GI tract begins after birth and gradually increases with age [50].
Human endogenous retroviruses (HERVs) have entered host germ cells, eggs, and sperm,
over successive generations of infecting our ancestors and make up approximately 8%
of our genome [49]. HERVs can be coopted into protecting the host and participating
in protective metabolic activities such as neuroprotection and embryonic development.
Activation of HERVs can affect the expression of genes involved in immunity and in-
flammation. Researchers demonstrated that the fasting or overfed condition affected the
expression of ERV-related genes in geese, suggesting that they are influential mediators in
the development of non-alcoholic liver disease [51].

4. Diet

Individuals have unique gut microbial communities due to differences in host genetics,
physical activity, aging, health, and dietary composition [52–55]. Food provides nutrients
and other substrates for the bacteria that reside in the gut; in return, bacteria yields not
only SCFAs, but significant amounts of vitamins K2 and B12, folate, riboflavin, thiamine,
and other nutrients [56,57]. Interspecies bacterial competition for life-sustaining resources
drives community composition [58]. To reduce dysbiosis and systemic inflammation, a
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better understanding of how strain diversity, their interactions, and the metabolism of
various nutrients is crucial.

The habitual diet has wide-ranging effects on human health now and in the future.
Telle-Hanson, Holven, and Ulven (2018) reviewed the literature on diet and its components,
microbiota, and evidence of inflammation in dietary intervention trials to develop insight
into the origin of cardiovascular disease [17]. Few conclusions were made due to the het-
erogeneity of factors and wide latitude in which the authors of the primary studies define
a “healthy diet”. Data from the American Gut Project demonstrates that plant-based and
flexitarian dietary patterns with higher Healthy Eating Index 2010 (HEI-2010) scores were
associated with microbiome β-diversity or the extent of change in the number of microbial
communities [59]. Diets rich in inflammatory foods such as refined grains, processed and
red meats, fried foods, and added sugars are major factors in the causation of chronic
diseases. Tools such as the Dietary Inflammatory Index (DII) are used to evaluate the
inflammatory potential of an individual’s dietary pattern [60]. Fruits, vegetables, whole
grains, and legumes consumption are all linked to the reduction of systemic inflammation
as well as microbial diversity [61]. Consumption of whole fruits, vegetables, and legumes
in a Mediterranean dietary pattern has been shown to increase fecal short-chain fatty acid
(SCFA) levels, mainly due to fermentation of insoluble fibers by the most abundant phyla—
Firmicutes and Bacteroidetes [62,63]. Grape and red wine, with their high polyphenol content,
have been associated with beneficial changes in GIT microbial composition Proteobacteria,
Fusobacteria, Firmicutes, Bacteroidetes, and B. uniformis [19]. The response to the consumption
of 100% fruit juice varies by type, but orange juice has a positive effect on the gut micro-
biome [64,65]. The data from a short-term human trial using cherry juice suggests that
participants who consumed a Western-style diet showed different gut microbiota responses
than other participants due to their reduced ability to metabolize polyphenols [66]. Healthy
volunteers in a month-long trial of Montmorency tart cherry concentrate had no change in
species richness or microbial composition [67]. Thus, habitual dietary pattern affects the
ability of individuals to receive all of the health benefits from fruits and vegetables.

In a study of food frequency and related bacterial genera in 98 participants, the authors
reported that the habitual diet was correlated with separate clusters, termed “enterotypes,”
primarily dominated by Bacteroides, Prevotella, and Ruminococcus [15]. The resulting dietary-
enterotype framework showed that Bacteroides entero-type was highly associated with
a more Westernized diet high in animal protein and saturated fats, while the Prevotella
enterotype was associated with a carbohydrate-dominated diet. Vegetarians showed a
mixed pattern of Prevotella and Bacteroides. Investigators in this controlled feeding trial
demonstrated that by changing the diet pattern on a short-term basis to either a plant-
based or animal-based diet, microbial community structure recovered to baseline bacterial
composition once participants resumed their usual diet [68].

Nutrient-dense foods are higher in nutrients and lower in calories and naturally
contain vitamins, minerals, fiber, or resistant starches. The MAL-ED study (Etiology, Risk
Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences
for Child Health) followed a cohort of 1283 children ages 9 to 15 months from eight low
resource populations to determine their risk of anemia, low retinol, zinc, ferritin, and
high transferrin receptor (TfR) [69]. The researchers assessed diet intake, nutrient density,
micronutrient status, and markers of inflammation. The authors concluded that after
accounting for dietary nutrient density, there was an independent association between
biomarkers of intestinal permeability and micronutrient status for children with anemia,
low ferritin, and retinol levels. These data suggest that a nutrient-dense diet may be useful
in reducing systemic inflammation.

A trial of a Mediterranean diet with an additional green tea supplement and minimal
amounts of meat demonstrated improvement in cardiometabolic risk, weight loss, and
changes in microbial abundance driven by a small low abundant non-core change in
taxonomic composition [70]. The addition of a polyphenol-rich green tea supplement to
the diet enhanced the abundance of Prevotella and Bifidobacterium involved in the synthesis
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and degradation of branched-chain amino acids. The presence of the genera Prevotella and
Bifidobacterium is common in non-Western societies, and some authors have suggested that
it may be a biomarker for a healthy lifestyle [71].

4.1. Western Diet

The Western-style diet, an energy-dense and nutrient-poor pattern, consists of pro-
cessed meats, full-fat dairy such as cheese and ice cream, refined grains, and added sugars,
which promote inflammation and chronic disease. A systematic review of 46 studies that
measured the effect of Western food choices on inflammation concluded that “balanced”
diets reduce the risk for chronic disease [72]. Across the 46 studies meeting inclusion
criteria, individuals consuming Western-type and meat-based diets had higher markers of
low-grade chronic inflammation. Results from studies on the MedDiet, a diet rich in fruits
and vegetables, demonstrate that individuals following this type of diet have lower markers
of low-grade inflammation. As these studies were drawn from cross-sectional observa-
tional designs, the authors concluded that in order to confirm these results, prospective
trials are needed.

4.1.1. Ultra-Processed Foods

One discriminating feature between traditional and Western dietary patterns is the
consumption of ultra-processed foods. The Open Food Facts database, which gathers food
product information from around the world, uses the NOVA classification system to score
products [73]. This system of classification has been used in cross-sectional studies of
diet intake and chronic disease [74]. The NOVA classification of food has four categories:
unprocessed or minimally processed foods, processed culinary ingredients, processed foods,
and ultra-processed food and drink products. A systematic review and meta-analysis of
cross-sectional studies on the effect of exposure to ultra-processed foods (UPF) on health
status using food frequency and 24 h recall data found an increased risk of overweight,
hypertension, metabolic syndrome, and low high-density lipoprotein [75]. The authors also
reviewed five quality prospective-cohort studies and found an increased risk of all-cause
mortality (RR 1.25, 95% CI 1.14, 1.37; p < 0.00001) for individuals who consumed elevated
levels of UPF.

Food processing adds sodium, sugar, and other additives to modify the flavor, texture,
and/or color. The influence of high sodium diets (HSD) is attributed to aberrant T-cell
activation resulting in essential hypertension and other autoimmune diseases [76]. Experi-
mental evidence using a rat model suggests that dietary sodium also alters the composition
of gut microbial taxa, specifically Christensenellaceae and families, as well as the Erwinia
and the Anaerostipes genera [77]. HSD also elevated levels of proteinuria and produced hy-
pertension, a finding in agreement with human studies [78]. A randomized, double-blind,
placebo-controlled crossover trial of a reduced-sodium diet in 145 untreated hypertensive
individuals ages 30 to 75 years demonstrated increased circulating levels of SCFAs and
decreased blood pressure [79]. Results for women showed a significant difference in all
eight SCFAs, but there was no difference by race. In another study, a high sodium diet
consumed by healthy volunteers was associated with an increase in blood pressure and an
increased abundance of Prevotella, Bacteroides, and Ruminococcaceae [80]. Since “enterotypes”
associated with diet have been described as being either Prevotella or Bacteroides dominant,
this may suggest that there is a transition point from healthy to unhealthy, making this shift
a marker for wellness [71].

Components of a processed diet may include the use of additives, particularly titanium
dioxide (TiO2) and emulsifiers. These components influence the integrity of the IEB,
while food additives promote biofilm formation, altering microbial composition [81–86].
Another role of food processing is the enrichment of foods with vitamins, minerals, and
nutraceuticals according to regulations or for product marketing. By increasing nutrient
density, fortification promotes biofilm formation under these conditions and promotes
bacterial persistence to antibiotics.
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Consumption of ultra-processed foods may induce low-grade gut inflammation and
increase an individual’s risk for cancer and cardiovascular disease. An online survey
of consumers found that they readily identified ultra-processed foods as foods being
ready-to-eat and containing additives, food colorings, preservatives, and stabilizers [87].
Low-income consumers choose foods that are ultra-processed for several reasons, such as
cost, convenience, and taste [75,88]. Public health educators should focus on educating
consumers about how to make smarter choices by reading the food label and choosing
products with few additives and minimal processing.

4.1.2. Protein

The degradation of dietary protein occurs through human and microbial proteases.
Bacteria rely on carbohydrates and fiber for energy, but they are flexible and will use
protein as an energy source when carbohydrate resources are low. Proteolytic fermen-
tation produces phenols, branch-chain amino acids, sulfides, indoles, and ammonia as
by-products [89]. Unlike the products of carbohydrate fermentation, colonic protein metabo-
lites are often associated with colon cancer [90]. Researchers in one controlled human trial
found that a three-week high protein diet had the effect of regulating the production of
bacterial metabolites, causing an increase in the degradation of amino acids in the gut
and modifying gut mucosal genes involved in cell cycle regulation [91]. Using a Human
Intestinal Microbial Ecosystem (SHIME(R)) model researchers demonstrated that a high-
protein diet (2.5 g/L casein) produces a different microbial community composition than a
high-fiber (0.6 g/L casein) diet [92]. High-protein diets fed to mice lead to the development
of obesity which was a major factor in shifting the gut microbial populations, but this effect
was dependent on the diet’s protein-to-sucrose ratio [93].

One outcome of consuming diets rich in the essential amino acid tryptophan, such as
dairy, poultry, and nuts, is that they favor the generation of indole and indole derivatives by
colonic bacteria. Indole is a signaling molecule that regulates the host immune system by
supporting epithelial barrier defense in a way that controls pathogens without producing
an inflammatory response [94,95], thereby reducing chronic inflammation caused by the
passage of bacteria and toxins from the gut into the bloodstream [96].

4.1.3. Fats

Trans-fat, or trans-fatty acids, are a by-product of the hydrogenation of vegetable
oils to enhance shelf-life and other desirable food characteristics. Once considered to be a
healthier alternative to saturated fat, there is now a consensus on the role trans fatty acids
play in the development of heart disease and stroke by increasing LDL cholesterol and
reducing HDL cholesterol. The association of high intakes of iTFA (industrial trans-fats) with
cardiovascular disease has led to public health recommendations to reduce or eliminate
their use. High intake of iTFA in mice has been shown to cause significant dysbiosis of
gut microbiota [97]. A survey of the consumption of industrial trans-fatty acids reported
that 22 out of 29 countries sampled found the intake of total trans-fat is currently below
recommendations of 1% [98].

The ability of colonic bacteria to adapt to a fats-only source of energy for bacterial
growth has been demonstrated in a fats-only medium through genes encoding for enzymes
involved in fat degradation [99]. In the fats-only condition, Alistipes spp., Bilophila spp.,
and total Proteobacteria were favored, while SCFA-producing species, such as Bacteroides,
Clostridium, and Eubacterium spp., declined. Through the use of an in vitro human gut
simulator (HGS) model, the authors also demonstrated that in a fats-only medium fortified
with micronutrients that lack protein or carbohydrate, bacterial communities responded
with a change in community structure [99]. Colonic bacteria adaptation to a fats-only diet
comes at a price to the host through a reduction in the absorption of antioxidants and an
increase in the expression of bacterial virulence factors [100]. In a systematic review of the
MyNewGut project data, researchers found that diets high in saturated fats degreased both
richness and diversity, while those high in monounsaturated fatty acids (MUFA) produced
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a lower total number of bacteria, whereas a diet rich in polyunsaturated fatty acids (PUFA)
resulted in no change [21].

4.1.4. Carbohydrates and Fiber

WPDs are comprised of highly refined sugars, particularly sucrose and fructose. It has
been suggested that one of the causes of obesity may be an adaptation in microbial diversity
due to one or more components in the Western diet [101]. Researchers using a mouse
model reported that a diet high in fructose and/or sucrose, a pellet with 55% fructose-
42% glucose ratio, alters the ratio of Bacteroidetes to Proteobacteria, favoring the profile
associated with metabolic syndrome [102]. Metabolic syndrome increases an individual’s
risk for cardiovascular disease and type 2 diabetes. Lifestyle intervention research using
diet and physical activity approaches has only been partially successful in controlling the
epidemic of obesity.

Diets high in fermentable carbohydrates and fiber alter the nutritional ecology of
bacteria resulting in bacterial diversity, particular species that produce SCFAs such as
butyrate, acetate, and propionate, as well as lactate and gasses (CO2, H2, and CH4) [89]. In
a study of pregnant women, low fiber intake was associated with a gut microbiota profile
favoring the fermentation of lactate and insulin resistance, while a diet rich in fruits and
vegetables promoted bacteria that produce SCFAs through bacterial fermentation of plant
polysaccharides [103]. Incorporating healthier eating behaviors into prenatal counseling
may support a more beneficial gut microbiome.

Naturally sweet foods such as honey have long been known to have both antimicro-
bial and probiotic properties, although it is primarily glucose and fructose [104]. Honey
promotes commensal strains such as Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifi-
dobacterium lactis while limiting the growth and adhesion of pathogenic bacteria in the host.
North American maple syrup is rich in phytochemicals and oligosaccharides, as well as
lignin [105,106]. Maple syrup improved insulin sensitivity and reduced non-alcoholic fatty
liver in a diet-induced obese insulin-resistant rat model [107]. A randomized controlled trial
in humans on the role of maple syrup on gut microbial diversity and metabolic syndrome
in humans is currently underway [108].

Fermented foods are processed using techniques for “controlled microbial growth”
to produce enzymes that alter food characteristics [109]. Food and beverage products
have traditionally been either fermented, aged, or inoculated with bacteria and yeasts to
preserve and enhance their flavor. Studies on the impact of fermented foods on the gut
microbiome suggest they have a positive impact on the gut microbiome, but the quality of
the evidence is unclear [110]. The generalizability of health benefits from fermentation is
limited due to the undefined microbial content of starter cultures and the uniqueness of
each processing plant’s bacteria and fungi communities [111]. The fermentation process
has potential positive impacts, such as the release of bioactive peptides, biogenic amines,
and phenolic compounds with increased antioxidant activity. Bioactive peptides and
polyamines have beneficial effects on cardiovascular, immune and metabolic health, such
as enhanced mineral absorption and reduced oxidative stress [112].

In addition to acting as the food source for intestinal bacteria-resistant starches,
polyphenols and fiber have been shown experimentally to modulate the quantity and
composition of microbiota by inducing prophages, virus-like-particles (VLPs) [113]. These
bacteriophages protect the gut lining from pathogens and insert into the genome of their
host’s chromosomal DNA as prophages. The bactericidal effects of VLPs are triggered by
several common foods and products such as Tabasco sauce, vinegar, Kombucha, cinnamon,
miso, oregano, coffee Arabica, and stevia. Although stevia appears to have positive effects
on gut microbiota, it can induce heritable changes in gene expression in offspring. Experi-
mental evidence of a recent study on the effect of maternal stevia consumption on obese
rats fed a diet high in fat/sugar (HFS) combined with either aspartame or stevia resulted
in second-generational effects of obesity and glucose intolerance in the offspring [114].
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The proposed mechanism for the observed effect was the development of altered gene
expression in the mesolimbic reward pathway associated with feeding behavior.

In the past, the mechanism behind the observed beneficial health effects of cultural
superfoods, such as natto and kimchi, was unknown [115]. In the future, diets may be
personalized to enhance the ecology of the gut microbiome through the targeted use of
these foods.

4.1.5. Diet Supplementation

The quality of the diet shapes the health of the host and gut. For example, vitamin
A deficiency has an effect on microbial community structure and gene expression [116].
The development of the gut microbiome in infancy and childhood is affected by the sup-
ply of micronutrients in the diet [117]. In regard to micronutrient supplementation, a
study of Kenyan infants concluded that iron fortification adversely affects the gut micro-
biome by significantly increasing the population of pathogens, such as Clostridium and
Escherichia/Shigella, with a reduction in beneficial Bifidobacterium which increases inflamma-
tion [118]. The authors of the study concluded that when iron is poorly absorbed by the
small intestine, the resulting iron overload in the colon disrupts the bacterial population.
The effect of iron and zinc fortified foods on gut microbiota was reviewed in one systematic
review, and the authors reported no adverse effects in the five studies retrieved [119].
With the widespread fortification of food products to promote health and prevent nutrient
deficiencies, more research on the effects of biofortification on gut bacterial populations
is needed.

4.1.6. Water

Data from the American Gut project database suggests that drinking water source is
associated with microbiota composition [120]. Fecal samples from individuals who con-
sumed well water had greater β-diversity compared to those who drank bottled, filtered, or
tap water. Dai et al. reported that microbes coming from drinking water supplies that have
been disinfected versus non-disinfected water have a less diverse structure and function,
favoring microbes that utilize fatty acids derived from microbial decomposition [121].

4.1.7. Plant-Based Diets: Vegetarian and Vegan

Vegetarian and vegan diets rich in cereals, nuts, fruit, vegetables, and legumes are
the most studied in regard to gut microbial diversity and health effects. The long-term
dietary pattern an individual chooses to follow will have an effect on the gut microbiota.
Each dietary pattern has a different profile of gut microbiota producing distinct types of
postbiotics, the compounds produced by bacteria residing in the gut that support health.

Consumption of a diet rich in plant-based foods rich in fiber, folate, and carotenoids
improves resistance to inflammation and oxidative stress, promoting healthy cellular
aging [122,123]. Data from the Nurses’ Health Study suggests that a diet rich in dietary fiber
from cereals is positively associated with leukocyte telomere length [124]. The literature
on nut consumption and the microbiome is inconsistent, with one review concluding no
effect on β-diversity and increases in Clostridium, Lachnospira, and Rosburia, producers of
SCFAs [27]. The Firmicutes/Bacteroidetes ratio is lower in vegans compared to omnivores
and differs according to their metabolic profiles [33,125]. Meanwhile, another reviewed
almonds, walnuts, hazelnuts, or pistachios, limiting the included papers to those with
next-generation sequencing technology [29]. Almonds, hazelnuts, and pistachios had a
small impact on microbial diversity, but walnuts were superior in changing both α- and
β-diversity. The pulses are the edible seeds of the legume plant and include beans, lentils,
and peas. A limited number of studies have looked at the effect of pulses on the microbiome,
but those that do exist have found that whole pulses and pulse-derived flour have positive
effects on diversity and richness [28]. Little is known about the components of each type
of pulse and their prebiotics, fructo-oligosaccharides (FOS) and galacto-oligosaccharides
(GOS) [126].
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Adult whole milk consumption has been associated with an increased risk of chronic
disease and reduced telomere length. Using NHANES data, a total of 3072 women and
2762 men were included in an analysis of milk consumption and telomere length [127].
Telomere length did not differ by how frequently men and women drank milk, but adults
who drank full-fat or 2% milk had significantly shorter telomeres than those consuming
nonfat or 1% milk, and that difference was clinically meaningful. This finding is consistent
with the dietary guidelines, which encourage low-fat dairy and discourages the consump-
tion of full-fat milk for adults. The effect of unfermented dairy on gut microbiota was
a reduction in richness and diversity, while yogurt and kefir increased both Lactobacillus
and Bifidobacterium [26]. Habitual vegans and vegetarians, when compared to omnivores,
have a greater abundance of fiber-degrading species and lactic acid bacteria. Yet, when
vegan and vegetarian diets were compared, no consistent difference in microbiota compo-
sition was found [18,32]. Both diets are rich in polyphenols that increase Bifidobacterium
and Lactobacillus.

Diets excluding grains, dairy products, salt, and refined sugar, also known as ketogenic
or modern paleolithic diets, have become popular in the past few years. A study comparing
the gut microbiome profiles of 15 urban-dwelling Italians practicing a paleolithic diet to
populations following a Mediterranean diet and traditional hunter-gatherer groups found
major differences between groups, including a relative abundance of Bacteroides and other
organisms in the paleo diet sample typically associated with high animal protein and
saturated fat diets and an altered bile acid profile associated with inflammatory bowel and
colon cancer [128]. In a review of RCTs, studies using whole-grain versus low-fiber diets
found that fiber increases microbial diversity, abundance, and beneficial metabolites [20,23].
Gluten-free diets in healthy subjects accompanied by a reduction in resistant carbohydrate
intake results in lower levels of Bifidobacterium, B. longum, and Lactobacillus and more
unhealthy species [129,130]. Based on this information, dietary adherence to paleolithic
diets over the long term would not be advised.

4.1.8. Mediterranean

The CARDIVEG (Cardiovascular Prevention with Vegetarian Diet) study, a three-
month crossover design comparing the Mediterranean to a vegetarian diet, found that
there was no statistical difference in microbial diversity and no change in the Firmi-
cutes/Bacteroidetes ratio between the two diets [58]. Short-term dietary changes produced
only small variations in gut microbiota composition. In another study, habitual Mediter-
ranean diet and vegetarian diet consumption were associated with increased levels of
fecal SCFAs, Prevotella and Firmicutes [10]. The effects of the Mediterranean diet on the
gut microbiome, in general, have a positive impact on the Firmicutes/Bacteroides ratio, but
results were not consistent across studies in a recent systematic review of prospective and
cross-sectional studies [37]. The authors suggest that this may be due to differences in diet
adherence between participants. The PREDIMED-Plus study looked at the influence of an
energy-restricted Mediterranean diet along with physical activity on the microbiome of
older adults [131]. Controls were given instruction on the Mediterranean diet with no calo-
rie restrictions or physical activity guidance. First-year results reported that the physically
active and calorie-restricted group had a significant increase in the Bacteriodetes/Firmicutes
ratio and greater weight loss than controls. However, both groups saw a shift to more SCFA-
producing genera, suggesting that the Mediterranean diet selectively enhances specific
anaerobic gut bacteria responsible for the fermentation of complex carbohydrates.

Seafood is an important part of the Mediterranean, contributing to the intake of
omega-3 fatty acids [132] but also influences the microbiome. In a crossover design study
comparing the metabolic markers and fecal bacteria before and after a diet with and without
lean seafood, lean seafood resulted in higher serum TMA and fecal TMA, presumably
due to increased bacterial degradation of TMAO [133,134]. The fecal microbiota analysis
showed an increase in Firmicutes and decreased Bacteroides, as well as higher amounts of
Clostridium Clusters IV, producers of butyrate in the gut. Four weeks after the lean seafood
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intervention, there were significant improvements in cardiovascular risk factors, HDL, and
a decrease in circulating triacylglycerol (TAG).

5. Physical Activity

In general, physical activity both lowers Bacteroidetes and raises Firmicutes. Moderate
physical activity, defined as endurance activity performed 3 days a week for 30 to 60 min
at 60% of heart rate reserve, increases both microbial diversity and richness, but authors
concluded in one systematic review that the overall strength of the evidence is weak due to
poor control over dietary patterns confounding the data interpretation [22]. A review of
observational studies showed that only 5/9 showed that a higher level of physical activity
or cardiovascular fitness was associated with greater α-diversity [24]. The effect of exercise,
in general, produces an increase in Bifidobacterium, Lactobacilli, and Akkermansia [135].
Athletes have higher microbial diversity and produce an abundance of short-chain fatty
acids (SCFA) [22]. Fecal and urine samples from elite cyclists participating in the 2016
Olympics were characterized by different training loads and amounts of time spent in
static and dynamic activities [136]. Diet intake did not vary significantly between sports
classification groups. The analysis demonstrated differences in microbial composition and
SCFA metabolites detected in both feces and urine. A study of recreational and professional
cyclists reported an expected abundance of Bacteroides, Faecalibacterium, and Eubacterium,
along with increased levels of Methanobrevibacter smithii, indicating an upregulation of
energy pathways using methane, a high-energy fuel [137]. This adaptation in athletes is
beneficial because methanogens, such as Methanobrevibacter smithii, must produce methane
to conserve energy for growth rather than produce it as a by-product of metabolism [138].
Mohr and colleagues have published a comprehensive review of the literature on the gut
microbiota of various sports [135].

Estaki et al. examined the fitness levels of young adults as measured by VO2 peak
and fecal microbiota and found that an individual’s fitness category was responsible for
20% of the variation associated with taxonomic richness [139]. The authors examined
diet as a confounding variable and found that only one component was significant for
beta diversity—protein. Protein intake and age accounted for an additional 7.9 and 2.3%,
respectively, of the community beta diversity. A systematic review of 10 studies examining
the influence of physical activity on the human gut microbiota composition concluded that
most studies did not account for the influence of diet, and further studies of dietary protein
levels are indicated to confirm this finding [31]. During periods of intense activity, the
gut wall junctions lose their integrity, permitting materials from the lumen to translocate
into the bloodstream resulting in increased inflammation due to IL-6 production [53].
Overall, the shift in the microbiome varies by the conditioning level of the athlete, with
well-conditioned individuals benefiting from species involved in metabolic pathways
producing amino acids and the metabolism of carbohydrates and fiber [53]. The reciprocal
relationship between diet, activity, and microbial communities, which has been labeled
the “nutrition-microbiota-physical activity triad”, represents a regulatory role for microbial
communities [140].

Moderate to vigorous activity of less than an hour enhances anti-pathogen activity
through the release of NK cells and CD8+ T lymphocytes, which over time improves the
monitoring ability of the immune system to detect pathogens and tumors [141]. When
conditioned athletes were compared to others who met the general recommendations for
exercise, the less conditioned group showed no meaningful change in microbial richness
or diversity [34,36]. A review of both interventional and observational studies found no
consistency between trials for changes in microbial diversity, but there were decreases
in pathogenic species and increases in beneficial taxa [9,35]. These studies support the
conclusion that the benefits of exercise to the microbiome and its influence on host immune
function are on a continuum, but the optimal has yet to be determined [142].
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6. Discussion
6.1. Introduction

The aim of this scoping review was to identify lifestyle factors influencing the gut
microbiome and host health. The microbiome is a dynamic system that affects not only the
host’s internal environment but is also driven by external factors such as the genome and
the health behaviors of the human host [143]. We have argued that resource availability is a
major driver of microbial community composition and sustainability.

However, no one model can capture or predict all of the host–microbiome-lifestyle in-
teractions. Stegan, Bottos, and Jansson have put forth a unified conceptual framework upon
which to study time-dependent interactions, which may lead to manipulating microbes
to support health and human performance [144]. Within this framework, an individual’s
history of diet and physical activity influences the internal dynamics of the community
structure and dynamics. External forces, such as resource availability, impact commu-
nity density, and composition. The use of data-intensive modeling using the triad of
history, external forces, and internal dynamics will expand our understanding of microbial
communities and human health.

6.2. Limitations and Strengths of This Review

The authors were challenged by the pace of change in the emerging fields of micro-
biology within nutrition and exercise science but endeavored to find the highest level of
evidence to begin integrating this knowledge for public health researchers and educators.
The strength of this review is its recency, and its weakness is that the heterogeneity in
the technologies and reported outcomes by the authors make data extraction for a meta-
analysis impossible at this time. The difficulty in making general recommendations is that
it was rare to find a physical activity paper within our search criteria that controlled for
diet [31,131]. Animal studies demonstrate that exercise performance and conditioning that
takes place in long-term interventions have positive effects on both the microbiome and
host metabolism [145]. Transferring this model to human studies will prove challenging
because of the need to maintain a controlled research diet over the length of the study. The
“captive” environment needed to perform research in animals may reduce the diversity of
the microbiome by limiting exposure to other mammals and the environment [146]. Thus,
systematic reviews of studies using natural experimental designs on well-defined human
sub-populations may yield the best available evidence.

7. Conclusions

Promoting a healthy gut microbiome is crucial to protecting and supporting the
health of an individual. Food and activity choices can have a dramatic impact on the
gut microbiome. In turn, lactate acid bacteria may have a positive influence on sports
performance and recovery through the conversion of lactate to propionate. Diets that
are based on the Healthy Eating Index, such as the Mediterranean diet, promote the
development of gut microbial diversity, which provides beneficial postbiotics such as
SCFAs and butyrate. Polyphenols, found in abundance in plant foods, yield microbial
metabolites that reduce inflammation and promote human health. Including prebiotics
and probiotics as a functional food-based approach to manipulating the microbiome may
prevent or reduce the progression of diet-related diseases. When making food choices,
individuals should follow a diet that is rich in fruits, vegetables, whole grains, legumes,
nuts, and seeds and low in processed foods, refined grains, and meats. Future versions
of the Physical Activity and Dietary Guidelines for Americans should also review the
literature on the impact of current recommendations for exercise on the abundance and
diversity of the microbiome [147,148]. Our current state of knowledge on how changes in
the microbiota determine long-term health and the aging process is lacking. Researchers
manipulating the microbiome with a targeted probiotic approach should consider how
microbial dynamics interplay with diet and physical activity in the study design.
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