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Abstract
Concrete domains have been introduced in the area of Description Logic (DL) to enable reference
to concrete objects (such as numbers) and predefined predicates on these objects (such as
numerical comparisons) when defining concepts. Unfortunately, in the presence of general
concept inclusions (GCIs), which are supported by all modern DL systems, adding concrete
domains may easily lead to undecidability.

To regain decidability of the DLALC in the presence of GCIs, quite strong restrictions, calledω-
admissibility, were imposed on the concrete domain. On the one hand, we generalize the notion
of ω-admissibility from concrete domains with only binary predicates to concrete domains with
predicates of arbitrary arity. On the other hand, we relateω-admissibility to well-known notions
from model theory. In particular, we show that finitely bounded homogeneous structures yield
ω-admissible concrete domains. This allows us to show ω-admissibility of concrete domains
using existing results from model theory. When integrating concrete domains into lightweight
DLs of the EL family, achieving decidability of reasoning is not enough. One wants the resulting
DL to be tractable. This can be achieved by using so-called p-admissible concrete domains
and restricting the interaction between the DL and the concrete domain. We investigate p-
admissibility from an algebraic point of view. Again, this yields strong algebraic tools for
demonstrating p-admissibility. In particular, we obtain an expressive numerical p-admissible
concrete domain based on the rational numbers. Although ω-admissibility and p-admissibility
are orthogonal conditions that are almost exclusive, our algebraic characterizations of these
two properties allow us to locate an infinite class of p-admissible concrete domains whose
integration into ALC yields decidable DLs.

DL systems that can handle concrete domains allow their users to employ a fixed set of
predicates of one or more fixed concrete domains when modelling concepts. They do not
provide their users with means for defining new predicates, let alone new concrete domains.
The good news is that finitely bounded homogeneous structures offer precisely that. We show
that integrating concrete domains based on finitely bounded homogeneous structures into ALC
yields decidable DLs even if we allow predicates specified by first-order formulas. This class of
structures also provides effective means for defining new ω-admissible concrete domains with
at most binary predicates. The bad news is that defining ω-admissible concrete domains with
predicates of higher arities is computationally hard. We obtain two new lower bounds for this
meta-problem, but leave its decidability open. In contrast, we prove that there is no algorithm
that would facilitate defining p-admissible concrete domains already for binary signatures.
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Chapter

1 Introduction

Description Logics (DLs) [5, 9] are a well-investigated family of logic-based knowledge repre-
sentation languages, which are frequently used to formalize ontologies for application domains
such as the Semantic Web [57] or biology and medicine [56]. To define the important notions
of such an application domain as formal concepts, DLs state necessary and sufficient conditions
for an individual to belong to a concept. These conditions can be Boolean combinations of
atomic properties required for the individual (expressed by concept names) or properties
that refer to relationships with other individuals and their properties (expressed as role re-
strictions). For example, the concept of a father that has only daughters can be formalized
by the concept description Cex := ¬Female u ∃child. Human u ∀child. Female, which uses the
concept names Female and Human and the role name child as well as the concept constructors
negation (¬), conjunction (u), existential restriction (∃r. D), and value restriction (∀r. D). The
GCIs Human v ∀child. Human and ∃child. Human v Human say that humans have only human
children, and they are the only ones that can have human children.

DL systems provide their users with reasoning services that allow them to derive implicit
knowledge from the explicitly represented one. In our example, the above GCIs imply that
elements of our concept Cex also belong to the concept Dex := Human u ∀child. Human, i.e.,
Cex is subsumed by Dex w.r.t. these GCIs. A specific DL is determined by which kind of concept
constructors are available. A major goal of DL research was and still is to find a good compromise
between expressiveness and the complexity of reasoning, i.e., to locate DLs that are expressive
enough for interesting applications, but still have inference problems (like subsumption) that
are decidable and preferably of a low complexity. For the DL ALC, in which all the concept
descriptions used in the above example can be expressed, the subsumption problem w.r.t. GCIs
is EXPTIME-complete [9].

Classical DLs like ALC cannot refer to concrete objects and predefined relations over these
objects when defining concepts. For example, a constraint stating that parents are strictly
older than their children cannot be expressed in ALC. To overcome this deficit, a scheme for
integrating certain well-behaved concrete domains, called admissible, into ALC was introduced
in [6], and it was shown that this integration leaves the relevant inference problems (such
as subsumption) decidable. Basically, admissibility requires that the set of predicates of the
concrete domain is closed under negation and that the constraint satisfaction problem (CSP)
for the concrete domain is decidable. However, in this setting, GCIs were not considered since
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1. Introduction

they were not a standard feature of DLs then,1 though a combination of concrete domains and
GCIs would be useful in many applications. For example, using the syntax employed in [70]
and also in this thesis, the above constraint regarding the age of parents and their children
could be expressed by the GCI Humanu ∃age, childage. (x1 < x2)v⊥, which says that there
cannot be a human whose age is smaller than the age of one of their children. Here ⊥ is the
bottom concept, which is always interpreted as the empty set, age is a feature that maps from
the abstract domain populating concepts into the concrete domain of rational numbers, and <
is the usual “smaller than” predicate.

A first indication that concrete domains might be harmful for decidability was given in
[8], where it was shown that adding transitive closure of roles to the extension of ALC by
an admissible concrete domain based on real arithmetics renders the subsumption problem
undecidable. The proof of this result uses a reduction from the Post Correspondence Problem
(PCP). It was shown in [68] that this proof can be adapted to the case where transitive closure
of roles is replaced by GCIs, and it actually works for considerably weaker concrete domains,
such as the rational numbers Q or the natural number N with a unary predicate =0 for equality
with zero, a binary equality predicate =, and a unary predicate +1 for incrementation. In [10] it
is shown, by a reduction from the halting problem of two-register machines, that undecidability
even holds without = and =0.

To regain decidability, one option is to impose syntactic restrictions on how the DL can
interact with the concrete domain [49, 76]. The main idea is to disallow paths (such as
child age in our example), which has the effect that concrete domain predicates cannot compare
properties (such as the age) of different individuals. Another option is to impose stronger
restrictions than admissibility on the concrete domain. After first positive results for specific
concrete domains (e.g., the rational numbers with order and equality [67, 69]), the notion
of ω-admissible concrete domains was introduced in [70], and it was shown (by designing a
tableau-based decision procedure) that integrating such a concrete domain into ALC leaves
reasoning decidable also in the presence of GCIs. In [10], we generalize the notion of ω-
admissibility and the decidability result from concrete domains with only binary predicates as
in [70] to concrete domains with predicates of arbitrary arity.

When integrating a concrete domain into a lightweight DL like EL, one wants to preserve
tractability rather than just decidability. To achieve this, the notion of p-admissible concrete
domains was introduced in [3] and paths of length > 1 were disallowed in concrete domain
restrictions. Regarding the latter condition, note that, in the above example, we have used the
path childage, which has length 2. The restriction to paths of length 1 means (in our example)
that we can no longer compare the ages of different humans, but we can still define concepts
like teenager, using the GCI Teenager v Humanu ∃age.≥10(x1)∧≤19(x1), where ≥10 and ≤19

are unary predicates respectively interpreted as the rational numbers greater equal 10 and
smaller equal 19. In a p-admissible concrete domain, satisfiability of conjunctions of atomic
formulas and validity of implications between such conjunctions must be tractable. In addition,

1Actually, GCIs were introduced (with a different name) at about the same time as concrete domains [4, 78].
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the concrete domain must be convex, which roughly speaking means that a conjunction cannot
imply a true disjunction. For example, the concrete domain (Q;<,=,>) is ω-admissible, but
it is not convex since x < y ∧ x < z implies y < z ∨ y = z ∨ y > z, but none of the disjuncts.
In [3], two p-admissible concrete domains were exhibited, one of them based on Q with
unary predicates =p,>p and binary predicates +p,=. To the best of our knowledge, no other
p-admissible concrete domains have been described in the literature before our work in [12].
Similarly, after the publication of [70] and before our work in [10], no new ω-admissible
concrete domains were exhibited. We believe that the reason for this is that it is quite hard to
proveω-admissibility or p-admissibility of a concrete domain without appropriate mathematical
tools.

The main contribution of this thesis is to develop such tools based on a model-theoretic
analysis of the conditions required by these two notions of admissibility. It is based on the
conference publications [10] and [12], but differs from them w.r.t. some details and also
presents additional results. On the one hand, we show that there is a close relationship between
ω-admissibility and well-known notions from model theory. In particular, we prove that finitely
bounded homogeneous structures yield ω-admissible concrete domains. This allows us to
show ω-admissibility of known such concrete domains (like Allen and RCC8 from [70]; see
Example 4) and to locate newω-admissible concrete domains using existing results from model
theory (see Examples 5, 6, and 7). We can even show that some of the relevant properties
can be algorithmically tested (see Chapter 6). On the other hand, we devise an algebraic
characterization of convexity based on the notion of square embeddings, which are embeddings
of the second power of a relational structure into itself. We investigate the implications of
this characterization for so-called ω-categorical structures, finitely bounded structures, and
numerical structures. Each of these cases provides us with new examples of p-admissible
concrete domains. In particular, we exhibit a new and quite expressive p-admissible concrete
domain based on the rational numbers, whose predicates are defined by linear equations
over Q. As it is the case with ω-admissibility, we investigate algorithmic testability of the
relevant properties. While testing an already existing concrete domain for convexity could
in theory be automatized, we show that defining new p-admissible concrete domains from
scratch is an algorithmically unsolvable problem. We also investigate the connection between
p-admissibility and ω-admissibility. It turns out that only trivial concrete domains can satisfy
both properties. However, we can show that convex finitely bounded homogeneous structures,
which are p-admissible, can be integrated into ALC (even without the length 1 restriction on
role paths) without losing decidability. Whereas these structures are not ω-admissible, they
can be expressed in an ω-admissible concrete domain.
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Chapter

2 Preliminaries

In this section, we introduce the algebraic and logical notions that will be used in the rest of the
thesis. The set {1, . . . , n} is denoted by [n]. Given a set A, the equality on A is defined as the bi-
nary relation EqA := {(a, a) | a ∈ A}. We use the bar notation for tuples; for a tuple t̄ indexed by a
set I , the value of t̄ at the position i ∈ I is denoted by t̄[i]. For a function f : Ak → B and n-tuples
t̄1, . . . , t̄k ∈ An, we use the shortcut f ( t̄1, . . . , t̄k) :=

�

f ( t̄1[1], . . . t̄k[1]), . . . , f ( t̄1[n], . . . , t̄k[n])
�

.

From a mathematical point of view, concrete domains are relational structures. A relational
signature τ is a set of relation symbols, each with an associated natural number called arity. For
a relational signature τ, a relational τ-structure A (or simply τ-structure or structure) consists
of a set A (the domain) together with the relations RA ⊆ Ak for each relation symbol R ∈ τ of
arity k. Such a structure A is finite if its domain A is finite. We often describe structures by
listing their domain and relations; e.g., we write Q = (Q;<) for the relational structure whose
domain is the set of rational numbers Q, and which has the usual smaller relation < on Q as
its only relation.1

The direct product of a family (Ai)i∈I of τ-structures is the τ-structure
∏

i∈I Ai over
∏

i∈I Ai

such that, for each R ∈ τ of arity k, we have (ā1, . . . , āk) ∈ RΠi∈IAi if and only if (ā1[i], . . . , āk[i]) ∈
RAi for every i ∈ I . We denote the square, i.e., the binary product of a structure A with itself
by A2. An expansion of a τ-structure A is a σ-structure B with A = B such that τ ⊆ σ and
RB = RA for each relation symbol R ∈ τ. Conversely, we call A a reduct of B. We use the
notation (A, R1, . . . , Rn) to describe an expansion of A by the relations R1, . . . , Rn over A; e.g.,
(Q, 6=) stands for (Q;<, 6=).

One possibility to obtain an expansion of a τ-structure is to use formulas of first-order (FO)
logic over the signature τ to define new predicates, where a formula with k free variables
defines a k-ary predicate in the obvious way. We say that a first-order formula is k-ary if it has
k free variables. For a first-order formula φ, we use the notation φ( x̄) to indicate that the free
variables ofφ are among x̄ . This does not necessarily mean that the truth value ofφ depends on
each variable in x̄ . We assume that equality = as well as the nullary predicate symbol false for
falsity are always available when building these formulas. Thus, atomic formulas are of the form
false, x i = x j , and R(x1, . . . , xk) for some k-ary R ∈ τ and variables x1, . . . , xk. For a structure
A we denote its first-order theory, i.e., the set of all first-order sentences that hold in A, with
Th(A). For a first-order τ-sentence Φ, we denote the class of all finite models of Φ by Modfin(Φ).

1By an abuse of notation, we use < instead of <Q to denote the interpretation of the predicate symbol < in Q.
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2. Preliminaries

In addition to full first-order logic, we also use standard fragments such as the existential
positive (EP), the primitive positive (PP), and the quantifier-free (QF) fragment. The existential
positive fragment consists of formulas built using conjunction, disjunction, and existential
quantification only. The primitive positive fragment of existentially quantified conjunctions of
atomic formulas, and the quantifier-free fragment consists of Boolean combinations of atomic
formulas. A formula is called equality-free if it does not contain any occurrence of the default
equality predicate =.2 Let Σ be a set of first-order formulas and D a structure. We say that
a relation over D has a Σ-definition in D if it is of the form { t̄ ∈ Dk | D |= φ( t̄)} for some
φ ∈ Σ. We refer to this relation by φD. For example, the formula φ(x , y) := y < x ∨ y = x is
existential positive and quantifier-free. Interpreted in the structure Q, it clearly defines the
binary relation ≥ on Q. This shows that ≥ is EP and QF definable in Q. An example of a PP
formula is the formula φ(x) := ∃y

�

x = y
�

, which defines the unary relation interpreted as
the whole domain Q. An implication is of the form ∀ x̄

�

φ⇒ψ
�

where φ is a conjunction of
atomic τ-formulas other than false, ψ is a disjunction of atomic τ-formulas, and the tuple x̄
consists of all the variables occurring in φ or ψ. We refer to φ as the premise, and to ψ as the
conclusion. An implication over a signature τ is called a tautology if it holds in all τ-structures,
i.e., if one disjunct of the conclusion equals one of the conjuncts of the premise. An implication
∀ x̄

�

φ ⇒ ψ
�

is a Horn implication if ψ is a single atomic τ-formula. A universal sentence is
called Horn if it is a conjunction of Horn implications.

For a fixed τ-structure B, the constraint satisfaction problem (CSP) for B [17] asks whether
a given PP τ-sentence is satisfiable in B. Typically, CSPs are only defined for structures with a
finite signature (for technical reasons). In the present thesis, we do not follow this convention.
The CSP for A can be reduced in polynomial time to the validity problem for Horn implications
since φ is satisfiable in A if and only if ∀ x̄

�

φ⇒ false
�

is not valid in A. Conversely, validity
of Horn implications in a structure A can be reduced in polynomial time to CSP(A¬, 6=) where
A¬ is the expansion of A by the complements of all relations. In fact, the Horn implication
∀ x̄

�

φ⇒ψ
�

is valid in A if and only if φ ∧¬ψ is not satisfiable in (A¬, 6=). Note that, in the
signature of (A¬, 6=), ¬ψ can be expressed by an atomic formula.

A homomorphism h: A→B for τ-structures A and B is a mapping h: A→ B that preserves
each relation of A, i.e, if t̄ ∈ RA for some k-ary relation symbol R ∈ τ, then h( t̄) ∈ RB. The
homomorphism h: A→B is strong if it additionally satisfies the inverse condition: for every
k-ary relation symbol R ∈ τ and t̄ ∈ Ak we have h( t̄) ∈ RB only if t̄ ∈ RA. An embedding is
an injective strong homomorphism. We write A → B (A ,→ B) if there is a homomorphism
(embedding) from A to B. A self-embedding is an embedding of a structure into itself. A
substructure of B is a structure A over the domain A⊆ B such that the inclusion map i : A→ B
is an embedding. Conversely, we call B an extension of A. The age of a structure B, denoted
by Age(B), is the class of all finite structures A with A ,→B. An isomorphism is a surjective
embedding. Two structures A and B are isomorphic (written A ∼= B) if there exists an
isomorphism from A to B. An automorphism is an isomorphism from A to A.

2In case the signature τ of a structure contains a symbol that is interpreted as equality in that structure, an
equality-free formula can, of course, still use that symbol.
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If the signature τ of B is finite, the constraint satisfaction problem for B can also be
conveniently formulated using homomorphisms: given a finite τ-structure A, decide whether
A→B. A solution for such an instance A of the CSP is then simply a homomorphism h: A→B

and CSP(B) is the class of all finite τ-structures that homomorphically map to B. It is easy
to see that this definition of the CSP coincides with the one given above. Indeed, deciding
whether a CSP instance A admits a solution amounts to evaluating a PP sentences in B

and vice versa [17]. For example, verifying whether the structure A = ({a1, a2, a3};<A)
with <A := {(a1, a2), (a2, a3), (a3, a1)} homomorphically maps into Q is the same as checking
whether the PP formula x1 < x2 ∧ x2 < x3 ∧ x3 < x1 is satisfiable in Q.

The CSP for Q is tractable since a structure A= (A;<A) can homomorphically be mapped
into Q if and only if it does not contain a <-cycle, i.e., there are no n ≥ 1 and elements
a1, . . . , an ∈ A such that a1 <

A · · · <A an <
A a1. Testing whether such a cycle exists can be

done in nondeterministic logarithmic space since it requires solving the reachability problem in
a directed graph (digraph). In the example above, we obviously have a cycle, and thus this
instance of CSP(Q) has no solution.

The definition of admissibility of a concrete domain in [6] requires that the constraint
satisfaction problem for this structure is decidable, the predicates are closed under negation,
and there is a predicate for the whole domain. We have already seen that the negation ≥ of <
is EP definable in Q and that the predicate for the whole domain is PP definable. The negation
of this predicate has the PP definition x < x . The following lemma implies that the expansion
of Q by these predicates still has a decidable CSP.3

Lemma 1 ([17]). Let C,D be structures over the same domain with finite signatures.

1. If the relations of C have a PP definition in D, then CSP(C)≤PTIME CSP(D).
2. If the relations of C have an EP definition in D, then CSP(C)≤NPTIME CSP(D).

3The lemma actually only yields an NP decision procedure for this CSP, but it is easy to see that the above
polynomial-time cycle-checking algorithm can be adapted such that it also works for the expanded structure.
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Chapter

3 Description Logics
with Concrete Domains

We assume that the reader is familiar with the basic definitions and results in DL [5, 9], but
nevertheless briefly recall the definitions of the two DLs ALC and EL relevant for this thesis.
Then we describe how these DLs can be extended with concrete domains. The integrations
of concrete domains into DLs described in the literature [6, 67, 3, 70, 36, 65] differ in some
details. The approaches described below for ALC and EL are close to the ones in [70] and [3],
respectively, but not identical, mainly as a matter of convenience of presentation. Reasoning in
DLs obtained this way may easily become undecidable, and thus one needs to find conditions
that guarantee decidability, and even tractability for the case of EL.

3.1 Basic definitions and undecidability results

Given countably infinite disjoint sets NC and NR of concept and role names, ALC concepts
are built using the concept constructors top concept (>), bottom concept (⊥), negation (¬C),
conjunction (C uD), disjunction (C tD), existential restriction (∃r. C), and universal restriction
(∀r. C). The semantics of the constructors is defined in the usual way (see, e.g., [5, 9]). It
assigns to every ALC concept C a set CI ⊆ ∆I , where ∆I is the interpretation domain of
the given interpretation I. The set of EL concepts is obtained by restricting the available
constructors to >, C u D, and ∃r. C . As usual, a TBox is defined to be a finite set of general
concept inclusions (GCIs) C v D, where C , D are concepts. The interpretation I is a model of
such a TBox if CI ⊆ DI holds for all GCIs C v D occurring in it. Given a concept description C
and a TBox T , we say that C is satisfiable w.r.t. T if CI is non-empty for some model I of T .
Concept satisfiability w.r.t. GCIs is EXPTIME-complete in ALC [78], but trivial in EL since EL
concepts are always satisfiable. Given concept descriptions C , D and a TBox T , we say that C
is subsumed by D w.r.t. T (written C vT D) if CI ⊆ DI holds for all models of T . Subsumption
w.r.t. TBoxes in ALC is also EXPTIME-complete since it interreducible with concept satisfiability,
but tractable (i.e., decidable in polynomial time) in EL [32, 3].

From an algebraic point of view, a concrete domain is a relational structure D. To integrate
such a structure into ALC and EL, we introduce a countably infinite set NF of feature names
disjoint from NC and NR. Their purpose is to facilitate the connection between the abstract
domain ∆I and the concrete domain D. A (role-feature) path is of the form r f or f where
r ∈ NR and f ∈ NF. In this thesis, we do not allow chains of role or feature names in paths.

9



3. Description Logics with Concrete Domains

The reason is that two cases above already enable us to capture the essence of the expressive
power of concrete domains: the ability to to relate the data values of different abstract domain
elements. This means that paths are always of length 1 or 2. In our example in the introduction,
age is both a feature name and a path of length 1, and child age is a path of length 2.

Definition 1. Concrete domain restrictions for a relational τ-structure D are concept constructors
of the form ∃p1, . . . , pk.φ(x1, . . . , xk) or ∀p1, . . . , pk.φ(x1, . . . , xk), where p1, . . . , pk are paths
and φ is a first-order τ-formula with free variables x1, . . . , xk. The DL ALC(D) extends ALC
with concrete domain restrictions where φ is allowed to be an arbitrary atomic τ-formula. The
DL EL(D) is the sublanguage of ALC(D) where only the concept constructors of EL together
with existential concrete domain restrictions can be used. LetΣ be a set of first-order τ-formulas
and n a natural number. The DL ALCn

Σ(D) extends ALC with concrete domain restrictions
where φ is allowed to be an at most n-ary formula from Σ.

In contrast to previous works on concrete domains [6, 70], we generally allow the use of
the equality predicate in concrete domain restrictions, even if it is not explicitly contained in
the signature of the concrete domain. This assumption will turn out to be useful later on, and
it is basically without loss of generality since virtually all concrete domains considered in the
literature can express equality in a way that does not impact on the complexity of reasoning.
Our assumption that false is an atom implies that EL(D) can express the bottom concept ⊥
by the concrete domain restriction ∃.false. A third difference is that, while features pointing
into the concrete domain are functional, we do not allow the use of functional roles in paths.
In [6], only functional roles are allowed to occur in paths whereas in [70] both functional
and other roles can occur there. For ALC, this does not really make a difference due to the
availability of universal concrete domain restrictions. For EL, the presence of functional roles
would destroy tractability even without concrete domains [3], and thus needs to be avoided
anyway.

To define the semantics of concrete domain restrictions, we assume that an interpretation
I assigns functional binary relations f I ⊆∆I × D to feature names f ∈ NF, where functional
means that (a, d) ∈ f I and (a, d ′) ∈ f I imply d = d ′. We extend the interpretation function to
paths of the form p = r f by setting

(r f )I = {(a, d) ∈∆I × D | there is b ∈∆I such that (a, b) ∈ rI and (b, d) ∈ f I}.

The semantics of concrete domain restrictions is now defined as follows:

(∃p1, . . . , pk.φ(x1, . . . , xk))I = {a ∈∆I | there are d1, . . . , dk ∈ D such that
(a, di) ∈ pI

i for all i ∈ [k] and D |= φ(d1, . . . , dk)},

(∀p1, . . . , pk.φ(x1, . . . , xk))I = {a ∈∆I | for all d1, . . . , dk ∈ D such that
(a, di) ∈ pI

i for all i ∈ [k] we have D |= φ(d1, . . . , dk)}.

As already mentioned above, the concrete domain restriction ∃.false is unsatisfiable, and
thus equivalent to ⊥. The restriction ∃ f , f . (x1 = x2) expresses that the value of the feature f
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must be defined, without putting any constraint on this value.
Adding a concrete domain to a DL can easily lead to undecidability. Clearly, if the CSP of

the concrete domain is undecidable, then this transfers to the DL it is integrated in. If the
concrete domain is admissible, i.e., its CSP is decidable and its relations are closed under
complements, then concept satisfiability without GCIs is decidable in a variant of ALC with
concrete domains that uses functional roles in paths [6]. But even for very simple concrete
domains with decidable CSPs, the presence of GCIs may cause undecidability. For instance,
ALC(D) is undecidable already when D is a structure over N that has access to the unary
predicate =0, which is interpreted as the singleton set {0}, and the binary predicate +1, which
is interpreted as incrementation (i.e., it consists of the tuples (m, m+ 1) for m ∈ N) [9]. We
can improve on this result by showing undecidability for even less expressive concrete domains
without the predicate =0. Our proof is an an adaptation of the undecidability proof in [9]
to the case where no zero test =0 is available. In contrast to the setting in [9], our version
of ALC with concrete domains does not allow functional roles, which play an essential role
in the original proof. However, we can circumvent this issue by using additional universal
quantification (i.e., value restrictions and universal concrete domain restrictions) to ensure that
all the successors of an individual w.r.t. a given role behave the same. In this section, we use
∃&∀r. C and ∃&∀p1, . . . , pk.φ as shortcuts for ∃r. C u∀r. C and ∃p1, . . . , pk.φ u∀p1, . . . , pk.φ,
respectively.

A (deterministic) two-register machine (2RM) is a pair (Q, P) with states Q = {q0, . . . , q`}
and instructions P = {I0, . . . , I`−1}. By definition, q0 is the initial state and q` the halting state.
In state qi (i < `) the instruction Ii must be applied. Instructions come in two varieties. An
incrementation instruction is of the form I = +(r, q) where r ∈ {1, 2} is the register number and
q is a state. This instruction increments (the content of) register r and then goes to state q.
A decrementation instruction is of the form I = −(r, q, q′) where r ∈ {1,2} and q, q′ are states.
This instruction decrements register r and goes to state q if the content of register r is not zero;
otherwise, it leaves register r as it is and goes to state q′. It is well-known that the problem of
deciding whether a given 2RM halts on input (0,0) is undecidable [72].

Proposition 1. If D is of the form (D;+1) for D ∈ {Q,Z,N}, then concept satisfiability in ALC(D)
w.r.t. TBoxes is undecidable.

Proof. Let (Q, P) be an arbitrary 2RM. We define a concept C and a TBox T in such a way
that every model of T in which C is non-empty represents the computation of (Q, P) on the
input (0, 0). For every state qi we introduce a concept name Q i . We also introduce two concept
names Z1, Z2 to indicate a positive zero test for the first and second register, respectively. In
addition, we introduce a role name g ∈ NR representing the transitions between configurations
of the 2RM. For p ∈ {1,2}, we have features rp ∈ NF representing the content of register p.
However, since our concrete domain does not have the predicate =0, we cannot enforce that, in
our representation of the initial configuration, r1 and r2 have value zero. What we can ensure,
though, is that their value is the same number, which we can store in a concrete feature z ∈ NF.
The idea is now that register p of the machine actually contain the value of rp offset with the
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value of z. We also need auxiliary concrete features s1, s2, s ∈ NF, which respectively refer to
the successor values of r1, r2, z. They are needed to express equality using +1.

The following GCI ensures that the elements of C represent the initial configuration together
with appropriate values for the auxiliary features:

C v Q0 u ∃z, s.+1(x1, x2)u ∃z, s1.+1(x1, x2)u ∃r1, s1.+1(x1, x2)

u ∃z, s2.+1(x1, x2)u ∃r2, s2.+1(x1, x2).

Next, the GCI >v ∃&∀gz, s.+1(x1, x2)u ∃&∀gz, gs.+1(x1, x2) guarantees that the value z of
an individual carries over to its g-successor. We denote the second value in {1, 2} beside p by
bp, i.e., bp = 3− p. To enforce that the incrementation instructions are executed correctly, for
every instruction Ii = +(p, q j), we include in T the GCI

Q i v ∃&∀g.Q j u ∃&∀rp, grp.+1(x1, x2)u ∃&∀gr
bp, s

bp.+1(x1, x2)

u ∃&∀sp, gsp.+1(x1, x2)u ∃&∀r
bp, gs

bp.+1(x1, x2)

The GCIs Zp v ∃z, sp.+1(x1, x2) and ∃z, sp.+1(x1, x2)v Zp ensure that Zp represents a positive
zero test for register p. Note that, for individuals for which values for s, z, sp, rp are defined,
the negation of Zp is semantically equivalent to a negative zero test for register p. To enforce
that decrementation is executed correctly, for every instruction Ii = −(p, q j , qk), we include in
T the GCIs

Q i u Zp v ∃&∀g.Qk u ∃&∀grp, sp.+1(x1, x2)u ∃&∀gr
bp, s

bp.+1(x1, x2)

u ∃&∀rp, gsp.+1(x1, x2)u ∃&∀r
bp, gs

bp.+1(x1, x2)

Q i u¬Zp v ∃&∀g.Q j u ∃&∀grp, rp.+1(x1, x2)u ∃&∀gr
bp, s

bp.+1(x1, x2)

u ∃&∀gsp, sp.+1(x1, x2)u ∃&∀r
bp, gs

bp.+1(x1, x2)

Finally, we include the GCI Q` v⊥, which states that the halting state is never reached. It is
now easy to see that the computation of (Q, P) on (0, 0) does not reach the halting state if and
only if C is satisfiable w.r.t. T .

Note that this undecidability result also holds without our assumption that equality is always
available.

It turns out that undecidability also holds if we use the ternary predicate + rather than the
binary predicate +1. Intuitively, with + we can easily test for 0 since m is 0 if and only if
m+ m = m. Instead of incrementation by 1, we can then use addition of a fixed non-zero
number.

Proposition 2. If D is of the form (D;+) for D ∈ {Q,Z,N}, then concept satisfiability in ALC(D)
w.r.t. TBoxes is undecidable.

Proof. Similarly as in the proof of Proposition 1, we reduce the halting problem of two-register
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machines to concept satisfiability in in ALC(D). This time we closely follow the proof of
Theorem 5.25 in [9]. For this reason, we only provide the GCIs that encode the run of an
arbitrary 2RM on the input (0, 0), the rest is obvious. As before, g ∈ NR represents the transition
function, and r1, r2 ∈ NF represent the contents of the two registers initialized with the value
0. Additionally, z ∈ NF is an auxiliary feature that assumes the value 0, and u ∈ NF is an
auxiliary feature that assumes the value of some non-zero number. The initial configuration is
represented by the following GCI which, in particular, prevents u from assuming the value 0:

C v Q0 u ∃r1, r1, r1.+(x1, x2, x3)u ∃r2, r2, r2.+(x1, x2, x3)

u ∃z, z, z.+(x1, x2, x3)u¬(∃u, u, u.+(x1, x2, x3))

The GCI > v ∃z, z, z.+(x1, x2, x3) u ∃&∀u, z, gu.+(x1, x2, x3) ensures that z has the value 0
everywhere, and it simultaneously transfers the value of u to g-successors. Consequently, u has
a fixed non-zero value on the g-paths starting with our initial element of C .

The incrementation instruction Ii = +(p, q j) is represented by the GCI

Q i v ∃&∀g.Q j u ∃&∀rp, u, grp.+(x1, x2, x3)u ∃&∀r
bp, z, gr

bp.+(x1, x2, x3),

and the decrementation instruction Ii = −(p, q j , qk) is represented by the GCIs

Q i u Zp v ∃&∀g.Qk u ∃&∀rp, z, grp.+(x1, x2, x3)u ∃&∀r
bp, z, gr

bp.+(x1, x2, x3),

Q i u¬Zp v ∃&∀g.Q j u ∃&∀grp, u, rp.+(x1, x2, x3)u ∃&∀r
bp, z, gr

bp.+(x1, x2, x3),

where the GCIs Zp v Q i u ∃rp, z, z.+(x1, x2, x3) and Q i u ∃rp, z, z.+(x1, x2, x3) v Zp ensure
that Zp represents a positive zero test for register p.

The non-termination is, again, represented by the GCI Q` v⊥.

Even for EL, integrating a decidable concrete domain may cause undecidability if we allow
for paths of length 2. Proving this is, however, more challenging, not only due to the fact that
not all Boolean operations are available, but also since the absence of functional roles cannot
be compensated by the use of universal quantification. To illustrate the latter point, assume we
have a concrete domain with binary predicates P and P ′ that are disjoint. If g is assumed to be
a functional role, then the concept ∃ f , g f . P(x1, x2)u∃ f , g f . P ′(x1, x2) is unsatisfiable, but if
g is just an arbitrary role, then it is satisfiable since a given individual belonging to the concept
may have two different g-successors, one satisfying the P-constraint and the other satisfying
the P ′-constraint. However, conjoining this concept with the corresponding universal concrete
domain restrictions ∀ f , g f . P(x1, x2)u∀ f , g f . P ′(x1, x2) yields an unsatisfiable concept again.

To show undecidability for a concrete domain extension of EL without functional roles, we
consider the relational structure D2-aff over Q2, which has, for every affine transformation
Q2 →Q2 : x̄ 7→ Ax̄ + b̄, the binary relation RA,b̄ := {( x̄ , ȳ) ∈ (Q2)2 | ȳ = Ax̄ + b̄} as a predicate.
We will show in Corollary 9 that the CSP for this structure is decidable in polynomial time.
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Undecidability of subsumption w.r.t. TBoxes in EL(D2-aff) can be shown by a reduction from
2-Dimensional Affine Reachability, which is undecidable by Corollary 4 in [15]. For this problem,
one is given vectors v̄, w̄ ∈Q2 and a finite set S of affine transformations from Q2 to Q2. The
question is then whether w̄ can be obtained from v̄ by repeated application of transformations
from S.

Proposition 3. Subsumption w.r.t. TBoxes is undecidable in EL(D2-aff).

Proof. We define the reduction of 2-dimensional Affine Reachability to subsumption w.r.t.
general TBoxes in EL(D2-aff) as follows. For given vectors v̄, w̄ ∈Q2 and affine transformations
S = { x̄ 7→ M1 x̄ + v̄1, . . . , x̄ 7→ Mk x̄ + v̄k}, the TBox T contains, for every i ∈ [k], the GCI > v
∃ f , g f . RMi ,v̄i

(x1, x2). Additionally, T contains the GCIs ∃g. L v L and ∃ f , f . RZ ,w̄(x1, x2)v L,
where L is a fresh concept name and Z is the 2 × 2 zero matrix. Note that ( x̄ , x̄) ∈ RZ ,w̄

if and only if x̄ = w̄. Each involved concept is either >, a concept name, or an existential
(concrete domain) restriction, and thus definable in EL(D2-aff). We claim that ∃ f , f . RZ ,v̄(x1, x2)
is subsumed by L w.r.t. T if and only if w̄ can be obtained from v̄ through an application of a
composition of affine transformations from S.

“⇐”: Suppose that there exists such a composition and let I be a model of T . Let a be
an arbitrary element of (∃ f , f . RZ ,v̄(x1, x2))I , i.e., satisfying f I(a) = v̄. Since T contains
> v ∃ f , g f . RMi ,v̄i

(x1, x2) for every i ∈ [k] and w̄ is reachable from v̄ through an application
of a composition of affine transformations from S, there exists a role path a →gI · · · →gI b to
some element b with f I(b) = w̄. Since T contains the GCI ∃ f , f . RZ ,w̄(x1, x2) v L, we have
b ∈ LI . The GCI ∃g. L v L then yields a ∈ LI .

“⇒”: Suppose that ∃ f , f . RZ ,v̄(x1, x2) is subsumed by L w.r.t. T . Consider the following
interpretation I. The domain of I is Q2. We define f I as the identity map on Q2 and set
gI := {( x̄ , ȳ) ∈ (Q2)2 | ∃i ∈ [k] such that ȳ = Mi x̄ + v̄i}. Finally, we set LI := {w̄} ∪ { x̄ ∈Q2 |
there exists a role path x̄ →gI · · · →gI w̄}. It is easy to check that I is a model of T . Since
v̄ ∈ (∃ f , f . RZ ,v̄(x1, x2))I and ∃ f , f . RZ ,v̄(x1, x2) is subsumed by L w.r.t. T , we have v̄ ∈ LI . The
definition of LI thus implies that w̄ is reachable from v̄ through an application of a composition
of affine transformations from S.

Note that the signature of D2-aff is infinite since there are infinitely many affine transforma-
tions on Q2. One might think that this is important for our undecidability proof. We can show,
however, that this is not the case: a fixed finite set of affine transformations is sufficient.

Corollary 1. There exists a finite-signature reduct D of D2-aff such that subsumption w.r.t. TBoxes
is undecidable in EL(D).

Proof. In the proof of Proposition 3, we use concepts of the form ∃ f , g f . RM ,v̄(x1, x2)where x̄ 7→
M x̄ + v̄ is an arbitrary affine transformation from Q2 to Q2. We show that every such concept
can be expressed as a conjunction of concepts built using only those affine transformations
x̄ 7→ M x̄+ v̄ where M ∈ {−1, 0, 1}2×2 and v̄ ∈ {−1, 0, 1}2. This gives us a conservative extension
of the concept and the TBox used in the proof of Proposition 3. Thus the statement then follows
from Proposition 3.
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Note that we can clearly express ∃ f , g f . RM ,v̄(x1, x2) as

∃ f , f ′. RM ,0̄(x1, x2)u ∃ f ′, f ′′. RE2,v̄(x1, x2)u ∃ f ′′, g f . (x1 = x2)

where E2 is the 2× 2 unit matrix and f ′, f ′′ are fresh features. Thus, we only really need to
express concepts of the form ∃ f , g. RE2,v̄(x1, x2) and ∃ f , g. RM ,0̄(x1, x2)where M , v̄ are elements
of our selected finite set of matrices and vectors.

Consider an arbitrary matrix M = (mi, j)i, j∈[2] where, w.l.o.g., mi, j = pi, j/qi, j for an integer
pi, j and a positive integer qi, j . Then ( x̄ , ȳ) ∈ RM ,0̄ if and only if

qi,2pi,1 x̄ [1]+ qi,1pi,2 x̄ [2] = qi,1qi,2 ȳ[i] for i ∈ {1, 2}. (3.1)

We claim that, for every n ∈ Z, there exists a concept constructed using our selected set of matri-
ces and vectors that expresses the concept ∃ f , g. RAn,0,0̄(x1, x2) where the affine transformation
x̄ 7→ An,0 x̄ multiplies the first component by n and the second component by 0, i.e.,

An,0 =
�

n 0
0 0

�

.

W.l.o.g., n> 1, the case n< 0 is similar and the case n ∈ {0, 1} is trivial. For every i ∈ [n], we
introduce a fresh feature fi . Then ∃ f , g. RAn,0,0̄(x1, x2) can be expressed by

C f ,g
n,0 := ∃ f , f1. RA1,0̄(x1, x2)u ∃ f1, f2. RA2,0̄(x1, x2)u

· · · u ∃ fn−1, fn. RAn,0̄(x1, x2)u ∃ fn, g. RAn+1,0̄(x1, x2)

where
A1 =

�

0 0
1 0

�

, Ai =
�

1 1
0 1

�

for i ∈ {2, . . . , n}, An+1 =
�

1 0
0 0

�

.

To see this, note that An+1 · · ·A1 = An,0. We assume that the features f1, . . . , fn are unique for
C f ,g

n,0 , i.e., they do not appear in any other concept description.

Analogously, there exists a concept C f ,g
0,n constructed using our selected set of matrices

and vectors which expresses ∃ f , g. RA0,n,0̄(x1, x2) where the affine transformation x̄ 7→ A0,n x̄
multiplies the first component by 0 and the second component by n. Again, we assume that
each feature in C f ,g

0,n beside f and g does not appear in any other concept description.

Now, guided by (3.1), we can express the original concept ∃ f , g. RM ,0̄(x1, x2) by

C
f , f1,1

q1,2p1,1,0 u C
f , f1,2

0,q1,1p1,2
u C g,g1

q1,1q1,2,0 u C
h1, f1,1

1,0 u C
h1, f1,2

0,1 u ∃h1, g1. RB1,0̄(x1, x2)

uC
f , f2,1

q2,2p2,1,0 u C
f , f2,2

0,q2,1p2,2
u C g,g2

0,q2,1q2,2
u C

h2, f2,1

1,0 u C
h2, f2,2

0,1 u ∃h2, g2. RB2,0̄(x1, x2)

where f1,1, f1,2, f2,1, f2,2, g1, g2, h1, h2 are fresh features and

B1 =
�

1 1
0 0

�

, B2 =
�

0 0
1 1

�

.
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Now consider an arbitrary tuple v̄ where, w.l.o.g., v̄[i] = pi/qi for an integer pi and a positive
integer qi . We have that ( x̄ , ȳ) ∈ RE2,v̄ if and only if

qi x̄ [i]+ pi = qi ȳ[i] for i ∈ {1,2}. (3.2)

For every n ∈ Z, we can show similarly as above that there exist concepts D f , f
n,0 and D f , f

0,n

constructed using our selected finite set of matrices and vectors which express the concepts
∃ f , f . RN ,(n,0)(x1, x2) and ∃ f , f . RN ,(0,n)(x1, x2), respectively, where N is the 2 × 2 matrix of
zeros. One can then express the concept ∃ f , g. RE2,v̄(x1, x2) using the concepts C f ,g

n,0 , C f ,g
0,n , D f , f

n,0 ,
and D f , f

0,n while being guided by (3.2).

3.2 Decidable and tractable DLs with concrete domains

There are two strategies for regaining decidability of DLs with concrete domains in the presence
of GCIs: syntactically restricting the interaction of the DL with the concrete domain or limiting
the expressiveness of the concrete domain itself. Typically, the former is realized by restricting
the length of paths in concrete domain restrictions to 1. We indicate this restriction by writing
square brackets around the concrete domain instead of round brackets.

Definition 2. The restriction of EL(D) and ALC(D) to paths of length 1 in concrete domain
restrictions is respectively denoted by EL[D] and ALC[D].

For ALC, this restriction results in decidability [49, 76] for concrete domains that are
admissible in the sense introduced in [6], i.e., whose predicates are closed under negation and
whose CSP is decidable. In the case of EL, the expectations are a bit higher: the aim there
is to regain tractability. To obtain tractability of EL[D], the notion of p-admissible concrete
domains was introduced in [3], and it was shown that subsumption in EL[D] is decidable
in polynomial time if and only if D is p-admissible. Before defining this condition below, we
introduce a condition, called ω-admissibility, which ensures decidability of ALC(D) in the
presence of GCIs and paths of length > 1.

ω-Admissible concrete domains

The notion ofω-admissibility was introduced in [70] to regain decidability of ALC with concrete
domains in the presence of GCIs. Motivated by binary constraint calculi like Allen’s interval
algebra [2] and the region connection calculus [77], only concrete domains where all predicates
are binary were considered in [70]. In [10], the notion and the corresponding decidability
result were generalized to concrete domains with predicates of arbitrary arity.

We say that a relational τ-structure D has homomorphism ω-compactness if the following
holds for every countable τ-structure B: B→D if and only if A→D for every A ∈ Age(B).
This condition is needed in the correctness proof for the tableau algorithm in [70]. Intuitively,
the algorithm computes, from an input concept and TBox, a finite premodel, that can then
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be turned into an actual model using a certain abstract unraveling procedure. However, in
the setting of DLs with concrete domains, it is often the case that all models witnessing the
satisfiability of a concept w.r.t. a TBox are infinite, see Example 1. Thus, the verification of
the unraveled premodel might involve a test of an infinite structure for a homomorphism to
the concrete domain; homomorphism ω-compactness reduces this difficult task to proving
that every finite unraveling step yields a structure that has a homomorphism to the concrete
domain. In [70], the inputs to this condition were not formally restricted to countable structures.
However, it is clear that this is what the authors meant because (i) the structures produced by the
original tableau algorithm that need to be tested for a homomorphism to the concrete domain
are always countable, and (ii) the examples of ω-admissible concrete domains presented in
[70] are not homomorphism compact for input structures with arbitrarily large cardinalities.

A relational τ-structure D satisfies:

• JE if, for every k ≥ 1, either D has no k-ary relation, or
⋃

{RD | R ∈ τ, RD ⊆ Dk}= Dk;
• PD if, for every pair R,eR of distinct symbols from τ, we have RD ∩ eRD = ;;
• JD if the equality EqD has a (quantifier and equality)-free definition in D.

Here JE stands for “jointly exhaustive,” PD for “pairwise disjoint,” and JD for “jointly diagonal.”
In [10], JD was defined in a more restricted way as

⋃

{RD
�

� R ∈ τ, RD ⊆ EqD} = EqD, which
explains the name. The combination JEPD is needed in [70] for obtaining a normal form for a
given input concept and TBox that eliminates negations in front of concrete domain restrictions.
The condition JD was not considered in [70]. We include it here mainly because it makes the
comparison with known notions from model theory easier. In the setting considered in this
thesis, where concrete domain restrictions always have access to equality, JD is actually needed
to ensure decidability. If the equality predicate is dropped from concrete domain restrictions,
then the decidability results in [70, 11] do not depend on JD. However, all examples of ω-
admissible concrete domains presented in [70] satisfy JD since equality is contained in the
signature. In [41], k-ary structures, i.e., structures D that have only k-ary predicates, are
considered that have the k-ary equality relation k-EqD = {(d, . . . , d) ∈ Dk | d ∈ D}. For k ≥ 2,
such a structure satisfies JD in the sense introduced above, since binary equality x = y can be
defined as k-EqD(x , y, . . . , y).

A relational τ-structure D is a patchwork (or has the patchwork property) if it is JDJEPD,
and for all finite JEPD τ-structures A,B1,B2 with e1 : A ,→ B1, e2 : A ,→ B2, B1 → D, and
B2 → D, there exist f1 : B1 → D and f2 : B2 → D with f1 ◦ e1 = f2 ◦ e2. In plain words, this
condition ensures that two overlapping satisfiable instances of CSP(D) with jointly exhaustive
and pairwise disjoint relations are always also satisfiable as a whole. It is needed in [70] to
enable the unraveling procedure mentioned above.

Definition 3. The relational structure D is ω-admissible if it has a finite signature, CSP(D) is
decidable, D has homomorphism ω-compactness, and D is a patchwork.

By AD we denote the set of all finite disjunctions of atomic τ-formulas. The following theorem
is shown in [10, 11] by extending the tableau-based decision procedure given in [70] to our
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more general definition of ω-admissibility.

Theorem 1. Let D be an ω-admissible τ-structure with at most d-ary relations for some d ≥ 2.
Then concept satisfiability in ALCd

AD(D) w.r.t. TBoxes is decidable.

The main motivation for the definition of ω-admissible concrete domains in [70] was that
they can capture qualitative calculi of time and space. In particular, it was shown in [70]
that Allen’s interval algebra [2] as well as the region connection calculus RCC8 [77] can be
represented as ω-admissible concrete domains. To the best of our knowledge, no other ω-
admissible concrete domains have been exhibited in the literature before our investigations in
[10], which we will describe in detail in the next section. Among other things, we prove that the
structure (Q;<,=,>) is ω-admissible. The “discrete” version (Z;<,=,>), on the other hand,
is not ω-admissible because it lacks homomorphism ω-compactness (see Example 1 below).
By the results in [65], (Z;<,=,>) nevertheless yields a decidable concrete domain extension
of ALC, but proving this requires a more specialized approach than the tableau algorithm
provided by the original paper of Lutz and Miličić [70]. This shows that ω-admissibility is not
necessary for decidable reasoning in ALC with concrete domains in the presence of GCIs.

Example 1. The concept A∈ NC is satisfiable w.r.t. the TBox

T :=
�

Av
�

∃ f , g.<(x1, x2)
�

u
�

∃r. A
�

u
�

∀ f , r f .<(x1, x2)
�

u
�

∀r g, g.<(x1, x2)
�	

in ALC(Q;<,=,>), and this can be tested using the tableau algorithm from [70] because (Q;<
,=,>) is ω-admissible by Theorem 6. However, A is not satisfiable w.r.t. T in ALC(Z;<,=,>)
because its satisfiability would imply the existence of a homomorphism to (Z;<,=,>) from a
structure B with domain B = { fn, gn | n ∈ N} and relations given by fn <

B fn+1 <
B gn+1 <

B gn

for every n ∈ N. Such a homomorphism cannot exist because the ordering of the integers is not
dense. Note that A→ (Z;<,=,>) for every A ∈ Age(B), which shows that (Z;<,=,>) is not
ω-homomorphism compact.

p-Admissible concrete domains

The notion of p-admissibility was introduced in [3] to capture precisely those structures D for
which subsumption in EL[D] is tractable. Clearly, this requires the CSP of D to be decidable
in polynomial time. However, this is not sufficient since even for a concrete domain D with
tractable CSP, disjunction may be expressible in EL[D], which then leads to intractability [3].
To avoid this source of intractability, the concrete domain must be convex. Unfortunately, the
definition of convexity given in [3] was ambiguous, and what is really needed in the setting
considered in [3] is what we call guarded convexity in [12]. In the setting considered in this
thesis, where equality is always available in concrete domain restrictions, we will see that
convexity rather than guarded convexity is the adequate notion.

We say that a τ-structure D is convex if the following holds: whenever a conjunction of
atomic τ-formulas implies a disjunction of atomic τ-formulas in D, then it already implies one
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3.2. Decidable and tractable DLs with concrete domains

of the disjuncts. Note that this definition does not say anything about which variables may
occur in the left- and right-hand sides of such implications. Guarded convexity requires this
condition to hold only for guarded implications, where all variables occurring on the right-hand
side must also occur on the left-hand side.

To illustrate the difference between convexity and guarded convexity, let us consider the
structure N = (N; E, O) in which the unary predicates E and O are respectively interpreted as the
even and odd natural numbers. This structure is not convex since ∀x , y

�

E(x)⇒ E(y)∨O(y)
�

holds in N, but neither ∀x , y
�

E(x)⇒ E(y)
�

nor ∀x , y
�

E(x)⇒ O(y)
�

does. However, the first
implication is not guarded, and it is easy to see that N is in fact guarded convex. Note that,
whereas ∀x , y

�

E(x)⇒ E(y) ∨ O(y)
�

holds in N, the subsumption ∃ f . E(x1) v; ∃g. E(x1) t
∃g. O(x1) does not hold in the extension of EL[N] with disjunction since the feature g need not
have a value. However, as we have pointed out above, ∃g, g. (x1 = x2) expresses that the value
of g must be defined. Thus, ∃g, g. (x1 = x2)v; ∃g. E(x1)t∃g. O(x1) is a valid subsumption in
EL[N] (although disjunctions are formally not allowed in EL[N]). This can be used to show
that this DL is not tractable [3], but only under the assumption that equality can be used in
concrete domain restrictions. Consequently, in the setting of this thesis, convexity should be
used in the definition of p-admissibility.

Definition 4. A relational structure D is p-admissible if it is convex and validity of Horn
implications in D is decidable in polynomial time.

The main result of [3] concerning concrete domains can now be stated as follows.

Theorem 2 (Baader, Brandt, and Lutz [3]). Let D be a relational structure. Then subsumption
in EL[D] is decidable in polynomial time if and only if D is p-admissible.

Note that the theorem above does not hold for the more expressive logic EL(D) where paths
of length 2 are allowed in concrete domain constructors. This is because we can show that the
concrete domain D2-aff from Proposition 3 is p-admissible (see Corollary 9).

In Section 5, we provide an algebraic characterization of convexity. Regarding the tractability
condition in the definition of p-admissibility, we have seen in Section 2 that it is closely related
to the constraint satisfaction problem for D and (D¬, 6=). In fact, a convex structure D is p-
admissible if and only if CSP(D¬, 6=) is decidable in polynomial time. Characterizing tractability
of the CSP for a given structure is a very hard problem. Whereas the Feder-Vardi conjecture [47]
has recently been confirmed after 25 years of intensive research in the field by giving an
algebraic criterion that can distinguish between finite structures with tractable and with NP-
complete CSP [79, 34], finding comprehensive criteria that ensure tractability for the case of
infinite structures is a wide open problem, though first results for special cases have been found
(see, e.g., [24, 26, 28, 73, 63, 23, 27]).

ω-Admissibility versus p-admissibility

From an application point of view it would be desirable to have concrete domains D that
preserve tractability if used in EL[D] and decidability if used in ALC(D). This would be the
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case for concrete domains that are both ω-admissible and p-admissible. Unfortunately, for
structures over a finite signature, JEPD (required for ω-admissibility) and convexity (required
for p-admissibility) do not go well together. More specifically, when combined, these properties
trivialize the CSP.

Proposition 4. Let τ be a finite signature and D a relational τ-structure that is both JEPD and
convex. Then RD ∈ {;, Dk} for all k-ary relation symbols R ∈ τ.

Proof. Assume that R ∈ τ is a relation symbol of arity k such that RD 6= ;. Then JE yields
Dk =

⋃m
i=1 RD

i , where R1, . . . , Rm are all the relation symbols of arity k in τ. Consequently, the
implication ∀x1, . . . , xk

�∧

i∈[k] x i = x i ⇒
∨

i∈[m] Ri(x1, . . . , xk)
�

holds in D, and thus convexity
implies that there is an i, 1 ≤ i ≤ m, such that ∀x1, . . . , xk

�∧

i∈[k] x i = x i ⇒ Ri(x1, . . . , xk)
�

holds in D. This means that RD
i = Dk. Since we have assumed that RD 6= ; and R is of arity k,

PD yields that R= Ri , and thus we are done.

If τ contains a symbol R that is interpreted as equality EqD on D, then this proposition implies
that EqD = RD = D×D, which can only be the case if |D| ≤ 1. The proof of Proposition 4 makes
use of our assumption that equality is always available when building formulas. But even
without that assumption, concrete domains D that are both p- and ω-admissible would have a
rather restricted form. In that case, there always exists a finite partition {V1, . . . , Vm} of D such
that the only non-empty k-ary relations of D are of the form Vi1 × · · · × Vik for i1, . . . , ik ∈ [m].
For more details, see the appendix.

One apparent downside of having the equality available as an atomic formula is that, for
finite structures, it restricts p-admissibility to those whose domain size is at most 1. To see this,
suppose that D is finite. By the pigeonhole principle, the implication ∀x1, . . . , xn

�∧

i∈[n] x i =
x i ⇒

∨

i 6= j∈[n] x i = x j

�

holds in D for every n> |D|. If |D|> 1, then it is clearly not uniquely
determined which elements among x1, . . . , xn must be equal, and therefore D is not convex. In
the case of ω-admissibility, we essentially have the opposite situation. Every finite structure
can be made ω-admissible by first expanding its signature by unary relations for each element
of the domain and then decomposing its relations into orbits as described in Section 4.3 (see
the last part of Example 4). However, from theoretical perspective, extensions of reasonably
expressive DLs such as ALC or EL by finite concrete domains are not very interesting because
all definable concepts can already be modeled within the original formalism.

Finally, let us point out another notable difference between the two conditions, namely
that p-admissibility permits infinite signatures whereas ω-admissibility does not. It turns out
that finiteness of the signature is a necessary part of ω-admissibility for attaining decidable
reasoning with concrete domains. If we allowed the signature of D to be infinite, then we
would have the following counterexample. Let D be the structure over Z with the relations
+k = {(x , y) ∈ Z2 | y = x + k} for every k ∈ Z. It is easy to see that CSP(D) can be solved
in polynomial time and that D has homomorphism ω-compactness. Moreover, one can show,
using the results in Section 4 (Proposition 5 and Theorem 5), that D is a patchwork. However,
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3.2. Decidable and tractable DLs with concrete domains

we have seen in Proposition 1 that concept satisfiability w.r.t. GCIs is undecidable already in
ALC(Z;+1). For more details, see Example 3.
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Chapter

4 A Model-Theoretic Analysis
of ω-Admissibility

We introduce several model-theoretic properties of relational structures and show their connec-
tion with ω-admissibility. This allows us to formulate sufficient conditions for ω-admissibility
using well-known notions from model theory, and thus to use existing model-theoretic results
to find new ω-admissible concrete domains. We start with the notion of ω-categoricity in a
countable signature, which is sufficient to obtain homomorphism ω-compactness. Next, we
consider homogeneous structures with a finite relational signature, which induce ω-categorical
patchworks with a finite signature. This provides us with patchworks with a finite signature
that also have homomorphism ω-compactness. What is still missing is decidability of the CSP.
This can be achieved by restricting the attention to finitely bounded structures since their CSP
is always in NP. Thus, finitely bounded homogeneous structures yield ω-admissible concrete
domains. Alternatively, we consider homogeneous structures with a finite relational signature
for which we can show by some other means that the CSP is decidable. In this setting, the
induced patchwork has a decidable CSP if the structure is a so-called core. Conversely, we
prove that every ω-admissible structure is equivalent to a particular homogeneous core in the
sense that they both provide the same concrete domain extension of ALC. The last part of this
section investigates closure properties for homogeneity and finite boundedness.

4.1 Homomorphism ω-compactness via ω-categoricity

We start by introducing ω-categoricity since it gives us homomorphism ω-compactness “for
free.” A structure is ω-categorical if its first-order theory has exactly one countable model up to
isomorphism. For example, it is well-known that Q is, up to isomorphism, the only countable
dense linear order without lower or upper bound. This result, which clearly implies that Q is
ω-categorical, is due to Cantor.

For every structure A, its automorphisms form a permutation group with composition as
binary operation, which we denote by Aut(A) (see Theorem 1.2.1 in [55]). Every relation R
with a first-order definition in A is easily seen to be preserved by Aut(A), i.e., t̄ ∈ R implies
h( t̄) ∈ R for every h ∈ Aut(A). For ω-categorical structures, the other direction holds as well.

Theorem 3 (Engeler, Ryll-Nardzewski and Svenonius [55]). For a countable structure A with a
countable signature, the following are equivalent:

1. A is ω-categorical.
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4. A Model-Theoretic Analysis of ω-Admissibility

2. For every k, only finitely many k-ary relations are first-order definable in A.
3. Every relation over A preserved by Aut(A) is first-order definable in A.

The following corollary to Theorem 3 establishes the first important link between model
theory and ω-admissibility.

Corollary 2 (Lemma 3.1.5 in [17]). Every countable ω-categorical structure with a countable
signature has homomorphism ω-compactness.

In Example 2 below, we show using Theorem 3 that the converse direction in Corollary 2 is
not true. In its current form, Theorem 3 is particularly handy for proving that a given structure
is not ω-categorical, but it is not well-suited for proving ω-categoricity. We will fix this in
Section 4.3 by including a fourth equivalent condition formulated using the notion of an orbit.

Example 2. The structure (Z;+1) is homomorphism ω-compact. Given a countable {+1}-
structure B, we have B→ (Z;+1) if and only if there exist no two finite +1-paths with different
lengths but identical endpoints in B. Every such pair of paths must already be contained in a
finite substructure of B which does not have a homomorphism to (Z;+1).

However, we can show using Theorem 3 that (Z;+1) is not ω-categorical. One way is
to find, for some k, infinitely many distinct first-order definable relations. And indeed, for
j ∈ Z, the binary relation + j = {(x , y) ∈ Z2 | x + j = y} is definable in (Z;+1) by the
formula ∃z1, . . . , z j

�

x = z1 ∧ y = z j ∧
∧

i∈[ j−1]+1(x i , x i+1)
�

if j ≥ 0, and by the formula
∃z1, . . . , z j

�

x = z j ∧ y = z1 ∧
∧

i∈[ j−1]+1(x i , x i+1)
�

otherwise. Another way is to show that
there exists a relation over Z preserved by Aut(Z;+1) which is not first-order definable in
(Z;+1). For every S ⊆ Z, we define the binary relation RS := {(x , y) ∈ Z2 | y − x ∈ S}. We
claim that RS is preserved by Aut(Z;+1). It is easy to see that every automorphism of (Z;+1)
is a translation by an integer number. Thus, if t̄ ∈ RS and h ∈ Aut(Z;+1) are chosen arbitrarily,
then h( t̄)[2] − h( t̄)[1] = t̄[2] − t̄[1], which implies that t̄ ∈ RS if and only if h( t̄) ∈ RS. This
confirms the claim. Since there are uncountably many different subsets of Z but only countably
many different first-order formulas over the signature {+1}, there exists S ⊆ Z such that RS is
not first-order definable in (Z;+1).

4.2 Patchworks via homogeneity

We show that, in order to obtain patchworks with homomorphismω-compactness, it is sufficient
to consider homogeneous structures with a finite relational signature. A structure A is homoge-
neous if every isomorphism between finite substructures of A extends to an automorphism of A.
The structure Q is homogeneous. Given finite substructures B and C of Q and an isomorphism
between them, we know that B consists of finitely many elements p1, . . . , pn and C of the same
number of elements q1, . . . , qn such that p1 < . . . < pn, q1 < . . . < qn, and the isomorphism
maps pi to qi (for i = 1, . . . , n). It is now easy to see that < is also a dense linear order without
lower or upper bound on the sets {p | p < p1} and {q | q < q1}, and thus there is an order
isomorphism between these sets. The same is true for the pairs of sets {p | pi < p < pi+1} and
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{q | qi < q < qi+1}, and for the pair {p | pn < p} and {q | q < qn}. Using the isomorphisms
between these pairs, we can clearly put together an isomorphisms from Q to Q that extends
the original isomorphism from B to C.

In the case of finite relational signatures, homogeneity can be viewed as a particularly strong
case of ω-categoricity where relations preserved by all automorphisms even have quantifier-
free definitions. We say that a τ-structure admits quantifier elimination if, for every first-order
τ-formula, there is a quantifier-free τ-formula that defines the same relation over this structure.

Theorem 4 ([55]). A countable relational structure with a finite signature is homogeneous if and
only if it is ω-categorical and admits quantifier elimination.

Countable homogeneous structures can be obtained as Fraïssé limits of so-called amalga-
mation classes. A class K of relational τ-structures has the amalgamation property (AP) if, for
all A,B1,B2 ∈ K with e1 : A ,→B1 and e2 : A ,→B2 there exists C ∈ K with f1 : B1 ,→ C and
f2 : B2 ,→ C such that f1 ◦ e1 = f2 ◦ e2. We call C an amalgam for the triple (A,B1,B2).

Theorem 5 (Fraïssé [55]). For a class K of finite τ-structures over a countable signature τ, the
following are equivalent:

1. K = Age(D) for a countable homogeneous structure D.
2. K contains countably many structures up to isomorphism, is closed under isomorphisms and

taking substructures, and has the AP.

The structure D in item 1 is unique up to isomorphism and called the Fraïssé limit of K

If K satisfies item 2 in Theorem 5, then we call it an amalgamation class. In general,
amalgamation classes are required to satisfy one additional condition called the joint embedding
property (JEP) [55], which we will introduce in Section 5. However, since in our case the
signature does not contain function symbols, the JEP is actually implied by the AP and closure
under taking substructures.

For our running example Q = (Q;<), the class Age(Q) consists of all finite linear orders, and
thus by Fraïssé’s theorem this class of structures is an amalgamation class. In addition, Q is the
Fraïssé limit of this class.

Proposition 5 below shows that there is a close connection between the AP and the patchwork
property. Its proof uses the following lemma.

Lemma 2. Let A,B be relational τ-structures.

1. If f : A → B is a strong homomorphism and φ a k-ary (quantifier and equality)-free
τ-formula, then, for every ā ∈ Ak, A |= φ(ā) if and only if B |= φ( f (ā)).

2. If A,B are JEPD, then every homomorphism from A to B is strong.

Proof. For the first part, we assume, without loss of generality, that φ is in DNF, i.e., φ is of
the form φ1 ∨ · · · ∨φn where each φi is a conjunction of atomic formulas of the form R( x̄)
for R ∈ τ. Since f preserves such atomic formulas and their negations, it also preserves their
conjunctions, and thus also disjunctions of such conjunctions.
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4. A Model-Theoretic Analysis of ω-Admissibility

For the second part, we show that every homomorphism f : A→B preserves complements
of relations of A. Let R be an `-ary relation symbol in τ. Since A is JEPD, for every ā ∈ A` with
ā /∈ RB, there exists exactly one eR ∈ τ \ {R} with ā ∈ eRA. This implies f (ā) ∈ eRB since f is a
homomorphism. It follows that f (ā) /∈ RB because B is PD.

Proposition 5. A structure D is a patchwork if and only if D is JDJEPD and Age(D) has the AP.

Proof. For simplicity, every statement indexed by i is supposed to hold for both i ∈ {1, 2}. Let
τ be the signature of D.

“⇐”: Suppose that D is JDJEPD and Age(D) has the AP. Let A,B1,B2 be finite JEPD τ-
structures with ei : A ,→Bi and hi : Bi →D. We must show that there exist fi : Bi →D with
f1 ◦ e1 = f2 ◦ e2. Let eA1 and eA2 be the substructures of D on (h1 ◦ e1)(A) and (h2 ◦ e2)(A),
respectively. Clearly both eA1 and eA2 are JDJEPD, because they are substructures of D. Note
that JD is witnessed in both eA1 and eA2 by an identical formula φ(x , y) inherited from D. We
claim that there exists an isomorphism from eA1 to eA2 which commutes with h1 ◦ e1 and h2 ◦ e2.
Consider the map g : eA1 → eA2 given by g

�

(h1 ◦ e1)(a)
�

:= (h2 ◦ e2)(a). By Lemma 2, for every
pair a1, a2 ∈ A, we have

(h1 ◦ e1)(a1) = (h1 ◦ e1)(a2) iff D |= φ((h1 ◦ e1)(a1), (h1 ◦ e1)(a2))

iff D |= φ(a1, a2)

iff D |= φ((h2 ◦ e2)(a1), (h2 ◦ e2)(a2))

iff (h2 ◦ e2)(a1) = (h2 ◦ e2)(a2).

This means that g is well-defined and injective. Let R ∈ τ be an arbitrary symbol and ` its arity.
Since A and eA1 are JEPD, by Lemma 2, h1 ◦ e1 preserves the complements of all relations of A.
Thus, for every t̄ ∈ A`, if (h1◦e1)( t̄) ∈ ReA1 , then t̄ ∈ RA and consequently (h2◦e2)( t̄) ∈ ReA2 . This
means that g is a homomorphism from eA1 to eA2. Since eA1 and eA2 are JEPD, by Lemma 2, g also
preserves the complements of all relations of eA1. Hence g is an isomorphism that additionally
satisfies g ◦h1 ◦ e1 = h2 ◦ e2 by its definition. Let eB1 and eB2 be the substructures of D on h1(B1)
and h2(B2), respectively. Now consider the inclusions eei : eAi ,→ eBi. Since Age(D) has the AP,
there exists C ∈ Age(D) together with efi : eBi ,→ C and e : C ,→D such that ef1 ◦ ee1 = ef2 ◦ ee2 ◦ g.
We define the homomorphisms fi : Bi →D by fi := e ◦ efi ◦ hi . Then, for every a ∈ A, we have

( f1 ◦ e1)(a) = (e ◦ ef1 ◦ h1 ◦ e1)(a)

= (e ◦ ef1 ◦ ee1 ◦ h1 ◦ e1)(a)

= (e ◦ ef2 ◦ ee2 ◦ g ◦ h1 ◦ e1)(a)

= (e ◦ ef2 ◦ ee2 ◦ h2 ◦ e2)(a)

= (e ◦ ef2 ◦ h2 ◦ e2)(a)

= ( f2 ◦ e2)(a).

Note that, as inclusions, the mappings eei are the identity on the elements for which they are
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4.3. JDJEPD via decomposition into orbits

defined. The above identities show that D is a patchwork.

“⇒”: Suppose that D is a patchwork. Then, by definition, D is JDJEPD. Let A,B1,B2 be
finite τ-structures with ei : A ,→ Bi and hi : Bi ,→ D. Since B1 and B2 are isomorphic to
substructures of D, they are clearly JDJEPD. Thus, as D is a patchwork, there exist homomor-
phisms fi : Bi →D with f1 ◦ e1 = f2 ◦ e2. Let φ(x , y) be a formula witnessing JD in both B1

and B2 that is inherited from D. By Lemma 2, the operations fi preserve the complements of
all relations of Bi , and, for all b1, b2 ∈ Bi , we have

fi(b1) = fi(b2) iff D |= φ( fi(b1), fi(b2)) iff D |= φ(b1, b2) iff b1 = b2.

This means that the operations fi are embeddings. We obtain the AP for Age(D) by choosing C

to be the substructure of D on f2(B1)∪ f1(B2).

We finish this section with an example demonstrating the use of Proposition 5 but also the
fact that finiteness of the signature is a indispensable component of ω-admissibility. Together
with Example 2, it shows that Theorem 4 does not hold for countably infinite signatures.

Example 3. Consider the relational structure D with domain Z and relations +k = {(x , y) ∈
Z2 | x + k = y} for all k ∈ Z. We claim that D is homogeneous. Let A1,A2 be two finite
substructures of D and f : A1 → A2 an isomorphism. Then we have A1 = {x1, . . . , xk} and
A2 = {y1, . . . , yk} for some k ≥ 0, where f (x i) = yi for every i ∈ [k]. We may assume that
x i < x i+1 for every i ∈ [k − 1]. Since D has relations for all possible integer distances between
two numbers and f is an isomorphism, we have that x i+1 − x i = yi+1 − yi for every i ∈ [k − 1].
But then there must exist ` ∈ Z such that yi = f (x i) = x i + ` for every i ∈ [k], in which case
ef (x) := x + ` is an automorphism of D extending f . Thus D is homogeneous.

By Theorem 5, Age(D) has the AP. Clearly, D is JDJEPD. Thus, by Proposition 5, D is a
patchwork. We claim that D also has homomorphism ω-compactness. Let B be a countable
structure in the signature of D. Then B does not have a homomorphism to D if and only if there
are x1, . . . , xk, y1, . . . , y` ∈ B with x1 = y1, xk = y`, (x i , x i+1) ∈ +B

mi
for every i ∈ [k − 1], and

(yi , yi+1) ∈ +B
ni

for every i ∈ [`− 1], but
∑

i∈[k]mi 6=
∑

i∈[`] ni . In every such case, already the
finite substructure of B on {x1, . . . , xk, y1, . . . , y`} does not have a homomorphism to D Since B

was chosen arbitrarily, this confirms our claim that D has homomorphism ω-compactness. It is
also easy to see that CSP(D) is decidable in PTIME, e.g., using the Gaussian elimination method.
Thus, D satisfies all subconditions of ω-admissibility except for finiteness of the signature.
However, by Proposition 1, concept satisfiability w.r.t. GCIs is undecidable in ALC(D).

4.3 JDJEPD via decomposition into orbits

To apply Proposition 5, we need the structure to be JDJEPD. Given anω-categorical τ-structure
A, we can obtain JDJEPD by replacing the original relations with appropriate first-order
definable ones, using the results of Theorem 3. The orbit of a tuple ā ∈ Ak under the natural
action of Aut(A) on Ak is the set {g(ā) | g ∈ Aut(A)}. By Theorem 3, the set of all at most
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k-ary relations definable in A is finite for every k ∈ N. Since every such set is closed under
intersections, it contains finitely many minimal non-empty relations. Since every relation over
A that is preserved by all automorphisms of A is first-order definable in A, these minimal
elements are precisely the orbits of tuples over A under the natural action of Aut(A). We have
just formulated a well-known fourth equivalent condition in Theorem 3:

4. For every k, there are only finitely many orbits of k-tuples over A under Aut(A).

Definition 5. For a given arity bound d ≥ 2, the d-ary decomposition of the τ-structure A,
denoted by A¶d , is the relational structure over A whose relations are all orbits of at most d-ary
tuples over A under Aut(A). We denote the signature of A¶d by τ¶d .

It is easy to see that A¶d is JDJEPD, and that every at most d-ary relation over A first-order
definable in A can be obtained as a disjunction of atomic τ¶d -formulas.

As an example, consider the ω-categorical structure Q. The orbits of k-tuples of elements
of Q can be defined by quantifier-free formulas that are conjunctions of atomic formulas of
the form x i = x j or x i < x j . For example, the orbit of the tuple (2, 3, 2, 5) consists of all tuples
(q1, q2, q3, q4) ∈Q4 that satisfy the formula x1 < x2∧ x1 = x3∧ x2 < x4 if x i is replaced by qi for
i = 1, . . . , 4. The first-order definable k-ary relations in Q are obtained as unions of these orbits,
where the defining formula is then the disjunction of the formulas defining the respective orbits.
Since these formulas are quantifier-free, this also shows that Q admits quantifier elimination.

We have seen that, to obtain JDJEPD, we actually need to take the d-ary decomposition
of a given ω-categorical structure, rather than the structure itself. Fortunately, homogeneity
transfers from D to D¶d .

Proposition 6. Let D be a countable homogeneous structure with a finite relational signature τ,
and let d be a natural number that exceeds or is equal to the maximal arity of a symbol from τ.
Then D¶d is homogeneous.

Proof. By Theorem 4, D has quantifier elimination. Note that the relations of D¶d and D

are first-order interdefinable, which implies Aut(D¶d) = Aut(D) by Theorem 3. This shows
in particular that D¶d is ω-categorical. Every first-order τ¶d -formula φ defines a relation in
D¶d that has a first-order definition φ′ in D. We can assume that φ′ is quantifier-free due to
Theorem 4. We replace every atomic formula ψ( x̄) in φ′ by

∨n
i=1 Ri( x̄) with R1, . . . , Rn ∈ τ¶d ,

where RD¶d

1 ∪ · · · ∪RD¶d

n is the unique decomposition of ψD into orbits of k-tuples over D under
Aut(D). The resulting formula is a quantifier-free definition of φD¶d in D¶d . Thus D¶d has
quantifier elimination as well, which means that it is homogeneous due to Theorem 4.

4.4 Upper bounds via finite boundedness

In the three previous sections, we have described model-theoretic properties that provide us
with all the ingredients needed for ω-admissibility, except for decidability of the CSP. This is
quite literally true because there exist homogeneous structures with a finite relational signature
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4.4. Upper bounds via finite boundedness

but an undecidable CSP [30]. Finding model-theoretic conditions that guarantee decidability
of the CSP for infinite structures is a very broad topic with many open questions. Here we focus
on a well-known condition that ensures that the CSP is decidable in NP and the first-order
theory in PSPACE.

For a class N of τ-structures (called bounds or forbidden patterns), we denote by Forbe(N )
the class of all finite τ-structures not embedding any member of N . Following the terminology
in [30], we say that a relational structure A is finitely bounded if its signature is finite and
Age(A) = Forbe(N ) for a finite set of bounds N . Note that if A is additionally homogeneous,
then, by Theorem 5, it is described by N up to isomorphism. The above definition of finite
boundedness is popular among mathematicians, especially in the context of the classification
program for homogeneous structures in a finite relational signature initiated by [66]. The
notion arose naturally as a tool for describing more general amalgamation classes than the
standard examples such as the class of all finite triangle-free graphs. There is a second, arguably
more practical, definition of finite boundedness.

Lemma 3. Let A be a structure with a finite relational signature. Then the following are equivalent:

• A is finitely bounded;
• there exists a universal sentence Φ(A) such that Age(A) =Modfin(Φ(A)).

Proof. Let τ be the signaure of A.
“⇒”: Let Age(A) = Forbe(N ) for N = {C1, . . . ,Ck}. For every i ∈ [k], we can write down a

quantifier-free τ-formula φCi
with free variables c1, . . . , cni

, where {c1, . . . , cni
} is the domain of

Ci , that describes C up to isomorphism. Then we set

Φ(A) :=
∧

i∈[k]

�

∀c1, . . . , cni
.¬φCi

(c1, . . . , cni
)
�

.

“⇐”: Given a universal τ-sentence Φ(A), we define N as the set of all finite τ-structures C
of size at most n that do not satisfy Φ(A), where n is the number of variables in Φ(A). Then
Age(A) = Forbe(N ) clearly holds.

The structure Q is finitely bounded. To show this using the original definition, we can use
the set N consisting of the following four structures: the self loop, the 2-cycle, the 3-cycle, and
two isolated vertices. We must show that Age(Q) = Forbe(N ). Clearly, none of the structures
in N embeds into a linear order, which shows Age(Q) ⊆ Forbe(N ). Conversely, assume that
A is an element of Forbe(N ). We must show that <A is a linear order. Since N contains the
self loop, we have (a, a) 6∈ <A for all a ∈ A, which shows that <A is irreflexive. For distinct
elements a, b ∈ A, we must have a <A b or b <A a since otherwise the structure consisting of
two isolated vertices could be embedded into A. This shows that any two distinct elements
are comparable w.r.t. <A. To show that <A is transitive, assume that a <A b and b <A c holds.
Since the 2-cycle does not embed into A, a and c must be distinct, and are thus comparable.
We cannot have c <A a since then we could embed the 3-cycle into A. Consequently, we must
have a <A c, which proves transitivity. This shows that A is a linear order. As formula Φ(Q) we
can take the conjunction of the usual axioms defining linear orders.
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4. A Model-Theoretic Analysis of ω-Admissibility

Finitely bounded structures are useful in the context of this thesis due to the following
proposition.

Proposition 7. Let D be a relational structure.

1. If D is finitely bounded, then CSP(D) is in NP.
2. If D is finitely bounded and homogeneous, then Th(D) is in PSPACE.

The first result is stated in [29, 17], and the second result is stated in [61, 64]. We include a
full proof of both for the sake of completeness.

Proof. Let τ be the signature of D. Recall that, since D is finitely bounded, by Lemma 3, there
exists a universal first-order sentence Φ(D) that defines Age(D), i.e., a finite τ-structure can be
embedded into D if and only if it satisfies Φ(D). Since the structure D is fixed, this sentence is
also fixed, which means that it has constant size. We refer to Φ(D) simply by Φ.

For item 1, we show that CSP(D) is definable in existential second-order logic. Then the
statement follows from Fagin’s theorem [46] (see also [59]). Let R1, . . . , R` be an enumeration
of the symbols in τ. For every i ∈ [`], we introduce a second-order variable Si of the same
arity as Ri. Moreover, we introduce a binary second-order variable ∼. We obtain Φ′ from Φ
by replacing each atomic formula of the form Ri( x̄) for i ∈ [`] in Φ by Si( x̄), and each atomic
formula of the form (x = y) in Φ by (x ∼ y). For every i ∈ [`], let ni be the arity of Ri , and let
Θi be the sentence

Θi :=
∧

j∈[ni]
∀x1, . . . , xni

, y
�

Si(x1, . . . , xni
)∧ (x j ∼ y)⇒ Si(x1, . . . , x j−1, y, x j+1, . . . , xni

)
�

.

Now consider the existential second-order sentence Ψ defined as follows:

Ψ := ∃∼∃S1 · · · ∃S`
�

Φ′ ∧
∧

i∈[`]Θi ∧∀ x̄
�

Ri( x̄)⇒ Si( x̄)
�

∧∀x , y, z
��

x ∼ y ∧ y ∼ z ⇒ x ∼ z
�

∧
�

x ∼ y ⇒ y ∼ x
�

∧ x ∼ x
��

.

Let A be an instance of CSP(D). Suppose that A satisfies Ψ. By the definition of Ψ, ∼ is an
equivalence relation on A and also compatible with the relations Si for i ∈ [`] (due to the
sentences Θi). This means that the structure A/∼ on the equivalence classes of ∼ and with the
relations

RA/∼
i = {([x1]∼, . . . , [xni

]∼) ∈ (A/∼)ni | (x1, . . . , xni
) ∈ Si}

is well-defined. By the definition of Ψ, we have that A → A/∼ and that A/∼ |= Φ. Since Φ
defines Age(D), we conclude that A→D. On the other hand, if there exists a homomorphism
h: A → D, then Si := { x̄ ∈ Ani | h( x̄) ∈ RD

i } for i ∈ [`] and ∼ := {(x , y) ∈ A2 | h(x) = h(y)}
witness that Ψ is satisfied in A.

For item 2, we describe a PSPACE algorithm that decides the first-order theory of D. It is
based on the algorithm from the proof of Proposition 3.5 in [64], for which an exponential time
complexity is shown in [64]. Note that, since D is possibly infinite, we cannot simply substitute
all elements from D, one after the other, for a particular quantified variable.
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4.4. Upper bounds via finite boundedness

Now, let b1, b2, . . . be a countably infinite sequence of pairwise distinct symbols. For a
first-order τ-formula φ with free variables x1, . . . , xn, let [φ]D denote the set of all τ-structures
B with domain {b1, . . . , bn} for which there exists an embedding h: B ,→ D such that D |=
φ(h(b1), . . . , h(bn)). Every such embedding h: B ,→D represents an injective1 substitution of
elements from D for the variables x1, . . . , xn. We claim that [φ]D does not depend on the choice
of h. To see this, consider two embeddings h1, h2 : B ,→D such that D |= φ(h1(b1), . . . , h1(bn)).
For each i ∈ [2], let Bi be the substructure of D on the image of {b1, . . . , bn} under hi . Consider
the map ef : B1 → B2 that sends, for every j ∈ [n], h1(b j) to h2(b j). Using the definition of an
embedding, it is easy to show that ef is an isomorphism from B1 to B2. By assumption, D is
homogeneous. By homogeneity of D, there exists an automorphism f of D that extends ef . Since
φ is a first-order formula, φD is preserved by f , which shows that D |= φ(h2(b1), . . . , h2(bn))
holds as well.

We show by induction on the structure of a first-order τ-formula φ with free variables
x1, . . . , xn that, given a τ-structure B with domain {b1, . . . , bn}, it can be decided in PSPACE
in the size of φ whether B ∈ [φ]D. This proves the PSPACE upper bound claimed in the
proposition because, if φ has no free variables, then testing whether the empty structure is
contained in [φ]D is equivalent to answering D |= φ.

In the base case, we consider an atomic formulaφ(x1, . . . , xn). Suppose that B is a τ-structure
with domain {b1, . . . , bn}. If B |= ¬φ(b1, . . . , bn), then clearly B /∈ [φ(x1, . . . , xn)]D because
embeddings are injective and preserve complements of relations. If B |= φ(b1, . . . , bn), then
D |= φ(h(b1), . . . , h(bn)) holds for every embedding h: B→D. Consequently, testing whether
B ∈ [φ(x1, . . . , xn)]D boils down to testing whether B ,→D, which is the case if and only if
B |= Φ. This can be done in PSPACE in the size of φ because it is well-known that first-order
model checking with a fixed first-order sentence can be done in polynomial time in the size of
the input structure.

For the induction step, we can restrict the attention to formulas φ of the form ψ1 ∨ψ2, ¬ψ
and ∃x .ψ. Suppose that φ is of the form ψ1 ∨ψ2 such that the induction hypothesis applies to
both ψ1 and ψ2. For each i ∈ [2], let Bi be the substructure of B on those b js that correspond
to the free variables of ψi. We claim that B ∈ [φ]D if and only if B |= Φ and Bi ∈ [ψi]D for
i = 1 or i = 2. The forward direction is trivial. Now suppose that Bi ∈ [ψi]D for i = 1 or i = 2
and B |= Φ. Then we have an embedding hi : Bi ,→ D witnessing Bi ∈ [ψi]D, and we also
have an embedding h: B ,→D. But then Bi ∈ [ψi]D is also witnessed by h|Bi

because [ψi]D
does not depend on the choice of the embedding. This shows that B ∈ [φ]D is witnessed
by h. Testing whether Bi ∈ [ψi]D can be done in PSPACE in the size of ψi by the induction
hypothesis, and we have already seen in the base case that testing whether B |= Φ can be done
in polynomial time in the size of φ.

Suppose that φ is of the form ¬ψ such that the induction hypothesis applies to ψ. We
claim that B ∈ [φ]D if and only if B /∈ [ψ]D. Suppose that there exists h: B ,→ D such
that D |= ¬ψ(h(b1), . . . , h(bn)). Then there cannot be an embedding h′ : B ,→ D such that

1In our proof we will ensure that injective substitutions are sufficient, by appropriately identifying variables.
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4. A Model-Theoretic Analysis of ω-Admissibility

D |=ψ(h′(b1), . . . , h′(bn)) because containment in [φ]D does not depend on the choice of the
embedding. The backward direction is analogous. By the induction hypothesis, testing whether
B ∈ [ψ]D can be done in PSPACE in the size of ψ and thus also in the size of φ.

Now suppose that φ is of the form φ(x1, . . . , xn) = ∃xn+1.ψ(x1, . . . , xn+1) such that the
induction hypothesis applies to ψ. We claim that B ∈ [φ]D if and only if one of the following
is true

1. there exists an extension B′ of B by bn+1 such that B′ ∈ [ψ]D,
2. there exists i ∈ [n] such that B ∈ [ψi]D holds for the formula ψi obtained from ψ by

replacing each occurrence of the variable xn+1 in ψ by x i .

First, suppose that B ∈ [φ]D is witnessed by some embedding h: B ,→D. Then there exists
d ∈ D such that D |= ψ(h(b1), . . . , h(bn), d). If d is distinct from h(b1), . . . , h(bn), then we
are in the case (1) and consider the extension h′ of h that maps bn+1 to d. We define B′ as
the τ-structure with the domain {b1, . . . , bn+1} such that, for every k-ary symbol R ∈ τ, we
have t ∈ RB′

if and only if h′(t) ∈ RD. Clearly h′ is an embedding that witnesses B′ ∈ [ψ]D.
Otherwise we have d = h(bi) for some i ∈ [n]. We consider the formula ψi from (2). Then h is
an embedding that witnesses B ∈ [ψi]D. Since the backward direction is obvious, it remains
to show that the tests required by (1) and (2) can be performed in PSPACE.

In case (1), we generate all extensions B′ of B by bn+1 and test, using the induction
hypothesis, whether B′ ∈ [ψ]D for some such extension. This can clearly be done in PSPACE
because τ is fixed and finite, and for each extension B′ we can test B′ ∈ [ψ]D within PSPACE
due to the induction hypothesis. In case (2) we guess any such i ∈ [n] and test, using the
induction hypothesis, whether B ∈ [ψi]D. This completes the proof.

Proposition 7 applies not only to a given finitely bounded homogeneous structure D, but
also to its d-ary decomposition D¶d . This is a direct consequence of the following result.

Proposition 8. Let A be a finitely bounded homogeneous structure and B a structure with the
same domain and finitely many relations that are first-order definable in A. Then the expansion
of A by the relations of B is finitely bounded homogeneous.

Proof. Let eA be the expansion of A by the relations of B, where we assume that the signatures
of A and B are disjoint. By Theorem 4, each of the new relations has a quantifier-free definition
in A. Consequently, we can choose any universal sentence Φ(A) for Age(A) and extend it with
universal sentences defining the relations of B, which yields a universal sentence that shows
finite boundedness of eA. The structure eA is homogeneous since an isomorphism between two
finite substructures of eA induces an isomorphism between their reducts to the signature of A,
which extends to an automorphism of A by homogeneity of A. This is also an automorphism of
eA since automorphisms preserve first-order definable relations.

4.5 ω-admissible finitely bounded homogeneous structures

We are now ready to formulate the main results of this section.
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Theorem 6. Let D be a finitely bounded homogeneous relational structure with at most d-ary
relations for some d ≥ 2. Then D¶d is ω-admissible.

Proof. It follows directly from the definition of d-ary decompositions that D¶d is JDJEPD.
By Proposition 6, D¶d is homogeneous. By Theorem 4, D¶d is ω-categorical. Thus D has
homomorphism ω-compactness by Corollary 2. By Theorem 5, Age(D¶d) has the AP. Thus D¶d

is a patchwork by Proposition 5. By Proposition 8, Lemma 1, and Proposition 7, CSP(D¶d) is
in NP. Hence D¶d is ω-admissible.

This theorem, together with Theorem 1, immediately yields decidability for concept satis-
fiability in ALCd

AD(D
¶d). The following corollary shows that we can even allow for arbitrary

first-order definable relations with arity bounded by d in the concrete domain. The idea for
proving this result is to reduce concept satisfiability in ALCd

FO(D) to concept satisfiability in
ALCd

AD(D
¶d). We know that every at most d-ary relation over D first-order definable in D can

be obtained as a disjunction of atomic formulas built using the signature of D¶d . What still
needs to be shown is that, given a first-order formula in the signature of D with at most d free
variables, this disjunction can effectively be computed.

Corollary 3. Let D be a reduct of a finitely bounded homogeneous relational structure with at
most d-ary relations for some d ≥ 2. Then concept satisfiability in ALCd

FO(D) w.r.t. TBoxes is
decidable.

Proof. Let τ be the signature of D. We claim that satisfiability of ALCd
FO(D) concepts w.r.t.

TBoxes can be reduced to satisfiability of ALCd
AD(D

¶d) concepts w.r.t. TBoxes. For this purpose,
we need to replace first-order τ-formulas φ in concrete domain constructors ∀p1, . . . , pk.φ
or ∃p1, . . . , pk.φ with disjunctions ψ of atomic formulas in the signature τ¶d of D¶d . By
Theorem 4 together with Theorem 3, the (finitely many) relations in τ¶d have quantifier-free
definitions in D. Since d and D are fixed, we can make a list consisting of the quantifier-free
definitions for each of them in constant time. Given a first-order τ-formulas φ with k free
variables, let ψ1, . . . ,ψm be the quantifier-free definitions in D for all the k-ary relations of τ¶d

that we have listed before. We test, for every i ∈ [m], whether D |= ∃ ȳ
�

φ( ȳ)∧ψi( ȳ)
�

, which
is possible in PSPACE by Proposition 7. By selecting those ψi1 , . . . ,ψis that tested positively,
we know that, for every ā ∈ Dk, D |= φ(ā) if and only if D |=

∨s
r=1ψir (ā). We replace each

ψir ( ȳ) with R( ȳ), where R is the unique k-ary relation symbol from τ¶d for which D |=ψir (ā)
if and only if D¶d |= R(ā). This yields the desired formula ψ that replaces φ. Now the claim
follows from Theorem 6 and Theorem 1.

Example 4. The examples for ω-admissible concrete domains given in [70] were RCC8 and
Allen’s interval algebra, for which the patchwork property is proved “by hand” in [70]. Given
our Theorem 6, we obtain these results as a consequence of known results from model theory.

It was shown in [31] that RCC8 has a representation by a homogeneous structure DRCC8 with
a finite relational signature (see Theorem 2 in [31]). Since Age(DRCC8) has a finite universal
axiomatization (see Definition 3 in [31]), DRCC8 is finitely bounded.
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Relation (Allen) Illustration

X < Y
Y > X

X
Y

X m Y
Y mi X

X
Y

X o Y
Y oi X

X
Y

X s Y
Y si X

X
Y

X d Y
Y di X

X
Y

X f Y
Y fi X

X
Y

X = Y X
Y

Relation (RCC8) Illustration

X DC Y X Y

X EC Y X Y

X PO Y X Y

X TPP Y
Y TPPi X

Y
X

X NTPP Y
Y NTPPi X

Y
X

X = Y Y
X

Figure 4.1.: The basic relations of Allen and RCC8.

For Allen’s interval algebra, it was shown in [53] that it has a representation by a homogeneous
structure DAllen with a finite relational signature (see the second example on page 270 in [53]).
Since Age(DAllen) has a finite universal axiomatization (see the composition table from Figure 4
in [2]), DAllen is finitely bounded.

The structure Q = (Q;<) we used as our running example also satisfies the preconditions of
Theorem 6, and thus Corollary 3 yields decidability of ALCd

FO(Q) with TBoxes. For Q expanded
just by the relations >,≤,≥,=, 6=, decidability was proved in [67], using an automata-based
procedure. Our results show that there is also a tableau-based decision procedure for this logic.

It also follows from our results that every finite structure can be made ω-admissible. Let D
be any finite structure with a finite relational signature τ, d ≥ 2 an arity bound on its relations.
We define eD as the expansion of D by a unary relation for each domain element. Then eD is
homogeneous because two substructures of eD are isomorphic if and only if they are identical.
Also, eD is clearly finitely bounded because Age(eD) is finite. We can take as N the set of all
τ-structures of size ≤ |D| which do not embed into eD together with all τ-structures of size
|D|+ 1. It follows from Theorem 6 that eD¶d is ω-admissible.

4.6 ω-admissible homogeneous cores with a decidable CSP

Here, we consider the situation where we have a homogeneous relational structure D with
finitely many at most d-ary relations that is not necessarily finitely bounded, but which we can
show (by some other means) to have a decidable CSP. In this setting, we obtain decidability
for ALCd

EP(D) under the additional assumption that D is a core. A structure D is a core if
every endomorphism of D is a self-embedding of D. It is easy to see that this applies to our
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4.6. ω-admissible homogeneous cores with a decidable CSP

running example Q = (Q;<). The structure eQ := (Q;≤), on the other hand, is not a core
because it has the trivial endomorphism x 7→ 0 that is not a self-embedding of eQ. Among
ω-categorical structures, cores are characterized by the following condition. A countable
ω-categorical structure D with a countable signature is a core if and only if every relation
with an existential definition in D has an existential positive definition in D [19]. Consider
the binary inequality relation 6= over Q which clearly has an existential definition in both Q

and eQ. Since the complements of the basic relations defined by = and < in Q have a positive
quantifier-free definition in Q, every relation with an existential definition in Q has an EP
definition in Q. Thus, Q is a core according to the characterization of ω-categorical cores from
above. However, there can be no EP definition of 6= in eQ because relations with an EP definition
are always preserved by all endomorphisms and x 7→ 0 does not preserve 6=.

If D is a homogeneous core, then the orbits of tuples over D under Aut(D) are PP definable
in D [16]. As an easy consequence of this fact, we obtain the following sufficient condition for
ω-admissibility.

Theorem 7. Let D be a homogeneous core with finitely many at most d-ary relations for some
d ≥ 2 and decidable CSP. Then D¶d is ω-admissible.

Proof. It follows directly from the definition of d-ary decompositions that D¶d is JDJEPD.
By Proposition 6, D¶d is homogeneous. By Theorem 4, D¶d is ω-categorical. Thus D has
homomorphismω-compactness by Lemma 2. By Theorem 5, Age(D¶d) has the AP. Thus, D¶d is
a patchwork by Proposition 5. By the results of [16], orbits of tuples over D under Aut(D) (i.e.,
the relations of D¶d) are PP definable in D. Thus, Lemma 1 yields CSP(D¶d)≤PTIME CSP(D).
Hence, D¶d is ω-admissible.

Let D be a structure as in the above theorem. By showing that concept satisfiability in
ALCd

EP(D) can be reduced to concept satisfiability in ALCd
AD(D

¶d), we obtain the following
decidability result.

Corollary 4. Let D be a homogeneous core with finitely many at most d-ary relations for some
d ≥ 2 and a decidable CSP. Then concept satisfiability in ALCd

EP(D) w.r.t. TBoxes is decidable.

Proof. Since satisfiability of ALCd
AD(D

¶d) concepts w.r.t. TBoxes is decidable by Theorems 7
and 1, it is sufficient to reduce concept satisfiability w.r.t. TBoxes in ALCd

EP(D) to this problem.
As in the proof of Corollary 3, we do this by showing how EP formulas φ occurring in concrete
domain constructors can be replaced by disjunctions ψ of atomic formulas in the signature
of D¶d . By the results of [16], the relations of D¶d have PP definitions in D. Since d and
D are fixed, we can make a list consisting of the PP definitions for each of them in constant
time. Given an EP τ-formula φ with k ≤ d free variables, let ψ1, . . . ,ψm be the PP definitions
in D for all the k-ary relations of D¶d that we have listed before. Since CSP(D) is decidable,
we can decide for i ∈ [n] whether D |= ∃ ȳ

�

ψi( ȳ)∧φ( ȳ)
�

. In fact, deciding whether an EP
sentence is true in D only differs from solving CSP(D) in a non-deterministic step that deals
with disjunction. By selecting those ψi1 , . . . ,ψis that tested positively, we know that, D |= φ(ā)
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4. A Model-Theoretic Analysis of ω-Admissibility

if and only if D |=
∨s

r=1ψir (ā) holds for every ā ∈ Dk. Now we replace each ψir ( ȳ) with
R( ȳ), where R is the unique k-ary relation symbol from the signature of D¶d that satisfies
D |=ψir (ā) if and only if D¶d |= R(ā). This yields the desired formula ψ, which completes the
reduction.

4.7 Coverage of the developed sufficient conditions

The next example demonstrates that Theorem 7 and Corollary 4 cover structures to which
Theorem 6 and Corollary 3 do not apply. In fact, since the latter consider finitely bounded
structures, whose CSP is in NP by Proposition 7, they cannot provide us with ω-admissible
concrete domains whose CSP has a higher complexity. Theorem 7 and Corollary 4 make no
assumption on the complexity of the CSP: they only require that the CSP is decidable. However,
for these results to apply, the structure needs to be a homogeneous core.

Example 5. The paper [48] provides us with examples of structures that are homogeneous cores
and whose CSP is considerably more complex than NP. Such structures are called CSP monsters
in [48]. To be more precise, Theorem 8 in [48] shows that, for every complexity class C for which
there exist coNPC-complete problems, there exists a homogeneous structure HC with a finite
signature such that CSP(HC) is CONPC-complete. By Theorem 4 together with Theorem 3.6.23
and Proposition 3.6.24 from [17], for every such structure HC , there exists an up to isomorphism
unique homogeneous core CC with the property that HC maps homomorphically to CC and vice
versa. In particular, this implies that CSP(HC) = CSP(CC). It follows from Theorem 7 that these
structures yield ω-admissible concrete domains whose CSPs have arbitrarily high complexity.
Recall that all previously known examples of ω-admissible concrete domains were finitely
bounded (see Example 4), and thus their CSPs are in NP by Proposition 7. However, already
CNEXPTIME cannot possibly be even a reduct of a finitely bounded structure due to Proposition 7
because NP ( NEXPTIME ⊆ coNPNEXPTIME. Consequently, the homogeneous cores induced by
the CSP monsters of [48] provide us with previously unknown ω-admissible concrete domains
that are not covered by Theorem 6 and Corollary 3.

Next, we investigate the coverage of Theorem 7. This theorem states that every homogeneous
core with a finite signature and a decidable CSP yields an ω-admissible structure via its d-ary
decomposition. The following two results show that, if we are interested in extensions of ALC
of the form ALCd

AD(D), then ω-admissible structures yields the same extensions of ALC as
homogeneous cores with decidable CSPs.

Theorem 8. Let B be an ω-admissible τ-structure. Then there exists an (up to isomorphism)
unique countable homogeneous τ-structure A that is a core with decidable CSP and embeds the
same countable structures as B, i.e., C ,→ A if and only if C ,→B for every countable structure C.

Proof. Since B is JDJEPD and a patchwork, Age(B) has the AP by Proposition 5. Since τ is
finite, Age(B) contains only countably many structures up to isomorphism, and thus is an
amalgamation class. By Theorem 5, there exists a countable homogeneous structure A with
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Age(A) = Age(B). Next, we show that C ,→ A if and only if C ,→B holds for every countable
structure C

“⇐”: Let C be a countable τ-structure that embeds into B. By Theorem 4, A is ω-categorical.
It is known that ω-categorical structures satisfy an even stronger property than homomorphism
ω-compactness, which we refer to as embedding ω-compactness (Lemma 3.1.5 in [17]). This
property guarantees an embedding from a given countable structure if there exists an embedding
from every structure in its age. Since Age(C) ⊆ Age(B) = Age(A), we conclude that C ,→ A.

“⇒”: Let C be a countable τ-structure and e : C ,→ A be an embedding. If we can show that
there is an embedding f : A ,→ B, then we are done since we can use the composition of e
and f as embedding from C to B. Since A is countable, B has homomorphism ω-compactness,
and Age(B) = Age(A), there exists a homomorphism f : A→B. We show that f is in fact an
embedding.

We claim that A is JEPD since B is so. In fact, assume the A is not PD. Then there are
distinct k-ary relations R1, R2 and a k-tuple ā such that ā ∈ RA

1 ∩RA
2 . Thus, the substructure of A

consisting of the elements of ā is an element of Age(A) that is not PD. But then Age(B) = Age(A)
contains a structure that is not PD, which yields a contradiction since B is PD. The fact that JE
transfers from B to A can be shown similarly. If φ(x , y) is the formula witnessing that B is JD,
then one can also show in a similar way that this formula witnesses JD of A as well.

Since we now know that both A and B are JEPD, we can apply Lemma 2, which yields that
the homomorphism f preserves also the complements of all relations of A. In addition, it
preserves the formula φ witnessing JD. Thus, the following holds for all a1, a2 ∈ A: a1 = a2

if and only if A |= φ(a1, a2) if and only if B |= φ( f (a1), f (a2)) if and only if f (a1) = f (a2).
Thus f is an embedding, which concludes the proof of “⇒”.

Since A is JDJEPD, every endomorphism of A is a self-embedding of A, which can be shown
by a similar argument as above. Thus A is a core.

Decidability of the CSP transfers from B to A since the two CSPs coincide. If F is a finite
structure with F→ A, then the image C of F in A is a finite (and thus countable) structure such
that F→ C ,→ A. But then C ,→B, and thus F→B. The inclusion in the other direction can
be shown in the same way.

Since the structures A and B in the theorem have the same signature, the DLs ALCd
AD(A)

and ALCd
AD(B) have the same syntax. We show that they also have the same semantics when

it comes to concept satisfiability.

Corollary 5. Let A and B be as in Theorem 8 and let d be the largest arity of an atomic τ-formula.
Then a concept C is satisfiable w.r.t. a TBox T in ALCd

AD(A) if and only if it is satisfiable in
ALCd

AD(B) w.r.t. T .

Proof. First note that, since B is ω-admissible, the DL ALCd
AD(B) has the countable model

property, i.e., a concept C is satisfiable in this logic w.r.t. a TBox T if and only if there is a finite
model of T in which C is interpreted as a non-empty set. This is a direct consequence of the
proof of Theorem 1 in [11] because the model constructed in this proof is countable. Now
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suppose that I is a countable interpretation witnessing that C is satisfiable w.r.t. T in ALCd
AD(B).

Let C be the substructure of B on {b ∈ B | there is f ∈ NF and a ∈∆I such that (a, b) ∈ f I}.
By Theorem 8, there exists an embedding e : C ,→ A. Since e is an embedding, we can obtain
an interpretation witnessing that C is satisfiable w.r.t. T in ALCd

AD(A) from I by replacing every
(a, d) ∈ f I with (a, e(d)).

The argument used above also works the other way around. Here A is a homogeneous
core with decidable CSP. The proof of Corollary 4 shows that satisfiability of concepts w.r.t.
TBoxes in ALCd

AD(A) can be reduced to satisfiability of concepts w.r.t. TBoxes in ALCd
AD(D) for

an ω-admissible concrete domain D. As above, we can show that this yields the countable
model property for ALCd

AD(A). The rest of the proof is exactly as for the other direction.

The following example shows that equi-satisfiability no longer holds if we replace AD with
FO in Corollary 5, i.e., the logics ALCd

FO(A) and ALCd
FO(B) may have a different semantics.

Example 6. The random graph is the unique countably infinite homogeneous undirected graph
G= (G; EG) such that Age(G) consists of all finite undirected graphs [55]. Note that Age(G)
is defined by ∀x , y

�

E(x , y) ⇒ E(y, x)
�

∧ ∀x
�

E(x , x) ⇒ false
�

. Thus, by Lemma 3, G is
finitely bounded. It also has the extension property: if X and Y are disjoint finite subsets of
G, then there exists a vertex v ∈ G \ (X ∪ Y ) that has an edge in G to each vertex from X and
to none from Y . To see this, let A be the extension of the substructure of G on X ∪ Y by a
vertex u that has an edge to each vertex from X and to none from Y . Then there exists an
embedding e : A ,→G. Since G is homogeneous and the map f : X ∪ Y → e(X ∪ Y ), a 7→ e(a)
is an isomorphism between its finite substructures, there exists f̃ ∈ Aut(G) extending f . Then
v := f̃ −1(e(u)) has the desired property.

Consider the direct product H of G with itself. It is easy to see that Age(G) = Age(H). The
inclusion from left to right holds since H contains an isomorphic copy of G, and the one from
right to left since Age(G) contains all finite undirected graphs. The equality of the two ages
implies that Age(H) has the AP by Theorem 5. Also, by Theorem 3 and Theorem 4, H is ω-
categorical because its relations are first-order definable in the algebraic product of G with itself
and homogeneous structures are closed under building algebraic products. We will introduce
the algebraic product and show that it preserves homogeneity in Section 4.8. However, H does
not have the extension property. To see this, let a, b, c be three distinct vertices in G and set
X := {(a, b), (b, c)}, and Y := {(a, c)}. Suppose that there exists (u, v) ∈ H that has an edge in
H to each vertex from X and to none from Y . By the definition of H as the direct product of G
with itself, there is an edge in G from u to a and from v to c. But then there is an edge from
(u, v) to (a, c) in H, which contradicts to our previous assumption. This implies that G and H

are not isomorphic since the extension property is clearly preserved under isomorphism. We
conclude that H is not homogeneous since homogeneous structures are uniquely determined
up to isomorphism by their age due to Theorem 5. Note that we have just shown with this
example that homogeneous structures are not closed under building direct products.

Now consider the expansion A of G with two new relation symbols R1, R2, where R1 is
interpreted as the equality EqG and R2 as G2 \ (EqG ∪ EG). Likewise we construct the expansion
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B of H with R1, R2. Let C be a substructure of A and eC its {E}-reduct. Since Age(G) = Age(H),
there exists an isomorphism f from eC to some substructure eD of H. Let D be the substructure
of B on the domain eD of eD. We claim that f is also an isomorphism from C to D. We have
x̄ ∈ RC

1 = EqC if and only if f ( x̄) ∈ RD
1 = EqD because f is bijective. Moreover, we have x̄ ∈ RC

2 if
and only if x̄ /∈ (EeC∪EqC) if and only if f ( x̄) /∈ (E eD∪EqD) if and only if f ( x̄) ∈ RD

2 . We conclude
that Age(A) ⊆ Age(B). Using an analogous argument, we can show Age(A) ⊇ Age(B), and
thus Age(A) = Age(B). Since every homomorphism from a finite structure has a finite range,
Age(A) = Age(B) implies CSP(A) = CSP(B) (see the last paragraph in the proof of Theorem 8).

The following two facts are direct consequences of RA
1 and RA

2 being first-order definable in
G. First, A is homogeneous since G is homogeneous and first-order definable relations are
preserved by automorphisms. Thus, Age(A) has the AP by Theorem 5. Second, A is a reduct of
a finitely bounded structure by Proposition 8, and thus CSP(A) is in NP by Proposition 7.

By definition, B is JDJEPD. Since Age(B) = Age(A) has the AP, the structure B is a patchwork
by Proposition 5. By Lemma 2, B has homomorphism ω-compactness since it is ω-categorical.
This is the case since H is ω-categorical and expansions by first-order definable relations do
not change the automorphism group. Since A and B are both countable but not isomorphic,
we conclude using Theorem 5 that B is ω-admissible but not homogeneous. Since Age(A) =
Age(B) and A is countable and homogeneous, it must be the homogeneous core of B from
Theorem 8.

It follows from our proof that H does not have the extension property that the concept A is
satisfiable w.r.t. the TBox

T :=
�

Av ∃ f .
�

x1 = x1 ∧∀x , y, z.∃u
�

E(u, x)∧ E(u, y)∧¬E(u, z)
��	

in ALC2
FO(A), but not in ALC2

FO(B).

4.8 Closure properties: homogeneity & finite boundedness

We have seen above that finitely bounded homogeneous structures provide us withω-admissible
concrete domains. Closure properties allow us to construct newω-admissible concrete domains
from ones satisfying these properties.

For instance, when modelling concepts in a DL with a concrete domain, it is often useful to be
able to refer to specific elements c of the domain, i.e., to have unary predicate symbols =c that
are interpreted as {c}. For example, when using the ω-admissible concrete domain Q of our
running example, one can compare two numbers (e.g., describing the ages of two individuals),
but one cannot state that the value of a feature must be equal to some fixed number (e.g.,
that a person’s age is 17). For a finitely bounded homogeneous structure (such as Q), adding
finitely many such singleton predicates is harmless since the class of reducts of finitely bounded
homogeneous structures is closed under expansion by finitely many predicates of the form =c .
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Proposition 9 ([29]). Let A be a finitely bounded homogeneous structure. Any expansion of A
by a relation of the form {c} for c ∈ A is a reduct of a finitely bounded homogeneous structure.

We have seen in Proposition 8 that this class is also closed under taking expansions by
first-order definable relations.

It would also be useful to be able to refer to predicates of different concrete domains (say
RCC8 and Allen) when defining concepts. This can sometimes be achieved by using the disjoint
union. The union of a family (Ai)i∈I of τ-structures is the τ-structure

⋃

i∈I Ai over
⋃

i∈I Ai such
that R

⋃

i∈I Ai =
⋃

i∈I RAi for each R ∈ τ. This union is called disjoint if Ai ∩A j = ; for all distinct
i, j ∈ I .

In [7], it was shown that admissible concrete domains are closed under disjoint union.
We can show the corresponding result for finitely bounded homogeneous structures. In our
definition of the disjoint union, we have assumed that the component structures A1, . . . ,Ak

have the same signature, but disjoint domains. In [7], the signatures of the structures are
assumed to be disjoint as well (as is, e.g., the case for RCC8 and Allen). The case of disjoint
signatures can, however, be reduced to the case of a common signature: we simply expand the
structures to the union of their signatures by interpreting relation symbols not belonging to
the respective signature as the empty set. Since empty relations can be defined by first-order
formulas, such an expansion by empty relations leaves homogeneity and finite boundedness
intact (see Proposition 8).

Proposition 10. Let A1, . . . ,Ak be finitely bounded homogeneous structures over a common
signature τ, but with disjoint domains. Then their disjoint union

⋃k
i=1 Ai is a reduct of a finitely

bounded homogeneous structure.

Proof. For brevity we write A for the disjoint union
⋃k

i=1 Ai . Let σ be the signature τ extended
by a unary symbol Di for each i ∈ [k]. Consider the σ-expansion A′ of A where DA′

i = Ai for
each i ∈ [k].

To show that A′ is homogeneous, we first observe the following. If, for each i ∈ [k], fi is
an automorphism of Ai , then the map f : A→ A satisfying f |Ai

:= fi is an automorphism of A′

since it additionally preserves DA′

i for each i ∈ [k]. Conversely, if f is an automorphism of A′,
then f |Ai

is an automorphism of Ai for each i ∈ [k]. Now, let f : B1 →B2 be an isomorphism
between two finite substructures of A′. Since f preserves DB1

i = B1 ∩ Ai for each i ∈ [k], the
restrictions f |B1∩Ai

are isomorphisms, and thus extend to automorphism of Ai for each i ∈ [k]
by homogeneity of the structures Ai. By the observation about automorphisms above, this
implies that f itself extends to an automorphism of A′.

Next we show that A′ is finitely bounded. For each i ∈ [k], let

Φ(Ai) = ∀x i1 , . . . , x ini
.φi(x i1 , . . . , x ini

) with φi quantifier-free

be a universal sentence that defines Age(Ai). Now consider the universal sentence Φ(A′) :=
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Φ1 ∧Φ2, where

Φ1 := ∀x
��

∧

i, j∈[k],i 6= j
¬
�

Di(x)∧ Dj(x)
��

∧
�
∨

i∈[k] Di(x)
��

,

Φ2 :=
∧

i∈[k]∀x i1 , . . . , x ini

�
∧ni

j=1
Di(x i j

)⇒ φi(x i1 , . . . , x ini
)
�

.

Let B be a finite σ-structure that satisfies Φ(A′). By Φ1, the unary relations DB
i are pairwise

disjoint and exhaustive. By Φ2, the τ-reduct of the substructure of B on DB
i is contained in

Age(Ai) for each i ∈ [k]. Hence B is a substructure of A′. Conversely, every finite substructure
of A′ must satisfy Φ(A′). This completes the proof as A is the τ-reduct of A′.

Using disjoint union to refer to several concrete domain works well if the paths employed
in concrete domain constructors contain only functional roles, which is the case considered
in [7], but it is not appropriate if non-functional roles occur in paths, as in this thesis. This is
illustrated by the following example.

Example 7. If we want to refer to time and location of an event, we can use the disjoint union
of RCC8 and Allen, employing two feature names time and location. If succ is a functional role,
then the concept description

Eventu ∃succ. Eventu ∃time, succ time.<(x1, x2)u ∃location, succ location. EC(x1, x2)

describes an event e that takes place before its unique successor event e′, which happens in
a region that is externally connected to e. However, if succ is not functional, then the above
concept description does not express that e has a successor event e′ that satisfies both the
temporal and the spatial constraint. Instead, there could be two different successor events, one
satisfying the temporal constraint and the other the spatial one.

To overcome this problem, we propose to use the algebraic product [17].2 Let A1, . . . ,Ak be
relational structures with disjoint signatures τ1, . . . ,τk. Furthermore, let =1, . . . ,=k be fresh
binary symbols such that, for every i ∈ [k], =i is interpreted as EqAi

over Ai. We assume in
the following that the relation =i is part of the signature of Ai. This assumption is without
loss of generality since the equality predicate is first-order definable, and thus extending a
homogeneous structure with an explicit relation symbol for it leaves the structure finitely
bounded and homogeneous (see Proposition 8).

The algebraic product of A1, . . . ,Ak, denoted by A1� · · ·�Ak, has as its domain the Cartesian
product A := A1 × · · · × Ak and as its signature the union of the signatures τi. The relations
of A := A1 � · · ·�Ak are defined by RA := {(ā1, . . . , ān) ∈ An | (ā1[i], . . . , ān[i]) ∈ RAi} for every
i ∈ [k] and every n-ary relation R ∈ τi .

Taking the algebraic product of structures preserves homogeneity and finite boundedness,
and thus the prerequisites for Theorem 6 and Corollary 3 to apply.

2We have seen in Example 6 that employing the usual direct product of the structures does not work since it does
not preserve homogeneity.
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Proposition 11. Let A1, . . . ,Ak be structures with disjoint relational signatures τ1, . . . ,τk such
that, for i ∈ [k], τi contains the symbol =i , which is defined in Ai as EqAi

.

1. If A1, . . . ,Ak are homogeneous, then A1 � · · ·�Ak is also homogeneous.
2. If A1, . . . ,Ak are finitely bounded, then A1 � · · ·�Ak is also finitely bounded.

Proof. By proji we denote the usual projection function proji : A1×· · ·×Ak → Ai with proji( t̄) =
t̄[i]. We use the abbreviation A := A1 � · · ·�Ak and denote the signature of A by τ.

For item 1, let f : B1 → B2 be an isomorphism between two finite substructures B1 and
B2 of A. For every i ∈ [k], we define B1,i and B2,i as the substructure of Ai on proji(B1) and
proji(B2), respectively. For every i ∈ [k] and R ∈ τi ∪ {=i}, the relation RB1 is preserved by f .
Consider the map fi : B1,i →B2,i given by fi( t̄[i]) := f ( t̄)[i]. It is well defined, since for any
t̄, t̄ ′ ∈ B1 with t̄[i] = t̄ ′[i], we have ( t̄, t̄ ′) ∈=i

B1 , which implies f ( t̄)[i] = f ( t̄ ′)[i], because =i is
preserved by f . Since f is an isomorphism, the previous argument can also be read backwards,
which implies that fi is injective. It follows directly from the definition of fi that it is surjective,
because f is surjective. Finally, fi is an isomorphism since, for every R ∈ τi ∪ {=i}, we have

( t̄1[i], . . . , t̄k[i]) ∈ RB1,i iff ( t̄1[i], . . . , t̄k[i]) ∈ RAi ∩ proji(B1)
k

iff ( t̄1, . . . , t̄k) ∈ RA ∩ Bk
1

iff ( t̄1, . . . , t̄k) ∈ RB1

iff ( f ( t̄1), . . . , f ( t̄k)) ∈ RB2

iff ( f ( t̄1), . . . , f ( t̄k)) ∈ RA ∩ Bk
2

iff ( f ( t̄1)[i], . . . , f ( t̄k)[i]) ∈ RAi ∩ proji(B2)
k

iff ( f ( t̄1)[i], . . . , f ( t̄k)[i]) ∈ RB2,i

iff ( fi( t̄1[i]), . . . , fi( t̄k[i])) ∈ RB2,i .

Each fi extends to an automorphism f ′
i of Ai , because Ai is homogeneous. Let f ′ be the map

from A to A defined by f ′( t̄) := f ′
1( t̄[1]), . . . , f ′

k( t̄[k]). Clearly, f ′ is bijective because each f ′
i is

bijective. Let R ∈ τ be an arbitrary and n its arity. Then R ∈ τi ∪ {=i} for some i ∈ [k]. Since
f ′
i is an automorphism of Ai , for every ( t̄1, . . . , t̄n) ∈ An, we have

( t̄1, . . . , t̄n) ∈ RA iff ( t̄1[i], . . . , t̄n[i]) ∈ RAi

iff ( f ′
i ( t̄1[i]), . . . , f ′

i ( t̄n[i])) ∈ RAi

iff ( f ′( t̄1)[i], . . . , f ′( t̄n)[i]) ∈ RAi

iff ( f ′( t̄1), . . . , f ′( t̄n)) ∈ RA.

Hence, f ′ is an automorphism of A. It follows from the definition of fi that f ′ extends f .

For item 2 let, for each i ∈ [k], Φ(Ai) be the universal sentence that defines Age(Ai). Let
Φ′(Ai) be the sentence obtained from Φ(Ai) by replacing each occurrence of an atomic formula
of the form (x = y) in Φ′(Ai) by (x =i y). Furthermore, for each symbol R ∈ τi of arity n other

42



4.8. Closure properties: homogeneity & finite boundedness

than =i , let ΦR be the sentence

∀x1, . . . , xn, y1, . . . , yn

�
∧n

j=1
x j =i y j ⇒

�

R(x1, . . . , xn)⇔ R(y1, . . . , yn)
��

.

Now consider the τ-sentence Φ(A) := Φ1 ∧Φ2 ∧
∧k

i=1Φ
′(Ai)∧

∧

R∈τ\{=1,...,=k}ΦR, where

Φ1 :=
∧k

i=1
∀x , y, z

�

x =i x ∧
�

x =i y ⇔ y =i x
�

∧
�

x =i y ∧ y =i z ⇒ x =i z
��

Φ2 := ∀x , y
�

x = y ⇔
∧k

i=1
x =i y

�

We claim that Φ(A) defines Age(A).

For the forward direction, let B be a finite substructure of A := A1�· · ·�Ak. By the definition
of �, the relation =A

i is an equivalence relation for each i ∈ [k], because =Ai
i is an equivalence

relation. Since B is a substructure of A, =B
i is an equivalence relation for each i ∈ [k] as well.

Thus B |= Φ1. For all t̄, s̄ ∈ B we have t̄ = s̄ if and only if t̄ =B
i s̄ for each i ∈ [k], because

=B
i stands for the equality in the i-th coordinate. Thus B |= Φ2. Let Bi be the substructure

of Ai on proji(B). As a substructure of Ai, Bi satisfies Φ(Ai) because Φ(Ai) defines Age(Ai).
But then Bi must also satisfy Φ′(Ai) because =i interprets as the binary equality predicate in
Bi. We claim that B satisfies Φ′(Ai) for each i ∈ [k]. Let t̄1, . . . , t̄m ∈ B be any tuples to be
substituted for the universally quantified variables x1, . . . , xm of Φ′(Ai). Let ψ′(x1, . . . , xm) be
a formula in DNF equivalent to the quantifier-free part of Φ′(Ai). Let ψ? be a disjunct in ψ′

such that Bi |=ψ?( t̄1[i], . . . , t̄m[i]). Recall that Φ′(Ai) contains no atomic formulas of the form
(x = y) Also recall that, for every n-ary symbol R ∈ τi , we have ( t̄ i1 , . . . , t̄ in) ∈ RB if and only if
( t̄ i1 [i], . . . , t̄ in [i]) ∈ RBi by the definition of �. This means that, if ψ? contains an atomic formula
of the form R(x i1 , . . . , x in) for some n-ary symbol R ∈ τi , then we have Bi |= R( t̄ i1 [i], . . . , t̄ in [i])
if and only if B |= R( t̄ i1 , . . . , t̄ in). Likewise we have Bi |= ¬R( t̄ i1 [i], . . . , t̄ in [i]) if and only if
B |= ¬R( t̄ i1 , . . . , t̄ in). Since B |= ψ?( t̄1, . . . , t̄m) and t̄1, . . . , t̄n were chosen arbitrarily, we
conclude that B |= Φ′(Ai). It follows directly from the argumentation above and the fact that
=i interprets as the binary equality predicate in Ai that B |= ΦR for each R ∈ τ \ {=1, . . . ,=k}.
Hence B |= Φ(A).

For the backward direction, let B be a finite τ-structure that satisfies Φ(A). Then =B
i is an

equivalence relation for each i ∈ [k]. For each i ∈ [k], consider the following τi-structure Bi .
The domain of Bi consists of the equivalence classes w.r.t. =B

i . Moreover, for each n-ary symbol
R ∈ τi, we have (X1, . . . , Xn) ∈ RBi if and only if (b1, . . . , bn) ∈ RB for some representatives
bi ∈ X i. The relations of Bi are well-defined because B |= ΦR for each R ∈ τ \ {=1, . . . ,=k}.
We claim that Bi |= Φ′(Ai) for each i ∈ [k]. Recall that Φ′(Ai) contains no atomic formulas
of the form (x = y). Let X1, . . . , Xm be any equivalence classes of elements from B w.r.t. =B

i

to be substituted for the universally quantified variables x1, . . . , xm of Φ′(Ai), and b1, . . . , bm

any representatives of these equivalence classes, respectively. Let ψ′(x1, . . . , xm) be a formula
in DNF equivalent to the quantifier-free part of Φ′(Ai). Since B |= Φ′(Ai), we have that
B |=ψ′(b1, . . . , bm). Let ψ? be a disjunct in ψ′ such that B |=ψ?(b1, . . . , bm).
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If ψ? contains an atomic formula of the form (x i1 =i x i2), then we have B |= (bi1 =i bi2).
This means that bi1 and bi2 are contained in the same equivalence class w.r.t. =B

i , that is,
X i1 = X i2 . We conclude that Bi |= (X i1 =i X i2) because the symbol =i interprets in Bi as
the binary equality predicate. If ψ? contains the negation of an atomic formula of the form
(x i1 =i x i2), then we have B |= ¬(bi1 =i bi2) which means that bi1 and bi2 are contained in
distinct equivalence classes. Then clearly Bi |= ¬(X i1 =i X i2).

If ψ? contains an atomic formula of the form R(x i1 , . . . , x in) for some n-ary symbol R ∈
τi \ {=i}, then we have B |= R(bi1 , . . . , bin). It follows directly from the definition of Bi

that Bi |= R(X i1 , . . . , X in). If ψ? contains the negation of an atomic formula of the form
R(x i1 , . . . , x in) for some n-ary symbol R ∈ τi, then we have B |= ¬R(bi1 , . . . , bin). Suppose
that (X i1 , . . . , X in) ∈ RBi . Then (b′

i1
, . . . , b′

in
) ∈ RB for some representatives b′

i`
of X i` . But then

(bi1 , . . . , bin) ∈ RB because B |= ΦR, a contradiction. Thus Bi |= ¬R(X i1 , . . . , X in).
Since Bi |=ψ′(X1, . . . , Xm) and X1, . . . , Xm were chosen arbitrarily, we conclude that Bi |=

Φ′(Ai). Since the symbol =i interprets in Bi as the binary equality predicate, we have that
Bi |= Φ(Ai). Thus Bi ∈ Age(Ai) for each i ∈ [k]. For each i ∈ [k], let ei be an embedding from
Bi into Ai . For each b ∈ B and each i ∈ [k], we denote by [b]=B

i
the equivalence class of b ∈ B

w.r.t.=B
i . Now consider the map e : B → A1×· · ·×Ak that sends b to

�

e1([b]=B
1
), . . . , ek([b]=B

k
)
�

.
Note that e is well-defined because we map from elements to their equivalence classes and not
the other way around. By the first clause on the second line in Φ(A), for all x , y ∈ B, we have
x = y if and only if x =B

i y for each i ∈ [k]. This means that e is injective. For every i ∈ [k]
and every n-ary symbol R ∈ τi , we have

(b1, . . . , bn) ∈ RB iff ([b1]=B
i

, . . . , [bn]=B
i
) ∈ RBi

iff
�

ei([b1]=B
i
), . . . , ei([bn]=B

i
)
�

∈ RAi

iff
�

e(b1)[i], . . . , e(bn)[i]
�

∈ RAi

iff
�

e(b1), . . . , e(bn)
�

∈ RA.

Hence e is an embedding from B into A. This completes the proof.

Coming back to Example 7, we can use a feature time&location that maps into the algebraic
product of Allen and RCC8 to describe an event e that has some successor event e′ (among
possibly others) such that e takes place before e′ and the regions where e and e′ happen are
externally connected:

Eventu ∃succ. Eventu ∃time&location, succ time&location. (<(x1, x2)∧ EC(x1, x2)).

The algebraic product also allows us to transfer ω-admissibility to some other well-known
formalisms instead of having to prove the condition by hand.

Example 8. The Cardinal Direction Calculus is a formalism used to relate pairs of points in the
plane with respect to the eight cardinal directions. It can be represented by a structure DCDC

with domain Q2 and relations of the form {( x̄ , ȳ) | ( x̄ [i], ȳ[i]) ∈ Ri for both i ∈ [2]}, where
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= N E S W NE SE SW NW
(=,=) (=,>) (>,=) (=,<) (<,=) (>,>) (>,<) (<,<) (<,>)

Figure 4.2.: The basic relations of the Cardinal Direction Calculus.

R1, R2 ∈ {<,=,>}, see Figure 4.2. Clearly, all relations of DCDC have a first-order definition in
Q�Q, which is finitely bounded and homogeneous by Proposition 11. By Proposition 8, DCDC

is a reduct of a finitely homogeneous structure D, namely Q�Q expanded by the relations
of DCDC. We claim that DCDC itself is homogeneous. By Theorem 4, D is ω-categorical. Then
it follows from Theorem 3 that DCDC is ω-categorical as well because Aut(D) ⊆ Aut(DCDC).
Note that every relation of D has a quantifier-free definition in DCDC. The idea is that we can
recover the relation of Q�Q that acts as a particular relation R of Q in the i-th component
by taking the disjunction of all atomic formulas in the signature of DCDC for relations that
behave as R in the i-th component. For instance, the formula S(x , y) ∨ SE(x , y) ∨ SW(x , y)
defines the relation of Q�Q that acts as < in the second component. Now, since every relation
of D has a quantifier-free first-order definition in DCDC, the homogeneity of DCDC follows
from Theorem 4. By Theorem 5, Age(DCDC) has the AP. Since DCDC is JDJEPD and Age(DCDC)
has the AP, by Proposition 5, it is a patchwork. Since DCDC is a reduct of a finitely bounded
structure, by Proposition 7, its CSP is in NP. Since DCDC is ω-categorical, by Corollary 2, it has
homomorphism ω-compactness. It follows that DCDC is ω-admissible.

Example 9. For n ≥ 1, the n-dimensional block algebra, introduced in [13], is a formalism used to
represent all possible configurations of pairs of n-dimensional blocks whose sides are parallel to
the axes of some orthogonal basis of the n-dimensional Euclidean space. It can be represented
by a structure Dn-block whose domain consists of all n-tuples of ordered pairs of rational
numbers, and whose relations are of the form {( x̄ , ȳ) | ( x̄ [i], ȳ[i]) ∈ Ri for every i ∈ [n]}, where
R1, . . . , Rn are any relations of Allen. Clearly, all relations of Dn-block have a first-order definition
in Allen� · · ·�Allen, the n-fold algebraic product of Allen with itself. Based on this fact, we
can prove ω-admissibility for Dn-block similarly as in Example 8.

One might think that it should be possible to simulate ALC(DCDC) within ALC(Q) and
ALC(Dn-block) within ALC(Allen) simply by using additional features. However, this is not the
case because we allow non-functional roles in concrete domain restrictions, see Example 7.
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Chapter

5 A Model-Theoretic Analysis
of p-Admissibility

Recall that a structure D is p-admissible if it is convex and validity of Horn implications in D is
tractable. As argued at the end of Section 3.2, developing algebraic conditions that characterize
tractability is way beyond the scope of this thesis. For this reason, we will concentrate on
algebraic conditions that ensure convexity. We will see, however, that for finitely bounded
convex structures we obtain tractability for free.

5.1 Convexity via square embeddings

Convex structures can be characterized using the square embedding condition introduced in
Definition 6. Basically, this condition says that the square of every finite substructure of B
embeds into B. However, since we allow the signature to be infinite, the exact formulation of
the property is a bit more complicated.

Definition 6. A class K of relational τ-structures has the square embedding property (SEP) if,
for every finite σ ⊆ τ and every A ∈ K, there is C ∈ K such that the σ-reducts of A2 and C

coincide.

Theorem 9. For a structure B with a (not necessarily finite) relational signature τ, the following
are equivalent:

1. B is convex.
2. K = Age(B) has the SEP.

Note that the direction “2 ⇒ 1” is a slightly more general version of a result commonly known
as McKinsey’s lemma [54]. We cannot use McKinsey’s lemma directly since we also want to
cover structures whose ages are not closed under taking squares, e.g., the second structure in
Theorem 11.

Proof. “2 ⇒ 1”: Suppose to the contrary that the implication ∀x1, . . . , xn

�

φ⇒ψ
�

is valid in
B, where φ is a conjunction of atomic formulas and ψ is a disjunction of atomic formulas
ψ1, . . . ,ψk, but we also have B 6|= ∀x1, . . . , xn

�

φ ⇒ ψi

�

for every i ∈ [k]. Without loss of
generality, we assume that φ,ψ1, . . . ,ψk all have the same free variables x1, . . . , xn, some of
which might not influence their truth value. For every i ∈ [k], there exists a tuple t̄ i ∈ Bn such
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5. A Model-Theoretic Analysis of p-Admissibility

that

B |= φ( t̄ i)∧¬ψi( t̄ i). (5.1)

We show by induction on i that, for every i ∈ [k], there exists a tuple s̄i ∈ Bn that satisfies the
induction hypothesis

B |= φ(s̄i)∧¬
�
∨

`∈[i]ψ`(s̄i)
�

. (5.2)

In the base case (i = 1), it follows from (5.1) that s̄1 := t̄1 satisfies (5.2).

In the induction step (i → i + 1), let s̄i ∈ Bn be any tuple that satisfies (5.2). Let σ ⊆ τ be the
finite set of relation symbols occurring in the implication ∀x1, . . . , xn

�

φ⇒ψ
�

, and let Ai be the
substructure of B on the set {s̄i[1], t̄ i+1[1], . . . , s̄i[n], t̄ i+1[n]}. Then Ai |= φ(s̄i) and Ai |= φ( t̄ i+1),
and thus A2

i |= φ(s̄i × t̄ i+1) where

s̄i × t̄ i+1 :=
�

(s̄i[1], t̄ i+1[1]), . . . , (s̄i[n], t̄ i+1[n])
�

.

By 2., there exists a structure Ci ∈ Age(B) whose σ-reduct coincides with A2
i , which implies

that Ci |= φ(s̄i × t̄ i+1). Let fi be the embedding of Ci into B. Since φ is a conjunction of
atomic σ-formulas and fi is a homomorphism, we have that B |= φ( fi(s̄i × t̄ i+1)). Suppose
that B |= ψi+1

�

fi(s̄i × t̄ i+1)
�

. Since fi is an embedding, we obtain Ci |= ψi+1(s̄i × t̄ i+1), and
thus Ai |=ψi+1( t̄ i+1). This implies B |=ψi+1( t̄ i+1), which contradicts (5.1). Similarly, we can
show that assuming B |=ψ j

�

fi(s̄i × t̄ i+1)
�

for some j ≤ i leads to a contradiction with (5.2).
We conclude that s̄i+1 := fi(s̄i × t̄ i+1) satisfies (5.2).

Since B |= ∀x1, . . . , xn

�

φ⇒ψ
�

, the existence of a tuple s̄i ∈ Bn that satisfies (5.2) for i = k
leads to a contradiction. This completes the proof of of “2 ⇒ 1” of our theorem.

Before we proceed with the proof of “1 ⇒ 2”, let us take a closer look at the contraposition
of the convexity condition. Suppose that we have a conjunction φ of atomic formulas and
tuples r̄ and s̄ over B together with disjunctions ψr̄ and ψs̄ of atomic formulas such that
B |=

�

φ ∧ ¬ψr̄

�

(r̄) and B |=
�

φ ∧ ¬ψs̄

�

(s̄). Then clearly there must exist a tuple t̄ over
B such that B |=

�

φ ∧ ¬ψr̄ ∧ ¬ψs̄

�

( t̄) as otherwise B |= ∀x1, . . . , xn

�

φ ⇒ ψr̄ ∨ ψs̄

�

, but
neither B |= ∀x1, . . . , xn

�

φ ⇒ ψr̄

�

nor B |= ∀x1, . . . , xn

�

φ ⇒ ψs̄

�

is true (which contradicts
convexity).

We are now ready to prove “1 ⇒ 2”. Let σ be a finite subset of τ and A ∈ Age(B). In
addition, let {(r1, s1), . . . , (rn, sn)} be the domain of A2. Consider the tuples r̄ := (r1, . . . , rn)
and s̄ := (s1, . . . , sn). Let φ(x1, . . . , xn) be the conjunction of all atomic σ-formulas such that
A2 |= φ

�

(r1, s1), . . . , (rn, sn)
�

, i.e., we consider all atomic σ-formulas built using a relation
symbol from σ (or the equality predicate) and containing variables from {x1, . . . , xn}, assign
(ri , si) to the variable x i , and take those atomic σ-formulas for which the corresponding tuple
of elements of A2 belongs to the respective relation in A2.

Clearly, the tuples r̄ and s̄ both satisfy φ in B since the projection to a single coordinate
is a homomorphism from A2 to B. Now let ψr̄ be the disjunction of all atomic σ-formulas
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5.1. Convexity via square embeddings

that do not hold on the tuple r̄ in B. Analogously, let ψs̄ be the disjunction of all atomic
σ-formulas that do not hold on the tuple s̄ in B. Without loss of generality |A|> 1, and thus
both disjunctions are non-empty.

We have that B |= φ ∧¬ψr̄(r̄) and B |= φ ∧¬ψs̄(s̄). Since B is convex, there must exist
a tuple t̄ such that B |= φ ∧¬ψr̄( t̄)∧¬ψs̄( t̄). Now consider the map f that sends, for every
i ∈ [n], the tuple (ri , si) to t̄[i]. Clearly f is a homomorphism from the σ-reduct of A to the
σ-reduct of B because B |= φ( t̄). Moreover, f is an embedding because, ifψ is a single atomic
σ-formula, then B |=ψ( t̄) only if B |=ψ(r̄) and B |=ψ(s̄). We define C as the substructure
of B on f (A2).

As a consequence of Theorem 9, every CSP in PTIME gives rise to a p-admissible structure, see
Corollary 6. This further substantiates our remark at the end of Section 3.2 that characterizing
all p-admissible concrete domains is at least as hard as characterizing all tractable CSPs.

Definition 7. The canonical database DB(∃ x̄ .φ) in the signature τ for a satisfiable equality-free
PP τ-sentence ∃ x̄ .φ is the τ-structure whose domain consists of the quantified variables x̄ and
whose relations are specified by the quantifier-free part φ.

Corollary 6. For every structure B, there exists a convex structure D such that

1. CSP(D) = CSP(B);
2. D is p-admissible if and only if CSP(B) is in PTIME.

Proof. Let D be the disjoint union of all finite structures which homomorphically map to B.
Clearly, CSP(D) = CSP(B), because a PP sentence is satisfied in B if and only if it is satisfied in
a finite structure which homomorphically maps to B. Moreover, Age(D) has the SEP, because
it is even closed under taking second powers. Thus, by Theorem 9, D is convex.

To show the second claim of the corollary, let ∀ x̄
�

φ⇒ψ
�

be a Horn implication. Without
loss of generality, we assume that φ does not contain equality atoms since we can remove them
by identifying variables in such equality atoms in φ and ψ. We claim that D |= ∃ x̄

�

φ ∧¬ψ
�

if and only if D |= ∃ x̄ .φ and ψ does not occur as a conjunct in φ. This can be tested in
polynomial time if and only if CSP(B) is in PTIME.

The only-if direction is trivial. For the if direction, note that, by a standard result in database
theory, D |= ∃ x̄ .φ if and only if the canonical database DB(∃ x̄ .φ) homomorphically maps
to D [37]. Since ψ does not occur as a conjunct in φ, this atomic formula does not hold in
DB(∃ x̄ .φ). Suppose that there exists a homomorphism from DB(∃ x̄ .φ) to D. Then there also
exists a homomorphism from DB(∃ x̄ .φ) to B. By the definition of D, there exists an embedding
e : DB(∃ x̄ .φ) ,→D. Since e is an embedding, D |= ∃ x̄

�

φ ∧¬ψ
�

.

Using Theorem 9, we can also obtain a statement similar to that of Theorem 5, where
convexity replaces homogeneity and the square embedding property together with the joint
embedding property replaces the AP. A class K of relational τ-structures has the joint embedding
property (JEP) if, for every B1,B2 ∈ K there exists C ∈ K such that Bi ,→ C for i ∈ {1,2}.
Recall our definition of the square embedding property from Theorem 9.
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5. A Model-Theoretic Analysis of p-Admissibility

Corollary 7. For a class K of finite τ-structures, the following are equivalent:

1. There exists a countable convex structure D with K = Age(D).
2. K contains countably many structures up to isomorphism, is closed under isomorphisms and

building substructures, has the JEP and the SEP.

Proof. The direction “1 ⇒ 2” is a direct consequence of Theorem 9 since classes of the form
Age(D) for a relational structure D trivially satisfy the JEP. The direction “2 ⇒ 1” follows from
Theorem 6.1.1 in [55] and Theorem 9. In fact, Theorem 6.1.1 in [55] implies that a class K of
up to isomorphism countably many finite relational structures that is closed under building
substructures and has the JEP is of the form K = Age(D) for a countable structure D. An
application of Theorem 9 then yields convexity of D.

In contrast to countable homogeneous structures, countable convex structures are in general
not uniquely determined up to isomorphism by their age. The random graph can again serve
as a counterexample.

Example 10. The random graph G introduced in Example 6 is convex since Age(G) satisfies
the square embedding condition. In fact, since G embeds every finite undirected graph, it also
embeds A2 for any undirected graph A. The direct product H of G with itself is thus also convex
since Age(H) = Age(G). However, we have seen in Example 6 that G and H are not isomorphic.
It is not hard to see that G is actually p-admissible. Instead of proving this directly, we will
show it as a consequence of Theorem 12 below.

5.2 Convex ω-categorical structures

For countably infinite ω-categorical structures, the characterization of convexity of Theorem 9
can be improved to the following simpler statement.

Theorem 10. For a countably infinite ω-categorical relational structure B with a countable
signature τ, the following are equivalent:

1. B is convex.
2. B2 embeds into B.

Proof. The direction “2 ⇒ 1” follows immediately from Theorem 9 since B2 ,→B obviously
implies that Age(B) satisfies the square embedding property. Note that for this direction,
ω-categoricity of B is not required.

The proof of “1 ⇒ 2” combines the proof of this direction for Theorem 9 with the following
two facts, which are implied by ω-categoricity of B. First, there exists an embedding from
B2 to B if and only if there exists an embedding from A to B for every A ∈ Age(B2) (see,
e.g., Lemma 3.1.5 in [17]). Second, to deal with the fact that τ may be infinite we can use
Theorem 3, which ensures that, for every k ≥ 1, there are only finitely many inequivalent k-ary
formulas over B consisting of a single atomic τ-formula.
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Besides this simplification, ω-categoricity does not contribute to p-admissibility in any useful
way. The reason is that, in contrast to ω-admissibility, the question whether a given structure
is p-admissible only depends on its age, i.e., if Age(A) = Age(B), then A is p-admissible if and
only if B is p-admissible. Nevertheless, convex ω-categorical structures often appear in the
infinite-domain CSP literature. Here we mention two interesting examples: atomless Boolean
algebras and countably infinite-dimensional vector spaces over finite fields. Since the CSP
for atomless Boolean algebras is NP-complete [14], this example does not provide us with a
p-admissible concrete domain; but the vector space example does.

As shown in [20], the relational representation Vq = (Vq; R+, Rs0 , . . . , Rsq−1) of the countably
infinite-dimensional vector space over a finite field GF(q) is ω-categorical, satisfies V2

q
∼=Vq,

and its CSP is decidable in polynomial time, even if the complements of all predicates are
added. Here R+ is a ternary predicate corresponding to addition of vectors, and the Rsi are
binary predicates corresponding to scalar multiplication of a vector with the element si of GF(q).
These properties are preserved if we add finitely many unary predicates Rei that correspond to
unit vectors e1, . . . , ek.

Corollary 8. The structure Vq expanded with predicates Re1 , . . . , Rek for unit vectors e1, . . . , ek is
p-admissible.

Proof. We have V2
q
∼=Vq, and thus both structures are vector spaces over GF(q) of countably

infinite dimension. Now if we fix finitely many unit vectors e1, . . . , ek ∈ Vq by expanding Vq with
the unary predicates Re1 , . . . , Rek , we can still extend the map which sends (ei , ei) to ei for each
i ∈ [k] to a bijection between bases of both vector spaces. This bijection then naturally extends
to an isomorphism from (Vq, Re1 , . . . , Rek)2 to (Vq, Re1 , . . . , Rek). Thus, Theorem 10 yields
convexity of (Vq, Re1 , . . . , Rek). The CSP in its expansion by inequality and the complements
of all relations can be solved, similarly as in the Gaussian elimination algorithm, by iterated
elimination of variables from equations and subsequent search for unsatisfiable equalities
and/or inequalities between unit vectors (e.g., e1 6= e1 or e1 = e2) (see [20] for details). This
implies that testing validity of Horn implications in (Vq, Re1 , . . . , Rek) is tractable. We conclude
that (Vq, Re1 , . . . , Rek) is p-admissible.

For the case q = 2, the vectors in Vq are one-sided infinite tuples of zeros and ones containing
only finitely many ones, which can be viewed as representing finite subsets of N. For example,
(0,1,1,0,1,0,0, . . .) represents the set {1,2,4}. Thus, if we use V2 as concrete domain, the
features assign finite sets of natural numbers to individuals. For example, assume that the
feature dages assigns the set of ages of daughters to a person, and sages the set of ages of sons.
Then ∃dages, sages, zero. R+(x1, x2, x3) describes persons that, for every age, have either both a
son and a daughter of this age, or no child at all of this age. The feature zero is supposed to point
to the zero vector, which can, e.g., be enforced using the GCI >v ∃zero, zero, zero. R+(x1, x2, x3).
If e1 is the unit vector (0,1,0,0, . . .) and e4 is the unit vector (0,0,0,0,1,0,0, . . .), then the
concept ∃one, four, dages. R+(x1, x2, x3) describes humans that have daughters of age one and
four, and of no other age, if the TBox contains the GCI >v ∃one. Re1(x1)u ∃four. Re4(x1).
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5. A Model-Theoretic Analysis of p-Admissibility

5.3 Convex numerical structures

Outside of the scope of ω-categoricity, we exhibit two new p-admissible concrete domain that
are respectively based on the real and the rational numbers, and whose predicates are defined
by linear equations.

Let eDlin be the relational structure over R that has, for every linear equation system Ax̄ = b̄
over Q, a relation consisting of all its solutions in R. We define Dlin as the substructure of eDlin

on Q. For example, using the matrix A= (2 1 −1) and the vector b̄ = (0) one obtains the
ternary relation {(p, q, r) ∈Q3 | 2p+ q = r} in Dlin. Our proof of the fact these two structures
are p-admissible uses the following simple observation about PP definable relations.

Lemma 4. Let D be a relational structure and {Ri | i ∈ I} a set of relations that are PP definable
in D. Then every isomorphism from D2 to D is also an isomorphism from (D, {Ri | i ∈ I})2 to
(D, {Ri | i ∈ I}).

Proof. Let f : D2 → D be an isomorphism. By a standard result in model theory, if R is PP
definable in D, then f is also a homomorphism from (D, R)2 to (D, R) (e.g., Proposition 5.2.2 in
[17]). Since f is bijective, it only remains to show that f is even an embedding from (D, R)2 to
(D, R). Let φ(x1, . . . , xk) := ∃xk+1, . . . , x`.ψ(x1, . . . , x`) be the PP formula that defines R in D,
whereψ is the quantifier-free part of φ. Let r̄ ∈ R be an arbitrary tuple of the form r̄ = f (r̄1, r̄2)
for some r̄1, r̄2 ∈ Dk. Then there exists s̄ ∈ D`−k such that D |=ψ(r̄[1], . . . , r̄[k], s̄[1], . . . , s̄[`− k]).
Since f is surjective, there exist s̄1, s̄2 ∈ D`−k such that s̄ = f (s̄1, s̄2). Since f is an embedding
from D2 to D, we have D |=ψ(r̄i[1], . . . , r̄i[k], s̄i[1], . . . , s̄i[`− k]) for both i ∈ {1, 2}. This means
that r̄1, r̄2 ∈ R, which confirms our claim.

Theorem 11. The relational structures eDlin and Dlin are p-admissible.

Proof. To prove this theorem for R, we start with the well-known fact that (R;+, 0)2 and
(R;+, 0) are isomorphic [60]. Such an isomorphism exists because (R;+, 0)2 and (R;+, 0)
are both vector spaces over Q whose dimensions are uncountably infinite and of the same
cardinality. Thus every bijective map from a basis of (R;+, 0)2 to a basis of (R;+, 0) extends to
an isomorphism. Now we simply choose any two bases of (R;+, 0)2 and (R;+, 0) such that
the first basis contains (1,1) and the second basis contains 1. Then we choose an arbitrary
bijection from the first basis to the second basis that sends (1, 1) to 1. This bijection extends to
an isomorphism f : (R;+, 0, 1)2 → (R;+, 0, 1). It is easy to see that every relation of eDlin can
be defined in (R;+, 0, 1) using a PP formula. By Lemma 4, f is an isomorphism from eD2

lin to
eDlin, which implies that eDlin is convex by Theorem 9.

Now recall that validity of Horn implications in eDlin can be tested in polynomial time if
the CSP for (eD¬

lin, 6=) is in PTIME. It is easy to see that f is a homomorphism from (eD¬
lin, 6=)2

to (eD¬
lin, 6=). It follows from Corollary 5.10 in [22] that both the CSP and validity of Horn

implications in eDlin are decidable in polynomial time. We conclude that eDlin is p-admissible.
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For Q, we cannot employ the same argument since (Q;+, 0)2 does not even embed into
(Q;+, 0). Instead, we use the well-known fact that Th(Q;+, 0) = Th(R;+, 0) [60] to show that
convexity of eDlin implies convexity of Dlin.

We claim that a stronger statement is true, namely, that Th(Q;+, 0, 1) = Th(R;+, 0, 1). Let
φ be an arbitrary first-order sentence in the signature of (R;+, 0, 1). We obtain the formula
ψ(x) in the signature of (R;+, 0) by replacing the constant 1 in φ by a fresh free variable x ,
i.e., we have (R;+, 0, 1) |= φ if and only if (R;+, 0) |= ψ(1). For every c ∈ R \ {0}, the map
x 7→ cx is an automorphism of (R;+, 0) that sends 1 to c. Since {x ∈ R | (R;+, 0) |= ψ(x)}
has a first-order definition in (R;+, 0), it is preserved by all automorphisms of (R;+, 0) [55].
Now we distinguish the following two cases. If (R;+, 0) |=ψ(0), then (R;+, 0, 1) |= φ if and
only if (R;+, 0) |= ∃x .ψ(x). Otherwise (R;+, 0, 1) |= φ if and only if (R;+, 0) |= ∃x

�

¬(x =
0) ∧ ψ(x)

�

. Using an analogous argument we have either (Q;+, 0, 1) |= φ if and only if
(Q;+, 0) |= ∃x .ψ(x) in the case where (Q;+, 0) |= ψ(0), or (Q;+, 0, 1) |= φ if and only if
(Q;+, 0) |= ∃x

�

¬(x = 0) ∧ψ(x)
�

. Since φ was chosen arbitrarily, we conclude that indeed
Th(Q;+, 0, 1) = Th(R;+, 0, 1).

Since the relations of Dlin are definable in (Q;+, 0, 1) using the same PP formulas as for their
counterparts in eDlin, and Th(Q;+, 0, 1) = Th(R;+, 0, 1), we conclude that Dlin is p-admissible
as well.

In Section 3 we have introduced the structure D2-aff and have shown in Proposition 3 that
subsumption w.r.t. TBoxes is undecidable in EL(D2-aff). Using Theorems 2 and 11 we can now
show that subsumption w.r.t. TBoxes is tractable in EL[D2-aff] since D2-aff is p-admissible.

Corollary 9. The relational structure D2-aff is p-admissible.

Proof. First, note that the CSP and validity of Horn implications in D2-aff can be reduced in
linear time to the same problems for Dlin.

It remains to show that D2-aff is convex. Let σ be a finite subset of the signature of D2-aff

and let A ∈ Age(D2-aff). We may assume without loss of generality that A is a substructure of
D2-aff. It is sufficient to show that the σ-reduct of A2 embeds into the σ-reduct of D2-aff.

For every relation RM ,v̄ of D2-aff we consider the 4-ary relation {( x̄ [1], x̄ [2], ȳ[1], ȳ[2]) ∈
Q4 | ȳ = M x̄ + v̄} of Dlin which we denote by eRM ,v̄. Consider the substructure eA of Dlin

on the set eA := {x ∈ Q | there is x̄ ∈ A such that x ∈ { x̄ [1], x̄ [2]}}. Let eσ be the finite
subset of the signature of Dlin that contains a symbol for every relation eRM ,v̄ for which there
exists a symbol in σ interpreted as RM ,v̄ in D2-aff. Since Dlin is convex, Theorem 9 yields
an embedding ef from the eσ-reduct of eA2 to the eσ-reduct of Dlin. Let f be the mapping
from A2 to Q2 defined as f ( x̄1, x̄2) :=

�

ef ( x̄1[1], x̄2[1]), ef ( x̄1[2], x̄2[2])
�

. It is well-defined by
the definition of eA. Let ( x̄1, x̄2), ( ȳ1, ȳ2) ∈ A2 be arbitrary. Then, by the definition of eA,
( x̄1[1], x̄2[1]), ( x̄1[2], x̄2[2]), ( ȳ1[1], ȳ2[1]), ( ȳ1[2], ȳ2[2]) ∈ eA2 and, for every affine transformation
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5. A Model-Theoretic Analysis of p-Admissibility

x̄ 7→ M x̄ + v̄, we have the following chain of equivalent statements.

�

x̄1

ȳ1

�

,

�

x̄2

ȳ2

�

︸ ︷︷ ︸

∈ RM ,v̄

iff











x̄1[1]

x̄1[2]

ȳ1[1]

ȳ1[2]











,











x̄2[1]

x̄2[2]

ȳ2[1]

ȳ2[2]











︸ ︷︷ ︸

∈ eRM ,v̄

iff











ef ( x̄1[1], x̄2[1])
ef ( x̄1[2], x̄2[2])
ef ( ȳ1[1], ȳ2[1])
ef ( ȳ1[2], ȳ2[2])











︸ ︷︷ ︸

∈ eRM ,v̄

iff

�

f ( x̄1, x̄2)
f ( ȳ1, ȳ2)

�

︸ ︷︷ ︸

∈ RM ,v̄

The first equivalence follows from the definition of eRM ,v̄, the second from the fact that ef is
an embedding, and the third from the definition of f . These equivalences also hold for the
equality predicate which can be written as RE,z̄ for E the 2× 2 identity matrix and z̄ = (0, 0). It
follows that f is an embedding from the σ-reduct of A2 to the σ-reduct of D2-aff.

5.4 Ages defined by forbidden substructures

Finitely bounded structures also provide us with interesting examples of convex structures. In
this setting, convexity already implies tractability.

Theorem 12. For a finitely bounded structure B, the following are equivalent:

1. B is convex,
2. Age(B) is defined by a universal Horn sentence,
3. B is p-admissible.

Proof. “1 ⇒ 2”: Using the logical reformulation of finite boundedness in Lemma 3, we know
that B is finitely bounded if its signature is finite and there is a universal first-order sentence Φ
such that Age(B) consists precisely of the finite models of Φ. We bring Φ into prenex normal
form, and then transform its quantifier-free part in conjunctive normal form. This shows that
we can assume that Φ is a conjunction of implications (in the sense defined in Section 2). Note
that a universal sentence holds in a relational structure if and only if it holds in each of its finite
substructures. In particular, we have B |= Φ. For every implication in Φ where the conclusion
consists of at least two atomic formulas we apply the definition of convexity and reduce Φ to
a universal Horn sentence Φ′ such that B |= Φ′. This implies that Φ′ holds in all elements of
Age(B). In addition, by the construction of Φ′, the original formula Φ is a logical consequence
of Φ′. Thus, if a finite τ-structure satisfies Φ′, it also satisfies Φ, and thus belongs to Age(B).
This shows that Φ′ defines Age(B).

“2 ⇒ 3”: We first show that B is convex using Theorem 9. We set σ := τ and select an
arbitrary finite substructure A of B. Let ∀ x̄

�

φi ⇒ψi

�

be one of the Horn implications whose
conjunction Φ over i ∈ [`] defines Age(B). Let t̄ be a tuple over A2 such that A2 |= φi( t̄) for
some i ∈ [`] and let k be its arity. Then t̄ is of the form ((x1, y1), . . . , (xk, yk)) such that B |=
φi(x1, . . . , xk) and B |= φi(y1, . . . , yk). Since the substructure of B on {x1, . . . , xk, y1, . . . , yk}
satisfies ∀ x̄

�

φi ⇒ ψi

�

, we have B |= ψi(x1, . . . , xk) ∧ψi(y1, . . . , yk), and thus A2 |= ψi( t̄).

54



5.4. Ages defined by forbidden substructures

Since the tuple t̄ and the index i ∈ [`]were chosen arbitrarily, we know that A2 |= ∀ x̄
�

φi ⇒ψi

�

for all i ∈ [`]. Thus, we have A2 |= Φ, which implies A2 ∈ Age(B). We have shown that Age(B)
is closed under taking squares, which is a strong form of the square embedding property from
Theorem 9.

Regarding tractability, note that the structure B satisfies a given Horn implication ∀ x̄
�

φ⇒
ψ
�

if and only if this implication is satisfied by all elements of Age(B). This is the case if
and only if the universal Horn sentence Φ that defines Age(B) implies the Horn implication
∀ x̄

�

φ⇒ψ
�

. It is well-known that the entailment problem is decidable in polynomial time for
Horn implications [43].

“3 ⇒ 1”: This direction is trivial.

This theorem yields the following two examples of p-admissible concrete domains.

Example 11. The random graph G is p-admissible since its age can be defined by the universal
Horn sentence ∀x

�

E(x , x)⇒ false
�

∧∀x , y
�

E(x , y)⇒ E(y, x)
�

.

The structure Q is not convex, as otherwise Theorem 9 would imply that it contains incom-
parable elements since the square of this linear order is not linear. In the universal sentence
defining Age(Q) (see Lemma 3), the totality axiom ∀x , y

�

x < y ∨ x = y ∨ x > y
�

is the culprit
since it is not Horn. If we remove this axiom, we obtain the theory of strict partial orders.

It is well-known that there exists a unique countable homogeneous strict partial order P
[75], whose age is defined by the universal Horn sentence

∀x , y, z
�

x < y ∧ y < z ⇒ x < z
�

∧∀x
�

x < x ⇒ false
�

. (5.3)

Thus, P is finitely bounded and convex. Using P as a concrete domain means that the feature
values satisfy the theory of strict partial orders, but not more. One can, for instance, use this
concrete domain to model preferences of people; e.g., Italian u ∃pizzapref, pastapref. (x1 > x2)
is a concept describing Italians that like pizza more than pasta. Using P here means that
preferences may be incomparable. As we have seen above, adding totality would break
convexity and thus p-admissibility.

By combining Corollary 3 with Theorem 12, we can obtain non-trivial p-admissible concrete
domains D for which subsumption in ALC(D) is decidable. Note that, according to Propo-
sition 4, such a non-trivial structure D cannot be ω-admissible, but it is the reduct of the
ω-admissible structure D¶d .

Corollary 10. Let D be a finitely bounded convex structure that is a reduct of a finitely bounded
homogeneous structure. Then subsumption w.r.t. TBoxes is tractable in EL[D] and decidable in
ALC(D).

Examples of infinitely many non-trivial structures satisfying the condition stated in this
corollary will be given in the next subsection.
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5.5 Ages defined by forbidden homomorphic images

Beside finitely bounded structures, the literature also considers structures whose age can
be described by a finite set of forbidden homomorphic images [38, 58]. For a class N of
τ-structures, Forbh(N ) stands for the class of all finite τ-structures that do not contain a
homomorphic image of any member of N . A structure is connected if its so-called Gaifman
graph is connected. The Gaifman graph of a structure A is the undirected graph (A; E) such
that there is an edge in E between two elements a, a′ ∈ A if and only if they occur together in a
tuple from a relation of A.

Theorem 13 (Cherlin, Shelah, and Shi [38, 58]). Let N be a finite set of connected relational
structures with a finite signature τ. Then there exists an ω-categorical τ-structure DN that is a
reduct of a finitely bounded homogeneous structure and Age(DN ) = Forbh(N ).

We can show that the structures of the form DN provided by this theorem are always
p-admissible.

Proposition 12. Let N be a finite family of connected relational structures with a finite signature τ.
Then DN is p-admissible.

Proof. By Theorem 13, we have A ∈ Age(DN ) if and only if A does not contain a homomorphic
image of any F ∈N as a substructure. If we can show Age(D2

N ) ⊆ Age(DN ), then it follows from
Theorem 9 that DN is convex. Suppose that there exists C ∈ Age(D2

N ) such that C /∈ Age(DN ).
Then there exists F ∈ N such that F → C. Since the projection to a single component is a
homomorphism, this shows that there is a homomorphism F → DN . But then the image of
F under this homomorphism is a finite substructure of DN that does not belong to Forbh(N ),
which contradicts the fact that Age(DN ) = Forbh(N ). Thus indeed Age(D2

N ) ⊆ Age(DN ) and
DN is convex.

Since there are, up to isomorphisms, only finitely many homomorphic images of each F ∈N
in DN , there exists a finite set N ′ of finite structures such that Age(DN ) = Forbe(N ′), which
means that DN is finitely bounded. Since DN is convex, its p-admissibility follows from
Theorem 12.

Proposition 12 together with the next example provides us with infinitely many countable
p-admissible concrete domains satisfying the preconditions of Corollary 10, which all yield a
different extension of EL. The usefulness of these concrete domains for defining interesting
concepts is, however, as yet unclear.

Example 12. A directed graph is a tournament if every two distinct vertices in it are connected by
exactly one directed edge. Henson [52] proved that there are uncountably many homogeneous
directed graphs by showing that, for any (not necessarily finite) set N of finite tournaments
(plus the loop and the 2-cycle) such that no member of N is embeddable into any other member
of N , Forbe(N ) is an amalgamation class whose Fraïssé limit is a homogeneous directed graph.
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5.5. Ages defined by forbidden homomorphic images

Furthermore, the Fraïssé limits for two distinct sets of such tournaments are distinct as well. In
the literature, such directed graphs are often called Henson digraphs [71].

An important observation about Henson digraphs is that Forbe(N ) = Forbh(N ) holds for any
set N of finite tournaments plus the loop and the 2-cycle. The inclusion Forbh(N ) ⊆ Forbe(N )
holds since every embedding is a homomorphism. To show the other inclusion, suppose
that A ∈ Forbe(N ). The loop clearly does not homomorphically map to A because every
homomorphism from the loop to A is an embedding. Since the loop does not homomorphically
map to A, every homomorphism from the 2-cycle to A is an embedding. Thus, the 2-cycle does
not homomorphically map to A. Since the loop and the 2-cycle do not homomorphically map
to A, every homomorphism from a tournament to A is an embedding. Thus, A does not admit
any homomorphic image of a structure from N . We conclude that Forbe(N ) ⊆ Forbh(N ).

For every selection N of finitely many tournaments that do not embed into each other, the
set N consists of connected structures since tournaments as well as the loop and the 2-cycle are
connected. Moreover, if N1,N2 are two distinct such sets, then Forbh(N1) 6= Forbh(N2) [71].
Since there are infinitely many such families N , Theorem 13 and Proposition 12 yield infinitely
many non-isomorphic p-admissible and finitely bounded concrete domains that have different
ages. Consequently, the ages of these structures are defined by universal Horn sentences that
are not equivalent. This implies that, in the extension of EL with these concrete domains,
different subsumptions hold.

To make this more precise, assume that ∀ x̄
�

φ⇒ψ
�

is a Horn implication that is satisfied
by all elements of Forbh(N1) = Age(DN1

), but for which there is an element G of Forbh(N2) =
Age(DN2

) that does not satisfy it. We can easily turn the conjunction of atomic formulas φ and
the atomic formulas ψ into concepts Cφ and Cψ of the DLs EL[DN1

] and EL[DN2
] by viewing

the variables in x̄ as features and replacing the conjunct operators ∧ in φ by DL conjunction u.
If we additionally ensure that all these features are defined (using GCIs >v ∃x , x . (x1 = x2)
for all x occurring in x̄), then Cφ is subsumed by Cψ w.r.t. these GCIs in EL[DN1

], but not in
EL[DN2

] since one can use G ∈ Age(DN2
) to construct a counterexample to the subsumption.

A more general class of p-admissible structures can be obtained from connected MMSNP
(for monotone monadic strict NP) sentences. Recall the notion of a canonical database from
Definition 7.

Definition 8. A connected (equality-free) MMSNP sentence Φ over a finite relational signature
τ is of the form Φ = ∃P1, . . . , Pn ∀ x̄

�∧

i ¬
�

αi ∧βi

��

where P1, . . . , Pn are unary relation symbols
not in τ, each αi is a conjunction of atomic formulas of the form R( x̄) for R ∈ τ with free
variables x̄ i such that DB(∃ x̄ i .αi) is connected, and each βi is a conjunction of atomic formulas
of the form Pi(x) for i ∈ [n] and their negations.

Note that, for every family N as in Theorem 13, the class Age(DN ) consists of all finite
models of a particular MMSNP sentence of the form ∀ x̄

�∧

i ¬αi

�

where each αi encodes a
single structure F ∈ N up to homomorphic equivalence. The following result is thus as a
generalization of Theorem 13 to more complicated forbidden patterns involving existentially
quantified unary predicates.
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Theorem 14 (Theorem 7 in [21]). For every connected MMSNP sentence Φ over a finite signature
τ, there exists an ω-categorical τ-structure DΦ that is a reduct of a finitely bounded homogeneous
structure and such that Age(DΦ) consists of all finite models of Φ.

Like Theorem 13, this theorem can be used to produce p-admissible concrete domains.
However, in contrast to the setting considered in Theorem 13, connected MMSNP is known
to exhibit a complexity dichotomy between PTIME and NP-complete [26]. The following
proposition shows that, already within the class of reducts of finitely bounded homogeneous
structures, p-admissibility does not only depend on convexity, in contrast to what holds for
finitely bounded structures (see Theorem 12).

Proposition 13. Let Φ be a connected MMSNP sentence over a finite relational signature τ and
DΦ any τ-structure as in Theorem 14. Then DΦ is convex. Moreover, DΦ is p-admissible if and
only if satisfiability of Φ in finite τ-structures can be tested in polynomial time.

Proof. We show convexity using Theorem 9. Let A be a finite substructure of DΦ. Then A |= Φ
and this is witnessed by some sets P1, . . . , Pn ⊆ A. Assume that A2 6|= Φ. For every i ∈ [n], we set
P ′

i := Pi ×A. Since A2 6|= Φ, there exists a tuple s̄ over A2 such that (A2, P ′
1, . . . , P ′

n) |=
�

αi ∧βi

�

(s̄)
for some i. Let r̄ be the tuple over A obtained from s̄ by taking the projection of each entry in
s̄ to the first coordinate. By the definition of the product of structures and of the sets P ′

i , we
obtain (A, P1, . . . , Pn) |=

�

αi ∧βi

�

(r̄), which contradicts our assumption that A |= Φ is witnessed
by P1, . . . , Pn. Thus A2 |= Φ, which shows A2 ∈ Age(DΦ). An application of Theorem 9 thus
yields convexity of DΦ.

It remains to determine in which cases we can test validity of Horn implications in DΦ in
polynomial time. The proof of Theorem 7 in [21] yields CSP(DΦ) = Age(DΦ). It can be shown
as in the proof of Corollary 6 that testing satisfiability of Horn implications in DΦ reduces
in polynomial time to CSP(DΦ), which amounts to testing satisfiability of Φ by Theorem 14
because CSP(DΦ) = Age(DΦ). Hence, testing satisfiability of Horn implications in DΦ can be
done in polynomial time if and only if testing satisfiability of Φ in finite structures can be done
in polynomial time.

Example 13. Consider the following two connected MMSNP sentences:

Φ1 := ∃P ∀x , y
�

¬
�

E(x , y)∧ P(x)∧ P(y)
�

∧¬
�

E(x , y)∧¬P(x)∧¬P(y)
��

Φ2 := ∃P ∀x , y, z
�

¬
�

E(x , y)∧ E(y, z)∧ E(z, x)∧ P(x)∧ P(y)∧ P(z)
�

∧¬
�

E(x , y)∧ E(y, z)∧ E(z, x)∧¬P(x)∧¬P(y)∧¬P(z)
��

It is easy to see that testing satisfiability of Φ1 in finite structures corresponds to solving the
well-known 2-colorability problem, which is known to be tractable. Thus, the structure BΦ1

is a
p-admissible concrete domain. Satisfiability of Φ2 in finite structures corresponds to the problem
No-Mono-Tri (for “no mono-chromatic triangle”), which is known to be NP-complete [19]. Thus,
the structure BΦ2

is convex, but it is not p-admissible (unless P=NP). More examples of
connected MMSNP sentences can be found in [19].
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5.6 (Non-)closure properties of convexity

In contrast to homogeneity, convexity is quite fragile. For example, it is in general not preserved
under adding predicates of the form =c , even under the assumption of finite boundedness.

Proposition 14. Convex (finitely bounded) structures are not closed under adding singleton
predicates =c .

Proof. The unique countable homogeneous strict partial order P was introduced and shown to
be convex in Example 11. Consider the extension Pc of P by a smallest element c /∈ P, i.e.,
c < p for every p ∈ P. It is easy to see that Age(Pc) = Age(P), which means that Pc is still
finitely bounded and convex. Now consider its expansion P′

c by the unary relation =c , which is
interpreted as {c}. The structure P′

c is not convex since ∀x , y
�

x = x ∧=c(y)⇒ y < x ∨=c(x)
�

holds in it, but neither ∀x , y
�

x = x ∧=c(y)⇒ y < x
�

nor ∀x , y
�

x = x ∧=c(y)⇒ =c(x)
�

.

When it comes to expansions by first-order definable relations, we clearly run into problems
if we allow definitions containing disjunctions of atomic formulas. However, except for very
specific situations as in Lemma 4, convexity is not even preserved under taking expansions by
PP definable relations.

Proposition 15. Convex (finitely bounded) structures are not closed under taking expansions by
PP definable relations.

Proof. As shown in [51], there exists a unique countable homogeneous undirected graph H

that embeds precisely those finite undirected graphs not containing the complete graph on
three vertices K3 as an induced subgraph. By Lemma 3, H is finitely bounded because Age(H)
is defined by the following universal Horn sentence:

∀x , y, z
�

E(x , y)∧ E(y, z)∧ E(z, x)⇒ false
�

∧∀x , y
�

E(x , y)⇒ E(y, x)
�

∧∀x
�

E(x , x)⇒ false
�

.

By Theorem 12, H is also convex. However, the expansion (H, 6=) is not convex since

(H, 6=) |= ∀x1, x2, x3, x4

�

x1 6= x2 ∧ x3 6= x4 ⇒ x1 6= x3 ∨ x1 6= x4

�

,

but both x1 = x3 6= x4 and x1 = x4 6= x3 is possible in (H, 6=). We claim that 6= can be
primitively positively defined in H by the formula

φ(x1, x4) = ∃x2, x3

�

E(x1, x2)∧ E(x2, x3)∧ E(x3, x4)
�

.

First, suppose that H |= φ(h1, h4) for some h1, h4 ∈ H. Then clearly h1 6= h4 as otherwise H

would embed K3. Second, let h1, h4 be arbitrary distinct elements of H. Consider the undirected
path P4 with four vertices v1, v2, v3, v4. Since P4 does not embed K3, there exists an embedding
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5. A Model-Theoretic Analysis of p-Admissibility

e : P4 ,→ H. If there is an edge between h1 and h4, then we can take x2 = h4 and x3 = h1 to
shows that H |= φ(h1, h4). Otherwise, the substructures of H on {h1, h4} and on {e(v1), e(v4)}
are isomorphic. Since H is homogeneous, there exists α ∈ Aut(H) which sends e(v1) to h1 and
e(v4) to h4. Since α◦e is a homomorphism, it follows that (x1, . . . , x4) := (α◦e(v1), . . . ,α◦e(v4))
satisfies the quantifier-free part of φ in H, and thus H |= φ(h1, h4) also in this case.

Also, convexity is not preserved under taking disjoint unions.

Proposition 16. Convex (finitely bounded) structures are not closed under disjoint union.

Proof. Consider a signature with a single unary predicate symbol and a structure (S; R) where
S is countably infinite and R is interpreted as the whole domain S. This structure is finitely
bounded and convex by Lemma 3 and Theorem 12 since its age is defined by the universal
Horn sentence ∀x . R(x). If we build the union of (S; R) with an isomorphic copy of itself over
a domain disjoint with S, then we obtain a structure isomorphic to the structure N = (N; E, O),
of which we have seen in Section 3.2 that it is not convex.

However, convexity is preserved under taking the algebraic product. This is an easy conse-
quence of Theorem 9 combined with the fact that the mapping

((x1, x2), (y1, y2)) 7→ ((x1, y1), (x2, y2))

is an isomorphism between D2
1 �D

2
2 and (D1 �D2)2.

Proposition 17. Convex structures are closed under taking the algebraic product.
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Chapter

6 Towards user-definable
concrete domains

DL systems that can handle concrete domains allow their users to employ a fixed set of predicates
of one or more fixed concrete domains when modelling concepts. They do not provide their
users with means for defining new predicates, let alone new concrete domains. Our results in
Section 4 alleviate the first restriction since Corollary 3 allows the use of first-order definable
predicates and Corollary 4 of predicates definable by EP formulas. To overcome the second
restriction, one would need to provide the user with (i) a mechanism for defining a concrete
domain; (ii) an algorithm that checks whether this concrete domain is ω- or p-admissible;
and (iii) an automated way of generating the required reasoning procedures for this concrete
domain. The present chapter is devoted to this topic.

Suppose that we successfully defined a concrete domain D, which subsequently passed a test
for ω- or p-admissibility. If D was confirmed to be ω-admissible, then, by the combination of
Theorem 8, Theorem 5, and Corollary 5, the complexity of reasoning in ALC(D) only depends
on Age(D) and not D itself. If D was confirmed to be p-admissible, then we are only interested
in the language EL[D] because, by Corollary 1 and Corollary 9, the full logic EL(D) might
be undecidable. The fragment EL[D] has the finite model property, and the complexity of
reasoning again only depends on Age(D). Based on these two observations, the user-definability
problem for ω- or p-admissible concrete domains can be vaguely stated as follows:

INPUT: A finite description of a class K of finite structures in a finite relational signature τ.
QUESTION: Does there exist an ω- or p-admissible τ-structure D with Age(D) = K?

For the case of ω-admissible concrete domains, one might think that Theorem 6 provides us
with the correct ingredients. To define a concrete domain satisfying the preconditions of this
theorem, one could start with selecting a finite set N of bounds (or equivalently, by Lemma 3,
a universal sentence). The first question is then whether Forbe(N ) really describes the age of a
structure. The bad news is that this question is in general undecidable.

Proposition 18. Let τ be a finite relational signature containing at least one binary symbol. The
question whether, for a given finite set N of finite τ-structures, there is a τ-structure D such that
Age(D) = Forbe(N ) is in general undecidable.

Proof. It is shown in [33] that the JEP is undecidable for classes of undirected graphs definable
by finitely many bounds. In addition, it is known that a class of finite structures definable by
finitely many bounds has the JEP if and only if this class is the age of some countable structure
(Theorem 6.1.1 in [55]).
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However, to apply Theorem 6, we need the AP rather than just the JEP. In contrast to the JEP,
the amalgamation property (AP) is decidable for classes over finite binary signatures defined
by finitely many forbidden finite substructures [62]. In Theorem 15, we prove an even stronger
statement, namely decidability in ΠP

2 . The proof of Theorem 15 uses the following proposition
which is well-known [66]; for a proof see, e.g., Proposition 2.3.17 in [18].

Definition 9. Let K be a class of relational τ-structures. A one-point amalgamation diagram for
K is a triple (A,B1,B2) of relational structures from K together with identity maps ei : A ,→Bi

such that Bi \ A= {bi} for i ∈ [2]. We say that K has the one-point amalgamation property if it
has the AP restricted to one-point amalgamation diagrams.

Proposition 19. A class of finite relational τ-structures that is closed under isomorphisms and
substructures has the AP if and only if it has the AP restricted to one-point amalgamation diagrams.

Theorem 15. Let N be a finite set of finite τ-structures over a finite relational signature τ
consisting of binary symbols. If Forbe(N ) does not have the AP, then the size of a smallest
counterexample to the AP is polynomial in the size of N . Consequently, the question whether there
exists a homogeneous τ-structure D such that Age(D) = Forbe(N ) is decidable in ΠP

2 .

Proof. According to [62], it is decidable whether Forbe(N ) has the AP. By Theorem 5, this is
the case if and only if there is a homogeneous structure D such that Age(D) = Forbe(N ). A
decision procedure for this problem was also described recently in [25]. By Proposition 19, it
is enough to show that Forbe(N ) has the one-point amalgamation property. Let R1, . . . , Rn be
an enumeration of τ. Suppose that there exists S ⊆ [n] such that the formula

φS(y1, y2) :=
�
∧

i∈S
Ri(y1, y2)

�

∧
�
∧

i∈[n]\S
¬Ri(y1, y2)

�

∧
�
∧

i∈[n]¬Ri(y2, y1)
�

is not satisfiable in any F ∈ N . Then Forbe(N ) has the AP because, for every one-point
amalgamation diagram (A,B1,B2), we can choose C with domain B1 ∪ B2 and relations

RC
i :=

¨

RB1
i ∪ RB2

i ∪ {(b1, b2)} if i ∈ S
RB1

i ∪ RB2
i if i ∈ [n] \ S.

It is easy to see that C ∈ Forbe(N ): since F ∈ N cannot embed into B1 or B2, the image of
an embedding of F into C would need to contain b1 and b2, but then the formula φS(y1, y2)
would be satisfiable in F.

Now suppose that Forbe(N ) does not have the AP. We define the size of N as the sum of the
sizes of all structures in N , where the size of a structure is the sum of the cardinalities of the
domain and all relations. By the argument in the previous paragraph, for every S ⊆ [n], the
formula φS(y1, y2) must be satisfiable in some F ∈ N . Consequently, this structure contains
a tuple (a1, a2) such that φS(a1, a2) holds, but φS′(a1, a2) does not hold for any S′ 6= S. This
shows that, over all structures in N , there are at least 2|τ| tuples. Since all of them except for
one belongs to at least on relation and the cardinality of the structures in N is at least 1, this
shows that the size of N is at least 2|τ|.
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To prove that the original problem is in ΠP
2 , it is sufficient to show that the complement

can be decided by an NP procedure that uses a coNP oracle. Given a finite set of bounds N ,
we guess a one-point amalgamation diagram (A,B1,B2) and check whether it witnesses that
Forbe(N ) does not have the AP. According to the proof of Theorem 4 in [25], the size of a
smallest counterexample to the one-point amalgamation property for Forbe(N ) is bounded
by a polynomial in m · ` where m :=maxF∈N |F | and ` := 2|τ|. Thus, by what we have shown
above for the size of N , we may assume that the size of A,B1,B2 is polynomial in the size
of the input N , which shows that this triple can be guessed within NP. To verify that it is a
counterexample to the AP, we need to check that

1. A,B1,B2 ∈ Forbe(N ), and
2. there exists no C ∈ Forbe(N ) with embeddings fi : Bi ,→ C, i ∈ [2], such that f1|A = f2|A.

The test in item 1 can be performed by a coNP oracle. In fact, to check whether a finite
structure does not belong to Forbe(N ), it is sufficient to guess an embedding from an element
of N into this structure. Clearly, this can be done by an NP procedure.

For item 2, first note that it is clearly sufficient to consider structures C such that C = B1 ∪ B2

and where the embeddings fi are the identity.1 There are only polynomially many structures of
this kind. In fact, to determine such a structure, we need to decide for the tuples (b1, b2) and
(b2, b1) to which of the binary relations in τ they belong. There are 2|τ| possibilities for each
tuple, and we already know that 2|τ| is polynomial in the size of the input. The test whether
C ∈ Forbe(N ) can again be solved by a coNP oracle.

Thus, we have shown that the complement of the problem of deciding the AP can be solved
by an NP procedure that uses a coNP oracle, which finishes the proof of the lemma.

Assume that, in the binary case, the test whether Forbe(N ) has the AP was successful, and
let D be the corresponding homogeneous structure. Using the results from Chapter 4, we
can then transform D into an ω-admissible concrete domain through a decomposition of its
relations into orbits under Aut(D). The required decision procedure for the CSP can then be
obtained from the proof of Proposition 7. Thus, for the case of binary signatures, Theorem 6
together with related results in Section 4 provides us with the necessary ingredients for enabling
user-definable ω-admissible concrete domains.

Another option would be to directly test whether Forbe(N ) defines the age of anω-admissible
structure. We show in Corollary 11 that this problem is decidable in Πp

2 as well.

Corollary 11. The question whether, for a given finite set N of finite τ-structures over a finite
relational signature τ consisting of at most binary symbols, there exists anω-admissible τ-structure
D such that Age(D) = Forbe(N ) is decidable in Πp

2.

The proof of Corollary 11 uses the following lemma.

Lemma 5. Let D be a structure with a finite relational signature. Then the following are equivalent:

1The case where f1(b1) = f2(b2) can only yield a counterexample if B1 and B2 are equal up to renaming of b1

with b2, which can easily be checked.
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6. Towards user-definable concrete domains

• D is JD;
• for every A ∈ Age(D), every strong endomorphism of A is an embedding of A.

Proof. Let τ be the signature of D.

“⇒”: Let φ(x , y) be a formula witnessing JD for D. Moreover, let A be an arbitrary finite
structure that embeds to D and f a strong endomorphism of A. Since A ,→ D, the formula
φ(x , y) also witnesses JD for A. Then, by Lemma 2, for every pair a1, a2 ∈ A, we have a1 = a2

if and only if A |= φ(a1, a2) if and only if A |= φ( f (a1), f (a2)) if and only if f (a1) = f (a2). We
conclude that f is an embedding.

“⇐”: Let φ(x , y) be the disjunction of all τ-formulas ψ(x , y) such that (i) ψ(x , y) is a
conjunction of atomic formulas with a symbol from τ and negations of such formulas, (ii) for
every atomic formula with a symbol from τ and free variables among x , y , either the formula
itself or its negation appears in ψ(x , y), and (iii) there exists d ∈ D with D |=ψ(d, d). Clearly,
for every d ∈ D, we have D |= φ(d, d). Now assume, towards a contradiction, that there is a
pair d1, d2 ∈ D of distinct elements such that D |= φ(d1, d2). Then D |= ψ(d1, d2) for some
disjunct ψ of φ. By (i) and (ii), ψ completely describes the relations of the substructure A of
D on {d1, d2}. By (iii), there exists d ∈ D such that D |= ψ(d, d). Thus, the map that sends
both d1 and d2 to d is a strong homomorphism from A to D. Now it is easy to see that the
map sending both d1 and d2 to d1 is strong endomorphism of A but not an embedding, a
contradiction to our assumption. Thus, D 6|= φ(d1, d2). Since d1, d2 were chosen arbitrarily, we
conclude that φ(x , y) witnesses JD for D.

Proof of Corollary 11. By Proposition 5, for every structure D with Age(D) = Forbe(N ), we
have that D is a patchwork if and only if Forbe(N ) has the AP and D is JDJEPD. If Forbe(N ) does
not have the AP, then no structure D with Age(D) = Forbe(N ) can be ω-admissible. If, on the
other hand, Forbe(N ) does have the AP, then, by Theorem 5, there exists even a homogeneous
structure D with Age(D) = Forbe(N ). In that case, by Theorem 4 and Corollary 2, D has
homomorphism ω-compactness because it is homogeneous in a finite relational signature.
Moreover, by Proposition 7, CSP(D) is in NP because D is finitely bounded. Thus, the only
subcondition of ω-admissibility that might not be satisfied by D is JDJEPD. We have seen in
Theorem 15 that the question whether Forbe(N ) has the AP in decidable in Πp

2. We show that
the question whether every structure D with Age(D) = Forbe(N ) is JDJEPD can be decided in
Π

p
2 as well. Then we are done.

Let D be an arbitrary structure with Age(D) = Forbe(N ). Clearly, D is JEPD if and only
if every structure in Age(D) = Forbe(N ) is JEPD. Suppose that some structure in Forbe(N )
is not JEPD. Since Forbe(N ) is preserved under taking substructures, the size of a smallest
counterexample A is bounded by the largest arity of a symbol in τ, which is polynomial in the
size of N . The fact that A is not JEPD can be confirmed in NP, and A ∈ Forbe(N ) can be verified
using a coNP oracle as in the proof of Theorem 15. Thus, testing JEPD can be done in Πp

2.
Finally, by Lemma 5, D is not JD if and only if there exists A ∈ Age(D) = Forbe(N ) which has
a strong endomorphism that is not an embedding. Since Forbe(N ) is preserved under taking
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6.1. A proof-theoretic perspective

substructures, we may assume that |A|= 2. Whether such a structure A exists can, again, be
tested in NP using a coNP oracle.

This automated approach can be used to identify RCC8 and Allen as ω-admissible concrete
domains because they are both finitely bounded (see Example 4).

It is an open question whether the decidability result for the AP in [62] can be extended
to signatures containing symbols of higher arities. In Sections 6.3 and 6.4, we demonstrate
that going past binary signatures allows us to obtain polynomial-time reductions from decision
problems that are complete for PSPACE or even EXPSPACE. However, we were not able to
obtain any lower bound stronger than EXPSPACE-hardness, let alone a proof of undecidability.

In the setting relevant for p-admissibility, we can show that the analogous problem is unde-
cidable already for signatures containing at most binary symbols, see Theorem 16. This is an
easy consequence of Theorem 19 from Section 6.2, which asserts that deciding the JEP for the
class of all finite models of a given universal Horn sentence in a finite signature is undecidable
even if τ is limited to binary symbols.

Theorem 16. The question whether, for a given finite set N of finite τ-structures over a finite
relational signature τ, there exists a p-admissible τ-structure D such that Age(D) = Forbe(N ) is
undecidable even if τ is limited to binary symbols.

Proof. By Lemma 3, for every universal Horn sentence Φ in the signature τ, there exists a
finite set NΦ of finite τ-structures such that Forbe(NΦ) is the set of all finite models of Φ. By
Corollary 7, there exists a structure D with Age(D) = Forbe(NΦ) if and only if Forbe(NΦ) has
the JEP. Moreover, whenever there exists a structure D with Age(D) = Forbe(NΦ), then D is
p-admissible by Theorem 12. Thus undecidability follows directly from Theorem 19.

Section 6.2 also contains a proof ofΠP
2 -completeness of the question whether a given universal

sentence in a finite relational signature is equivalent to a universal Horn sentence. Since every
finite set of bounds can be translated to a universal sentence of identical size that defines
the same class of structures, the problem in Theorem 16 becomes decidable in ΠP

2 under the
assumption that Forbe(N ) has the JEP.

6.1 A proof-theoretic perspective

From now on, we will restrict our attention to (sometimes even equality-free) Horn sentences.
This will not lead to less general results, quite the opposite, it will allow us to obtain strong
lower bounds for the JEP and the AP.

We say that a Horn implication ∀ x̄
�

φ⇒ψ
�

can be applied to a structure A if ∃ x̄
�

φ ∧¬ψ
�

is
satisfiable in A. Let Φ be a Horn sentence. We say that A is closed under application of Horn
implications from Φ if no conjunct of Φ is applicable to A, i.e., if A is a model of Φ.

It will be handy to take a proof-theoretic perspective on the JEP and the AP using the following
notion.
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6. Towards user-definable concrete domains

Definition 10. Let Φ be an equality-free universal Horn sentence over the relational signature
τ, and let φ( x̄) and ψ( x̄ , ȳ) be equality-free conjunctions of atomic τ-formulas. We say that
φ( x̄) dominates ψ( x̄ , ȳ) modulo Φ and write ψ( x̄ , ȳ)≤Φ φ( x̄) if, for every atomic τ-formula
χ( x̄) other than equality, Φ |= ∀ x̄ , ȳ

�

ψ( x̄ , ȳ)⇒ χ( x̄)
�

implies Φ |= ∀ x̄
�

φ( x̄)⇒ χ( x̄)
�

.

For brevity, we will sometimes omit universal quantifiers in universal sentences, such as in
Definition 11, all first-order variables are then implicitly universally quantified.

Definition 11. Let Φ be an equality-free universal Horn sentence and ψ a Horn implication,
both in a fixed relational signature τ. An SLD-derivation of ψ from Φ of length s is a finite
sequence of Horn implications ψ0, . . . ,ψs = ψ such that ψ0 is a conjunct in Φ and each ψi

(i ∈ [s]) is a (binary) resolvent of ψi−1 and a conjunct φi from Φ, i.e., for some atomic formula
ψ

j
i−1, we have

ψi−1
︷ ︸︸ ︷

�

ψ1
i−1 ∧ · · · ∧ψ j

i−1 ∧ · · · ∧ψni−1
i−1

�

⇒ψ0
i−1

φi
︷ ︸︸ ︷

�

φ1
i ∧ · · · ∧φmi

i

�

⇒ψ
j
i−1

�

ψ1
i−1 ∧ · · · ∧ψ j−1

i−1 ∧φ1
i ∧ · · · ∧φmi

i ∧ψ j+1
i−1 ∧ · · · ∧ψni−1

i−1

�

⇒ψ0
i−1

︸ ︷︷ ︸

ψi

We say thatψ is a weakening of a Horn implicationψ′ ifψ′ can be obtained fromψ by removing
any amount of atoms from the premise of ψ and/or replacing the conclusion of ψ by false.
Note that ψ is a weakening of itself. There exists an SLD-deduction of ψ from Φ, written as
Φ `ψ, if ψ is a tautology or a weakening of a Horn implication ψ′ that has an SLD-derivation
from Φ up to renaming of variables. We will sometimes omit mentioning that variables might
have been renamed if this is clear from the context.

The following theorem presents a fundamental property of equality-free universal Horn
sentences: that SLD-deduction is a sound and complete calculus for entailment of equality-free
Horn implications by equality-free Horn sentences.

Theorem 17 (Theorem 7.10 in [74]). Let Φ be an equality-free universal Horn sentence and ψ
an equality-free Horn implication, both in a fixed signature τ. Then Φ |=ψ if and only if Φ `ψ.

6.2 Universal Horn sentences and the JEP

This section deals with two separate topics. First, we discuss the semantical difference between
universal sentences and universal Horn sentences. We prove that the the problem of deciding
whether a universal sentence is equivalent to a universal Horn sentence is Πp

2-complete. Second,
we prove undecidability of the JEP for classes defined by universal Horn sentences.

Let τ be a relational signature. In an analogy to our definition for relational structures, we call
a universal τ-sentence Φ convex if whenever Φ entails a τ-implication

∧

i∈[n]φi ⇒
∨

j∈[k]ψ j,
then there exists j ∈ [k] such that Φ already entails

∧

i∈[n]φi ⇒ψ j .
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6.2. Universal Horn sentences and the JEP

We say that Φ is preserved in products if for every non-empty family (Ai)i∈I of models of Φ,
the direct product

∏

i∈I Ai is also a model of Φ. The following is well known; e.g., the direction
“3 ⇒ 1” is Corollary 9.1.7 in [54]. Since we also need item 4 of this theorem, we provide a
proof for the convenience of the reader.

Theorem 18 (McKinsey). Let Φ be a universal sentence with relational signature τ. Then the
following are equivalent.

1. Φ is convex;
2. Φ is equivalent to a universal Horn sentence;
3. Φ is preserved in products;
4. Φ is preserved in binary products of finite structures.

Proof. “1 ⇒ 2”: We may assume that Φ is in prenex normal form and that its quantifier-free
part φ is in conjunctive normal form. Every conjunct in φ is equivalent to an implication of the
form

∧

i∈[n]φi ⇒
∨

j∈[k]ψ j . Since Φ is convex, we can replace the conjunct by
∧

i∈[n]φi ⇒ψ j

for some j ∈ [k]. In this way, Φ can be rewritten into an equivalent universal Horn sentence.
“2 ⇒ 3”: Corollary 9.1.6 in [54].
“3 ⇒ 4”: This direction is trivial.
“4 ⇒ 1”: Suppose that Φ has m variables and is not convex, i.e., Φ |=

∧

i∈[n]φi ⇒
∨

j∈[k]ψ j

but, for every j ∈ [k], there exists a model A j of Φ such that A j |=
�∧

i∈[n]φi ∧ ¬ψ j

�

( t̄ j)
for some tuple t̄ j ∈ Am

j . We may assume that each A j is finite; otherwise we replace it
with its substructure on the coordinates of t̄ j while preserving the desired properties. For
s̄ j := (( t̄1[1], . . . , t̄ j[1]), . . . , ( t̄1[m], . . . , t̄ j[m])) we have

∏

i∈[ j]
Ai |=

�
∧

i∈[n]φi ∧
∧

i∈[ j]¬ψi

�

(s̄ j).

It follows by induction on j ∈ [k] that if Φ is preserved in binary products of finite structures,
then

∏

i∈[ j]Ai |= Φ. We then obtain a contradiction for j = k.

Proposition 20. Deciding whether a given universal sentence Φ is equivalent to a universal Horn
sentence is Πp

2-complete. The problem is Πp
2-hard even when the signature is limited to unary

relation symbols.

Proof. We first prove containment in Πp
2. For a given universal sentence Φ, let φ(x1, . . . , xn)

be the quantifier-free part of Φ. If Φ is not equivalent to a universal Horn sentence, then, by
Theorem 18, Φ has two finite models A,B such that A×B is not a model of Φ. This means
that there exists t̄ ∈ (A× B)n such that A×B 6|= φ( t̄). But then, by the definition of product of
structures, there exist substructures A′ of A and B′ of B of size at most n with t̄ ∈ (A′×B′)n and
A′ ×B′ 6|= φ( t̄). Since models of Φ are preserved under taking substructures, we have A′ |= Φ
and B′ |= Φ. Conversely, if there exist two models of Φ of size at most n whose product is not a
model of Φ, then clearly Φ is not equivalent to a universal Horn sentence by Theorem 18.

The argument above shows that the following algorithm is sound and complete for the
complement of the original problem. We first guess two models A and B of Φ of size at most
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6. Towards user-definable concrete domains

n such that A×B is not a model of Φ. The latter can be verified in time polynomial in n by
guessing a tuple t̄ ∈ (A× B)n such that A×B 6|= φ( t̄). Verifying A |= Φ and B |= Φ iteratively
would require a loop over up to nn many tuples, which would not yield an efficient procedure.
Instead, we deal with the verification using a coNP oracle that guesses any potential tuple
witnessing that B 6|= Φ or A 6|= Φ.

Since this shows that the complement of the original problem is in Σp
2, the original problem

itself is in Πp
2.

The Πp
2-hardness can be shown by a reduction from the complement of the propositional

∃∀SAT problem. Consider an instance

∃X1, . . . , Xk∀Xk+1, . . . , X`.Ψ(X1, . . . , X`) (6.1)

of propositional ∃∀SAT. We first obtain the signature τ = {C1, . . . , Ck, C , L, R} consisting of
unary symbols only. Let ψ(x , xk+1, . . . , x`) be the quantifier-free τ-sentence obtained from
Ψ(X1, . . . , X`) by replacing each propositional variable X i with Ci(x) if i ∈ [k], and with C(x i)
if i ∈ [`] \ [k]. Now we set

Φ := ∀x , y, xk+1, . . . , x`
�

¬C(x)∧ C(y)⇒ψ(x , xk+1, . . . , x`)∧
�

L(x)∨ R(x)
��

.

The idea is to show that: Φ is equivalent to ∀x , y
�

C(y)⇒ C(x)
�

if (6.1) is not satisfiable, and
otherwise Φ is not equivalent to any universal Horn sentence.

“⇒”: Suppose that (6.1) is satisfiable, i.e., there exists a map f : {X1, . . . , Xk} → {0,1}
such that every map f ′ : {X1 . . . , X`} → {0, 1} which extends f is a satisfactory assignment for
Ψ(X1, . . . , X`). Let AL be the τ-structure over {a1, a2} such that

1. for every i ∈ [k] and j ∈ [2], AL |= Ci(a j) if and only if f (X i) = 1,
2. AL |= ¬C(a1)∧ L(a1), and AL |= C(a2).

We define AR analogously by switching the roles of L and R in item 2 above. It follows directly
from our assumption about f , item 1, and item 2 that AL |= Φ. We also clearly get AR |= Φ since
the construction of AL and AR is symmetrical w.r.t. Φ. Now consider the structure AL ×AR. We
have that AL ×AR |= ¬C((a1, a1))∧ C((a2, a2)). However, AL ×AR 6|= L((a1, a1))∨ R((a1, a1)).
Thus, Modfin(Φ) is not preserved under products, which means that Φ is not equivalent to any
universal Horn sentence by Theorem 18.

“⇐”: Suppose that Φ is not equivalent to any universal Horn sentence. By Theorem 18,
Modfin(Φ) is not preserved in binary products of finite structures, i.e., there exist A,B ∈
Modfin(Φ) such that A×B 6|= Φ.

First, suppose that either A |= C(a) for every a ∈ A or A |= ¬C(a) for every a ∈ A, and
either B |= C(b) for every b ∈ B or B |= ¬C(b) for every b ∈ B. Then it also holds that either
A×B |= C((a, b)) for every (a, b) ∈ A× B or A×B |= ¬C((a, b)) for every (a, b) ∈ A× B. But
then we clearly have A×B |= Φ, a contradiction to our original assumption.

Next suppose that, without loss of generality, there exist a1, a2 ∈ A such that A |= ¬C(a1)∧
C(a2). Let f : {X1, . . . , Xk} → {0, 1} be the map defined by f (X i) = 1 if and only if A |= Ci(a1).
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6.2. Universal Horn sentences and the JEP

Let f ′ : {X1, . . . , X`} → {0, 1} be an arbitrary extension of f . We want to show that f ′ is a satis-
factory assignment for Ψ(X1, . . . , X`). For this, we consider the map f ′′ : {xk+1, . . . , x`} →
{a1, a2} given by f ′′(x i) = a2 if and only if f ′(X i) = 1. Since A |= Φ1, we have A |=
ψ(a1, f (xk+1), . . . , f (x`)). By the definition of ψ and f ′′, the map f ′ is a satisfying assign-
ment for Ψ(X1, . . . , X`). We conclude that (6.1) is satisfiable.

In the context of Theorem 12, the Πp
2-hardness in Proposition 20 would also be interesting

under the assumption that Modfin(Φ) has the JEP, i.e., under the assumption that Modfin(Φ)
is the age of some structure. This can be achieved with a simple trick where we introduce a
fresh binary symbol E into τ and replace the conjunction ¬C(x)∧C(y) in Φ by the conjunction
¬C(x) ∧ C(y) ∧ E(x , y) ∧ E(y, xk+1) ∧

∧`−1
i=k+1 E(x i , x i+1). As a consequence, Modfin(Φ) is

even closed under the formation of disjoint unions, which is a strong form of the JEP. This
trick is based on a general property of connected universal sentences that we later use in our
undecidability proof for the JEP. We will only need to formulate this property for equality-free
universal Horn sentences, see Proposition 21, but note that it can be formulated for arbitrary
universal sentences even if equality atoms are allowed.

Corollary 12. Deciding whether a given universal sentence Φ such that Modfin(Φ) has the JEP is
equivalent to a universal Horn sentence is Πp

2-hard, even when the signature is limited to binary
relation symbols.

Definition 12. An equality-free Horn implication ∀ x̄
�

φ⇒ψ
�

is called connected if DB(∃ x̄ .φ)
is connected.

Proposition 21. Let Φ be an equality-free universal Horn sentence such that each conjunct in Φ is
connected. Then Modfin(Φ) is closed under taking disjoint unions and therefore has the JEP.

Proof. Let B1,B2 ∈ Modfin(Φ) be arbitrary. Define C as the disjoint union of B1 and B2. Then
there exist embeddings ei : Bi ,→ C (i ∈ [2]) with e1(B1)∩ e2(B2) = ; and e1(B1)∪ e2(B2) = C .
Let φ⇒ψ be an arbitrary conjunct in Φ. Suppose that C |= φ(c̄) for some tuple c̄ over C . Since
φ⇒ψ is connected and no two elements c1, c2 ∈ C with c1 ∈ e1(B1) and c2 ∈ e2(B2) appear
in a tuple from a relation of C simultaneously, c̄ must be a tuple over e1(B1) or over e2(B2).
Without loss of generality, c̄ = e1(b̄) for some tuple b̄ over B1. Since e1 is an embedding, we
have B1 |= φ(b̄). Since B1 |=

�

φ⇒ψ
�

, it follows that B1 |=ψ(b̄). Thus, ψ cannot be of the
form false. Since e1 is an embedding, we have C |= ψ(c̄). This shows that C |=

�

φ ⇒ ψ
�

because c̄ was chosen arbitrarily. Since φ⇒ψ was also chosen arbitrarily, C |= Φ.

Example 14. The class P of all finite strict partial orders, defined by (5.3), is the age of the set
of all finite subsets of N partially ordered by set inclusion. This structure is isomorphic to the
disjoint union of the countably many representatives of P up to isomorphism.

Universal sentences preserved under disjoint unions can be fully characterized in terms of
being equivalent to a universally quantified conjunction of connected implications, see, e.g.,
Theorem 4.4 in [40]. One should not expect any similar normal form for universal sentences
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6. Towards user-definable concrete domains

whose finite models have the JEP since, by the results in [33], this property is undecidable.
However, there is a useful reformulation of the JEP for equality-free universal Horn sentences.
We will use it to simplify the presentation of our undecidability proof.

Lemma 6. Let Φ be an equality-free universal Horn sentence over the relational signature τ. Then
the following are equivalent:

1. Modfin(Φ) has the joint embedding property.
2. Suppose that φ1( x̄1) and φ2( x̄2) are equality-free conjunctions of atomic formulas with

disjoint sets of variables such that φi( x̄ i)∧Φ is satisfiable for both i ∈ [2]. Then

φ1( x̄1)∧φ2( x̄2)≤Φ φ1( x̄1).

Proof. “1⇒2”: Let φ1( x̄1) and φ2( x̄2) be as in the first part of item 2. Let Ψ1( x̄1) and
Ψ2( x̄2) be the conjunctions of all R-atoms for R ∈ τ that are implied by Φ ∧ φ1( x̄1) and
Φ∧φ2( x̄2), respectively. By our assumption, Φ∧Ψ1( x̄1) and Φ∧Ψ2( x̄2) are both satisfiable.
Define B1 and B2 as the structures whose domains consist of the variables { x̄1[1], . . . }, and
{ x̄2[1], . . . }, respectively, and where z̄ is a tuple of a relation for R ∈ τ if the conjunct R(z̄)
is contained in Ψ1 or Ψ2, respectively. Note that, by construction, B1 and B2 satisfy every
Horn implication in Φ. Since Φ is universal Horn, this implies that B1,B2 ∈ Modfin(Φ).
Since Modfin(Φ) has the joint embedding property, there exists C ∈ Modfin(Φ) together with
embeddings fi : Bi ,→ C for i ∈ {1,2}. By the construction of B1 and B2, it follows that
Φ 6|= ∀ x̄1, x̄2

�

φ1( x̄1)∧φ2( x̄2)⇒ false
�

. Let χ( x̄1) be an atomic τ-formula other than equality
such that Φ |= ∀ x̄1, x̄2

�

φ1( x̄1) ∧ φ2( x̄2) ⇒ χ( x̄1)
�

. By the construction of B1 and B2, and
because f1 and f2 are homomorphisms, there exist a tuple z̄ over B1 such that C |= χ( f1(z̄)).
Since f1 is an embedding, we must also have B1 |= χ(z̄). Thus, by the construction of B1 and
B2, it follows that Φ |= ∀ x̄1

�

φ1( x̄1)⇒ χ( x̄1)
�

.

“2⇒1”: Let B1,B2 ∈ Modfin(Φ) be arbitrary. We construct a structure C ∈ Modfin(Φ) with
fi : Bi ,→ C as follows. Without loss of generality we may assume that B1 ∩ B2 = ;. Let
φ1( x̄1) and φ2( x̄2) be the conjunctions of all R-atoms for R ∈ τ which hold in B1 and B2,
respectively. By construction, φi( x̄ i) ∧ Φ is satisfiable for both i ∈ [2]. Let Ψ( x̄1, x̄2) be the
conjunction of all atomic formulas implied by Φ ∧φ1( x̄1) ∧φ2( x̄2). We claim that Φ ∧ Ψ is
satisfiable: otherwise, Φ |= ∀ x̄1, x̄2

�

φ1( x̄1)∧φ2( x̄2)⇒ false
�

, and then item 2 implies that
Φ |= ∀ x̄1(φ1( x̄1)⇒ false), which is impossible since B1 |= Φ. Define C as the structure with
domain { x̄1[1], . . . , x̄2[1], . . . } and such that RC contains a tuple z̄ if and only if Ψ contains the
conjunct R(z̄). For i ∈ [2], let fi be the identity map. We claim that fi is an embedding from Bi

to C. It is clear from the construction of C that fi is a homomorphism. Suppose for contradiction
that there exists R ∈ τ and a tuple z̄ over Bi such that z̄ /∈ RB

i while fi(z̄) ∈ RC. For the sake of
notation, we assume that i = 1; the case that i = 2 can be shown analogously. Note that the
construction of C implies that Φ |= ∀ x̄1, x̄2

�

φ1( x̄1)∧φ2( x̄2)⇒ R(z̄)
�

. Then item 2 implies that
Φ |= ∀ x̄1

�

φ1( x̄1)⇒ R(z̄)
�

, a contradiction to B1 ∈ Modfin(Φ). Thus, fi is an embedding from
Bi to C. This concludes the proof of the joint embedding property.
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Now, we are ready to prove that the problem of deciding whether the class of all finite models
of a given universal Horn sentence Φ has the joint embedding property is undecidable.

Theorem 19. For a given equality-free universal Horn sentence Φ the question whether Modfin(Φ)
has the JEP is undecidable even if the signature is limited to at most binary relation symbols.

Our proof is based on a reduction from the problem of deciding the universality of a given
context-free grammar. As usual, the Kleene plus of Σ, denoted by Σ+, is the set of all finite
words over Σ of length ≥ 1. A context-free grammar (CFG) is a 4-tuple G = (N ,Σ, P, S) where

• N is a finite set of non-terminal symbols,
• Σ is a finite set of terminal symbols,
• P is a finite set of production rules of the form A→ w for A∈ N and w ∈ (N ∪Σ)+,
• S ∈ N is the start symbol.

For u, v ∈ (N ∪Σ)+ we write u →G v if there are x , y ∈ (N ∪Σ)+ and (A → w) ∈ P such that
u= xAy and v = xwy. The transitive closure of →G is denoted by →∗

G. The language of G is
L(G) := {w ∈ Σ+ | S →∗

G w}. Note that with this definition the empty word, i.e., the word ε of
length 0, can never be an element of L(G); some authors use a modified definition that also
allows rules that derive ε, but for our purposes the difference is not essential.

Example 15. Let G := ({S}, {a, b}, {S → aSb, S → ab}, S). Then it follows by a simple induction
that L(G) = {an bn | n ≥ 1} because every accepting derivation path in →G is of the form
S →G · · · →G an−1Sbn−1 →G an bn.

The idea of the reduction is to compute from a given context-free grammar G a universal
Horn sentence which consists of two parts, Φ1 and Φ2: the sentence Φ2 only depends on Σ and
entails many Horn implications witnessing failure of the JEP via Lemma 6; the sentence Φ1 can
be computed efficiently from G and is such that Modfin(Φ1) is closed under the formation of
disjoint unions and prevents all the failures of the JEP of Modfin(Φ1 ∧Φ2) if and only if G is
universal, i.e., L(G) = Σ+.

Here, we assume that (A → A) ∈ P for every A ∈ N . Note that this assumption does not
influence L(G) at all.

Encoding context-free grammars into ages of relational structures

Let τ1 be the signature that contains the unary symbols I and T , and the binary relation symbol
Ra for every element a ∈ N ∪Σ. Let Φ1 be the universal Horn sentence that contains, for every
(A→ a1 . . . an) ∈ P, the Horn implication

∧

i∈[n] Rai
(x i , x i+1)⇒ RA(x1, xn+1), (6.2)

and additionally the Horn implication

I(x1)∧ T (x2)∧ RS(x1, x2)⇒ false. (6.3)
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6. Towards user-definable concrete domains

Note that each conjunct of Φ1 is connected, which means that Modfin(Φ1) has the JEP by
Proposition 21. The following correspondence can be shown via a straightforward induction.

Lemma 7. For every w= a1 . . . an ∈ (N ∪Σ)+, we have A→∗
G w if and only if

Φ1 |= ∀x1, . . . , xn+1

�
∧

i∈[n] Rai
(x i , x i+1)⇒ RA(x1, xn+1)

�

. (6.4)

Proof. “⇒”: Suppose that A →∗
G a1 . . . an for A ∈ N . Then there is a path in →G from A to

a1 . . . an of length λ ≥ 1. We prove the statements by induction on λ.

In the induction base λ= 1 we have (A→ a) ∈ P in which case (6.4) is a conjunct of Φ1.

In the induction step λ −→ λ+ 1, we assume that the claim holds for all paths of length
≤ λ, and that there exists a path of length λ + 1 from A to a1 . . . an, i.e., there exists (A →
a1 . . . ak−1Ba`+1 . . . an) ∈ P and a path of length λ from B to ak . . . a`. By the induction hypoth-
esis, after renaming of variables we have that

Φ1 |= ∀xk, . . . , x`+1

�
∧

i∈[`]\[k−1]
Rai
(x i , x i+1)⇒ RB(xk, x`+1)

�

. (6.5)

By the construction of Φ1, after renaming of variables we also have that

Φ1 |= ∀x1, . . . , xk, x`+1, . . . , xn+1

�
∧

i∈[k−1]
Rai
(x i , x i+1)

∧ RB(xk, x`+1)∧
∧

i∈[n]\[`] Rai
(x i , x i+1)⇒ RA(x1, xn+1)

�

. (6.6)

We can now apply an SLD derivation step to (6.6) with (6.5) to obtain (6.4).

“⇐”: Suppose that Φ1 |= (6.4). By Theorem 17, there is an SLD-deduction of (6.4) from
Φ1. If (6.4) is a tautology, then n= 1 and a1 = A in which case the statement is true because
(A→ A) ∈ P for every A∈ N . Otherwise, (6.4) is a weakening of a Horn implication ψ that has
an SLD-derivation from Φ1 modulo renaming variables. Note that the removal of any atom from
the premise of (6.4) would make it disconnected, the same also applies to ψ since its atomic
subformulas are among the atomic subformulas of (6.4). Since every Horn implication in Φ1 is
connected, and SLD-derivations modulo renaming variables clearly preserve connectedness, it
cannot be the case that (6.4) was obtained from ψ by adding an atom to the premise. Next,
note that Φ1 ∧

∧

i∈[n] Rai
(x i , x i+1) is satisfiable for every a1 . . . an ∈ (N ∪Σ)+. Thus, since (6.4)

is not a tautology, it also cannot be the case that (6.4) was obtained from ψ by adding an atom
to the conclusion. Hence, we may assume that (6.4) and ψ are equal. We prove the claim by
induction on the length λ of a shortest possible SLD-derivation for ψ.

In the base case λ= 0, ψ must be a conjunct of Φ1. By the construction of Φ1, we get that
(A→ a1 . . . an) ∈ P and thus A→∗

G a1 . . . an.

In the induction step λ −→ λ+ 1, we assume that the claim holds if ψ has an SLD-derivation
of length ≤ λ. Suppose that ψ requires an SLD-derivation of length λ+ 1. By the construction
of Φ1, there must exist (B, ak . . . a`) ∈ P such that Φ1 contains a conjunct of the form (6.2) that
is used in the last step in a shortest possible SLD-derivation of ψ. Moreover, there exists an
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Figure 6.1.: An illustration of the situation in Lemma 8 for n= 6.

SLD-derivation of length ≤ λ of

∧

i∈[k−1]
Rai
(x i , x i+1)∧ RB(xk, x`+1)∧

∧

i∈[n]\[`] Rai
(x i , x i+1)⇒ RA(x1, xn+1) (6.7)

from Φ1. By the induction hypothesis, (6.7) is equivalent to A →∗
G a1 . . . ak−1Ba`+1 . . . an−1.

Therefore, A→∗
G a1, . . . , an.

We remark that context-sensitive grammars cannot be encoded into ages of relational struc-
tures in a similar fashion, not even under the assumption that all production rules are length-
increasing.

Creating candidates for failure of the JEP

Let τ2 be the signature which contains all symbols from τ1 except for the ones coming from N
and additionally the unary symbol U and the binary symbol Q. The sentence Φ2 consists of the
following Horn implications for every a ∈ Σ:

U(y)∧ I(x1)⇒ Q(y, x1) (6.8)

U(y)∧Q(y, x1)∧ Ra(x1, x2)⇒ Q(y, x2) (6.9)

U(y)∧Q(y, x1)∧ Ra(x1, x2)∧ T (x2)⇒ false (6.10)

The proof of the following claim is left to the reader (a straightforward consequence of
Theorem 17), see Figure 6.1 for an illustration of Lemma 8.

Lemma 8. Let φ( x̄) be a conjunction of (τ2 \ {Q})-atoms. Then Φ2 |= ∀ x̄
�

φ( x̄)⇒ false
�

if
and only if there exists a1 . . . an ∈ Σ+ such that φ has a subformula of the form

U(y)∧ I(x1)∧ T (xn+1)∧
∧

i∈[n] Rai
(x i , x i+1) (6.11)

where the variables need not be distinct.

Now we are ready for the proof of Theorem 19.
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Proof of Theorem 19. The universality problem for context-free grammars is known to be un-
decidable [50] (Lemma 8.4.2, page 259). We set Φ := Φ1 ∧Φ2, and show that Modfin(Φ) has
the JEP if and only if L(G) = Σ+.

“⇒”: Suppose that Modfin(Φ) has the JEP. Let a1 . . . an ∈ Σ+. Consider the formulas φ1(y)
and φ2(x1, . . . , xn+1) given by

φ1 := U(y)

and φ2 := I(x1)∧ T (xn+1)∧
∧

i∈[n] Rai
(x i , x i+1).

By Lemma 8, we have

Φ2 |= ∀x1, . . . , xn+1, y
�

φ1 ∧φ2 ⇒ false
�

. (6.12)

Since Modfin(Φ) has the JEP, by Lemma 6(2), Φ∧φ1 or Φ∧φ2 is not satisfiable.

Note that every Horn implication in Φ1 contains an Ra-atom for some a ∈ N ∪Σ in its premise,
and φ1 contains none. Also note that every Horn implication in Φ2 contains an I-atom or an
Ra-atom for some a ∈ N ∪Σ in its premise, and φ1 contains none. Hence, the τ-structure with
domain {y} and whose relations are described by the atomic formula U(y) is closed under
application of Horn implications from Φ, i.e., Φ∧φ1 is satisfiable. Since one of the formulas
Φ∧φ1 and Φ∧φ2 is not satisfiable, we must have

Φ |= ∀x1, . . . , xn+1

�

φ2 ⇒ false
�

. (6.13)

Next, note that every Horn implication in Φ2 contains a U-atom in its premise, φ2 contains
no U-atom, and no Horn implication in Φ1 contains an U-atom in its conclusion. We claim that
then

Φ1 |= ∀x1, . . . , xn+1

�

φ2 ⇒ false
�

. (6.14)

Suppose, on the contrary, that Φ1 ∧ φ2 is satisfiable. Let A be any finite model of Φ1 ∧ φ2.
We assume that UA = ;, otherwise we remove all elements from UA. Then A still satisfies
φ2 because φ2 does not contain any U-atoms, and A remains closed under application of
Horn implications from Φ1 because no Horn implication in Φ1 contains an U-atom in its
conclusion. But then A is also closed under application of Horn implications from Φ2 because
every Horn implication in Φ2 contains an U-atom in its premise. We conclude that A |= Φ∧φ2,
a contradiction to (6.13). Hence (6.14) holds.

Finally, note that (6.3) is the only Horn implication in Φ1 which contains an I - or T -atom in
its premise, and that no Horn implication in Φ1 contains an I - or T -atom in its conclusion. We
claim that then

Φ1 |= ∀x1, . . . , xn+1

� ∧

i∈[n]
Rai
(x i , x i+1)⇒ RS(x1, xn+1)

�

. (6.15)
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Suppose, on the contrary, that (6.15) does not hold. Then there exists a finite τ-structure A

satisfying Φ1 ∧
∧

i∈[n] Rai
(x i , x i+1) ∧ ¬RS(x1, xn+1). We may assume that A = {x1, . . . , xn+1}

because the models of a universal sentence are always closed under taking substructures. We
may also assume that IA = TA = ;, otherwise we remove all elements from these relations.
Then A remains closed under application of Horn implications from Φ1 because no Horn
implication in Φ1 contains an I- or T -atom in its conclusion. Now consider the structure A′

obtained from A by adding x1 to IA and xn+1 to TA. Then A′ is closed under application
of Horn implications from Φ1 because (6.3) is the only Horn implication in Φ1 that has an
I- or T -atom in its premise and it cannot be applied to A′ since (x1, xn+1) /∈ RA′

S . But then
A′ |= Φ1 ∧φ2, a contradiction to (6.14). Hence (6.15) holds.

Now it follows from Lemma 7 and (6.15) that a1 . . . an ∈ L(G) and we are done.
“⇐”: We prove the contrapositive and assume that Modfin(Φ) does not have the JEP. Then

there exists a counterexample to Lemma 6(2), i.e., there exists a Horn implication ψ of the
following form

φ1( x̄1)∧φ2( x̄2)⇒ χ

where χ is either false or an atomic τ-formula with free variables among x̄1 such that

Φ |= ∀ x̄1, x̄2

�

φ1 ∧φ2 ⇒ χ
�

, (6.16)

Φ 6|= ∀ x̄1

�

φ1 ⇒ χ
�

, (6.17)

and, for both i ∈ {1, 2},

Φ 6|= ∀ x̄ i

�

φi ⇒ false
�

. (6.18)

We choose ψ minimal with respect to the number of its atomic subformulas.
Our proof strategy is as follows. First we show that ψ encodes a single word w ∈ Σ+ in the

sense of Lemma 8. Then we show that the word w may not be contained in L(G), because
otherwise a part of the counterexample would encode w in the sense of Lemma 7 which would
lead to a contradiction.

Observation 1. ψ has an SLD-deduction from Φ2, and only contains symbols from τ2.

Proof of Claim 1. First, we claim that Φ1 `ψ or Φ2 `ψ. By Theorem 17, we have Φ `ψ. Note
that χ( x̄1) cannot be a subformula of φ1( x̄1), by (6.17). Also note that χ( x̄1) cannot be a
subformula of φ2( x̄2) as these two formulas have no common variables. Hence, χ( x̄1) is not a
subformula of φ1( x̄1)∧φ2( x̄2), i.e., ψ is not a tautology. Let ψ′ be a Horn implication such
that ψ is a weakening of ψ′ and ψ′ has an SLD-derivation ψ′

0, . . . ,ψ′
s =ψ

′ from Φ. Note that
the Horn implications in Φ have the property that, depending on whether they come from Φ1

or from Φ2, they either contain no Q-atoms or no RA-atoms for A∈ N . This applies in particular
to ψ′

0 which is a conjunct from Φ. Since the conclusion of each Horn implication in Φ1 is an
RA-atom for A∈ N and the conclusion of each Horn implication in Φ2 is a Q-atom, the property
of ψ′

0 from above propagates inductively to every ψ′
i for i ∈ [k]. But this means that ψ′ has

75
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an SLD-derivation from Φ1 or from Φ2. Hence, ψ has an SLD-deduction from Φ1 or from Φ2,
which concludes the claim.

Next, we claim that Φ2 ` ψ. Suppose, on the contrary, that Φ1 ` ψ. Let φ′
1 and φ′

2 be the
formulas obtained from φ1 and φ2, respectively, by removing all Q-atoms. Since Φ1 `ψ, the
SLD-derivation sequence ψ′

0, . . . ,ψ′
s from the paragraph above contains no Q-atoms. Thus, all

Q-atoms occurring in ψ come from the weakening step, which means that

Φ1 ` ∀ x̄1, x̄2

�

φ′
1 ∧φ

′
2 ⇒ χ

�

. (6.19)

Since ψ′
0 is a Horn implication from Φ1, it follows from the minimality assumption for ψ that

either χ is an RA-atom for some A∈ N , or χ is false. In both cases, (6.18), (6.19), and (6.17)
witness that Modfin(Φ1) does not have JEP through an application of Lemma 6. But this is in
contradiction to Proposition 21. Thus, Φ1 `ψ does not hold, and Φ2 `ψ holds instead. This
concludes the claim.

Since Φ2 ` ψ, the premise φ1 ∧φ2 of ψ can only contain symbols from τ2, otherwise we
could remove all (τ1 \τ2)-atoms and get a contradiction to the minimality of ψ. Since ψ′

0 is a
Horn implication from Φ2, it also follows from the minimality assumption for ψ that either χ is
an Q-atom, or χ is false. Thus, ψ only contains symbols from τ2.

Observation 2. φ1( x̄1)∧φ2( x̄2) does not contain any Q-atom, and χ equals false.

Proof of Claim 2. By Claim 1, ψ has an SLD-deduction from Φ2. Recall from the proof of
Observation 2 that ψ cannot be a tautology. By the minimality of ψ, we may assume that there
exists an SLD-derivation of ψ from Φ2. Consider any SLD-derivation ψ0, . . . ,ψs of ψ from Φ2.
Note that, by the construction of Φ2, for every i ∈ [k], if there exists a variable y in ψi−1 such
that

every Q-atom contains y in its first argument, (∗)

then ψi also satisfies (∗) for the same variable y . Since every possible choice of ψ0 from Φ2

initially satisfies these two conditions, it follows via induction that (∗) must hold for ψ =ψs for
some y . Also note that (6.8) is the only Horn implication in Φ2 that is not connected, but the
lack of connectivity is only because the variable y satisfying (∗) is isolated from the remaining
variables. It follows by induction that this is also true for ψ.

We claim that ψ0 is of the form (6.10). Suppose, on the contrary, that ψ0 is of the form(6.8)
or (6.9). Then the conclusion of ψ is a Q-atom. By our assumption, the conclusion of ψ may
only contain variables from x̄1. Thus, also the variable y that satisfies (∗) for ψ is contained in
x̄1. Since the second variable in the conclusion of ψ is connected to all remaining variables
and the variables of φ1 and φ2 are disjoint, φ2 must be the empty conjunction. This leads to a
contradiction to (6.17). Thus our claim holds. The claim implies that χ equals false.

Since y satisfies (∗) for ψ, if ψ contains any Q-atom in the premise, then ψ is connected.
But then, since the variables of φ1 and φ2 are disjoint while ψ is connected, either φ1 or φ2

must be the empty conjunction. Since χ equals false, this leads to a contradiction to (6.18).

76



6.3. Universal sentences and the AP: the Horn case

Thus, ψ does not contain any Q-atoms at all.

As a consequence of Claim 1 and Claim 2 we have that Φ2 |= ψ where ψ is of the form
φ1∧φ2 ⇒ false andφ1,φ2 are conjunctions of atomic τ2\{Q}-formulas. Therefore, Lemma 8
implies that there exists a1 . . . an ∈ Σ+ such that φ1 ∧φ2 is of the form

U(y)∧ I(x1)∧ T (xn+1)∧
∧

i∈[n] Rai
(x i , x i+1) (6.20)

where the variables need not all be distinct. More specifically,

• φ1( x̄1) equals U(y), and
• φ2( x̄2) equals I(x1)∧ T (xn+1)∧

∧

i∈[n] Rai
(x i , x i+1).

Note that, if L(G) = Σ+, then Lemma 7 together with (6.3) implies that

Φ1 |= ∀x1, . . . , xn+1

�

φ2 ⇒ false
�

. (6.21)

If some variables among x1, . . . , xn+1 are identified in (6.20), then we still have (6.21) even
if we perform the same identification of variables. But then we get a contradiction to (6.18).
Thus, L(G) 6= Σ+.

We have thus found a reduction from the undecidable universality problem for G to the
decidability problem of the JEP for Modfin(Φ); note that Φ is universal Horn and can be
computed from G in polynomial time.

6.3 Universal sentences and the AP: the Horn case

The contributions of this section are twofold as well. First, we show that the variant of the
question in Theorem 19 where we consider the AP instead of the JEP is decidable in ΠP

2 .
Second, we prove, using a similar technique as in the previous section, that the problem
becomes PSPACE-hard if we allow even a single ternary relation symbol in the signature. We
invite the reader to identify why the exact same strategy as before, using context-free grammars,
would fail in showing undecidability for the AP.

Suppose that we are given an equality-free universal Horn sentence Φ in a finite binary signa-
ture τ such that Modfin(Φ) does not have the AP. Then this fact can be verified algorithmically
by translating Φ into a set of bounds and applying Theorem 15. However, Theorem 15 only
gives us an exponential upper bound for the size of a minimal counterexample because the
translation of a universal sentence into a set of bounds might result in a single exponential
blowup in size of the input. And indeed, for general universal sentences in binary signatures, a
smallest counterexample to the AP can be of exponential size, see Example 16.

Example 16. Consider the sentence Φ := Φ1 ∧ Φ2 in the binary relational signature τ =
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{E1, E2} ∪ {Lk, Rk | k ∈ [n]}, where

Φ1 := ∀x , y1, y2

�

E1(y1, y1)∧ E1(x , y1)∧ E2(y2, y2)∧ E2(x , y2)

⇒
∧

k∈[n]

�

Lk(y1, y2)∨ Rk(y1, y2)
�

∧
�
∨

k∈[n]¬
�

Lk(x , x)∧ Lk(y1, y2)
�

∧¬
�

Rk(x , x)∧ Rk(y1, y2)
���

,

Φ2 := ∀x
�

¬
�

E1(x , x)∧ E2(x , x)
�

∧
∧

k∈[n]¬
�

Lk(x , x)∧ Rk(x , x)
��

.

We claim that Modfin(Φ) does not have the AP, but a smallest counterexample is of size at least
2n. By Proposition 19, it is enough to look for a smallest counterexample among one-point
amalgamation diagrams. Let (A,B1,B2) be a one-point amalgamation diagram for Modfin(Φ).
Note that B1 ∪B2 |= Φ2 because Φ2 has only one free variable. If

B1 ∪B2 6|= E1(b1, b1)∧ E2(b2, b2) and B1 ∪B2 6|= E2(b1, b1)∧ E1(b2, b2),

then also B1 ∪B2 |= Φ1 because the only way how one could possibly obtain B1 ∪B2 6|= Φ1 is
by substituting b1 for y1 and b2 for y2 or vice versa in the quantifier-free part of Φ1. But then
C := B1 ∪B2 is an amalgam for (A,B1,B2). Thus, without loss of generality, suppose that
B1 ∪B2 |= E1(b1, b1) ∧ E2(b2, b2). If, for every k ∈ [n], we can define φk(x) := Lk(x , x) or
φk(x) := Rk(x , x) in such a way that there exists no a ∈ A with

A |= E1(a, b1)∧ E2(a, b2)∧
∧

k∈[n]φk(a),

then we can choose, as an amalgam, the structure C with domain C := B1 ∪ B2 and relations
EC

1 := EB1
1 ∪ EB2

1 , EC
2 := EB1

2 ∪ EB2
2 , and, for every k ∈ [n],

LC
k :=

¨

LB1
k ∪ LB2

k ∪ {(b1, b2)} if φk(x) equals Lk(x , x),
LB1

k ∪ LB2
k if φk(x) equals Rk(x , x),

RC
k :=

¨

RB1
k ∪ RB2

k ∪ {(b1, b2)} if φk(x) equals Rk(x , x),
RB1

k ∪ RB2
i if φk(x) equals Lk(x , x).

If, on the other hand, it is not possible to define φ1, . . . ,φn in this way, then no amalgam of
(A,B1,B2) can satisfy Φ1, i.e., Modfin(Φ) does not have the AP. For that to be the case, A must
contain elements which prevent all 2n possible choices for φ1, . . . ,φn. Since A |= Φ2, every
element of A can only prevent one particular choice, which implies that |A| ≥ 2n. It remains
to provide an actual counterexample. We define (A,B1,B2) as follows: A := {aS | S ⊆ [n]},
Bi := A∪ {bi} (i ∈ [2]), and the relations are

• EA
1 := ;, EA

2 := ;, and, for k ∈ [n], LA
k := {(aS , aS) | k ∈ [n] \ S}, RA

k := {(aS , aS) | k ∈ S};
• for i ∈ [2], EBi

i := {(bi , bi)} ∪ {(aS , bi) | S ⊆ [n]}, EBi
3−i := ;, and, for k ∈ [n], LBi

k := LA
k

and RBi
k := RA

k .

In the equality-free binary Horn case, however, we can show that a counterexample of
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polynomial size always exists, see Proposition 22. We remark that a similar argument would
also work in the binary Horn case where equalities are allowed.

Proposition 22. Let Φ be an equality-free universal Horn sentence over a finite relational signature
τ consisting of binary symbols. If Modfin(Φ) does not have the AP, then the size of a smallest
counterexample to the AP is polynomial in the size of Φ. Consequently, the question whether
Modfin(Φ) has the AP is decidable in ΠP

2 .

Proof. By Proposition 19, a smallest counterexample to the AP for Modfin(Φ) is a one-point
amalgamation diagram (A,B1,B2) for which we cannot form an amalgam C ∈ Modfin(Φ) simply
by adding (b1, b2) or (b2, b1) to some relations of B1 ∪B2. We now show how to inductively
verify that (A,B1,B2) has no amalgam within Modfin(Φ) in i steps where 1 ≤ i ≤ 2|τ|. Let m
be the number of free variables of Φ. We set C0 :=B1 ∪B2.

Suppose that i = 1, or that the (i − 1)-th step has not yet provided us with a certificate that
(A,B1,B2) does not have any amalgam. Since Ci−1 is not an amalgam for (A,B1,B2), it is
not closed under application of Horn implications from Φ. Thus, there is a substructure Fi−1 of
Ci−1 with |Fi−1| ≤ m such that the application of some Horn implication from Φ to Fi−1 either
yields false, or expands some relation of Fi−1 by a new pair of elements. If false is obtained
or if the new pair of elements is not among (b1, b2), (b2, b1), then we get a certificate for the
fact that (A,B1,B2) does not have any amalgam satisfying Φ. Otherwise, we obtain Ci from
Ci−1 by adding (b1, b2) or (b2, b1) to the particular relation and proceed to the (i + 1)-th step.

Clearly, it takes at most 2|τ|-many steps to arrive at a certificate for the fact that (A,B1,B2)
does not have any amalgam satisfying Φ. Since Modfin(Φ) is closed under taking substructures,
we may assume that A only contains elements from

⋃

i Fi. Since |Fi| ≤ m for every i, we
conclude that the size of a minimal counterexample is polynomial in the size of Φ. Now the
decidability in ΠP

2 follows similarly as in the proof of Theorem 15.

The situation changes drastically when we allow ternary symbols in the signature. In The-
orem 20, we show that the involvement of just a single ternary relation symbol makes the
problem in Proposition 22 PSPACE-hard. Also, the existence of a polynomial-sized counterex-
ample to the AP can no longer be guaranteed, as we show in Corollary 14. This is the simplest
case in which no upper bound for the complexity of testing the AP is known.

Similarly as in the proof of Theorem 19, in the proof of Theorem 20, we rely on a certain
trick which gives us the AP “for free.”

Definition 13. An equality-free Horn implication ∀ x̄
�

φ⇒ψ
�

is called complete if the Gaifman
graph of DB(∃ x̄ .φ) is complete.

Proposition 23. Let Φ be an equality-free universal Horn sentence such that each conjunct in Φ is
complete. Then Modfin(Φ) is closed under taking unions and therefore has the AP.

Proof. By Proposition 19, it is enough to show that Modfin(Φ) has the one-point amalgamation
property. Let (A,B1,B2) be a one-point amalgamation diagram for Modfin(Φ). If b1 = b2,
then B1 ∪B2 =B1 is a trivial amalgam for (A,B1,B2) satisfying Φ. So suppose that instead,
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b1 6= b2. Let φ ⇒ ψ be an arbitrary conjunct in Φ. Suppose that B1 ∪B2 |= φ(b̄) for some
tuple b̄ over B1 ∪ B2. Since φ ⇒ ψ is complete and b1, b2 never appear in a tuple from a
relation of B1 ∪B2 simultaneously, we already have B1 |= φ(b̄) or B2 |= φ(b̄). But, then we
also have B1 ∪B2 |=ψ(b̄) because B1,B2 ∈ Modfin(Φ). Since φ⇒ψ was chosen arbitrarily,
we conclude that B1 ∪B2 |= Φ.

A class C of relational τ-structures has the strong amalgamation property if C ∈ C and
fi : Bi ,→ C can be chosen so that f1(B1)∩ f2(B2) = f1(e1(A)) = f2(e2(A)).

Lemma 9. Let Φ be an equality-free universal Horn sentence over the relational signature τ. Then
the following are equivalent:

1a. Modfin(Φ) has the amalgamation property.
1b. Modfin(Φ) has the one-point amalgamation property.
2a. Modfin(Φ) has the strong amalgamation property.
2b. Modfin(Φ) has the one-point strong amalgamation property.
3. Suppose that φ( x̄), φ1( x̄ , y1), and φ2( x̄ , y2) are equality-free conjunctions of atomic

formulas, where y1 and y2 are distinct variables not contained in x̄, such that, for i ∈ [2],
every atom in φi( x̄ , yi) contains the variable yi , and φ( x̄)∧φi( x̄ , yi)≤Φ φ( x̄). Then

φ( x̄)∧φ1( x̄ , y1)∧φ2( x̄ , y2)≤Φ φ( x̄)∧φ1( x̄ , y1).

Proof. The equivalence of items 1a and 1b follows from Proposition 19. The equivalence of
items 2a and 2b is also clear as it follows exactly the same principle, see, e.g., Proposition
2.3.18 in [18].

“2a⇒1a”: This direction is trivial.

“1b⇒3”: Let φ( x̄), φ1( x̄ , y1), and φ2( x̄ , y2) be as in the first part of item 3. Let Ψ( x̄),
Ψ1( x̄ , y1), and Ψ2( x̄ , y2) be the conjunctions of all R-atoms for R ∈ τ implied by Φ ∧ φ( x̄),
Φ ∧φ( x̄) ∧φ1( x̄ , y1), and Φ ∧φ( x̄) ∧φ2( x̄ , y2), respectively. If Φ ∧ Ψ( x̄), Φ ∧ Ψ1( x̄ , y1), or
Φ ∧ Ψ2( x̄ , y2) is unsatisfiable, then Φ ∧ Ψ( x̄) is unsatisfiable by the domination assumption
and we are done. So suppose that all three conjunctions are satisfiable. Define A, B1, and
B2 as the structures whose domains consist of the variables { x̄ [1], . . . }, {y1, x̄ [1], . . . }, and
{y2, x̄ [1], . . . }, respectively, and where z̄ is a tuple of a relation for R ∈ τ if the conjunct R(z̄)
is contained in Ψ,Ψ1, or Ψ2, respectively. Since φ( x̄)∧φi( x̄ , yi)≤Φ φ( x̄) for i ∈ {1,2}, there
exist embeddings ei : A ,→Bi for i ∈ {1, 2}. Note that, by construction, A, B1, and B2 satisfy
every Horn implication in Φ. Since Φ is universal Horn, this implies that A,B1,B2 ∈ Modfin(Φ).
Since Modfin(Φ) has the one-point amalgamation property, there exists C ∈ Modfin(Φ) together
with embeddings fi : Bi ,→ C for i ∈ {1,2} such that f1 ◦ e1 = f2 ◦ e2. By the construction
of A,B1, and B2, it follows that Φ 6|= ∀ x̄ , y1, y2

�

φ( x̄) ∧ φ1( x̄ , y1) ∧ φ2( x̄ , y2) ⇒ false
�

.
Let χ( x̄ , y1) be an atomic τ-formula other than equality such that Φ |= ∀ x̄ , y1, y2

�

φ( x̄) ∧
φ1( x̄ , y1)∧φ2( x̄ , y2)⇒ χ( x̄ , y1)

�

. By the construction of A,B1, and B2, and because f1 and
f2 are homomorphisms, there exist a tuple z̄ over B1 such that C |= χ( f1(z̄)). Since f1 is an
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embedding, we must also have B1 |= χ(z̄). Thus, by the construction of A,B1, and B2, it
follows that Φ |= ∀ x̄ , y1

�

φ( x̄)∧φ1( x̄ , y1)⇒ χ( x̄ , y1)
�

.
“3⇒2b”: Let A,B1,B2 ∈ Modfin(Φ) be such that ei : A ,→ Bi and Bi \ ei(A) = {yi} for

i ∈ {1, 2}. We construct a structure C ∈ Modfin(Φ)with fi : Bi ,→ C and f1◦e1 = f2◦e2 as follows.
Without loss of generality we may assume that A= e1(A) = e2(A), i.e., A is the intersection of
B1 and B2. Let x̄ be a tuple of variables representing the elements of B1∩B2 in some order, and
let φ( x̄) be the conjunction of all R-atoms for R ∈ τ which hold in A. Moreover, for i ∈ [2], let
φi( x̄ , yi) be the conjunction of all R-atoms for R ∈ τwhich contain the variable yi and hold in Bi .
Note thatφ( x̄)∧φi( x̄ , yi)≤Φ φ( x̄) for both i ∈ [2], because ei is an embedding. LetΨ( x̄ , y1, y2)
be the conjunction of all R-atoms for R ∈ τ implied by Φ∧φ( x̄)∧φ1( x̄ , y1)∧φ2( x̄ , y2). We claim
that Φ ∧ Ψ is satisfiable: otherwise, Φ |= ∀ x̄ , y1, y2

�

φ( x̄) ∧φ1( x̄ , y1) ∧φ2( x̄ , y2)⇒ false
�

,
and then item 3 implies that Φ |= ∀ x̄ , y1

�

φ( x̄) ∧ φ1( x̄ , y1) ⇒ false
�

, which is impossible
since B1 |= Φ. Define C as the structure with domain {y1, y2, x̄ [1], . . . } and such that RC

contains a tuple z̄ if and only if Ψ contains the conjunct R(z̄). For i ∈ [2], let fi be the
identity map. We claim that fi is an embedding from Bi to C. It is clear from the construction
of C that fi is a homomorphism. Suppose for contradiction that there exists R ∈ τ and a
tuple z̄ over Bi such that z̄ /∈ RB

i while fi(z̄) ∈ RC. For the sake of notation, we assume
that i = 1; the case that i = 2 can be shown analogously. Note that the construction of C
implies that Φ |= ∀ x̄ , y1, y2

�

φ( x̄)∧φ1( x̄ , y1)∧φ2( x̄ , y2)⇒ R(z̄)
�

. Then item 3 implies that
Φ |= ∀ x̄ , y1

�

φ( x̄) ∧ φ1( x̄ , y1) ⇒ R(z̄)
�

, a contradiction to B1 ∈ Modfin(Φ). Thus, fi is an
embedding from Bi to C. By the construction of C we also clearly have that f1 ◦ e1 = f2 ◦ e2,
which concludes the proof of the one-point strong amalgamation property.

The equivalence between the AP and the strong AP is essentially due to the fact that equality
atoms are not permitted in Φ.

Theorem 20. For a given universal Horn sentence Φ the question whether Modfin(Φ) has the AP
is PSPACE-hard even if the signature is limited to at most ternary relation symbols.

Our proof is based on a reduction from the problem of deciding the universality of a given
regular grammar. A (left-) regular grammar is a 4-tuple G = (N ,Σ, P, S) where

• N is a finite set of non-terminal symbols,
• Σ is a finite set of terminal symbols,
• P is a finite set of production rules of the form A→ a or A→ Ba for A, B ∈ N and a ∈ Σ,
• S ∈ N is the start symbol.

For u ∈ (N ∪ Σ)+ we write u →G v if there exist x ∈ Σ+ and (p → q) ∈ P such that
u = x p and v = xq. The transitive closure of →G is denoted by →∗

G. The language of G is
L(G) := {w ∈ Σ+ | S →∗

G w}. Note that with this definition the empty word, i.e., the word ε of
length 0, can never be an element of L(G); some authors use a modified definition that also
allows rules that derive ε, but for our purposes the difference is not essential.

The idea of the reduction is to compute from a given regular grammar G a universal Horn
sentence which consists of two parts, Φ1 and Φ2: the sentence Φ2 does not depend on G and
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entails many Horn implications witnessing failure of the AP via Lemma 9; the sentence Φ1

can be computed efficiently from G and is such that Modfin(Φ1) is closed under taking unions
and prevents all the failures of the AP of Modfin(Φ1 ∧ Φ2) if and only if G is universal, i.e.,
L(G) = Σ+.

Encoding regular grammars into amalgamation classes

Let τ1 be the signature that contains the unary symbols I and T , the binary symbol E1, and the
binary relation symbol Ra for every element a ∈ N ∪Σ. Let Φ1 be the universal Horn sentence
that contains for every (A→ Ba) ∈ P the Horn implication

I(y1)∧ E1(y1, x2)∧ RB(y1, x1)∧ Ra(x1, x2)⇒ RA(y1, x2), (6.22)

for every (A→ a) ∈ P, the Horn implication

I(y1)∧ Ra(y1, x1)⇒ RA(y1, x1), (6.23)

and additionally the Horn implication

I(y1)∧ T (x1)∧ RS(y1, x1)⇒ false. (6.24)

Note that, due to the presence of the E1-atom in (6.22), each conjunct of Φ1 is complete, which
means that Modfin(Φ1) has the AP by Proposition 23. The following correspondence can be
shown via a straightforward induction.

Lemma 10. For every w= a1 . . . an ∈ Σ+ and A∈ N, A→∗
G w if and only if

Φ1 |= ∀x1, . . . , xn, y1

�

I(y1)∧ Ra1
(y1, x1)

∧
∧

i∈[n−1]
Rai
(x i , x i+1)∧ E1(y1, x i+1)⇒ RA(y1, xn)

�

. (6.25)

Proof. “⇒”: Suppose that A →∗
G a1 . . . an for A ∈ N . Then there is a path in →G from A to

a1 . . . an of length λ ≥ 1. We prove the statements by induction on λ.

In the induction base λ= 1 we must have (A→ a) ∈ P in which case (6.25) is a conjunct of
Φ1.

In the induction step λ −→ λ+ 1, we assume that the claim holds for all paths of length ≤ λ,
and that there exists a path of length λ+ 1 from A to a1 . . . an, i.e., there exists (A→ Ban) ∈ P
and a path of length λ from B to a1 . . . an−1. By the induction hypothesis, we have that

Φ1 |= ∀x1, . . . , xn−1, y1

�

I(y1)∧ Ra1
(y1, x1)

∧
∧

i∈[n−2]
Rai+1

(x i , x i+1)∧ E1(y1, x i+1)⇒ RB(y1, xn−1)
�

. (6.26)
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By the construction of Φ1, after renaming of variables we also have that

Φ1 |= ∀xn−1, xn, y1

�

I(y1)∧ RB(y1, xn−1)

∧ Ran
(xn−1, xn)∧ E1(y1, xn)⇒ RA(y1, xn)

�

. (6.27)

We can now apply an SLD derivation step to (6.27) with (6.26) to obtain (6.25).

“⇐”: Suppose that Φ1 |= (6.25). By Theorem 17, there is an SLD-deduction of (6.25) from
Φ1. It cannot be the case that (6.25) is a tautology because each ai is a terminal symbol and
A is a non-terminal symbol. Thus, (6.25) is a weakening of a Horn implication ψ that has an
SLD-derivation from Φ1 modulo renaming variables. Note that, for every Horn implication ψ′

in Φ1 except (6.24), there is a distinguished variable y1 such that

1. the conclusion of ψ′ is a binary atom whose first entry is occupied by y1 and the second
entry contains a different variable,

2. for every other variable x i , the premise of ψ′ contains a binary atom whose first entry is
occupied by y1 and the second entry contains x i ,

3. the Horn implication obtained by removing the variable y1 together with all atoms
involving this variable from ψ′ is connected.

Since the premise of (6.25) does not contain any T -atom, neither does the premise of ψ. Thus,
no SLD-derivation for ψ from Φ1 may involve the Horn implication (6.24). The existence
of a variable satisfying item 1, item 2, and item 3 clearly propagates inductively through
SLD-derivations modulo renaming variables, and thus also to ψ. Since the removal of any
atom from (6.25) would violate item 1, item 2, or item 3, the weakening from above must be
trivial, i.e., we may assume that (6.25) and ψ are equal. We prove the claim by induction on
the length λ of a shortest possible SLD-derivation for ψ.

In the base case λ = 0, ψ must be a conjunct of Φ1. Since each ai is a terminal symbol, ψ
must be of the form (6.23). By the construction of Φ1, we get that (A → a1) ∈ P and thus
A→∗

G a1.

In the induction step λ −→ λ+ 1, we assume that the claim holds if ψ has an SLD-derivation
of length ≤ λ. Suppose that ψ requires an SLD-derivation of length λ+ 1. By the construction
of Φ1, there must exist (A, Ban) ∈ P such that Φ1 contains a conjunct of the form (6.22) that
is used in the last step in a shortest possible SLD-derivation of ψ. Moreover, there exists an
SLD-deduction of

I(y1)∧ Ra1
(y1, x1)∧

∧

i∈[n−2]
Rai+1

(x i , x i+1)∧ E1(y1, x i+1)⇒ RB(y1, xn−1) (6.28)

from Φ1 of length ≤ λ. By the induction hypothesis, (6.28) is equivalent to B →∗
G a1 . . . an−1.

Therefore, A→∗
G a1, . . . , an.
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Figure 6.2.: An illustration of the situation in Lemma 11 for n= 5.

Creating candidates for failure of the AP

Let τ2 be the signature which contains all symbols from τ1 except for the ones coming from N
and additionally the binary symbol E2 and the ternary symbol Q. The sentence Φ2 consists of
the following Horn implications for every a ∈ Σ:

I(y1)∧ Ra(y1, x1)∧ E2(y2, x1)⇒ Q(y1, y2, x1) (6.29)

I(y1)∧Q(y1, y2, x1)∧ Ra(x1, x2)∧ E1(y1, x2)∧ E2(y2, x2)⇒ Q(y1, y2, x2) (6.30)

I(y1)∧Q(y1, y2, x1)∧ T (x1)⇒ false (6.31)

The proof of the following claim is straightforward and left to the reader.

Lemma 11. Let φ( x̄) be a conjunction of (τ2 \ {Q})-atoms. Then Φ2 |= ∀ x̄
�

φ( x̄)⇒ false
�

if
and only if there exists a1 . . . an ∈ Σ+ such that φ has a subformula of the form

Ra1
(y1, x1)∧

∧

i∈[n−1]
Rai+1

(x i , x i+1)∧ E1(y1, x i+1)

∧ I(y1)∧ T (xn)∧
∧

i∈[n] E2(y2, x i), (6.32)

where the variables need not be distinct.

Now we are ready for the proof of Theorem 20.

Proof of Theorem 20. The universality problem for regular expressions is known to be PSPACE-
complete [1] (Theorem 10.14, page 399). From every regular expression L over a finite
alphabet Σ, we can compute in polynomial time a left-regular grammar G = (N ,Σ, P, S) such
that L(G) = L. Thus, deciding whether L(G) = Σ+ for a given left-regular grammar G is
still PSPACE-hard. We set Φ := Φ1 ∧ Φ2, and show that Modfin(Φ) has the AP if and only if
L(G) = Σ+.
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“⇒”: Suppose that Modfin(Φ) has the AP. Let a1 . . . an ∈ Σ+ be arbitrary. Consider the formulas
φ(x1, . . . , xn), φ1(x1, . . . , xn, y1), and φ2(x1, . . . , xn, y2) given by

φ := T (xn)∧
∧

i∈[n−1]
Rai+1

(x i , x i+1),

φ1 := I(y1)∧ Ra1
(y1, x1)∧

∧

i∈[n−1]
E1(y1, x i+1),

and φ2 :=
∧

i∈[n] E2(y2, x i).

By Lemma 11, we have

Φ2 |= ∀x1, . . . , xn, y1, y2

�

φ ∧φ1 ∧φ2 ⇒ false
�

. (6.33)

We claim that Φ ∧φ ∧φ2 is satisfiable and φ ∧φ2 ≤Φ φ. Let χ(x1, . . . , xn) be an atomic
τ-formula other than equality such that Φ |= ∀x1, . . . , xn, y2

�

φ ∧φ2 ⇒ χ
�

. Note that every
Horn implication in Φ has an I-atom in its premise while φ ∧φ2 contains no I-atoms. As a
consequence, φ ∧φ2 ⇒ χ must be a tautology, i.e., χ is a subformula of φ ∧φ2. In particular,
χ cannot be of the form false. Since every atom in φ2 contains the variable y2 while χ does
not, χ is a subformula of φ. It follows that Φ |= ∀x1, . . . , xn

�

φ ⇒ χ
�

. Since χ was chosen
arbitrarily, this confirms our claim.

Since Modfin(Φ) has the AP and we already have φ ∧φ2 ≤Φ φ, by Lemma 9, it cannot be the
case that φ ∧φ1 ≤Φ φ. Otherwise, (6.33) would lead to a contradiction to the satisfiability
of Φ∧φ ∧φ2 via item 3 of Lemma 9. Thus, there must exist an atomic formula χ(x1, . . . , xn)
other than equality such that

Φ |= ∀x1, . . . , xn, y1

�

φ ∧φ1 ⇒ χ
�

and Φ 6|= ∀x1, . . . , xn

�

φ⇒ χ
�

. (6.34)

By Theorem 17, we have Φ ` ∀x1, . . . , xn, y1

�

φ ∧φ1 ⇒ χ
�

. Clearly, by (6.34), φ ∧φ1 ⇒ χ is
not a tautology because every atom in φ1 contains the variable y1 while χ does not. Thus,
φ ∧φ1 ⇒ χ is a weakening of a Horn implication ψ that has an SLD-derivation ψ0, . . .ψs =ψ
from Φ modulo renaming variables. Since every Horn implication in Φ2 contains a Q-atom or
an E2-atom in its premise while Horn implications in Φ1, as well as φ ∧φ1, do not contain any
{E2,Q}-atoms, Φ2 cannot contribute anything during the SLD-derivation step. Therefore, the
SLD-derivation ψ0, . . .ψs =ψ is from Φ1. Note that, if a variable appears in an I-atom in the
premise of a Horn implication from Φ1 whose conclusion is not false, then this variable also
appears in an atom from the conclusion. Moreover, no Horn implication from Φ1 contains an
I-atom in its conclusion. Since y1 is the only variable which appears in an I-atom in φ ∧φ1

and χ does not contain the variable y1, ψ0 must be of the form (6.24). Thus, we have that

Φ1 ` ∀x1, . . . , xn, y1

�

φ ∧φ1 ⇒ false
�

. (6.35)

Let φ′ be the conjunction of atomic formulas obtained from φ by removing the atom T (xn).
Note that xn is the only variable which appears in a T -atom in φ ∧φ1 and no Horn implication
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from Φ1 contains an T -atom in its conclusion. Since ψ0 is of the form (6.24), we must have

Φ1 |= ∀x1, . . . , xn, y1

�

φ′ ∧φ1 ⇒ RS(y1, xn)
�

,

otherwise a counterexample to (6.35) can be easily constructed. But then it follows from
Lemma 10 that a1 . . . an ∈ L(G) and we are done.

“⇐”: We prove the contrapositive. We assume that Modfin(Φ) does not have the AP. Then
there exists a counterexample to item 3 in Lemma 9, i.e., there exists a Horn implication ψ of
the form φ( x̄)∧φ1( x̄ , y1)∧φ2( x̄ , y2)⇒ χ, where φ,φ1, and φ2 satisfy the prerequisites of
item 3 in Lemma 9 and χ( x̄ , y1) is an atomic τ-formula other than equality, such that

Φ |= ∀ x̄ , y1, y2

�

φ ∧φ1 ∧φ2 ⇒ χ
�

(6.36)

and Φ′ 6|= ∀ x̄ , y1

�

φ ∧φ1 ⇒ χ
�

. (6.37)

We choose ψ minimal with respect to the number of its atomic subformulas.
Our proof strategy is as follows. First we show that ψ encodes a single word w ∈ Σ+ in the

sense of Lemma 11. Then we show that the word w may not be contained in L(G), because
otherwise a part of the counterexample would encode w in the sense of Lemma 10 which would
lead to a contradiction.

Observation 3. The formula Φ∧φ( x̄)∧φi( x̄ , yi) is satisfiable for both i ∈ {1,2}.

Proof of Observation 3. Suppose for contradiction that Φ |= ∀x1, . . . , xn, yi

�

φ ∧φi ⇒ false
�

for some i ∈ {1,2}. Since the conclusion of φ ∧φi ⇒ false does not contain the variable yi

and φ( x̄)∧φi( x̄ , yi) ≤Φ φ( x̄) for both i ∈ [2], it follows that Φ |= ∀ x̄
�

φ( x̄)⇒ false
�

. But
this yields a contradiction to (6.37). Thus, the statement holds.

Observation 4. The formula ψ

• is not a tautology,
• has an SLD-deduction from Φ2,
• only contains τ2-atoms.

Proof of Observation 4. First, we claim that Φ1 `ψ or Φ2 `ψ. By Theorem 17, we have Φ `ψ.
Note that χ( x̄ , y1) cannot be a subformula of φ( x̄) ∧ φ1( x̄ , y1), by (6.37). Also note that
χ( x̄ , y1) cannot be a subformula of φ2( x̄ , y2), because every atom in φ2( x̄ , y2) contains the
variable y2. Hence, χ( x̄ , y1) is not a subformula of φ( x̄)∧φ1( x̄ , y1)∧φ2( x̄ , y2), i.e., ψ is not
a tautology. Thus, ψ is a weakening of a Horn implication ψ′ which has an SLD-derivation
ψ′

0, . . . ,ψ′
s =ψ

′ from Φ modulo renaming variables. Note that the Horn implications in Φ have
the property that, depending on whether they come from Φ1 or from Φ2, they either contain
no Q-atoms or no RA-atoms for A∈ N , respectively. This applies in particular to ψ′

0 which is a
conjunct of Φ. Since the conclusion of each Horn implication in Φ1 is an RA-atom for A ∈ N
and the conclusion of each Horn implication in Φ2 is a Q-atom, the property of ψ′

0 from above
propagates inductively to every ψ′

i for i ∈ [k]. But this means that ψ′ has an SLD-derivation
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from Φ1 or from Φ2. Hence, ψ has an SLD-deduction from Φ1 or from Φ2, which concludes the
claim.

Next, we claim that Φ2 ` ψ. Suppose, on the contrary, that Φ1 ` ψ. Let φ′, φ′
1, and φ′

2

be the formulas obtained from φ, φ1, and φ2, respectively, by removing all Q-atoms. Since
Φ1 `ψ, the SLD-derivation sequence ψ′

0, . . . ,ψ′
s from the first paragraph contains no Q-atoms.

Thus, all Q-atoms occurring in ψ come from the weakening step, which means that

Φ1 ` ∀ x̄ , y1, y2

�

φ′ ∧φ′
1 ∧φ

′
2 ⇒ χ

�

. (6.38)

We show that, for both i ∈ [2],

φ′( x̄)∧φ′
i( x̄ , yi)≤Φ1

φ′( x̄). (6.39)

Let η( x̄) be an atomic τ1-formula other than equality such that Φ1 |= ∀ x̄ , yi

�

φ′ ∧φ′
i ⇒ η

�

for some i ∈ [2]. Since φ( x̄)∧φi( x̄ , yi) ≤Φ φ( x̄) for both i ∈ [2], we have Φ |= ∀ x̄
�

φ⇒ η
�

.
Clearly, for both i ∈ [2], η cannot be a subformula of φi because every atom in φi contains the
variable yi . If η is a subformula of φ, then trivially Φ1 |= ∀ x̄

�

φ′ ⇒ η
�

and the claim holds. So
suppose that this is not the case. By Theorem 17, we have Φ ` ∀ x̄

�

φ⇒ η
�

. Since φ⇒ η is not
a tautology, it is a weakening of a Horn implication which has an SLD-derivation from Φmodulo
renaming variables. Since Φ∧φ is satisfiable by Observation 3, η neither is of the form false
nor was it obtained by replacing false with a different τ1-atom during the weakening step.
Consequently, η can only be an RA-atom for some A∈ N because other symbols from τ1 do not
appear in the conclusion of any Horn implication in Φ. But then, since RA-atoms only appear in
the conclusion of Horn implications from Φ1, and no Horn implication from Φ2 contains an
atom in its conclusion that would appear in the premise of a Horn implication from Φ1, it must
be the case that Φ1 ` ∀ x̄

�

φ⇒ η
�

. Consequently, Φ1 ` ∀ x̄
�

φ′ ⇒ η
�

because {Q, E2}-atoms do
not appear in any Horn implication from Φ1. Since η was chosen arbitrarily, we conclude that
(6.39) indeed holds. Now we come back to the SLD-derivation sequence ψ′

0, . . . ,ψ′
s. Since ψ′

0

is a Horn implication from Φ1, it follows from the minimality assumption for ψ that either χ
is an RA-atom for some A ∈ N , or χ equals false. In both cases, (6.39), (6.38), and (6.37)
witness that Modfin(Φ1) does not have AP through an application of Lemma 9. But this is in
contradiction to Proposition 23. Thus, Φ1 `ψ does not hold, and Φ2 `ψ holds instead.

Since we have Φ2 ` ψ, the premise φ ∧φ1 ∧φ2 of ψ can only contain symbols from τ2,
otherwise we could remove all (τ1 \τ2)-atoms and get a contradiction to the minimality of ψ.
Since ψ′

0 is a Horn implication from Φ2, it also follows from the minimality assumption for ψ
that either χ is an Q-atom, or χ is false. Thus, ψ only contains symbols from τ2.

Letψ′ be a Horn implication such thatψ is a weakening ofψ′ and there is an SLD-derivation
ψ′

0, . . . ,ψ′
s =ψ

′ from Φ2 modulo renaming variables. Recall that, since ψ is a weakening of
ψ′, every atom from the premise of ψ′ also appears in the premise of ψ.

Observation 5. ψ′ does not contain any Q-atoms and its conclusion equals false.
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Proof of Observation 5. Note that, by the construction of Φ2, for every i ∈ [k], if there exist
variables z1, z2 in ψ′

i−1 such that

every Q-atom contains z1 in its first and z2 in its second argument, respectively, (∗)

then ψ′
i also satisfies (∗) for the same variables z1, z2 up to renaming. Since every possible

choice of ψ′
0 from Φ2 initially satisfies (∗) for some variables, it follows via induction that (∗)

must hold for ψ′ =ψ′
s for some variables. Also note that (6.29) is the only Horn implication in

Φ2 that is not complete, but the incompleteness is only due to one missing edge in the Gaifman
graph between the two distinguished variables satisfying (∗) for (6.29).

We claim that {z1, z2}= {y1, y2} holds for the pair z1, z2 satisfying (∗) for ψ′. Suppose, on
the contrary, that both z1 and z2 are among x̄ , y1 or x̄ , y2. For every i ∈ [k], ψ′

i is a resolvent
of ψ′

i−1 and a Horn implication from Φ2 which is almost complete except for one missing
edge in the Gaifman graph between a pair of variables which must be substituted for the pair
(z1, z2) satisfying (∗) for ψ′

i−1. Since the variables y1 and y2 do not appear together in any
atom in ψ′ and {z1, z2} 6= {y1, y2}, they also do not appear together in any atom during the
SLD-derivation. Then it follows from the fact that φ,φ1, and φ2 satisfy the prerequisites of
item 3 in Lemma 9 that we already have Φ2 ` ∀ x̄ , y1

�

φ ∧φ1 ⇒ χ
�

, a contradiction to (6.37).
Therefore, {z1, z2}= {y1, y2}.

We claim that ψ′
0 is of the form (6.31). Otherwise, ψ′

0 is of the form (6.29) or (6.30), in
which case the conclusion of ψ′ is a Q-atom. But then, since z1, z2 with {z1, z2} = {y1, y2}
satisfy (∗) for ψ′, the conclusion of ψ′ would be an atom containing both variables y1 and y2.
This leads to a contradiction to (6.36) where we assume that the conclusion of ψ′ may only
contain variables from x̄ , y1. The claim implies that the conclusion of ψ′ equals false. Hence,
ψ′ does not contain any Q-atoms at all.

By Lemma 11, there exists a1, . . . , an ∈ Σ+ such that the premise of ψ′ has a subformula of
the form (6.32) where the variables need not all be distinct. Since φ,φ1, and φ2 satisfy the
prerequisites of item 3 in Lemma 9, it must be the case that

• φ( x̄) has T (xn)∧
∧

i∈[n−1] Rai+1
(x i , x i+1) as a subformula,

• φ1( x̄ , y1) has I(y1)∧ Ra1
(y1, x1)∧

∧

i∈[n−1] E1(y1, x i+1) as a subformula, and
• φ2( x̄ , y2) has

∧

i∈[n] E2(y2, x i) as a subformula,

where the variables need not all be distinct and the roles of φ1 and φ2 might be swapped.
Otherwise, we get a contradiction to Observation 3. Note that, if L(G) = Σ+, then Lemma 10
together with (6.24) implies that

Φ1 |= ∀x1, . . . , xn+1

�

φ ∧φ1 ⇒ false
�

. (6.40)

If some variables among x1, . . . , xn are identified in φ ∧ φ1 ∧ φ2, then we still have (6.40)
even if we perform the same identification of variables. But then we get a contradiction to
Observation 3. Thus, L(G) 6= Σ+.
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We have thus found a reduction from the PSPACE-hard universality problem for G to the
decidability problem of the AP for Modfin(Φ); note that Φ is universal Horn and can be computed
from G in polynomial time.

Recall from Lemma 9 that a universal Horn sentence Φ has the strong AP if and only if it has
the AP.

Corollary 13. For a given equality-free universal sentence Φ the question whether Modfin(Φ) has
the strong AP is PSPACE-hard even if Φ is Horn and the signature is limited to ternary relation
symbols.

Our proof of PSPACE-hardness has an interesting consequence. Namely, it shows that, for
ternary signatures, even in the equality-free Horn case there is no subexponential upper bound
on the size of a smallest triple without an amalgam.

Corollary 14. There is a sequence (Φk)k≥3 of equality-free universal Horn sentences with at most
ternary relation symbols such that, for each k ≥ 3, Modfin(Φk) does not have the AP, but the
cardinality of A for a smallest triple (A,B1,B2) witnessing that Modfin(Φk) does not have the AP
is in Ω(2|Φk|).

Proof. By Theorem 33 in [44], there exists a sequence (Gk)k≥3 of left-regular grammars Gk =
(Nk, {0,1}, Pk, S) such that the size of a smallest word rejected by Gk is in Ω(2|Gk|). For every
k ≥ 3, let ΦGk

be the Horn sentence constructed in the proof of Theorem 20 from Gk. By the
construction of ΦGk

, there exist a, b > 0 such that |ΦGk
|= a|Gk|+ b for every k ≥ 3.

We claim that the domain size of A for a smallest triple (A,B1,B2) without an amalgam
is greater than or equal to the size of the smallest word w ∈ {0,1}+ \ L(Gk). By Lemma 9
combined with the “⇐” direction of the proof of Theorem 20, each smallest counterexample to
AP for Modfin(ΦGk

) is represented by a formula of the form (6.32). Let φ ∧φ1 ∧φ2 be such a
formula, and let w := a1 . . . an be the word encoded by φ ∧φ1. We must have that w /∈ L(Gk).
Otherwise, by Lemma 10, ΦGk

∧φ ∧φ2 is unsatisfiable, which contradicts Observation 3.
Suppose, for contradiction, that some variables among {y1, x1, . . . , xn} coincide inφ∧φ1∧φ2.

Then φ ∧φ1 already encodes a subword v := ai1 . . . aim of w along a shortest possible Rai
-path

from y1 to xn. Again, we must have v /∈ L(Gk). Otherwise, by Lemma 10, ΦGk
∧φ ∧φ1 is

unsatisfiable, which contradicts Observation 3. But now we can fix an arbitrary shortest possible
Rai

-path from y1 to xn and remove all subformulas from φ ∧φ1 ∧φ2 which do not contain any
variable occurring along this path in order to obtain a strictly smaller counterexample than
φ ∧φ1 ∧φ2. This leads to a contradiction to the minimality of φ ∧φ1 ∧φ2. Thus, no variables
among {y1, x1, . . . , xn} may coincide in φ ∧φ1 ∧φ2.

Now suppose, for contradiction, that there exists b1 . . . bm ∈ {0,1}+ \ L(Gk) with m < n.
Since all variables in φ ∧ φ1 ∧ φ2 are distinct, “⇒” of the proof of Theorem 20 applied to
b1 . . . bm yields us a strictly smaller counterexample than φ ∧φ1 ∧φ2. Again, this leads to
a contradiction to the minimality of φ ∧φ1 ∧φ2. We conclude that w is a shortest word in
{0, 1}+ \ L(Gk), which is what we had to show.
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6.4 Universal sentences and the AP: the general case

In Theorem 20, we presented our strongest hardness result for deciding the AP in the simplest
setting for which no upper bound is known. Namely, when Φ is Horn, equality-free, and the
signature contains at most one symbol of arity ≥ 3. In Theorem 21, we present our strongest
hardness result for the AP in the most general setting. Namely, when Φ is an arbitrary universal
sentence, there is no arity bound for the symbols in the signature, and we allow equality
predicates as atomic formulas. But before we do that, let us take a quick look at the restricted
case of binary signatures. Recall from Example 16 that there exist non-amalgamating universal
sentences over binary signatures where a smallest counterexample to the AP is always of
exponential size. Therefore, the following corollary to Theorem 15 provides a reasonable naïve
upper bound for the complexity of deciding the AP in the case of binary signatures.

Corollary 15. Let Φ be a universal sentence over a finite relational signature τ consisting of binary
symbols. If Modfin(Φ) does not have the AP, then the size of a smallest counterexample to the AP is
at most exponential in the size of Φ. Consequently, the question whether Modfin(Φ) has the AP is
decidable in coNEXPTIME.

Proof. Suppose that Modfin(Φ) does not have the AP. By the proof of “⇐” in Lemma 3, we
have Modfin(Φ) = Forbe(N ) for an N of size at most exponential in the size of Φ. Therefore, it
follows directly from Theorem 15 that there exists a counterexample (A,B1,B2) of size at most
exponential in the size of Φ. By Proposition 19, we may assume that (A,B1,B2) is a one-point
amalgamation diagram. First, we must verify that A,B1,B2 |= Φ. This can be done in time
exponential in the size of Φ, simply by evaluating the quantifier-free part of Φ on all possible
inputs. Subsequently, we must verify that no amalgam C ∈ Modfin(Φ) of (A,B1,B2) can be
obtained by either identifying b1 and b2, or by adding (b1, b2) or (b2, b1) to some relations of
B1 ∪B2. This can also be done in time exponential in the size of Φ because there are only
exponentially many such structures C that need to be checked. In sum, the counterexample
(A,B1,B2) can be verified in NEXPTIME, which is what we had to show.

Theorem 21. For a given universal sentence Φ over an arbitrary finite signature, the question
whether Modfin(Φ) has the AP is EXPSPACE-hard.

The rectangle tiling problem asks whether, given natural numbers k, n > 0 and relations
Choriz, Cvert ⊆ [k]2, Cleft, Cright, Ctop, Cbot ⊆ [k], there exists a natural number m > 0 and a
function f : [n]× [m]→ [k] satisfying

• ( f (i, j), f (i + 1, j)) ∈ Choriz for every 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m,
• ( f (i, j), f (i, j + 1)) ∈ Cvert for every 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1, and
• f ({1} × [m]) ⊆ Cleft, f ({n} × [m]) ⊆ Cright, f ([n]× {1}) ⊆ Cbot, f ([n]× {m}) ⊆ Ctop.

Note that, in contrast to the better-known NP-complete square tiling problem, one dimension
of the tiling grid is not part of the input and is existentially quantified instead. As a result,
the rectangle tiling can encode any polynomial space bounded computation and the problem
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becomes PSPACE-complete [45, 39].2 We can further blow up the complexity by allowing
a succinct encoding of the space bound. The input to the problem remains the same but
now we ask for a a rectangle tiling with 2n columns. Analogously to the natural complete
problems based on Turing machines, this yields a decision problem that is complete for the class
EXPSPACE. We prove Theorem 21 by giving a polynomial-time reduction from the complement
of this problem, i.e., we construct a universal sentence Φ such that Modfin(Φ) has the AP if
and only if there exists no exponential rectangle tiling satisfying given parameters. As in
the PSPACE-hardness proof, our encoding is based on equality-free Horn sentences, with a
little twist. Namely, we use disjunctions and equality atoms to represent exponentially many
equality-free Horn implications in a universal sentence of polynomial size. We also again divide
Φ into two parts Φ1 and Φ2 such that Φ = Φ1 ∧Φ2. However, this time, the semantics of this
subdivision is different and the correctness proof for the reduction is simpler.

We use a very compact encoding where each row, i.e., 2n-many ordered tiles, is represented
using a constant amount of variables. To achieve this, we store the information about each
individual row via binary encoding into (n+1)-ary atoms whose entries always contain at most
three variables. We refer to the variables representing rows of the tiling as path nodes. In order
to check the tiling from bottom to top, i.e., parse a chain of path nodes, we require each pair of
subsequent path nodes to be verified by a set of 2n-many verifier nodes. This process ensures
the vertical consistency of the tiling as well as the presence of 2n-many tiles in every row. The
precise number of verifier nodes is achieved using Boolean combinations of n pairs of unary
atoms, similarly as in Example 16.

To control the occurrence of amalgamation failures, we introduce three different types of
auxiliary binary symbols: E, E1, and E2. Atoms with symbols E, E1, or E2 serve no other
purpose than to ensure that each conjunct in Φ except for one defines a class of structures
preserved by taking unions. We will use the following shortcut:

φpad(y1, y2, x1, . . . , xq) :=
∧

i∈[q] E1(y1, x i)∧ E2(y2, x i)∧
∧

j∈[q] E(x i , x j).

The soundness part of our encoding

The first part Φ1 is a necessary evil. It does not describe how our encoding works, but rather
ensures that it does not fall apart through ill-behaved identification of variables.

The signature τ contains two unary relation symbols P and V . We call a variable a path
or verifier node if it appears in a P- or V -atom, respectively. Path and verifier nodes are
distinguished using the following sentence, which we include as the first conjunct in Φ1:

∀x
�

P(x)∧ V (x)⇒ false
�

.

2In [45], this problem is called the corridor tiling problem.
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Figure 6.3.: An illustration of the encoding.

For every i ∈ [k], the signature τ contains an (n+ 1)-ary symbol Ti . The first n arguments in
a Ti-atom serve as binary counters, and the last argument carries a given path node. Suppose
that the variables ` and r represent the bits 0 and 1, respectively. Then each atomic formula
Ti(b1, . . . , bn, x) with b1, . . . , bn ∈ {`, r} represents the situation in which the i-th tile is present
in the x-th row and in the

�

1+
∑

q∈[n] 1r(bq)·2n−q
�

-th column, where 1r is the Boolean indicator
function for the variable r.

We want to ensure horizontal consistency of the tiling, i.e., the j-th tile should not appear
right next to the i-th tile in the x-th row unless (i, j) ∈ Choriz. We can encode the successor
relation w.r.t. binary addition using a Boolean combination of equalities because (bn+1, . . . , b2n)
is the successor of (b1, . . . , bn) if and only if there exists q ∈ [n] such that (i) both tuples agree
up to the (q − 1)-th entry, (ii) the q-th entry in (b1, . . . , bn) and (bn+1, . . . , b2n) contains ` and
r, respectively, and (iii) all remaining entries in (b1, . . . , bn) and (bn+1, . . . , b2n) contain r and
`, respectively. Clearly, this encoding only makes sense if ` and r are two different variables.
For this reason, we introduce two unary symbols L and R to distinguish between ` and r. We
include the following sentences as conjuncts in Φ1:

∀x
�

L(x)∧ R(x)⇒ false
�

,

and, for every pair (i, j) ∈ [k]2 \ Choriz, the sentence

∀x ,`, r, b1, . . . , b2n





P(x)∧ Ti(b1, . . . , bn, x)∧ T j(bn+1, . . . , b2n, x)∧ L(`)∧ R(r)
∧
�∨

q∈[n]
∧

p∈[q−1]

�

bp = `∧ bp+n = `∨ bp = r ∧ bp+n = r
�

∧ bq = `∧ bq+n = r ∧
∧

p∈[n]\[q] bp = r ∧ bp+n = `
�







⇒ false



 .

Next, we want to ensure that every position in the x-th row is occupied by at most one tile.
For every pair (i, j) ∈ [t]2 with i 6= j, we include the following sentence as a conjunct in Φ1:
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∀x , b1, . . . , bn

�

P(x)∧ Ti(b1, . . . , bn, x)∧ T j(b1, . . . , bn, x)⇒ false
�

.

Finally, we want to ensure that each verifier node represents at most one number from [2n].
For every q ∈ [n], the signature τ contains two unary symbols Lq and Rq which will be used to
encode numbers in binary. We include the following sentence as the last conjunct in Φ1:

∀x
�

V (x)∧
�
∨

q∈[n] Lq(x)∧ Rq(x)
�

⇒ false
�

.

Note that we have not yet added the requirement for rows, represented by path nodes, to
be completely tiled from left to right. We have also not yet added the requirement for verifier
nodes to represent at least one number from [2n]. It will become clear at the end of the proof
of Theorem 21 why this does not have to be stated explicitly.

The completeness part of our encoding

The second part Φ2 describes how the parsing of a tiling is encoded. We will need the following
auxiliary formula that defines the successor relation for verifier nodes:

φsucc(z1, z2) :=
∨

q∈[n]

∧

p∈[q−1]

�

Lp(z1)∧ Lp(z2)∨ Rp(z1)∧ Rp(z2)
�

∧ Lq(z1)∧ Rq(z2)∧
∧

p∈[n]\[q] Rp(z1)∧ Lp(z2).

We will also need an auxiliary formula to test whether a sequence of bits represents the same
number as a particular verifier node:

φmatch(z,`, r, b1, . . . , bn) :=
∧

q∈[n]

�

Lq(z)∧ bq = `∨ Rq(z)∧ bq = r
�

.

The parsing of a tiling starts from a path node x representing a row whose leftmost position
contains a tile that can be present in the bottom left corner of a tiling grid. This must be
confirmed by a verifier node, in which case a 6-ary Q1-atom is derived, representing the fact
that the leftmost column of the x-th row has been checked. For every i ∈ Cleft ∩Cbot, we include
the following sentence as the first conjunct in Φ2:

∀y1, y2, x , z,`, r, b1, . . . , bn





P(x)∧ V (z)∧φpad(y1, y2, x , z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = `
∧ Ti(b1, . . . , bn, x)







⇒ Q1(y1, y2, x , z,`, r)



 . (6.41)

Note that, at this point, it is not yet clear why ` and r should represent 0 and 1, respectively,
and not the other way around. This particular order is achieved implicitly through the use of
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φmatch and φsucc. Using 2n-many verifier nodes and propagation of Q1-atoms, the whole x-th
row is checked for the presence of tiles. Their horizontal consistency already follows from the
conditions imposed on path nodes themselves by Φ1 and needs not to be checked during this
step. For every i ∈ Cbot, we include the following sentence as a conjunct in Φ2:

∀y1, y2, x , z1, z2,`, r, b1, . . . , bn





P(x)∧ V (z1)∧ V (z2)∧φpad(y1, y2, x , z1, z2,`, r)
∧φmatch(z1,`, r, b1, . . . , bn)∧φsucc(z1, z2)
∧ Ti(b1, . . . , bn, x)∧Q1(y1, y2, x , z1,`, r)







⇒ Q1(y1, y2, x , z2,`, r)



 .

After the x-th row has been checked by a 2n-th verifier node, we mark the variable x with
a Q-atom that indicates that the parsing can progress to a successor path node. For every
i ∈ Cbot ∩ Cright, we include the following sentence as a conjunct in Φ2:

∀y1, y2, x , z,`, r, b1, . . . , bn





P(x)∧ V (z)∧φpad(y1, y2, x , z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = r
∧ Ti(b1, . . . , bn, x)∧Q1(y1, y2, x , z,`, r)







⇒ Q(y1, y2, x ,`, r)



 .

The successor relation for path nodes is represented by the binary symbol S, and the vertical
verification for pairs of path nodes is represented by the 7-ary symbol Q2. We include the
following sentences as conjuncts in Φ2: for every (i, j) ∈ Cvert ∩ C2

left, the sentence

∀y1, y2, x1, x2, z,`, r, b1, . . . , b2n















P(x1)∧ P(x2)∧ V (z)∧φpad(y1, y2, x1, x2, z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = `
∧φmatch(z,`, r, bn+1, . . . , b2n)∧

∧

q∈[n] bq+n = `
∧Q(y1, y2, x1,`, r)∧ Ti(b1, . . . , bn, x1)

∧ S(x1, x2)∧ T j(bn+1, . . . , b2n, x2)



























⇒ Q2(y1, y2, x1, x2, z,`, r)















,

for every (i, j) ∈ Cvert, the sentence

∀y1, y2, x1, x2, z1, z2,`, r, b1, . . . , b2n



















P(x1)∧ P(x2)∧ V (z1)∧ V (z2)
∧φpad(y1, y2, x1, x2, z1, z2,`, r)

∧φmatch(z1,`, r, b1, . . . , bn)∧φsucc(z1, z2)
∧φmatch(z1,`, r, bn+1, . . . , b2n)

∧ Ti(b1, . . . , bn, x1)∧ T j(bn+1, . . . , b2n, x2)
∧Q(y1, y2, x1,`, r)∧Q2(y1, y2, x1, x2, z1,`, r)



































⇒ Q2(y1, y2, x1, x2, z2,`, r)



















,
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and, for every (i, j) ∈ Cvert ∩ C2
right, the sentence

∀y1, y2, x1, x2, z,`, r, b1, . . . , b2n















P(x1)∧ P(x2)∧ V (z)∧φpad(y1, y2, x1, x2, z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = r
∧φmatch(z,`, r, bn+1, . . . , b2n)∧

∧

q∈[n] bq+n = r
∧ Ti(b1, . . . , bn, x1)∧ T j(bn+1, . . . , b2n, x2)

∧Q(y1, y2, x1,`, r)∧Q2(y1, y2, x1, x2, z,`, r)



























⇒ Q(y1, y2, x2,`, r)















.

The top row is verified using a 6-ary symbol Q3 in a similar fashion as the bottom row. We
include the following sentences as conjuncts in Φ2: for every i ∈ Cleft ∩ Ctop, the sentence

∀y1, y2, x , z,`, r, b1, . . . , bn





P(x)∧ V (z)∧φpad(y1, y2, x , z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = `
∧ Ti(b1, . . . , bn, x)∧Q(y1, y2, x ,`, r)







⇒ Q3(y1, y2, x , z,`, r)



 ,

for every i ∈ Ctop, the sentence

∀y1, y2, x , z1, z2,`, r, b1, . . . , bn











P(x)∧ V (z1)∧ V (z2)∧φpad(y1, y2, x , z1, z2,`, r)
∧φmatch(z1,`, r, b1, . . . , bn)∧φsucc(z1, z2)

∧ Ti(b1, . . . , bn, x)∧Q(y1, y2, x ,`, r)
∧Q3(y1, y2, x , z1,`, r)















⇒ Q3(y1, y2, x , z2,`, r)











,

and, for every i ∈ Ctop ∩ Cright, the sentence

∀y1, y2, x , z,`, r, b1, . . . , bn











P(x)∧ V (z)∧φpad(y1, y2, x , z,`, r)
∧φmatch(z,`, r, b1, . . . , bn)∧

∧

q∈[n] bq = r
∧ Ti(b1, . . . , bn, x)∧Q(y1, y2, x ,`, r)

Q3(y1, y2, x , z,`, r)



















⇒ false











. (6.42)

Now we are ready to prove Theorem 21.

Proof of Theorem 21. We first show that Φ is equivalent to a particular equality-free Horn
sentence Φ′. Note that each conjunct in Φ has the form of an implication where the premise
possibly also contains instances of disjunction, which we normally do not allow in implications,
but no instances of negation. Therefore, each conjunct in Φ can be rewritten as a conjunction
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of Horn implications by converting the premise into positive DNF and then considering each
disjunct as a separate premise. As a result, the size of Φ increases exponentially, but this does
not matter for the purpose of the proof. Subsequently, all equality atoms can be eliminated
by replacing each variable bi with either ` or r. We denote the resulting equality-free Horn
sentence by Φ′ and its two parts stemming from Φ1 and Φ2, respectively, by Φ′1 and Φ′2.

“⇒”: Suppose that a tiling f : [2n]× [m]→ [k] satisfying the given input parameters exists.
Guided by f , we define a triple A,B1,B2 ∈ Modfin(Φ′) such that no amalgam C for (A,B1,B2)
can satisfy Φ′. The domains are A := {x1, . . . , xm, z1, . . . , z2n ,`, r} and Bi := A∪ {yi} (i ∈ [2]),
and the relations are given by the following (conjunctions of) atomic formulas:

• L(`) ∧ R(r), and Ti(b1, . . . , bn, x j) is satisfied for b1, . . . , bn ∈ {`, r} if and only if f (1+
∑

q∈[n] 1r(bq) · 2n−q, j) = i, thus the tiling atoms are placed correctly;
• φpad(y1, y2, x1, . . . , xm, z1, . . . , z2n ,`, r) enables the premises of the Horn implications;
•

�∧

i∈[m] P(x i)
�

∧
�∧

i∈[2n] V (zi)
�

distinguishes path and verifier nodes;
•

∧

i∈[m−1] F(x i , x i+1) defines a successor chain through path nodes; and
• Li(z j) or Ri(z j) is satisfied if and only if j = 1+

∑

q∈[n]λq · 2n−q for λ1, . . . ,λn ∈ {0,1}
and λi = 0 or λi = 1, respectively, thus verifier nodes correctly represent values in [2n].

Since A does not satisfy any E1- or E2-atoms, B1 does not satisfy any E2 atoms, B2 does not
satisfy any E1 atoms, and f is horizontally consistent, we clearly have A,B1,B2 ∈ Modfin(Φ′1).
But, since f is also vertically consistent, we have B1 ∪B2 6|= Φ′2. Since Φ′2 is an equality-free
universal Horn sentence, this implies that also C 6|= Φ′2 for every τ-structure C which admits a
homomorphism from B1 ∪B2. Thus, Modfin(Φ′) does not have the AP.

“⇐”: Suppose that Modfin(Φ′) does not have the AP. Then there exists a counterexample
to item 3 in Lemma 9, i.e., there exists a Horn implication ψ of the form φ( x̄)∧φ1( x̄ , y1)∧
φ2( x̄ , y2)⇒ χ , where φ,φ1, and φ2 satisfy the prerequisites of item 3 in Lemma 9 and χ( x̄ , y1)
is an atomic τ-formula other than equality, such that

Φ′ |= ∀ x̄ , y1, y2

�

φ ∧φ1 ∧φ2 ⇒ χ
�

(6.43)

and Φ′ 6|= ∀ x̄ , y1

�

φ ∧φ1 ⇒ χ
�

. (6.44)

By Theorem 17, ψ has an SLD-deduction from Φ′. Note that, by (6.44), χ( x̄ , y1) cannot be
a subformula of φ( x̄) ∧ φ1( x̄ , y1). Also, χ( x̄ , y1) cannot be a subformula of φ2( x̄ , y2) be-
cause every atom in φ2( x̄ , y2) contains the variable y2 which does not appear in χ( x̄ , y1).
Hence, χ( x̄ , y1) is not a subformula of φ( x̄) ∧φ1( x̄ , y1) ∧φ2( x̄ , y2), i.e., ψ is not a tautol-
ogy. Consequently, ψ is a weakening of a Horn implication ψ′ which has an SLD-derivation
ψ′

0, . . . ,ψ′
s =ψ

′ from Φ′ up to renaming variables. Recall that, since ψ is a weakening of ψ′,
every atom from the premise of ψ′ also appears in the premise of ψ.

Our first claim is that Φ′2 ` ψ′. We start by showing that ψ′
0 is a conjunct of Φ′2. Suppose,

on the contrary, that ψ′
0 is a conjunct of Φ′1. Then the conclusion of ψ′ is false. Note that

there is no Horn implication in Φ′ whose conclusion would contain an atom with a symbol
occurring in the premise of a Horn implication from Φ′1. Consequently, we have s = 0. Also
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note that every Horn implication from Φ′1 is complete. Since there is no edge between y1 and
y2 in the Gaifman graph of DB

�

∃ x̄ , y1, y2

�

φ ∧φ1 ∧φ2

��

, and, for i ∈ [2], each atom in φi

contains the variable yi, either φ1 or φ2 must be empty. Since the conclusion of ψ′ contains
no variables and φ( x̄)∧φi( x̄ , yi)≤Φ′ φ( x̄) for both i ∈ [2], we get a contradiction to (6.44).
Thus, ψ′

0 must be a conjunct of Φ′2. Since the conclusion of each Horn implication in Φ′1 is
false, no Horn implication from Φ′1 can be used as a resolvent. We conclude that ψ′ has an
SLD-derivation from Φ′2 modulo renaming variables, which confirms our first claim.

Our second claim is that ψ′ contains no atoms with a symbol from {Q1,Q2,Q3,Q} and its
conclusion equals false. Note that, by the construction of Φ′2, for every i ∈ [s], if there exist
variables z1, z2 in ψ′

i−1 such that

every atom with a symbol from {Q1,Q2,Q3,Q} contains
z1 in its first and z2 in its second argument, respectively.

(∗)

then this is also the case for ψ′
i, for the same variables z1, z2 up to renaming. Since every

possible choice of ψ′
0 from Φ′2 initially satisfies (∗), it follows via induction that (∗) holds for

ψ′ = ψ′
s for some variables z1, z2. Also note that (6.41) is the only Horn implication in Φ′2

that is not complete. However, the incompleteness is only due to one missing edge in the
Gaifman graph between the two distinguished variables satisfying (∗) for (6.41). We show
that {z1, z2}= {y1, y2} holds for the pair z1, z2 satisfying (∗) for ψ′. Suppose, on the contrary,
that both z1 and z2 are among x̄ , y1 or x̄ , y2. For every i ∈ [s], ψ′

i is a resolvent of ψ′
i−1

and a Horn implication from Φ′2 which is almost complete except possibly for one missing
edge in the Gaifman graph between a pair of variables which must be substituted for the pair
(z1, z2) satisfying (∗) for ψ′

i−1. Since the variables y1 and y2 do not appear together in any
atom in ψ′ and {z1, z2} 6= {y1, y2}, they also do not appear together in any atom during the
SLD-derivation. Then it follows from the fact that φ,φ1, and φ2 satisfy the prerequisites of
item 3 in Lemma 9 that we already have Φ′2 ` ∀ x̄ , y1

�

φ ∧φ1 ⇒ χ
�

, a contradiction to (6.44).
Since {z1, z2} = {y1, y2} holds for the pair z1, z2 satisfying (∗) for ψ′, ψ′ cannot contain any
atoms with a symbol from {Q1,Q2,Q3,Q} in the premise. Suppose that ψ′

0 is not of the form
(6.42). Then the conclusion of ψ′ is an atom with a symbol from {Q1,Q2,Q3,Q}. But then,
since z1, z2 with {z1, z2}= {y1, y2} satisfy (∗) for ψ′, the conclusion of ψ′ would be an atom
containing both variables y1 and y2. This leads to a contradiction to (6.43) where we assume
that the conclusion of ψ may only contain variables from x̄ , y1. Thus ψ′

0 is of the form (6.42),
which means that χ equals false due to the minimality assumption. This concludes our
second claim.

It remains to show that the existence of such ψ′ implies the existence of a tiling f : [2n]×
[m]→ [k] satisfying the given input parameters. We show that this follows from our second
claim and the construction of Φ′. By the previous paragraph, ψ′

0 is of the form (6.42). Since ψ′

does not contain any atoms with a symbol from {Q1,Q2,Q3,Q}, the last such atom must have
been eliminated from ψ′

s−1 by taking a resolvent with (6.41). By the construction of Φ′2, clearly
all Horn implications introduced between (6.41) and (6.42) must have been used to obtain ψ′
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through an SLD-derivationψ′
0, . . . ,ψ′

s =ψ
′ from Φ′2. Recall that we have replaced each variable

bi in Φ2 with either ` or r while rewriting Φ2 as an equality-free Horn sentence. For every Horn
implication in Φ′2, the conclusion is either false or an atom with a symbol from {Q1,Q2,Q3,Q}
containing all variables from the premise, with the following two exceptions: (i) verifier nodes
are not carried over in any atoms because their only contribution is the encoding of a unique
number, (ii) after a pair of successive rows has been checked by deriving a Q2-atom containing
a 2n-th verifier node, the variable representing the lower row is not carried over in any atom
because it is no longer needed. Thus, we may assume that the SLD-derivation from above is
linear (and not tree-like). Since φ,φ1, and φ2 satisfy the prerequisites of item 3 in Lemma 9,
no ill-behaved variable identifications might have occurred during the SLD-derivation above as
otherwise, we would have Φ′1 |= ∀ x̄ , y1

�

φ ∧φ1 ⇒ χ
�

, a contradiction to (6.44). Consequently,
the SLD-derivation must have the full intended length (2n + 1) · m for some m ≥ 1, because
every intermediate stage starts and ends with verifier nodes encoding the numbers 2n and 1,
respectively, and one can only progress in steps which decrement the encoded number by one.
This finishes the proof.
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7 Conclusion

The notions of ω-admissibility and p-admissibility were respectively introduced in [70] and [3]
to obtain decidable and tractable extensions of DLs by concrete domains. In each of these
papers, two examples of concrete domains satisfying the respective restrictions were given.
To the best of our knowledge, no other ω-admissible or p-admissible concrete domains had
been exhibited in the literature before our investigations in [10] and [12]. This appears to be
mainly due to the fact that it is not easy to show the conditions required by ω-admissibility or
p-admissibility “by hand”.

7.1 Contributions and future outlook

The main contribution of this thesis is that it provides us with useful algebraic tools for proving
ω-admissibility and p-admissibility.

We have shown that ω-admissibility is closely related to well-known notions from model
theory such as homogeneity and finite boundedness. Given the fact that a large number of
homogeneous structures are known from the literature [71] and that homogeneous and finitely
bounded structures play an important role in the CSP community, we believe that our work
will turn out to be useful for locating new ω-admissible concrete domains.

This is not the first model-theoretic description of a sufficient condition for decidability of
reasoning in DLs with concrete domains in the presence of TBoxes. The existence of homomor-
phism is definable (EHD) property was used in [36] to obtain decidability results for DLs with
concrete domains. However, the way the concrete domain is integrated into the DL in [36]
is different from the classical one employed by us and used in all other works on DLs with
concrete domains. In [36], constraints are always placed along a linear path stemming from a
single individual, which is rather similar to the use of constraints in temporal logics [35, 42].
In contrast, in the classical setting of DLs with concrete domains, one can compare feature
values of siblings of an individual. Compared to homogeneity and finite boundedness, the EHD
property is not as well-investigated. To the best of our knowledge, the only article besides
[36] where concrete domains satisfying the EHD property are studied in the context of ALC
with GCIs is [65].1 There, the authors consider specific concrete domains based on integers
equipped with a linear order and provide an exponential upper bound for reasoning using an

1Though EHD is not used in the proofs in [65].
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automata-theoretic algorithm. Interestingly, their upper bound holds not only for constraints
along paths, but also for the traditional integration of concrete domain into DLs. The results in
[36, 65] demonstrate that ω-admissibility is not necessary for decidable reasoning. However,
all known non-ω-admissible concrete domains with the EHD property are based on “discrete”
versions of ω-admissible concrete domains, which are patchworks but lack homomorphism
ω-compactness, e.g., (Z;<,=,>) or Allen’s interval algebra over integers. Motivated by this
observation, we identify homomorphismω-compactness in its current form as the most obvious
“flaw” of the ω-admissibility condition, in the sense that it may be too strong. In fact, the
correctness of the tableau algorithm from [70] only requires very specific infinite structures to
have a homomorphism to the concrete domain, e.g., their treewidth is always bounded by a
computable function in the size of the input concept and TBox. But even if we restrict the inputs
to homomorphism ω-compactness appropriately, the tableau algorithm from [70] is not correct
for “discrete” versions of ω-admissible concrete domains, as illustrated by Example 1. We
conclude that, although a modified version of ω-admissibility could in theory also be necessary
for decidable reasoning in ALC with concrete domains in the presence of GCIs, showing this
might require a non-trivial combination of the methods in [36, 65, 70].

For p-admissibility, we have developed a very useful algebraic tool for showing convexity:
the square embedding property. We have shown that this tool can indeed be used to exhibit
new p-admissible concrete domains, such as countably infinite vector spaces over finite fields,
the countable homogeneous partial order, and numerical concrete domains over R and Q
whose relations are defined by linear equations. The usefulness of these numerical concrete
domains for defining concepts should be evident. For the other two we have indicated their
potential usefulness by small examples. We have shown that, when embedding p-admissible
concrete domains into EL, the restriction to paths of length one in concrete domain restrictions
(indicated by the square brackets) is needed since there is a p-admissible concrete domain D

such that subsumption in EL(D) is undecidable. We have also shown that, for finitely bounded
structures, convexity is equivalent to p-admissibility, and that this corresponds to the finite
substructures being definable by a universal Horn sentence. Interestingly, this provides us
with infinitely many examples of countable p-admissible concrete domains, which all yield a
different extension of EL: the Henson digraphs. From a theoretical point of view, this is quite a
feat, given that before only two p-admissible concrete domains were known. It is less clear
whether these concrete domains are useful for defining concepts. Finitely bounded structures
also provide us with examples of structures D that can be used both in the context of EL and
ALC, in the sense that subsumption is tractable in EL[D] and decidable in ALC(D).

Finally, we have addressed the question of user-definability of ω- and p-admissible concrete
domains. To this question we have associated a natural decision problem, namely whether a
given finite description of a class of finite structures defines the finite substructures of some
ω- or p-admissible structure. We have considered the two settings where the input is either
a set of forbidden substructures or a universal sentence. Both input specifications are well
motivated by the rest of the thesis, and one can be converted to the other with an at most
exponential blow-up in size. In the case of p-admissibility, we have shown that this meta-
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problem is undecidable already for universal Horn sentences containing only binary symbols.
In the case of ω-admissibility, we have shown decidability for binary signatures by establishing
a close connection to the problem of testing the amalgamation property, which was previously
studied in the literature. Additionally we have provided an upper bound at the second level
of the polynomial hierarchy for the case where the input is a set of forbidden substructures.
For signatures involving symbols of higher arities, the decidability is open. In fact, it has
now been open for almost 40 years [66]. Our contributions here are two new lower bounds;
PSPACE-hardness if the input is an equality-free universal Horn sentence with at most ternary
symbols, and EXPSPACE-hardness if the input is an arbitrary universal sentence and the arities
of the occurring symbols are unrestricted. Obtaining an upper bound or even any lower bound
stronger than EXPSPACE-hardness is a challenging task that might require development of
new proof techniques. We believe that this problem deserves more attention from the research
community than it currently has.
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A Concrete Domains
without Equality

In this section, we briefly discuss the setting where the default equality predicate is not allowed
as an atomic formula in concrete domain restrictions. We will see that the resulting theory is
neither more elegant nor does it produce additional useful examples.

Recall that the notion of p-admissibility was introduced in [3] to capture precisely those
concrete domains D for which subsumption in EL[D] is decidable in PTIME. It is argued
in that paper that non-convexity of D allows one to express disjunctions in EL[D], which
makes subsumption EXPTIME-hard. However, if equality cannot be used in concrete domain
restrictions, then this argument works only if the counterexample to convexity is given by a
guarded implication. For this reason, we must use guarded convexity rather than convexity in
our definition of p-admissibility. For the same reason, one must also restrict the tractability
requirement in this definition to validity of guarded Horn implications. In sum, disallowing
the default equality predicate in concrete domain restrictions enables new structures that
satisfy some implications which are not equivalent to Horn implications, but only because such
implications cannot be encoded into a TBox and thus have no impact on reasoning.

Similarly to convexity, guarded convexity can also be characterized using an algebraic
condition, essentially by restricting the SEP to guarded structures. We say that the relational
τ-structure A is guarded if for every a ∈ A there is a relation R ∈ τ such that a appears in a
tuple in RA.

Theorem 22. For a relational τ structure B, the following are equivalent:

1. B is guarded convex.
2. For every finite σ ⊆ τ and every A ∈ Age(B2) whose σ-reduct is guarded, there exists a

strong homomorphism from the σ-reduct of A to the σ-reduct of B.

The proof of this theorem is similar to the proof of Theorem 9, but we include it anyway
for the sake of completeness. When we speak of guarded convexity, we implicitly assume that
the default equality predicate is not allowed as an atomic formula. In the presence of the
equality predicate, strong homomorphisms are embeddings and guarded convexity is the same
as convexity. Thus, Theorem 9 is technically a corollary to Theorem 22.

Proof. “2 ⇒ 1”: Suppose to the contrary that the closed implication ∀x1, . . . , xn

�

φ ⇒ ψ
�

is
valid in B, where φ is a conjunction of atoms such that each variable x i is present in some atom
of φ, and ψ is a disjunction of atoms ψ1, . . . ,ψs, but we also have B 6|= ∀x1, . . . , xn

�

φ⇒ψi

�
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for every i ∈ [k]. Without loss of generality, we assume that φ,ψ1, . . . ,ψk all have the same
free variables x1, . . . , xn, some of which might not influence their truth value. For every i ∈ [k],
there exists a tuple t̄ i ∈ Bn such that

B |= φ( t̄ i)∧¬ψi( t̄ i). (A.1)

We show by induction on i that, for every i ∈ [k], there exists a tuple s̄i ∈ Bn that satisfies the
induction hypothesis

B |= φ(s̄i)∧¬
�
∨

`∈[i]ψ`(s̄i)
�

. (A.2)

In the base case (i = 1), it follows from (5.1) that s̄1 := t̄1 satisfies (A.2).

In the induction step (i → i+1), let s̄i ∈ Bn be any tuple that satisfies (A.2). Let σ ⊆ τ be the
finite set of relation symbols occurring in the implication ∀x1, . . . , xn

�

φ⇒ψ
�

, and let Ai be
the substructure of B2 on the set {(s̄i[1], t̄ i+1[1]), . . . , (s̄i[n], t̄ i+1[n])}. Since B |= φ(s̄i) by (A.2),
B |= φ( t̄ i+1) by (A.1), and φ contains an atom for each variable x i, we conclude that the σ-
reduct of Ai is guarded. By 2., there exists a strong homomorphism fi from the σ-reduct of Ai to
the σ-reduct of B. Since φ is a conjunction of σ-atoms and fi is a homomorphism, we have that
B |= φ

�

fi(s̄i , t̄ i+1)
�

. Suppose that B |=ψi+1

�

fi(s̄i , t̄ i+1)
�

. Since fi is a strong homomorphism,
we get B |= ψi+1( t̄ i+1), a contradiction to (A.1). Now suppose that B |= ψ j

�

fi(s̄i , t̄ i+1)
�

for
some j ≤ i. Since fi is a strong homomorphism, we get B |=ψ j(s̄i), a contradiction to (A.2).
We conclude that s̄i+1 := fi(s̄i , t̄ i+1) satisfies (A.2).

Since B |= ∀x1, . . . , xn

�

φ⇒ψ
�

, the existence of a tuple s̄i ∈ Bn that satisfies (A.2) for i = k
leads to a contradiction. This completes the proof of of “2 ⇒ 1” of our theorem.

Before we proceed with the proof of “1 ⇒ 2”, let us take a closer look at the contraposition of
the guarded convexity condition. Suppose that we have a conjunction φ of τ-atoms and tuples
r̄ and s̄ over B together with disjunctions ψr̄ and ψs̄ of τ-atoms such that B |= (φ ∧¬ψr̄)(r̄)
and B |= (φ ∧¬ψs̄)(s̄), and the implications ∀x1, . . . , xn

�

φ⇒ψr̄

�

and ∀x1, . . . , xn

�

φ⇒ψs̄

�

are guarded. Then clearly there must exist a tuple t̄ over B such that B |= (φ ∧¬ψr̄ ∧¬ψs̄)( t̄)
as otherwise B |= ∀x1, . . . , xn

�

φ ⇒ ψr̄ ∨ψs̄

�

, but neither B |= ∀x1, . . . , xn

�

φ ⇒ ψr̄

�

nor
B |= ∀x1, . . . , xn

�

φ⇒ψs̄

�

is true (which would lead to a contradiction to guarded convexity).

Now we continue with the proof of “1 ⇒ 2”. Let σ be an arbitrary finite subset of τ
and let A ∈ Age(B2) be an arbitrary finite substructure of B2 whose σ-reduct is guarded.
Let {(r1, s1), . . . , (rn, sn)} be the domain of A. Consider the tuples r̄ := (r1, . . . , rn) and s̄ :=
(s1, . . . , sn). Let φ(x1, . . . , xn) be the conjunction of all σ-atoms such that

A |= φ
�

(r1, s1), . . . , (rn, sn)
�

,

i.e., we consider all atoms built using a relation symbol from σ and containing variables from
{x1, . . . , xn}, assign (ri , si) to the variable x i , and take those atoms for which the corresponding
tuple of elements of A belongs to the respective relation in A.

Clearly, the tuples r̄ and s̄ both satisfy φ in B since the projection to a single coordinate is a
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homomorphism from A to B. Now let ψr̄ be the disjunction of all σ-atoms which do not hold
on the tuple r̄ in B. Analogously, let ψs̄ be the disjunction of all σ-atoms which do not hold on
the tuple s̄ in B. Without loss of generality, both disjunctions are non-empty since otherwise
the projection onto one of the coordinates is a strong homomorphism and we are done. In
addition, the implications ∀x1, . . . , xn

�

φ⇒ψr̄

�

and ∀x1, . . . , xn

�

φ⇒ψs̄

�

are guarded since
the σ-reduct of A is guarded.

We have that B |= φ ∧¬ψr̄(r̄) and B |= φ ∧¬ψs̄(s̄). Since B is guarded convex, there must
exist a tuple t̄ such that B |= φ ∧¬ψr̄( t̄)∧¬ψs̄( t̄). Now consider the map f that sends, for
every i ∈ [n], the tuple (ri , si) to t̄[i]. Clearly f is a homomorphism from the σ-reduct of A to
the σ-reduct of B because B |= φ( t̄). Moreover, f is a strong homomorphism because, if ψ is
a formula consisting of a single σ-atom, then B |=ψ( t̄) only if B |=ψ(r̄) and B |=ψ(s̄).

As an example, the structure N = (N; E, O) introduced above Definition 4 is guarded convex,
but not convex. According to Theorem 9, the latter should imply that there is a finite substructure
A of N2 that does not embed to N. In fact, if we take as A the substructure of N2 induced by
the tuple (1, 2), then this tuple belongs neither to E nor to O in the product. However, a strong
homomorphism to N would need to map this tuple either to an odd or an even number. But
then the tuple would need to belong to either E or O since the homomorphism is strong. This
example does not work for the case of guarded convexity, because the considered substructure
is not guarded. In fact, a guarded substructure of N2 can only contain tuples where both
components are even or both components are odd. In the former case, the tuple can be mapped
to an even number, and in the latter to an odd number.

When it comes to ω-admissibility, we already mentioned that the original notion was for-
mulated for binary signatures only, and also without the JD requirement because the DL did
not have access to the default equality predicate. And indeed the tableau algorithm from [70]
works just fine in the setting where elements of the concrete domain cannot be distinguished
using atomic formulas. However, it seems odd to require each pair of elements to be present
in a unique binary relation but not caring whether they can be told apart. Moreover, the
decomposition of relations into orbits that we use to obtain ω-admissible structures yields JD
for free. One good reason for dropping the JD axiom would be if it allowed us to locate new
interesting concrete domains in the intersection of ω- and p-admissibility. We show that this is
not the case; only very simple structures can be at the same time jointly exhaustive, pairwise
disjoint, and guarded convex. For the sake of brevity, the statement here is formulated for
binary signatures only.

Proposition 24. Let D be a structure with a finite binary relational signature. Then the following
are equivalent:

1. D is guarded convex and JEPD.
2. There exists a partition V1, . . . , Vm of D such that the non-empty relations of D are exactly

the ones of the form Vj × Vk for every ( j, k) ∈ [m]2.

Proof. “1 ⇒ 2”: Let R1, . . . , R` be an enumeration of those symbols from τ that are interpreted
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in D as a non-empty relation. We first prove the following.

Observation 6. For every i ∈ [`], there exists precisely one pair ( j, k) ∈ [`]2 such that

D |= ∀x , y
�

Ri(x , y)⇔ R j(x , x)∧ Rk(y, y)
�

.

Proof of Observation 6. For every i ∈ [`], we have D |= ∀x , y
�

Ri(x , y) ⇒
∨

j∈[`] R j(x , x)
�

and D |= ∀x , y
�

Ri(x , y)⇒
∨

k∈[`] R j(y, y)
�

because the relations of D are jointly exhaustive.
Using the guarded convexity of D we conclude that, for every i ∈ [`], there exists a pair
( j, k) ∈ [`]2 such that D |= ∀x , y

�

Ri(x , y) ⇒ R j(x , x) ∧ Rk(y, y)
�

. Since the relations of D
are pairwise disjoint and each Ri is non-empty, there can only be one such pair ( j, k) for
every i ∈ [`]. Also, for every such pair ( j, k) corresponding to a fixed i ∈ [`], we have
D |= ∀x , y

�

R j(x , x) ∧ Rk(y, y) ⇒ R1(x , y) ∨ · · · ∨ R`(x , y)
�

because the relations of D are
jointly exhaustive. Using the guarded convexity of D we conclude that there exists an i′ ∈ [`]
such that D |= ∀x , y

�

R j(x , x) ∧ Rk(y, y)⇒ Ri′(x , y)
�

. Since the relations of D are pairwise
disjoint, the index i′ must be the original i we started with.

For a given i ∈ [`], we distinguish the following two cases:

1. If there exists x ∈ D such that (x , x) ∈ Ri, then Observation 6 implies i = j = k and
Ri = V 2

i where Vi := {x ∈ D | (x , x) ∈ Ri}.
2. If there exists no x ∈ D such that (x , x) ∈ Ri , then Observation 6 implies the existence of

j, k ∈ [`] such that i, j, k are all pairwise distinct and Ri = Vj × Vk.

Without loss of generality, R1, . . . , Rm are the relations of the first kind, and Rm+1, . . . , R` are
the relations of the second kind. Since the relations of D are jointly exhaustive, V1, . . . , Vm form
a partition of D.

“2 ⇒ 1”: Clearly, the relations of D are jointly exhaustive and pairwise disjoint. We use
Theorem 22 to show that D is guarded convex. Thus, let A be an arbitrary guarded structure
in Age(D2). Observe that no pair (x , y) ∈ D2 such that x ∈ Vj and y ∈ Vk for j 6= k can be an
component of a tuple from a relation of D2. This is a direct consequence of our assumptions
about the relations of D and the definition of the product of structures. Thus, since A is guarded
and embeds into D2, for every (x , y) ∈ A, we have x , y ∈ Vi for some i ∈ [m]. It is easy to see
that, in this particular case, the projection map (x , y) 7→ x is a strong homomorphism from A

to D. Since A was chosen arbitrarily, it follows from Theorem 22 that D is guarded convex.
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