

ISSN-p: 0123-7799

ISSN-e: 2256-5337

Vol. 25, nro. 53, e2170, 2022

Recibido: 12 octubre 2021

Aceptado: 15 febrero 2022

Disponible: 29 abril 2022

©Instituto Tecnológico Metropolitano

Este trabajo está licenciado bajo

una Licencia Internacional

Creative Commons Atribución

(CC BY-NC-SA)

Performance Evaluation of Convolutional

Networks on Heterogeneous Architectures for

Applications in Autonomous Robotics

Evaluación de desempeño de redes convolucionales

sobre arquitecturas heterogéneas para aplicaciones en

robótica autónoma

 Joaquín Guajo1;

 Cristian Alzate-Anzola2;

 Luis Castaño-Londoño3;

 David Márquez-Viloria4

1 Instituto Tecnológico Metropolitano, Medellín-Colombia,

joseguajo152012@correo.itm.edu.co
2 Instituto Tecnológico Metropolitano, Medellín-Colombia,

cristianalzate224500@correo.itm.edu.co
3 Instituto Tecnológico Metropolitano, Medellín-Colombia,

luiscastano@itm.edu.co
4 Instituto Tecnológico Metropolitano, Medellín-Colombia,

davidmarquez@itm.edu.co

Cómo citar / How to cite

J. Guajo; C. Alzate-Anzola; L. Castaño-Londoño; D. Márquez-Viloria,

“Performance Evaluation of Convolutional Networks on Heterogeneous

Architectures for Applications in Autonomous Robotics,” TecnoLógicas,

vol. 25, nro. 53, e2170, 2022. https://doi.org/10.22430/22565337.2170

mailto:joseguajo152012@correo.itm.edu.co
mailto:cristianalzate224500@correo.itm.edu.co
mailto:cristianalzate224500@correo.itm.edu.co
mailto:luiscastano@itm.edu.co
mailto:davidmarquez@itm.edu.co
https://orcid.org/0000-0002-7490-7049
mailto:joseguajo152012@correo.itm.edu.co
https://orcid.org/0000-0003-4253-3406
https://orcid.org/0000-0002-6083-3018
https://orcid.org/0000-0002-0168-7276

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 2 | 22

Abstract

Humanoid robots find application in human-robot interaction tasks. However, despite

their capabilities, their sequential computing system limits the execution of computationally

expensive algorithms such as convolutional neural networks, which have demonstrated good

performance in recognition tasks. As an alternative to sequential computing units, Field-

Programmable Gate Arrays and Graphics Processing Units have a high degree of parallelism

and low power consumption. This study aims to improve the visual perception of a humanoid

robot called NAO using these embedded systems running a convolutional neural network.

The methodology adopted here is based on image acquisition and transmission using

simulation software: Webots and Choreographe. In each embedded system, an object

recognition stage is performed using commercial convolutional neural network acceleration

frameworks. Xilinx® Ultra96™, Intel® Cyclone® V-SoC and NVIDIA® Jetson™ TX2 cards

were used, and Tinier-YOLO, AlexNet, Inception-V1 and Inception V3 transfer-learning

networks were executed. Real-time metrics were obtained when Inception V1, Inception V3

transfer-learning and AlexNet were run on the Ultra96 and Jetson TX2 cards, with frame

rates between 28 and 30 frames per second. The results demonstrated that the use of these

embedded systems and convolutional neural networks can provide humanoid robots such as

NAO with greater visual recognition in tasks that require high accuracy and autonomy.

Keywords

Convolutional neural networks, field programmable gate array, system-on-a-chip, high-

level synthesis, humanoid robot.

Resumen

Los robots humanoides encuentran aplicación en tareas de interacción humano-robot. A

pesar de sus capacidades, su sistema de computación secuencial limita la ejecución de

algoritmos computacionalmente costosos, como las redes neuronales convolucionales, que

han demostrado buen rendimiento en tareas de reconocimiento. Como alternativa a unidades

de cómputo secuencial se encuentran los Field Programmable Gate Arrays y las Graphics

Processing Unit, que tienen un alto grado de paralelismo y bajo consumo de energía. Este

trabajo tuvo como objetivo mejorar la percepción visual del robot humanoide NAO utilizando

estos sistemas embebidos que ejecutan una red neuronal convolucional. El trabajo se basó en

la adquisición y transmisión de la imagen usando herramientas de simulación como Webots

y Choreographe. Posteriormente, en cada sistema embebido, se realizó una etapa de

reconocimiento del objeto utilizando frameworks de aceleración comerciales de redes

neuronales convolucionales. Luego se utilizaron las tarjetas Xilinx Ultra96, Intel Cyclone V-

SoC y Nvidia Jetson TX2; después fueron ejecutadas las redes Tinier-Yolo, Alexnet, Inception

V1 y Inception V3 transfer-learning. Se obtuvieron métricas en tiempo real cuando Inception

V1, Inception V3 transfer-learning y AlexNet fueron ejecutadas sobre la Ultra96 y Jetson

TX2, teniendo como intervalo entre 28 y 30 cuadros por segundo. Los resultados demostraron

que el uso de estos sistemas embebidos y redes neuronales convolucionales puede otorgarles

a robots humanoides, como NAO, mayor reconocimiento visual en tareas que requieren alta

precisión y autonomía.

Palabras clave

Redes neuronales convolucionales, matriz de puertas lógicas programable en campo,

sistema en chip, síntesis de alto nivel, robot humanoide.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 3 | 22

1. INTRODUCTION

Humanoid robots are used in assistance-type applications related to domestic,

educational, and therapeutic services, among others [1]. This use arises from the sensations

of comfort generated in humans in the interaction with this type of robot [2]. To produce these

interactions, they have sensory devices that provide them with the ability to perceive and

understand the environment. In particular, the visual perception system of humanoid robots

is composed of cameras integrated into their structure, which gives them a field of vision [3].

Thanks to said field of vision, they can be used in applications oriented to object

recognition in real time. For instance, the use of the NAO humanoid robot acquisition system

and machine vision techniques for recognition and operation of a tool by programming by

demonstration is presented in [4]. In that paper, the object to be recognized is captured by

the visual perception system. The image is processed by a CPU, in which the execution is

performed sequentially. The sequential processing of the image pixels produces a delay in

the execution time in the computer system of the humanoid robot, limiting its responsiveness

in decision-making for tasks involving object recognition [5]. This limitation is also shown in

the implementation of classical computer vision techniques by [6], [7].

Deep learning algorithms have been executed on the sequential computing system of some

types of humanoid robots. These algorithms are computational models that replicate human

cognitive ability and contribute to the use of robots in everyday environments. Among these

algorithms are Convolutional Neural Networks (CNNs), which have proven to be relevant in

projects where object recognition, localization, and detection are integrated, becoming

efficient in terms of accuracy in the completion of these tasks [8]. Different architectures of

CNNs have been developed, such as AlexNet, VGGNet, ResNet, among others [9] - [11]. These

networks were trained with millions of images, which improved the accuracy of the network

in recognizing objects in everyday environments [12].

Despite their advantages, CNNs present a high computational cost when implemented in

the sequential computing system of humanoid robots. Therefore, developments have been

implemented in external computational systems based on higher-capacity CPUs connected

to the robot’s computational architecture, usually through Ethernet [13]. Two studies [14],

[15] concluded that the limitations in robot image processing were overcome by integrating

an external computational system. However, the robot’s autonomy was affected by the

continuous connection, generating dependence in tasks that require free movement in its

environment. The limitations, in terms of responsiveness and autonomy, of humanoid robots

with sequential operation computational architectures present a challenging problem for the

implementation of CNNs on GPU- or FPGA-based embedded systems. Nevertheless, these

devices have a high degree of parallelism and low power consumption in image and video

processing applications, which could provide the humanoid robot with greater processing

capacity and autonomy in tasks involving higher perception and deeper understanding of the

environment.

An implementation of a CNN on external computational systems is presented in [16]. The

proposed system is based on the execution of a CNN SSD mobilenet DNN on the CPU-

centered Intel® NUC7i7BNH (NUC) and Jetson TX2 computational systems for an

application focused on pedestrian detection on the NUgus humanoid robot. The DNN

implementation on the NUC was performed on the CPU due to the incompatibility between

Tensorflow and OpenCL, which prevented the implementation on the GPU side. Regarding

the development on the Jetson TX2, the DNN implementation is performed on the GPU

through CUDA. The results showed that the CPU of the NUC is faster than the GPU of the

Jetson TX2 when executing the DNN: the NUC took 0.17 s; and the Jetson TX2, 0.57 s.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 4 | 22

In terms of power consumption, the NUC CPU consumes 40.52 W, and the Jetson TX2,

around 9.8 W. The results showed high-power consumption and inference times shorter than

what is established for a real-time application.

Different studies have addressed the implementation of CNNs on FPGAs. In [17], the

authors explore weight and node-level parallelization over convolutional layer computations.

The system uses maximum resources through data reuse and concatenation.

Decomposition of input data into convolutional computations is also an approach

implemented in that study; each iteration reuses the arithmetic computation units to process,

in different fragments, the split data. The data is transmitted between the FPGA and the

memory through the Direct Memory Access (DMA) unit and Axi-Stream transmission

interfaces. This transmission in [18] includes partitioning techniques and embedding the

weights in local memory and parallelization techniques. These parallelizations and the

batch-based method reduced the memory bandwidth required in CNN [19] matrix

multiplications. The opposite case occurs in the implementation of the Winograd algorithm

proposed by [20], where less computational resources are used, but more pressure is put on

memory bandwidth.

On the other hand, the use of development environments has allowed researchers to

control memory usage and parallelization techniques on these reconfigurable devices. In [21],

[22] information from a trained CNN network is synthesized in hardware through the Vivado

HLS high-level synthesis tool. The tool defines how the Intellectual Property Core (IP Core)

that will contain the information of the images to be classified should be generated. The IP

Core is generated using internally developed high-level wrappers to facilitate communication

with direct access to the DMA memory. In [19] is presented a similar study, but they proposed

an analytical design model called Roofline in their development. The model can be used to

quantitatively analyze the computational performance and memory bandwidth required for

any solution of a CNN design.

Regarding the implementation of CNNs on GPUs, different acceleration techniques have

been proposed for video and image processing. In [23], an acceleration method based on the

treatment of binary weights is proposed, focusing on optimizing the arithmetic kernel in the

storage of the weights. A similar approach is presented in [24], where the acceleration is

performed through a resistive random-access memory (i.e., ReRAM). This accelerator

architecture was adapted for bit-by-bit convolution.

Previous studies showed a high-power consumption. In [25], a programmable many-core

accelerator reduces said consumption for a CNN network architecture. The accelerator is

called PACENet and consists of a neural network kernel-specific instruction set architecture

and six pipeline stages to accelerate the convolution layer, Relu activations, Maxpool layer,

and fully connected layer. The accelerator design is similar. However, two scheduling

algorithms were implemented in two stages. The first stage is focused on image combination

to accelerate the feed-forward process of the CNN; and the second, on a memory-light cost

algorithm for accelerating an arbitrarily large CNN model for a memory-limited GPU device.

In order to enhance the performance of the GPU system, accelerators have been developed

through the parallel computing architecture CUDA (Computed Unified Device Architecture)

in the execution of CNNs. In [26], CUDA is used to create a mechanism to improve the

network execution, which consists of integrating the data of the network nodes and the

dynamic adjustment of the smoothing factor of the basis function. Other authors [27]

implemented a C++ library on CUDA to accelerate the training and classification process of

CNN and NVIDIA cuBLAS libraries to exchange the mathematical vector and functional

operations.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 5 | 22

The developments of CNN accelerators on FPGA- and GPU-based embedded systems

described in the previous paragraphs demonstrated high processing capacity and low power

consumption. However, the use of these systems presents an open research topic regarding

performance evaluation when they are applied to humanoid robots with sequential

processors integrated into their structure. These processors present limitations in their

processing capacity when they execute sophisticated algorithms of deep learning techniques,

restricting the robot in performing tasks related to object recognition in real time.

This paper proposes a visual perception enhancement system for humanoid robots using

FPGA- or GPU-based embedded systems running convolutional neural networks. This study

focuses on solving three problems: (1) reducing execution time and improving object detection

accuracy in an everyday environment while maintaining robot autonomy; (2) creating a

system that can be replicable to humanoid robots such as Pepper and Robotis OP3; and (3)

producing a development that can be used to integrate heterogeneous architectures with a

high degree of parallelism, low power consumption and small size that execute a CNN and

can be easily integrated into the structure of any humanoid robot. The rest of this paper is

organized as follows. Section 2 details the method and describes the acquisition of the image,

communication with embedded systems, and the use of CNN acceleration frameworks for

each heterogeneous architecture. Section 3 presents the results and discussion. Finally,

Section 4 draws the conclusions.

2. METHOD

The goal of the proposed methodology is to design a visual perception enhancement

system for humanoid robots based on an external computational system that executes a CNN.

For this system, FPGA- and GPU-based embedded computational systems were

evaluated. These heterogeneous architectures are small and have a high degree of

parallelism and low power consumption. In this study, Intel Cyclone V SoC and Xilinx

Ultra96-V2 cards were used for FPGA evaluation, and a Nvidia Jetson TX2 development

board was used for GPU evaluation. In addition, an application focused on the classification

of toys for early childhood education is developed through a transfer-learning on the

Inception-V3 network from the INSTRE dataset. The inference is performed on the Ultra96

FPGA embedded system. Table 1 shows the embedded systems’ features, along with the

acceleration framework and the CNN executed here.

Table 1. Embedded systems, acceleration frameworks and implemented CNNs

Source: Created by the authors.

Hardware

type
Development board

Acceleration

framework
CNN

FPGA

Cyclone V-SoC PipeCNN AlexNet

Ultra96

Finn Tinier-YOLO

Vitis-DPU Inception-V1

Dnndk
Inception-V3 transfer

learning

GPU Jetson TX2

Darknet Tinier-YOLO

TensorRT
Inception-V1

AlexNet

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 6 | 22

The study case in this article is a visual perception system for the NAO humanoid robot.

However, since there is an Ethernet connection between the robot and the embedded system,

the proposed system can be replicable in humanoid robots such as Pepper and Robotis OP3.

This study was conducted using a virtual NAO humanoid robot, and the virtual

environment was created by means of Cyberbotics Ltd. Webots [28], a mobile robotic

simulation software that provides a rapid prototyping environment for modeling,

programming, and simulating mobile robots.

For the acquisition and transmission of the virtual image provided by Webots, Naoqi SDK

and Choregraphe [29] programming software was used. For the transmission of the video

from the robot, the encoding and sending of packets was performed using a TCP/IP socket.

The video reception stage and the execution of the CNN are performed on each commercial

embedded system selected here. Finally, for comparative purposes, an implementation

focused on the execution of classical machine learning models on the computational system

of the humanoid robot NAO is performed using a processor that has the same characteristics

as NAO’s CPU. This hardware consisted of a Dell Inspiron Mini laptop containing a 1.6-GHz

Intel Atom Z530 processor. The use of a processor with the same characteristics as NAO’s

CPU facilitates testing without the presence of or powering up the humanoid robot. This

paper combines the capabilities of CNNs, and heterogeneous architectures based on FPGA

and GPU to improve the visual perception of humanoid robots such as NAO. Starting from

the acquisition of the image of the object by the robot, it is necessary to have clear tools with

which to simulate a virtual environment. For this application, Webots, Choreographe and

python were used as programming languages for the generation of the virtual environment

and transmission of the image. Once the image is acquired, it is sent to each embedded

system, and, using acceleration frameworks for FPGA and GPU, the processing and

classification or detection of the image is performed. At this point, understanding CNNs and

knowledge of heterogeneous architectures become necessary to reproduce the proposed

methodology. Figure 1 shows the diagram of the proposed system methodology.

Figure 1. Diagram of the proposed system methodology. Source: Created by the authors.

The following subsections detail the image acquisition-communication system and the

implementation of the CNNs on each development board using CNN acceleration

frameworks. Finally, we present the design of a backpack for NAO, which contains a

heterogeneous architecture and a battery to power it. This approach allows an external

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 7 | 22

computational system to provide NAO with increased accuracy while maintaining its

autonomy and mobility.

2.1 Image acquisition and transmission

The video acquisition system for the NAO humanoid robot was simulated using Webots,

and it was possible to create a virtual environment and subsequently perform a movement

control using Choregraphe. Once the scene is captured by Choregraphe, video transmission

to the FPGA or GPU embedded system is started.

2.1.1 Image acquisition

The image acquisition system was based on the use of a virtual environment containing

objects to be recognized by the NAO humanoid robot that was also located in the recreated

scene. This virtual environment was created using the Webots simulator, where the image of

the recreated scene is sent to Choregraphe in order to edit interactive movements for the

robot and start the transmission of the image to each embedded system. The communication

between Webots and Choregraphe is established using naoqisim software, which allows the

motion control of the NAO robot generated by Choregraphe to be displayed in the Webots

simulator. For the visualization in Choregraphe of the image generated by Webots, NAOqi

API is used, which contains libraries for the acquisition and communication of images by

assigning an IP address and an Ethernet port. For this image display, the process performed

initially imports the libraries opencv and vision definitions from naoqi for image acquisition.

From the function ALProxy the video transmitted by Webots is obtained from

Choregraphe and is sent to the video monitor using the subscribeCamera function. Finally,

the obtained image is displayed on the Choregraphe video monitor using the

getImageRemote method. The pseudocode of the video acquisition is shown in Algorithm 1.

Algorithm 1: Get Webots image in Choregraphe

1 ip_robot = "string length"

2 port_robot = "int length

3 videoDevice = "ALProxy('image_webots', ip_robot, port_robot)"

4 captureDevice = "videoDevice.suscribeCamera()"

5 width = "image width"

6 height = "image height"

7 While True do

8 result = videoDevice.getImageRemote(captureDevice)

9 for i -> height

10 for j -> width

11 add image result in width x height

12 end

13 end

14 Result: show image in Choregraphe: result

15 end

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 8 | 22

2.1.2 Image transmission to the embedded system

In this stage, TCP was used as the packet transmission protocol. Using Python libraries,

it was possible to encode the image and then send it through an IP address and an Ethernet

port. The Base 64 library allowed the encoding and decoding of the image according to RFC

3548 standard. Using Base 64, the algorithms of Base 16, Base 32 and Base 64 were used to

encode and decode arbitrary strings into text strings that could be sent over the network.

Finally, the image displayed in Choregraphe is transmitted to each embedded system.

Algorithm 1 was adapted for the coding-decoding of the image and the transmission. The

pseudocode is shown in Algorithm 2.

Algorithm 2: Video transmission to each embedded system

1 ip_robot = "string length"

2 port_robot = "int length

3 videoDevice = "ALProxy('image_webots', ip_robot, port_robot)"

4 captureDevice = "videoDevice.suscribeCamera()"

5 width = "image width"

6 height = "image height"

7 While True do

8 result = videoDevice.getImageRemote(captureDevice)

9 for i -> height

10 for j -> width

11 add image result in width x height

12 end

13 end

14 result = encoded(result)

15 send by socket(result)

16 Result: video transmission result

17 end

2.1.3 Image reception on the embedded system

For the reception of the virtual image provided by Webots on the FPGA and GPU, the

libraries described in the previous section were used. Through the setsockopt string function,

the received data are manipulated and converted to a series of characters string.

Subsequently, this series of characters is decoded and converted to the positional

numbering system Base 64. Finally, the decoded image is read from the buffer stored in the

memory using the OpenCV function cv2.imdecode. This pseudocode is shown in Algorithm 3.

2.2 Implementation of CNNs on acceleration frameworks

The CNN implementation on FPGA- and GPU-based embedded systems was performed

using available acceleration frameworks. For the execution of the CNNs on FPGAs, the

PipeCNN, FINN, and DPU frameworks were used. For the GPU, the Darknet and TensorRT

frameworks were implemented. For our application, pre-trained models were used to

evaluate the performance of these heterogeneous architectures and include them in the

visual perception enhancement system for humanoid robots.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 9 | 22

Algorithm 3: Video reception on each embedded system

1 ip_robot = "string length"

2 port_robot = "int length

3 socket.bind(listen for ip_robot and port_robot)

4 setsockpt(transmitted image)

5 while True do

6 result = base 64 decoding

7 result = buffer reading by opencv

8 Result: viewing the video result

9 end

2.3 Implementation of CNNS on FPGA boards

The implementation was performed for two different acceleration frameworks. The

PipeCNN framework was adapted for the Cyclone V-SoC development system on the INTEL

platform to develop this work. The Cyclone V-SoC device has an ARM processor that acts as

a host and an FPGA that works as an accelerator by executing a kernel implemented with

OpenCL. PipeCNN uses two parameters to control the hardware resource cost and improve

execution time. These parameters are the size of the data vectorization and the number of

parallel computing units. This framework also uses high-level methodologies but based on

OpenCL code; thus, highly efficient, and configurable kernels can be adapted to a wide

variety of CNN models. PipeCNN is an FPGA CNN accelerator developed in OpenCL. It is

compatible with Caffenet (AlexNet), VGG-16 and ResNeT-50. The framework is

reconfigurable, which makes it easily adaptable to different boards, and, being written in

OpenCL, it allows an easy implementation between different platforms such as CPU and

GPU.

The convolutional architecture defined in the PipeCNN framework is cascading, in which

each layer is executed once the previous one is finished. Another optimization used by

PipeCNN is Fixed-Point arithmetic representation instead of Floating-Point, reducing the

resource consumption considerably in the FPGAs, although the accuracy of the CNNs is also

reduced. This architecture is shown in Figure 2.

Figure 2. Hardware architecture of the PipeCNN framework. Source: Created by the authors.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 10 | 22

For the implementation of PipeCNN, Intel® FPGA SDK for OpenCL software was

downloaded. Subsequently, the software was configured, and the OpenCL libraries were

compiled. This compilation generated two files: *.aocx, which is the FPGA binary, and an

executable that loaded the image and sent it to the FPGA. These two files were loaded on the

board and subsequently configured when the embedded system was booted.

In addition, the free software application Quantized Neural Network was adapted on a

XILINX platform using a heterogeneous FPGA-based architecture. This application is based

on the FINN framework presented by [30]. This framework allows the implementation of

CNNs on Xilinx devices with a predefined architecture and high efficiency to focus more on

the implementation. The implementation is done on an Ultra96 SoC board using the PYNQ

framework. The PYNQ framework is used for rapid code development on the host. This

framework allows high-speed applications to run side-by-side on hardware with Python-

based software applications.

In the FINN framework, there are two types of CNN acceleration architectures

implemented on FPGA; they are shown in Figure 3. The main difference between them is the

fact that the DF architecture is built for a single CNN topology, weights and activations

already defined. However, this is inefficient in FPGAs because in these architectures

reconfigurable computing can be leveraged. This advantage is exploited in the MO

architecture because, unlike its DF counterpart, it does not depend on network topology, and

the block feeds back on itself and reconfigures itself based on the network topology. The DF

architecture has an advantage over its MO counterpart because it is a dedicated and

enhanced architecture only for a particular topology. Since the weights are in the same

system, the processing time is much shorter, unlike MOs configured at each layer of the CNN.

In the MO architecture, we can implement CNN topologies that cannot be executed in the

DF architecture because they consume more resources than the board has available. The MO

architecture loads each of these layers sequentially on the FPGA and thus does not occupy

the entire resource space, especially the BRAM.

Figure 4 shows the Tinier-YOLO network architecture, which is implemented in the

Ultra96 SoC. The input and output layers are executed in software (ARM) through Python,

while the internal layers are executed in hardware (FPGA). The layers consist of operations

such as convolutions and max pooling. The framework supports only quantized layers,

meaning that weights and activations are represented from 1 to 3 bits. Tinier-YOLO is a

modified version of the Tiny-YOLO object detection system. Tinier-YOLO is also trained with

the PASCAL VOC database, but with 1 bit for weights and 3 bits for activations. Tinier-

YOLO achieves 50.1 % mAP, while Tiny-YOLO achieves 57.1 % mAP.

Figure 3. Types of FINN framework architectures: (a) DF architecture with defined layers and weights. (b) MO

architecture with layers and weights for different accuracies and sizes. Source: Created by the authors.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 11 | 22

Figure 4. Tinier-YOLO network topology implemented with the QNN framework

Source: Created by the authors.

The Xilinx DPU was used for the execution of the CNN Inception-V1 on the Ultra96-V2

FPGA. This DPU is a programmable engine dedicated to executing each of the convolutional

layers present in a CNN through a register configuration module, data controller module,

and convolution computation module. This DPU module is integrated as a programmable

logic (PL) unit, which is connected to the processing system (PS). Like the FINN framework,

along with the DPU, PYNQ is used for host-side application development through an AX14-

based interface. Vitis IA is used to convert the model trained in Tensorflow to *.elf format.

This format contains the weight information, which is read by the ARM of the FPGA SoC;

after that, the tasks are sent to the DPU for processing and transmitting the results back.

There are *.elf files for trained models such as Mnist, Resnet50 and YOLO v3. However,

to make a comparison with the Jetson TX2, we selected the Inception-V1 CNN.

The following paragraphs present a system for the improvement of the visual perception

of the NAO robot so that it can be used in pedagogical activities for early childhood education.

In this system, the first step is the recognition of toys by the robot in order to have a

friendly interaction with children in learning activities. For this purpose, the Inception-V3

network was selected, which can distinguish up to 1000 classes, allowing the robot to better

understand its interaction environment. This network does not detect objects in the image

like Tinier-YOLO; however, in this application, we consider the number of classes a key

factor, and, although some networks could have a better performance in this aspect, they

need more hardware resources than those existing in the Ultra96. For toy classification, a

dataset of 10 classes was constructed from the INSTRE database [31]. For each of the selected

classes, a training set consisting of 70 to 100 images and a validation set between 30 and 40

were defined. The complete dataset consists of 810 training images and 356 validation

images.

The training for toy classification was performed using transfer-learning, which is a

method that consists of reusing the previous training of a network by freezing some layers

and selecting a lower learning rate to adapt the weights to the new training set. Transfer-

learning can decrease the training time and use small databases because most of the features,

such as edges, curves, and colors, are already defined by the weights trained by the first

layers. In this paper, transfer-learning is used with the Inception-V3 convolutional network,

which was originally trained with the Imagenet dataset to recognize 1000 types of classes.

This topology consists of 310 convolutional layers and fully-connected layers. For the

training with transfer-learning, the first 172 convolutional layers of the network are frozen,

and the output layer of Inception-V3 is a softmax activation with 1000 classes. In this study,

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 12 | 22

this layer is removed and replaced with a 10-class softmax layer, whereby this layer is trained

together with the remaining dense layers for the application-centric classification of 10 types

of toys.

This network was implemented on the Ultra96 using the DNNDK framework, which

employs a DPU module that allows high computation and easy access for heterogeneous

programming. DNNDK consists of several tools such as DECENT and DNNC. DECENT is

responsible for reducing the size of CNNs in terms of data, i.e., a model that is stored in 32-

bit floating point is quantized to 8 bits for each weight. By reducing this information, the size

of the model is reduced, allowing an optimization in terms of computational efficiency, energy

efficiency and less memory for the system, especially in bandwidth during data transmission

from the host to the FPGA. DNNC is responsible for improving the resources used by the

DPU by optimizing bandwidth and power consumption.

DNNC uses the debugged DECENT model and applies optimized compilation and

transformation techniques, such as compute node merging, efficient instruction scheduling

and reuse of on-chip memory features and weights.

2.4 Implementation of CNNs on GPU boards

Two frameworks were used for the acceleration of CNNs on the Jetson TX2 GPU. In the

first one, Nvidia TensorRT, Inception-V1 and AlexNet networks were implemented.

TensorRT consists of two stages: training and inference. The training stage is mainly

based on the use of Digits, where it is possible to manage and evaluate the data of the model

by running it in the cloud or localhost. Once the training is complete, the trained weights are

downloaded, and the inference is performed. In this study, the first stage was not performed,

a previously trained model was obtained, and the optimization between the host and the

device was performed for the inference stage.

TensorRT, CUDA and cuDNN were used for the inference stage. TensorRT is an optimizer

of a model trained using CUDA and cuDNN; thus, it achieves low latency, which is ideal for

real-time applications. This framework provides a quantization operation for the GPU

inference engine. The computational latency is shortened due to floating arithmetic

operations, and, in order not to reduce the model’s mAP, the weights were quantized to 16-

bits at the inference stage.

TensorRT modifies the size of the images before and after the inference process. Since

this modification is computationally expensive on the CPU, the framework uses

multithreading on the CPU to speed up the process. TensorRT creates two threads on each

CPU core, and each thread processes one batch of data. The Jetson TX2 has 6 CPU cores, so

TensorRT creates 12 threads. GPU inference can only run on a single thread; therefore, the

framework takes inference as a mutual process, and the different threads must compete for

the GPU. Finally, for the implementation of the Tinier-YOLO network, Darknet was used,

which is an open-source framework for running convolutional neural networks where data

are processed through C and CUDA for the computation between the CPU and the GPU.

2.5. Implementation of classical machine learning algorithms for early childhood education

applications

The implementation of classical classifiers was performed using the same INSTRE

database. The classifiers were implemented using Scikit-Learn instead of popular

frameworks such as Keras and TensorFlow since the 32-Bit architecture of the NAO

computing system does not allow the installation and configuration of these tools. This

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 13 | 22

restriction limits the execution of algorithms such as CNNs on the sequential system of the

NAO robot, reducing its applicability in activities that require a greater understanding of the

environment. Each pixel is used as one feature per frame, which means 200x200x3 features

for the classification models.

Four classical classification algorithms have been implemented in the literature for

binary and multi-class object classification: Logistic Regression, Naive Bayes, Decision Tree,

and Random Forest. Processing images, these models perform well when hyperparameter

optimization is performed; however, this task is complex and depends on the characteristics

of the dataset. CNNs, using their hidden layers, have the ability to select the most important

features without difficulty, so better results are obtained in terms of accuracy when the

dataset is considerably large.

2.6. NAO backpack design

This section describes the design of a backpack for NAO integrated into the back of the

humanoid robot. This extension of NAO contains an Ultra96-V2 FPGA that runs

computationally expensive algorithms such as CNNs. The selection of the embedded system

used for the backpack design was based on its results in terms of frames per second (FPS)

and higher accuracy in object classification. Considering the above, the Ultra96 FPGA

obtained the best performance when running Inception-V1 with 30.3 fps and an 88.9 % top-

5 accuracy trained with the ImageNet database. Besides its results compared to those of the

Jetson TX2, an important aspect is the size of the integrated system. The Ultra96 measures

8.5 cm x 5.4 cm, while the Jetson TX2 measures 17 cm x 17 cm.

Other authors [32] have proposed the implementation of a backpack for NAO that

contains an ODROID XU4 running object classification algorithm. Nevertheless, when it ran

ORB-SLAM2, it achieved 12 fps, which is below the benchmark for real-time applications.

The execution of deep learning algorithms presented memory problems because the

hardware was a Cortex™-A7 Octa-core microprocessor, which is sequential and is limited in

its capabilities when it executes high computational cost algorithms such as CNNs.

Given the above, the proposed scheme integrates an external computational system that

improves the visual perception of the NAO humanoid robot in tasks that require high

performance, autonomy, and mobility. The following subsections present the details of the

design.

2.7. Sizing the battery powering the embedded system

The battery sizing was based on the power required by the Ultra96 FPGA, the power

consumed when executing a CNN and the autonomy in relation to the time the humanoid

robot will be active. Regarding the last factor, the reference point in this study is [32], which

reports that, despite the 60 minutes offered by the battery included in NAO, in the Robo Cup

Soccer competition, the autonomy of the robot is only 30 minutes. Therefore, the operating

time of the Ultra96 FPGA was estimated at 50 minutes of activity.

The input voltage of the Ultra96 is in the range from 8 V to 18 V, with a maximum current

of 3 A. Although the FPGA only consumes 3.1 W in the inference stage, the power consumed

is overestimated at 6 W. Taking these data into account, we proceed to calculate the power

that should be delivered by the battery to be implemented based in (1), which is used to

calculate the autonomy of a battery.

𝑇 = 𝑊𝑏 /𝑊𝑐 (1)

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 14 | 22

where T is the autonomy time in hours; Wb, the power delivered by the battery; and Wc,

the power consumed. The estimated autonomy of 50 minutes in hours equals 0.833 h.

Considering the above, the power to be delivered by the battery is 4.998 W (Wb).

The next step was selecting the battery based on the calculation of the desired power

delivery and autonomy. We selected a LiPo (lithium polymer) battery, which is a rechargeable

battery composed of identical secondary cells arranged in parallel to increase the discharge

current capacity. It offers a high discharge rate, light weight, and small size. These

characteristics were suitable for the proposed scheme (i.e., a backpack for the robot) because

they can provide autonomy to the robot without affecting its mobility.

 Once the type of battery to be used was selected, a search for different LiPo batteries

available in the market was carried out. Based on the fact that the power delivered by the

battery must be 4.998 W, we selected a commercial LiPo battery that delivers this capacity

and whose output voltage is within the input voltage range for the Ultra96 FPGA (i.e., 8 V–

18 V). The chart in https://blog.ampow.com/lipo-battery-size-chart/, which details the

electrical specifications of multiple LiPo batteries available in the market, was taken as a

reference point. Since the delivered power must be 4.998 W and its dimensions are suitable

for the application, a Lipo battery with 440 mAh of capacity and a voltage of 11.1 V was used

here. The battery selection is based on the power calculation in (2):

𝑃 = 𝑉 ∗ 𝐼 (2)

where P is the power; V, the voltage; and I, the battery current. Assuming that the

battery voltage is 11.1 V, and the current is 0.45 A, a power of 4.99 W is obtained.

After having the electrical specifications of the battery for the design, we searched for a

commercial reference of a LiPo battery that met these power consumption needs. Although

the electrical and size specifications of LiPo batteries are common among different

manufacturers, the initial search retrieved the Gens Ace 450 mAh-11.1 V 3-cell battery,

which was selected for this design.

3. RESULTS AND DISCUSSION

For the image acquisition and communication system, three different tests were

performed varying the resolution of the acquired image and the encoding and decoding

quality factor. In each test, we recorded data on the number of frames per second (fps) and

the transmission rate measured in kbps (Kbits per second). Table 2 shows the results with

different resolutions. It can be seen that, as the input image resolution increases, the frames

per second decrease. However, the fps obtained by setting the image to the standard

resolution of NAO’s camera (i.e., 640x480) are much higher than those expected for a real-

time application. By focusing the research work on the NAO humanoid robot, this resolution

is taken as the entry point to the given data processing system for each heterogeneous

architecture when running the CNN.

On the other hand, concerning CNN implementations in embedded systems, the results

were obtained in frames per second and power consumption. To evaluate the performance of

the object detection system implemented in FPGA, a CNN was employed in the PipeCNN

framework using an Intel® FPGA board.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 15 | 22

Table 2. Fps and Kbps in image transmission and reception. Source: Created by the authors.

Image

resolution

Transmission Reception

kbps fps kbps fps

1920x1080

FullHD
91452,3 20 91121,1 19

640x480 VGA 10743,3 65 10534,6 63

224x224 ImageNet 11342,3 128 11134,6 123

The implemented CNN is a quantized version of AlexNet containing eight convolution

layers executed on the FPGA. A result of 205 ms per image was obtained, which means that

the FPGA can process 4.87 images per second. This implementation is not in real time

because it is not in the range from 20 fps to 30 fps.

Comparing the results in frames per second, [33] obtained 66 fps when they implemented

PipeCNN; [34], 70 fps when they accelerated a CNN using CUDA on a Jetson Tx2; [35], 864.7

fps when they implemented AlexNet on a Stratix-V; and [34], 11 fps, which is below what is

required for a real-time application, when they implemented NCSDK on a Movidius.

Power consumption results were estimated with Intel Quartus® Prime Power Analyzer

software. The maximum number of computing units that can be implemented on the Cyclone

V SoC is four. It can be seen from Table 3 that the resources used in this design are below

the total numbers contained in the board. This occurs because the board contains only 4192

LAB that are maxed out in this implementation. For this reason, it is not possible to increase

the performance of the framework on the Cyclone V-SoC, unlike the implementation

performed by [33] on the DE5-net platform, which does achieve real-time ranking since the

platform is much larger in terms of resources.

Table 3. PipeCNN framework resources in the Cyclone V SoC Development Kit

Source: Created by the authors.

PipeCNN

Resources Used Available Utilization percentage

LUT 48173 110000 43.79 %

FF 66830 219144 30.50 %

RAM 285 514 55.45 %

DSP 35 112 31.25 %

Power consumption 2.056 W

For the second framework, the image was acquired with a high-resolution webcam in real

time, which was done with the help of the OpenCV libraries installed by default in the PYNQ

framework. In Figure 5, the top images show the humanoid robot NAO interacting in a

virtual environment created by Webots. The bottom images show the object position boxes

and the prediction of identified objects in the embedded systems. Figure 6 presents the

detection of the same objects created in the virtual setting (i.e., a chair and a person) but in

a real controlled environment.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 16 | 22

Figure 5. Top: NAO interacting in the virtual environment. Bottom: chair and person detection on embedded

systems. Source: Created by the authors.

Figure 6. Detection of objects in a real environment. Source: Created by the authors.

As a result, on the Ultra96, we obtained an execution time of 83 ms, which is equivalent

to 12 frames per second and still below real-time execution. In comparison, in [19], 5 fps were

obtained by implementing Tiny-YOLO on the Jetson Tx2, while, in [20], 21 fps were achieved

by running the CNN on a VC707 FPGA. The results show that implementations of this same

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 17 | 22

CNN on different platforms present higher fps on the Tiny-YOLO executed on the Ultra96

than on the Jetson Tx2, but a worse performance than another FPGA implementation.

The amount of resources used in the Ultra96 is the same for any implementation since

the MO architecture is topology-independent. It can be seen in Table 4 that the BRAM is at

more than 90 % of the available resources on the board, but the utilization of the rest of the

resources does not exceed 50 %. This is expected since FPGAs have little internal memory

storage capacity.

Table 4. Resources used in the implementation of the QNN framework on the Ultra96.

Source: Created by the authors.

FINN Framework

Resources Used Available Utilization percentage

LUT
2975

4
70560 42.17 %

Register
3605

0
141120 25.55 %

Block RAM 200 216 92.59 %

DSP 56 360 15.56 %

Power consumption 3.1 W

In the application explored here, i.e., classification of toys for early childhood education,

the modified implementation of the Inception-V3 network achieved a 98 % classification rate

and a real-time performance of 27 fps. This architecture was implemented at a clock

frequency of 370 MHz using the DPU. The SGD optimizer was used with a learning-rate of

0.0001 and a momentum value of 0.9; category cross-entropy was employed as the cost

function. For the training with transfer-learning, the first 172 convolutional layers of the

network are frozen, and the output layer of Inception-V3 is a softmax activation with 1000

classes. In this study, this layer is removed and replaced with a 10-class softmax layer,

whereby this layer is trained together with the remaining dense layers for this application,

which is focused on the classification of 10 types of toys. The training result obtained in Keras

was converted to the DNNDK framework using the DECENT and DNNC tools, in which the

elf file containing all the CNN information (weights and architecture) was created. During

the inference, this file was read by the ARM of the FPGA SoC, which was in charge of sending

the tasks to the DPU to process and the returned result. The resources used in the Ultra96

for the QNN framework, and the IP DPU are shown in Table 5.

Table 5. QNN framework and IP DPU Ultra96 FPGA resources. Source: Created by the authors.

Resources QNN DPU Available

LUT 29754 37055 70560

Register 36050 72850 141120

Block RAM 200 161,5 216

DSP 56 290 360

Power consumption 3.1 W - -

Regarding the implementation of classical machine learning algorithms for early

childhood education applications, a DELL computer with a 1.6-GHZ ATOM processor and 1

GB of RAM was used for the inference stage of each of the classical classifiers implemented

here. Table 6 presents the results of these classifiers in terms of accuracy and training time

in seconds. For this application, each pixel is used as a feature; thus, each classification model

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 18 | 22

has 200x200x3 features. Table 6 indicates that, by training each of the classical classifiers,

an accuracy between 70 % and 85 % was obtained in the validation set.

Table 6. Accuracy and training time of classical classifiers. Source: Created by the authors.

Model Accuracy (%) Training time (s)

Naive Bayes 0.54 0.02

Logit 0.84 4.96

Decision Tree 0.76 0.59

Random Forest 0.81 2.97

Table 7 compares the performance of CNN-FPGA/GPU and classical algorithms run on

the sequential system of the NAO humanoid robot. For the inference tests, five random

images were taken from the test database. It can be seen that running the Inception-V1 and

Inception-V3 transfer-learning architectures yields real-time results. The opposite case

occurs with the remaining implementations, where the frames per second were well below

those established for a real-time application. In the case of the Tinier-YOLO CNN executed

on the FPGA and GPU, despite the quantification of its weights, lower fps was obtained, but

the FPGA was able to process more images per second than the GPU for this convolutional

neural network architecture. On the other hand, the sequential system of the NAO humanoid

robot has processing limitations when classical computer vision techniques are executed.

Despite the fact that they are much lighter models, the maximum that the NAO CPU

could process was 3.95 fps with Decision Tree. This limitation arises because each pixel is

used as a feature by each classification model, which has 200x200x3 features (input image

size). Finally, since CNNs are larger architectures, the NAO processing system would be

restricted in computing each of the layers and weights contained in a CNN.

Table 7 shows that, when it performs the inference, the embedded system takes 0.037

seconds, which is equivalent to 27 fps.

Table 7. Comparison of execution times and fps of a CNN (on two FPGAs and one GPU) vs. classical techniques

(on an Intel® Atom Z530 CPU). Source: Created by the authors.

Hardware

type

Development

board
Architecture Model

Execution

time (s)

Frame

rate (fps)

FPGA

Cyclone V-SoC

CNN

AlexNet 0.200 4.87

Ultra96

Tinier-YOLO 0.083 12.04

Inception-V1 0.033 30.30

Inception-V3

transfer learning
0.037 27.02

GPU Jetson TX2

Tinier-YOLO 0.100 9.86

Inception-V1 0.035 28.50

AlexNet 0.035 28.50

CPU
Intel Atom

Z530

Classical

techniques

Decision Tree 0.253 3.95

Logit 0.504 1.98

Naive Bayes 9 0.0001

Random Forest 0.316 3.16

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 19 | 22

4. CONCLUSIONS

In this paper, we presented a system to improve the visual perception in humanoid robots

in autonomous applications by integrating heterogeneous architectures based on a GPU or a

FPGA running a CNN. Three CNNs (Alexnet, Inception-V1, and Tinier-YOLO) were used to

select the architecture in the final implementation. We evaluated the performance of the

Xilinx Ultra96-V2 FPGA, Intel Cyclone V SoC FPGA, and Nvidia Jetson TX2 GPU platforms

when running these CNN models. The Ultra96 achieved 12 fps when running Tinier-YOLO

at 3.1 W, while the Jetson TX2 achieved 9.86 fps and a power consumption of 7 W; their input

was an image with a size of 640x480 pixels, which is the standard resolution of the NAO

humanoid robot’s camera. In our application on the Inception-V1 CNN, real-time results were

obtained with heterogeneous architectures on two FPGAs (i.e., Intel Cyclone V SoC and

Ultra96-V2), while the expected behavior was obtained when AlexNet was run on the Jetson

TX2. In terms of accuracy, the Inception V1 network presents the best performance (88.9 %)

and low resource consumption when implemented on the Ultra96. On the other hand, in

Table 7, it can be observed that the available resources are sufficient when CNN is

implemented, opening the possibility of implementing larger network architectures.

Considering the above and the results in terms of execution time and power consumption,

the Ultra96 FPGA was selected for the design of the backpack for NAO.

Despite the implementations of deep learning models in the conventional computational

system of humanoid robots reviewed in the introduction, processing times during object

recognition are affected by the high computational cost required by deep learning models

such as CNNs. The integration of a CNN and a heterogeneous FPGA- or GPU-based

architecture in humanoid robots can provide these automatons with real-time visual

perception enhancement that can be exploited in human-robot interaction applications. In

this study, we solved three problems: (1) reducing the execution time and improving the

accuracy of object detection in an everyday environment while maintaining the autonomy of

the robot; (2) creating a system that can be replicable to humanoid robots such as Pepper and

Robotis OP3; and (3) producing a development that can be used to integrate heterogeneous

architectures with a high degree of parallelism, low power consumption and small size that

execute a CNN and can be easily integrated into the structure of any humanoid robot using

a backpack.

In this study, simulation tools were used to prototype a virtual environment—that

includes a humanoid NAO robot and objects around it—and then send the image to each of

the embedded systems to perform object classification or detection. One point to consider is

that virtual environments do not consider all the possible factors that in real environments

may affect the performance of the system. However, in this application, other tests were

carried out in real environments, obtaining a good performance. Considering the above, in

future work, we will implement the system developed here in real conditions considering

other external factors and a real-life application. We also aim to examine the quantification

of convolutional neural networks in greater depth. Since CNNs are computationally

expensive, quantization is an open research topic because the size of the network is expected

to be reduced considerably without losing accuracy. With this reduction in size, CNNs are

expected to be more easily implemented in embedded systems that can be integrated into

humanoid robots such as NAO. Furthermore, NAO’s depth sensor could be used to calculate

the actual distance of the object once it has been detected by the CNN. This could extend the

robot’s capabilities in human–robot interaction tasks.

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 20 | 22

5. ACKNOWLEDGMENTS

This study was supported by the Automática, Electrónica y Ciencias Computacionales

(AE&CC) research group (Minciencias code: COL0053581) at the Control Systems and

Robotics Laboratory of the Instituto Tecnológico Metropolitano (ITM) in Medellín. This

article is part of the project called Improving visual perception in humanoid robots for object

recognition in natural environments using Deep Learning, which was funded by ITM in

association with Universidad de Antioquia (project code: P17224).

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest.

AUTHOR CONTRIBUTIONS

Joaquin Guajo: conceptualization, methodology, validation, formal analysis,

investigation, original draft preparation, review, and editing

Cristian Alzate-Anzola: methodology, validation, original draft preparation

Luis Castaño-Londoño: conceptualization, methodology, validation, investigation, review

and editing, funding acquisition,

David Márquez-Viloria: conceptualization, methodology, validation, investigation, review

and editing, funding acquisition.

6. REFERENCES

[1] S. R. Fanello; C. Ciliberto; N. Noceti, G. Metta; F. Odone, “Visual recognition for humanoid robots”, Rob.

Auton Syst., vol. 91, pp. 151–168, May 2017. https://doi.org/10.1016/j.robot.2016.10.001

[2] E. Cha; M. Mataric; T. Fong, “Nonverbal signaling for non-humanoid robots during human-robot

collaboration”, in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),

2016, pp. 601–602. https://doi.org/10.1109/HRI.2016.7451876

[3] S. Shamsuddin et al., “Initial response of autistic children in human-robot interaction therapy with

humanoid robot NAO”, in 2012 IEEE 8th International Colloquium on Signal Processing and its

Applications, 2012, pp. 188–193. https://doi.org/10.1109/CSPA.2012.6194716

[4] J. G. Hoyos-Gutiérrez; C. A. Peña-Solórzano; C. L. Garzón-Castro; F. A. Prieto-Ortiz; J. G. Ayala-Garzón,

“Hacia el manejo de una herramienta por un robot NAO usando programación por demostración”,

TecnoLógicas, vol. 17, no. 33, pp. 65-76, Aug. 2014. https://doi.org/10.22430/22565337.555

[5] P. Vadakkepat; N. B. Sin; D. Goswami; R. X. Zhang; L. Y. Tan, “Soccer playing humanoid robots: Processing

architecture, gait generation and vision system”, Rob. Auton. Syst., vol. 57, no. 8, pp. 776–785, Jul. 2009.

https://doi.org/10.1016/j.robot.2009.03.012

[6] A. Härtl; U. Visser; T. Röfer, “Robust and Efficient Object Recognition for a Humanoid Soccer Robot”,
Springer, Berlin, Heidelberg, 2014, pp. 396–407. https://doi.org/10.1007/978-3-662-44468-9_35

[7] D. Budden; S. Fenn; J. Walker; A. Mendes, “A Novel Approach to Ball Detection for Humanoid Robot

Soccer”, Springer, Berlín, Heidelberg, 2012, pp. 827–838. https://doi.org/10.1007/978-3-642-35101-3_70

[8] P. Sermanet; D. Eigen; X. Zhang; M. Mathieu; R. Fergus; Y. Le Cun, “Integrated recognition, localization

and detection using convolutional networks”, 2013. https://arxiv.org/abs/1312.6229

[9] A. Krizhevsk; I. Sutskever; G. E. Hinton, “ImageNet classification with deep convolutional neural

networks”, Commun. ACM, vol. 60, no. 6, pp. 84–90, Jun 2017. https://doi.org/10.1145/3065386

[10] K. Simonyan; A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv

preprint, Sep.2015. https://arxiv.org/abs/1409.1556

https://doi.org/10.1016/j.robot.2016.10.001
https://doi.org/10.1109/HRI.2016.7451876
https://doi.org/10.1109/CSPA.2012.6194716
https://doi.org/10.22430/22565337.555
https://doi.org/10.1016/j.robot.2009.03.012
https://doi.org/10.1007/978-3-662-44468-9_35
https://doi.org/10.1007/978-3-642-35101-3_70
https://arxiv.org/abs/1312.6229
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1409.1556

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 21 | 22

[11] K. He; X. Zhang; S. Ren; J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

https://doi.org/10.1109/CVPR.2016.90

[12] H. V. Nguyen; H. T. Ho; V. M. Patel; R. Chellappa, “DASH-N: Joint Hierarchical Domain Adaptation and

Feature Learning,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5479–5491, Dec. 2015.

https://doi.org/10.1109/TIP.2015.2479405

[13] M. Podpora; A. Gardecki, “Extending vision understanding capabilities of NAO robot by connecting it to a

remote computational resource,” in 2016 Progress in Applied Electrical Engineering (PAEE), 2016, pp. 1–

5. https://doi.org/10.1109/PAEE.2016.7605119

[14] M. Puheim; M. Bundzel; L. Madarasz, “Forward control of robotic arm using the information from stereo-

vision tracking system”, in 2013 IEEE 14th International Symposium on Computational Intelligence and

Informatics (CINTI), 2013, pp. 57–62. https://doi.org/10.1109/CINTI.2013.6705259

[15] K. Noda; H. Arie; Y. Suga; T. Ogata, “Multimodal integration learning of robot behavior using deep neural

networks”, Rob. Auton. Syst., vol. 62, no. 6, pp. 721–736, Jun. 2014.

https://doi.org/10.1016/j.robot.2014.03.003

[16] A. Biddulph; T. Houliston; A. Mendes; S. K. Chalup, “Comparing Computing Platforms for Deep Learning

on a Humanoid Robot”, Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-04239-4_11

[17] A. Dundar; J. Jin; B. Martini; E. Culurciello, “Embedded Streaming Deep Neural Networks Accelerator

with Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 7, pp. 1572–1583, Jul. 2017.

https://doi.org/10.1109/TNNLS.2016.2545298

[18] H. Park et al., “Optimizing DCNN FPGA accelerator design for handwritten hangul character recognition”,

in Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for

Embedded Systems Companion, 2017, pp. 1–2. https://doi.org/10.1145/3125501.3125522

[19] C. Zhang; P. Li; G. Sun; Y. Guan; B. Xiao; J. Cong, “Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks”, in Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2015, pp. 161–170. https://doi.org/10.1145/2684746.2689060

[20] Q. Xiao; Y. Liang; L. Lu; S. Yan; Y.-W. Tai, “Exploring Heterogeneous Algorithms for Accelerating Deep

Convolutional Neural Networks on FPGAs”, in Proceedings of the 54th Annual Design Automation

Conference 2017, 2017, pp. 1–6. https://doi.org/10.1145/3061639.3062244

[21] E. Del Sozzo; A. Solazzo; A. Miele; M. D. Santambrogio, “On the Automation of High Level Synthesis of

Convolutional Neural Networks”, in 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2016, pp. 217–224. https://doi.org/10.1109/IPDPSW.2016.153

[22] C. Zhang; G. Sun; Z. Fang; P. Zhou; P. Pan; J. Cong, “Caffeine: Toward Uniformed Representation and

Acceleration for Deep Convolutional Neural Networks”, in IEEE Trans. Comput. Des. Integr. Circuits Syst.,

vol. 38, no. 11, pp. 2072–2085, Nov. 2019. https://doi.org/10.1109/TCAD.2017.2785257

[23] R. Andri; L. Cavigelli; D. Rossi; L. Benini, “YodaNN: An Ultra-Low Power Convolutional Neural Network

Accelerator Based on Binary Weights”, in 2016 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2016, pp. 236–241. https://doi.org/10.1109/ISVLSI.2016.111

[24] L. Ni; Z. Liu; H. Yu; R. V. Joshi, “An Energy-Efficient Digital ReRAM-Crossbar-Based CNN With Bitwise

Parallelism”, IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 3, pp. 37–46, Dec. 2017.

https://doi.org/10.1109/JXCDC.2017.2697910

[25] A. Kulkarni; T. Abtahi; C. Shea; A. Kulkarni; T. Mohsenin, “PACENet: Energy efficient acceleration for

convolutional network on embedded platform”, in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS), 2017, pp. 1–4. https://doi.org/10.1109/ISCAS.2017.8050342

[26] T. Gong; T. Fan; J. Guo; Z. Cai, “GPU-based parallel optimization of immune convolutional neural network

and embedded system”, Eng. Appl. Artif. Intell., vol. 62, pp. 384–395, Jun. 2017.

https://doi.org/10.1016/j.engappai.2016.08.019

[27] D. Strigl; K. Kofler; S. Podlipnig, “Performance and Scalability of GPU-Based Convolutional Neural

Networks”, in 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing,

2010, pp. 317–324. https://doi.org/10.1109/PDP.2010.43

[28] O. Michel, “Cyberbotics Ltd. Webots TM: Professional Mobile Robot Simulation”, Int. J. Adv. Robot. Syst.,

vol. 1, no. 1, p. 39-42, Mar. 2004. https://doi.org/10.5772/5618

[29] E. Pot; J. Monceaux; R. Gelin; B. Maisonnier, “Choregraphe: a graphical tool for humanoid robot

programming”, in RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human

Interactive Communication, 2009, pp. 46–51. https://doi.org/10.1109/ROMAN.2009.5326209

[30] M. Blott et al., “FINN- R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized

Neural Networks”, ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, pp. 1–23, Sep. 2018.

https://doi.org/10.1145/3242897

[31] S. Wang; S. Jiang, “INSTRE: A New Benchmark for Instance-Level Object Retrieval and Recognition”,

ACM Trans. Multimed. Comput. Commun. Appl., vol. 11, no. 3, pp. 1–21, Feb. 2015.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TIP.2015.2479405
https://doi.org/10.1109/PAEE.2016.7605119
https://doi.org/10.1109/CINTI.2013.6705259
https://doi.org/10.1016/j.robot.2014.03.003
https://doi.org/10.1007/978-3-030-04239-4_11
https://doi.org/10.1109/TNNLS.2016.2545298
https://doi.org/10.1145/3125501.3125522
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/3061639.3062244
https://doi.org/10.1109/IPDPSW.2016.153
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/ISVLSI.2016.111
https://doi.org/10.1109/JXCDC.2017.2697910
https://doi.org/10.1109/ISCAS.2017.8050342
https://doi.org/10.1016/j.engappai.2016.08.019
https://doi.org/10.1109/PDP.2010.43
https://doi.org/10.5772/5618
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1145/3242897

J. Guajo et al. TecnoLógicas, Vol. 25, nro. 53, e2170, 2022

Page 22 | 22

https://doi.org/10.1145/2700292

[32] M. Mattamala; G. Olave; C. González; N. Hasbún; J. Ruiz-del-Solar, “The NAO Backpack: An Open-

Hardware Add-on for Fast Software Development with the NAO Robot”, 2018, pp. 302–311.

https://doi.org/10.1007/978-3-030-00308-1_25

[33] D. Wang; K. Xu; D. Jiang, “PipeCNN: An OpenCL-based open-source FPGA accelerator for convolution

neural networks”, in 2017 International Conference on Field Programmable Technology (ICFPT), 2017, pp.

279–282. https://doi.org/10.1109/FPT.2017.8280160

[34] S. Xu; A. Savvaris; S. He; H. Shin; A. Tsourdos, “Real-time Implementation of YOLO+JPDA for Small Scale

UAV Multiple Object Tracking,” in 2018 International Conference on Unmanned Aircraft Systems (ICUAS),

2018, pp. 1336–1341. https://doi.org/10.1109/ICUAS.2018.8453398

[35] J. Ma; L. Chen; Z. Gao, “Hardware Implementation and Optimization of Tiny-YOLO Network”, Springer,

Singapur, 2018, pp. 224–234, https://doi.org/10.1007/978-981-10-8108-8_21

https://doi.org/10.1145/2700292
https://doi.org/10.1007/978-3-030-00308-1_25
https://doi.org/10.1109/FPT.2017.8280160
https://doi.org/10.1109/ICUAS.2018.8453398
https://doi.org/10.1007/978-981-10-8108-8_21

