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Abstract 

Several studies related to emotion recognition based on Electroencephalogram signals have been 
carried out in feature extraction, feature representation, and classification. However, emotion 

recognition is strongly influenced by the distribution or balance of Electroencephalogram data. On 

the other hand, the limited data obtained significantly affects the imbalance condition of the resulting 
Electroencephalogram signal data. It has an impact on the low accuracy of emotion recognition. 

Therefore, based on these problems, the contribution of this research is to propose the Radius 

SMOTE method to overcome the imbalance of the DEAP dataset in the emotion recognition process. 
In addition to the EEG data oversampling process, there are several vital processes in emotion 

recognition based on EEG signals, including the feature extraction process and the emotion 

classification process. This study uses the Differential Entropy (DE) method in the EEG feature 
extraction process. The classification process in this study compares two classification methods, 

namely the Decision Tree method and the Convolutional Neural Network method. Based on the 

classification process using the Decision Tree method, the application of oversampling with the 
Radius SMOTE method resulted in the accuracy of recognizing arousal and valence emotions of 

78.78% and 75.14%, respectively. Meanwhile, the Convolutional Neural Network method can 

accurately identify the arousal and valence emotions of 82.10% and 78.99%, respectively. 
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1- Introduction 

Emotions are a conscious or unconscious human perception of an object capable of triggering psychological processes 

such as mood, anger, personality, self-efficacy, and motivation [1–3]. Several studies have examined the recognition of 

human emotions both internally and externally. For instance, studies by [4–12] stated that external human emotions can 

be recognized through text, facial expressions, body movements, and speeches. However, the external emotional 

expression is usually deliberately hidden in the social environment, which makes the recognition not optimal [13–15]. 

On the other hand, the recognition process can be conducted using Autonomous Neural Systems (ANS), such as Galvanic 

Skin Responses (GSR), Respiration (RSP), and Electrocardiogram (ECG) [16–20]. Meanwhile, the recognition through 

ANS is very sensitive to several disorders, such as skin diseases and physical activity. Various human activities also 

produce signals similar to emotional states, which tend to affect emotion recognition accuracy. Therefore, the use of 
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physiological signals from the Central Nervous System (CNS) via Electroencephalogram (EEG) can solve this problem 

due to its ability to easily represent emotional reactions [21]. EEG signals have spatial, temporal, and spectral information 

related to human affective experience. Subsequently, it is easy to install and use to record emotions [21–23]. 

Several studies have analyzed human emotion recognition, based on EEG signals, in data acquisition, feature 

extraction, and emotion classification [14, 23–27]. However, emotion recognition is strongly influenced by the 

distribution or balance of Electroencephalogram data [28]. Conversely, the limited data obtained significantly affects the 

imbalance condition of the resulting Electroencephalogram signal data. It impacts the low accuracy of emotion 

recognition [29]. Although some emotion data, such as the DEAP dataset, are publicly available, this data set has an 

uneven distribution, causing imbalance problems in the high and low classes [20, 30]. Similarly, the imbalanced dataset 

can influence accuracy performance on emotion recognition.  

There are several advantages of the Radius SMOTE method compared to other oversampling methods, such as the 

ability to overcome the problem of dataset imbalance. The Radius SMOTE method can overcome overlapping, small 

displacement, and noise when synthesizing new data [31–33]. Furthermore, it has also been successfully applied in the 

oversampling process of fetal umbilical cord image data and has increased accuracy [33]. Therefore, based on these 

problems, this study proposes a Radius SMOTE method to overcome the imbalance of the DEAP dataset in the emotion 

recognition process.  

The entire study is organized into four sections, where Section 1 introduces the study. Section 2 presents the related 

work of the oversampling study. Section 3 offers an emotion recognition theory and method using an oversampling data 

approach. Section 4 presents the experiment results, discussion, and limitations of these studies—finally, Section 5 offers 

the conclusion and the limitations of these studies and contributions for further investigation. 

2- Literature Review 

The oversampling process is used to create new synthetic data for the minority class due to its ability to improve 

classification accuracy than the under-sampling process [34]. There are two oversampling strategies, namely random 

and synthetic. Random oversampling is a non-heuristic method used to add data to a small portion of minor classes [33, 

35, 36]. Ding et al. (2021) [36] conducted an oversampling study using the Random Oversampling method for the DEAP 

dataset. This method increased the accuracy of the recognition of arousal and valence emotions. However, it tends to 

experience overfitting problems [33]; hence it is imperative to generate new synthetic data from minority classes based 

on neighboring locations. Making synthetic data can use the Synthetic Minority Oversampling Technique (SMOTE) to 

overcome the overfitting problem found in the Random Oversampling method. 

Several studies have been carried out using the SMOTE method to overcome data imbalance. For instance, the study 

by Sanguanmak and Hanskunatai (2016) [37] on using the SMOTE method for oversampling minor class data by 

combining oversampling and under-sampling techniques. Morales et al. (2013) [38] studied the use of Synthetic 

Oversampling of Instance Clustering (SOI-C) and Synthetic Oversampling of Instance Jittering (SOI-J). This approach 

compares the minor class data in each cluster during the synthetic data creation process with the MWMOTE method 

used to select sample data developed by Barua et al. (2014) [39]. In this study, each minor class data was given a weighted 

value based on the number of k Nearest Neighbor of the majority class data. The grouping process was carried out the 

Safe-Level-SMOTE method proposed by Bunkhumpornpat et al. (2009) [40] to avoid overlapping synthetic data in the 

minority class. This strategy was used to modify the SMOTE method by adding an initial selection process before 

creating new synthetic data. 

However, several inconsistencies are associated with the SMOTE method, such as overlapping, small disjunct, and 

noise. Overlap is a condition in which some minority and majority class data distributions have the same area. Small 

disjunct is a condition where the majority class mainly surrounds the distribution of the minority. Meanwhile, noise is 

the process whereby the majority class covers the sample of the minority data. This condition can complicate the 

classification method responsible for determining the decision limit for each category [32, 41]. Therefore, based on this 

problem, the Radius SMOTE method can overcome its weaknesses due to its ability to produce synthetic data from 

minor classes on the image of the fetal umbilical cord. The oversampling process can improve classification accuracy 

on fetal umbilical cord image data [33]. Based on these problems, this study proposes the Radius SMOTE method for 

the imbalance oversampling process in the DEAP dataset. In addition to the EEG data oversampling process, there are 

several vital processes in emotion recognition, such as the feature extraction and the emotion classification processes 

using the Differential Entropy (DE) method. According to [42], the method is capable of characterizing spatial data from 

EEG signals with the highlights feature comprising foremost exact and steady features [28, 43–46]. The classification 

process in this study compares two methods, namely the Decision Tree and the Convolutional Neural Network. The 

purpose of applying these two classification methods is to measure the accuracy of EEG data oversampling performance 

on a machine and deep learning. 



Emerging Science Journal | Vol. 6, No. 2 

Page | 384 

3- Methodology 

This chapter discusses several stages of the oversampling approach using the Radius SMOTE method for emotion 

recognition, as shown in Figure 1. 

 

Figure 1. EEG signal-based emotion recognition flowchart 

Figure 1 shows seven stages in emotion recognition, namely the preprocessing, feature extraction, oversampling 

(which is the contribution of this study), feature representation, classification, validation, and accuracy calculation stages. 

3-1- DEAP Dataset 

The dataset used in this study is the DEAP. This dataset is publicly accessible via the web 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/. The following is a description of the DEAP dataset [20]: 

 The EEG signal data collected in this dataset consists of thirty-two participants with an equal number of males and 

females within the age of 19-37 years. 

 These emotional reactions are recorded using an EEG device called Biosemi, where the number of channels used 

amounted to thirty-two. 

 A total of 40 experiments with stimulus media for each participant were used to evoke their emotional reactions. 

 The duration for each experiment is 1 minute (60 seconds), while the total time of the investigation per participant 

was 2400 seconds (40 experiments × 60 seconds). 

 Every second for each channel of the EEG device produces an EEG sampling rate of 128 Hz. 

In the DEAP dataset, the EEG signal acquisition process is carried out by placing thirty-two channels on the scalp. 

The position of the thirty-two channels on the scalp is presented in Figure 2. 

 

Figure 2. The positioning of the 32 channels on the scalp is based on the System 10-20 International standard 
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In Figure 2, NASION represents the skull’s front, precisely at the top center of the forehead, while INION denotes 

the lower back. Meanwhile, Fp, F, T, P, O, and C represents the prefrontal, frontal, temporal, parietal, occipital, and 

central head. In addition, the following channels represent the development of several existing channels: 

 AF is a channel placed between Fp and F; 

 FC is a channel placed between F and C; 

 CP is a channel placed between C and P; 

 PO is a channel placed between P and O. 

 The position of channel placement in this DEAP dataset uses the 10 – 20 International standard system. These values 

represent the percentage (%) of the distance between NASION and INION channels. Standard procedures have been 

carried out in the DEAP dataset acquisition process, starting from determining stimulus media, proper presentation setup, 

and standardization of experimental protocols. However, this dataset has data imbalance conditions found in participants 

S01, S02, S03, S04, S07, S09, S11, S12, S13, S14, S17, S18, S19, S20, S21, S22, S23, S24, S25, S27, S29, and S32. 

These unbalanced data are relatively high (40% < not balanced between high and low classes) on arousal emotion. 

Participants S04, S05, S06, S07, S11, S16, S18, S23, S26, S27, S28, and S30 had unbalanced data conditions, which 

were relatively high (40% < not balanced between high and low classes) on valence emotions. However, participants 

S16 had a balanced dataset condition for arousal emotion, while S09, S10, S14, S15, and S32 are associated with valence 

emotion. In addition to these participants, some participants had an imbalance condition that was not too high [20]. 

Therefore, this study proposes the Radius SMOTE method for oversampling the imbalance data in the DEAP dataset. 

3-2- Preprocessing 

At this stage, the decomposition process using a bandpass filter is carried out to determine the four frequencies of the 

EEG signal for the 32 channels. A bandpass filter is used to decompose the EEG signal on each channel into four 

frequency bands, namely Theta, Alpha, Beta, and Gamma frequencies. The decomposition process is carried out by 

determining each frequency band's Low and High Pass values. Table 1 shows the respective Low Pass and Band Pass 

values for each frequency band [28, 46, 47]. 

Table 1. The range of Low Pass and High Pass values for each frequency band 

Frequency band Low Pass High Pass Brain state 

Gamma (γ) 35 Hz 45 Hz Concentration 

Beta (β) 12 Hz 35 Hz Anxious, active, outwardly attentive, relaxed 

Alpha (α) 8 Hz 12 Hz Passive attention 

Theta (θ) 4 Hz 8 Hz Very relaxed, focused inward. 

In general, the EEG signal has five frequency bands, out of which four, namely Theta, Alpha, Beta, and Gamma, are 

correlated with emotional reactions [46, 48]. Figure 3 shows the decomposition process of the EEG signal into four 

frequency bands for the Fp1 and O2 channels. However, this process is carried out on all 32 channels, followed by the 

segmentation process in all sixty segments for each frequency band consisting of 32 participants. In the DEAP dataset, 

a participant was expected to conduct forty experiments. Figure 4 shows the segmentation process on the Frontopolar 1 

(Fp1) and Occipital 2 (O2) channels for the first experiment. 

 

Figure 3. The decomposition process of EEG signals in one experiment (sixty seconds) 
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Figure 4. The segmentation process of EEG signals in the first experiment (sixty seconds) 

The Fp1 and O2 channels produce sixty segments (Sg1 – Sg60) for one experiment. Each segment/piece consists of a 

128 Hz sampling rate, while each participant is expected to possess 7680 segments (60 segments x 32 channels x 4 

frequency bands). 

3-3- Feature Extraction 

After the segmentation process, the feature extraction process is carried out for each segment using the DE method. 

Each participant will generate 7680 DE feature data (32 channels x 4 frequency bands x 60 segments). Therefore, for 

the overall experiment, a total of 307200 DE feature data (7680 feature x 40 experiments) is obtained. The following is 

the formula for the Differential Entropy (DE) method [28, 46]: 

ℎ𝑖(𝑋) =
1

2
log(2𝜋𝑒𝛿2)  (1) 

where 𝑒 denotes Euler’s constant (2.71828), δ2 represents variance, hi is the Differential Entropy (DE) value 

corresponding to the EEG signal in each frequency band. 

3-4- Oversampling 

Radius-SMOTE is a method of making synthetic data by changing several steps. It is used to overcome problems, 

such as overlapping and noise, and also to decrease the accuracy performance in the classification process. Furthermore, 

it is also used to determine the imbalanced data, noise, and overlapping conditions in determining decision boundaries 

for each class in the dataset. In general, there are two stages of oversampling the EEG signal feature data from the 

minority class, namely the filtering and the synthetic data formation stages [33]:  

 Filtering stage. At this stage, the selection process is carried out to obtain data from the right EEG feature (SAFE) 

using a radius approach divided into SAFE and NOISE data using the KNN algorithm. Furthermore, data in the 

SAFE category is used as a reference in oversampling new/synthetic data to reduce its occurrence and create new 

noise data. Data oversampling is limited to this circular area to avoid overlapping conditions to other class areas. 

Radius is used to determine the distance of the nearest majority data point from the sample and use it as the radius 

value. All new data points are created only within that radius constraint. 

‖𝑏
~ −

𝑝
~‖ ≤ 𝑟2  (2) 

‖𝑎
~ −

𝑝
~‖ ≤ 𝑟2  (3) 

∑ (𝑏𝑖𝑗 − 𝑃𝑖𝑗)
2

≤ 𝑟2𝑛
𝑖=1   (4) 

where 𝑝𝑗 (𝑝1 , 𝑝2, 𝑝3, … 𝑝𝑛) is the center point of the circle in the minority sample, while 𝑏𝑖 (𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛) is the 

new data point in the radius. Next, the calculation process of 𝑟2 is calculated to determine the value of the distance 

between 𝑝𝑗 and 𝑡𝑖 as in Equation 5. The illustration of this proposed model is shown in Figure 5. 

𝑟2 = ∑ (𝑝𝑗 − 𝑡𝑖)
2𝑛

𝑗=1   (5) 
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Figure 5. Illustration of calculating radius distance based on circle formulation for restricting new generated synthetic data 

where 𝑡𝑖 (𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛) is the closest majority point to the center of the circle (𝑝𝑗). Furthermore, the distance of 

each minority sample is calculated from the majority class using the Euclidean distance method. The closest 

majority data point has a minimum distance to the minority data point, as shown in Equation 6. 

𝑟𝑖𝑗 = 𝑚𝑖𝑛 ∑ ∑ √(𝑝𝑗 − 𝑡𝑖)
2𝑛

𝑗=1
𝑛
𝑖=1   (6) 

In this study, the Radius-SMOTE parameter uses the k value of 5 in the KNN method to perform the filtering 

process of sample data. 

 EEG feature data creation stage. Making this synthetic data is based on the concept of radius, where the 

determination of the safe radius value is obtained from the circle equation. Its diameter is the distance between the 

EEG feature data of the SAFE category and the closest majority. Where 𝑟𝑖𝑗  is the smallest distance between the 

minority (j) and majority (i). After determining the majority of the data points, the formation of synthetic data is 

carried out by interpolating the two points. Synthetic data formation is carried out in two directions, namely 𝑟𝑖𝑗  

(positive) and −𝑟𝑖𝑗  (negative), with Equations 7 and 8: 

𝑎𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) ×  (𝑟𝑖𝑗 − 𝑝𝑗))  (7) 

𝑏𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) ×  (𝑝𝑗  − 𝑟𝑖𝑗 ))  (8) 

Limiting the area of creating new data reduces the occurrence of overlapping data in the SMOTE method [33]. 

Figure 5 shows the process of oversampling data using the Radius SMOTE method. 

Furthermore, the amount of synthetic data is made based on the imbalanced ratio value in each dataset. Therefore, the 

higher the imbalanced ratio value, the greater the number of synthetic data formed in one sample data. 

3-5- Feature Representation 

Feature values for each experiment in four frequency bands are represented in a 9 × 9 matrix. The blue, green, yellow, 

and red matrix denotes the theta, alpha, beta, and gamma-band frequencies. The combination of the four matrices is 

called the 3D Cube [46]. The DE feature values for all channels in each frequency band in one segment are represented 

in a 9 × 9 matrix. Furthermore, the obtained matrix from the four frequency bands in one segment forms a 3D Cube 

representation. Figure 6 shows the 3D Cube representation method. 
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Figure 6. The feature representation using 3D Cube in one segment [46] 

Figure 6 illustrates that there are 2400 3D Cube data (60 segments × 40 experiments) for one participant. The CNN 

method uses the 3D Cube data as input in the emotion classification process. 

3-6- Classification Process 

This study applied the CNN and the Decision Tree methods to measure the accuracy of EEG data oversampling 

performance on the machine and deep learning processes. The CNN method uses a 3D cube in each segment as input 

data, producing high or low emotion outputs for each arousal and valence. Its architecture in this study adopted the study 

by Yang et al. (2017) [46], as shown in Figure 7. 
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Figure 7. The classification process using CNN method for first 3D Cube [46] 

In the CNN method, each participant (independent subject) is carried out in one stage for the Arousal and Valence 

classification processes. Figure 7 shows that there are four processes in the CNN method for emotion classification, 

namely the convolution, flatten, fully connected, and output stages as follows [46]: 

 The convolution stage. It is divided into four: the 1st, 2nd, 3rd, and 4th convolutions. The 1st uses a 4 × 4 × 64 filter, 

with the stride value, activation function, and zero padding is 1, ReLU, and SAME, respectively. This is in addition 

to a resulting feature map of 9 × 9 × 64. The 2nd convolution uses a 4 × 4 × 128 filter, with a stride value, activation 

function, and zero padding is 1, ReLU, and SAME, respectively. This is in addition to the resulting feature map of 

9 × 9 × 128. The third convolution uses a 4 x 4 x 256 filter, with a stride value, activation function, and zero 

padding is 1, ReLU, and SAME, respectively. In this convolution, the resulting feature map is 9 × 9 × 256. Finally, 

the fourth convolution uses a 1 × 1 × 64 filter, with a stride value, activation function, and zero padding is 1, ReLU, 

and SAME, respectively. In this convolution, the resulting feature map is 9 × 9 × 64. The following is Equation 9 

of the convolution process: 

𝐹𝑀[𝑖]𝑗,𝑘 =  (∑ ∑ 𝑁[𝑗−𝑚,𝑘−𝑛]𝐹[𝑚,𝑛]𝑛𝑚 ) + 𝑏𝐹  (9) 

The variable 𝐹𝑀[𝑖] represents the matrix of feature map at the ith index, where F, N, Bf, j &k, and m& n denotes 

the filter matrix, input matrix, the bias on the filter, the feature map locations in the input matrix, and the location 

of the filter matrix. 

 Flatten stage. The feature map generated from the 4th convolution is reshaped at this stage, thereby measuring 

5184 neurons (9 × 9 × 64). 

 Fully connected stage. In this process, 5184 neurons are fully connected to 1024 hidden layers. This hidden layer 

uses a dropout operation of 0.5 to prevent overfitting and speed up the learning process. Dropout is carried out by 

deactivating the neurons connected to the hidden layer. The neuron to be deactivated is randomly chosen at a 

probability value of 0.5. Furthermore, weighted addition is carried out on the active neurons. Equation 10 is used 

to determine the weighted addition from input to the hidden layer. 

𝑧_𝑖𝑛𝑖 =  ∑ 𝑋𝑗 ∗  𝑊𝑗,𝑖 + 𝑏1,𝑖
𝑛
𝑗=1   (10) 

The variable 𝑧_𝑖𝑛𝑖 represents the output value resulting from the weighted summation process in the ith output 

layer. Meanwhile, 𝑋𝑗, 𝑊𝑗,𝑖𝑏1,𝑖, and n denote the node value of the jth input layer, weight value from the input to the 

hidden layer, bias value from the input to the hidden layer, number of nodes from the input to the hidden layer. 

Furthermore, the value of the variable 𝑧_𝑖𝑛𝑖  is activated using the softmax method, as shown in Equation 12. 
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 Outputs stage. Furthermore, 1024 neurons in the hidden layer will be connected to two output layers representing 

high or low for arousal and valence, respectively. At this stage, a weighted summation process is also carried out 

from the hidden layer to the output layer. Equation 11 is used to determine the weighted addition from hidden to 

the output layer.  

𝑦_𝑖𝑛𝑖 =  ∑ 𝑍𝑗 ∗  𝑉𝑗,𝑖 + 𝑏2,𝑖
𝑛
𝑗=1   (11) 

The variable 𝑦_𝑖𝑛𝑖 represents the output value resulting from the weighted summation process in the ith output 

layer. Meanwhile, 𝑍𝑗, 𝑉𝑗,𝑖, 𝑏2,𝑖, and n denote the node value of the jth hidden layer, weight value from the hidden to 

the output layer, bias value from the hidden to the output layer, number of nodes from the hidden to the output 

layer. Furthermore, the value of the variable 𝑦_𝑖𝑛𝑖 is activated using the softmax method, as shown in Equation 12. 

𝜎(𝒵)𝑖 =
𝑒𝒵𝑖

∑ 𝑒
𝒵𝑗𝐾

𝑗=1

  (12) 

where 𝜎, 𝒵, 𝑒𝒵𝑖 , and 𝑒𝒵𝑗  represent the softmax activation value, the value of the input vector, the standard 

exponential function of vector input, number of emotion classes, and the standard exponential function of vector 

output, respectively. The activation results will produce an output value that represents the high or low class for 

each Arousal and Valence emotion 

In this model, the loss value calculation and update processes use the cross-entropy loss and the Adam Optimizer 

methods. Furthermore, several parameters such as the learning rate (1e-4), the epoch (75), and the batch size (128) were 

determined. The second experiment in this study used the Decision Tree method. The max_depth parameter consists of 

a Decision Tree method with a value of 20 without using 3D Cube as input data. This method was implemented using 

the python programming language obtained from https://github.com/ynulonger/DE_CNN [46]. 

3-7- Validation Process 

The accuracy measurement process is carried out at this stage using the K-Fold Cross Validation method with a K-

value of 10. Measurement of the accuracy of emotion recognition of arousal and valence is also carried out for all 32 

participants [46].  

According to Figure 8, a participant has 2400 data divided into ten sections. The first part is used for the validation 

process (K=1), where the first 240 data are used as test data (in the orange block), and from the 241st to 2400th data 

(2160 data in the blue block) used as data training. The second part is used for the second validation process (K=2), 

where the 241st to 480th data (240th data in the orange colour block) are used as a test, while the first 240 (blue colour 

block) and from the 481st to the 2400th (1920 data in the blue colour block) used as training data. This validation process 

is repeated ten times (K=10), where the last 240 data were used as testing (in the orange colour block) and the first 2160 

data as training (in the blue block). This process is used to validate the model responsible for recognizing categories of 

arousal emotions. 

 

Figure 8. Illustration of the validation process using K-Fold Cross-Validation 
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3-8 Emotion Accuracy 

The emotion category in this study refers to the Russell Circumplex model, where it can be grouped into arousal and 

valence, with each class consisting of high or low value. In theory, valence is an individual's emotion towards something 

or an event. Meanwhile, arousal is an individual's excitement to behave or express their emotions [49, 50]. Figure 9 

presents an emotional representation based on the Russell Circumplex model. 

 

Figure 9. Russell circumplex model [51] 

Each validation process produces an accuracy value for both arousal and valence emotions for the High/Low emotion 

category. The accuracy value of this study will be compared with emotion recognition from several preliminary studies. 

This comparison of accuracy aims to examine the proposals of this study. 

4- Results and Discussion 

This chapter presents the proposed Radius SMOTE method used for oversampling imbalanced data on the DEAP 

dataset. In Table 2, the DEAP dataset is presented for each imbalanced participant [20]. 

Table 2. Distribution of minor class in DEAP dataset before oversampling 

No Participants Arousal data Valence data No Participants Arousal data Valence data 

1 S01 960 (low) 1140 (high) 17 S17 960 (high) 1080 (high) 

2 S02 960 (low) 1080 (low) 18 S18 900 (low) 960 (low) 

3 S03 480 (high) 1080 (low) 19 S19 780 (low) 1020 (low) 

4 S04 960 (high) 960 (high) 20 S20 540 (low) 1020 (low) 

5 S05 1140 (high) 960 (low) 21 S21 480 (low) 1140 (low) 

6 S06 1020 (low) 600 (low) 22 S22 960 (low) 1080 (high) 

7 S07 900 (low) 720 (low) 23 S23 600 (high) 840 (low) 

8 S08 1020 (low) 1080 (low) 24 S24 420 (low) 1080 (high) 

9 S09 960 (low) Balance 25 S25 660 (high) 1140 (high) 

10 S10 1080 (low) Balance 26 S26 1020 (high) 840 (low) 

11 S11 900 (high) 960 (low) 27 S27 780 (low) 600 (low) 

12 S12 420 (low) 1140 (low) 28 S28 1080 (high) 900 (high) 

13 S13 360 (low) 1020 (high) 29 S29 900 (low) 1020 (low) 

14 S14 780 (high) Balance 30 S30 1140 (high) 780 (low) 

15 S15 1140 (high) Balance 31 S31 1140 (high) 1020 (low) 

16 S16 Balance 900 (high) 32 S32 780 (low) Balance 
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The DEAP dataset consists of balanced data for several participants. This data is obtained assuming there are high 

and low classes of arousal/valence with the same value of 1200 data, culminating in 2400 data. The distribution of the 

DEAP dataset after the oversampling process using Radius-SMOTE is shown in Table 3. 

Table 3. Distribution of minor class in DEAP dataset after oversampling 

No Participants Arousal data Valence data No Participants Arousal data Valence data 

1 S01 1607 (low) 1972 (high) 17 S17 1648 (high) 1389 (high) 

2 S02 1526 (low) 1873 (low) 18 S18 1434 (low) 1693 (low) 

3 S03 1680 (high) 1839 (low) 19 S19 1572 (low) 1667 (low) 

4 S04 1820 (high) 1575 (high) 20 S20 1788 (low) 1798 (low) 

5 S05 1916 (high) 1546 (low) 21 S21 1920 (low) 1722 (low) 

6 S06 1688 (high) 1790 (low) 22 S22 1920 (low) 1814 (high) 

7 S07 1464 (low) 1610 (low) 23 S23 1929 (high) 1408 (low) 

8 S08 1716 (low) 1846 (low) 24 S24 2100 (low) 1745 (high) 

9 S09 1603 (low) Balance 25 S25 1788 (high) 1933 (high) 

10 S10 1967 (low) Balance 26 S26 1671 (high) 1308 (low) 

11 S11 1572 (high) 1648 (low) 27 S27 1678 (low) 2030 (low) 

12 S12 1815 (low) 2018 (low) 28 S28 1795 (high) 1478 (high) 

13 S13 1965 (low) 1690 (high) 29 S29 1457 (low) 1715 (low) 

14 S14 1722 (high) Balance 30 S30 1964 (high) 1644 (low) 

15 S15 2071 (high) Balance 31 S31 1988 (high) 1699 (low) 

16 S16 Balance 1584 (high) 32 S32 1820 (low) Balance 

Table 3 indicates that the Radius-SMOTE method will generate synthetic data on the minor class. However, the 

addition of synthetic data exceeds the majority class, while data in the minority class becomes the majority after 

oversampling using Radius-SMOTE. This is followed by the classification process of deep and machine learning, using 

the CNN and Decision Tree methods. The use of these two methods aims to measure the results of emotion classification 

using deep and machine learning approaches. Based on the validation and classification processes using the K-Fold 

Cross-validation and the CNN methods, the accuracy values for recognizing arousal and valence emotions are 82.11% 

and 78.99%, respectively. Meanwhile, the accuracy value of using the Decision Tree method for the classification 

process, arousal, and valence accuracy is 78.78% and 75.14%, respectively. Figure 10 shows the accuracy of arousal 

emotion recognition for each participant using the CNN and the Radius SMOTE methods. 

 

Figure 10. Comparison of arousal accuracy for using CNN and with or without the Radius SMOTE method 
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In Figure 10, the Radius SMOTE method for oversampling data and the CNN method for the classification process 

have the ability to increase the accuracy of recognizing arousal emotions. However, one participant with ID s16 did not 

show an increase in accuracy because the data was balanced, hence there was no oversampling. Subsequently, the Radius 

SMOTE and the CNN method are used to recognize valence emotions, as shown in Figure 11. 

 

Figure 11. Comparison of valence accuracy for using CNN and with or without the Radius SMOTE method 

Generally, using the Radius SMOTE method can improve the accuracy of recognizing valence emotions. However, 

some participants, such as ID s09, s10, s14, s15, and s32, did not experience an increase. However, the oversampling 

process was not carried out on these participants because the data was balanced. Apart from using the CNN method, this 

study also examined the use of the Decision Tree method combined with the Radius SMOTE. Figure 12 compares the 

accuracy with and without the Radius SMOTE method for recognizing arousal emotions. 

 

Figure 12. Comparison of arousal accuracy for using Decision Tree and with or without the Radius SMOTE method 
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Figure 12 shows that the Radius SMOTE with the Decision Tree method increases the accuracy of recognizing arousal 

emotions. However, one participant with ID s16 did not experience an increase because the data were balanced without 

oversampling process. In the same way, the use of the Radius SMOTE method with the Decision Tree method can also 

increase the accuracy of recognizing valence emotions, as shown in Figure 13. 

 

Figure 13. Comparison of valence accuracy for using Decision Tree and with or without the Radius SMOTE method 

The Radius SMOTE method can improve recognizing valence emotions. However, some participants, such as ID s09, 

s10, s14, s15, and s32, did not experience an increase because of these data without oversampling process. In general, 

using Radius-SMOTE to oversampling on the DEAP dataset can improve emotion recognition accuracy. This conclusion 

indicates that the imbalanced data conditions in the DEAP dataset can reduce the accuracy of emotion recognition. 

Furthermore, the accuracy results obtained from this study are compared with several others, as shown in Table 4. 

Table 4. Comparison of emotion recognition accuracy in several studies 

No Studies Model Arousal Valence 

1 Yang et al. [46] 
The Differential entropy method for feature extraction, The 3D Cube method for feature 

representation, and The CNN method for classification. 
69.55% 68.56% 

2 Yang et al. [46] 
The Differential entropy method for feature extraction, and the Decision Tree method for 

classification. 
63.86% 62,52% 

3 
Yang et al. 
(2018) [52] 

Combination of the CNN method and the LSTM method for feature extraction and classification. 61.78% 57.05% 

4 Chao et al. [48] 
The Power Spectral Density method for feature extraction, the Multiband Feature Matrix method 

for feature representation, and the Capsule Network for classification. 
68.28% 66.73% 

5 Liu et al. [47] The Multi-level feature method for feature representation and Capsule Network for classification. 64.36% 62.57% 

6 Ding et al. [36] 
The Dispersion Entropy method for feature extraction, The SVM method for classification, and 

Random Oversampling for oversampling data 
76.67% 72.95% 

7 Purpose study 
The Differential entropy method for feature extraction, the Decision Tree method for 

classification, and the Radius-SMOTE method for oversampling data 
78.78% 75.14% 

8 Purpose study 
The Differential entropy method for feature extraction, the 3D Cube method for feature 

representation, the CNN for classification, and the Radius-SMOTE method for oversampling data. 
82.11% 78.99% 

The Radius SMOTE method for the oversampling process produces a higher arousal and valence emotion recognition 

accuracy than those proposed by Yang et al. in the DEAP data set [46]. Although the emotion classification process has 

been improved using the Capsule Network method and the combination of Convolutional Neural Network and Long 

Short Term Memory methods; however, the accuracy is achieved still lower than this research proposal [47, 48, 52]. On 

the other hand, the oversampling process on imbalanced data using the Radius SMOTE method produces higher accuracy 
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than the Random Oversampling method [36]. In general, the application of the Differential Entropy, Radius SMOTE, 

3D Cube, and Convolutional Neural Network for feature extraction, imbalanced data, representation, and classification 

in this study led to higher accuracy compared to some of the previous studies [36, 46–48, 52]. 

5- Conclusion 

The problem of data imbalance in the DEAP dataset was solved by applying an oversampling approach using the 

Radius-SMOTE method. The oversampling process produces new synthetic data on the minority class. This study 

conducted two experiments to measure the Radius SMOTE method's ability to increase emotion recognition accuracy. 

The feature extraction process used the Differential Entropy and the Decision Tree methods for the classification process 

in the first experiment. The second experiment used the Differential Entropy, 3D Cube, and Convolution Neural Network 

for feature extraction, representation, and emotion classification processes. Based on these two experiments, the 

oversampling approach using the Radius SMOTE method increases the accuracy of recognizing arousal and valence 

emotions. In essence, the Radius SMOTE is an oversampling method used to create new synthetic data based on secure 

Radius data. However, making synthetic data does not consider the amount of data in the majority class, thus causing 

the previously in the minority class to become the majority class. So the data will still experience an unbalanced 

condition. In the future, it is necessary to determine the suitable method to handle unbalanced data, both from the under-

sampling approach and other approaches. 

Conversely, though emotion recognition accuracy has increased, it is still below 85% in arousal and valence. This 

problem becomes a challenge in future studies in recognizing emotions based on EEG signals. Therefore, emotion 

recognition based on EEG signals is strongly influenced by participant characteristics. Combining the baseline reduction 

approach to characterize participant characteristics is essential to examine the oversampling approach. 

5-1- Limitations 

The Radius SMOTE method is an oversampling method used to create new synthetic data based on SAFE radius data. 

However, its development does not consider the amount of data in the majority class; hence the minority class becomes 

the majority. In the future, it is necessary to determine the suitable method to handle unbalanced data, both from the 

under-sampling approach and other approaches. On the other hand, though emotion recognition accuracy has increased, 

the average accuracy is still below 85% for emotional arousal and valence. This problem becomes a challenge in future 

studies in its recognition based on EEG signals, which is strongly influenced by participant characteristics, such as 

personality traits, intellectual abilities, and gender [28, 53]. Therefore, further study needs to be conducted to examine 

the oversampling approach and allow the combination with the baseline reduction approach to characterize participant 

characteristics. 
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