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Abstract   

This thesis examines the efficacy of alternative modeling techniques to predict stock market 

returns modeled with time-varying coefficients with the goal of developing and implementing a 

trading strategy that yields excess returns. First, we determine the modeling technique with the 

smallest forecast error using historical predictors: the differenced dividend-price ratio, lagged 

S&P 500 returns, and the change in implied volatility. The candidate modeling techniques 

include both constant and recursive ordinary least squares (OLS) regression methods and 

diverges from previous return forecast literature with the comparison of a state-space model 

(SSM) cast as a VAR(1) process to each OLS technique. The state-space model is found to be 

the superior modeling technique with the smallest RMSE 3.76% and greatest out-of-sample 𝑅2 

of 2.62% using delta VIX as the forecasting variable. Second, we demonstrate economic 

significance, using 1) monthly stock return forecasts in a market timing strategy, and 2) daily 

price forecasts in a simulated live pairs trading strategy taking into account implementation 

shortfall. In both trading strategies, the state-space model Kalman filter significantly outperforms 

the alternative OLS modeling techniques with an annualized total return of 21.64% in the market 

timing strategy and an annualized total return of 13.21% unlevered in the pairs trading strategy.  

 

 

JEL: C6  C15  C32  C88  G11  G17  Y40 

Keywords: Forecasting, stock returns, time-varying parameters, expectation-maximization, 

Kalman filter, state-space model, pairs trading, algorithmic trading 
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1. Introduction  

This thesis examines the efficacy of alternative modeling techniques to predict stock 

market returns modeled with time-varying coefficients. We identify the modeling technique that 

best forecasts monthly returns—the model with the smallest forecast error from alternative 

modeling techniques. We aim to answer three empirical questions: 1) are market returns 

forecastable? 2) Can forecasts be improved using a state-space model (SSM) approach instead of 

recursive and constant OLS regression? 3) If so, can that knowledge be exploited to develop 

investment strategies that provide excess returns in a realistic setting? 

The body of literature seeking to forecast stock market returns has remained inconclusive. 

Goyal and Welch (2008) using dividend-price ratio amongst others found poor predictive 

performance in-sample and out-of-sample. Cochrane (2008) similarly finds poor out-of-sample 

𝑅2 and weak return forecasting power using the dividend yield and regression (Pesaran & 

Timmermann, 1995) with no updating. Menzly, Santos, & Veronesi (2004) discuss the instability 

of the dividend yield as a predictor of returns finding a non-linear relationship with market beta 

and price-dividend ratio amongst other market observed variables. The interaction between state 

or unobservable variables that are time-varying are shown to influence return predictability. 

Rapach et al. (2009) found combinations of linear forecasts have greater stock return 

predictability using the constant OLS model. Leitan and Ludvigson (2001) find broad market 

index returns are predictable using the wealth ratio (Kandel & Stambaugh, 1996) and Chiang and 

Hughen (2017) find strong predictive performance between the curvature factor of the oil 

future’s curve and stock market returns.  

Each of the aforementioned authors relied on OLS methods to estimate coefficients, which 

when constant produce the best linear unbiased estimates (BLUE). However, there are reasons to 

believe coefficients may vary with time and that OLS estimates are no longer optimal. For 

example, consider investors’ risk preferences, confidence in future investment stability, or 

expected dividend growth (Menzly et al., 2004). There are also exogenous shocks affecting the 
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parameters of financial time-series, i.e., the COVID-19 pandemic which changed parameter 

values for variables such as economic output, interest rates, and unemployment rates.  

 

Faff et al. (2000) and Mergner & Bulla (2005) compare different time-varying parameter 

(TVP) modeling techniques when estimating time-dependent systematic risk in the 

contemporaneous CAPM (Adrian & Franzoni, 2009) but do not address the problem of 

forecasting returns. The current study expands on this objective by comparing modeling 

techniques to forecast monthly S&P500 returns using three independent variables: change in 

dividend-price ratio (∆D/P), the change in the implied volatility index (∆VIX), and the lagged 

S&P 500 return, each in separate forecasts, not as a multivariate model. This study further 

extends the literature by allowing both coefficients in the forecasting relationship, the intercept, 

and the loading on the independent variable, to vary with time. 

The forecasting relationship explored in the current study between the broad market and an 

independent variable is similar to the well-known single factor capital asset pricing model 

(CAPM) but differs in two important aspects. First, CAPM seeks to explain the relationship 

between the dependent and explanatory variables, whereas the current study attempts to forecast 

the value of the dependent variable. Second, CAPM assumes time-invariant coefficients, whereas 

we model parameters that evolve with time.  

There are several approaches to estimating TVP, however, no research until now has 

compared existing OLS based methods to a state-space model (SSM) to forecast returns on a 

broad market index. This thesis addresses this gap by employing a SSM approach to compare the 

forecast performance to three OLS based methods: constant OLS, expanding window OLS 

(EWOLS), and rolling window OLS (RWOLS). The goal of the comparison is to identify the 

superior method—the technique generating the minimum forecast error.  

The need for empirical identification of optimal TVP forecasting techniques to forecast 

returns on the market, is in part, what this thesis aims to satisfy. In addition, we demonstrate the 
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potential gains in wealth resulting from applying the best technique to 1) a market-timing 

investment strategy and 2) a pairs trading strategy that explicitly accounts for implementation 

shortfall. 

 

This thesis finds in support of stock return predictability, the ΔVIX  and Kaman filter 

specification had the highest out-of-sample 𝑅2 of 2.62%. Lagged S&P returns using EWOLS 

exhibited some explanatory power with the second highest out-of-sample 𝑅2 of  2.35%. 

However, the magnitude of the size effect is insignificant for each variable suggesting a weak 

relationship with returns for all examined predictors. 

We find the Kalman filter using ΔVIX as the forecasting variable outperforms all other 

methods in terms of RMSE, in-sample and out-of-sample 𝑅2 and had the largest annualized total 

return from the market timing strategy of 21.64%. The pairs trading strategy using the Kalman 

filter, produced an annualized total return of 13.21 % unleveraged. The results are scalable and 

the potential for higher returns exists. 

2. Methodology 

The general one-step-ahead linear forecast of 𝑦, using 𝑥 as the forecasting variable can be 

expressed as 

                                             𝑦𝑡+1 = 𝑎 + 𝑏𝑥𝑡 + 휀𝑡+1                                               (1) 

Eq. (1) can be rewritten in matrix notation as 

                                                    𝑦𝑡+1 =   𝑋𝑡β + 휀𝑡+1                                                    (2) 

where                                                              β =[
𝑎
 𝑏 

] is a (2𝑥1) vector 

and  𝑋 𝑡 is a (1𝑥2) vector whose first component is the constant 1, and second component is the 

forecasting variable 𝑥𝑡. 
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The question now is how to choose the best values of 𝑎 and 𝑏, components of the vector β? 

“Best” here means the values of 𝑎 and 𝑏 for which the forecast yields the smallest RMSE among 

all linear forecasts that use 𝑋 𝑡 as the independent variable. The coefficients 𝑎 and 𝑏 are either 

time-invariant or time-variant. If 𝑎 and 𝑏 are time-invariant, they can be best estimated by 

constant OLS. In this case the OLS estimates yield the best linear unbiased estimates (BLUE), 

defined by 

    β𝑂𝐿𝑆 = (𝑋′𝑋) −1𝑋′𝑦             (3) 

where the following model assumptions are satisfied: 

 linear in its parameters 

 expected value of the errors is zero 

 no multicollinearity 

 no serial correlation 

 constant error variance (homoscedasticity) 

 

However, if the coefficients evolve with time, OLS is no longer appropriate. In this case, the 

most commonly used techniques to estimate the elements of βt, that is the intercept 𝑎𝑡 and the 

loading 𝑏𝑡, are RWOLS and EWOLS. These are hybrid OLS approaches that address the time-

varying parameter problem by simulating the changes in βt using a moving/expanding estimation 

window. However, both these models assume that the parameters are constant in each estimation 

window, which is not strictly consistent with the notion that the parameters vary, in our case, 

monthly. 

2.1. Modeling techniques  

 To calculate parameters 𝑎𝑡 and 𝑏𝑡 which are used to calculate next month’s return forecast, 

we examine the following three modeling techniques comparing each to the benchmark constant 

OLS model. 
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 Rolling window ordinary least squares (RWOLS) 

 Expanding window ordinary least squares (EWOLS) 

 Kalman filter (KF) parameterized as a bivariate first-order autoregressive AR(1) process 

 

2.1.1.  Constant OLS 

The constant OLS model can be expressed as 

𝑦𝑡+1 =𝑋 𝑡β + 휀𝑡+1       ~𝑁(0, 𝜎𝜀
2)    (4)  

where 

 scalar 𝑦𝑡 denotes the market return in period t. 

𝑋𝑡 is the (1𝑥2) forecasting variable observed at the beginning of period 𝑡.  

β is the (2𝑥1) vector containing the variables of interest: intercept 𝑎 and weight 𝑏, on 𝑥𝑡 . 

휀𝑡    ~𝑁(0, 𝜎𝜀
2) is Gaussian white noise with a constant variance 𝜎𝜀

2. 

 

This method uses an in-sample period of 106 months of the 421 months in the entire data 

sample because it is a quarter of the dataset. The method then uses those estimates formed in the 

data sample, fixes them, then forecasts one-month ahead for each of the remaining 315 months. 

OLS is the go-to technique for most econometricians wishing to forecast some variable 𝑦. 

However, this technique makes simplifying assumptions which do not capture the dynamic 

nature of stock market conditions. The notion that economic relationships are constant is 

unrealistic—lending to the phrase “past performance is no guarantee of future results”.       

2.1.2. Time-varying OLS methods 

Rolling window OLS (RWOLS) and Expanding window OLS (EWOLS) are defined by 

      𝑦𝑡+1 = 𝑋𝑡βt + 휀𝑡+1       ~𝑁(0, 𝜎𝜀
2)       (5) 

where 
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𝑦𝑡+1 is the return forecast. 

𝑋 𝑡 is a (1𝑥2) row vector of the forecasting variables.  

β𝑡 is a (2𝑥1) vector that contains the variables of interest, the intercept 𝑎𝑡, and weight 𝑏𝑡 on 

the forecasting variable 𝑋 𝑡. 

RWOLS and EWOLS alternative techniques calculate the changing parameters by making 

successive approximations. Both models use an initial window size of 106 months. When the in-

sample estimates are calculated, they are fixed and used to forecast one month forward. The 

window is either rolled forward one month, remaining 106 months long, or it is expanded by one 

month. However, the estimated parameters in RWOLS and EWOLS are fixed, held constant, in 

each window. Although an improvement over constant OLS, the models remain inconsistent. 

2.1.3.  State-space model (SSM) 

Due to the highly dynamic nature of financial time series, there is an ever increasing interest 

in the use of the SSM Kalman filter in econometrics. The KF is a Markov process meaning its 

next state, one time-step ahead, depends only on its current state. In probability theory, Markov 

chains model stochastic systems (Zhang, 2004) where the state at time 𝑡 + 1 is determined by its 

parameters, or state, at time 𝑡. Hidden Markov models (HMM) are simply Markov chains 

observed in noise (Lauri, 2014). HMMs describe those stochastic processes that have 

unobservable states, for example, the vector βt, our latent-state variable. The realizations of 𝑦𝑡 

are observable, but the latent-state variable βt, which drives the change in 𝑦𝑡, is ‘hidden’ because 

of the introduction of noise. The KF relates these two quantities through a system of linear 

equations. With each prediction, update, measurement, and correction the estimates improve, 

converging to the correct value. This reduces the variance of the new estimate with each pass by 

placing greater weight on the value with the least variance going into to the updated estimate. 

The general model, following Kim (2018), can be expressed as      

     𝑧𝑘 = 𝐻𝑥𝑘 +  𝑣𝑘                          ~ 𝑁(𝜇, 𝑅)          (6)  



 
 
 
 
 
 

 
 

15 

 

       𝑥𝑘+1 = 𝐴𝑥𝑘 +  𝑤𝑘                      ~ 𝑁(𝜇, 𝑄)                                  (7) 

    

where 

𝑥𝑘 is the latent-state variable, an (𝑛𝑥1) column vector; 𝑧𝑘  is the measurement or 

observation vector, an (𝑚𝑥1) column vector; 𝐴 is the state-transition matrix, an (𝑛𝑥𝑛) matrix; 𝐻 

is the state-to-measurement mapping matrix, an (𝑚𝑥𝑛) matrix; 𝑤𝑘 is the state transition or 

process noise, an (𝑛𝑥1) column vector; and 𝑣𝑘 is the measurement noise, an (𝑚𝑥1) vector. 

Appendix A presents a mapping of the general notation to the KF specifications, and Appendix B 

presents an in-depth discussion of the KF algorithm. 

2.1.4.   Bivariate AR (1) Kalman filter 

To address the issue of modeling time-varying parameters I propose the following 

method, the SSM KF parameterized as a bivariate AR(1) process. We chose this specification to 

reduce the possibility of overfitting by restricting the loading on the latent state variable Eq. (8) 

to a diagonal matrix we reduce the number of free parameters (Watson, 1983). Additionally, we 

want to allow for both coefficients to vary with time but not influence the other. We made the 

simplifying assumption that coefficients are stationary and will mean revert in the long run. This 

made sense with the lengthier forecast using monthly data rather than the daily data used in a 

later application where we specify a Random Walk. We tried the Random Walk with the model 

performance and market timing strategy but the results were not as good as the bivariate AR(1) 

specification in general. This points to coefficients following a mean-reverting process. In 

practice it may not always be feasible to have a large data set to train the model and that is the 

benefit to using the Random Walk in a simulated live environment. The KF is designed to update 

using only the previous estimate and is computationally light making it easier to implement with 

no free parameters to calibrate. However, the bivariate AR(1) performed better when we had a 

quarter of the data set to train. In this approach the EM algorithm is used to calibrate the 

parameters and estimate the state variables of β𝑡 that provide the best fit for each predictor.  
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Let βt denote the 2-vector whose first component is 𝑎𝑡 and whose second component is 

𝑏𝑡. In this scenario, βt is an unobserved (2𝑥1) state vector specified as a bivariate AR(1). There 

are eight free parameters in the bivariate AR(1) approach: two in the constant vector 𝐴 a (2𝑥1), 

two in the diagonal constant matrix 𝐵, (2𝑥2), three free parameters in the symmetric 

variance/covariance matrix, Ω, including rho, 𝜌, and finally, the last free parameter is 𝑅, the 

variance in the observations, Eq. (9). The next state of βt is estimated by the state-transition 

equation, Eq. (8): 

      βt+1 = 𝐴 + 𝐵βt + 𝜖𝑡+1                    ~𝑖𝑖𝑑(0, Ω)            (8) 

The second equation is the observation equation, Eq. (9), which forecasts scalar 𝑦 (1𝑥1), the 

monthly return on the S&P 500, given 𝑥 at time 𝑡:  

                                         𝑦𝑡+1 = 𝑋 𝑡βt + 휀𝑡+1           ~𝑖𝑖𝑑(0, 𝑅)                   (9) 

where 𝑋 𝑡 is a row vector (1, 𝑥 𝑡) and the scalar variable 𝑥𝑡 is one of three independent 

variables: ΔD/P, ΔVIX, or lagged return. Each independent variable is used to generate a separate 

forecast for each modeling technique; not as a multivariate model. 

2.1.5. Expectation-maximization (EM) 

The advantage of the bivariate AR(1) approach is that the expectation-maximization (EM) 

algorithm can be used to find the maximum log-likelihood (LL) estimates of the hyperparameters 

and latent-state vector β𝑡. Given an initial guess for the parameters, which in a SSM can be 

almost arbitrary (Moon, 1996), the EM involves two steps: 1) the expectation (E-step), where the 

KF forms estimates of the latent-state variables given the initial values of the model parameters. 

Once the latent-state estimates are calculated, they are then passed to the maximum-log-

likelihood estimator (MLE) as complete data. And 2) the maximization (M-step) where the LL 

that the estimated parameters are the true population parameters is maximized. These steps are 

repeated until the estimates converge. The LL function for the model can be expressed as 

ln 𝐋 (β𝑡|𝑦, 𝑥) = −
𝑛

2
ln2𝜋𝜎2 −  

1

2𝜎2
∑ (𝑦𝑡 − (𝑋𝑡β𝑡))2𝑛

𝑡=1                (10) 
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2.2. Out-of-sample procedure 

The constant OLS uses the first 106 months—March 31st, 1986, to December 31st, 1994—as 

the in-sample period. Once the in-sample estimates are formed, they are fixed and used to 

estimate each out-of-sample forecast one-month ahead. The remaining 315 months are used to 

form one-step ahead out-of-sample forecasts for period—January 31st, 1995, to March 31st, 2021. 

The advantage to using OLS is that the estimators are the best linear unbiased estimators when 

certain assumptions hold such as: 

1) Linear in parameters 

2) Expected error term zero 

3) Constant parameters 

4) Normally distributed 

5) Homoscedastic errors 

6) Spherical disturbances 

However, in the current study we assume coefficients are time-variant rendering OLS 

inappropriate. Another drawback to OLS is there is only one period the parameters are estimated 

on and this may not give an accurate representation if coefficients change. 

Rolling Window OLS has the benefit of estimating parameters over a sliding window so that 

we now have a series of betas rather than a single forecast however, the structure of the data may 

not be captured because the lookback period remains fixed. RWOLS similar to OLS begins with 

an initial window size of 106 months, a quarter of the data set, to estimate the in-sample 

parameters. We chose a small window in order to have more forecasts and updating. The 

window is then rolled forward by one month while dropping the last month to maintain a fixed 

window size and are re-estimated. This method produces a time-series for both 𝑎𝑡 and 𝑏𝑡, the 

two elements of beta vector βt. However, the coefficients are held constant in each window, 

which is not truly consistent with TVP. 
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Expanding Window OLS EWOLS is also trained on the initial 106 months. The benefit to 

this method is also having a series of beta estimates by allowing the in-sample to expand to 

include new observations. However, this method does not drop the last observation and may 

have events in the distant past dampening the estimates that should represent the fluctuation in 

betas. In general, OLS methods are computationally expensive requiring memory of the in-

sample period to forecast the next month-ahead. Once the initial forecast parameters are fixed 

and the one-month-ahead forecast is calculated, the window “expands” by one month. The same 

issue persists with this approach, that the estimated parameters are held constant in each window.  

The KF AR(1) parameterization, Eq. (8) uses the first quarter of the sample— March 31st, 

1986, to December 31st, 1994—to form the initial estimates using the EM, and then the 

remaining three-quarters—January 31st, 1995, to March 31st, 2021—to evaluate the model.  

In the Kalman filtering procedure, the latent state variable is re-estimated each month and a 

new forecast is formed one-month-ahead Eq. (9). This means that at each time 𝑡, the KF 

algorithm is run to obtain forecasts using only the information available at time 𝑡. This yields the 

forecast of 𝑦𝑡+1. Then, at time 𝑡 + 1, the KF algorithm is re-run to obtain the forecast using only 

the information available at time 𝑡 + 1, which then yields the forecast of 𝑦𝑡+2; this procedure is 

continued until reaching the end of the sample (March 31st, 2021). The KF has the added benefit 

of a computationally light footprint. In the bivariate AR(1) specification the KF updates it’s beta 

estimates with each iteration allowing for the capture of variation in the estimates especially if 

there is a sudden shift in parameters. 

2.3. Measuring predictive performance 

The following goodness-of-fit measures are evaluated for each modeling technique and 

specification. 

2.3.1. Root mean square error  

The root mean square error (RMSE) is the standard deviation of the squared residuals, 

which measure how far the estimate is from the observation. The RMSE is one of the best 
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indicators for measuring the how well the model predicts returns. A well-fit model will have 

small errors, indicating that the observed values are very close to the estimates. The RMSE will 

then also be small. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑡 − 𝑦�̂�)2 

𝑛

𝑛

𝑖=1

 

2.3.2.  Coefficient of determination 

 𝑅2 is a measure of predictive accuracy. It reflects how much of the variation in the 

response variable is explained by the forecasting variable; it is calculated as the sum of squared 

residuals divided by the total sum of squares.  

𝑅2 =  1 −
∑ (𝑦𝑡 − 𝑦�̂�)2𝑛

𝑖=1

∑ (𝑦𝑡 − 𝑦�̅�)2𝑛
𝑖=1

 

2.3.3.  Historical forecast average 

�̅�𝑡+1 =
1

𝑡
∑ 𝑦𝑖

𝑡

𝑖=1

 

2.3.4.  Out-of-sample 𝑅2 

𝑅𝑂𝑆
2  tests the null hypothesis that the forecasting variable has no predictive power. Where 

the historical average is �̅�𝑡, a positive value of 𝑅𝑂𝑆
2  indicates that the forecast outperforms the 

historical average. 

𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡 − 𝑦�̂�)2𝑇
𝑡=𝑇1+1

∑ (𝑦𝑡 − 𝑦�̅�)2𝑇
𝑡=𝑇1+1

 

where 𝑇1 = initial window size.  

2.3.5.  Mean absolute error 
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The mean absolute error (MAE) is a common measure of forecast error in the time-series 

analysis. It represents the absolute value of the difference between the predicted and observed 

values. 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − 𝑦�̂�|𝑛

𝑖=1

𝑛
=

∑ |𝑒𝑡|𝑛
𝑖=1

𝑛
 

2.3.6. Diebold–Mariano test statistic 

 

The Diebold-Mariano (𝑑𝑚) tests against the null hypothesis of equal predictive 

accuracy between models (Diebold & Mariano, 1995). and is the ratio of the sample 

mean to the standard error of the loss differential—the difference between the squared 

forecast errors generated by one model and the squared forecast errors generated by an 

alternative model. 

Loss differential 

𝑑𝑡 = 𝐿(𝑒𝑡+ℎ|𝑡
1 ) −  𝐿(𝑒𝑡+ℎ|𝑡

2 ) 

 

Diebold-Mariano test statistic is 

𝑑𝑚 =
�̅�

√𝜎�̅�
2/𝑛

 

 

3. Data  

I obtain the monthly S&P 500 prices for the period, as reported on Yahoo Finance, March 

31st, 1986, to March 31st, 2021, and use the adjusted closing prices which are already adjusted for 

dividends and splits, on the last business day of each month to calculate the return. A separate 

return time series is generated using one month-lagged S&P 500 returns as an independent 

variable. The first-differenced implied volatility index (ΔVIX) is calculated using end-of-month 

values as reported on the Chicago Board Options Exchange. We take the dividend-price ratio 

sourced from the Quandl database and difference the series once to correct for the 
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autocorrelation. The 3-month Treasury bill (^IRX) is the risk-free rate obtained as reported on 

Yahoo Finance, using the closing prices on the last business day of the month. The series is 

differenced for autocorrelation. Table 1 (Appendix A) provides a description of the variables and 

Table 2 describes the summary statistics of each independent and response variable. 

4. Results 

Table 3 summarizes regression results. The modeling techniques’ performance and 

statistics are partitioned into 3 sections, one for each independent variable. Similar to Mergner & 

Bulla (2005) & Faff, Hillier & Hillier (2000) the Kalman filter outperforms, on average, the 

alternative TVP modeling techniques in terms of RMSE, MAE and both the in-sample and out-

of-sample 𝑅2. 

The top four performing specifications listed in order of rank are 1) KF bivariate AR(1) using 

∆VIX, 2) OLS using lagged S&P returns, 3) EWOLS using lagged S&P returns, and 4) KF 

bivariate AR(1) using lagged S&P returns. Lagged S&P returns was the best predictor in terms 

of  the in-sample and out-of-sample 𝑅2. Surprisingly, OLS using lagged returns as the 

forecasting variable outperformed the KF when also specified using lagged returns. This 

suggests the KF is not always the best model. The outperformance of OLS to ROLS and 

EWOLS points to beta being close to stationary where OLS estimates are BLUE. 

 The point estimate of each technique’s slope coefficient was calculated by taking the 

arithmetic average of each beta series. The first five figures in each panel reports out-of-sample 

goodness-of-fit measures. The RMSE is the decision criterion which determines the model that 

best fit the data. The following rows of statistics measure significance and test the null 

hypothesis that beta is not significantly different from zero and the results are not replicable. 

The modeling technique with the smallest RMSE and superior performance measures is the 

KF bivariate AR(1) at 3.76% using the ∆VIX as the forecasting variable. The worst performing 

technique using the same predictor was ROLS, with a high 3.88%. 
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The KF technique boasts the highest 𝑅2 for all three independent variables. The highest 

𝑂𝑆𝑅2 2.62% the KF ∆VIX, OLS using lagged S&P 500 returns was second.  

The lagged S&P 500 return exhibited greater explanatory power than using the ∆VIX or D/P. 

All betas were significant at the 1% level for lagged S&P. The KF estimates using each 

independent variable were significant at the 1% level in support of the decision to reject the null 

hypotheses.  

We use the Diebold-Mariano (1995) (𝑑𝑚) test statistic to reject the null hypothesis of equal 

predictive accuracy. 𝑑𝑚 for OLS LagSP and KF AR(1) ∆VIX 𝑑𝑚 = -2.7033. EWOLS using 

lagged S&P and KF AR(1) lagged S&P 𝑑𝑚 = -0.1897 p-Value= 0.424. 

5. Market timing strategy 

A market timing strategy is governed by the ability to forecast returns with some degree 

of certainty. The benchmark strategy Buy and Hold holds only the market portfolio for the 

duration of the period January 31rst, 1995, to March 31rst, 2021 using monthly returns to 

forecast one-month ahead. The reason we use monthly data is to capture complete market cycles 

for the 35-year period and determine the best model. Later, in a pairs trading strategy we move to 

daily data to investigate the superior model in a different problem domain where we can have 

more trades than once a month and because the strategy relies on cointegrating relationships 

which may change, and we wanted to capitalize on as many trades as possible while the 

statistical properties held. We define the market portfolio as the S&P 500 index. The trading 

rules for the market timing strategy are straightforward following Campbell and Thompson 

(2008) and Rapach, et al.(2016). We consider a mean-variance investor who invests fully in the 

market portfolio if the forecasted return is larger than the 13-week Treasury bill (^IRX) and will 

invest fully in the risk-free rate when the forecasted return is less than the risk-free rate. Table 4 

reports the market timing strategy results for each modeling technique using the Buy and Hold 

strategy as the benchmark. The KF dominated again outperforming each alternative technique 

using ΔVIX as the forecasting variable. The annualized time-weighted return is calculated as the 
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cumulative product of (1 +  𝑟𝑖) 
12

𝑛  where 𝑟𝑖 is the monthly return for each of the 315 months out-

of-sample. The KF has a steep annualized time-weighted return of 21.64%, nearly twice as large 

as the alternative techniques.  

The volatility was the lowest 2.47% using the KF and ΔVIX set up and the second lowest 

was OLS using lagged S&P. The annualized Sharpe ratio (SR) for KF was exceptionally high at 

2.08 with the second-best annualized SR only 0.90. Maximum drawdown (MDD) measures the 

size of the largest loss the portfolio experienced in the entire 26 years and 3 months period. The 

KF bivariate AR(1) performed best with the lowest maximum drawdown (MDD) of 15.80%. 

MDD months (MDDM) describes how long the portfolio was in decline from peak to trough. 

The KF using lagged S&P had the fastest recovery time of 34 months. The longest drawdown 

was 257 months for both ROLS specifications ∆VIX and D/P. The lowest dip occurred in month 

165, observed September 31rst, 2009, the Great Recession. February March 2020, the beginning 

of the pandemic is also captured by a steep decline in each portfolio. It is interesting the Great 

Recession (see Figures 14 and 15) had a larger impact on market returns than the pandemic 

recession. This may be an area of interest for future research. 

 

6. Pairs trading strategy 

Pairs trading is a form of statistical arbitrage that is a dollar neutral, where the value of 

each position equals one another, allowing traders to profit in more than one type of market due 

to a low positive correlation with the market (Nobrega & Oliveira, 2014). Pairs trading takes 

advantage of the mean-reverting relationship that exists between cointegrated securities. 

Exceptions to the usual relationship of a finite spread between the pair present arbitrage 

opportunities during the periods in which the series sufficiently depart from equilibrium. When 

the prices of the pair deviate sufficiently, the prices tend to revert to the historically observed 

mean price. By monitoring the standardized forecast errors an actionable trade signal is 

generated when the series deviates more than ± .5 sd. from the mean. The signal triggers an 
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IBALGO set to urgency, in which opposing dollar neutral positions are taken, i.e., go short the 

overperforming security and long the underperforming security. Financial instruments in pairs 

trading can include broad market indices, individual securities and/or baskets of securities1. 

The strategy is developed using historical daily closing prices courtesy of ActiveTick and 

implemented using the simulated live trading environment provided by Interactive Brokers 

Traders Workstation (IB/TWS). This approach allows us to simulate the impacts of liquidity, 

order types, margin requirements, transaction costs, regulatory constraints, (NBBO, REG SHO, 

Uptick Rule), slippage, SEC fees—collectively known as implementation shortfall. 

A total of 676 securities yielding 228,150 distinct pairs of securities from ActiveTick, 

LLC trading on the New York Stock Exchange (NYSE) meeting the following trading criteria 

are evaluated using the daily OHLC bars. 

• trading since 2018-01-01 

• minimum tick size of .01 cents  

• minimum close > $5.00 

• average 20-day volume >= 1,500,000 shares per day. 

 

Once the universe of potential instruments is identified the process of choosing which 

pair of securities to use involves five basic steps described below. 

Step 1 - Engle-Granger test (EGT) 

It is generally accepted that most economic time series variables are non-stationary, i.e. 

integrated to the order of one, I(1). That is to say that such series’ properties tend change over 

time and trend away from any mean in the long term. However, there exists linear combinations 

of integrated series when differenced yield stationary I(0) series. The financial instrument pair 

                                                           
1 Baskets of securities use the Johansen method as opposed to the Engle Granger method to find cointegrating relationships, I use 

the Engle-Granger method for a pair of individual securities. 
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we choose, series 𝑦1,𝑡 and 𝑦2,𝑡 when differenced should yield Δ𝑧𝑡 (notation following 

MATLAB): 

𝑦1,𝑡 = 𝑋1,𝑡β2,t + 𝜉 𝑡 is I(1) 

𝑦2,𝑡 = 𝑋2,𝑡β2,t + 𝜈𝑡 is I(1) 

Δ𝑧𝑡 = 𝑦1,𝑡 − 𝑦2,𝑡 is I(0) 

Because the results can vary based on which series is chosen to be the dependent series, the EGT 

is run twice alternating each series as the dependent series. The series configuration with the 

most significant Augmented Dickey-Fuller statistic is chosen. 

Step 2 - Augmented Dicky-Fuller (ADF) 

We reject the null hypothesis 𝜑 = 1 of the existence of a unit root in favor of the alternative 

hypothesis 𝜑 < 1 the series is covariance stationary.  

Δ𝑧𝑡 = α + 𝜑 Δ𝑧𝑡−1 + 𝜇 𝑡 

 

Step 3 – Hurst exponent2 

The Hurst Exponent (H) reveals the extent to which a time series mean reverts (or not). 

When  

H  > 0.5   the series is trending 

H = 0.5  the series is white noise 

H < 0.5  the series is mean reverting 

 

                                                           
2 Tomaso Aste (2021). Generalized Hurst 

exponent (https://www.mathworks.com/matlabcentral/fileexchange/30076-generalized-hurst-exponent), MATLAB 

Central File Exchange. Retrieved September 12, 2021.  
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Step 4 – Residual analysis 

A well-behaved residual series has these three characteristics: 

1) Distributed normally 

2) No serial-correlation 

3) Homoscedastic 

We use the Kolmogorov-Smirnov test for normality; the Ljung-Box Q-test for residual 

autocorrelation; and the Engle’s ARCH test for residual heteroscedasticity. Table 5 describes the 

test results. 

Step 5 – Sector/Industry 

Although two financial instruments can pass the above four steps it is often reassuring when the 

pair are related. When the pair are in the same sector or industry external market forces are more 

likely to affect each the similarly. 

After evaluation of the results of the above five steps candidate pairs can be selected for further 

evaluation. 

Using daily closing prices in the pairs trading application in order to have more trades 

than monthly data would allow. Fidelity National Information Service, Inc. (NYSE:FIS), a 

finance and technology (fintech) company and Visa (NYSE:V), a financial services company, 

both listed on the New York Stock Exchange, are chosen for further analysis.  

Since pair trading involves two financial instruments and positions in the pair involve 

both a long position in one instrument and a short position in the other3; we will refer to one 

instrument as the base instrument and the other as the hedge instrument. The position of the pair 

is based on the position of the base instrument. The base security is defined to be Visa and the 

hedge security is Fidelity National Information Service, Inc. based on the results of the ADF.  

                                                           
3 Unless it is an inverse Exchange Traded Fund (ETF)  for example. 
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We use a KF random walk (RW) parameterization described by Commandeur and 

Koopman (2007), Durbin and Koopman (2012) and initialize the system model hyperparameters 

following Kinlay (2020) we initialize matrix 𝑄 to 0.0001 and set 𝑅 to 1.  to develop a pairs 

trading strategy.  

     𝑦𝑡 = 𝑋𝑡−1βt−1 +  𝜖𝑡          ~𝑖. 𝑖. 𝑑. (0, 𝑅)                      Measurement equation (12) 

     βt = βt−1 +  𝜔𝑡                ~𝑖. 𝑖. 𝑑. (0, 𝑄)              State-transition equation (13) 

 

where the observed (1 𝑥 1) scalar 𝑦𝑡 represents the price of security VISA (V) at time t and the 

𝑋𝑡 (1 𝑥 2) row vector represents the constant 1 and the price level for Fidelity National 

Information Services, Inc. (FIS) at time t.  βt is the (2 𝑥 1) stochastic latent-state vector whose 

elements are the intercept, 𝑎𝑡 and slope, 𝑏t (hedge ratio) at time 𝑡. The hedge ratio represents the 

number of shares of the hedge security to trade for each share of the base security.  

The pairs trading model was developed and tested on 515 days of daily data for the period 

January 2nd, 2020, to May 31rst, 2021. The trading rules are: 

 

If Z(t) >= δ;   Close any open positions; Short base security; Buy hedge security 

If Z(t) <= -δ;   Close any open positions; Buy base security; Short hedge security 

If Z(t) > -δ and Z < δ;  Maintain current positions – no trades 

where: 

δ= .5 standard deviations 

Z = standardized residual from KF. 

Although short positions involve borrowing shares we do not have, we must still have 

enough equity in the account to cover the shares. We needed a margin account in order to short 

sell but never borrowed on credit, that is to say we put up a dollar of equity per dollar of share 
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borrowed. This was so that the reader could easily translate their results based on their leverage 

needs. For example, Reg T requires the trader to put up a 150% for short sales whereas we 

maintained 200% of the value of shares that were short sold. That is to say we have unleveraged 

returns. We ran one pair only to keep the strategy simple and the small sample period of 82 days 

is due to the strategy being set up to communicate with traders workstation late beginning June 

17th and each observation was taken one-day at a time whereas in the development of the 

strategy we were able to run a large sample of historical data in one day using simulated trades. 

The results are promising with an annualized unleveraged absolute return of 30.72% and an 

impressive Sharpe Ratio of 2.5. The percentage wining trades for the full period was 57%. 

Maximum drawdown was 4.97% for the period and the decline lasted 63 days. 

One of the objectives of this thesis is to demonstrate using a state-space model to 

implement a trading strategy, that meaningful excess returns are achievable when accounting for 

trading inefficiencies. To run the strategy using Interactive Brokers (IB), the MATLAB code is 

converted to a Windows™ dynamic link library (dll). That strategy dll is hosted in a .Net c# 

console application which subscribes to real-time price updates from Active Tick™ and 

communicates with the Traders Workstation API to send orders, receive executions, maintain 

positions, and track profit and losses. The account configuration consists of 

o Initial account equity4 - $49,425.32 

o Reg T Margin 

o TWS API enabled 

o Order Type – Urgent IBALGO  

       The model was implemented for 107 trading days (excluding weekends and holidays) 

during the period of June 17th, 2021, to November 16th, 2021. Table 6 describes the total profit 

                                                           
4Account minimum of $25,000 is required to avoid restrictions of a FINRA Pattern Day Trader (PDT) designation 

which restricts the number of day trades that can be made within five business days using the same account. 
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and loss for trades executed for entire 107-day period. Shown are the last two executed trades for 

the period. Table 7 Mark-to-market performance summary reports the profit and loss using the 

current market value of the asset. Table 8 reports the realized and unrealized performance of both 

opened and closed positions. Table 9 Net asset value  (NAV) lists both asset classes; stocks and 

cash. The first total column is the beginning value of $49,425.32 and the long and short columns 

describe the total NAV of each position at the close of the previous business day for the period 

reported. The last total column is the portfolio’s ending NAV of $53,933.60 for a realized profit 

of $4,508.28. 

 

7. Conclusion 

In this thesis I compared the ability of alternative modeling techniques to forecast stock 

returns. I find the results are sensitive to the choice in modeling technique when using the same 

predictors. The Kalman filter estimate gives the smallest RMSE indicating that it is the superior 

technique compared with the least squares approaches in forecasting returns (Table 4). The 

independent variables, ∆VIX, lagged S&P 500 returns and D/P were not significant predictors of 

returns.  

The Kalman filter’s performance translated to real economic gains when applied to a 

pairs trading application in a robust simulated trading environment. The pairs trading strategy 

using the Kalman filter resulted in an annualized total return of 20.55% unleveraged. These 

results are scalable and explicitly account for implementation shortfall. 

The KF is also better suited for real-time high frequency intraday trading than OLS 

methods because the KF has a very light computational footprint when compared to OLS.  

Whereas I used daily time bars, future research may explore L�́�pez de Prado’s suggestion 

of using alternative data with the Kalman Filter to use information from tick, volume, or dollar 

bars.  
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The take-away is the Kalman Filter does improve forecasting ability and significant 

economic gains can be achieved as a result. 
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Table 2 

Descriptive Statistics. 
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Table 10  

General State-Space Model Notation. 
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Appendix B 

Kalman Filter Algorithm 

The KF was designed by Rudolf Kalman (1960s) to track a moving target. Since its 

introduction, the KF has found widespread applicability to other domains as well, such as 

econometrics. It is well equipped to handle multiple dimensions in both the state and observation 

matrices and is computationally efficient because of its predictor-corrector nature (recursive 

calculation) scheme and its light computational footprint. The KF uses a set of equations to 

iteratively measure successive observations with increasing accuracy by using only the previous 

and current estimates of the latent-state variable(s) and variances. One of the benefits of its 

calculations being recursive is the requirement of lesser memory and fewer floating-point 

operations, which ultimately increases the speed, which is crucial for today’s high-frequency 

trading environment. The KF quickly “filters out the noise” (Martinelli & Rhoads, 2010) and 

converges to the better value under investigation by reducing the errors in the estimate and those 

in the measurement and then uses KG to weight the errors based on their marginal contribution 

to the estimated error (Van Biezen, 2015). Generally, the application of OLS linear regression to 

such a problem requires a larger dataset in combination with a moving window. Thus, the KF is 

ideal for high-frequency applications.  

Algorithm 

With the KF’s first data input (measurement) introduced into the system, the following three 

steps are performed iteratively as each new observation arrives following Van Biezen (2015).  

Step 1.                        𝐾𝐺 =  
𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 

Calculate the KG. The KG places more or less certainty on both the measurement and the 

previously calculated estimate (in the first iteration, this is the original estimate value) by acting 

as a weight. As the scaling factor, KG is a number ranging between 0 and 1 and decides how 

much of each value to take into the next estimation. Both the error in the estimate (original for 

the first iteration) and that in the measurement are used for computing the KG. The KG is the 
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weight that determines which value, either the current measurement or previous estimate, has 

greater weight when calculating the next step. 

Step 2.                                       𝐸𝑆𝑇𝑡 = 𝐸𝑆𝑇𝑡−1 + 𝐾𝐺[𝑀𝐸𝐴 − 𝐸𝑆𝑇𝑡−1] 

The main step, updating the current estimate, takes the previous estimate (in the first 

iteration, this is the original estimated value) and summing adds  with the weighted difference 

between new measurement and the previous estimate. It is in this step that the KG plays a 

leading role. According to step one’s calculation, if the errors in the estimates are large, this 

means that there is considerable uncertainty in the previous estimate and the KG will be large. 

Ideally, the value containing the larger error has a smaller impact moving to the fresh estimate. 

In this scenario, more weight is placed on the observation as its errors are relatively small. The 

KG when multiplied by the difference between the measurement and previous estimate retains a 

larger portion of the measured value when feeding into the current estimate’s calculation 

(Commandeur & Koopman, 2007). 

Step 3.                                                𝐸𝐸𝑆𝑇𝑡
 =

(𝐸𝑀𝐸𝐴)∙(𝐸𝑀𝐸𝐴𝑡−1)

(𝐸𝑀𝐸𝐴)+(𝐸𝑀𝐸𝐴𝑡−1)
 

𝐸𝑒𝑠𝑡𝑡
= [1 − 𝐾𝐺](𝐸𝑒𝑠𝑡𝑡−1

) 

Calculate the new error in the estimate. The error in the estimate is updated by multiplying the 

previous error in the estimate with the difference between one and the KG. This means that if the 

previous error in the estimate exceeds that in the data, the KG will be large. Subtracting from one 

will yield a small value. Multiplication by the previous error in the estimate quickly reduces the 

error in the estimate for the next iteration. If the KG is small, this indicates that the measurement 

errors are large. In this case, we do not want the new estimates to be heavily influenced by the 

incoming observations. Therefore, the error in the estimate decreases at a slower rate. 
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Appendix C  

Figures    

  

 

Figure 1 

Rolling Window OLS Delta VIX Estimates and Residuals 
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Figure 2  

Rolling Window OLS D/P Estimates and Residuals 

Figure 3  

Rolling Window OLS Lagged S&P Returns Estimates and Residuals 
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Figure 4  

Expanding Window OLS Delta VIX Estimates and Residuals 

Figure 5 

Expanding Window OLS D/P Estimates and Residuals 
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Figure 6 

EWOLS using Lagged S&P 

 

Figure 7 

Cumulative returns for market timing strategy; each technique using Delta VIX 
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Figure 8 

Cumulative returns for market timing strategy; each technique using D/P 
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Figure 9 

KF forecasted returns series plotted against actual S&P 500 returns. 

Figure 10 

EWOLS and ROLS forecasted return series plotted against actual market returns. 
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