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Abstract

Biological cell populations, such as in tissues or microbial communities, are con-
stantly subject to different sources of noise and variability. Despite this, multicellular
systems are still able to function properly because cells coordinate with each other by
communication. Using biological model systems to study this multiscalar process can
be challenging because of their innate complexity. In this thesis, we address this chal-
lenge by building a synthetic multicellular system using bottom-up in vitro assembly
approaches. Using this platform, we aim to study the effect of cell-to-cell communi-
cation to population variability in a minimal and simplified context. To achieve this,
we require a synthetic cell population with (i) quantifiable gene expression dynamics,
(ii) customizable population variability, and (iii) intercellular communication. Having
these characteristics will allow us to test different initial configurations of population
variability and monitor population gene expression dynamics with and without cell-to-
cell communication. To generate these synthetic cell populations, reconstituted cell-free
expression systems (CFES) are encapsulated into monodisperse-sized liposomes using
double-emulsion microfluidics. Both transcription and translation levels are simultane-
ously monitored and quantified to develop models of cell-free gene expression dynamics
and differentiate between bulk and encapsulated formats. Population variability was
then incorporated by combining different batches of cells to create distinct subpopu-
lations or by using a two-inlet double-emulsion microfluidic device to generate single
populations with a large dispersion of encapsulated DNA template. Lastly, genetic
circuits based on the quorum sensing system of Vibrio fischeri are used to implement
diffusion-mediated intercellular signalling. Quorum sensing gene circuits in Escherichia
coli extract-based CFES were tested in bulk and phase transfer-generated synthetic
cells. Together with these experimental systems, corresponding models of synthetic cell
populations that can account for population variability and secrete-and-sensing commu-
nication are developed using mixed-effects models and moment dynamics. Overall, this
work leverages CFES and microfluidic technologies to reproducibly generate a simplified
in vitro model of multicellular systems that can be easily monitored spatiotemporally
to study multi-scalar processes.
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Zusammenfassung

Biologische Zellpopulationen, z.B. in Geweben oder mikrobiellen Gemeinschaften,
sind ständig verschiedenen Quellen von Rauschen und Variabilität ausgesetzt. Trotz-
dem sind multizelluläre Systeme in der Lage, ordnungsgemäß zu funktionieren, weil
sich die Zellen durch Kommunikation miteinander abstimmen. Die Verwendung bi-
ologischer Modellsysteme zur Untersuchung dieses multiskalaren Prozesses kann auf-
grund ihrer angeborenen Komplexität eine Herausforderung darstellen. In dieser Ar-
beit gehen wir diese Herausforderung an, indem wir ein synthetisches multizelluläres
System mit Hilfe von Bottom-up-in vitro-Assembly-Ansätzen aufbauen. Mit Hilfe
dieser Plattform wollen wir die Auswirkungen der Kommunikation von Zelle zu Zelle
auf die Populationsvariabilität in einem minimalen und vereinfachten Kontext unter-
suchen. Um dies zu erreichen, benötigen wir eine synthetische Zellpopulation mit (i)
quantifizierbarer Genexpressionsdynamik, (ii) anpassbarer Populationsvariabilität und
(iii) interzellulärer Kommunikation. Mit diesen Eigenschaften können wir verschiedene
Ausgangskonfigurationen der Populationsvariabilität testen und die Genexpressions-
dynamik der Population mit und ohne Zell-zu-Zell-Kommunikation beobachten. Um
diese synthetischen Zellpopulationen zu erzeugen, werden rekonstituierte zellfreie Ex-
pressionssysteme (CFES) mit Hilfe der Doppelemulsions-Mikrofluidik in monodisperse
Liposomen eingekapselt. Sowohl die Transkriptions- als auch die Translationsraten
werden gleichzeitig überwacht und quantifiziert, um Modelle für die Dynamik der zell-
freien Genexpression zu entwickeln und zwischen Bulk- und verkapselten Formaten zu
unterscheiden. Die Variabilität der Populationen wurde dann durch die Kombination
verschiedener Zellchargen zur Bildung unterschiedlicher Subpopulationen oder durch
die Verwendung einer mikrofluidischen Doppelemulsionsvorrichtung mit zwei Einlässen
zur Erzeugung einzelner Populationen mit einer großen Streuung der eingekapselten
DNA-Vorlage einbezogen. Schließlich werden genetische Schaltkreise auf der Grundlage
des Quorum-Sensing-Systems von Vibrio fischeri verwendet, um diffusionsvermittelte
interzelluläre Signalübertragung zu implementieren. Quorum-Sensing-Genkreisläufe in
CFES auf der Basis von Escherichia coli -Extrakten wurden in synthetischen Zellen
getestet, die durch Bulk- und Phasentransfer erzeugt wurden. Zusammen mit diesen ex-
perimentellen Systemen wurden entsprechende Modelle synthetischer Zellpopulationen
entwickelt, die die Populationsvariabilität und die Sekretions- und Sensing-Kommunikation
mit Hilfe von Mixed-Effects-Modellen und Momentendynamik berücksichtigen können.
Insgesamt nutzt diese Arbeit CFES- und Mikrofluidik-Technologien, um reproduzier-
bar ein vereinfachtes in vitro-Modell multizellulärer Systeme zu erzeugen, das leicht
raum-zeitlich überwacht werden kann, um multiskalare Prozesse zu untersuchen.
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Preface

Cells in biological multicellular systems are never exactly identical. Even in an
isogenic cell population, cells are constantly subject to different sources of noise and
variability [71]. Despite this, biological multicellar systems, are still able to function
properly because cells can coordinate by intercellular communication. In this work, we
are interested in studying the effect of cell-to-cell communication to population vari-
ability using a bottom-up approach. A bottom-up approach involves reconstituting bi-
ological systems using simple building blocks, such as synthetic or purified components
of the cell and non-living molecular species. This approach has been used for decades
in the field of biochemistry to help us understand the functions of individual cellular
components in biology. By isolating the components of interest, biological systems can
be more easily investigated in a simplified context. In more recent years, reconstitution
techniques have been applied in the field of synthetic biology to building minimal syn-
thetic cells from the bottom-up. Building towards a synthetic cell offers new insights
and questions on how the mechanisms of life can work as a whole within a more complex
system. It has pushed us to think about how to compartmentalize reactions [192, 261,
255, 49, 159], shape cells [263, 139, 53, 74], maintain out-of-equilibrium systems [147, 21,
24], and drive cell division [155, 92, 245]. It has also brought about close collaborations
with other fields in physics, engineering, and biotechnology to utilize or develop new
tools such as microfluidics [52, 20, 289], cell-free expression systems (CFES) [227, 145],
and 3D printing [273]. Progress in building synthetic single cells further motivated work
in creating multicellular systems. In biology, multicellularity enables larger and more
complex lifeforms, but also requires additional means of intercellular communication,
3D organization, and differentiation to coordinate cells and control growth and popula-
tion variability [101]. Recent efforts have already demonstrated some of these aspects in
bottom-up assembly of synthetic multicellular systems. For instance, 2 and 3D-printed
structures composed of lipid-stabilized water-in-oil droplets have been made to express
membrane pore proteins to facilitate cell-cell signalling [29, 66]. Coupled with positive
or negative feedback genetic circuits, these can be made to simulate simple artificial
morphogen signalling and differentiation in a defined multicellular geometry [66, 65].
Artificial cell mimics made of a porous polymer shell containing a nucleus-like DNA-
hydrogel have also been made to communicate via diffusible protein signals to activate
gene expression [184]. Quorum sensing artificial cells that can produce and sense dif-
fusible signalling molecules were interfaced with actual quorum sensing bacteria [221,
148, 206]. These examples demonstrate our growing capability to assemble complex
synthetic multicellular systems with biological features. In the future, bottom-up syn-
thetic systems could form the basis of unique multicellular biomaterials or an in vitro
platform where intercellular signalling systems can be reconstituted and tested in a
minimal multicellular context.
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Aim and approach

We aim to build a platform to study the interplay between cell-to-cell communi-
cation and population variability using bottom-up assembly approaches. To achieve
this, we require a synthetic cell population with (i) quantifiable gene expression dy-
namics, (ii) customizable population variability, and (iii) intercellular communication.
Having these characteristics will allow us to test different initial configurations of pop-
ulation variability and monitor population gene expression dynamics with and without
cell-to-cell communication. Using recent advances in double-emulsion microfluidics, we
encapsulated CFES into large populations of monodisperse-sized liposomes to generate
synthetic cell populations. Gene expression dynamics in these synthetic cell popula-
tions were quantified in both transcription and translation levels using a Broccoli RNA
aptamer and mCherry protein reporter. Different coarse-grained models of resource-
limited cell-free gene expression were then tested and fit against the quantified gene
expression dynamics. We used the Akaike information criterion (AIC) for model selec-
tion and analyzed identifiability and confidence intervals of the fit parameters by profile
likelihood analysis. The selected model was used to quantify differences between bulk
and encapsulated gene expression rate parameters. We then produced synthetic cell
populations with different distributions of encapsulated DNA analogous to biological
cell populations that exhibit heterogeneity and variability by mixing different batches
of synthetic cells together or by using a two-inlet microfluidic device. Intercellular
communication in the synthetic cell population was incorporated by expressing a quo-
rum sensing genetic circuit with the CFES. Lastly, we developed models that account
for population variability and secrete-and-sensing communication using mixed-effects
models and moment-based analysis that can be applied with our experimental platform.

Outline

The contents of this thesis is organized as follows. In Chapter 1, we introduce the
field of bottom-up synthetic biology, discuss the key components needed to build syn-
thetic multicellular systems, and present state-of-the-art examples. Chapter 2 provides
a background on cell-free expression systems (CFES) and their encapsulation into lipid
vesicles or liposomes, which are the main building blocks used in this work. Chapter
3 presents our workflow to generate synthetic cell populations using double-emulsion
microfluidics to encapsulate CFES. We show how gene expression dynamics can be
monitored and quantified in synthetic cell populations. This is then used to develop a
coarse-grained model of resource-limited cell-free gene expression and infer transcription
and translation rate parameters in both bulk and encapsulated CFES formats. In Chap-
ter 4, we integrate a quorum sensing gene circuit in CFES and encapsulate these into
synthetic cells with the goal of building intercellularly communicating populations. We
then show how synthetic cell populations with different distributions of encapsulated
DNA can be prepared by mixing different populations together to get distinct sub-
populations, or by using a two-inlet microfluidic device to generate increased variability
in a single population. Lastly, in Chapter 5, we introduce a mixed-effects model to ac-
count for cell-to-cell variability within a synthetic cell population and a moment-based
model of communicating cell populations, which can account for population variability
and stochastic gene expression.
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Chapter 1

Bottom-up multicellular systems∗

Biological systems represent a key example of how simple building blocks make com-
plex multiscale systems. Single cells coordinate with each other on the molecular level
through intercellular communication and feedback loops to form multicellular systems
that can exhibit population-level behaviour and functions. For instance, bacterial com-
munities use quorum sensing to coordinate gene expression in response to population-
level properties such as the total concentration of secreted autoinducer molecules [281].
Oscillations in biofilm growth of a microbial community arise from long-range metabolic
co-dependence between interior and peripheral cells in the colony [157]. Emergent prop-
erties that arise from the dynamics of single cells and their intercellular interactions
can also be observed in more complex biological systems. The formation of digits dur-
ing limb development is proposed to be caused by periodic patterns from a Turing
reaction-diffusion network of morphogens within the limb bud tissue [207]. Boundaries
between cell compartments can further provide a physical means of discretizing space
in multicellular systems such as observed in the development of skin scale colour pat-
tern in lizards [164]. These selected examples provide a mechanistic understanding of
how emergent behaviour in biological systems can arise from intercellular communi-
cation, reaction-diffusion, and multi-compartmentalization. If these key features can
be abstracted and built into bottom-up synthetic multicellular systems, then emergent
properties could potentially be assembled from scratch (Figure 1.1A). Although lacking
in complexity compared to living systems, bottom-up design and construction of syn-
thetic multicellular systems can help describe the essential elements that recapitulate
emergent properties [219]. A bottom-up approach provides a well-defined and simple
experimental system that can help us understand the emergence of complex behavior
from first principles [98]. In the past decade, significant progress has been made in
building synthetic cell units by encapsulating chemical or enzymatic reactions within
micron-sized compartments [214, 84]. There is now an extensive toolkit of membrane-
bound compartments, as well as reactions which can be encapsulated and supported
within the compartments, that utilise a wide range of different molecules. For example,
membrane-bound compartments can be generated by the self-assembly of lipids in wa-
ter (liposomes) or oil (water-oil emulsions and droplet interface bilayers), amphiphilic

∗This chapter is based on the review article: Gonzales DT, Zechner C, Tang TYD. Building
synthetic multicellular systems using bottom-up approaches. Current Opinion in Systems
Biology, 24: 56-63, 2020 [96].
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di-block copolymers (polymersomes), and protein-polymer conjugates (proteinosomes)
(Figure 1.1B) [240]. These compartments can encapsulate chemical reactions such as
DNA strand displacement (DSD) reactions [223], Polymerase/Exonuclease/Nickase Dy-
namic Network Assembly (PEN DNA) reactions [178, 16], cell-free transcription and
translation or cell-free expression systems (CFES) [143], and enzyme cascades [70, 31]
where reaction products can act as intercellular signalling molecules (Figure 1.1C). Im-
provements in microfluidic [57, 265] and droplet printing technologies [28] have further
enabled the generation of homogeneous or user-defined heterogeneous synthetic cell
populations [20, 10, 286] in custom 2D or 3D arrangements. This offers a robust and
versatile platform for manipulating single cell reaction parameters and population het-
erogeneity with a high level of control that is not easily accessible or attainable in stan-
dard bulk methodologies. Taken together, these technologies have enabled bottom-up
synthetic biology to produce and characterize compartmentalised reactions as individual
and isolated cells and provide the basis for developing synthetic multicellular systems
with networks of interacting synthetic cellular units. In this chapter, we focus on recent
advances in the emerging area of bottom-up approaches to create biologically-inspired
systems that bridge scales from single cells to multicellular systems. Specifically, we
consider how intercellular communication and feedback loops can be integrated into
populations of synthetic cells to invoke coordinated behaviours that are synonymous
with multicellular systems.

1.1 Intercellular communication

Using signalling molecules, individual cells are able to send and receive information
from other cells, or the ensemble, and coordinate functions as a population [46]. There
are a number of routes that biological cells use to communicate efficiently. Communica-
tion can occur by direct diffusion of signalling molecules through membranes and mem-
brane channels. For non-membrane diffusible signalling molecules, membrane-bound
protein receptors can relay extracellular signals into the cell by signal transduction or
via membrane vesicle transport processes such as endo/exocytosis of outer membrane
vesicles (OMVs) that are found in bacteria [262]. These biological mechanisms often
rely on complex processes and molecular structures which can be experimentally chal-
lenging to reconstitute within in vitro systems. Here we discuss strategies to integrate
intercellular communication into minimal synthetic systems.

1.1.1 Membrane-diffusive signalling

Most examples of synthetic cell-cell communication utilise diffusion-mediated com-
munication as a route to coordinate behaviours between individual cells [15]. Com-
partmentalised reactions in lipid vesicles or DIBs can be coordinated or triggered via
passive diffusion of membrane-diffusible small molecules, or diffusion facilitated through
incorporated membrane protein pores and ion channels (e.g α-hemolysin (αHL) pore [1,
254], DNA origami nanopore [260], MscL channel [109]) for larger or charged molecules
(Figure 1.2A-B). The substrate or product of any enzyme reaction can act as a signalling
molecule that is sequentially modified by a series of encapsulated enzymatic reactions
as it travels between different compartments, thereby organizing the cells into a primi-
tive network [70, 31]. Signalling molecules generated in situ by CFES, as demonstrated

15



Figure 1.1: Building bottom-up synthetic multicellular systems. (A) Synthetic cells must
communicate intercellularly and have feedback systems within cell populations to exhibit
population-level emergent behaviour. (B) Compartments can be formed from self-assembling
bilayers/monolayers of lipids to make stabilized droplets or liposomes, diblock copoly-
mers to make polymersomes, and cross-linked polymers to make polymerized capsules or
protein-polymer conjugate proteinosomes. (C) Examples of reaction types, such as cell-
free expression systems (CFES), DNA strand displacement (DSD) reactions, and poly-
merase/exonuclease/nickase dynamic network assembly (PEN DNA) reactions, that can be
encapsulated in synthetic cells.

by the production of N-acyl homoserine lactones (AHL) by AHL synthase (LuxI) ex-
pressed from a DNA plasmid, can recapitulate bacterial quorum sensing gene circuits
within synthetic cells [148]. These examples demonstrate the open and modular plat-
forms in chemistry and synthetic biology that can be used to create communicating cell
populations with life-like features.In general, the mobility of the signalling molecule is
dependent on its diffusive properties with respect to the membrane. The different molec-
ular building blocks used to construct the membrane can impart specific permeability
properties to the compartment. Liposomes allow only small and uncharged molecules
to diffuse through the lipid bilayer membrane. In contrast, compartments formed from
porous acrylate polymer membranes permit transport of larger macromolecules, such as
TetR-sfGFP (50.1 kDa) and T3 RNA polymerase proteins (98.8 kDa), to neighbouring
cells [184] (Figure 1.2C). A strength of synthetic cellular systems is that their mem-
brane properties are inherently tuneable, allowing the diffusivity of signalling molecules
to be modulated at will. For example, the membrane permeability of proteinosomes can
be controlled by incorporating environment-responsive molecules that affect the mem-
brane protein-polymer structure [298, 205]. Reaction molecules inside the synthetic
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cell can also be modified to provide specific containment or diffusive properties. DNA-
based reactions, such as DSD and PEN DNA reactions, have been compartmentalised
in water-in-oil droplets [108], proteinosomes [121], and terpolymer-stabilised coacervate
droplets [161]. The short single-stranded DNA (ssDNA) molecules (<100 bp) can typi-
cally diffuse through proteinosome membranes and out of coacervate droplets. However,
the membrane can retain DNA template molecules that have been immobilised or lo-
calised inside these compartments by binding them to larger streptavidin beads [121,
291] or self-assembling supramolecular nanoscaffolds [161] (Figure 1.2D).

Figure 1.2: Diffusion-mediated intercellular communication between synthetic cells. (A)
Membrane-diffusible molecules (i) and larger or charged molecules that are transported
through membrane channels (ii) can act as intercellular signalling molecules. (B) Membrane
channel proteins in DIBs can facilitate diffusion of signalling molecules for cell-cell communi-
cation. (C) Larger molecules such as expressed enzymes can diffuse through porous acrylate
polymer membranes. (D) Free ssDNA (<100 bp) from DSD reactions can pass proteinosome
membranes as signal molecules, while streptavidin-bound DNA templates are localized inside
the proteinosome.

1.1.2 Signal transduction across the membrane

While it has been shown that passive diffusion across a membrane can be effec-
tive in driving cell-cell communication, this also limits the ability of the compartment
to maintain concentration gradients between the intercellular and extracellular space.
This is a key feature of biological systems and important for maintaining a potential
for generating energy via proton-motive forces across the membrane. Biological cells
use signal transduction systems to internalise signals while maintaining the separation
between intra and extracellular environments. This is facilitated by membrane proteins
(e.g. histidine kinases, GPCRs, tyrosine kinase receptors) that oligomerize, transduce,
or change conformation in response to ligand binding. While many natural membrane
transducer proteins have been reconstituted in lipid membranes [191] or in polymer-
somes [171] for structural and functional studies, integrating these into a synthetic cell
is challenging because it requires further coupling of the transducer to reaction net-
works within the cell. Instead, synthetic membrane transducers, which are simpler and
easier to reconstitute, have been used in artificial cell applications [271]. Bernitzki and
Schrader (2009) used two transmembrane units that dimerize with a di/tri-cationic pri-
mary messenger which results in a FRET signal between the inner leaflet headgroups
[22]. More recently, Lister et al. (2017) designed a synthetic membrane transducer
composed of a hydrophobic scaffold with an exposed ligand-binding pocket at one end,
and a fluorescent pyrene pair reporter group at the opposite end. Binding of a carboxy-
late ligand induces a conformational change that results in a fluorescent readout due to
an increase of proximity between the pyrene pair [154]. Langton et al. (2017) designed
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membrane translocators that, depending on the pH of the environment, move between
the outer and the inner leaflet of the bilayer membrane to expose active headgroup sites.
Increasing the pH deprotonates the outer leaflet headgroup making it apolar [141]. This
allows the translocation of the transducer exposing the active site to the inner leaflet
for the response reaction inside the synthetic cell [142]. A similar artificial transloca-
tor has also been designed to respond to Cu(II) ion availability [140]. These examples
demonstrate the possibilities of designing novel transducers which can be integrated
into microcompartments for specific and specialised modes of communication between
synthetic cells. For example, contact-dependent signalling could be engineered in syn-
thetic cells by having both ligands and receptors bound to the membrane similar to
the synthetic Delta-Notch signalling system that has been implemented in mammalian
cells [182].

1.2 Spatial organization of cell populations

As intercellular communication is predominantly driven by the diffusion of signalling
molecules between cells - the distance and arrangement within a 1, 2, or 3-dimensional
space can significantly affect the strength and degree of cell-cell interactions within the
population. Therefore, rational control of the spatial organization of synthetic cells can
regulate the diffusive signalling properties and the overall population behaviour. One
approach to achieving this is by tuning and regulating adhesion between compartments.
Lipid vesicles will spontaneously adhere to one another at small distances by weak inter-
molecular forces and osmotic deflation [195]. The functionalization of a lipid membrane
with light-activated adhesion protein pairs (iLID/Nano and nMagHigh/pMagHigh) [39,
125] or complementary DNA linkers [229] can promote specific adhesion between dif-
ferent liposome species (Figure 1.3A). Adhesion can also facilitate contact-dependent
communication by direct exchange of cellular contents through fusion events [1] offering
an alternative route to cellular communication compared to diffusion. Moreover, cell-
cell adhesion can facilitate the construction of higher-order multicellular structures as
demonstrated in prototissue spheroids formed by chemically cross-linking proteinosomes
together [91] or multicompartmentalized lipid vesicles generated from multicompart-
ment double emulsion templates using microfluidics [48] (Figure 1.3B).

Recent progress in the area of microfluidics and 3D droplet printing has enabled
control over spatial localization of compartments. Using microfluidic traps, hundreds
of cells can be packed together into chambers [290] or individually arranged into 2D grids
with specified distances [126, 121, 291] (Figure 1.4A). For example, Joesaar et al. (2019)
and Yang et al. (2020) used 2D arrays of proteinosomes encapsulating DSD reactions to
create populations that communicate by diffusive signalling. By selectively triggering
different signalling sources (sender cells), the integrated spatiotemporal activation of
the receiver cells in the population can be observed [121, 291]. Aside from localizing
the single cell units, these microfluidic traps also allow a quick exchange of external
solution by flow through. Droplet printing has further opened exciting possibilities to
generate specific patterns and structures of 3D synthetic tissues. Villar et al. (2013) was
one of the first to produce custom 3D structures composed of droplet interface bilayers
(DIBs) by printing water droplets into an oil phase containing lipids. The lipids self-
assemble on the water-oil interface to generate a lipid monolayer that stabilise the
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Figure 1.3: Cell-cell adhesion in liposome synthetic cells. (A) Liposomes can be directly
adhered together using (i) attractive electrostatic interactions, (ii) cell adhesion molecules, and
(iii) hybridizing DNA linkers. (B) Multicompartment lipid vesicles can also form multicellular
systems where each compartment shares a lipid bilayer with its neighbour.

droplets. Droplet interface bilayers are formed when the droplets come into contact
with one another [28]. Different packing arrangements, such as hexagonal, square, or
amorphous packing, can be controlled by the balance between surface tensions of the
lipid monolayer and bilayer which determines the equilibrium contact angle between
DIBs [9] (Figure 1.4B). These 3D structures can also be modularly constructed and
then assembled into larger centimeter sized synthetic tissues [7]. Additional properties
and features of the 3D-printed DIBs can be incorporated by encapsulating different
components into the cellular population. For example, 3D structures of DIBs with
different osmolarities [273] and hydrogel droplets [62] were shown to fold and curl due
to the shrinking and growing of individual droplets reacting to osmotic pressure and
light or temperature, respectively. Booth et. al (2016) encapsulated CFES with a light-
activated DNA promoter for an αHL gene and selectively connected individual DIBs
to each other by localised light activation [29]. Using a two-step dewetting process,
these 3D-printed DIBs can be further transferred into an aqueous phase to create a
multicellular lipid vesicle structure [8]. This provides many new opportunities to create
synthetic tissues that, unlike DIB structures immersed in an oil phase, can interact with
the external environment. This was demonstrated in the same study by integrating αHL
pore protiens in the multicellular structures to release a fluorescent cargo or sense Ca2+

ions in the outer aqueous environment. These examples demonstrate the high degree of
spatial control that is possible within synthetic tissues and will be useful to study how
inhomogeneous properties in interacting cellular units can affect population behaviour.

1.3 Feedback in multicellular systems

Many examples of intercellular communication in artificial cell populations are im-
plemented as a unidirectional or sender-receiver relationship between cells. Integrating
feedback loops couple all cells together into a closed loop control system that can reg-
ulate the population and help in the self-maintainence of out-of-equilibrium behaviour
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Figure 1.4: Spatial organisation of synthetic cell populations. (A) Synthetic cell populations
can be packed together in microfluidic chambers [290] or trap arrays in a regular grid [126].
(B) (i) 3D-printed droplets can be used to make custom tissue-like structures of DIB synthetic
cells [273]. The arrangement of the DIBs can be controlled by the balance between surface
tensions of the lipid monolayer and bilayer into (ii) no packing, (iii) square packing, and (iv)
hexagonal packing [9]. All illustrations are based on figures in their respective references.

within the system. In recent years, communicating artificial cell populations have been
engineered with bidirectional communication or feedback systems to self-regulate pop-
ulation behaviour. For example, by coupling two populations of proteinosomes that
activate and inhibit each other using DSD reactions, Joesaar et al. (2019) observed a
self-regulated transient response in the activator cell population [121] (Figure 1.5A).
Dupin et al. (2019) built sender and receiver artificial cells which mimicked cell dif-
ferentiation with a positive feedback switch [66]. Sender cells contained arabinose that
diffuses into the receiver cells through αHL pore proteins, further triggering αHL ex-
pression by arabinose induction in a positive feedback loop (Figure 1.5B). Qiao et
al. (2019) used two different predation strategies to couple different synthethic cellu-
lar compartments to create an intercellular feedback system [204]. The cell population
consists of proteinosomes containing glucose oxidase, pH-insensitive coacervate droplets
that are attached to the proteinosome, and pH-sensitive coacervate droplets containing
proteinase K. The reaction is initiated by adding glucose, which is oxidised by glu-
cose oxidase to produce H2O2 in the proteinosome. This lowers the local pH by the
decomposition of H2O2 to H+ ions in water and disassembles the pH-sensitive coacer-
vates, releasing proteinase K into solution. Proteinase K is then sequestered into the
pH-insensitive coacervate and degrades the proteinosome membrane. This results in
the dilution of glucose oxidase enzymes in a negative feedback (Figure 1.5C). These
examples demonstrate our growing capability to integrate feedback control into arti-
ficial multicellular systems. Further application of feedback loops could provide more
complex behaviour in bottom-up synthetic cell populations. In synthetic microbial com-
munities, bistability [266], oscillations [222], gene expression noise reduction [27], and
robust control [13] were achieved by engineering intercellular feedback loops.
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Figure 1.5: Intercellular feedback loops in synthetic cells. (A) Negative feedback in pro-
teinosome populations with DNA strand displacement (DSD) reactions. Upon addition of the
input strand, population 1 releases the activator strand for population 2, which responds by
releasing the inhibitor strand to deactivate population 1 [121]. (B) Positive feedback in DIBs
with CFES. Population 1 are sender cells containing arabinose inducer molecules that diffuse
through αHL pores to population 2. This induces αHL expression in a pBAD-αHL gene circuit
to promote further diffusion of arabinose [66]. (C) Negative feedack or response-retaliation in
a synthetic protocell community. Upon addition of glucose, glucose oxidase (GOx) encapsu-
lated in proteinosomes (Population 1) produces H2O2. Decomposition of H2O2 releases H+

ions that disassembles Population 2 coacervates due to the pH change and releases protease
enzymes into solution. The proteases are then sequestered by another coacervate population
that is attached to the proteinosomes (Population 3). Because of the proximity of the pro-
teases to the proteinosomes, the proteinosome membrane is digested and the GOx is released
and diluted in solution and deactivated [204].

1.4 Conclusions

So far, we have focused on recent developments in spatial organization, intercellular
communication and feedback systems as key features for the design and construction
of minimal synthetic multicellular systems. A key challenge in the field is the main-
tenance of out-of-equilibrium reactions. The integration of degradation and turnover
of reaction products [226] and improved energy and resource regeneration [234], into
communicating populations of synthetic cells will provide a route to produce sustained
out of equilibrium behaviours. Moreover, population heterogeneity, stochastic reactions
[190], dynamic compartments [245], and the integration of intracellular feedback loops
from gene circuits engineered in natural cells [153, 232] will increase the robustness and
diversity of behaviours within populations of minimal synthetic cells. In the later chap-
ters, we address two aspects by integrating population heterogeneity and intercellular
communication in a synthetic cell population. With the development of more complex
and integrated experimental systems, collaborations with theoreticians will provide a
route to design, build and test emergent properties in multicellular systems [98]. For
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example, dynamic models of synthetic multicellular systems can help predict which
ranges of parameters will result in emergent properties. In turn, bottom-up synthetic
multicellular systems can be more easily modified to achieve these parameter values as
compared to biological model systems. The exciting development of minimal synthetic
multicellular systems opens new avenues in synthetic biology, theory, biology and ma-
terials in the upcoming years. It can help develop new tools for complex multiscalar
assembly, make bio-inspired materials and devices, and provide a minimal multicellular
context to study intercellular signalling systems. In our specific case, we aim to build
a simplified platform to study the effect of cell-to-cell communication to population
variability.
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Chapter 2

Building blocks: cell-free expression
and liposomes

The experimental work in this thesis is based on two technologies: (1) cell-free
expression systems (CFES) and (2) liposome encapsulation. In this chapter, we present
a background on both topics that make up the building blocks of our synthetic cell
populations. CFES are in vitro reconstitutions of the transcription and translation
machinery found in cells. These in vitro systems are open and easily manipulated,
which have allowed researchers to investigate the inner workings of the cell without the
added complexity of cell growth and division. We use E. coli -based CFES that are either
derived from cell extracts or reconstituted from purified components. We next describe
the different methods used to encapsulate CFES into liposomes. Encapsulation of CFES
into lipid vesicles or liposomes compartmentalizes these reactions into single cell units.
Apart from closely resembling biological cells, the lipid bilayer membrane of liposomes
provides a semi-permeable boundary for small singalling molecules to diffuse through
and the potential for integration of functional membrane proteins or pore proteins.

2.1 In vitro reconstitution of gene expression

The systematic reconstitution of biological processes involve purifying and recom-
bining biological components or molecular species to recreate a function. One of the
earliest studies of reconstitution was conducted by Eduard Buchner (Tübingen, 1897),
who showed that fermentation could still occur in cell-free yeast extracts [30]. Al-
though conducted using crude cell extracts, Buchner strengthened the growing idea
that processes occurring in living organisms can be summarized into a collection of
biochemical reactions. Cell extracts provide an open system of the native cellular ma-
chinery, making it possible to conveniently investigate the underlying biochemistry in
the cell. Hoagland et al. (1957) used extracts of rat liver and mouse tumor cells with
microsomes to study peptide bond formation in protein synthesis [111]. Kirsch et al.
(1960) further demonstrated that the ribosomes dettached from the microsomes would
still function to incorporate amino acids into polypeptides [134]. Notably, the genetic
coding mechanism was discovered with the help of cell extract studies. Nirenberg and
Matthaei (1961) demonstrated how polyuridylic acid RNA templates are translated
into poly-L-phenylalanine peptides in Escherichia coli extracts - hinting at the trans-
lation of the UUU codon to phenylalanine in the genetic code [189]. In later years,
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DNA replication was reconstituted using X. laevis egg (1981) [81] and E. coli (1986)
[26] cell extracts. One of the main difficulties of using cell extracts was that it always
had to be prepared fresh for each experiment. To address this, Matthaei and Nirenberg
(1961) established a protocol to prepare E. coli cell extracts that are capable of amino
acid incorporation into protein even after storage for several months at -15◦C [170].
Extracts prepared were named S-30 and S-100, according to the supernatant fractions
obtained from crude E. coli cell extracts after centrifugation speeds of 30,000×g and
100,000×g, respectively. With this method, Nathans et al. (1962) showed the first fully
synthesized protein (coat protein of coliphage f2) from RNA templates using E. coli
cell-free extracts [183]. DeVries and Zubay (1967) next showed coupled transcription
and translation from a DNA template (encoding β-galactosidase) in cell-free extracts
[54]. The method for the S-30 extract was further modified and optimized by the lab-
oratory of Zubay to improve the expressed protein yield [299].

Today, the process and yield of cell-free E. coli extracts have improved dramatically.
Methods to produce cell-free E. coli extracts are simpler as compared to earlier pro-
tocols, making it more accessible and cost-effective for researchers. Cell-free reactions
from E. coli extracts can cost as little as 0.0105 USD/µL (for materials and reagents
only) and produce up to 0.75 mg/mL of protein [249]. Other more recent studies report
0.9 mg/ml [149], 2.3 mg/ml [37], and 4 mg/ml [87] of expressed protein in a cell-free
batch reaction. In comparison, the protocol reported by Zubay (1973) produced cell-
free extracts that expressed approximately 1 µg/mL of protein [299]. Extract protocols
have also been developed with other prokaryotic organisms such as Vibrio natriegens
[50, 287], Bacillus subtilis [128], Pseudomonas putida [279], Streptomyces venezuelae
[151], and Bacillus megaterium [180]. These are typically used as a fast prototyp-
ing platform for specific organisms of interest or to provide new functionalities not
native in E. coli extracts. For example, the marine bacterium V. natriegens has a re-
ported doubling time of 10 minutes [68] - the fastest growing bacterium known to date.
Due to this extremely fast growth rate and potentially enhanced protein translation
rates, it has gained interest for applications in recombinant protein expression [285].
Streptomyces-based cell-free expression systems are sought because of the capability of
Streptomyces to express natural product gene clusters and high GC-content genes [151].
Different extracts can even be pooled together to provide diverse regulatory mechanisms
within one reaction [292]. Cell-free expression systems are also produced from eukary-
otic organisms such as yeast [112], wheat germ [252], insect [72], HeLa [174], rabbit
reticulocyte [243], and plant cells [33, 34]. Compared to prokaryotic-based extracts,
eukaryotic-based extracts have a greater capacity to carry out posttranslational mod-
ifications necessary for many functional and complex proteins. For instance, cell-free
expression systems from Spodoptera frugiperda 21 (Sf21) insect and Tobacco Bright
Yellow 2 (BY-2) plant cell extracts are able to actively glycosylate expressed proteins
[257, 34]. Recent advances however have also been made using extracts from engineered
E. coli strains pre-enriched with glycosylation components such as oligosaccharyltrans-
ferases and lipid-linked oligosaccharides. Cell-free expression systems made from these
strains only require the addition of the DNA template encoding the protein-target
for glycosylation [119, 129]. Eukaryotic systems are also suspected to provide a more
favorable environment for the proper folding of multi-domain proteins as a result of
slower polypeptide elongation rates and cotranslational mechanism of chaperones. This
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was further supported by a systematic comparison between E. coli and wheat germ
cell-free expression of random multi-domain proteins [110]. The main disadvantage of
eukaryotic cell-free extracts are their protein expression yields and difficult preparation
methods relative to E. coli extracts. For instance, a commercial Sf21 insect cell extract
kit (TnT T7 Insect Cell Extract Protein Expression System, Promega) can produce
up to 75 µg/mL, while a Tobacco BY-2 cell-free expression system can produce up to
100 µg/mL of protein from a DNA template [34], which are significantly lower than E.
coli extracts. More recently however, a Tobacco BY-2 cell-free expression system was
commercialized and further optimized to produce up to 3 mg/mL of protein (ALiCE
Cell Free Protein Expression Kit, LenioBio).

Cell-free expression systems have undoubtedly contributed significantly to our fun-
damental understanding of gene expression. But in recent years, this technology has
also shown use in the applied fields of synthetic biology as well as in the biotechnology
industry. Owing to its fast and open platform, cell-free expression systems are used
for rapid prototyping and screening of gene regulatory parts, genetic circuits, and pro-
tein libraries. Unlike with whole cells, experimental setup of an established cell-free
system platform avoids the time-consuming step of DNA transformation and cell cul-
ture. Furthermore, these cell-free systems have been shown to accurately match in vivo
characteristics in E. coli [41]. Niederholtmeyer et al. (2015) used cell-free systems to
rapidly characterize genetic circuit oscillators and subsequently applied these in E. coli
cells [185]. Moore et al. (2018) also showed matching promoter and RBS characteris-
tics between in vivo and in vitro cell-free expression with B. megaterium [180]. Further
expanding its utility, larger biosynthetic pathways can also be tested and optimized in
cell-free systems. For instance, crude extracts enriched with enzymes can be mixed at
different ratios to help optimize biosynthetic pathways for n-butanol [122] or mevalonate
[63] production. Industrial use of cell-free reactions to produce molecules of interest di-
rectly is mainly limited by its ability to scale to larger volumes and its prohibitive cost.
Low value biomolecules such as subtilisin, will not be economically feasible, but high-
value pharmaceuticals, such as drug-conjugated antibodies, could be viable as cell-free
products [235]. Voloshin and Swartz (2008) determined that oxygen availability was
crucial for scale-up and demonstrated 1L cell-free reactions in a stirred tank reactor that
produced up to 435 µg/ml of IGF-1 [274]. Zawada et al. (2011) produced a cytokine
human granulocyteâmacrophage colony-stimulating factor (GM-CSF) at 700 µg/ml in
a 100L batch [295] - the largest cell-free batch reaction done. Cell-free systems have
also been developed into biosensors for medical, environmental, and forensic diagnostics
by coupling nucleic acid sensors or metabolic pathways with transcription-factors that
trigger a visual output. This has been shown to specifically detect target molecules
like RNA sequences from the Novovirus, Zika, and Ebola viruses using RNA toehold
switches [197, 198, 160] and other substances such as benzoic acid, hippuric acid, and co-
caine [275], or Hg(II) and gamma-hydroxybutyrate [99] using novel metabolic enzymes
or transcription factors. Lastly, one of the most attractive aspects of cell-free systems is
their potential to reduce distribution costs and decentralize production of biomolecules.
Cell-free expression systems are amenable to freeze-drying, which can remove the cold
chain transport and distribution requirements of many biomolecular products. Diag-
nostic kits based on cell-free systems can be freeze-dried onto paper for convenient
use in the field [197]. Conjugate vaccines, produced from freeze-dried E. coli -based
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cell-free systems called iVAX (in vitro conjugate vaccine expression), have been shown
effective against bacterial pathogens in mice [242]. Freeze-dried cell-free diagnostic kits
with a glucose output compatible with off-the-shelf glucose meters provide a practical
approach to low-cost diagnostics [11]. The field of personalized medicine could also
potentially use cell-free systems at point-of-care. Extracts from human blood-derived
leukocytes have been demonstrated to express nano luciferase (Nluc), Granulocyte-
colony stimulating factor (G-CSF), and Erythropoietin (EPO) [35]. Although many of
the applications of cell-free systems mentioned serve as proofs-of-principle to date, new
and innovative solutions are continuously being developed to improve yields, specificity,
and reproducibility.

2.1.1 E. coli extract-based cell-free expression

An E. coli extract-based CFES (also called TXTL for transcription-translation)
consists of three main components: the extract, reaction mix, and DNA template.
These components are mixed together and incubated at 16-37 ◦C for 1-24 hours for
gene expression and protein production. The E. coli cell extract or lysate contains all
the necessary enzymes for transcription and translation. The reaction mix supplies the
nucleotide and amino acid substrates, tRNAs, energy resources, cofactors, polyamines,
molecular crowders, and salts. The DNA template provides the gene of interest with the
regulatory sequence elements (e.g. promoter, ribosomal binding site, and terminator)
for gene expression. There are many variations of extract-based CFES preparation
protocols. Modern E. coli extract-based CFES can produce up to 4 mg/mL of protein
[87] as compared to early efforts that produced 1 µg/mL of protein [299]. The steady
improvements in protein yield of E. coli extract-based CFES are a result of many rounds
of rational and systematic optimization of methods and formulations. In this section,
we discuss the development and rational behind current protocols and describe the
purpose of specific ingredients in an E. coli extract-based CFES.

E. coli strains for cell extracts

The E. coli strain used for extract production is chosen depending on the require-
ments or application of the cell-free expression system. Many of the strains used for
CFES are also used for protein expression and purification as both typically aim for
high protein yields. For example, E. coli BL21 strains have been heavily used as host
strains for extracts due to their lack of lon [294] and ompT [100] proteases which pre-
vent protein degradation. Its derivative, E. coli BL21 (DE3) [248], is used to make
extracts that contain the T7 RNA polymerase for T7 RNAP-directed transcription
[149]. Having the T7 RNA polymerase (or any other enzyme) expressed in the ex-
tract itself avoids the need for extra purification steps and external addition into the
cell-free reaction mixture. E. coli strains have also been developed to provide stable
environments for linear DNA. For instance, E. coli NMR5 is modified by removing the
endA endonuclease I and recD exonuclease V genes [172]. Purified GamS protein, a
RecBCD inhibitor from lambda phage, can also be externally added into extract-based
CFES to protect linear DNA templates [250, 55]. These modifications allow the use
of linear DNA templates instead of plasmid DNA in CFES reactions to further reduce
experimental times in design-build-test cycles [250]. The 59.T7.Opt strain is genomi-
cally recoded to replace all native amber stop codons to ochre codons (UAA), release
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factor RF1-deficient, and genome integrated T7 RNA polymerase. This allows efficient
incorporation of non-cannonical amino acids (ncAAs) using the amber codon (UAG)
in extract-based CFES [166, 51]. E. coli strains can also be transformed with plas-
mids expressing enzymes needed in the extract. This provides a convenient method to
enrich extracts with specific enzymes and does not require genomic integration. For
example, E. coli BL21 Gold (DE3) harboring a pAD-LyseR plasmid was used to aid
in the extract production method. The pAD-LyseR plasmid constitutively and weakly
expresses the R endolysin that weakens the inner membrane of E. coli to facilitate cell
lysis by a simple freeze-thaw cycle [55]. In the same study, the pACYC-FLAG-dN6-His
plasmid was also transformed in the same strain to enrich extracts with an engineered
covalently-linked ClpX protease hexamer for increased degradation of ssr-A tagged pro-
teins [55]. BL21 Rosetta2 (DE3) strains harbor a plasmid expressing rare tRNA codons
for efficient translation of recombinant genes in vivo as well as in extracts [249, 236].
Different strains and plasmids can also be used to produce enriched extracts that can
perform post-translational modifications on expressed proteins such as disulfide bond
formation [61] and glycosylation [119, 242]. The SHuffle T7 Express lysY E. coli strain
(NEB, USA) constitutively expresses disulfide bond isomerase C (DsbC) to support
disulfide bond formation. Extracts from this strain have been demonstrated to more ef-
ficiently express luciferase (from Gaussia princeps) that contains five disulfide bonds as
compared to BL21 Star (DE3) extracts [61]. The CLM24 strain has a waaL knock-out,
which leads to an accumulation of O-polysaccharide antigens or lipid-linked oligosac-
charides (LLO) in the inner membrane [75]. CLM24 strains harboring plasmids that
express specific glycans and oligosaccharyltransferase (OST) can be used to produce
enriched extracts that can support N-linked glycosylation of cell-free expressed accep-
tor proteins [196, 119, 242]. This strategy can be further used to build full biosynthetic
pathways by mixing combinations of enriched extracts as demonstrated for mevalonate
synthesis in cell-free metabolic engineering [63].

Lysate preparation

The cell extract is produced by growing the selected E. coli strain, pelleting and
lysing the cells to collect the cytosol, and clarifying the lysate (Figure 2.1). A rich
media, typically 2xYTP (yeast extract, tryptone, phosphate buffer), is used to culture
cells at 37 ◦C for extract preparation. The phosphate buffer composed of potassium
phosphate mono and di-basic solutions are included to help maintain a stable pH and
lower phophatase activity in the lysate [131]. Cells are harvested during the mid-log
phase of growth for optimal cell-free expression. Harvesting either too early or too late
results in lower downstream cell-free protein expression. Despite ribosome levels be-
ing maximal at the early-log phase [73], early-log phase extracts result in lower CFES
activity as compared to mid-log phase extracts [133]. Modifications of the traditional
2xYTP media have been used to prolong the window of cell harvest for convenience, as
well as to increase cell density and consequently the amount of lysate produced. For
example, cell-free autoinduction (CFAI) media, prepared by increasing the buffering
capacity and providing 82 mM glycerol, 11.7 mM D-lactose, and 2.8 mM D-glucose as
additional carbon sources in 2xYTP media, results in equally active extracts harvested
from cultures at OD600 values of 2.5 and 10. This capacity to maintain cell-free expres-
sion activity from different growth stages was attributed to the continued activity of
the pentose phosphate pathway [150]. In a separate study, removal of glucose in the
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culture media also resulted in higher bacterial cell-free expression activity as compared
to extracts made from glucose-fed cultures [236].

Figure 2.1: Lysate preparation for CFES. The selected strain is grown in rich media, pelleted,
and lysed in S30A buffer. Cell lysis can be facilitated by bead-beating, sonication, high
pressure (e.g. french press or emulsifier), or freeze-thaw cycles with enzymatic digestion.
After lysis, the lysate supernatant is clarified by centrifugation at 30,000 xg, incubated at 37
◦C for 1-2 hours in a run-off reaction, and then dialyzed in S30B buffer.

After culturing, cells are pelleted by centrifugation, washed, and resuspended in
S30A buffer at pH 7.5. The S30A buffer is composed of either 10 mM tris-acetate,
14 mM magnesium acetate (MgOAc), 60 mM potassium acetate (KOAc), and 2 mM
dithiotheitol (DTT) [156] or 10 mM tris-acetate (TrisOAc), 14 mM magnesium glu-
tamate (MgGlu), 60 mM potassium glutamate (KGlu), and 2mM DTT [249]. The
tris-acetate buffer helps maintain a stable pH. Magnesium and potassium are essential
ions required for may nucleic acid-protein interactions and enzymatic activity [120]. Ac-
etate or glutamate counter-ions have been used empirically [87]. Glutamate salts more
closely match in vivo conditions as compared to acetate as glutamate is the principal
anion produced in osmotically stressed E. coli cells [209]. However, using acetate or
glutamate in CFES did not show any significant differences in protein expression [120].
DTT is provided to prevent the formation of disulfide bonds that may inactivate T7
RNA polymerase [220]. The cell pellet is resuspended in S30A buffer at a ratio of 1-2
mL lysis buffer for 1 g of pellet (wet weight) to be able to obtain a high concentra-
tion of protein in the extracts after lysis. Cell lysis can be facilitated by bead beating,
sonication, pressure, or enzymatic methods. Bead beating and sonication methods are
convenient for preparation of small batches of extract (up to 20 mL extract) [87]. How-
ever, both methods are prone to heating due to the prolonged exposure of the sample to
high frequency energy [249, 149]. In contrast, pressure methods using a French press or
continuous flow emulsifier avoids excessive sample heating because cells are subjected to
high pressure changes through a nozzle only 1-3 times for lysis [60]. Pressure methods
can be used for medium to large scale batches of extract (up to 200 mL extract) [87].
An alternative lysis method is by autolysis using an expressed R endolysin to facilitate
cell lysis by a freeze-thaw cycle [55].

After lysis, crude lysates are clarified by centrifugation, incubated at 37 ◦C for 1-
2 hours, and then dialyzed by a second S30B buffer. The centrifugation speed was
originally set at 30,000 ×g to ensure proper clarification and removal of cell debris,
aggregates, and precipitates [170]. However, more accessible protocols using lower cen-
trifugation speeds at 12,000 ×g have also been successfully implemented [60]. After
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clarification, the lysate is incubated at 37 ◦C for 1-2 hours. This step is called the run-
off reaction where ribosomes are allowed to run-off their native transcripts to free them
for cell-free translation. Additionally, short oligonucleotides sheared from the lysis step
are also further digested by endogenous exonucleases during the run-off reaction [249].
After the run-off reaction, the lysate is dialyzed in S30B buffer at 4 ◦C for 3 hours. The
S30B buffer is composed of 5 mM tris-acetate, 14 mM magnesium glutamate, 60 mM
potassium glutamate, and 1 mM DTT at pH 8.2 [249]. Including the post-processing
steps (run-off reaction and dialysis) improves transcriptional activity of native E. coli
promoters [236]. Centrifugation at 12,000 ×g between post-processing steps are also
done to further clarify the lysate. The final lysate is flash frozen in 50-100 µL aliquots
using liquid nitrogen and stored at -80 ◦C.

Reaction buffer

The reaction buffer supplies the CFE reaction with the necessary substrates and
cofactors for RNA and protein synthesis, a favorable environment for enzymatic re-
actions, and an energy regeneration system. This is prepared as a separate solution
and combined with the lysate and DNA template in the final CFES reaction. A
standard reaction buffer is composed of nucleotides (ATP, UTP, CTP, GTP), the 20
amino acids, transfer RNA (tRNA), coenzyme A (CoA), β-nicotinamide adenine din-
ucleotide (NAD), folinic acid, spermidine, and an energy regeneration substrate such
as 2-phosphoenolpyruvate (PEP) (Figure 2.2B). These components are dissolved in a
solution of MgGlu, KGlu, and HEPES buffer at a pH of 7-7.5. The concentrations of
the lysate, MgGlu, and KGlu are titrated for each batch of lysate produced to optimize
protein expression yield. The final CFES reaction mix should have approximately 8.9-
9.9 mg/mL of total protein from the lysate, 0-10 mM MgGlu, and 20-140 mM KGlu
[249]. A standard final CFE reaction mix is described in Table 2.1. Additional cofactors
can also be included to improve transcriptional regulation and gene expression yield.
For example, addition of cyclic adenosine monophosphate (cAMP) improves gene ex-
pression and repression efficiency in lac regulated genes in CFES [40]. cAMP binds to
an allosteric catabolite repressor protein (CRP) which interacts with regulatory DNA
sequences in the lac promoter [201, 211]. Oxalate inhibits phosphoenolpyruvate syn-
thetase that depletes the supply of ATP [131]. The E. coli cytosol is macromolecularly
crowded at concentrations exceeding 200 mg/mL of protein and biopolymers (20-fold
higher than a standard CFES solution) [209]. To mimic the macromolecular crowding
environment in the cytosol, polyethylene glycol (PEG 8000, molecular weight (MW):
7000-9000 g/mol) or Ficoll 70 (MW: 70000 g/mol) can be included in CFE reactions at
2% v/v or 0-100 mg/mL, respectively. The addition of PEG was suggested to stabilize
mRNA transcripts in the extract [120].

Other high-energy molecules such as creatine phosphate (CP) or acetyl phosphate
(AcP) have also been used for energy regeneration. Similar to PEP, these molecules can
phosphorylate ADP to ATP through kinase-catalyzed reactions (pyruvate kinase (Pyk)
for PEP, creatine kinase (Crk) for CP, acetyl kinase (Ack) fpr AcP). Alternative energy
regeneration systems that produce ATP through metabolic pathways have also been
demonstrated to sustain CFE reactions. Kim and Swartz (2001) showed that pyruvate
can be metabolized in extract-based CFES by endogenous enzymes with the addition of
NAD cofactor to produce AcP and subsequently ATP [132] (Figure 2.2A). Conveniently,
PEP is converted to pyruvate in the traditional CFE energy regeneration system and
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Table 2.1: Components of an E. coli extract-based CFES reaction mix.

Component Concentration Purpose
Lysate 8.9-9.9 mg/mL Crude extract from E. coli that pro-

vides enzymes (e.g. RNAP, ribosomes)
and co-factors needed for transcription
and translation.

Nucleotides 0.85-1.5 mM ATP, CTP, GTP, UTP. Transcription
building blocks for RNA synthesis.

Amino acids 1.5-5 mM 20 amino acids. Translation building
blocks for protein synthesis.

tRNA 0.17-0.2 mg/mL Guides amino acids to the ribosome
complex based on the mRNA template
triplet codon. Although tRNA is al-
ready present in the lysate, it is supple-
mented in the final CFE reaction mix.

CoA 0.26-0.27 mM Coenzyme A. Cofactor for energy re-
generation. CoA and pyruvate are con-
densed to make acetyl-CoA in the pres-
ence of NAD and then acetylphosphate.
Acetylphosphate regenerates ATP from
ADP [132].

NAD 0.33-0.40 mM β-Nicotinamide adenine dinucleotide.
See above.

Folinic acid 0.068-0.1 mM Formyl donor substrate for N-
formylmethionine (fMet) required
for translation initiation.

Spermidine 1-1.5 mM Ubiquitous molecule in the cell involved
in many cellular processes including
stimulating assembly of the 30S ribo-
somal subunit [69, 117]. Binds with
the negatively charged backbone of nu-
cleic acids and ribosomes. Improves ef-
ficiency and fidelity of in vitro gene ex-
pression [102].

PEP 30-50 mM Phosphoenolpyruvate. Secondary en-
ergy source. Provides a high energy
phosphate donor group that is trans-
ferred to ADP by pyruvate kinase to
generate ATP [132].

DNA plasmid 1-20 nM DNA template for transcription.

addition of NAD facilitates the secondary utilization of pyruvate [132]. Glycolytic in-
termediates such as glucose-6-phosphate (G6P) can also be metabolized to pyruvate via
glycolysis to generate ATP. The conversion of one G6P molecule to pyruvate through
the glycolysis pathway produces three ATP molecules as compared to only one ATP
per PEP converted to pyruvate. This results in a greater protein expression yield with
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G6P compared to PEP as an energy source. However, it was observed that addition of
oxalate in G6P-powered CFE reactions reduced ATP concentrations [132]. Metabolism
of maltodextrin or maltose are also used as low-cost ATP regeneration strategies that
have the added benefit of consuming accumulated inorganic phosphate. Maltodextrin
and maltose are metabolized into glucose or glucose-1-phosphate (G1P), which then
enter the glycolysis pathway to produce ATP [280, 37] (Figure 2.2C).

Figure 2.2: Energy regeneration reactions for CFES. (A) Pyruvate metabolism to produce
acetyl phosphate to regenerate ATP. Image from [132]. Reproduced with permission. ©
2001 John Wiley & Sons, Inc. (B) Phosphoenolpyruvate regenerates ATP from ADP using
pyruvate kinase (Pyk). (C) Maltose-based metabolism for ATP regeneration also results in
inorganic phosphate utilization. Image from [37]. Reproduced with permission. © 2014
Elsevier Masson SAS. All rights reserved.

31



2.1.2 PURE cell-free expression system

A second approach to cell-free expression is by using fully purified elements and re-
constituting the entire gene expression system from the bottom-up. Unlike the extract-
based CFES, this approach provides a completely defined reaction composition that is
advantageous for direct testing of individual components. In addition, a purified and re-
constituted CFES will lack nucleases and proteases that are normally present in an S30
extract, making it an ideal starting platform for bottom-up gene expression systems.
The first attempt of a fully reconstituted CFES was reported by the group of Weissbach
(1977). Although their purified system did not fully support protein synthesis, they
identified three partially purified lysate fractions that restored protein synthesis when
added to their purified system. In total, their reconstituted system was composed of of
33 purified E. coli factors, ribosomes, Ehrlich ascite extracts for aminoacyl-tRNA syn-
thetases, and the three E. coli lysate fractions [138]. Several groups then used different
methods to circumvent limitations in the purification of aminoacyl-tRNA synthetases
by using pre-charged aminoacyl tRNAs [83] or partially purified aminoacyl-tRNA syn-
thetases [200]. Improved techniques in protein purification led to the PURE (protein
synthesis using recombinant elements) system developed by the group of Ueda in 2001.
The PURE system is composed of 32 His-tagged purified proteins from E. coli in ad-
dition to tRNAs, NTPs, amino acids, and other components for energy regeneration
(Table 2.2) [227]. Unlike the extract-based CFES, the PURE system is a completely
defined mix with each ingredient individually added. This makes it possible to test all
components of the CFES one at a time. For instance, Matsuura et al. (2009) exhaus-
tively altered the concentrations of each of the 69 components of the PURE system
to study interactions between components and their effects on protein yield. Using
a Bahadur expansion analysis, they showed that only one to two-component epistatic
interactions resulted in significant differences in protein translation, while more than
two-component interactions were negligible [168]. Doerr et al. (2019) subjected the
PURE CFES to a wide range of experimental conditions and targeted perturbations of
ATP-dependent RNA helicase (hrpA), IF1, IF2, peptidyl-tRNA-hydrolase (PTH), and
a mutated T7 RNAP to develop a mechanistic kinetic model that can globally fit the
experimental results [59]. While providing a minimal CFES that is well-defined, the
PURE system is costly and labor-intensive to produce. Fortunately, the preparation
of the PURE system can be simplified by purifying several protein-producing E. coli
strains in a single co-culture and purification step (OnePot PURE system) [145]. This
method significantly reduces the labor and cost of the PURE CFES system.

Despite being a reduced or minimal system for gene expression, the PURE and
extract-based CFES are still extremely complex in terms of its composition and bio-
chemical reactions. To illustrate, a large-scale kinetic model describing the PURE CFES
used a total of 241 species and 968 reactions [169]. The extract-based CFES is even
more complex because of the many unidentified proteins and metabolites present in the
lysate [86]. Further characterizing CFES reactions will be necessary to identify resource
limitations and help develop accurate kinetic models. Spirin et al. (1988) first pointed
out that the exhaustion of specific components can limit gene expression in CFES. By
dialyzing a CFE reaction in a feeding buffer containing additional ATP, GTP, amino
acids, and PEP, gene expression was prolonged to up to 40 hours [239]. Targeted
methods, such as luciferase assays for ATP and colorimetric assays for inorganic phos-
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Table 2.2: Components of the PURE system [227].

Translation factors Other enzymes
Initiation factor 1 (IF1) Methionyl-tRNA transformylase
Initiation factor 2 (IF2) Ribosomes
Initiation factor 3 (IF3) Creatine kinase
Elongation factor G (EF-G) Myokinase
Elongation factor Tu (EF-Tu) Nucleoside diphosphate kinase
Elongation factor Ts (EF-Ts) Pyrophosphatase
Release factor 1 (RF1) T7 RNA polymerase
Release factor 3 (RF3)
Ribosome release factor (RRF) Energy sources

ATP
Aminoacyl-tRNA synthetases GTP
AlaRS CTP
ArgRS UTP
AsnRS Creatine phosphate
AspRS
CysRS Buffers
GlnRS HEPES
GluRS KOH
GlyRS Potassium glutamate
HisRS Magnesium glutamate
IleRS Spermidine
LeuRS DTT
LysRS
MetRS Other components
PheRS 20 amino acids
ProRS 10-formyl-5,6,7,8-tetrahydrofolic acid
SerRS tRNAs
ThrRS
TrpRS Template
TyrRS DNA/mRNA
ValRS

phates and NAD+/NADH, were later used to measure specific changes in composition
over time in CFE reactions [130, 131, 132, 63]. High-performance liquid chromatog-
raphy (HPLC) enabled the measurement of amino acids and several metabolites such
as glucose, acetate, lactate, pyruvate, succinate, oxaloacetate, phosphate, and ethanol
[131, 120, 63]. More recently, liquid chromatography–mass spectrometry (LC-MS) and
gas chromatography–mass spectrometry (GC-MS) methods were used for proteomic
and metabolomic characterization of extract-based CFES. These studies revealed pro-
teomic and metabolomic changes in lysates prepared using different methods [79, 173],
detected the completeness of translated proteins and post-translational modifications
[116], and identified proteins required for specific pathways and heterologous functions
[86]. Metabolic and proteomic profiling offer a wealth of information - identifying up to
800-1839 proteins [86, 79, 116] and 260 analytes [173] in CFES. These comprehensive
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datasets can be used to further standardize CFES and provide insight into mechanisms
and interactions of gene expression reactions coupled with metabolic pathways.

2.2 Compartmentalizing CFES with liposomes

Building functional synthetic cells from the bottom-up requires robust methods of
compartment assembly. Thanks to the wide application and potential use of lipo-
somes in membrane science, drug delivery, and artificial cells, many different methods
of liposome formation have been developed. Each of these methods provide different
advantages and disadvantages in terms of ease-of-use, compatibility with the encapsu-
lated CFES reaction, and properties of liposomes produced. In this section, we focus
on some bulk and microfluidic methods for unilamellar liposome production.

Phospholipids, in particular phosphatidylcholines (PC), make up the majority of
biological cell membranes and can form lipid bilayers in aqueous media due to their
amphiphilic nature [6]. The molecular structure of the phospholipids greatly affect the
properties of the lipid bilayer. For instance, headgroup size and charge and chain length
and saturation all influence the packing density, fluidity, bending stiffness, and sponta-
neous curvature of the lipid bilayer in liposomes [175]. In particular, the molecular shape
of the phospholipid can favor different arrangements or packing behavior. Phosphatidyl-
cholines provide a cylindrical shape that favorably organizes into lamellar or lipid bilayer
structures (Figure 2.3). Generating liposomes in the laboratory using phosphatidyl-
cholines such as L-α-phosphatidylcholine (Egg PC), 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) have
been well-established [210, 12, 199]. However, there are also a variety of other phos-
pholipid types and synthetic molecules composed of amphiphilic block copolymers that
can be used to create liposomes or polymersomes, respectively [58].

In biological cells, membrane composition can affect the physical properties and
functions of the membrane, such as for recruitment of membrane proteins [144] or
signalling in regulatory pathways through membrane sensor proteins [17]. Similarly,
additives can also be included in the lipid bilayer of liposomes to modulate physical
properties and function. For example, cholesterol can decrease membrane fluidity at
high temperatures by restricting phospholipid movement, but increase fluidity at low
temperatures by interfering with the tight packing of the phospholipids [175]. In li-
posome drug delivery systems, up to 2% Polyethylene glycol (PEG)-lipid conjugates
or PEGlylated lipids can be used in the phospholipid composition to increase stabil-
ity of liposomes. The PEG group sterically prevents interactions of the lipid bilayer
with the environment, prolonging its circulation half-life in the environment [135, 181].
To form and maintain stable vesicles, it is critical to consider environmental factors
such as pH, temperature, osmolarity, and external mechanical forces. The osmolarity
of the inner and outer solutions of liposomes should be balanced to prevent swelling
and bursting. Osmolarity or osmotic concentration is the total solute concentration of
a solution and provides a measure of the osmotic pressure that can be exerted through
a semi-permeable membrane between two solutions. In practice, osmolarity, with units
of Osmomoles/L, is determined indirectly by measuring the freezing point depression
or vapor point depression against a standard set of known solutions. However, these
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colligative properties differ for different solutes [251]. As a result, osmolarity measure-
ments of complex mixtures such as cell extracts can have deviations from its actual
value.

Figure 2.3: Phospholipid and liposome classification. (A) The organization of phospholipids
depend on the chemical structure and molecular shape of the phospholipid. Phosphatidyl-
cholines (PC) have a cylindrical molecular shape that results in a lamellar or bilayer orga-
nization. Lysophosphatidylcholine (LC) and phosphatidylethanolamine (PE) lipids have a
cone-shape that results in micelle organization. (B) Unilamellar liposomes classified by size:
small unilamellar vesicles (SUV) have diameters less than 100 nm, large unilamellar vesi-
cles (LUV) with diameters between 100-1000 nm, and giant unilamellar vesicles (GUV) with
diameters larger than 1000 nm. Illustrations not drawn to scale.

2.2.1 Bulk methods for GUV production

Here we describe several bulk methods of GUV production. These methods typically
result in polydisperse liposomes and have the advantage of being convenient to produce
without much specialized equipment.

Lipid film swelling

Liposomes were first synthesized in the laboratory in the late 1960s with a lipid film
swelling or gentle hydration method [45, 210]. To produce liposomes, phospholipids
dissolved in chloroform are deposited on a glass surface and dried. The dry lipid film
is hydrated with water, which causes the lipid film to swell and form liposomes that
detach from the surface with gentle shaking or flow (Figure 2.4A). Liposomes produced
using this method are polydisperse and multilamellar, depending on the amount of
lipids deposited on the surface. While the method is relatively easy, the yield is low
because the lipids need to be correctly oriented to form the bilayer. In addition, high
ionic strength solutions inhibit liposome formation due to electrostatic effects. By
using negatively charged lipids or neutral lipids in a solution with divalent cations,
repulsive forces can stabilize unilamellar liposomes and oppose adhesive forces between
membranes [4, 5]. For instance, by using 10% negatively charged lipids, Akashi et al.
(1996) prepared GUVs with up to 100 mM ionic salt solutions [4]. Depositing the
lipid film on glass beads can increase liposome yield by increasing the surface area for
liposome formation [56]. Additionally, doping the lipids with sugar helps separate the
lipid films during swelling as water permeates the lipid layers due to osmotic pressure
[264]. A gel-assisted hydration method was also developed that improved the yield
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and robustness of liposome formation. This involved drying the lipid film on top of
an agarose gel or polyvinyl alcohol (PVA) layer which partially dissolves and swells to
promote liposome formation [113, 284].

Electroformation

In electroformation, lipid films are deposited on either platinum or indium titanium
oxide (ITO) electrodes, immersed in water, and then subjected to a direct or alternating
(DC or AC) electric current (Figure 2.4B). The electric current causes fluctuations that
facilitate bilayer separation and bending for fast liposome formation [12]. Relatively
uniform sized liposomes can be produced by depositing a micropatterned lipid film,
which sets a growth limit within each patch [258]. Initially, electroformation was limited
to low salt conditions and lipid films deposited from organic solvents. Potts et al. (2008)
modified the protocol by creating lipid film deposits from aqueous proteoliposomes
lipid solutions. The proteoliposomes are SUVs or LUVs generated using sonication,
extrusion, or reverse phase evaporation techniques and provides smooth and properly
oriented membranes on the electrodes that more easily form unilamellar vesicles [203].
Additionally, by optimizing both electroformation parameters and osmotic pressure for
swelling, GUVs can be efficiently produced at physiologically relevant conditions that
are crucial for native membrane reconstitution and membrane protein studies. This
combined electroswelling methodology has been successfully used to integrate functional
sarcoplasmic reticulum Ca2-ATPase and the H+ pump bacteriorhodopsin [90], as well
as native membranes and lipid mixtures into liposomes [179].

Inverse emulsion phase transfer

The inverse emulsion phase transfer method, established by Pautot et al. (2003),
uses water-in-oil droplet templates to form unilamellar liposomes [199]. First, a water-
in-oil emulsion is made from the desired inner solution and lipid-oil mixture. Due to
their amphiphatic nature, the lipids assemble to form a monolayer around each water
droplet interface. The emulsion is then gently poured over a layered solution of the
aqueous outer solution (bottom) and lipid-oil mix (top). The inner solution is made
denser than the oil and outer solution so that the droplets sink by centrifugation and
pass through a second lipid monolayer interface into the outer solution to form the lipo-
some (Figure 2.4C). This method can be used to make either symmetric or asymmetric
liposomes, depending on the lipid oil mix used to make the emulsion and layered solu-
tion. The insertion orientation of membrane proteins can also be controlled by adding
the protein in the inner or outer solution [288]. A prerequisite for the inverse emulsion
phase transfer method is the density difference of the inner and outer solutions. This
is done using sugar-based density gradients (e.g. sucrose and glucose in the inner and
outer solution, respectively) to obtain a density difference while maintaining osmotic
balance. The relative speed in producing liposomes and the capability to have different
inner and outer solutions without extra washing steps make this method particularly
suitable for encapsulating CFES [192, 190, 38]. Moga et al. (2019) reported a thor-
ough study of the inverse emulsion phase transfer method [177]. Here, the different
parameters such as the sugar density gradient, centrifugation speed and time, volume
ratios of the phases, and incubation time for the lipid monolayer to form were system-
atically optimized to provide guidelines on efficient liposome formation by the inverse
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emulsion phase transfer method. The main drawback of this method is the presence of
trace amounts of oil in the lipid bilayer, which is why most biophysical studies on lipid
membranes opt to use oil-free liposome formation methods.

Figure 2.4: Bulk methods for GUV production.(A) When water penetrates the space between
dried lipid bilayers, they can dettach and form unilamellar or multilamellar liposomes. Im-
age created with BioRender.com under a paid subscription (Max Planck Gesellschaft). (B)
Electroformation of liposomes from lipid films on ITO electrodes immersed in buffer. Two
ITO electrodes (one coated with dried lipid films) facing each other in a chamber is filler with
buffer. An AC electric field is applied and GUVs form at the ITO surface with dried lipids.
Image from [244] licensed under CC BY 4.0. (C) Inverse emulsion phase transfer method.
The top layer is an emulsion with water-in-oil droplet templates. The oil phase contains phos-
pholipids that arrange in the water-oil interfaces as monolayers. The bilayer is formed as the
droplets are driven down into the bottom aqueous layer. Image reproduced with permission
from [199]. © 2003 American Chemical Society. All rights reserved.

One-pot GUV assembly

Recently, Göpfrich et al. (2019) developed a one-pot method to produce GUVs [97].
Similar to the inverse emulsion phase transfer method, it uses water-in-oil emulsion
droplet templates. However, instead of having lipids dissolved in the oil phase, SUVs
and proteoliposomes in the aqueous phase fuse to the droplet interface to form the GUV.
The oil phase contains PEG-based surfactants to stabilize the GUVs. Addition of a
droplet-destabilizing agent (perfluoro-1-octanol, PFO) displaces the PEG-based surfac-
tants and causes the GUVs to fuse into the oil-water interface and be released into the
aqueous phase. Unilamellarity of the resulting GUVs were confirmed by fluorescence
recovery after photobleaching (FRAP) measurements of the membrane to determine
the fluidity of the lipids, CryoTEM imaging of the membrane, and membrane integra-
tion of the α-hemolysin pore protein. This method was shown to be robust with a
variety of charged or neutral lipids, as well different buffer solutions and complex media
(Dulbecco’s Modified Eagle Medium, DMEM).
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2.2.2 Microfluidic methods for GUV production

Microfluidic methods of GUV production addresses the issues of reproducibility and
encapsulation efficiency in bulk methods. Using controlled flow rates at low Reynolds
numbers in microfluidic systems, uniform-sized water-in-oil emulsion droplets are pro-
duced and transferred into the aqueous phase with high efficiency. Microfluidic ap-
proaches require more equipment (pressure/syringe pumps, glass capillary or poly-
dimethylsiloxane (PDMS) microfluidic chips, microscope with high-speed camera) and
effort to prepare. Fortunately, there is a growing community in the field of microfluidics
and efforts to make the technology more open and accessible [136], as well as commer-
cially available. Notably, all microfluidic methods are oil-based methods. However,
biologically compatible oils and dewetting techniques can be used to reduce leftover oil.

Droplet emulsion transfer

The droplet emulsion transfer method creates water-in-oil droplets in a flow-focusing
microfluidic device, and then transfers these into an aqueous solution to form the li-
posomes. This was first demonstrated by Tan et al. (2006), where the oil phase is
composed of oleic acid with phospholipids to stabilize the droplets and form a lipid
monolayer at the oil-water interface. Afterwards, the droplets are collected and in-
jected into a 10-30% ethanol and water solution one droplet at a time. The oleic acid
dissolves in ethanol, leaving the lipids to assemble into a bilayer to form the lipo-
some. This method was demonstrated to encapsulate solutions containing polystyrene
beads, GFP protein, yeast cells, and HeLa and MCF7 breast cancer cells in DMEM
media with cell viability of more than two hours [253]. However, it was also observed
that the carboxylic group of oleic acid can change the pH of the inner solution. As a
result, encapsulated GFP fluorescence was quenched in the water-in-oil droplets and
re-adjusting the pH to 10 allowed fluorescence of the GFP again. Asymmetric lipid
bilayers can be made in a similar approach by transferring the droplets into a layered
solution of aqueous outer solution and a different lipid solution from the water-in-oil
droplets [115]. Later, a fully integrated microfluidic device was developed to handle the
phase transfer on-chip in a second junction where the water-in-oil droplets are deflected
into the aqueous phase flow [167] (Figure 2.5). Unlike the droplet emulsion transfer
method, this is a direct translation of the bulk inverse emulsion phase transfer because
the lipid bilayer is formed as the droplet crosses the oil-water interface. The method
was shown to produce liposomes with an encapsulation efficiency of 83% using dode-
cane or hexadecane with DOPC lipids for the lipid-oil phase. The liposomes retained
dextran (10 kDa) and fluorescein dye (332 Da), while addition of α-hemolysin resulted
in permeability of the fluoroscein dye. A unique droplet emulsion transfer device was
also recently developed based on a continuous droplet interface crossing encapsulation
(cDICE) [267]. The cDICE device is composed of a lipid-oil and outer aqueous solution
interface maintained by centrifugal force. Water-in-oil droplets are generated from an
aqueous capillary injection into the lipid oil phase. These droplets move through the
oil-water interface by centrifugation to form liposomes. This method produced lipo-
somes with an average diameter of 12 µm with a coefficient of variation of 47%, which
results from polydisperse droplets made from the capillary jet.
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Figure 2.5: On-chip phase transfer method. Water-in-oil droplets are generated in the first
junction and then deflected by a post (black triangle) into the aqueous layer to form the
GUVs. Image reproduced with permission from [167]. © 2011 American Chemical Society.

Double-emulsion microfluidics

Double-emulsion microfluidic devices were first developed by Shum et al. (2008)
[231]. This was composed of glass capillaries that focus inner aqueous and middle lipid-
oil solutions that break up at the collection tube to form double-emulsions (Figure 2.6A).
The phospholipids form monolayers at the interfaces to stabilize the double-emulsion
droplets. The oil layer is then removed of the toluene and chloroform solvent by slow
evaporation or dewetting. A PDMS-based microfluidic device was later designed to
produce double-emulsion templates for liposome and polymersome production [202].
This design is composed of two flow-focusing junctions in series that encapsulates the
inner aqueous solution into water-in-oil droplets and then again into the outer aqueous
solution to make water-in-oil-in-water double emulsions. To avoid the double emulsions
wetting onto the PDMS, the outlet channels are pretreated with a hydrophilic coacer-
vate coating composed of poly(diallyldimethylammonium chloride) (PDADMAC) and
poly(sodium 4-styrenesulfonate) (PSS). Additional components, such as Synperonic
F18, glycerol, and PDADMAC, were included in the outer solution to stabilize the
double emulsions during liposome production. Excess oleic acid used as the oil phase
solvent is then removed by ethanol extraction. At the same time, a microfluidic design
was also developed for octanol-assisted liposome assembly (OLA). This uses a six-way
PDMS junction to form the double emulsions. The lipid-oil phase uses 1-octanol as
the solvent, which spontaneously buds of the double emulsion to minimize interfacial
membrane tension [52] (Figure 2.6B). A chacterization study of OLA-generated lipo-
somes validated that lateral diffusion of lipids in the membrane measured by FRAP
are not significantly different from electroformed liposomes [216]. Multicellular lipo-
somes of up to thirty compartments have also been made by encapsulating multiple
water droplets in the double emulsion and then removing the remaining octanol using
a glass capillary device [48] (Figure 2.6C). Further improvements were made in the
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PDMS double-emulsion design in [202] by including serpentine modules in the input
and output channels to help stabilize flows, using octanol as the oil phase solvent, and
constricting the output double-emulsions or liposomes at each turn of the serpentine
module to pinch off excess oil in the lipid bilayers [289]. The stabilized flows allowed
the production of liposomes without the need for additional surfactants that can affect
membrane properties.

Figure 2.6: Double-emulsion microfluidics for liposome production. (A) Glass capillary de-
vice for generating double emulsion droplets. Image from [231]. © 2008 American Chemical
Society. (B) Multicompartment liposomes are made by encapsulating more than one water-
in-oil droplet in the double emulsion. Image reproduced with permission from [48]. © 2016
American Chemical Society. (C) Octanol-assisted liposome assembly from double emulsion
microfluidics. Double emulsions are generated in a six-way junction PDMS chip. The interfa-
cial tension of octanol and water is higher than the lipid membrane. This results in an octanol
pocket forming on the liposome that spontaneously buds off. Image from [52] licensed under
CC BY 4.0.

Phase-transfered 3D printed GUVs

Most microfluidic methods described have been focused on high-throughput pro-
duction of monodisperse GUVs. However, building multicellular systems also require
control in the 3D structure and arrangement of the single cell units. Recently, Alcineso
et al. (2021) developed a method where 3D printed water droplets stabilized in an
oil-lipid phase or droplet-bilayer interface (DIBs) [273, 29, 9] (previously described in
Section 1.2) are dewetted into an aqueous phase to form defined multicellular liposome
structures [8] (Figure 2.7). Unlike the multicompartment double emulsion method [48],
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3D printing allows precise control of the geometry of the multicellular structure, as
well as the organization of sub-populations. Here, dewetting of the printed DIBs were
facilitated by a two-step phase transfer process. First, lipids were exchanged from 1,2-
diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) lipids used for droplet printing to
POPC. This helps lower the interfacial tension in the lipid membrane and quickly re-
move excess undecane:silicone oil (36:65% v/v) phase used during the aqueous transfer
in the second step. These synthetic tissue structures were then shown to successfully in-
tegrate α-hemolysin pore proteins in their lipid bilayers to sense and release molecules,
encapsulate coacervates, and express protein from CFES.

Figure 2.7: 3D droplet printed multivesicular structures are printed as droplets with lipid
bilayer interfaces and dewetted into an aqueous phase to produce large multicompartment
liposome structures. Image from [8]. © 2021 Wiley-VCH GmbH.
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Chapter 3

Gene expression dynamics in
synthetic cell populations∗

3.1 Background

Due to its resemblance to biological cells, CFES encapsulated in liposomes have been
established as one of the most popular and utilized type of synthetic cells. As single cell
units, CFES in liposomes have been used to make synthetic cells that can implement
transcription and translation [192], gene expression cascades [118], genetic circuits for
intercellular communication [1], and CFES coupled with other metabolic processes like
ATP production [21] and DNA replication [270]. Despite these successes, compartmen-
talized cell-free transcription and translation dynamics has not yet been simultaneously
quantified and modelled. While CFES are dramatically reduced in complexity compared
to biological cells, they still contain as many as thirty-seven enzymes and thirty-two
small molecule compounds or substrates in PURE systems [228, 145] and even more
for crude extract-based CFES. This makes it challenging to collect sufficient data to
test existing CFES models or to develop tractable models that rely on the knowledge
of precise chemical species as a function of time. Fortunately, there is an increasing
effort towards proteomic and metabolic analysis that can provide more detailed and
quantitative molecular information to profile CFES reactions [120, 86, 32, 173]. Al-
ternatively, coarse-grained CFES models circumvent the need to measure all molecular
species by focusing on the conversions of only a few species such as DNA, RNA, protein,
RNA polymerase, and ribosomes. Several models have already been demonstrated to
faithfully capture quantified cell-free gene expression dynamics in bulk solutions. For
instance, coarse-grained models using first order and Michaelis-Menten kinetics have de-
scribed cell-free transcription and translation dynamics [124, 233, 247] and extended to
include concentrations of RNA polymerase and ribosomes [103, 165]. Dynamic models
that include the initiation, elongation, and termination steps of translation [188, 59] or
central carbon metabolism [114] have been used to identify bottlenecks in transcription
and translation which can be experimentally relieved to improve protein productivity in

∗This chapter is based on the article: Gonzales DT, Yandrapalli N, Robinson T, Zechner C, Tang
TYD. Cell-free gene expression dynamics in synthetic cell populations. ACS Synthetic Biol-
ogy, 11(1):205-215, 2022. [95]

42



CFES. These examples demonstrate how quantitative coarse-grained models can pro-
vide a better understanding of the CFES building blocks and will be crucial for further
engineering more complex synthetic multicellular systems.

Many studies have shown that compartmentalization significantly affects the en-
capsulated CFES. For example, CFES encapsulated in small cell-sized liposomes can
result in stochastic gene expression [190] and rare phenotypes, such as high gene ex-
pression not observed in bulk reactions [25]. The outer solution of the semi-permeable
liposome compartments can also act as a source or sink of material. For instance, by
providing a feeding buffer in the outer solution, the gene expression yield and activity
of liposome encapsulated CFES can be increased and prolonged [192]. For this reason,
it is also important to be able to quantify compartmentalized CFES reactions to test
current CFES models. This will provide insights into the physical effects of encapsula-
tion on cell-free gene expression, such as trans-membrane diffusion and surface effects,
that will be crucial in building and understanding multicellular systems. Bulk methods
of liposome production result in synthetic cells with large variations in cell size and
gene expression profiles [193, 25, 213, 38]. Using bulk methods can be advantageous
due to their accessibility and opportunity in exploring a large random space in terms
of encapsulation and size [25] without specialised equipment. However, it can also be
advantageous to generate uniform populations of synthetic cells for reproducibility and
predictability. Microfluidic and droplet printing techniques can generate synthetic cell
populations with greater throughput, control, and uniformity compared to standard
bulk methods [265, 159]. This has already been shown to be effective in generating
monodisperse synthetic cells to study the effect of macromolecular crowding on gene
expression without the use of synthetic crowding agents [272] and to qualitatively mon-
itor Spinach2 RNA aptamer transcription dynamics [49]. This is especially important
for quantitative approaches as it enables the generation of statistically robust data that
is amenable to accurate modelling.

Methodologies to monitor mRNA and protein dynamics in cell-free systems have
been demonstrated by utilizing fluorescence resonance energy transfer (FRET) donor-
acceptor pairs for mRNA [247, 186], fluorescent proteins such as GFP and YFP [25,
213], and fluorescent Spinach RNA aptamers simultaneously with YFP [187, 269] or
mCherry [193]. However, expressed mRNA and protein levels in encapsulated CFES
have only been measured as either relative fluorescence units within the synthetic cells
or quantified concentrations for mRNA or protein levels separately. To the best of our
knowledge, an absolute and simultaneous quantification of both transcription and trans-
lation dynamics within liposome synthetic cell populations has not yet been presented.
In this chapter, we (i) applied methods of mRNA and protein monitoring in CFES
reactions to quantify and test models of cell-free gene expression dynamics and (ii) en-
capsulated these reactions into liposomes using double-emulsion microfluidics [289] to
generate a monodisperse population of synthetic cells. These address both challenges of
monodispersity and quantification of gene expression dynamics in synthetic cell popu-
lations. mRNA and protein dynamics are simultaneously quantified using a fluorescent
Broccoli RNA aptamer [78, 76] and mCherry protein reporters and converted into ab-
solute concentration units by a standard calibration curve. Bulk reaction experiments
were used to develop and select from several variations of a resource-limited cell-free
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gene expression model in [247]. Overall, this work combines bottom-up assembly with
mathematical modelling to provide a quantitative outlook of liposome compartmental-
ized gene expression dynamics in synthetic cell populations. This can help facilitate
direct comparisons between experiments of bulk and compartmentalized CFES reac-
tions and provide a basis for the design and construction of multicellular systems using
controlled assembly methods and accurately modelling their modular single cell units.

3.2 Methodology

3.2.1 Plasmid design

The plasmids pEXP5-NT/6xHis eGFP [152] and pEXP5-NT/6xHis mCherry [255]
were kindly provided by J. L. Ross Anderson, University of Bristol. These plasmids
consist of a constitutive T7 RNA polymerase-mediated promoter with a strong ribo-
somal binding site to express 6xHis-tagged eGFP and mCherry fluorescent proteins,
respectively. To monitor both transcription and translation dynamics in CFES, we con-
structed the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid (Figure 3.1). This
plasmid consists of a constitutive T7 RNA polymerase-mediated promoter to express
a red fluorescent mCherry protein and two copies of a dimeric Broccoli RNA aptamer
stabilized by the F30 stem-loop [78, 77] between the stop codon of mCherry and the
terminator of the gene construct. The pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid was made by inserting a F30-2xdBroccoli fragment downstream the mCherry
stop codon and upstream the terminator of the mCherry gene in the pEXP5-NT/6xHis
mCherry plasmid. This results in transcribed mRNA that includes the F30-2xBroccoli
sequence but a translated protein without the F30-2xBroccoli sequence. The F30 struc-
ture acts as a stable RNA scaffold for the two dimeric Broccoli units (2xdBroccoli) [76].
Broccoli binds and activates the fluorescence of the small molecule (Z)-4-(3,5-difluoro-
4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (DFHBI) (Sigma) [78]. All
plasmids have a high-copy number origin of replication. Plasmid construction protocols
and sequences are further described in Appendix B. The pEXP5-NT/6xHis mCherry
F30-2xdBroccoli plasmid was sequenced confirmed by Sanger sequencing and is avail-
able in Addgene (www.addgene.org, plasmid ID 169233).

Figure 3.1: The pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid contains a constitu-
tive T7 RNAP-mediated promoter expressing 6xHis mCherry with a F30-2xdBroccoli RNA
aptamer tag. A small molecule dye DFHBI becomes green fluorescent upon binding with
the Broccoli RNA aptamer (472 nm max excitation/507 nm max emission [78]). mCherry
is translated from the mRNA transcript to provide a red fluorescent signal (587 nm max
excitation/610 nm max emission (www.fpbase.org)).
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3.2.2 Bulk CFES experiments

Bulk CFES expression experiments were run using a standard half-volume (12.5 µL)
reaction mix of the PURExpress In Vitro Protein Synthesis Kit (NEB, USA). All CFES
experiments were supplemented with sucrose at a final concentration of 80.4 mM. The
additional sucrose was included to balance the osmolarity between inner and outer buffer
solutions in the encapsulated experiments, but also included in the bulk experiments to
maintain the same reaction conditions. To detect levels of the Broccoli RNA aptamer,
10 µM of DFHBI was added in CFES reactions using the pEXP5-NT/6xHis mCherry
F30-2xdBroccoli plasmid or its purified transcripts. A standard reaction is described
in Table 3.1.

Table 3.1: Standard PURExpress master mix. DFHBI is added only when the DNA plasmid
or mRNA template used contains the Broccoli RNA aptamer. This standard PURExpress
CFES mastermix has an osmolarity of approx. 1200-1500 mOsmol/kg.

Component Volume (µL)
Solution A 5
Solution B 3.75

RNAse Inhibitor (NEB) 0.25
Sucrose (1.5 M) 0.67

DFHBI (500 µM) 0.25
Plasmid DNA or mRNA x

Water Fill to 12.5
TOTAL 12.5

All plasmid DNA templates were prepared and purified by ethanol precipitation using
the QIAGEN Plasmid Maxi Kit (QIAGEN, Germany) and then dissolved in nuclease-
free water. 6xHis mCherry F30-2xdBroccoli mRNA transcripts were prepared by in
vitro transcription of the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid using
the HiScribe T7 High Yield RNA Synthesis Kit (NEB, USA), treated with DNAse I
(NEB, USA), purified using the QIAGEN RNeasy Mini kit (QIAGEN, Germany), and
dissolved in nuclease-free water. Triplicate CFES reactions with the required DNA
or mRNA template concentrations were prepared in 384-well plates (Greiner Bio-One,
Austria), sealed with a clear film (Thermo, USA), and incubated in a Spark 20M plate
reader (TECAN, Switzerland) at 30 ◦C. Fluorescence measurements were undertaken
for each sample at 10-minute intervals for 8 hours. Excitation and emission wavelengths
used were 485/535 nm, 570/620 nm, and 450/510 nm with a bandwidth of ±20 nm each,
for eGFP, mCherry, and Broccoli RNA respectively. Fluorescence values were then
converted into concentration units using a linear calibration curve from serial dilutions
of purified eGFP protein, mCherry protein, and Broccoli RNA in the same CFES
reaction mix and plate reader acquisition settings. In all our calibrations (including
confocal calibrations for encapsulated CFES), we assume that our purified standards
contain only complete and properly folded fluorescent protein or RNA aptamer. Further
details for the calibration are available in Appendix E.
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3.2.3 Encapsulated CFES experiments

Inverse emulsion phase transfer

Liposomes generated using the bulk inverse emulsion phase transfer method were
prepared using a modified protocol as described in [177]. Briefly, 7.5 µL of PURExpress
CFES with pEXP5-NT/eGFP plasmid DNA (Table 3.1) is added into a 1.5 mL micro-
centrifuge tube with 375 µL of lipid oil phase consisting of 0.39 mM 1-palmitoyl-2-oleoyl-
glycero-3-phosphocholine (POPC) (Avanti, USA) and 1.25 µM N-(Texas Red sulfonyl)-
1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (Texas
Red DHPE) (Biotium, USA) in mineral oil (Sigma, USA). To prepare the lipid oil
phase, POPC (36 µL of 32.5 µM in chloroform) and Texas Red DHPE (1µL of 1mM
in chloroform) are mixed together in a glass test tube, dried under flowing nitrogen
gas for 5 minutes and in vacuum for 30 minutes, resuspended in 2 mL mineral oil, and
incubated at 37 ◦C in a Sonorex sonicator bath (Bandelin, Germany) for 1 hour. The
mixture is then emulsified by running the tube across a microcentrifuge tube rack ten
times. Then, 100 µL of the emulsion is gently layered on top of a prepared 100 µL
outer feeding buffer solution (Table 3.2) + 40 µL lipid oil phase solution in BSA-coated
wells of 96-well plate. The plate is next centrifuged at 3000xg for 10 minutes to pro-
duce liposomes that settle at the bottom of the plate. The plate is then incubated at
30 ◦C overnight (approx. 15 hours) and then imaged using confocal microscopy. This
method is illustrated in Figure 3.2. The osmolarities of the inner and outer solutions
were measured by freezing-point depression using a freezing point osmometer (Osmo-
mat 3000, Gonotec) calibrated with water, 300 mOsmol/kg, and 2000 mOsmol/kg NaCl
solution standards. Large differences in osmolarities (>20 mOsmol/kg) were balanced
by adding water or 1.5 mM glucose to the outer solution when necessary. Confocal
microscopy was done with an LSM 880 with Airyscan, 40X/1.2 C-Apochromat ob-
jective). Excitation/detection wavelengths are 488 nm/505-515 nm for eGFP protein
and 594 nm/605-615 nm for Texas Red DHPE. Liposomes were segmented manually
in Fiji 1.53c [217] and size and expressed eGFP fluorescence distributions collected
using Python (v3.6) with Scikit-image [268]. Details for image analysis are found in
Appendix G.

Double-emulsion microfluidics

CFES reactions were encapsulated into liposomes using a double-emulsion microflu-
idic device and methodology as presented in [289] and illustrated in Figure 3.2. In-
ner CFES solutions were prepared with a plasmid DNA template similarly to the
bulk CFES experiments (Table 3.1). The lipid oil phase was composed of 1-Octanol
(Sigma, USA) with 6.5mM of L-α-phosphatidylcholine (Egg PC) phospholipids (Avanti,
USA), and 53.3 µM of 1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindodicarbocyanine, 4-
Chloro benzenesulfonate Salt (DiD) fluorescent dye (Invitrogen, USA). The outer aque-
ous solution was composed of a CFES feeding buffer solution modified from [38], which
contains NTPs (6mM ATP (Sigma, USA), 4mM CTP (Sigma, USA), 4 mM UTP
(Sigma, USA), 6 mM GTP (Roche, Switzerland)), amino acids (0.5 mM each) (Sigma,
USA), 1.5 mM spermidine(Sigma, USA), 1.5 mM dithiothreitol (DTT) (Thermo, USA),
0.02 mM folinic acid (Sigma, USA), 280mM potassium glutamate (Sigma, USA), 20 mM
magnesium glutamate (Sigma, USA), 100mM HEPES (Roth, Germany), 480 mM glu-
cose (Sigma, USA), and 2% (w/v) Pluronic F-68 (Gibco, USA) at pH 7.6 (Table 3.2).
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Table 3.2: Outer feeding solution buffer recipes for inverse emulsion or microfluidic-generated
synthetic cells. Solutions were neutralized to the final pH by adding 15% (w/v) KOH.

Component Inverse emulsion Microfluidic
ATP (mM) 5 6
CTP (mM) 1.5 4
UTP (mM) 1.5 4
GTP (mM) 3 6

Amino acids (mM) 0.5 0.5
Spermidine (mM) 1.5 1.5

DTT (mM) 1.5 1.5
Folinic acid (mM) 0.02 0.02

K-Glutamate (mM) 280 280
Mg-Glutamate (mM) 20 20

HEPES (mM) 150 100
Glucose (mM) 200 480

Pluronic acid (% (w/v)) 0 2
DFHBI (µM)

pH 7.35 7.6
Osmolarity (mOsmol/kg) 1339 1441

10 µM DFHBI was added into the outer solution for experiments that used the Broc-
coli aptamer. An outer solution composed of PURExpress without plasmid template
(Table 3.3) was also prepared to test outer solutions with the same or diluted compo-
sitions as the inner PURExpress CFES. The dilution mix was composed of the same
concentration of 10 µM DFHBI for the Broccoli aptamer, 2% pluronic acid to stabilize
the synthetic cells, and glucose to maintain the same osmolarity of the outer solution.
Similar to the inverse emulsion phase transfer method, inner and outer solution os-
molarities were measured by freezing-point depression and balanced by adding water
or 1.5 mM glucose to the outer solution when necessary. To generate synthetic cells,
the inner CFES, lipid oil phase, and outer buffer solutions were dispensed through the
pretreated microfluidic device using three pressure-regulated pumps (Dolomite Mitos
P-Pump, UK) at approximate pressures of 70:80:80 mbar, respectively. This resulted in
a flow regime where the inner CFES solution was encapsulated into double-emulsions to
form liposomes. Flow regimes and double-emulsion formation in the microfluidic device
were monitored under brightfield using a Zeiss Andor Axiovert 200M with a 5x/0.15
Plan-Neofluar Ph1 M27 objective and PCO Dimax S4 Monochrome sCMOS high-speed
camera. The cells were collected into a microcentrifuge tube, and then placed in chan-
nels made from parafilm channels sandwiched between a microscope slide (76x26x1
mm) and cover slip (24x60 mm). The ends of the channels were sealed with Twinsil
Speed silicone (Picodent, Germany) to avoid evaporation. We can generate hundreds
to thousands of synthetic cells per microfluidic session, but typically prepare up to a
hundred synthetic cells in a glass slide for imaging. Prepared synthetic cell populations
were imaged by confocal laser scanning microscopy using an inverted Zeiss LSM 880
with Airyscan and a 10X/0.45 Plan-Apochromat M27 objective. The samples were
maintained at 30 ◦C. Laser excitation wavelengths were 488 nm, 488 nm, 561 nm,
633 nm for Broccoli RNA, eGFP protein, mCherry protein, and DiD dye, respectively.
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Emission wavelengths were 499-561 nm, 499-561 nm, 579-641 nm, and 640-720 nm for
Broccoli RNA, eGFP protein, mCherry protein, and DiD dye detection, respectively.
Images were focused at the equator of the synthetic cells and then acquired every 5
minutes for a total of 12 hours. Z-stack images of the samples were taken at the 12-
hour endpoint. Timelapse and z-stack images were processed using Fiji (v1.53c) [217]
and Python (v3.6) with Scikit-image [268]. Synthetic cells were segmented and fluo-
rescence values for each cell were taken and converted to concentration units using a
linear calibration curve from serial dilutions of purified eGFP protein, mCherry protein,
and Broccoli RNA in bulk CFES reaction solutions with the same confocal microscopy
acquisition settings. Further details for calibration, microfluidic chip fabrication and
pretreatment, and image analysis are available in Appendix E, F, and G, respectively.

Figure 3.2: Encapsulation of CFES by inverse emulsion and microfluidics. (A) Inverse emul-
sion phase transfer results in smaller and polydisperse liposomes. (B) The double-emulsion
microfluidic generated liposomes results in the larger and more monodisperse liposomes. Li-
posomes are composed of POPC phospholipids for the inverse emulsion phase transfer-made
liposomes and Egg PC for the microfluidic-generated liposomes with Texas Red DHPE en-
capsulating a 200 mM sucrose solution. The outer solution is composed of 200 mM glucose.
A brightfield image of the microfluidic device during liposome production is shown below the
illustration.
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Table 3.3: PURExpress outer feeding solution and dilution buffer recipes.

Component PURE outer Dilution buffer
Solution A 100 0
Solution B 75 0

RNAse inhibitor (NEB) 5 0
DFHBI (500 µM/ 4 mM) 5 3
Pluronic acid (10% (w/v)) 50 240

Glucose (1.5 M) 13.3 815
Water 13.2 142

TOTAL 261.5 1200
Osmolarity (mOsmol/kg) 1363 1351

3.2.4 CFES model selection and parameter estimation

A cell-free gene expression model was developed based on a previously published
the resource-limited gene expression model [247]. We tested seven variations of the
model, including the original model by Stögbauer et al. (2012) [247], using mass-
action or Michaelis-Menten kinetics for transcription and translation, as well as the
degradation and consumption of transcription resources and translation resources. A
detailed derivation of the seven models are described in Appendix H. These models were
fit on the Broccoli RNA aptamer and mCherry protein timeseries data from our bulk
experiments. The agreement between the experimental data and model was measured
by the negative natural logarithm of the likelihood (L) of the model parameters given
the experimental data

− ln(L) = −ln(p(Y |θ)) (3.1)

where θ = θ1, ...,θk is the set of parameters for the model and Y is the experimental
data. The term on RHS is the log-likelihood of observing data Y given model param-
eters θ. Rate parameters of a model were estimated by minimizing the log-likelihood

θ̂ = argminθ(−ln(p(Y |θ))) (3.2)

where θ̂ is the maximum likelihood estimator (MLE) of the model parameters. The
different models were ranked according to the Akaike information criterion (AIC) [3]

AIC = 2k − 2ln(L̂) (3.3)

where k is the number of parameters and L̂ is the likelihood evaluated at the MLE
θ̂. The AIC measures the quality of fit of the model to the data using the likelihood
penalized by the total number of parameters. The model with the lowest AIC value
was selected and used for both bulk and synthetic cell population experiments. Profile
likelihoods and likelihood-based confidence intervals from the parameter estimates were
calculated to assess parameter identifiability in the different models [208, 163]. The
profile likelihoods of each parameter were calculated by

PL(θi) = min
θj 6=i

(−ln(p(Y |θ))) (3.4)

which is the minimum of the negative log-likelihood with respect to all parameters
θj 6=i while holding the parameter θi fixed. Likelihood-based confidence intervals of each
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parameter were estimated by the regions in

{θi|PL(θi) + ln(p(Y |θ̂)) < χ2(α, df)} (3.5)

where χ2(α, df) is the chi-squared distribution with α = 0.95 confidence level and df
degrees of freedom, which is the number of parameters of the model [208]. Graphically,
this means that the confidence intervals are found at the intersections of the profile like-
lihood and the significance threshold horizontal line at −ln(p(Y |θ̂))+χ2(α, df). Profile
likelihoods of each parameter between a range greater and less than θ̂ by a factor of 10
are calculated to plot the profile likelihoods. 95% likelihood-based confidence intervals
of the parameters from the profile likelihoods are calculated from the upper and lower
intersection of the profile likelihood and the significance threshold line. Structural non-
identifiable parameters are indicated by flat profile likelihoods below the significance
threshold in both -∞ and ∞ directions. Practical non-identifiable parameters are in-
dicated by profile likelihoods below the significance threshold in both or either −∞
and/or ∞ directions, but still have a unique minimum [208]. Further details of the
model selection, profile likelihood analysis, and parameter estimation are available in
Appendix I.

3.3 Results

3.3.1 Quantitative gene expression dynamics in bulk CFES

To monitor both transcription and translation dynamics in CFES, we constructed
the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid. This plasmid consists of
a constitutive T7 RNA Polymerase-mediated promoter to express a red fluorescent
mCherry protein and two copies of a dimeric Broccoli RNA aptamer stabilized by
the F30 stem-loop [78, 76] between the stop codon of mCherry and the terminator
of the gene construct (Figure 3.1). Binding of a small molecule dye 3,5-difluoro-4-
hydroxybenzylidene imidazolinone (DFHBI) to the Broccoli RNA aptamer results in
a green fluorescence signal. This allows simultaneous fluorescence monitoring of tran-
scribed mRNA and reporter protein levels. PURExpress CFES reactions were titrated
with pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA or purified mRNA
transcripts from the same plasmid. Reaction mixtures were incubated at 30 ◦C and
monitored for mRNA and protein levels over time in a fluorescence well plate reader
(Figure 3.3A). Relative fluorescence units were converted into nM concentration units
using calibration curves from serial dilutions of Broccoli RNA aptamer and mCherry
protein in the same reaction mix composition and acquisition settings (see Appendix ).
We observed typical profiles of gene expression in CFES, where signal is first detected
from transcription of mRNA followed by translation of mCherry protein (Figure 3.3B-
C). The gene expression profiles show a plateau at ∼3 hours for mRNA and ∼5 hours
for protein. Our results also show that the endpoint protein concentrations increase
with increasing plasmid DNA or mRNA transcript concentrations until a saturation
concentration of approximately 5 nM for plasmid DNA and 800 nM for mRNA tran-
script. Rates of transcription reach a maximum at the initial point, while translation
rates peak at 1.5-2 hours (Figure 3.4) and then gradually decrease. These results in-
dicate that gene expression rates and yield are dependent on both the consumption
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and degradation of resources. If gene expression was dependent solely on the consump-
tion of resources the final protein production would be constant regardless of DNA or
mRNA input. This hypothesis is supported by previous work where the addition of
fresh ribosomes to PURExpress after exhaustion restores gene expression activity [247]
and that a delayed addition of DNA template into PURExpress after incubation results
in reduced rates and yield of gene expression [247, 59].

Figure 3.3: Monitoring transcription and translation in bulk CFES. (A) DNA plasmid or
mRNA titration bulk CFES experiment workflow. DNA or mRNA templates are added into
a master mix of PURExpress CFES (NEB, USA) with DFHBI at different DNA concentra-
tions. Fluoresence signal of both expressed Broccoli RNA aptamer and mCherry protein are
monitored over time in a plate reader. RFU values are converted to concentrations (µM) using
a standard calibration curve. (B) mRNA Broccoli and mCherry protein expression levels over
time from bulk PURExpress CFES titrated with varying concentrations of pEXP5-NT/6xHis
mCherry F30-2xdBroccoli DNA plasmid. (C) mRNA and mCherry protein expression levels
over time from bulk PURExpress CFES titrated with varying concentrations of purified 6xHis
mCherry F30-2xdBroccoli RNA transcripts. Solid lines and shaded areas correspond to mean
and standard deviation values from triplicate experiments.

In addition to DNA and mRNA titrations, the maturation rate of the mCherry pro-
tein in PURExpress was measured using a modified RNAseA assay previously described
by Garamella et al. (2016) [85]. Briefly, a standard bulk PURExpress reaction with
DFHBI was prepared with 300 nM 6xHis mCherry F30-2xdBroccoli mRNA template.
The reaction was incubated at 30 ◦C for 30 mins to allow the CFES to produce mCherry
protein. After 30 mins, 300 nM of RNAseA was added into the CFES reaction to de-
grade all mRNA and halt translation. mRNA Broccoli aptamer and mCherry protein
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Figure 3.4: Transcription and translation rates in bulk CFES. (A) Transcription and trans-
lation rates over time from bulk PURExpress CFES titrated with varying concentrations of
pEXP5-NT/6xHis mCherry F30-2xdBroccoli DNA plasmid. (B) Transcription and transla-
tion rates over time from bulk PURExpress CFES titrated with varying concentrations of
purified 6xHis mCherry F30-2xdBroccoli RNA transcripts. Solid lines and shaded areas cor-
respond to mean and standard deviation values from triplicate experiments.

fluorescence values were monitored (Figure 3.5A). The increase of mCherry signal after
all mRNA is degraded is attributed to the maturation of the protein and fit to a first
order kinetic model

d[Protein∗]

dt
= kmat[Protein] (3.6)

[Protein∗] = [Protein∗]0 + [Protein]0(1− e−kmatt) (3.7)

where Protein is the unfolded protein, Protein∗ is the mature and fluorescent protein,
and kmat is the maturation rate parameter. The RNA signal was depleted after 2
hours after the addition of RNAseA (Figure 3.5B). Fitting the increase of mCherry
fluorescence in the 2-4 hour window using Equation 3.7 results in a maturation rate
of kmat = 2.15 ± 0.12 hr−1 (Figure 3.5C). This corresponds to a maturation half-time
(t0.5) of 19.31 ± 2.24 mins, which is also comparable to previous reports of mCherry
maturation at 15 mins in E. coli [224].

3.3.2 CFES model selection and parameter fitting

To describe the dynamics of cell-free gene expression, a coarse-grained model based
on Stögbauer et al. (2012) [247] was developed to quantitatively compare results across
experiments and literature values. This model accounts for both transcription and
translation dynamics driven by a limited pool of resources for gene expression. Tran-
scription (TsR) and translation resources (TlR), are assigned unitless quantities ini-
tialized at 1 and then gradually decreases to 0 as it is consumed by transcription or
translation, and degradation. These species serve as a phenomenological proxy to ac-
count for the cumulative effect of different limiting factors that fuel transcription and
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Figure 3.5: RNAseA assay for mCherry maturation rate. (A) 300 nM 6xHis mCherry F30-
2xdBroccoli mRNA is added into the PURExpress CFES (NEB, USA) and incubated for 30
mins at ◦C. Afterwards, 300 nM RNAseA is added to deplete the mRNA and then protein
expression is monitored in the plate reader. (B) mRNA Broccoli and mCherry protein levels
over time after addition of RNAseA. Solid line is the sample with both mRNA and RNAseA
added, dashed line is for mRNA without RNAseA, and dotted line is the blank. (C) Inset from
mCherry signal in (B) from 2-4 hours showing the fit of Equation 3.7 where kmat = 2.15±0.12
hr−1. Solid red line is the mean of the data and black dashed line is the model fit. Shaded
areas correspond to mean and standard deviation values from triplicate experiments.

translation processes, such as RNA polymerase, ribosome concentrations, NTP, amino
acids, and other energy resources. Based on this model, we generated seven candi-
date CFES models composed of a system of delay and ordinary differential equations
(Appendix H). We used our bulk experimental results from both transcription and
translation dynamics, as well as the RNAseA assay for mCherry maturation, to guide
model selection. Candidate models were ranked among each other using the Akaike
information criterion (AIC) [3]. Profile likelihoods were then used to determine the
parameter identifiability and confidence intervals for each of the candidate models [208,
163]. The best-scoring model resulting from this analysis is shown in Equation 3.8-3.13
(model 2 in Appendix H).
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d[DNA]

dt
= 0 (3.8)

d[RNA]

dt
=
krTsR[DNA]

Kr + [DNA]
− δr[RNA] (3.9)

d[Protein]

dt
=
kpTlR[RNA](t− τd)
Kp + [RNA](t− τd)

− kmat[Protein] (3.10)

d[Protein∗]

dt
= kmat[Protein] (3.11)

TsR

dt
= −akrTsR[DNA]

Kr + [DNA]
− δTsRTsR (3.12)

dTlR

dt
= −bkpTlR[RNA](t− τd)

Kp + [RNA](t− τd)
− δTlRTlR

Kl + TlR
(3.13)

This model uses Michaelis-Menten type kinetics for transcription and translation. Trans-
lation is additionally modeled by a delay differential equation with a time delay (τd) to
account for the time delay of protein expression observed in our mRNA titration exper-
iments, which was necessary despite having a protein maturation step. Transcription
and translation resources (TsR and TlR) are consumed by transcription and translation
processes and also degraded independently. These are consumed during transcription
and translation with a scaling factor, a and b respectively. Both resources spontaneously
degrade with first order and Michaelis-Menten kinetics for TsR and TlR, respectively.
RNA degradation and mCherry protein maturation are assigned first-order reactions.
In contrast to the previously published model [247], TsR degradation was included to
account for the independent exhaustion of transcription resources. Lastly, we included
a time lag (τl) in the fitting procedure of the model to account for the time between
starting the CFES reaction and acquiring the first data point. This was negligible for
our bulk experiments that took less than 10 minutes from adding the DNA or RNA
template into the CFE bulk reactions to acquiring the first data points in the plate
reader. However, it was important for the encapsulated experiments which had longer
sample preparation times of ∼30 minutes. The final model is illustrated in Figure 3.6A
with a total of 16 free parameters. These parameters include all the rate parameters
kr, Kr, δr, kp, Kp, δTsR, δTlR, Kl, a, b, τd, τl, σr, and σp. The parameters σr and σp
are standard deviation parameters in a gaussian noise model for the Broccoli RNA and
mCherry measurements, respectively. kmat is fixed at 2.15±0.12 hr−1 from the RNAseA
assay for mCherry maturation (Figure 3.5). Initial values of [DNA] and [RNA] are de-
fined by the experiment. Initial [Protein] and [Protein∗] values are set at zero. Initial
transcription and translation resources, TsR and TlR, are set at 1.0. The model fit by
MLE is shown in Figure 3.6B-C. The optimized rate parameters and likelihood-based
confidence intervals are shown in Table 3.4. Profile likelihoods of each parameter are
shown in Figure 3.7.

All parameters except for Kl and τl are well-identifiable as indicated by profile
likelihoods that have a local minimum at θ̂i (Figure 3.7). The estimates of Kl and
τl are in the order of 10−6 and 10−9, respectively. Varying these parameters within
one order of magnitude does not significantly affect the model fit, which results in
their flat profile likelihoods. Overall, the model captures the general behavior of gene
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Figure 3.6: Resource-limited CFES model and bulk fit. (A) Illustration of the resource-limited
gene expression model for CFES. Parameters are kr: RNA transcription rate, Kr: Dissocia-
tion constant between RNAP and DNA, δr: RNA degradation rate, kp: Protein translation
rate, Kp: Dissociation constant between ribosome and RNA, kmat: mCherry maturation rate,
δTsR: TsR degradation rate, δTlR: TlR degradation rate, Kl: Michaelis-Menten constant for
TlR degradation, a: Scaling factor for consumption of TsR with transcription, b: Scaling fac-
tor for consumption of TlR with translation, and τd: Time-delay for protein translation. (B)
Experiment (colored lines) and model fit (black dashed lines) of Broccoli mRNA and mCherry
protein expression levels over time from bulk PURExpress CFES titrated with varying con-
centrations of pEXP5-NT/6xHis mCherry F30-2xdBroccoli DNA plasmid. (C) Experiment
(colored lines) and model fit (black dashed lines) of Broccoli mRNA and mCherry protein ex-
pression levels over time from bulk PURExpress CFES titrated with varying concentrations
of purified 6xHis mCherry F30-2xdBroccoli RNA transcripts. Solid lines and shaded areas are
the mean and standard deviations of the experimental data from three technical replicates.
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Figure 3.7: Profile likelihoods of bulk CFES model parameters. Each plot corresponds to a
parameter in the model and additional fitting parameters (σr and σp). The y-axis of each
plot is the negative log likelihood of the model given the corresponding parameter value in the
x-axis with all other parameters reoptimized (Equation 3.4). The red dot shows the optimized
parameter set with the minimum negative log likelihood. The dashed grey line is the 95%
significance threshold line from (Equation 3.5). The intersections of the significance thresh-
old line and profile likelihood are the likelihood-based confidence intervals of the optimized
parameter.

expression dynamics across different initial DNA and RNA conditions. The remaining
quantitative mismatch is likely due to additional chemical complexity not caputured by
our coarse-grained model. Assuming that a standard PURExpress reaction contains 100
nM of T7 RNA polymerase [228] and 2.4 µM of ribosomes (NEB), T7 RNA polymerase
transcription and ribosome translation rates are approximately 8.2-11.1 NTP/s and
0.20-0.28 amino acid/s, respectively (calculated from kr = 2728 − 3674 nM/hr for a
1087 bp transcript and kp = 2211−3108 nM/hr for a 777 aa protein in Table 1). These
values are lower than the reported in vivo rates in E. coli bacterial cells (230 ± 20
NTP/s [93] and 8-18 amino acid/s [44]). However, the polymerase transcription rates
and ribosome translation rates are similar to previous work in PURExpress expressing
GFP at 37 ◦C (2.2 NTP/s and 0.03 amino acid/s, respectively) [247]. Using a FRET
sensor to measure RNA transcription in PURExpress, initial transcription rates from
10 nM of DNA plasmid template was previously measured at 7 nM/min [186]. This
is also comparable to our initial transcription rate measurements at 15.9 nM/min for
10 nM of DNA plasmid (Figure 3.4)A. The differences could be attributed to different
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Table 3.4: Parameter estimates (θ̂bulk) and likelihood-based 95% confidence intervals (CI)
from bulk DNA and RNA titration experiments. Parameters with CIs at -∞ and/or ∞ are
non/weakly-identifiable within one order of magnitude from θ̂bulk.

Parameter Description θ̂bulk 95% CI Units
kr RNA transcription rate 2894 2728–3674 nM/hr

Kr
Dissociation constant between
RNAP and DNA

3.67 2.89–5.68 nM

δr RNA degradation rate 0.0392 0.0361–0.0422 1/hr
kp Protein translation rate 2689 2211–3108 nM/hr

Kp
Dissociation constant between
ribosome and RNA

703 530–1347 nM

kmat mCherry maturation rate 2.15 (±0.12) 1/hr
δTsR TsR degradation rate 0.231 0.171–0.298 1/hr
δTlR TlR degradation rate 0.0884 0.0441–0.1187 1/hr

Kl
Michaelis-Menten constant for
TlR degradation

1.21E-6 -∞–∞ -

a
Scaling factor for consumption
of TsR with transcription

4.45E-4 4.18E-4–4.57E-4 -

b
Scaling factor for consumption
of TlR with translation

1.78E-4 1.18E-4–2.42E-4 -

τd
Time-delay for protein transla-
tion

0.433 0.254–0.560 hr

σr
Stdev. of Broccoli RNA mea-
surements

47.3 44.8–54.8 nM

σp
Stdev. of mCherry protein
measurements

135.6 128.0–156.0 nM

τl
Time lag between reaction
start and data collection

2.81E-9 -∞–∞ hr

reaction conditions, T7 RNA polymerase concentrations, the encoding gene, and/or
batch-to-batch variability of the expression system.

3.3.3 Generating monodisperse synthetic cell populations

Having established a quantitative model for cell-free gene expression in bulk reac-
tions, we next test its applicability on populations of compartmentalized reactions. To
this end, PURExpress CFES was encapsulated in lipid-based synthetic cell populations
using either a bulk inverse emulsion phase transfer method [177] or a double-emulsion
microfluidic methodology [202, 289] as described in Section 3.2.3. The inner solu-
tion was composed of the PURExpress CFES and a plasmid DNA for constitutive T7
RNAP-mediated expression of a fluorescent protein gene (eGFP or mCherry). Confo-
cal microscopy images for the inverted emulsion and microfluidic-generated synthetic
cells were segmented to obtain relative fluorescence units (RFU) of expressed protein
in single cells in each population. These were then used to calculate the coefficient of
variation (CV) of the distribution of expressed protein in each cell population. The CV
allows comparison of the variability of distributions with different scales of measure-
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ment. The inverted emulsion method generated liposomes with a mean radius of 8.0
µm and a coefficient of variation (CV) of 0.32 (Figure 3.8A and D). In comparison, the
microfluidic-generated synthetic cells were larger with a mean radius of 29.0 µm and
exhibited lower size variation with a CV of 0.09 (Figure 3.8B and E) as expected. Pro-
tein expression in the inverted emulsion-generated synthetic cells also showed a greater
variation (mean RFU 126.72 and CV 0.49) compared to synthetic cells produced in
microfluidics (mean RFU 37.0 and CV 0.05). These results are in agreement with
previous studies of phase transfer generated cells with expressed protein concentration
CVs ranging from 0.20-0.80 [190]. We further show that simultaneous encapsulation of
two plasmids in a microfluidic-generated synthetic cell population results in expression
of both eGFP and mCherry protein in each cell at a consistent ratio (3.11 ± 0.133
eGFP:mCherry RFU) (Figure 3.8C and F). This demonstrates the robustness of our
synthetic cell production where the inner CFES solution is well-mixed and microfluidic
method maintains the homogeneity throughout encapsulation. The increased variance
in phase transfer-generated cells is likely a combined result of fluctuations in cell size
and encapsulation. In contrast, the synthetic cell populations generated using double-
emulsion microfluidics resulted in larger and more uniform cell populations making them
highly suitable for our quantitative analysis. In addition, it was also observed that the
fluorescence from expression of the pEXP5-NT/6xHis eGFP plasmid is decreased in
the two plasmids synthetic cells (Mean RFU 14.1, Figure 3.8F) as compared to the
single plasmid synthetic cells (Mean RFU 37.0, Figure 3.8E). This is a result of gene
expression resources being split between the expression of both eGFP and mCherry
proteins in the two plasmid synthetic cells.

3.3.4 Gene expression dynamics in synthetic cell populations

Using our microfluidic platform, we generated synthetic cell populations comprised
of large populations of monodisperse liposome-encapsulated CFES and quantified RNA
and protein levels over time to study transcription and translation dynamics using fluo-
rescence microscopy methods. To alleviate non-identifiabilities during model fitting, we
prepared three populations of synthetic cells with different DNA concentrations (1.75,
3.5, and 7.0 nM of pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA) during
one microfluidic session from one batch of CFES master mix and outer feeding buffer
solution. RNA and protein levels in the synthetic cell populations were then monitored
with confocal microscopy at 30 ◦C for 12 hours (Figure 3.9). Similar to the bulk CFES
experiments, relative fluorescence units were converted into absolute concentrations us-
ing a standard calibration curve to obtain quantified RNA and protein dynamics in the
synthetic cell populations (Figure 3.10 and 3.11). Cell sizes from the three populations
containing different plasmid DNA concentrations were monodisperse at ∼30 µm radius
with a coefficient of variation (CV) ranging from 0.04-0.065. The variability of gene
expression from mRNA to protein remained constant with CV values ranging from
0.02-0.03 (Table 3.5). This indicates a low degree of variability in translation across
the synthetic cells as CV values were not altered between mRNA and protein levels.
Based on cell size and concentration measurements, copy numbers of DNA, mRNA,
and protein molecules in a single synthetic cell are estimated to be in the order of 105,
107, and 108, respectively. Other components required for gene expression in the PUR-
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Figure 3.8: Variability in synthetic cell populations. (A) Synthetic cell population expressing
eGFP protein from 1.17 nM pEXP5-NT/6xHis eGFP plasmid DNA generated using the bulk
inverse emulsion phase transfer method. (B) Microfluidic-generated synthetic cells express-
ing eGFP protein from 4.5 nM pEXP5-NT/6xHis eGFP F30-2xdBroccoli plasmid DNA. (C)
Merged image of synthetic cell population expressing both eGFP and mCherry protein from
two plasmids (4.5 nM pEXP5-NT/6xHis eGFP and 4.5 nM pEXP5-NT/6xHis mCherry plas-
mid DNA. Endpoint distributions of radius and protein RFU of the synthetic cell populations
in (A-C): (D) phase transfer-generated synthetic cell population (206 cells) expressing eGFP
protein, (E) single microfluidic-generated population (106 cells) expressing eGFP protein, and
(F) two plasmid population (85 cells) expressing eGFP (green) and mCherry (red) protein.
Black lines are Gaussian distribution fits based on the mean and variance of the histograms.
Only CV values are listed in the protein histograms since RFU values are not relatively com-
parable among the different populations. All images are taken at endpoint after 12 hours
incubation at 30 ◦C using confocal microscopy (40X objective for A and 10X for B and C).
Scale bars are all 100 µm.

Express CFES are also present in similar or higher concentrations [190, 227], such that
stochastic effects associated with low copy numbers should be virtually absent. Time
scales of active gene expression were comparable between bulk (Figure 3.3B) and encap-
sulated reactions (Figure 3.10A) (approx. 8-13 hrs). Maximum gene expression rates
and endpoint mRNA and protein concentrations differ between the bulk expression
and compartmentalized expression (Figure 3.3-3.4 and Figure 3.10-3.11). In particular,
protein expression in the liposomes are consistently lower than in bulk reactions. We
hypothesized that deviations of gene expression dynamics between bulk and encapsu-
lated formats are due to the different chemical conditions. Specifically, the composition

59



of the outer feeding buffer solution can affect the inner CFES reaction by diffusion of
material across the semi-permeable membrane [192]. In preparing inner and outer so-
lutions, we ensured that inner CFES and outer solutions were osmotically balanced by
matching freezing-point osmometer measurements. However, the outer feeding buffer
and inner PURExpress CFES were still prepared with slightly different compositions.

Figure 3.9: Timelapse confocal images of a synthetic cell population containing PURE CFES
and 3.5 nM pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA. Images are divided
into three channels: DiD dye-tagged lipid membrane (top row), Broccoli mRNA (middle row),
and mCherry protein (bottom row). Timelapse images were taken every 5 mins for a total of
12 hours with incubation at 30 ◦C using confocal microscopy. Scale bars are all 100 µm.

Table 3.5: Endpoint gene expression of synthetic cell populations. Mean and standard devia-
tion size and endpoint mRNA and protein expression of microfluidic-generated synthetic cell
populations. Values in parentheses are the coefficients of variation (CV). Total number of cells
analyzed are 82, 85, and 78 for populations with 1.75, 3.5, and 7.0 nM of pEXP5-NT/6xHis
mCherry F30-2xdBroccoli plasmid DNA, respectively.

DNA (nM) Radius (µm) Broccoli RNA (nM) mCherry (nM)
1.75 29.8± 1.4 (0.048) 759.0± 17.3 (0.022) 1240.5± 38.4 (0.031)
3.5 30.4± 1.9 (0.064) 973.8± 21.6 (0.022) 1892.7± 51.5 (0.028)
7.0 32.0± 1.4 (0.043) 1093.7± 33.5 (0.03) 1973.9± 59.1 (0.030)
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Figure 3.10: Quantified transcription and translation dynamics in synthetic cell populations.
(A) Single-cell traces of mRNA and protein expression in three synthetic cell populations
with 1.75 nM, 3.5 nM, and 7.0 nM of pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid
DNA. RFU values are converted into nM concentrations units. (B) Rates of transcription and
translation calculated from (A) using a rolling window average of 1 hour. (C) Endpoint RNA
and protein concentrations of synthetic cell populations at the different DNA concentrations.
Each dot is a single synthetic cell at endpoint. Black dots with error bars are mean and
standard deviation of the populations. Total number of cells analyzed are 82, 85, and 78 for
populations with 1.75 nM, 3.5 nM, and 7.0 nM of pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid DNA, respectively.

To quantify gene expression dynamics, mean RNA and protein dynamics from all
three synthetic cell populations were globally fit to the resource-limited CFES model in
Equation 3.8-3.13 (Figure 3.12). Sample preparation of the synthetic cells typically took
0.5-1 hour due to the encapsulation of different plasmid concentrations. As a result,
the initial points of gene expression were not fully captured in the timeseries data. The
fitted rate parameters and 95% confidence limits obtained by fitting the experimental
data to the model are shown in Table 3.6. The identifiable parameters are comparable to
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Figure 3.11: Endpoint distributions of radius, mRNA, and protein concentrations of the syn-
thetic cell populations. Data is obtained from maximum values of z-stack images at endpoint
after 30 ◦C incubation for 12 hours. Histograms are fit to univariate normal distributions and
correlations are fit to bivariate normal distributions. Total number of cells analyzed are 82,
85, and 78 for populations with 1.75 nM, 3.5 nM, and 7.0 nM of pEXP5-NT/6xHis mCherry
F30-2xdBroccoli plasmid DNA, respectively.

the bulk reaction parameters within one order of magnitude. However, more parameters
were weakly identifiable as only three DNA concentrations were considered for model
fitting in the synthetic cell populations. Profile likelihood analysis in Figure 3.13 showed
that the parameters Kl and τd were weakly identifiable, and b is non-identifiable. It is
important to note that the parameter estimation was performed on only one batch of
experiments. This was done to avoid the known batch-to-batch variability in CFES.
However, we also observed that different batches of synthetic cell populations prepared
on different days can result in different endpoint protein concentrations and maximum
translation rates with a batch-wise CV of 0.10 and 0.16, respectively ((Figure 3.14)).
This is comparable to previously reported batch CV values of expressed eGFP or RFP
in bulk PURE systems at 0.05-0.2 [42, 145].

Figure 3.12: CFE model fit on gene expression dynamics in synthetic cell populations. Single-
cell traces of mRNA and protein expression in three synthetic cell populations with 1.75
nM, 3.5 nM, and 7.0 nM of pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA as
in Figure 3.10A are shown with the global model fit to the resource-limited CFES model in
Equation 3.8-3.13 in black dashed lines.

To determine whether the composition of the outer solution would significantly affect
gene expression in the microfluidic-generated synthetic cells, synthetic cell populations
were prepared with different dilutions of the outer solution composed of PURExpress
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Table 3.6: Parameter estimates (θ̂pop) and likelihood-based 95% confidence intervals (CI) from
synthetic cell populations. Parameters with CIs at -∞ and/or ∞ are non/weakly-identifiable
within one order of magnitude from θ̂pop.

Parameter Description θ̂pop 95% CI Units
kr RNA transcription rate 1899 1631–3537 nM/hr

Kr
Dissociation constant between
RNAP and DNA

8.86 6.97–18.66 nM

δr RNA degradation rate 0.0081 0.00239–0.0143 1/hr
kp Protein translation rate 1954 1617–2696 nM/hr

Kp
Dissociation constant between
ribosome and RNA

1319 819–2038 nM

kmat mCherry maturation rate 2.15 (±0.12) 1/hr
δTsR TsR degradation rate 0.154 0.136–0.175 1/hr
δTlR TlR degradation rate 0.244 0.184–0.684 1/hr

Kl
Michaelis-Menten constant for
TlR degradation

0.232 -∞–0.713 -

a
Scaling factor for consumption
of TsR with transcription

6.60E-4 6.21E-4–6.74E-4 -

b
Scaling factor for consumption
of TlR with translation

4.46E-13 -∞–∞ -

τd
Time-delay for protein transla-
tion

0.0576 -∞–0.279 hr

σr
Stdev. of Broccoli RNA mea-
surements

23.48 21.83–28.25 nM

σp
Stdev. of mCherry protein
measurements

71.58 66.4–86.1 nM

τl
Time lag between reaction
start and data collection

0.457 0.342–0.535 hr

CFES without DNA. An inner solution was prepared according to Table 3.1 with 3 nM
of pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid DNA. The outer solution was
also composed of PURExpress CFES, with glucose, pluronic acid, and no DNA (Ta-
ble 3.3). Aliquots of the liposomes were diluted with the dilution mix to result in 100,
66, 50, 33, 10% PURExpress CFES outer solutions. Despite the inner, outer, and di-
lution solutions being osmotically balanced, differences in composition between diluted
outer solutions and the inner solutions resulted in material flux into the liposomes.
This is because osmolarities are indirectly measured and balanced using freezing point
depression measurements. As a result, comparing complex solutions of different compo-
sitions will have deviations from the actual osmolarities [251]. This results in liposomes
swelling or bursting in the diluted outer solution. Diluted outer solutions resulted in
lower expression of RNA and protein in the synthetic cell populations, which shows that
the composition of the outer solution influences the dynamics of encapsulated CFES re-
action (Figure 3.15). The higher expression in the undiluted outer solution agrees with
previous experiments showing that a feeding outer solution can improve gene expression
in liposome encapsulated CFES [192, 36].
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Figure 3.13: Profile likelihoods of the synthetic cell populations. Each plot corresponds
to a parameter in the model and additional fitting parameters (σr and σp). The y-axis
of each plot is the negative log likelihood of the model given the corresponding parameter
value in the x-axis with all other parameters reoptimized (Equation 3.4). The red dot shows
the optimized parameter set with the minimum negative log likelihood. The dashed grey
line is the 95% significance threshold line from (Equation 3.5). The intersections of the
significance threshold line and profile likelihood are the likelihood-based confidence intervals
of the optimized parameter.

3.4 Conclusions

In summary, our study tested different variations of a coarse-grained model of CFES
reactions using simultaneously quantified RNA and protein dynamics with likelihood-
based methods for model selection and parameter identification. By using a coarse-
grained model, gene expression parameters were estimated without knowledge of the
full composition of the CFES. This is particularly useful for crude extract systems or
proprietary CFES such as the NEB PURExpress CFES that we used in this study.
Several models have been developed to include more details of CFE reactions such as
initiation and elongation factors [59] or multiple translating ribosomes on an mRNA
template [165]. These models provide a more detailed interpretation of the data, but
also require either additional information on the time-varying states of these gene ex-
pression factors or additional unknown parameters that can result in over-parameterized
models and non-identifiability. In the present study, a coarse-grained model of tran-
scription and translation was able recapitulate the full gene expression dynamics across
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Figure 3.14: Protein expression of batches of synthetic cell populations. (A) Endpoint concen-
trations of synthetic cell populations at different pEXP5-NT/6xHis mCherry F30 2xd-Broccoli
plasmid DNA concentrations from different batches. Batches are performed on a different day
with a new set of inner CFES, feeding outer buffer, and lipid phase solutions. Black dots with
error bars are mean and standard deviation of the populations. (B) Dynamics of protein
expression in batches of synthetic cell populations with 3.5 nM of pEXP5-NT/6xHis mCherry
F30 2xd-Broccoli plasmid DNA. Lines and shaded areas show the mean and standard devia-
tion of each synthetic cell population.

Figure 3.15: Effects of outer buffer dilution in synthetic cell populations. (A) Confocal images
of synthetic cell populations with 3 nM pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid
DNA in decreasing percentage of PURExpress CFES outer solution (100, 66, 50, 33, and 10
% from left to right) at endpoint after 30 ◦C incubation for 12.5 hours. Top row is for mRNA
Broccoli channel (green) and bottom row is for mCherry protein (red) both overlaid with
the lipid DiD dye channel (yellow). (B) Single-cell gene expression dynamics of expressed
RNA and protein of the same synthetic cell populations. Total number of cells analyzed are
66, 69, 17, 16, and 17 for 100, 66, 50, 33, and 10% PURExpress outer solution populations,
respectively. Scale bars are all 100 µm.
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DNA and RNA titration experiments. While we have focused on a simple constitutively
expressed gene in this model, it can be readily extended to more complex gene circuitry,
CFES characteristics, and protein maturation properties. We then showed that large
populations of highly monodisperse synthetic cells can be reproducibly generated using
double-emulsion microfluidics. Gene expression in these synthetic cells are also uniform
and deterministic. Using our methodologies, we demonstrated that bulk and encapsu-
lated CFES reactions result in different gene expression dynamics. These differences
are attributed to the semi-permeable lipid membrane, which allows the exchange of ions
and water that alters the internal composition of the synthetic cells. This emphasizes
the importance of the physical environment to compartmentalized biochemical reac-
tions. Our demonstrated high degree of control over synthetic cell production, as well
as relative ease of analysis compared to synthetic cells with high variability generated
by bulk encapsulation methods, will be critical for bottom-up synthetic biology to build
synthetic multicellular systems.
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Chapter 4

Variability and communication in
synthetic cell populations

4.1 Background

Biological multicellular systems are subject to many sources of noise and variation.
Even isogenic populations of cells will unavoidably exhibit variability and heterogeneity
[162]. For instance, protein expression in bacterial E. coli cells can fluctuate from cell
to cell in culture. This can be a result of stochastic biochemical reactions due to low
copy numbers of reactants (intrinsic noise) or fluctuations of states, concentrations, and
locations of molecules that provide differences in cell activities (extrinsic noise) [71]. In
populations of single cell organisms, variability can be highly advantageous through
bet-hedging. Unlike adaptive strategies where cells sense and respond to the environ-
ment, a standing diverse pool of cell types can ensure survival of some cells against
sudden stress factors [64]. Variability in cell populations can also provide fractional or
graded responses to stimuli. For instance, adipocytes maintain tissue size with a low
rate of renewal without de-differentiation due to population heterogeneity stemming
from protein expression noise in combination with multiple positive feedback regula-
tion [2]. Intercellular variability can also increase the amount of information transfer by
summing the cell-to-cell variable dose responses as demonstrated in multiple cultured
myotubes [276]. In other cases, variability can be undesired and biological systems have
strategies to reduce population variability. For example, Myxococcus xanthus bacteria
can rescue non-motile mutant cells within the population by outer membrane exchange
(OEM). This process passes on outer membrane motility proteins from healthy strains
to the mutant strains to restore motility [194]. Intercellular communication can also
help coordinate a population-wide response and reduce population variability. Quorum
sensing cells secrete and sense a small signalling autoinducer molecule which diffuses
around the external environment for cells in the population to detect. This allows
the cells to sense population density and then respond collectively. Quorum sensing
communication, first described in the bioluminescent marine bacterium Vibrio fischeri
as the Lux quorum sensing system, has been suggested to reduce population variabil-
ity by diffusional dissipation of the external signalling molecule [256]. Coupled with a
positive feedback gene circuit, it can provide a switch-like behavior that triggers the
entire population when the AHL autoinducer is past a critical concentration. This posi-
tive feedback configuration is found in the bioluminescent marine bacterium V. fischeri
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[281] (Figure 4.1A). The quorum sensing system is also known to be coupled to negative
feedback regulation to repress biofilm formation in Vibrio cholerae, the causative agent
in the diarrheal disease cholera. At low cell densities and low autoinducer concentra-
tions, the autoinducer receptors function as kinases and trigger downstream expression
of genes for biofilm formation. At high autoinducer concentrations, the autoinducer
receptors function as phosphatases to stop biofilm formation and potentially promote
dispersal of V. cholerae [282]. Engineering the quorum sensing system with negative
feedback regulation has also been demonstrated in E. coli bacteria to reduce population
variability in cell cultures [27].

Figure 4.1: Quorum sensing system in Vibrio fischeri. (A) V. fischeri bacteria secrete a small
and membrane-diffusible AHL molecule, N-(3-Oxohexanoyl)-L-homoserine lactone (3OC6-
HSL), into the environment. AHL concentrations increase as the population density of the
bacteria increases. At a critical concentration of AHL, the lux operon is induced to express
genes for bioluminescence. Inset: Positive feedback of the Lux quorum sensing system. LuxR
and LuxI control downstream expression of the lux operon. LuxI is the acyl-homoserine lac-
tone (AHL) synthase that produces AHL. LuxR is a cytoplasmic transcription factor that
complexes with AHL, binds with the lux promoter (pLux ), and activates gene expression in
the lux operon. The lux operon also includes the luxI gene to further express LuxI and pro-
duce AHL. (B) Synthesis of 3OC6-HSL by LuxI AHL synthase from its precursor substrates
3-Oxohexanoyl-acyl carrier protein (ACP) and S-adenosyl-L-methionine (SAM). Image from
[283]. Reproduced with permission. © 2002 Elsevier.

In this chapter, we aim to incorporate variability and quorum sensing communica-
tion in synthetic cell populations. By providing these two characteristics in synthetic
cell populations, the effect of intercellular communication on population variability can
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be investigated in a minimal in vitro context. Different quorum sensing gene circuits
have already been shown to function in bulk CFES reactions. For example, the Lux-
type quorum transcription factors (LuxR, LasR, RpaR) can induce transcription of
their cognate promoters (pLux, pLas, pRpa) with the addition of their cognate AHLs
(N-(3-oxohexanoyl)-L-homoserine lactone (3OC6-HSL), N-3-oxododecanoyl homoser-
ine lactone (3OC12-HSL), p-coumaroyl-HSL) in an E. coli extract-based CFES [104].
Cell-free expressed AHL synthases LuxI and RhlI have also been shown to be capa-
ble of synthesizing 3OC6-HSL and C4-HSL, respectively, in CFES. However, addition
of the AHL precursors, 3-oxohexanoyl-acyl carrier protein (ACP) or butyryl-ACP and
S-adenosyl-L-methionine (SAM), are required for the AHL synthase LuxI to produce
AHL in PURE CFES systems [148, 206] (Figure 4.1B). In contrast, LuxI in E. coli
extract-based CFES has been demonstrated to produce the 3OC6 AHL in situ to in-
duce transcription of the LuxR and pLux quorum sensing system [55]. This indicates
that the AHL precursors are readily present in the lysates. Quorum sensing systems
in CFES have also been encapsulated into liposomes by the inverse emulsion phase
transfer method and made to interact with quorum sensing bacterial cells [148, 206].
However, a population of only synthetic cells encapsulating the cell-free quorum sensing
systems in liposomes and interacting among each other has not yet been demonstrated.
Here, we present our current progress in building a Lux quorum sensing synthetic cell
population by encapsulating E. coli extract-based CFES into liposomes. First, we pro-
duced E. coli extract-based CFES and tested the functionality of our quorum sensing
gene circuits in bulk CFES reactions. These were then encapsulated into liposomes
using the inverse emulsion phase transfer method. To incorporate variability in the
synthetic cell populations, we utilize a two-inlet double-emulsion microfluidic design
from [225] to generate monodisperse liposomes with high encapsulated DNA concen-
tration variability. This was demonstrated by encapsulating a PURExpress CFES with
varying concentrations of pEXP5-NT/6xHis mCherry F30-2xdBroccoli DNA plasmid.
In the near future, we plan to combine the two results of quorum sensing in CFES and
double-emulsion microfluidics to generate heterogeneous communicating synthetic cell
populations.

4.2 Methodology

4.2.1 Preparation of E. coli extract-based CFES

An E. coli extract-based CFES was prepared using a modified protocol based on
the work of Levin et al. (2019) [149]. The CFES is composed of the extract, solution
A, solution B, and the DNA template for gene expression. To prepare the extract, an
E. coli BL21 (DE3) starter culture was inoculated in 200 mL LB media and incubated
overnight at 37 ◦C with 180 rpm shaking. This was then used to inoculate the pro-
duction culture of 500 mL 2xYTP media at a starting OD600 of 0.01. The production
culture was incubated at 37 ◦C with 180 rpm shaking until an OD600 of 1.6 (approx. 2-3
hours). The cells were pelleted by centrifugation for 10 mins at 5000 xg using an Avanti
Centrifuge J26-XP with a JLA-8.1000 rotor (Beckman Coulter, USA), transferred to a
pre-weighed 50 mL tube, and washed and pelleted three times with 30 mL S30A buffer
(14 mM MgGlu, 60 mM KGlu, 50 mM Tris, and 2 mM DTT, titrated with glacial acetic
acid to pH 7.7). The washed pellet is weighed (∼2.5 g of wet pellet/500 mL culture),
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then flash frozen with liquid nitrogen, and stored at -80 ◦C overnight. The next day, 1
mL S30A buffer per 1 g wet pellet weight was added to the frozen pellet to thaw and
resuspend by vortexing. The resuspension is transferred to 1.5 mL aliquots in 2 mL
microcentrifuge tubes and then sonicated on an ice-water bath to prevent overheating
of the sample. Sonication was done by 10 cycles of 10 s pulse and 30 s rest at 25%
amplitude (Branson Digital Sonifier Model 450-D with a 418-A probe). The resulting
lysate should turn a darker brown compared with the pre-sonicated resuspension. Im-
mediately after sonication, 2 µL of 1 M DTT is added into the 2 mL microcentrifuge
tube. The sonicated lysates are then centrifuged at 18000 xg for 10 mins. The clear
supernatant was pooled and collected into a 10 mL tube and incubated at 37 ◦C with
250 rpm with the cap open for the 1 hour run-off reaction. After the run-off reaction,
the lysate was clarified by centrifugation at 10000 xg for 10 mins to remove the precip-
itates. The clarified lysate was then dialyzed in S30B buffer (14 mM MgGlu, 60 mM
KGlu, 5 mM Tris, and 2 mM DTT, titrated with 2 M Tris to pH 8.2) for 3 hours at 4
◦C using a Spectra/Por 2 Dialysis Membrane with a 12-14 kDa molecular weight cut-off
(Repligen, USA). After dialysis, the lysate is clarified by centrifugation at 10000 xg for
10 mins, split into 50 µL aliquots, flash frozen with liquid nitrogen, and then stored
at -80 ◦C until use. Solution A is composed of 12.4 mM ATP (Sigma, USA), 8.7 mM
GTP (Roche, Switzerland), 8.7 mM CTP (Sigma, USA), 8.7 mM UTP (Sigma, USA),
0.68 mM folinic acid (Sigma, USA), 0.176 mg/mL tRNA (Roche, Switzerland), 2.7
mM β-nicotinamide adenine dinucleotide (Sigma, USA), 1.8 mM Coenzyme A (CoA),
27.2 mM oxalic acid (Roth, Germany), 6.8 mM putrescine (Sigma, USA), 10.1 mM
spermidine (Sigma, USA), and 774.5 mM HEPES (Roth, Germany). Solution B is
composed of 14.3 mM of each of the twenty amino acids (Sigma, USA), 236.3 mM
phosphoenolpyruvate (PEP), 71.6 mM magnesium glutamate (MgGlu) (Sigma, USA),
and 970.8 mM potassium glutamate (KGlu) (Sigma, USA). Further details of all the
chemicals used are listed in Appendix A. The final E. coli extract-based CFES master
mix is prepared according to Table 4.1. This CFES mix is used as bulk reactions or
encapsulated by double-emulsion microfluidics and incubated at 30 ◦C for 2-5 hours.

Table 4.1: Standard E. coli extract-based CFES master mix.

Component Volume (µL)
Solution A 1.8
Solution B 1.75

MgGlu (200 mM) 0.125
Extract 5

Plasmid DNA x
Water Fill to 12.5

TOTAL 12.5

Expression activity of the homemade E. coli extract-based was compared to stan-
dard reactions of commercially available PURExpress CFES (NEB, USA) and myTXTL
Sigma 70 Master Mix Kit (Arbor Biosciences, USA) (Table 4.2 and 4.3). Positive con-
trol plasmids, pEXP5-NT/6xHis eGFP and p70a(2) deGFP, were used to test consti-
tutive T7 RNAP and σ70-mediated transcriptional activity of the extracts, respectively
(Figure 4.2A). The plasmid pEXP5-NT/6xHis eGFP was kindly provided by J.L. Ross
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Anderson, University of Bristol and p70a(2) deGFP is the positive control plasmid
from the myTXTL Sigma 70 Master Mix Kit. The plasmid p70a(2) deGFP expresses
a truncated form of eGFP that is optimized for CFES and has similar fluorescence
properties of eGFP [230]. All plasmid DNA templates were prepared and purified by
ethanol precipitation using the QIAGEN Plasmid Maxi Kit (QIAGEN, Germany) and
then dissolved in nuclease-free water. The bulk CFES reactions were prepared in 384-
well plates (Greiner Bio-One, Austria), sealed with a clear plate film (Thermo, USA),
and incubated in a Genios Pro plate reader (TECAN, Switzerland) at 30 ◦C. Fluores-
cence measurements were taken for each sample at 10-minute intervals for 2-6 hours.
Excitation/emission filter wavelengths for eGFP or deGFP detection were 485/535 nm
through a 320-500 nm reflection and 520-800 nm transmission dichroic mirror with a
gain of 25, averaged over 10 reads, and an integration time of 40 µs.

Table 4.2: NEB PURExpress CFES master mix.

Component Volume (µL)
Solution A 5
Solution B 3.75

RNAseA inhibitor 0.25
Sucrose (1.5M) 0.67
Plasmid DNA x

Water Fill to 12.5
TOTAL 12.5

Table 4.3: Arbor Biosciences myTXTL Sigma70 CFES master mix. T7 RNAP (NEB, USA) is
added to the master mix only for T7 RNAP-mediated transcription of the pEXP5-NT/6xHis
eGFP plasmid.

Component Volume (µL)
Sigma70 MM 5

T7 RNAP (50 units/µL) 0.25
Plasmid DNA x

Water Fill to 12.0
TOTAL 12.0

4.2.2 Quorum sensing plasmid constructs

The quorum sensing system from Vibrio fischeri was used to create a genetic cir-
cuits that allow AHL diffusion-mediated communication between synthetic cells. Sep-
arate plasmids expressing LuxI, LuxR, and eGFP proteins under transcriptional con-
trol of either T7 RNA polymerase (T7 RNAP) or the lux promoter (pLux) were con-
structed to test the functionality of the different parts of the quorum sensing gene
circuit. Specifically, the plasmids pEXP5-NT/6xHis LuxRopt, pEXP5-NT/6xHis Lux-
Iopt, pEXP5-NT/pLux 6xHis eGFP, and pEXP5-NT/pLux 6xHis LuxIopt were con-
structed under the same high-copy ampicillin resistance pEXP5-NT vector backbone
(Invitrogen, USA) (Figure 4.2B). Plasmids pEXP5-NT/6xHis LuxRopt and pEXP5-
NT/6xHis LuxIopt have a constitutive T7 RNA polymerase-mediated promoter and
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Figure 4.2: Quorum sensing gene cicruits for intercellular communication. (A) Positive con-
trol plasmids pEXP5-NT/6xHis eGFP and p70a(2) deGFP for constitutive T7 RNAP and
σ70-mediated transcription, respectively. (B) Quorum sensing plasmids pEXP5-NT/6xHis
LuxRopt, pEXP5-NT/6xHis LuxIopt, pEXP5-NT/pLux 6xHis eGFP, and pEXP5-NT/pLux
6xHis LuxIopt. Promoters are annotated with either pT7, pLux, or p70a for T7 RNAP
constitutive, LuxR-AHL inducible, or σ70 constitutive promoters, respectively.

strong ribosomal binding site (RBS) for expression of LuxR and LuxI, respectively.
Plasmids pEXP5-NT/pLux 6xHis eGFP and pEXP5-NT/pLux 6xHis LuxIopt are con-
trolled by the lux promoter that is induced by the LuxR-AHL transcription factor
complex and strong RBS. The genes luxR and luxI were codon optimized for E. coli
K12 expression with a relative threshold for rare codons of 0.3 in Geneious (v11.0.2,
www.geneious.com) to avoid rare codon usage. The quorum sensing plasmids were first
tested in bulk E. coli extract-based CFES reactions by preparing a master mix according
to Table 4.1, adding different combinations and concentrations of the plasmids pEXP5-
NT/6xHis LuxRopt, pEXP5-NT/6xHis LuxIopt, pEXP5-NT/pLux 6xHis eGFP, and
pEXP5-NT/pLux 6xHis LuxIopt, as well as N-(3-oxohexanoyl)-L-homoserine lactone
(3OC6-HSL) or also called N-(β-ketocaproyl)-L-homoserine lactone (Sigma, USA), and
monitoring for eGFP expression in a plate reader over time at 30 ◦C as described in
Section 4.2.1. Plasmid construction protocols and sequences are further described in
Appendix B. All plasmids were sequence confirmed by Sanger sequencing.

4.2.3 Encapsulated quorum sensing CFES reactions

Combinations of the quorum sensing plasmids were used to make up the three differ-
ent quorum sensing gene circuits: a sender circuit, receiver circuit, and positive feedback
circuit (Figure 4.3). The sender gene circuit is composed of the pEXP5-NT/6xHis Lux-
Iopt, which constitutively expresses the AHL synthase LuxI. The LuxI enzyme is able
to produce AHL using precursors available in the E. coli extract to induce the receiver
circuit. The receiver gene circuit is composed of both pEXP5-NT/6xHis LuxRopt and
pEXP5-NT/pLux 6xHis eGFP plasmids. Addition of AHL that is externally added or
produced by the sender circuit to the receiver gene circuit will result in the formation
of the LuxR-AHL complex and induction of eGFP expression. The positive feedback
gene circuit is composed of the pEXP5-NT/6xHis LuxRopt, pEXP5-NT/pLux 6xHis
LuxIopt, and pEXP5-NT/pLux 6xHis eGFP plasmids. In the positive feedback circuit,
addition of AHL will result in the formation of the LuxR-AHL complex and induction
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of LuxI and eGFP expression. The LuxI enzyme then produces more AHL to further
induce itself in a positive feedback. E. coli extract-based CFES are prepared according
to Table 4.1 with the different quorum sensing gene circuits.

Figure 4.3: Quorum sensing gene cicruits for intercellular communication. (A) The sender
gene circuit constitutively expresses LuxI and produces the AHL signal. (B) The receiver gene
circuit constitutively expresses LuxR and can induce the plasmid pEXP5-NT/pLux 6xHis
eGFP with the addition of AHL. (C) The positive feedback gene circuit also constitutively
expresses LuxR, and both luxI and egfp genes are regulated by the lux promoter. The addition
of AHL will result in a positive feedback where LuxI and eGFP are expressed and produces
more AHL.

Inverse emulsion phase transfer

Encapsulation was first done by inverse emulsion phase transfer as described in Sec-
tion 3.2.3, but using the E. coli extract-based CFES inner and outer feeding buffer
solution prepared according to Table 4.4 with their final osmolarities balanced. Syn-
thetic cells encapsulating the receiver gene circuit (0.5 nM pEXP5-NT/6xHis LuxRopt
+ 10 nM for pEXP5-NT/pLux 6xHis eGFP) was tested by externally adding 200 nM
AHL in the outer solution after inverse emulsion phase transfer. Synthetic cells en-
capsulating the sender gene circuit (0.5 nM pEXP5-NT/6xHis LuxIopt) were tested
by combining them with receiver synthetic cells to determine if they are able to cause
induction of gene expression in the receiver cells. Sender cells and receiver cells were
made by successive inverse emulsion phase transfer of receiver and sender gene circuits
in the E. coli extract-based CFES as shown in Figure 4.4, where the receiver synthetic
cells in solution is used as the outer buffer for phase transfer inverse emulsion of sender
synthetic cells. Texas Red DHPE or DiD lipid dyes are used for the receiver and sender
cells, respectively, to differentiate the two cell types. After the quorum sensing syn-
thetic cells were generated and induced, samples were incubated at 30 ◦C for 4 hours
and then imaged under confocal microscopy. Confocal microscopy was done with an
LSM 880 with Airyscan and C-Apochromat 40x/1.2 W autocorr M27 objective. Excita-
tion/detection wavelengths are 488 nm/505-515 nm for eGFP protein, 594 nm/605-615
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nm for Texas Red DHPE, and 633/640-720 nm for DiD dye.

Table 4.4: Inner and outer solutions for E. coli extract-based CFES synthetic cells. Volumes
are given for one bulk reaction volume (1X). For generating a synthetic cell population, 9X
and 45X volumes are prepared for the inner and outer solutions, respectively. Pluronic acid
is added only for microfluidic-generated synthetic cells and not for inverse emulsion phase
transfer-generated synthetic cells.

Component (µL) Inner Outer
Solution A 1.8 1.8
Solution B 1.75 1.75

200 mM MgGlu 0.125 0.125
Extract 5 0
S30B 0 5

Plasmid DNA x 0
10% Pluronic acid 0 (0.3125)

Water Fill to 12.5 Fill to 12.5
TOTAL 12.5 12.5

Osmolarity (mOsmol/kg) 667 667

Microfluidic-generated synthetic cells

Synthetic cells were also generated by microfluidics as described in Section 3.2.3,
but using the E. coli extract-based CFES inner and outer feeding buffer solution
prepared according to Table 4.4 and a lipid-oil solution composed of 6.5 mM of L-
α-phosphatidylcholine (Egg PC) phospholipids (Avanti, USA), and 53.3 µM of DiD
(Thermo, USA) or 8 µM Texas Red DHPE (Biotium, USA) fluorescent dye. How-
ever, unlike the PURExpress CFES, we found that E. coli extract-based CFES was
not compatible with the octanol oil phase solution. This was observed in microfluidic-
generated synthetic cells encapsulating E. coli extract-based CFES with a constitutive
pEXP5-NT/6xHis eGFP DNA plasmid (10 nM) that did not express any fluorescent
eGFP protein. We further confirmed that the oil was responsible for the decrease in
gene expression by overlaying bulk 12.5 µL reactions of E. coli extract-based CFES
with 10 nM pEXP5-NT/6xHis eGFP DNA plasmid with 2 µL of different oil phases
(mineral oil, octanol, and oleic acid) on top. Only the CFES with mineral oil overlay
expressed eGFP protein, while the other oil phases inhibited eGFP expression. All
reactions were incubated for 4 hours at 30 ◦C before imaging or measuring eGFP flu-
orescence in the plate reader. Bulk CFES reactions were prepared in 384-well plates
(Greiner Bio-One, Austria), sealed with a clear plate film (Thermo, USA), and mea-
sured using a Genios Pro plate reader (TECAN, Switzerland). Excitation/emission
filter wavelengths for eGFP or deGFP detection were 485/535 nm through a 320-500
nm reflection and 520-800 nm transmission dichroic mirror with a gain of 25, averaged
over 10 reads, and an integration time of 40 µs. Synthetic cell populations were imaged
using fluorescence widefield microscopy (Andor Axiovert 200M, Zeiss) with a 20x/0.4
LD A-Plan Ph2 objective and Andor Zyla PLUS sCMOS camera. Fluorescence excita-
tion/emission was set at 550nm through a ROX filter set (excitation bandpass 575±15
nm, beam splitter HC BS 596 nm, emission BP 641±75 nm) for Texas Red DHPE and
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Figure 4.4: Quorum sensing synthetic cells by inverse emulsion phase transfer. (A) Receiver
synthetic cells are made by encapsulating 0.5 nM pEXP5-NT/6xHis LuxRopt + 10 nM for
pEXP5-NT/pLux 6xHis eGFP in E. coli extract-based CFES into liposomes tagged with
Texas Red DHPE. The top oil layer is removed before either inducing the synthetic cells
with AHL, or using it as the outer solution for generating sender synthetic cells. (B) Sender
synthetic cells are made by encapsulating 0.5 nM pEXP5-NT/6xHis LuxIopt in E. coli extract-
based CFES into liposomes tagged with DiD dye. The outer solution used already contains
receiver cells from (A) so that the resulting cell population after phase transfer will contain
both receiver and sender cells.

a GFP/Alexa 488/FITC filter set (excitation bandpass 449-489 nm, dichroic longpass
497 nm, emission bandpass 502-549 nm) for eGFP.

4.2.4 Generating heterogeneous synthetic cell populations

Using a two-inlet double-emulsion microfluidic device [225], PURExpress CFES re-
actions were encapsulated into synthetic cell populations with varying plasmid DNA
concentration distributions. This was achieved by preparing the two inner PUREx-
press CFES solutions according to Table 3.1 with different pEXP5-NT/6xHis mCherry
F30-2xdBroccoli DNA plasmid concentrations (1 nM and 10 nM) and adjusting the
pressure ratio of the inlets during synthetic cell production (Figure 4.5). The two
inner CFES solutions, lipid oil phase, and outer buffer solution (Table 3.2) were dis-
pensed at approximate pressures of 50-70:50-70:80:80 mbar, respectively, to encapsu-
late the inner solutions into double-emulsions to form liposomes. The lipid oil phase
was composed of 1-Octanol (Sigma, USA) with 6.5mM of L-α-phosphatidylcholine
(Egg PC) phospholipids (Avanti, USA), and 53.3 µM of 1,1’-Dioctadecyl-3,3,3’,3’-
Tetramethylindodicarbocyanine, 4-Chloro benzenesulfonate Salt (DiD) fluorescent dye
(Invitrogen, USA). Flow regimes and double-emulsion formation in the microfluidic de-
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vice were monitored under brightfield microscopy using a Zeiss Andor Axiovert 200M
with a 5x/0.15 Plan-Neofluar Ph1 M27 objective and PCO Dimax S4 Monochrome
sCMOS high-speed camera. The synthetic cells were collected into a microcentrifuge
tube and then placed in channels made from parafilm sandwiched between a micro-
scope slide (76x26x1 mm) and cover slip (24x60 mm). The ends of the channels were
sealed with Twinsil Speed silicone (Picodent, Germany) to avoid evaporation. Prepared
synthetic cell populations were imaged by confocal laser scanning microscopy using an
inverted Zeiss LSM 880 with Airyscan and a 10X/0.45 Plan-Apochromat M27 objec-
tive. The samples were maintained at 30 ◦C. Laser excitation wavelengths were 488
nm, 488 nm, 561 nm, 633 nm for Broccoli RNA, eGFP protein, mCherry protein, and
DiD dye, respectively. Emission wavelengths were 499-561 nm, 499-561 nm, 579-641
nm, and 640-720 nm for Broccoli RNA, eGFP protein, mCherry protein, and DiD dye
detection, respectively. Images were focused at the equator of the synthetic cells and
then acquired every 5 mins for a total of 12 hours. Timelapse images were processed
using Fiji (v1.53c) [217] and Python (v3.6) with Scikit-image [268]. Further details
for calibration, microfluidic chip fabrication and pretreatment, and image analysis are
available in Appendix E, F, and G, respectively.

Figure 4.5: Single and two-inlet double emulsion microfluidics. The single-inlet microfluidic
device (top) results in the production of monodisperse synthetic cells with uniform concen-
trations of encapsulated contents. The two-inlet microfluidic device (bottom) can generate
monodisperse synthetic cells with varying encapsulated contents by providing inlet solutions
with different compositions and adjusting pressure ratios between the two inlets during syn-
thetic cell production.

4.3 Results

4.3.1 Testing the quorum sensing in bulk CFES

First, the expression activity of the homemade E. coli extract-based CFES was com-
pared with standard reactions of commercially available CFES. Both T7 RNAP and
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native σ70-mediated transcription were tested using the pEXP5-NT/6xHis eGFP and
p70(2) deGFP plasmids, respectively. T7 RNAP-mediated transcription is greated in
our homemade E. coli extract-based CFES as compared to the PURExpress CFES and
myTXTL Sigma70 CFES supplemented with T7 RNAP. However, σ70-mediated tran-
scription in the homemade extract is lower as compared to the activity of the myTXTL
Sigma70 CFES using the p70(2) deGFP plasmid (Figure 4.6). Nevertheless, this demon-
strates that both T7 RNAP and σ70-mediated transcription are active and sufficient for
our quorum sensing plasmids with either T7 RNAP (pT7) or σ70-mediated lux (pLux)
promoters. Next, bulk E. coli extract-based CFES reactions were used to test if the
quorum sensing gene circuits function as expected. The receiver gene circuit (pEXP5-
NT/pLux 6xHis eGFP and pEXP5-NT/ 6xHis LuxRopt) in the E. coli extract-based
CFES shows that addition of increasing amounts of AHL (0-200 nM) results in greater
eGFP expression. Alternatively, addition of pEXP5-NT/6xHis LuxIopt plasmid is suf-
ficient to induce the lux promoter and express eGFP (Figure 4.7). We also show that
as little as 0.5 nM of pEXP5-NT/6xHis LuxIopt or pEXP5-NT/pLux 6xHis LuxIopt
plasmid results in maximum eGFP expression of the quorum sensing receiver gene cir-
cuit, while higher concentrations result in a decreased eGFP output (Figure 4.8). This
can be a result of resource-sharing in the CFES where the different plasmids share in
the same pool of expression resources which we have also observed in Figure 3.8E and F
of the previous section between eGFP and mCherry expression. Notably, both consti-
tutive pEXP5-NT/6xHis LuxIopt and AHL inducible pEXP5-NT/pLux 6xHis LuxIopt
plasmids resulted in roughly the same eGFP expression despite having no external AHL
added. This could be a result of the leaky expression of the lux promoter. Overall, these
results demonstrate that both LuxR protein and AHL are required to induce eGFP ex-
pression under the lux promoter. In addition, expressed LuxI in our homemade E. coli
extract-based CFES can produce the AHL inducer for the quorum sensing system.

Figure 4.6: Gene expression activity of the E. coli extract-based CFES. (A) Comparison of
constitutive T7 RNAP-mediated expression in the homemade extract with PURExpress CFES
and myTXTL Sigma70 extract-based CFES using the pEXP5-NT/6xHis eGFP plasmid. (B)
Comparison of constitutive σ70-mediated expression in the homemade extract-based CFES
with myTXTL Sigma70 CFES using the p70(2) deGFP plasmid. To allow T7 RNAP-mediated
expression, 0.25 µL of T7 RNAP was added into in the myTXTL Sigma70 CFES master mix.
Plasmid concentrations used are indicated in the figure legends.
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Figure 4.7: Testing quorum sensing plasmids in bulk CFES. (A) E. coli extract-based CFES
with 20 nM pEXP5-NT/pLux 6xHis eGFP and 2.0 nM pEXP5-NT/6xHis LuxRopt titrated
with 50, 100, and 200 nM AHL. (B) E. coli extract-based CFES with the receiver gene circuit
only and both receiver and sender gene circuits. Plasmid concentrations for the gene circuits
are 20 nM pEXP5-NT/pLux 6xHis eGFP and 2.0 nM pEXP5-NT/6xHis LuxRopt for the
receiver gene circuit, and 2.0 nM pEXP5-NT/6xHis LuxIopt for the sender gene circuit.

Figure 4.8: Titrating LuxI-producing plasmids in quorum sensing bulk CFES. (A) E. coli
extract-based CFES with 10 nM pEXP5-NT/pLux 6xHis eGFP and 0.5 nM pEXP5-NT/6xHis
LuxRopt supplemented with increasing amounts of pEXP5-NT/6xHis LuxIopt. (B) E. coli
extract-based CFES with 10 nM pEXP5-NT/pLux 6xHis eGFP and 0.5 nM pEXP5-NT/6xHis
LuxRopt supplemented with increasing amounts of pEXP5-NT/pLux 6xHis LuxIopt.

4.3.2 Quorum sensing in synthetic cell populations

We next tested if the quorum sensing gene circuits would function in E. coli extract-
based CFES encapsulated into liposomes. Using the inverse emulsion phase transfer
method, synthetic cells containing either the quorum sensing receiver gene circuit or
sender gene circuit were generated. Receiver synthetic cells were inducible by the ad-
dition of 100 nM 3OC6-homoserine lactone in the external solution (Figure 4.9A and
B). However, sender synthetic cells were unable to induce expression of receiver cells
in close proximity (Figure 4.9C). We suspect that this is due to dilution of the AHL
signal molecule as the total number and volume of the sender cells is much less than
the volume of the external solution. Assuming a population of 1000 sender cells with
an average diameter of 20 µm in a 100 µL outer solution, the dilution factor would be
in the range of 1/105. Generating quorum sensing synthetic cell populations using our
double-emulsion microfluidic method would avoid this dilution problem as synthetic
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cells are larger and packed more densely in a low volume channel (up to 7 µL). This
was initially attempted, but both externally induced receiver cells and a mixed pop-
ulation of receiver and sender cells did not show any eGFP expression (Figure 4.10).
We found that the 1-octanol used for the oil phase was not compatible with the E.
coli extract-based CFES. This was confirmed by overlaying different oil phases on bulk
CFES reactions and monitoring constitutive gene expression of eGFP from the pEXP5-
NT/6xHis eGFP plasmid DNA. Mineral oil did not affect cell-free gene expression but
1-octanol and oleic acid inhibited cell-free gene expression. We hypothesize that this
is due to the functional groups of the oil phase components affecting the CFES en-
vironment, such as oleic acid lowering the pH [253]. We are currently investigating
alternative oil phase solutions that are compatible with both the E. coli extract-based
CFES and double-emulsion microfluidics (e.g. squalene, decane, or mixtures of octanol
and mineral oil).

Figure 4.9: Encapsulated quorum sensing gene circuits in E. coli extract-based CFES. Confo-
cal images are taken at endpoint after a 4 hour incubation at 30 ◦C. (A) A receiver synthetic
cell without AHL. (B) A receiver synthetic cell with 100 nM AHL (3OC6-HSL) induction to
resulting in eGFP expression (green). (C) Receiver (magenta) and sender (yellow) synthetic
cells in close proximity did not result in induction of the receiver cell by the sender cell to
express eGFP. Liposomes were generated by inverse emulsion method. Scale bar is at 25 µm.

Figure 4.10: Quorum sensing synthetic cells generated by double-emulsion microfluidics. Con-
focal images are taken at endpoint after a 4 hour incubation at 30 ◦C. (A) Receiver synthetic
cells induced with 100 nM AHL (3OC6-HSL) to induce eGFP expression. (B) Receiver (yel-
low) and sender (magenta) quorum sensing cells in a mixed synthetic cell population for sender
cells to induce the receiver cells. Induction of eGFP expression in both cases was not observed
due to oil incompatibility with the CFES. Scale bar is at 100 µm.

79



4.3.3 Variability & heterogeneity in synthetic cell populations

Heterogeneous synthetic cell populations were generated using a two-inlet microflu-
idic chip. By varying the pressures of the two inner solutions during production between
50-70 mbar, different ratios of the two inner solutions are mixed into the synthetic cells.
Figure 4.11 shows the resulting synthetic cell population from a two-inlet microfluidic
device and compares this with a population generated from a single-inlet microfluidic
device. The synthetic cell population generated by a single-inlet microfluidic chip had
expressed Broccoli RNA and protein coefficient of variation (CV) values of 0.02-0.03
(Table 3.5). The two-inlet microfluidic chip-generated synthetic cell population has a
CV of 0.29 and 0.17 for expressed Broccoli RNA and mCherry protein, respectively
Figure 4.12. This is despite similar low size variations between them (0.04-0.07 and
0.075 for single and two-inlet populations, respectively), indicating that the increased
variability is a result of different concentrations of plasmid DNA encapsulated with the
inner solution. A heterogeneous synthetic cell population can also be made by mixing
together synthetic cells from different batches. To demonstrate this, synthetic cells
from Section 3.3.4 encapsulating different pEXP5-NT/6xHis mCherry F30-2xdBroccoli
plasmid DNA concentrations (1.75, 3.5, and 7.0 nM) were mixed together to form a
heterogeneous population (Figure 4.13). This results in a heterogeneous population
with distinct subpopulations instead of a single population with a large variance that
is produced using the two-inlet microfluidic device.

Figure 4.11: Comparison of single inlet vs. two-inlet microfluidics. (A) A single inlet mi-
crofluidic device encapsulating inner PURE CFES solution with 3.5 nM pEXP5-NT/6xHis
mCherry F30 2xdBroccoli plasmid DNA results in liposomes with low variance of gene expres-
sion where endpoint protein RFU CV is 0.03. (B) In contrast, the two-inlet device results in
a greater variance of endpoint protein RFU CV at 0.17. The variance of encapsulated DNA
was increased by randomly changing the ratio of the two inlet pressures during production.
Each inlet had PURE CFES with either 1 nM or 10 nM pEXP5-NT/6xHis mCherry F30
2xdBroccoli plasmid DNA. Representative endpoint images of expressed mCherry for each
microfluidic device is shown on the right. Scale bars are all at 100 µm.
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Figure 4.12: Heterogeneous synthetic cell population made by two-inlet microfluidics. Syn-
thetic cells encapsulating PURExpress CFES with 1-10 nM pEXP5-NT/6xHis mCherry F30
2xdBroccoli plasmid DNA. (A) Confocal images of DiD dye-tagged lipid membrane (left),
expressed Broccoli mRNA (middle), and mCherry protein (right) at endpoint after 8 hours of
incubation at 30 ◦C. Scale bar is at 100 µm. (B) Histograms of radius (µm), Broccoli mRNA
RFU, and mCherry protein RFU of the synthetic cell population at the same endpoint. Black
lines are gaussian distribution fits on the histograms. Coefficient of variation (CV) values of
each plot are noted. (C) Single cell timeseries of the synthetic cell population for Broccoli
mRNA and mCherry protein.

Figure 4.13: Heterogeneous population from mixed batches of synthetic cells. After production
of the three synthetic cell populations presented in Section 3.3.4 (Figure 3.9-3.10), the three
synthetic cell populations were combined to form a heterogeneous population with distinct
subpopulations. (A) Endpoint confocal images of the heterogeneous synthetic cell population
for the lipid, Broccoli RNA, and mCherry protein channels (left to right) after 12 hours of
incubation at 30 ◦C. Scale bar is at 100 µm. (B) Histograms of radius (µm), Broccoli RNA
(RF), and mCherry protein (RFU) of the synthetic cell population at the same endpoint.
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4.4 Conclusions

We presented our current progress in building a synthetic cell population that is
capable of quorum sensing communication. By utilizing an E. coli extract-based CFES,
we avoid the need to externally provide of the precursors of the AHL signal molecule
(SAM and acylACP). The quorum sensing gene circuits were shown to function in bulk
and liposomes generated by inverse emulsion. However, microfluidic-generated synthetic
cells were incompatible with the E. coli extract-based CFES. Specifically, the octanol
oil phase inhibited gene expression in E. coli extract-based CFES. We are currently
searching for an alternative for octanol that is compatible with both microfluidics and
E. coli extract-based CFES. We also presented a method to incorporate variability in a
monodisperse synthetic cell population. Heterogeneous synthetic cell populations can
be made by using a two-inlet microfluidic device or by simply mixing two batches of
synthetic cell populations together to provide a single population with a large variance
or several distinct subpopulations, respectively. Combined together, these can be used
as an in vitro platform to study the interplay between cell-to-cell communication and
population variability in a minimal context. Although very simple and minimal, this
synthetic multicellular system can potentially be modified with different encapsulated
gene circuits with feedback loops or different modes of intercellular signalling to create
more complex systems in the future.
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Chapter 5

Modeling variability &
communication in synthetic cell
populations∗

In the recent decades, biological research has greatly benefited from new technolo-
gies that allow investigation of biological systems in multiple scales and dimensions.
For example, fluorescence-activated cell sorting (FACS) by flow cytometry can be used
to provide snapshot data of the distribution of cells growing in a bacterial culture over
time [14]. Unlike bulk methods that measure only population averaged values, single
cell resolution data provides more information about the distribution of the population.
This added information can be useful in determining the underlying reaction and sig-
nalling networks that can shape population distributions within biological multicellular
systems. For instance, secrete-and-sensing yeast cells can respond to stimuli in a uni or
bi-modal fashion depending on the strength of positive feedback against the signalling
molecule [293]. Paracrine signalling is proposed to reduce the response variability of
cells around a wound site by the action of a fast diffusing epidermal growth factor
(EGF). The fast diffusion of EGF averages-out in the external environment and trig-
gers a uniform and coordinated response in the nearby cells [105]. Spatiotemporal data
of cells can be further tracked to get single cell trajectories over time in fluorescence mi-
croscopy videos [127]. Unlike snapshot data, single cell trajectories additionally provide
information on the genealogy or history of individual cells, which can clarify correlations
in cell variables [277]. To take advantage of single cell resolution data, many types of
mathematical models have been developed to simulate biological multicellular systems.
These include models that treat each cell as an individual in cell ensemble models or
agent-based models, or population density models that provide a density description
of the population dynamics. Intercellular variability can be considered by assigning
cell parameters or initial conditions as random variables, or random effects, over the
population. Cell ensemble and agent-based models are relatively easy and flexible to
setup. Intracellular dynamics can be modeled using differential equations derived from
a reaction or rule-based network. However, these become computationally expensive

∗This chapter is partially based on the article: Gonzales DT, Tang TYD, Zechner C. Moment-
based analysis of biochemical networks in a heterogeneous population of communicating
cells. IEEE 58th Conference on Decision and Control (CDC), 939-944, 2019. [94]
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to simulate large cell populations, making iterative methods for the inverse problem
of parameter estimation challenging. In addition, large cell ensembles are required to
accurately obtain population distributions [277, 241]. Population density models avoid
the need to simulate individual cells by considering only the dynamics of the popula-
tion distribution or its moments. For example, the dynamics of a cell population can
be described by a chemical master equation (CME) or cell population master equation
(CPME), which can account for intracellular stochastic reactions (intrinsic noise) and
cell-to-cell variability (extrinsic noise) in the population [241, 296]. However, solutions
of complex population density models can be analytically intractable and require ap-
proximations and numerical approaches to solve [296].

In this chapter, we present two methods to model a synthetic cell population with
a fixed population size. The first uses a cell ensemble approach to model a population
of independent (i.e. non-communicating) and identically-distributed cells. To account
for cell-to-cell variability, parameters and initial conditions of individual cells are drawn
from a distribution and simulated using a set of deterministic reaction rate equations
with either random or fixed parameters in a mixed-effects model. The second method is
a population density model for secrete-and-sensing communicating cells [293, 19], such
as the quorum sensing system described in Chapter 4. Here, we consider cells that are
subject to both stochastic chemical reactions (intrinsic noise) and cell-to-cell parameter
variability (extrinsic noise) and capture the lower-order moment dynamics of the cell
population from the CME [296]. However, because cells are no longer independent in a
population of communicating cells, the number of equations required will be dependent
on the number of cells in the population. By applying a symmetry-based model reduc-
tion based on the work of Batmanov et al. (2012) [19], the reduced model becomes
independent of the population size and computationally efficient.

5.1 Mixed-effects modeling for cell populations

Mixed-effects models describe the response of a system using model parameters that
are either fixed or random to account for variability and correlations across a popula-
tion and/or subpopulations. The fixed effects are parameters that are identical over the
entire population, while random effects are parameters that vary within the population.
Using a mixed-effects model is particularly useful for biological datasets that are highly
structured and subject to noise and variability. This approach has been used extensively
from early population pharmacokinetic studies [18] to more recent single cell resolution
studies [80, 158]. Explicitly describing the mixed-effect structure of a model can help
parameter inference if the specific sources of variability are appropriately identified.
In addition, inferring the magnitude of variation of parameters and their correlations
within the population can also be the central goal of the study [106]. Fixed and random
effect parameters in mixed-effects models can be estimated by finding the parameter
set that gives the maximum a posteriori probability (MAP) estimate from the observed
data. However, directly calculating the MAP for mixed-effects models with large pop-
ulations is computationally expensive if all population and individual cell parameters
are estimated simultaneously. Instead, we apply an alternative approach similar to
an expectation-maximization (EM) algorithm [278] where random and fixed param-
eters are estimated separately and iteratively until convergence, effectively reducing
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the space over which optimization is done. In this section, we develop a mixed-effects
model structure and infer its parameters from a simulated dataset of gene expression
in a heterogeneous synthetic cell population.

5.1.1 Notation for mixed-effects models

In a mixed-effects model, we consider parameters that are either fixed or random fol-
lowing a certain distribution over the population. For instance, the output or measured
data Yi,j can be described by

Yi,j = f(ti,j,ψi) + εi,j (5.1)

where f() is the model with input time ti,j and cell parameters ψi. The indices i
and j are for the cell and time index, respectively. The random number εi,j is the
measurement error that we assume follows a normal distribution

εi,j ∼ N(0,σ2). (5.2)

The parameter ψi is a cell-specific vector that collects the fixed (θ) and random (φi)
parameters

ψi =

(
θ
φi

)
. (5.3)

We consider the random effect parameters follow a multivariate lognormal distribution

φi ∼ LN(µ,Σ) (5.4)

where µ and Σ are the hyperparameters of the random effects. The lognormal distri-
bution is used to avoid negative parameter values.

5.1.2 MAP estimation for mixed-effects models

Model parameters can be estimated by calculating the maximum a posteriori proba-
bility (MAP) of the model given the data. Specifically, we aim to maximize the posterior
probability of the parameter set given the observed data

p(θ,φ,µ,Σ,σ2|Y ) =
p(Y ,θ,φ,µ,Σ,σ2)

p(Y )
(5.5)

=
p(Y |θ,φ,σ2)p(φ|µ,Σ)p(µ,Σ)

p(Y )
(5.6)

∝ p(Y |θ,φ,σ2)p(φ|µ,Σ), (5.7)

where Equation 5.7 follows from considering flat priors over the hyperparameters µ and
Σ. Minimizing the negative logarithm of Equation 5.7 with respect to all parameters
to obtain the MAP estimate is usually analytically intractable and computationally
expensive to solve. To address this problem, we use a heuristic approach that iterates
between optimizing the fixed and random effects until convergence of MAP estimate.
This avoids the difficult problem of minimizing all cell and population parameters to-
gether, which will lead to a very high-dimensional optimization problem with large cell
populations. The method for optimization is illustrated in Algorithm 1.
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Algorithm 1 Iterative method for MAP estimation of a mixed-effects model.

1: Set riters and fiters . Number of random and fixed effect iterations.
2: Initialize all parameters {θ,σ2,φ,µ,Σ}
3: for k in 1:fiters do
4: θ̂, σ̂2 = argmaxθ,σ2(p(Y |θ,σ2;φ)) . Optimize fixed effects.

5: Update θ, σ2 with θ̂, σ̂2

6: for j in 1:riters do
7: for i in 1:cells do . Optimize random parameters.
8: φ̂i = argmaxφi

(p(Y |φi;θ,σ2)p(φi|µ,Σ))

9: Update φi with φ̂i
10: end for
11: µ̂, Σ̂ = argmaxµ,Σ(p(φ|µ,Σ)) . Optimize hyperparameters.

12: Update µ, Σ with µ̂,Σ̂
13: end for
14: end for

5.1.3 Parameter estimation of heterogeneous cell populations

Using the method described in Section 5.1.2, we estimate the parameters of a sim-
ulated dataset of gene expression in heterogeneous synthetic cell populations modeled
with mixed-effects. Gene expression dynamics in a single synthetic cell follows the set
of differential equations

d[DNA]

dt
= 0 (5.8)

d[RNA]

dt
=

kr[DNA]

Kr + [DNA]
− δr[RNA] (5.9)

d[Protein]

dt
=

kp[RNA]

Kp + [RNA]
− δp[Protein] (5.10)

where kr, Kr, kp, Kp, δr, and δp are transcription rate, translation rate, RNA degra-
dation rate, and protein degradation rate parameters, respectively. Kr, and Kp are
Michaelis-Menten equilibrium constants for transcription and translation processes. For
the generated dataset, we simulated two populations of synthetic cells with all rate pa-
rameters fixed at kr = 30 nM/hr, Kr = 20 nM, kp = 80 nM/hr, Kp = 70 nM, δr = 0.5
1/hr, and δp = 0.2 1/hr. However, initial DNA concentrations are log-normally dis-
tributed over the populations with parameters µ = 1 and σ = 0.5 for population 1 and
µ = 3 and σ = 0.3 for population 2. This simulated dataset is similar to the experi-
ment demonstrated in Section 4.3.3. Each synthetic cell population has a total of 15
cells. The simulated dataset has a Gaussian measurement error of N(0, 0.25) for RNA
and N(0, 0.64) for protein is shown in Figure 5.1. Using this simulated dataset, we
estimated the parameters of the model with the same random effect structure where all
rate parameters are fixed and initial DNA concentrations are log-normally distributed
for each population. We also assumed that the parameters Kr, Kp, δr, and δp were
known so that the unknown parameters were only kr, kp, and initial DNA concentra-
tions. Figure 5.2 and Table 5.1 show that gene expression dynamics, as well as fixed
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and random effect parameters were accurately recovered by MAP estimation using Al-
gorithm 1 using 50 fixed effect iterations (fiters) with 5 inner random effect iterations
(riters) each.

Figure 5.1: Simulated gene expression dynamics in two heterogeneous cell populations. RNA
(left) and protein (right) dynamics are described by the model in Equation 5.8-5.10 with fixed
rate parameters kr = 30 nM/hr, Kr = 20 nM, kp = 80 nM/hr, Kp = 70 nM, δr = 0.5 1/hr,
and δp = 0.2 1/hr. Initial DNA concentrations are log-normally distributed with LN(1, 0.5)
for population 1 and LN(3, 0.3) for population 2 with 15 cells each. All traces have a Gaussian
measurement error of N(0, 0.25) for RNA and N(0, 0.64) for protein.

Figure 5.2: Parameter estimation of heterogeneous synthetic cell populations. (A) RNA
and protein dynamics for the two synthetic cell populations and their corresponding fits
(dashed lines). (B) Histograms of initial DNA concentrations of the heterogeneous synthetic
cell populations (pink and red) with the fit initial DNA concentrations (grey and black).
Dashed and solid lines show the log-normal distributions of the populations from the fit
hyperparameters. Note that the x-axis scale is in log scale. (C) Negative logarithm of the
MAP estimate showing convergence after 50 fixed effect iterations. Inset shows the values
from iterations 5-50.
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Table 5.1: True, initial, and fit parameter values of the simulated cell population. LN denotes
a log-normal distribution with parameters µ and σ. All initial [DNA] values were 3 nM and
20 nM for individual cells from population 1 and 2, respectively.

Parameter True Initial Fit
kr 30 10 29.12
Kr 20 - -
kp 80 100 79.98
Kp 70 - -
δr 0.5 - -
δp 0.2 - -
σr 0.5 0.1 0.48
σp 0.8 0.1 0.82

[DNA]1 ∼ LN(µ1, σ1) (1,0.5) (1,1) (1.20,0.45)
[DNA]2 ∼ LN(µ2, σ2) (3,0.3) (1,1) (2.94,0.35)

5.2 Moment dynamics of communicating cells

In this section, we demonstrate an approach to model an intercellularly commu-
nicating cell population with both intrinsic and extrinsic sources of variability. Here,
cells are no longer independent of each other and biochemical reactions are considered
stochastic. Although our cell-free expression systems typically have deterministic gene
expression dynamics, using lower concentrations of DNA plasmids and encapsulating
these into smaller compartments could potentially result in stochastic gene expression
due to lower copy numbers. Computational models and algorithms to study stochas-
tic biochemical networks inside living cells are most commonly based on the chemical
master equation (CME), whose solution provides a time-dependent probability distri-
bution over molecular concentrations [89]. CME-based models can account for the
discrete and random nature of biochemical reactions (intrinsic noise) as well as popula-
tion heterogeneity stemming from differences in each cell’s microenvironment (extrinsic
variability) [71]. The computational analysis of the CME is challenging but several
efficient numerical techniques have been proposed in the past, including stochastic sim-
ulation algorithms [88], moment-based methods [237, 296] and combinations thereof
[215, 67, 82]. However, the majority of existing approaches to study noise in cell pop-
ulations rely on the assumption that individual cells act independently of each other.
More concretely, each cell’s dynamics is considered to be an independent and identically
distributed realization of the same stochastic process. This assumption is violated in
systems where cells communicate with one another to coordinate their behavior [238,
293]. Typical examples include quorum-sensing systems in bacterial colonies [246],
or paracrine communication in higher organisms [105]. Understanding the interplay
between cell-cell communication and the stochastic behavior of individual cells is an
important challenge and demands for suitable mathematical approaches. However,
extending standard techniques to account for cell-cell communication leads to compu-
tational difficulties, because the dimensionality of the resulting models increases with
the number of cells in a population.

Recently, first attempts have been made to develop more tractable stochastic models
of systems of communicating cells. In [238], for instance, the authors use a moment-
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based method to study how neighbour-neighbour-coupling affects concentration fluctu-
ations in a tissue. A related approach has been proposed in [19] to study community
effects in cells that interact with each other by secreting and sensing certain signalling
molecules. In particular, the authors show how the dimensionality of the considered
model can be dramatically reduced by exploiting certain symmetries in the governing
equations. However, both approaches account exclusively for intrinsic noise, whereas
extrinsic sources have not been considered. In [27], the authors study how chemical
communication via a quorum sensing molecule affects intrinsic and extrinsic noise in
cell communities. To obtain tractable simulations, they used a tailored approach that
combines stochastic simulations with a quasi-steady state approximation to eliminate
fast variables from the model. In this section, we develop a moment-based approach to
study noise from both intrinsic and extrinsic sources in secrete-and-sensing communi-
cating cells [293, 19]. We first derive a system of differential equations that captures
lower order moments of the population. Since the number of obtained equations grows
combinatorially with number of considered cells, we perform a symmetry-based model
reduction based on the work of Batmanov et al. (2012) [19]. The dimensionality of the
reduced model is independent of the population size, which makes it computationally
very efficient. We employ this approach to study how noise is affected by cell-to-cell
communication in several biochemical networks.

5.2.1 Moment-based analysis of secrete-and-sensing cells

We consider a population of N genetically identical cells that communicate with
each other through a diffusing signalling molecule such as a quorum sensing signalling
molecule. Each individual cell i is associated with an identical set of S chemical species
Xi,1, . . . ,Xi,S that interact with one another viaM biochemical reaction channels. With-
out loss of generality, we consider the first S−1 species to be confined to the intracellular
environment of cell i. The Sth species corresponds to the signalling molecule, which can
shuttle between the intra- and extracellular environment through transport reactions.
For simplicity, we consider the external environment to be well-mixed, such that the im-
port of signalling molecules into any cell i does not depend on the spatial configuration
of the system. In total, the system can be described by a reaction network

S∑
k=1

αj,kXi,k −→
S∑
k=1

βj,kXi,k (5.11)

Xi,S ↼−−⇁ XE, (5.12)

for i = 1, . . . , N and j = 1, . . . ,M − 2. In Equation 5.11, αj,k and βj,k correspond to
the reactant and product coefficients of the respective reaction. In Equation 5.12, the
species XE denotes the signalling molecule in the external environment. In total, the
network comprises NS + 1 chemical species and NM chemical reactions. We define by
Xi(t) = (Xi,1(t), . . . , Xi,S(t)) the state of cell i, which collects the copy numbers of all
species associated with this cell at time t. The state of the overall system is then given
by X(t) = (X1(t), . . . , XN(t), XE(t)), with XE(t) as the number of signalling molecules
in the external environment. Moreover, we denote by νi,k ∈ ZNS+1 the stoichiometric
change vector associated with the kth reaction channel of cell i consistent with reaction
network (Equation 5.11-5.12).
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5.2.2 Moment dynamics of heterogeneous cell communities

If both the intra- and extracellular environments are well-mixed, we can describe
the state X(t) as a continuous-time Markov chain, whose state probability distribution
P (x, t) = P (X(t) = x) admits a master equation of the form

dP (x, t)

dt
=

N∑
i=1

M∑
j=1

[ai,j(x− νi,j, ci,j)P (x− νi,j, t)− ai,j(x, ci,j)P (x, t)]. (5.13)

In Equation 5.13, the function ai,j is the reaction propensity associated with reaction
j in cell i. Throughout this article, we consider the propensities to obey the law of
mass action such that ai,j(x, ci,j) = ci,jgj(xi, xE) with xi as the part of the state vector
associated with cell i, xE as the abundance of the signalling molecule in the environ-
ment, ci,j ∈ R+ as a stochastic rate constant, and gj as a polynomial. Note that while
gj is identical for all cells, we allow the individual rate constants ci,j to vary across the
population. This provides a means to account for extrinsic sources of cell-to-cell vari-
ability [296]. We consider the reaction rate constants for each cell i to be independent
random vectors Ci = (Ci,1, . . . , Ci,M) drawn from a common probability distribution
Ci ∼ pc(·) for i = 1, . . . , N . Note that deterministic (non-varying) reaction rates can
be accounted for by letting pc be a Dirac measure with respect to this parameter. With
C = (C1, . . . , CN), we can formulate a master equation for the conditional distribution
P (x, t | c) = P (X(t) = x | C = c), i.e.,

dP (x, t | c)
dt

=
N∑
i=1

M∑
j=1

[ai,j(x− νi,j, ci,j)P (x− νi,j, t | c)− ai,j(x, ci,j)P (x, t | c)]. (5.14)

To analyze the cell community model, we resort to a moment-based approach, which
provides a lower-dimensional description of the population and its heterogeneity. More
precisely, we seek for the population moments

〈φ(X,C)〉 =
〈
〈φ(X,C) | C〉

〉
=

〈∑
x∈X

φ(x,C)P (x, t | C)

〉
,

(5.15)

with φ : (x, c)→ R as a monomial in (x, c) and X as the domain of X(t). Note that we
omit the dependency of the moments on time for the sake of a compact notation. In
order to derive a differential equation for the time evolution of 〈φ(X,C)〉, we calculate
the derivative of Equation 5.15 and insert the r.h.s. of Equation 5.14

d〈φ(X,C)〉
dt

=

〈∑
x∈X

φ(x,C)
N∑
i=1

M∑
j=1

[ai,j(x− νi,j, Ci,j)P (x− νi,j, t | C)

− ai,j(x,Ci,j)P (x, t | C)]

〉
.

(5.16)
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Using a change of variable, Equation 5.16 simplifies to

d〈φ(X,C)〉
dt

=

〈
N∑
i=1

M∑
j=1

〈
φ(X + νi,j, C)ai,j(X,Ci,j) | C

〉
−
〈
φ(X,C)ai,j(X,Ci,j) | C

〉〉
,

(5.17)

where the inner brackets denote expectations conditionally on the random parameters
C. Now, using double expectations, we obtain

d〈φ(X,C)〉
dt

=
N∑
i=1

M∑
j=1

〈
φ(X + νi,j, C)ai,j(X,Ci,j)

〉
−
〈
φ(X,C)ai,j(X,Ci,j)

〉
.

(5.18)

The Equation 5.18 describes the time evolution of moments and cross moments for a
heterogeneous population of secrete-and-sense cells. It can thus be seen as an extension
of the moment equations derived in [296] to account for cell-to-cell communication.
Indeed, if we set the transport rates to zero, all cells in the population become inde-
pendent of each other such that the two approaches yield equivalent solutions. Note
that depending on the details of the system, the moment equations from Equation 5.18
may not be closed. This is the case in the presence of second-order reactions, or even
first-order reactions if their rate constants are randomly distributed across the popu-
lation. Moment-closure approximation (MA) techniques provide a popular means to
address this problem by imposing certain assumptions on the underlying state proba-
bility distribution [237, 296, 218]. More precisely, this allows us to replace the higher
order moments that appear on the r.h.s. of Equation 5.18 by functions of the lower
order moments. These functions are referred to as closure functions and their partic-
ular form depends on the distributional assumption we make. Popular choices include
the normal [218] and lognormal [237] closure functions and we will adopt those in the
present study. To check the accuracy of our MAs in this study, we compare them with
moments calculated using the Stochastic Simulation Algorithm (SSA) [88]. Through-
out this article, we consider moments of up to second order and replace all third-order
moments that appear on the r.h.s. of (5.18) using MA functions provided in Table 5.2.

Table 5.2: Moment-closure approximation (MA) functions of the order three.

MA 〈X1X2X3〉
Normal 〈X1〉〈X2X3〉+ 〈X2〉〈X1X3〉+ 〈X3〉〈X1X2〉 − 2〈X1〉〈X2〉〈X3〉

Lognormal
〈X1X2〉〈X2X3〉〈X1X3〉
〈X1〉〈X2〉〈X3〉

5.2.3 Symmetry-based model reduction

While Equation 5.18 provides a more tractable description of the cell community
than Equation 5.13, its dimensionality still scales combinatorially with the number of
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considered cells N . In case we consider all first and second order moments, the number
of equations is given by

Keq = 2(NS + 1) +

(
NS +NM ′ + 1

2

)
−
(
NM ′

2

)
, (5.19)

where M ′ is the number of rate constants among the M reactions that vary from cell
to cell. The first term in Equation 5.19 accounts for 1st and 2nd order moments of the
chemical species, and the remaining terms account for all cross-moments of species and
rate constants that change over time. The number of first and second order moment
equations scales quadratically with N , which limits the above approach to relatively
small population sizes. However, the moment system can be reduced substantially
by taking into account the symmetries of the considered model as has been proposed
in [19]. More precisely, if we consider all initial cell states Xi(0) to be identically
distributed, the moment dynamics of each cell will be equivalent and indistinguishable
for all times t > 0 such that 〈Xi,k〉 = 〈Xj,k〉, 〈X2

i,k〉 = 〈X2
j,k〉, 〈Xi,kXj,l〉 = 〈Xm,kXn,l〉,

and 〈Xi,kXE〉 = 〈Xj,kXE〉 for any i 6= j, m 6= n, k and l. Consequently, we can obtain
a reduced model by considering only the moments up to the second order and cross-
moments of the states of any two reference cells Xi(t) and Xj(t) as well as the amount of
signalling molecules in the external environment XE(t). The resulting set of equations
can be reduced further by eliminating all moments associated with one of the two cells
j (e.g., 〈Xj,k〉 or 〈Xj,kXE〉) since those are identical to the corresponding moments of
cell i. In total, the required number of equations is then given by

K̂eq = 2(S + 1) +

(
S + 1 +M ′

2

)
+

(
S +M ′

2

)
− 2

(
M ′

2

)
+ S, (5.20)

which is thus independent of the population size.

5.2.4 Illustrative example

To demonstrate how the original system can be reduced based on symmetries, con-
sider the toy model

Xi,1
Ci,1−−→ Xi,2 (5.21)

Xi,2
c2↼−−⇁
c3

XE, (5.22)

with i = 1, . . . , N . We consider the rate Ci,1 to be randomly distributed across the
population, while c2 and c3 are identical in all cells. We distinguish the moment equa-
tions of the system between two cases. The first case concerns equations that are the
same in the original and reduced model. These are equations of the moments that do
not involve the signalling molecule in the external environment such as 〈Xi,1〉, 〈Xi,2〉,
or 〈Xi,1Xi,2〉. For example, in both the original and reduced models, the expectation of
species Xi,2 satisfies

d〈Xi,2〉
dt

= 〈Ci,1Xi,1〉+ c2〈XE〉 − c3〈Xi,2〉. (5.23)

The dynamics of moments and cross-moments involving the external signalling molecule
depend on all cells in the population due to the transport reactions. In the case of
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〈Xi,2XE〉, the original equation is:

d〈Xi,2XE〉
dt

=〈Ci,1Xi,1XE〉+ c2〈X2
E〉 − c2〈XE〉+ c3〈X2

i,2〉

− c3〈Xi,2XE〉 − c3〈Xi,2〉+
∑
k 6=i

c3〈Xk,2Xi,2〉 − c2N〈Xi,2XE〉.
(5.24)

The terms in the sum capture the dependencies between two cells k and i. Since all
terms in the sum are identical due to the symmetry of the population, they can be
replaced by the contribution of any cell j 6= i multiplied by (N − 1),

d〈Xi,2XE〉
dt

=〈Ci,1Xi,1XE〉+ c2〈X2
E〉 − c2〈XE〉+ c3〈X2

i,2〉

− c3〈Xi,2XE〉 − c3〈Xi,2〉+ c3(N − 1)〈Xj,2Xi,2〉 − c2N〈Xi,2XE〉.
(5.25)

Therefore, if we perform analogous manipulations for all other moments and cross-
moments involving the signalling molecule (e.g., 〈XE〉, 〈Xi,1XE〉) and eliminate all
remaining redundancies between cell i and j, we arrive at a system of 17 coupled
differential equations, independent of the population size N . For further information
on the symmetry-based model reduction approach, the reader may refer to [19].

5.2.5 Case studies

In this section, we use the described moment-based approach to study how cell-cell
communication affects noise in different biochemical networks. Python scripts used for
this study are available in www.github.com/zechnerlab/CommunityMoments. Moment
equations were solved using a SciPy numerical solver (solve ivp). SSA sample paths
from Gillespie’s Direct Method were simulated using Tellurium [43] and used to test the
accuracy of the moment-based approach. For the sake of a compact notation, molecular
species are assigned different letters and reaction rate parameters are assigned letters
with superscripts.

Birth-death process

As a first example, we study a birth-death process in a heterogeneous population of
interacting cells, i.e.,

∅
Cb

i−→ Pi

Cd
i−→ ∅

Pi
ct
↼−−⇁
ct

Q,
(5.26)

for i = 1, . . . , N . Here, the birth and death reaction rate constants are independent
random variables as indicated by capital letters Cb

i and Cd
i , while the transport rate ct

is fixed. For this reaction network, a symmetry-reduced model of up to the second order
can be described using K̂eq = 12 differential equations regardless of the population size.

The goal of this case study is to study how cell-to-cell communication affects the
variability in the abundance of Pi. To quantify variability, we use two metrics: the first
one is the coefficient of variation (CV) defined as

CV[Pi] =

√
〈P 2

i 〉 − 〈Pi〉2
〈Pi〉2

, (5.27)
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for any i = 1, . . . , N . The CV captures the expected variation in protein abundance
inside single cells across different populations. Due to the symmetry, we have CV[Pi] =
CV[Pk] for any i and k. Furthermore, we define the pair variation (PV)

PV[Pi, Pk] =

√
〈(Pi − Pk)2〉
〈Pi〉〈Pk〉

, (5.28)

which captures the expected variation between two different cells i and k within the
same population. Note that in the absence of cell-cell communication, (Equation 5.27)
and (Equation 5.28) are identical up to a scaling factor of

√
2. For a communicat-

ing population, however, this is not the case due to correlations between cells in the
population. In Figure 5.3A and B, we compare the first and second order moments of
species Pi for the symmetry-reduced model of size N = 10 with stochastic simulations
and found a good agreement between the two approaches. In Figure 5.3C-F, we show
the dependency of CV[Pi] and PV[Pi,Pj] as a function of the transport rate as well
as the population size. The coefficient of variation CV[Pi] decreases with increasing
transport rates and to some extent also with the population size. While the pair vari-
ation PV[Pi,Pj] shows a similar decrease with increasing transport rates, it seems to
be independent of the population size. We also show how extrinsic variability changes
the steady-state variability of Pi by increasing the CV of the birth rate parameter Cb

i ,
while keeping all other parameters constant. Both CV[Pi] and PV[Pi,Pj] increase with
increasing extrinsic variability, whereas large transport rates can attenuate this effect
due to spatial averaging of Pi levels (Figure 5.4).

Autocatalytic circuit

Next, we focus on an autocatalytic system defined by

∅
Cb

i−→ Ai

Cd
i−→ ∅

Ai
ca−→ Ai + Ai

Ai
ct
↼−−⇁
ct

B.

(5.29)

Here, we consider Cb
i and Cd

i to be randomly distributed across the population, while
the autocatalytic rate ca and transport rate ct are fixed. In this example, the total num-
ber of reduced equations is K̂eq = 12. To obtain a closed set of moments, we applied the
lognormal closure and checked its accuracy by comparing it to Monte Carlo estimates
of the moments calculated over 1000 SSA realizations (Figure 5.5). We generally found
a good agreement between the MA and the SSA. Similar to the birth-death systems, we
observe that both CV and PV of species Ai decrease with increasing transport rates.
Increasing the population size does not affect the PV, but decreases its CV.

To study the relationship between the CV and PV, we plotted CV[Ai] against
PV[Ai,Aj] in Figure 5.6. As expected, CV and PV are related by a factor of

√
2

when ct = 0. Slight deviations from this scaling are possible due to the approximations
involved in the derivation of the moment equations. In the presence of communication,
PV[Ai,Aj] drops below the

√
2 scaling law, indicating that the variability between cells

in the same population is smaller than the variability of cells across different popula-
tions.
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Figure 5.3: Moment dynamics of communicating cells with a birth-death reaction using the
symmetry-reduced model (Normal MA). (A) First and (B) second order moment dynamics
of species Pi with a population size of N = 10 and ct = [0, 0.1, 0.1]. (C) CV[Pi] and (D)
PV[Pi, Pj ] decrease as transport rate increases for a fixed population size N = 10. Increasing
the population size N = [5, 10, 50] for a fixed ct = 0.1 decreases the (E) CV[Pi], but not (F)
PV[Pi, Pj ]. Other parameters and initial conditions were set to 〈Cb

i 〉 = 1, Var[Cb
i ] = 0.01,

〈Cd
i 〉 = 0.01, Var[Cd

i ] = 1e− 6, 〈Pi(0)〉 = 20, Var[Pi(0)] = 25, 〈Q(0)〉 = 0, and Var[Q(0)] = 0.
Shaded areas are bootstrapped 95% confidence intervals (CI) from 1000 SSA realizations.

Genetic feedback circuit

Lastly, we tested the moment-based method using a larger system. In particular,
we focus on a genetic feedback circuit given by

Di

Cm
i−−→ Di +Mi

Mi

Cp
i−→ Mi + Pi

Di + Pi
ca
↼−−⇁
cd

DPi

DPi
cf−→ DPi +Mi

Mi
dm−→ ∅

Pi
dp−→ ∅

Pi
ct
↼−−⇁
ct

Q,

(5.30)

for i = 1, . . . , N . Here, we consider the reaction rate constants associated with tran-
scription Cm

i and translation Cp
i to be randomly distributed across the population,
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Figure 5.4: Variability reduction due to higher transport rates. Steady-state (A) CV[Pi] and
(B) PV[Pi, Pj ] for different degrees of population heterogeneity (CV[Cb

i ]) in communicating
cells are reduced for higher transport rates (ct). Other parameters and initial conditions were
set to 〈Cb

i 〉 = 1, cd = 0.01, 〈Pi(0)〉 = 20, Var[Pi(0)] = 25, 〈Q(0)〉 = 0, Var[Q(0)] = 0, and
N = 10. Steady-state moments were determined from the reduced model with normal closure
at t = 1000. Error bars are bootstrapped 95% CIs from 1000 SSA realizations.

while all other rate parameters are fixed. Transcriptional feedback of the gene circuit is
mediated by the protein product (P), which binds DNA (D) to form a complex DP. In
the bound state, the gene can be transcribed with rate constant cf . Depending on the
ratio of the bound and unbound transcription rate, the feedback mechanism can either
enhance (cf > 〈Cm

i 〉) or inhibit (cf < 〈Cm
i 〉) gene expression. We consider a population

of N = 10 cells and applied a lognormal closure to solve for the reduced moment dy-
namics. The total number of reduced equations for this system is K̂eq = 48. Figure 5.7
shows that the time evolution of the mRNA moments obtained from the symmetry-
reduced model and SSA are very similar to each other. To analyze the computational
efficiency of the moment-based approach, we recorded run times for the positive feed-
back gene circuit for different population sizes N and compared it against the SSA
(Table 5.3). As expected, the run time for the moment-based model does not increase
with N while the run time associated with the SSA increases by orders of magnitude.

Table 5.3: Run times (s) of the reduced moment-based approach vs. SSA for the positive
feedback gene circuit*.

N Reduced moments SSA (1 sample path)

10 0.068± 0.005 0.142± 0.004

100 0.065± 0.004 12.300± 0.123

1000 0.064± 0.005 2569.20± 52.93

*Mean and standard deviation from 10 replicates.

5.3 Conclusions

We presented two approaches for modeling cell populations with noise and vari-
ability. The first uses a mixed-effects model to account for cell-to-cell variability in
a non-communicating cell population. The second uses a moment-based approach to
model secrete-and-sensing communicating heterogeneous cell populations with stochas-
tic gene expression. In principle, these methods apply to arbitrary reaction networks
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Figure 5.5: Moment dynamics of communicating cells with an autocatalytic reaction using the
symmetry-reduced model (Lognormal MA). (A) First and (B) second order moment dynamics
of species Ai for a population size of N = 10 and ct = [0, 0.01, 0.1]. (C) CV[Ai] and (D)
PV[Ai, Aj ] decrease as transport rate increases for a fixed population size N = 10. Increasing
the population size from N = [5, 10, 50] for a fixed ct = 0.1 decreases (E) CV[Ai], while (F)
PV[Ai, Aj ] remains the same. Other parameters and initial conditions were set to 〈Cb

i 〉 = 1,
Var[Cb

i ] = 0.01, ca = 0.08, 〈Cd
i 〉 = 0.1, Var[Cd

i ] = 1e − 4, 〈Ai(0)〉 = 20, Var[Ai(0)] = 25,
〈B(0)〉 = 0, and Var[B(0)] = 0. Shaded areas are bootstrapped 95% CIs from 1000 SSA
realizations.

Figure 5.6: CV[Ai] vs. PV[Ai,Aj ] of the autocatalytic network at different transport rates ct =
[0, 0.01, 0.1] (A-C, respectively). CV[Ai] and PV[Ai,Aj ] are related by a factor of

√
2 (diagonal)

at ct = 0, while deviations from this scaling occur when ct > 0. Values of CV[Ai] and
PV[Ai,Aj ] were taken from the time-courses corresponding to the case N = 10 in Figure 5.5.
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Figure 5.7: Moment dynamics of communicating cells with a feedback circuit using the
symmetry-reduced model (Lognormal MA). (A) First and (B) second order moment dynamics

of species Mi for populations of N = 10 cells with negative feedback (cfi = 0.1) and positive

feedback (cfi = 1) and their corresponding time evolution of (C) CV[Mi] and (D) PV[Mi,Mj ].
Reaction rate parameters and initial conditions were set to 〈Di(0)〉 = 30, Var[Di(0)] = 25,
〈Mi(0)〉 = 〈Pi(0)〉 = 〈DPi(0)〉 = 5, Var[Mi(0)] = Var[Pi(0)] = Var[DPi(0)] = 1, 〈Q(0)〉 = 5,
Var[Q(0)] = 0, 〈Cm

i 〉 = 0.5, Var[Cm
i ] = 0.01, 〈Cp

i 〉 = 0.05, Var[Cp
i ] = 2.5e − 5, ca = 0.01,

cd = 0.01, dm = dp = 0.2, and ct = 0.8. Shaded areas are bootstrapped 95% CIs from 1000
SSA realizations.

with a well-mixed external signalling molecule and suitable moment closure functions
for the moment-based approach. Although both modeling approaches do not capture
many additional complexities of biological cell populations such as cell growth, death,
division, and other metabolic processes, these can be ideal for modeling our synthetic
cell populations or . Importantly, methods to solve the inverse problem of parameter es-
timation can be used determine the working parameter space of quantified experiments.
We demonstrated this in Section 5.1.3 by MAP estimation of simulated data from a
non-linear mixed-effects model. Several other methods that use a restricted maximum
likelihood (REML) approach [107], EM algorithm [278], or a stochastic approximation
of the EM algorithm (SAEM) [137, 123] are also available, along with tools for model
selection and identifiability analysis for non-linear mixed-effects models [47, 146, 158].
Moment-based inference has also been successfully demonstrated to capture intrinsic
and extrinsic sources of variability in cell populations [296, 297, 212]. As our capability
to build more complex bottom-up synthetic multicellular systems grow, these modeling
approaches will be important for designing emergent or population-level behavior from
single synthetic cells. For example, we aim to use these models to study the effect of
cell-to-cell communication on a heterogeneous population of quorum sensing synthetic
cells that we have demonstrated in Chapter 4.
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Summary and outlook

In this work, we aimed to build a synthetic multicellular system by combining tech-
nologies of cell-free expression systems and microfluidics to study the effect of cell-to-cell
communication to population variability in a minimal context. In Chapter 3, we estab-
lished our platform to reproducibly encapsulate CFES into monodisperse synthetic cell
populations by using a double-emulsion microfluidic device [289] and simultaneously
quantify both transcription and translation dynamics using a Broccoli RNA aptamer
[78] and mCherry protein. Importantly, this allowed us to test different coarse-grained
resource-limited gene expression models [247] using model selection and obtain gene
expression rate parameters and their respective confidence intervals by likelihood-based
parameter estimation and profile likelihood analysis [208], respectively. By obtaining
quantified rate parameters, we can begin to compare biologically relevant parameters
between in vivo, and in vitro bulk and encapsulated formats of gene expression such as
RNA polymerase transcription and ribosome translation rates. For instance, we found
that T7 RNA polymerase transcription and ribosome translation rates in PURExpress
were much lower than in vivo rates in E. coli by one to two orders of magnitude, but
comparable to previous studies in PURExpress within the same or one order of magni-
tude.

In Chapter 4, we incorporated variability in these synthetic cell populations by ei-
ther mixing different batches of synthetic cells to make a heterogeneous cell population
with distinct sub-populations, or by using a two-inlet microfluidic device [225] to gen-
erate a population with a large variance of encapsulated plasmid DNA. In both cases,
the synthetic cells are still monodisperse in size - providing single cell reproducibil-
ity that is important for assembling multi-scale structures and building predictable
multicellular systems. This enables us to customize initial DNA distributions of the
populations, which will result in different distributions of expressed protein over time
depending on the gene circuit and strength of cell-to-cell coupling through intercellular
communication. We then used an E. coli extract-based CFES to implement a quorum
sensing gene circuit for diffusion-mediated cell-to-cell communication. The quorum
sensing system functions in bulk reactions and synthetic cells generated by an inverse
emulsion methodology. However, we found that the octanol oil phase in our double-
emulsion microfluidics methodology was not compatible with the E. coli extract-based
CFES. Different oil phases that are compatible to both E. coli extract-based CFES and
double-emulsion microfluidics as well as other encapsulation methods, such as droplet
interface bilayers, are currently being tested to encapsulate the quorum sensing gene
circuits in extract-based CFES.
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In Chapter 5, gene expression models of cell populations were developed to include
population variability and both intrinsic and extrinsic noise with intercellular commu-
nication. In the first method, we used a mixed-effects model with deterministic rate
equations to describe a synthetic cell population composed of independent cells. Popu-
lation variability was included by letting certain parameters vary over the population.
We then applied a heuristic optimization approach to solve the inverse problem of pa-
rameter inference. Using an iterative method that alternates between maximizing fixed
and random effect parameters, rate parameters of the population were correctly inferred
from simulated data. This approach is especially useful for our synthetic cell popula-
tions and some biological settings where the measured dynamics are deterministic but
subject to extrinsic variability. In addition, different random effect structures of the
model can be tested and compared to help determine the extrinsic sources of variability.
In the second method, we developed a model of a cell population with both intrinsic
and extrinsic noise [296] and intercellular communication through a diffusible signalling
molecule. By assuming that the external environment is well-mixed or that the diffusion
of the signalling molecule in the environment is fast, the number of moment equations
to describe the population can be significantly decreased by a symmetry-based model
reduction [19]. Although this approach can be applied to a quorum sensing system with
both stochastic chemical reactions and population variability, the assumption of a well-
mixed environment might not apply to our current setup of synthetic cell populations.
If time scales of diffusion and the quorum sensing gene circuit are comparable to each
other, spatiotemporal reaction-diffusion models will be necessary.

In the immediate future, we aim to build on our work and generate populations of
quorum sensing communicating synthetic cells. Using our platform, single-cell gene ex-
pression dynamics can be quantitatively and spatiotemporally monitored to investigate
the effect of cell-to-cell communication on population variability. Overall, we envision
that engineered systems made of synthetic micron-sized compartments encapsulating
molecular reactions, coupled with mathematical modeling, can help facilitate the de-
sign and construction of complex and multiscale chemical systems from the bottom-up.
These systems can lead to exciting applications in tools for complex molecular assembly,
bio-inspired materials, and in vitro platforms for intercellular signalling pathways.
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Appendix A

Chemical and equipment list

Table A.1: Chemical list.

Name MW Supplier Catalog No.
(g/mole)

Amino acids
L-Alanine (A) 89.09 Sigma, USA A7627
L-Arginine (R) 174.20 Sigma, USA A5006
L-Asparagine (N) 132.12 Sigma, USA A0884
L-Aspartic acid (D) 133.10 Sigma, USA A9256
L-Cysteine (C) 121.16 Sigma, USA W326305
L-Glutamic acid (E) 147.13 Sigma, USA G1251
L-Glutamine (Q) 146.14 Sigma, USA G3126
Glycine (G) 75.07 Sigma, USA G7126
L-Histidine (H) 155.15 Sigma, USA H8000
L-Isoleucine (I) 131.17 Sigma, USA I2752
L-Leucine (L) 131.17 Sigma, USA L8000
L-Lysine (K) 146.19 Sigma, USA L5501
L-Methionine (M) 149.21 Sigma, USA M9625
L-Phenylalanine (F) 165.19 Sigma, USA P2126
L-Proline (P) 115.13 Sigma, USA P0380
L-Serine (S) 105.09 Sigma, USA S4500
L-Threonine (T) 119.12 Sigma, USA T8625
L-Tryptophan (W) 204.23 Sigma, USA T0254
L-Tyrosine (Y) 181.19 Sigma, USA T3754
L-Valine (V) 117.15 Sigma, USA V0500
NTPs
ATP 551.14 Sigma, USA A26209
CTP 527.12 Sigma, USA 30320
GTP 523.18 Roche, CH 10106399001
UTP 586.12 Sigma, USA 94370
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Name MW Supplier Catalog No.
(g/mole)

Enzymes
Benzonase - MPI-CBG -
DNAse I - NEB, USA M0303
DpnI - NEB, USA R0176
Phusion HF - NEB, USA M0531
RNAseA - Carl Roth, DE 7156.1
Ladders
1kb DNA ladder - NEB, USA N3232
PageRuler Plus protein ladder - Thermo, USA 26616
Riboruler HR RNA ladder - Thermo, USA SM1821
Dyes
DFHBI 252.22 Sigma, USA SML1627
DiD 1052.08 Invitrogen, USA D7757
Gel Loading Dye - NEB, USA B7024
GelRed - Biotium, USA 41003
Laemmli buffer - Bio-rad, USA 1610737
SYBRgold - Thermo, USA S11494
Texas Red DHPE 1380.77 Biotium, USA 60027
Others
FTCS 681.57 Sigma, USA 729965
1-Octanol 130.23 Sigma, USA 297887
40% Polyacrylamide - Bio-rad, USA 1610144
Agarose - Invitrogen, USA 16500
Ammonium peroxydisulphate 228.20 Carl Roth, DE 9592.3
Ampicillin 371.39 Sigma, USA A9518
β-NAD 663.43 Sigma, USA N1511
β-mercaptoethanol 78.13 Sigma, USA M6250
Coenzyme A 767.53 Sigma, USA C4282
Dithiothreitol 154.253 Thermo, USA R0862
DMSO 78.13 Sigma, USA D8418
Egg PC 770.123 Avanti, USA 840051
Folinic acid 511.50 Sigma, USA F7878
D-(+)-Glucose 180.16 Sigma, USA G8270
Glycerol 92.09 VWR, USA 24388.295
300 mOsmol/kg std. - Gonotec, DE 30.9.0020
2000 mOsmol/kg std. - Gonotec, DE 30.9.2000
HEPES 238.31 Carl Roth, DE 9105
Hydrochloric acid 36.46 Merck, USA 100317
Hydrogen peroxide 34.01 Sigma, USA 16911
Imidazole 68.08 AppliChem, DE A1073
Magnesium chloride 203.30 Sigma, USA 105833
Magnesium glutamate 388.61 Sigma, USA 49605
Mineral oil (0.84 g/mL) - Sigma, USA M5904
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Name MW Supplier Catalog No.
(g/mole)

Nuclease-free water - Thermo, USA AM9937
N-(3-oxohexanoyl)-L-homoserine
lactone

213.23 Sigma, USA K3007

Oxalic acid 126.07 Roth, DE 8879.1
PDADMAC (1.04 g/mL) - Sigma, USA 409014
Phosphoenolpyruvate 206.1 Roche, CH 10108294001
Pluronic acid F-68 - Gibco, USA 24040032
Poly(4-styrenesulfonic acid) 75000 Sigma, USA 561223
POPC 760.076 Avanti, USA 850457C
Potassium glutamate 203.23 Sigma, USA G1149
Potassium hydroxide 56.11 Sigma, USA 221473
Potassium phosphate dibasic 174.18 Sigma, USA P8584
Potassium phosphate monobasic 136.086 Sigma, USA P8709
Protease Inhibitor Cocktail - Roche, CH COEDTAF
Putrescine 88.15 Sigma, USA 51799
Sodium chloride 58.44 Merck, USA 1.06404
Spermidine 145.25 Sigma, USA S2626
Sucrose 342.30 Sigma, USA S9378
SU-8 2025 - Microchem, USA -
TEMED 116.21 Carl Roth, DE 2367.3
Trizma base 121.14 Sigma, USA T1503
Tris-Glycine-SDS buffer (10X) - Bio-rad, USA 1610772
tRNA from E. coli MRE600 - Roche, CH 10109541001
Twinsil Speed silicone - Picodent, DE 1300 1002
Urea 60.06 Merck, USA 108487

Table A.2: Kit list.

Name Supplier Catalog No.
HiScribe T7 High Yield RNA Synthesis Kit NEB, USA E2040
NEBuilder HiFi DNA Assembly Kit NEB, USA E2621
PURExpress In Vitro Protein Synthesis Kit NEB, USA E6800
Plasmid Maxi Kit QIAGEN, DE 12162
RNeasy Mini kit QIAGEN, DE 74104
myTXTL Sigma 70 Master Mix Kit Arbor Biosciences, USA 507024
QIAquick Gel Extraction Kit QIAGEN, DE 28704
QIAquick PCR Purification Kit QIAGEN, DE 28104
Quick Start Bradford Assay Bio-Rad, USA 5000201
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Table A.3: Consumables list.

Name Supplier Catalog No.
24x60 mm coverslip Menzel-Gläser, DE -
384-well plates, Lobase, Black Greiner Bio-One, AT 788096
76x26x1 mm microscope slides Marienfeld, DE 1000000
HisTrap FF column (5 mL) Cytiva, USA GE17-5255-01
Millex syringe filter (PVDF) Millipore, USA SLGV033RS
Adhesive PCR Plate Seals Thermo, USA AB0558
Spectra/Por2 Dialysis Membrane (12-14 kD) Repligen, USA 132680T
TGX Stain-Free PAGE Gel, 15-well, 4-15% Bio-Rad, USA 4568086

Table A.4: Equipment list.

Name Supplier Catalog No.
Objectives
100x/1.3 Oil Plan-Neofluar Ph3 M27 Zeiss, DE 420491-9910-000
10X/0.45 Plan-Apochromat M27 Zeiss, DE 420640-9900-000
40X/1.2 C-Apochromat W autocorr
M27

Zeiss, DE 421767-9971-790

20X/0.4 LD A-Plan Ph2 Zeiss, DE 421051-9910-000
5x/0.15 Plan-Neofluar Ph1 M27 Zeiss, DE 420331-9911-000
Equipment
Andor Axiovert 200M Zeiss, DE -
Avanti Centrifuge J26-XP Beckman Coulter, USA -
Biovision Gel Doc system Biovision, USA -
Branson Digital Sonifier Emerson Electric, USA 450-D
Dimax S4 Monochrome sCMOS
high-speed camera

PCO, DE -

JLA-8.1000 rotor Beckman Coulter, USA 363688
LSM 880 with Airyscan Zeiss, DE -
Mitos P-Pump Dolomite, UK 3200016
NanoDrop 2000 Thermo, USA ND-2000
Osmomat 3000 Gonotec, DE -
pE-4000 illumination system CoolLED, USA -
Sonorex sonicator bath Bandelin, DE -
Spark 20M plate reader TECAN, CH -
Genios Pro plate reader TECAN, CH -
Spin Coater Laurell Tech., USA WS-650MZ-23B
Typhoon 9500 Fluo and Phospho
Imager

GE, USA -
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Appendix B

Plasmid sequences and cloning

The strains and plasmids used in this study are listed and described in Table B.1 and
Table B.2. Plasmids pEXP5-NT/6xHis eGFP [152] and pEXP5-NT/6xHis mCherry
[255] were provided by JLR Anderson, University of Bristol. The plasmid p70a(2)
deGFP was obtained from the myTXTL Sigma 70 Cell-Free Master Mix kit (Ar-
bor Biosciences, USA). The pEXP5-NT/6xHis mCherry F30-2xdBroccoli and pEXP5-
NT/6xHis mCherry F30-Broccoli plasmids were made by inserting the F30-2xdBroccoli
and F30-Broccoli RNA aptamer sequences [78, 77] downstream the mCherry stop codon
and upstream the terminator of the mCherry gene in the pEXP5-NT/6xHis mCherry.
The F30-2xdBroccoli indicates two dimeric Broccoli RNA aptamers supported by an
F30 stem loop, while F30-Broccoli has one Broccoli RNA aptamer supported by an F30
stem loop. To create the insert for pEXP5-NT/6xHis mCherry F30-2xdBroccoli and
pEXP5-NT/6xHis mCherry F30-Broccoli plasmids, Broccoli RNA aptamer inserts were
synthesized as ultramers with overlapping regions to the pEXP5-NT/6xHis mCherry
vector plasmid. F30-2xdBroccoli ultramers 1 and 2 were annealed, PCR amplified
against each other, and column purified (QIAquick PCR Purification Kit) to obtain
the dsDNA F30-2xdBroccoli insert. The pEXP5-NT/6xHis mCherry plasmid vector
was divided into two parts by PCR amplifying the template plasmid pEXP5-NT/6xHis
mCherry using the primer pair NFB ptetO gBlock Fwd and mCherry Rev, and primer
pair Tphi Fwd and DUR Vector 2. The PCR products were then digested with DpnI
(NEB, USA) to remove the plasmid template and then gel purified (QIAquick Gel Ex-
traction Kit) to obtain the vector fragments only. Plasmid assembly of the purified
DNA parts for pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid was assembled us-
ing the NEBuilder HiFi DNA Assembly Kit (NEB) and transformed into E. coli DH5α.
The pEXP5-NT/6xHis mCherry F30-Broccoli plasmid was similarly constructed with
the same two vector parts and a synthesized F30-Broccoli ultramer. The quorum sens-
ing plasmids were constructed from the base pEXP5-NT/6xHis eGFP plasmid. For
the pEXP5-NT/pLux 6xHis eGFP plasmid, the T7 promoter was replaced with the
LuxR-AHL inducible promotor (pLux promoter) from the lux operon. To prepare
the vector, the pEXP5-NT/6xHis eGFP was digested with BglII and XbaI restriction
enzymes (NEB, USA) to remove the T7 promoter, and then gel purified (QIAquick
Gel Extraction Kit) to obtain the vector fragments only. The insert pLux promoter
sequence was synthesized as an ultramer (pLux std ultramer), PCR amplified using
the primer pair pLux Fwd and pLux Rev, digested with BglII and XbaI restriction
enzymes, and then column purified (QIAquick PCR Purification Kit). The purified
vector from the digested pEXP5-NT/6xHis eGFP and pLux promoter insert were lig-
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ated together by T4 DNA Ligase (NEB, USA), and then transformed into E. coli DH5α.
To create the pEXP5-NT/6xHis LuxRopt and pEXP5-NT/6xHis LuxIopt plasmids, E.
coli codon optimized sequences for LuxR (LuxRopt) and LuxI (LuxIopt) were syn-
thesized as double-stranded DNA gene blocks (IDT, USA) and then replaced into the
pEXP5-NT/6xHis eGFP plasmid. The vector parts were prepared by PCR amplify-
ing the pEXP5-NT/6xHis eGFP plasmid with primer pair TEV Rev and PIVEX2 rev,
and primer pair T7 Fwd and PIVEX1 fwd. The PCR products were then digested with
DpnI (NEB, USA) to remove the plasmid template and then gel purified (QIAquick Gel
Extraction Kit) to obtain the vector fragments only. Plasmid assembly of the purified
DNA parts for pEXP5-NT/6xHis LuxRopt and pEXP5-NT/6xHis LuxIopt plasmids
were assembled using the NEBuilder HiFi DNA Assembly Kit (NEB) and transformed
into E. coli DH5α. To construct the pEXP5-NT/pLux 6xHis LuxIopt plasmid, vec-
tor parts were PCR amplified from the pEXP5-NT/pLux 6xHis eGFP plasmid using
the primer pair Amp Fwd and His Rev EX, and primer pair TAAT7 Fwd EX Amp
Rev. The PCR products were then digested with DpnI (NEB, USA) to remove the
plasmid template and then gel purified (QIAquick Gel Extraction Kit) to obtain the
vector fragments only. The LuxIopt insert was prepared by PCR amplification using the
primer pair LuxIopt Fwd and LuxIopt Rev and then column purified (QIAquick PCR
Purification Kit). Plasmid assembly of the purified DNA parts for pEXP5-NT/pLux
6xHis LuxIopt plasmid were assembled using the NEBuilder HiFi DNA Assembly Kit
(NEB) and transformed into E. coli DH5α. All plasmids have a high-copy number
origin of replication. All plasmids were prepared and purified by ethanol precipitation
from E. coli DH5α cultures using the Plasmid Maxi Kit (QIAGEN, USA) and measured
by NanoDrop 2000 (Thermo, USA). Primer, ultramer, and gene block sequences are
provided in Table B.3, Table B.4, and Table B.6. PCR cycling protocols are shown in
Table B.5. All PCR, purification, and assembly methods were performed using the man-
ufacturer’s standard protocols. All primers and ultramers, and gene blocks were syn-
thesized by Integrated DNA Technologies (IDT, www.idtdna.com). All assembled plas-
mids were confirmed by Sanger sequencing (GENEWIZ, www.genewiz.com) using the
primers pEXP5NT insert Fwd and/or pEXP5NT insert Rev. The pEXP5-NT/6xHis
mCherry F30-2xdBroccoli and pEXP5-NT/6xHis mCherry F30-Broccoli plasmids are
deposited in Addgene (www.addgene.org, plasmid ID 169233-169234).

Table B.1: E. coli strains.

Strain Description Source
E. coli DH5α High-efficiency competent cells

for transformation.
NEB (C2987)

E. coli BL21 (DE3) Competent cells for T7 RNAP-
mediated expression.

NEB (C2527)
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Table B.2: E. coli bacterial plasmids.

Plasmid Description Source
pEXP5-NT/6xHis
eGFP

Constitutive T7 RNAP-mediated expres-
sion of 6xHis-eGFP.

[152]

pEXP5-NT/6xHis
mCherry

Constitutive T7 RNAP-mediated expres-
sion of 6xHis-mCherry.

[255]

pEXP5-NT/6xHis
mCherry
F30-2xdBroccoli

Constitutive T7 RNAP-mediated ex-
pression of 6xHis-mCherry with F30-
2xdBroccoli RNA aptamer.

This study.

pEXP5-NT/6xHis
mCherry
F30-Broccoli

Constitutive T7 RNAP-mediated expres-
sion of 6xHis-mCherry with F30-Broccoli
RNA aptamer.

This study.

p70a(2) deGFP Constitutive σ70-mediated expression of
truncated eGFP (deGFP).

Arbor
Biosciences

pEXP5-NT/6xHis
LuxRopt

Constitutive T7 RNAP-mediated expres-
sion of 6xHis-Lux.

This study.

pEXP5-NT/6xHis
LuxIopt

Constitutive T7 RNAP-mediated expres-
sion of 6xHis-LuxI.

This study.

pEXP5-NT/pLux
6xHis eGFP

LuxR-AHL inducible expression of 6xHis
eGFP.

This study.

pEXP5-NT/pLux
6xHis LuxIopt

LuxR-AHL inducible expression of 6xHis-
LuxI.

This study.

Table B.3: Primers used in this study.

Primer Sequence (5’-3’)
NFB ptetO gBlock Fwd TTTCTCCTTACGCATCTGT

mCherry Rev ATCACCCTTTAGCTGCC
Tphi Fwd CGAAAGGAAGCTGAGTTG

DUR vector 2 CTGGCTTAACTATGCGGC
pEXP5NT insert Fwd TCGGTGATTCATTCTGCT
pEXP5NT insert Rev GGTTATTGTCTCATGAGCG

TEV fwd GGTAGCAGCGGCGAAAAC
T7 Rev CTTCCTTTCGGGCTTTGTTAG

TEV Rev AAAATACAGGTTTTCGCCG
PIVEX2 rev CTCTGCTAATCCTGTTACCA

T7 Fwd TCCGGCTGCTAACAAAG
PIVEX1 Fwd ATCGTCTTGAGTCCAACC

pLux Fwd AGTTATAGATCTGAGCTGGC
pLux Rev ATAACTTCTAGACGACTATAACA

LuxIopt Fwd ATGACCATTATGATTAAAAAATCGG
LuxIopt Rev CGCTGCCAGGGCGTAATTTT

Amp Fwd TATCATTGCAGCACTGGG
Amp Rev TAGATAACTACGATACGGGAGG
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Table B.4: Ultramers and extension primers used in this study.

Ultramer Sequence (5’-3’)
F30-2xdBroccoli 1 CCGGCGGCATGGACGAGCTGTACAAGGGCAGC

TAAAGGGTGATCTTGCCATGTGTATGTGGGAG
ACGGTCGGGTCCATCTGAGACGGTCGGGTCCA
GATATTCGTATCTGTCGAGTAGAGTGTGGGCT
CAGATGTCGAGTAGAGTGTGGGCTCCCACATA
CTCTGATGATCCAGACGGTCGGGTCCATCTGA

F30-2xdBroccoli 2 TTATTGCTCAGCGGTGGCAGCAGCCAACTCAG
CTTCCTTTCGGGCTTTGTTAGCAGCCGTTGCC
ATGAATGATCCAGCCCACACTCTACTCGACAT
CTGAGCCCACACTCTACTCGACAGATACGAAT
ATCTGGACCCGACCGTCTCAGATGGACCCGAC
CGTCTGGATCATCA

F30-Broccoli EX ACTCAGCTTCCTTTCGGGCTTTGTTAGCAGTT
GCCATGAATGATCCCGAAGGATCATCAGAGTA
TGTGGGAGCCCACACTCTACTCGACAGATACG
AATATCTGGACCCGACCGTCTCCCACATACAC
ATGGCAACCGGATCACCCTTTAGCTGCC

pLux std AGTTATAGATCTGAGCTGGCGTACGCGTTGAA
CACTTCACAGATGATAGGGATTCGGGTAAAGA
GCGTGTCATTGGGGGCTTATACAGGCGTTACA
ATTACTTAACATAAGCACCTGTAGGATCGTAC
AGGTTTACGCAAGAAAATGGTTTGTTATAGTC
GTCTAGAAGTTAT

TAAT7 Fwd EX AAAATTACGCCCTGGCAGCGTAAAGGGTGATC
CGGCTGC

His Rev EX ATTTTTTAATCATAATGGTCATGGACTGAAAA
TACAGGTTTTCG

Table B.5: PCR cycling protocol for plasmid parts. Extension times were held between 0.5
or 1.5 minutes for PCR products < 1 kb or > 1 kb, respectively.

PCR cycle Temperature Time
Initial denaturation 98 ◦C 40 s

Denaturation 98 ◦C 10 s
Annealing 53 ◦C 15 s
Extension 72 ◦C 1.5/0.5 mins

Final extension 72 ◦C 5 mins
Hold 4 ◦C ∞
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Table B.6: Gene blocks or dsDNA used in this study. Geneious v11.0.2 was used for the codon
optimization of LuxR and LuxI sequences with the target organism E. coli K12 and a rare
threshold of 0.3.

Ultramer Sequence (5’-3’)
LuxRopt GGTAGCAGCGGCGAAAACCTGTATTTTCAGTCCATGAA

AAACATCAATGCCGACGACACCTACCGCATTATCAATAA
AATCAAAGCGTGTCGCAGCAATAATGACATCAATCAATG
CCTGTCTGATATGACCAAAATGGTGCATTGTGAATATTA
TCTGCTGGCGATTATTTATCCGCATTCTATGGTGAAATC
TGATATTAGCATTCTGGATAATTACCCGAAAAAATGGCG
TCAATATTATGATGACGCGAACCTTATCAAATATGACCC
GATTGTGGATTATTCTAACTCCAATCATAGCCCAATCAA
TTGGAATATTTTTGAAAACAATGCGGTGAATAAAAAAT
CTCCGAATGTTATCAAAGAAGCGAAAACCAGCGGTCTG
ATTACGGGCTTTAGTTTCCCAATTCATACGGCGAACAAT
GGCTTCGGTATGCTGAGTTTTGCACATAGCGAAAAAGA
CAACTATATTGATAGTCTGTTTCTGCACGCGTGTATGAA
CATTCCGCTGATTGTTCCGTCTCTGGTTGATAATTATCG
CAAAATCAATATTGCAAATAATAAAAGCAACAACGACCT
GACCAAACGCGAAAAAGAATGTCTGGCGTGGGCGTGCG
AAGGCAAATCGTCTTGGGATATTAGCAAAATTCTGGGT
TGCAGTGAACGCACCGTCACCTTCCATCTGACCAATGCC
CAAATGAAACTGAATACCACCAACCGCTGCCAAAGTATT
TCTAAAGCAATTCTGACGGGTGCAATTGATTGCCCGTAT
TTCAAAAACTAAAGGGTGATCCGGCTGCTAACAAAGCCC
GAAAGG

LuxIopt ATGACCATTATGATTAAAAAATCGGATTTTCTGGCAATT
CCGTCGGAAGAATATAAAGGTATTCTGAGTCTGCGTTA
TCAAGTGTTTAAACAACGCCTGGAATGGGACCTGGTTG
TGGAAAATAACCTGGAAAGCGATGAATATGATAACAGC
AATGCAGAATATATTTATGCGTGTGATGATACCGAAAA
TGTGAGTGGCTGCTGGCGTCTGCTGCCGACCACCGGTG
ATTATATGCTGAAAAGTGTTTTTCCGGAACTGCTGGGTC
AACAGAGTGCGCCGAAAGATCCGAATATTGTCGAACTG
AGTCGTTTTGCGGTGGGTAAAAATAGCAGCAAAATTAA
TAACTCTGCGAGTGAAATTACCATGAAACTGTTTGAAGC
GATTTATAAACACGCGGTTAGTCAAGGTATTACCGAATA
TGTGACCGTGACCAGCACCGCAATTGAACGCTTTCTGAA
ACGTATTAAAGTTCCGTGTCATCGTATTGGCGACAAAGA
AATTCATGTGCTGGGTGATACCAAATCGGTTGTGCTGT
CTATGCCGATTAATGAACAGTTTAAAAAAGCAGTCCTGA
ATGCAGCGAACGACGAAAATTACGCCCTGGCAGCGTAA
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Appendix C

mRNA expression and purification

The mRNA transcript of the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid
containing the mCherry gene and Broccoli RNA aptamer was transcribed in vitro and
purified for RNA calibration and RNA titration experiments. To prepare the DNA
template for in vitro transcription (IVT), the region containing the T7 promoter up to
the terminator of the pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid was PCR
amplified (Phusion HF) using primers pEXP5-NT Insert Fwd and Rev (Table B.3)
and according to Table B.5 with an extension time of 45 s, digested with DpnI (NEB,
20 units/50 µL PCR reaction volume) to remove the plasmid template, and purified
(QIAquick PCR Purification Kit). The purified PCR product was used as the tem-
plate for IVT using the HiScribe T7 High Yield RNA Synthesis Kit which was used
according to manufacturer’s instructions with 5 hours incubation at 37 ◦C and DNAse
I treatment. The IVT reaction product is then purified using the QIAGEN RNeasy kit
as described by the manufacturer. The purified mRNA was confirmed by Nanodrop
260/280 ratios of ∼2.0, native agarose gel, and denaturing urea-PAGE. We observed
two separate bands in the denaturing urea polyacrylamide gel for the 6xHis mCherry
F30-2xdBroccoli RNA transcript. To check if these two bands still contain the Broccoli
aptamer, an in-gel DFHBI staining was performed according to [77], which showed that
both bands fluoresce with DFHBI. Therefore, both fractions had the complete RNA
aptamer sequences. The two bands in the denaturing RNA gel could be a result of
transcription read-through over the terminator of the PCR amplicon DNA template.
However, we assumed that both species contained the F30-2xdBroccoli RNA aptamer
because the DNA template is from a pure single band PCR product, both RNA bands
are only slightly longer than the expected size (∼1224 bp), and both bands are fluo-
rescent with the DFHBI from the in-gel staining. Therefore, using this purified mRNA
for our calibration curves is consistent on a molar concentration basis. Purified mRNA
was stored at -20 ◦C until further use. The agarose DNA gel, native and denaturing
urea polyacrylamide gels, and DFHBI in-gel stains are shown in Figure C.1.
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Figure C.1: In vitro transcription and purification of mRNA. (A) AGE of DNA template
for IVT reaction amplified from pEXP5-NT/6xHis mCherry F30-2xdBroccoli plasmid using
primers pEXP5NT Insert Fwd and Rev (2 % agarose, 150 V, 30 mins, stained with GelRed).
Lane 1: 1 kb ladder, lane 2: PCR product (1534 bp). (B) Purified RNA from IVT reaction in a
native agarose gel (1 % agarose, 120 V, 40 mins, stained with GelRed). Lane 1: Riboruler High
Range RNA ladder, lanes 2-4: dilutions of purified RNA transcript (expected size 1224bp).
(C) Purified RNA from IVT reaction in a denaturing urea polyacrylamide gel (3 % acrylamide,
8 M urea, 200 V, 45 mins, stained with SYBRgold). Lane 1: Riboruler High Range RNA
ladder, lane 2: purified RNA transcript showing two separate bands (black arrows). (D) In-gel
staining of purified RNA from IVT reaction in a denaturing urea polyacrylamide gel. After
running the gel (3 % acrylamide, 8 M urea, 200 V, 45 mins), the gel was washed 3x with water
for 5 minutes and then stained with 10 M DFHBI, 40 mM HEPES (pH 7.4), 100 mM KCl, and
1 mM MgCl2 for 30 mins before imaging. Lane 1: Riboruler High Range RNA ladder, lane
2: purified RNA transcript showing two DFHBI stained bands (black arrows). Agarose gels
were imaged using a Biovision Gel Doc system with 365 nm UV excitation. Polyacrylamide
gels were imaged using a Typhoon 9500 Fluo and Phospho Imager (BPB1-530DF20 filter).
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Appendix D

Protein expression and purification

pEXP5-NT/6xHis eGFP and pEXP5-NT/6xHis mCherry plasmids were transformed
into E. coli BL21 (DE3) strains and used for protein expression and purification of eGFP
and mCherry 6xHis-tagged proteins for quantitative calibration. All culture media was
composed of LB with 100 µg/mL Ampicillin. For both mCherry and eGFP protein ex-
pression, overnight cultures were used to inoculate 500 mL of production cultures with
40 µM IPTG to a starting OD600 of 0.015. After incubation at 37 ◦C and stirring at
180 rpm for approximately 4 hours (OD600∼5.0), the cultures were centrifuged at 5000
rpm (Avanti Centrifuge J26-XP with JLA-8.1000 rotor, Beckman Coulter) for 5 minutes
at 4 ◦C to pellet the cells. The media was removed and the cells resuspended in lysis
buffer (50mL lysis buffer/L culture). The resuspended cells were lysed by high-pressure
homogenization by running the cell dispersion through the Emulsiflex C5-Avestin at
1500 bar two times. The lysed extracts were then clarified by centrifugation at 16000
rpm for 30 minutes and filtered through a 0.45 µm membrane (Millex-HV Low Pro-
tein Binding Durapore Membrane (PVDF), 33 mm diameter filter unit, 0.45 µm pore
size) to collect only the soluble protein fraction. Ni-Sepharose resin HisTrap columns
(HisTrap FF 5 mL, Cytiva) were washed with water and pre-equilibriated with 25 mL
of the same lysis buffer. The clarified extracts containing the His-tagged proteins were
loaded on the column, washed with 25 mL lysis buffer, 25 mL high salt buffer, and 25
mL lysis buffer at a rate of 5 mL/min. The proteins were eluted from the column with
elution buffer at 2 mL/min. The protein was collected at 18 fractions at 2 mL each.
A Bradford assay (Bio-Rad) was run on each of the 18 fractions to determine which
fraction from the column contained the His-tagged protein to collect. The selected
fractions were placed in a 12-14 kDa cut-off dialysis membrane (Spectra/Por 2 Dialysis
Membrane Standard RC Tubing MWCO: 12-14 kDa) and dialyzed at 4 ◦C overnight
in storage buffer. After dialysis, aliquots of the purified proteins were flash frozen in
liquid nitrogen and stored at -80 ◦C until use. All media and buffer recipes are listed in
Table D.1. Purified proteins were confirmed by size using SDS or Native PAGE (Bio-
Rad TGX Stain-Free PAGE Gel, 15-well, 4-15 %) and absorbance spectra using UV-vis
scanning (NanoDrop 2000) (Figure D.1). To load the gels, 5 µL of sample was mixed
with 5 muL of 2X Laemmli buffer, incubated at 95 ◦C for 5 mins, and then 7 µL was
loaded onto the gel (Bio-Rad TGX Stain-Free PAGE Gel, 15-well, 4-15 %). Samples
were run at 200 V for 30 mins in 1X Tris-Glycine-sodium dodecyl sulfate (SDS) or 1X
Tris-Glycine buffer.
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Table D.1: Media and buffer recipes for protein expression and purification.

Buffer Components Media
LB media NaCl

Tryptone
Yeast extract
Ampicillin

10 g/L
10 g/L
5 g/L
100 µ/mL

Lysis buffer PBS
Imidazole
DTT
Benzonase
Protease inhibitor
MgCl2
pH (+ HCl/NaOH)

2X
20 mM
1 mM
0.025 mg/L
1 tablet/L
1 mM
7.5

HiSalt buffer PBS
pH (+ HCl/NaOH)

6X
7.5

Elution buffer PBS
DTT
Imidazole

2X
0.3 mM
250 mM

Storage buffer Tris HCl
NaCl
Glycerol
pH (+ HCl/NaOH)

25 mM
150 mM
5 %
8

1X PBS buffer NaCl
KCl
Na2HPO4

KH2PO4

pH (+ HCl/NaOH)

137 mM
2.7 mM
10 mM
2 mM
7.5
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Figure D.1: Purified mCherry and eGFP proteins. (A) SDS PAGE of purified proteins. Lane
1 - PageRuler Plus protein ladder (Thermo, USA), lane 2 - purified mCherry (29.222 kDa),
and lane 3 - purified eGFP (32.153 kDa). Low molecular weight bands (∼20 kDa and ∼12
kDa) visible in the mCherry lanes are self-cleaved products of mCherry as a result of sample
boiling prior to SDS PAGE [5]. Target protein products in lanes 2 and 3 are marked with a
black arrow. Lanes 4-6 are native non-denaturing gels of the same samples that show single
bands of the proteins. Lane 1 - PageRuler Plus protein ladder (Thermo, USA), lane 2 -
purified mCherry (29.222 kDa), and lane 3 - purified eGFP (32.153 kDa). Purified 6xHis
mCherry (B) and 6xHis eGFP (C) absorbance spectra compared to its reference spectra
(fpbase.org/protein/egfp/ and fpbase.org/protein/mCherry/).
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Appendix E

mRNA and protein calibration

To obtain calibration curved for eGFP and mCherry, purified stock solutions of
eGFP and mCherry proteins were quantified by Bradford assay (Quick Start Bradford
Assay, Bio-Rad) with a BSA protein standard and NanoDrop A280 readings. The pu-
rified 6xHis mCherry F30-2xdBroccoli mRNA stock solution was quantified using Nan-
oDrop RNA-40 readings. Mean values obtained from the Bradford assay were used for
downstream calculations for protein concentrations and calibration (Table E.1). Serial
dilutions of protein and mRNA stock solutions were prepared with a PURExpress mas-
ter mix solution (Table 18) without plasmid DNA or mRNA, with and without DFHBI
to ensure equivalent conditions between the gene expression reaction mixture and the
calibration samples required for correct calibrations. These calibration standards were
then loaded in a 384-well plate (12.5 µL/well) or loaded on a glass slide (2 µL/spot).
Glass slides comprised of a parafilm border sandwiched by a glass slide (76x26x1 mm
microscope slides, Marienfeld) and coverslip (24x60 mm, Menzel-Gläser) (Figure E.1).
Linear calibration curves to convert relative fluorescence units (RFU) to concentration
units (nM) were obtained for eGFP, mCherry, and mRNA F30-2xdBroccoli aptamer in
both the plate reader Figure E.2-E.3) and confocal microscopy (Figure E.4-E.5) at the
same acquisition settings for bulk and liposome-encapsulated experiments. Histograms
of RFU per pixel in the ROIs of the calibration standards show increase of fluores-
cence distributions as a function of increasing standard concentration. Higher laser
intensities were avoided to prevent bleaching effects of the CFES. Our methodologies
provide an accurate method for quantification of mRNA and protein concentrations
within the synthetic cells from confocal imaging. Excitation/emission wavelengths in
the TECAN Spark 20M plate reader were 485/535 nm (Gain 50), 570/620 nm (Gain 70),
and 450/510 nm (Gain 60) with a bandwidth of ±20 nm each, for eGFP, mCherry, and
Broccoli RNA, respectively. For confocal microscopy (LSM 880 with Airyscan, 10X/0.45
Plan-Apochromat M27 objective), excitation/detection wavelengths are 488 nm/499-
561 nm for RNA Broccoli and eGFP protein, and 561 nm/579-641 nm for mCherry
protein. As the 488 nm laser power gradually decreased between experiments, the
mRNA F30-2xdBroccoli aptamer calibration curve used for DNA titration in synthetic
cell populations experiment was interpolated between two calibration curves based on
the measured laser power (Table E.2).
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Table E.1: eGFP protein, mCherry protein, and 6xHis mCherry F30-2xdBroccoli mRNA
stock concentrations. Protein concentrations were measured by Bradford assay and A260/280
measurements on the Nanodrop (in parentheses). mRNA concentration was measured by
NanoDrop RNA-40 readings.

Stock µM A260/280 A260/230
eGFP protein 79.34 ± 9.47 (79.93) - -

mCherry protein 226.75 ± 10.63 (287.72) - -
6xHis mCherry F30- 26.42 2 2.34
2xdBroccoli mRNA

Figure E.1: Glass slide setup for confocal microscopy calibration. (A) 2 µL spots of standard
solutions for calibration. (B) Twinsil Speed silicone sealing the glass slide and cover slip setup.
(C) Parafilm layer between glass slide and coverslip.

Figure E.2: Calibration of Broccoli RNA aptamer and mCherry protein in bulk plate reader
format. Linear calibration curve of (A) F30-2xdBroccoli RNA aptamer and (B) mCherry
protein in PURExpress master mix with 10 µM DFHBI in a bulk plate reader format. Mean
and standard deviation bars are calculated from triplicate samples.
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Figure E.3: Calibration of eGFP and mCherry protein in plate reader format. Linear calibra-
tion curve of (A) eGFP protein and (B) mCherry protein in PURExpress mastermix without
DFHBI in a bulk plate reader format. Mean and standard deviation bars are calculated from
triplicate samples.

Figure E.4: Calibration curves of (A) F30-2xdBroccoli RNA aptamer and (B) mCherry protein
in PURExpress master mix with 10 µM DFHBI obtained from confocal images. Dotted lines
in (A) are F30-2xdBroccoli RNA aptamer calibration curves at laser powers 3.3 mW (light
green) and 1.73 mW (green). The dashed line is the linear interpolated calibration curve at
laser power 2.01 mW used for experiments described in Section 14. The calibration curve at
1.73 mW was used for experiments described in Section 15. Mean and standard deviation bars
are calculated from the mean values of ROIs (Fig. 37). RFU distributions per pixel in the
ROIs for (C) F30-2xdBroccoli RNA aptamer (LP 3.3) and (D) mCherry protein calibration
standards.
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Figure E.5: Calibration curve of (A) eGFP protein and (B) mCherry protein in PURExpress
mastermix without DFHBI obtained from optical confocal images. Mean and standard devi-
ations are calculated from the mean values of ROIs (Fig. 37). RFU distributions per pixel
obtained from the ROIs for (C) eGFP protein and (D) mCherry protein calibration standards
show differentiation between the fluorescence intensities of the standard proteins.

Table E.2: Laser powers for quantified experiments.

Experiment Laser (nM) Power (mW)
RNA Broccoli
calibration 1

488
561
633

3.3
3.96
1.61

eGFP and mCherry
protein calibration

488
561
633

1.73
3.22
1.26

RNA Broccoli
calibration 2

488
561
633

1.73
3.22
1.26

DNA titrations in
synthetic cell
populations

488
561
633

2.01
3.16
1.12

Two plasmids in a
synthetic cell
population

488
561
633

1.73
3.22
1.26
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Appendix F

Microfluidic chip preparation and
workflow

Design and fabrication

PDMS microfluidic chips were designed and fabricated as presented in [289] and
[225] using soft-photolithography methods. All microfluidic chips used in this work
were provided by the group of Tom Robinson (MPI-KG, Potsdam). Briefly, 4” Si-
wafer master molds were prepared by spin coating (model no. WS-650MZ- 23NPPB,
Laurell Tech. Corp.) SU8 2025 (Microchem Inc.) to a height of 50 µm. The SU8-
coated Si-wafers were pre-baked, exposed with UV-light through a film mask with
the requisite design (see supplementary CAD file in [289] for single-inlet design) for
7 s (MicroLithography Services), and then post-baked. SU8 development was then
done by gently washing the wafer in developer solution (Microchem Inc.) for 3 mins
before hard-baking the Si-wafers for 30 min at 200 ◦C. Lastly, the prepared master
molds were silanized overnight (50 µL of 1H,1H,2H,2H-perfluorodecyltrichlorosilane)
in a desiccator. PDMS with curing agent (10:1 mix) was degassed for 30 mins and
poured over the prepared master molds. The PDMS was cured for 3 hours at 90 ◦C.
After curing, the PDMS was peeled from the mold and inlet holes were punched using
a 1mm biopsy puncher (Kai Europe GmbH) and then bonded onto glass cover slips by
air plasma treatment (Plasma Cleaner PDC-002-CE, Harrick Plasma) at 600 mbar for
1 minute. After plasma treatment, the microfluidic chips were kept on a hotplate at 60
◦C for 2 hours.

Pretreatment

Prior to encapsulation, the microfluidic device was pretreated with a polyelectrolyte
solution to provide a hydrophilic coating in the channel between the second junction and
the outlet (Figure F.1). First, a 1:3 (v/v) mixture of 37 % (w/v) HCl and 50 % (w/v)
H2O2 was flushed through from the outlet towards the outer solution inlet by vacuum for
5 minutes to oxidize the channel walls. After washing with water, a 5 % (w/v) solution
of positive polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC, 1.04
g/mL, 1.375 n20/D) was flushed through for 10 minutes. After another water wash, a
2 % (w/v) solution of negative polyelectrolyte poly(4-styrenesulfonic acid) (PSS, MW
∼75000) was flushed for 5 minutes to form a hydrophilic coating, and followed by a final
water wash. Pretreated microfluidic chips were used on the same day of treatment.
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Encapsulation of CFES in liposomes

Before encapsulation, the osmolarity of the inner and outer solutions were measured
using a freezing point osmometer (Osmomat 3000, Gonotec) calibrated with water, 300
mOsmol/kg, and 2000 mOsmol/kg NaCl solution standards. The outer aqueous solu-
tion is balanced to the same osmolarity of the inner CFES solution using water or a
solution of 1.5 M glucose. The lipid oil phase is composed of 1-Octanol with 6.5 mM
of L-α-phosphatidylcholine (Egg PC) phospholipids, and 53.3 µM of 1,1’-Dioctadecyl-
3,3,3’,3’-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt (DiD) or 8 µM
N-(Texas Red sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethy-
lammonium salt (Texas Red DHPE) (Biotium, USA) fluorescent dye. To prepare the
lipid oil phase, Egg PC (300 µL of 32.5 µM in chloroform), and DiD or Texas Red
DHPE dye dissolved n chloroform were mixed together in a glass test tube, dried under
flowing nitrogen gas for 5 minutes and dried under vacuum for 30 minutes. The dry lipid
film was resuspended in 1.5 mL 1-Octanol, and incubated at 37 ◦C in a sonication bath
(Sonorex sonicator bath) for 1 hour. To generate synthetic cells, the inner CFES, lipid
oil phase, and outer buffer solutions were dispensed through the pretreated microfluidic
device using three pressure-regulated pumps (Dolomite Mitos P-Pump) at approxi-
mate pressures of 70:80:80 mbar or 0-70:50-70:80:80 mbar for the single and two-inlet
microfluidic chips, respectively. This results in a flow regime where the inner CFES
solution is encapsulated into double-emulsions to form liposomes. Flow regimes and
double-emulsion formation in the microfluidic device were monitored under brightfield
using a Zeiss Andor Axiovert 200M with a 5x/0.15 Plan-Neofluar Ph1 M27 objective
and PCO Dimax S4 Monochrome sCMOS high-speed camera. The cells are collected
into a microcentrifuge tube, and then placed in channels made from parafilm channels
sandwiched between a microscope slide (76x26x1 mm) and cover slip (24x60 mm) (Fig-
ure F.2). The ends of the channels were sealed with Picodent Twinsil Speed silicone to
avoid evaporation. Imaging was done on either a widefield or confocal microscope. A
sample image of a synthetic cell population is shown in Figure F.3.
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Figure F.1: Pretreatment of the microfluidic chip. Cleaning and coating solutions were se-
quentially flushed with water washed in-between from the outlet towards the outer aqueous
solution inlet (OA) (marked by red arrows) by vacuum. This provides a hydrophilic poly-
electrolyte coating in the outlet channel (pink shaded area) to prevent the double-emulsions
wetting on the channel walls. IA: inner aqueous solution inlet. LO: lipid-oil phase inlet.

Figure F.2: Glass slide setup for synthetic cell populations. (A) Channels between parafilm
strips where synthetic cells are loaded. (B) Twinsil Speed silicone sealing the ends of each
channel.

Figure F.3: Example of a microfluidic-generated synthetic population. Lipids are composed
of Egg PC with DiD dye. (A) Brightfield image and (B) fluorescence image of the same
population using a Zeiss Andor Axiovert 200M widefield microscope with a 5x/0.15 Plan-
Neofluar Ph1 M27 objective. Fluorescence excitation was at 550 nm through a ROX filter set
(excitation bandpass 575±15 nm, beam splitter HC BS 596 nm, emission BP 641±75 nm).
White scale bars are 100 µm.
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Appendix G

Image analysis of synthetic cell
populations

Here, we briefly describe the steps for image acquisition and analysis of calibration,
timeseries, and z-stack confocal microscopy data of microfluidic-generated synthetic
cell populations. Image analysis was done in Python (v3.6) using the following pack-
ages: Numpy (v1.19.1), Pandas (v1.1.3), Scipy (v1.5.2), Matplotlib (v3.3.1), Pystackreg
(v0.2.2) [259], Scikit-image (v0.16.2) [268], and H5py (v3.1.0).

Image acquisition

Confocal images of cell free expression encapsulated within lipid vesicles were ac-
quired using an LSM 880 Airyscan inverted laser scanning confocal microscope with
a 10X/0.45 Plan-Apochromat M27 objective. For timelapse imaging, the laser was
focused at the equator of the synthetic cells and then imaged at the following excita-
tion/emission wavelengths are 488nm/499-561 nm for RNA Broccoli and eGFP protein,
561 nm/579-641 nm for mCherry protein, and 633 nm/640-720 nm for DiD lipid dye
every 5 minutes for a total of 8-12 hours. Z-stack images of the samples were taken at
the endpoint focused at the top and bottom of the synthetic cells and then divided into
20 intervals.

Analysis of Timelapse images

Image stacks from timeseries confocal microscopy experiments were first registered
to align the stack of each channel to its first image (Figure G.1). The last registered
image on the lipid channel stack was then used as a reference image to segment cells
of a synthetic cell population throughout the timeseries. A gaussian filter was used to
smooth the reference image before thresholding and filling in small holes. The binary
image was then labelled for each individual object and filtered by size and circularity to
get only the synthetic cells. Cells with defects (e.g. oil drops or shadows from debris)
were manually checked and removed. Cells near the edge of the image frame were
also avoided to ensure only complete vesicles were analyzed (Figure G.2). Fluorescence
measurements of each labeled synthetic cell were collected from a 10 µm diameter circle
in the center of each cell (Figure G.3).
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Z-stack images

A maximum projection of the lipid channel along the z-axis from z-stack endpoint
images of the timeseries confocal microscopy experiments were used as the reference
image for cell segmentation. The same workflow of gaussian filter > thresholding >
filling > labelling > manual cleaning > filtering by circularity and size was then done on
the reference image to segment the synthetic cells (Figure G.4). Cell sizes were obtained
from the equivalent diameters of the segmented cells. Fluorescence measurements of
each labeled synthetic cell was collected from the maximum value along the z-axis of a
10 µm diameter circle in the center of each cell. Single cell fluorescence measurements
and sizes for each cell population were saved in csv files.

Image intensity correction (planar shading correction)

We observed an uneven and tilted illumination of the samples across the images. Low
magnification objectives, such as the 20x objective which we used for our experiments,
are sensitive to tilting errors because of their large field of views. Tilting was accounted
for by using a planar shading correction [176]. This was done by fitting the single cell
fluorescence data points or regions of interest (ROIs) in their respective coordinates to
an equation of a plane and then tilting the plane back to a flat horizontal fixed at the
origin. This method of correction was applied individually to all confocal images used in
this study including the confocal images for calibration. To illustrate, Figure G.5 shows
the uneven illumination in an image and the method of correction. Using a grid mask
for bulk solution images or cell masks for synthetic cell population images (Figure G.3),
RFU values of the ROIs were plot along the x and y-axes and then corrected to have
an average RFU values to be constant across the plane (Figure G.6).
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Figure G.1: Image registration of timeseries stacks. The three channels (lipid, mRNA, and
protein) for the first (slice 0) and last (slice 144) image in the timeseries after registration
using Pystackreg. X and Y axes are given in pixel units.

Figure G.2: Image segmentation in the lipid channel. From left to right: reference lipid image,
gaussian filter, convert to binary by thresholding, filling in small holes, labelling objects, and
filtering cells by shape and size (labeled in red circles).
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Figure G.3: Masks of a synthetic cell population and grid. ROIs were obtained by taking
10 µm diameter circles from (A) the center of the cells segmented in Figure G.2 or (B) in a
uniform grid for calibration standards.

Figure G.4: Image segmentation of a z-stack. From left to right: maximum projection along z-
axis, gaussian filter, convert to binary by thresholding, filling in small holes, labelling objects,
and filtering cells by shape and size (labeled in red circles).
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Figure G.5: Illustration of planar shading correction. (A) Example of confocal image of a
bulk sample of eGFP protein with uneven and tilted illumination (left) and its planar shading
corrected image (right). (B) Fluorescence values of single cells across the plane follow a
gradient due to uneven and tilted illumination. This is corrected by enforcing the average
fluorescence signal to be constant across the plane. To obtain the corrected data, fluorescence
values were subtracted by (ax+by) from the plane fit of uncorrected data.

Figure G.6: Example of corrected fluorescence values. RFU values of ROIs with respect to
the (A) x and (B) y-axes before and after correction from uneven illumination.
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Appendix H

Resource-limited cell-free gene
expression model

Seven different candidate models for cell-free gene expression (summarized in Ta-
ble H.1), based on and including the resource-limited gene expression model in [247],
were used to fit our bulk and encapsulated RNA Broccoli and mCherry protein expres-
sion timeseries data. The general structure of the models consists of either mass-action,
Michaelis-Menten, or Hill kinetics to describe the different steps of transcription and
translation to provide a coarse-grained model of gene expression. In addition, gene
expression was modeled as a resource-limited process. Transcription and translation
processes consume TsR and TlR species, which are transcription and translation re-
sources, respectively. To illustrate, the resource-limited gene expression model can
be described by the reaction network with their respective reaction rate constants in
Equation H.1-H.8.

DNA + RNAP
kf1/kb1←−−−→ DNA:RNAP (H.1)

DNA:RNAP + TsR
kcat1−−−→ DNA + RNAP + RNA (H.2)

RNA + Rb
kf2/kb2←−−−→ RNA:Rb (H.3)

RNA:Rb + TlR
kcat2−−−→ RNA + Rb + Protein (H.4)

Protein
kmat−−→ Protein∗ (H.5)

RNA
δRNA−−−→ (H.6)

TsR
δTsR−−→ (H.7)

TlR
δTlR−−→ (H.8)

For transcription, DNA is first reversibly bound to RNA polymerase (RNAP) to form
a DNA:RNAP complex (Equation H.1). This complex can consume transcription re-
sources (TsR) to produce RNA (Equation H.2). In the process, DNA and RNAP
dissociate from each other. Following mass-action kinetics, the rate equation for RNA
production can be written as

d[RNA]

dt
= kcat1[DNA:RNAP][TsR]. (H.9)
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Assuming that the binding/unbinding of DNA and RNAP is fast and in quasi-equilibrium

kf1[DNA][RNAP] = kb1[DNA:RNAP]. (H.10)

Additionally, assuming that total RNAP concentration is conserved,

kf1[DNA]([RNAP]0 − [DNA:RNAP]) = kb1[DNA:RNAP] (H.11)

[DNA:RNAP] =
kf1[RNAP]0[DNA]

kb1 + kf1[DNA]
(H.12)

where [RNAP]0 is the initial amount of RNA polymerase in the reaction. Replacing
[DNA:RNAP] in the rate equation of RNA production and grouping constants together
results in

d[RNA]

dt
=
kcat1kf1[RNAP]0[TsR][DNA]

kb1 + kf1[DNA]
(H.13)

d[RNA]

dt
=
kr[TsR][DNA]

Kr + [DNA]
(H.14)

where kr = kcat1[RNAP]0 is an effective rate constant for transcription and Kr = kb1/kf1
is the dissociation constant between DNA and RNAP. A similar derivation can be done
for translation of protein (Equation H.3-H.4)

d[Protein]

dt
=
kp[TlR][Protein]

Kp + [Protein]
(H.15)

where kp is an effective rate constant for translation and Kp is the dissociation con-
stant between RNA and ribosome (Rb). The remaining steps for protein maturation,
RNA degradation (Equation H.5), TsR degradation (Equation H.7), and TlR degra-
dation (Equation H.8) in the reaction network are modeled as first order reactions.
Altogether, the reaction network of Equation H.1-H.8 can be written as a system of
ordinary differential equations

d[DNA]

dt
= 0 (H.16)

dRNA

dt
=
kr[TsR][DNA]

Kr + [DNA]
− δr[RNA] (H.17)

d[Protein]

dt
=
kp[TlR][RNA]

Kp + [RNA]
− kmat[Protein] (H.18)

d[Protein∗]

dt
= kmat[Protein] (H.19)

d[TsR]

dt
= −akr[TsR][DNA]

Kr + [DNA]
− δTsR[TsR] (H.20)

d[TlR]

dt
= −bkp[TlR][RNA]

Kp + [RNA]
− δTlR[TlR] (H.21)

TsR and TlR are assigned unitless quantities starting from 1 and are consumed con-
sumed during transcription and translation, scaled by the factors a and b, respectively.
Delay differential equations can be used to describe translation to account for the ∼0.5
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hour delay of protein expression observed in mRNA titration bulk experiments. For
example, Equation H.18 can be written to include a time-delay (τd), as

d[Protein]

dt
=
kp[TlR][RNA](t− τd)
Kp + [RNA](t− τd)

− kmat[Protein] (H.22)

where [RNA](t− τd) is a function of RNA at time (t− τd).

Different combinations of mass-action or Michaelis-Menten kinetics are used for the
degradation of TsR and TlR in the candidate models. However, unlike the Michaelis-
Menten kinetics of transcription and translation, we do not derive TsR and TlR degra-
dation kinetics from a particular reaction network because TsR and TlR are abstracted
species of transcription and translation resources. We chose to represent their degra-
dation dynamics as either first order or Michaelis-Menten kinetics for simplicity. For
example, Model 1 is shown in Equation H.23-H.28, which includes Michaelis-Menten
type kinetics for resource degradation (2nd term in the RHS of Equation H.27 and
H.28). Model 7 is the model provided by Stögbauer et al. (2012) [247] without a delay
differential equation for translation, while Model 5 is Model 7 with a delay differential
equation for the translation step. Each parameter is described in Table H.2.

d[DNA]

dt
= 0 (H.23)

dRNA

dt
=
kr[TsR][DNA]

Kr + [DNA]
− δr[RNA] (H.24)

d[Protein]

dt
=
kp[TlR][RNA]

Kp + [RNA]
− kmat[Protein] (H.25)

d[Protein∗]

dt
= kmat[Protein] (H.26)

d[TsR]

dt
= −akr[TsR][DNA]

Kr + [DNA]
− δTsR[TsR]

Ks + [TsR]
(H.27)

d[TlR]

dt
= −bkp[TlR][RNA]

Kp + [RNA]
− δTlR[TlR]

Kl + [TlR]
(H.28)

Table H.1: Summary of seven candidate CFES models. Each model is composed of the
different reaction steps modeled by mass-action kinetics (MA), Michaelis-Menten kinetics
(MM), or Michaelis-Menten kinetics with delay (DM). Model 7 is the model provided in
Stögbauer et al. (2012) [247]

Model 1 2 3 4 5 6 7
Transcription MM MM MM MM MM MM MM
Translation DM DM DM DM DM DM MM

RNA degradation MA MA MA MA MA MA MA
Protein maturation MA MA MA MA MA MA MA
TsR consumption MM MM MM MM MM MM MM
TlR consumption DM DM DM - - DM -
TsR degradation MM MA MM MM - - -
TlR degradation MM MM MA - MM - MM
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Table H.2: Rate parameters of resource-limited gene expression models.

Parameter Units Description
kr nM/hr RNA transcription rate.
Kr nM Dissociation constant between RNAP and DNA.
δr 1/hr Degradation rate of RNA.
kp nM/hr Protein translation rate.
Kp nM Dissociation constant between ribosome and RNA.
kmat 1/hr Protein maturation rate.
δTsR 1/hr TsR degradation rate.
Ks - Michaelis-Menten constant of TsR degradation.
δT lR 1/hr TlR degradation rate.
Kl - Michaelis-Menten constant of TlR degradation.
a - Scaling factor for consumption of TsR with transcription.
b - Scaling factor for consumption of TlR with translation.
τd hr Time-delay of translation.

130



Appendix I

Parameter estimation and model
selection

All methods for parameter estimation, model selection, and profile likelihood anal-
ysis were written in Julia (v1.5.3) [23] using the packages DifferentialEquations, Distri-
butions, Optim, Plots, DataFrames, DelimitedFiles, and CSV.

Model selection and profile likelihoods

To rank the seven candidate models, we calculated the Akaike information criterion
(AIC) from fit parameter estimates. The AIC values of each model are shown in Ta-
ble I.1. Fits of the models with bulk experiments are shown in Figure I.1-I.7. Model
7 is the same model provided by Stögbauer et al. (2012) [247], but resulted in the
highest AIC (and lowest log-likelihood). This was due to the initial delay of mCherry
signal in both DNA and RNA titration experiments and endpoints of mRNA in the
DNA titration experiments not fitting well. We then modified this model to include a
delay in translation (Models 1-6) and degradation of transcription resources (Models
1-4) to account for observed deviations from experimental data. These modifications
improved the AIC and qualitative fit. Overall, Model 2 was selected to be presented in
the main text because it had the lowest AIC score, which accounts for both goodness-
of-fit through the log-likelihood score, as well as model complexity by a penalty term
for number of parameters in the AIC. Profile likelihoods of each parameter between a
range greater and less than θ̂ by a factor of 10 at 11 equally spaced increments in of
Models 1-6 are shown in Figure I.8-I.13.

Table I.1: AIC of the CFES models based on bulk experiments.

Model Log-likelihood Parameters AIC
1 -6822.78 15 13675.56
2 -6822.87 14 13673.74
3 -6887.60 14 13803.21
4 -6922.83 14 13873.65
5 -7255.11 12 14534.21
6 -7208.64 11 14439.28
7 -7354.29 11 14730.58
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Figure I.1: Model 1 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.

Figure I.2: Model 2 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.
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Figure I.3: Model 3 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.

Figure I.4: Model 4 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.
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Figure I.5: Model 5 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.

Figure I.6: Model 6 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.
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Figure I.7: Model 7 fit with DNA and RNA titration bulk experiments. Colored lines are
mean timeseries experimental data for the different species RNA, Protein, TsR, and TlR.
Dashed lines are the model simulation from the parameter estimates.

Figure I.8: Profile likelihoods of parameters from Model 1. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.
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Figure I.9: Profile likelihoods of parameters from Model 2. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.

Figure I.10: Profile likelihoods of parameters from Model 3. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.
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Figure I.11: Profile likelihoods of parameters from Model 4. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.

Figure I.12: Profile likelihoods of parameters from Model 5. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.
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Figure I.13: Profile likelihoods of parameters from Model 6. The y-axis of each plot is the
negative log likelihood of the model given the corresponding parameter value in the x-axis
with all other parameters re-optimized. The red dot shows the optimized parameter set with
the negative MLE. The dashed grey line is the 95% significance threshold line. All logarithms
are in natural log.
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EGF epidermal growth factor
EM expectation-maximization
FACS fluorescence-activated cell sorting
FRAP fluorescence recovery after photobleaching
FRET fluorescence resonance energy transfer
GC-MS gas chromatography–mass spectrometry
GFP green fluorescent protein
GUV giant unilamellar vesicle
HPLC high-performance liquid chromatography
HSL homoserine lactone
IA inner aqueous phase
IPTG isopropyl β-D-1-thiogalactopyranoside
IVT in vitro transcription
IVTT in vitro transcription and translation
LC-MS liquid chromatography–mass spectrometry
LO lipid-oil phase
LUV large unilamellar vesicle
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MA moment-closure approximation
MA mass-action
MAP maximum a posteriori probability
MLE maximum likelihood estimation
MM Michaelis-Menten
MW molecular weight
MWCO molecular weight cut-off
NEB New England Biolabs
NTP nucleoside triphosphate
OA outer aqueous phase
OEM outer envelope membrane
OLA octanol-assisted liposome assembly
PCR polymerase chain reaction
PDMS polydimethylsiloxane
PL profile likelihood
PURE protein synthesis using recombinant elements
PV pairwise variation
Rb Ribosome
REML restricted maximum likelihood
RFU relative fluorescence units
RNA ribonucleic acid
RNAP RNA polymerase
ROI region of interest
SAEM stochastic approximation of expectation-maximization
SAM S-adenosyl-L-methionine
Stdev standard deviation
SUV small unilamellar vesicle
TlR translation resources
TsR transcription resources
TXTL transcription and translation
WO water-in-oil
WOW water-in-oil-in-water

143



Bibliography

[1] K. P. Adamala, D. A. Martin-Alarcon, K. R. Guthrie-Honea, and E. S. Boyden. Engi-
neering genetic circuit interactions within and between synthetic minimal cells. Nature
Chemistry 9:5 (2017), pp. 431–439. doi: 10.1038/nchem.2644.

[2] R. Ahrends, A. Ota, K. M. Kovary, T. Kudo, B. O. Park, and M. N. Teruel. Controlling
low rates of cell differentiation through noise and ultrahigh feedback. Science 344:6190
(2014), pp. 1384–1389. doi: 10.1126/science.1252079.

[3] H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control 19:6 (1974), pp. 716–723. doi: 10.1109/TAC.1974.1100705.

[4] K. Akashi, H. Miyata, H. Itoh, and K. Kinosita. Preparation of giant liposomes in
physiological conditions and their characterization under an optical microscope. Bio-
physical Journal 71:6 (1996), pp. 3242–3250. doi: 10.1016/S0006-3495(96)79517-6.

[5] K. I. Akashi, H. Miyata, H. Itoh, and K. Kinosita. Formation of giant liposomes pro-
motedby divalent cations: Critical role of electrostatic repulsion. Biophysical Journal
74:6 (1998), pp. 2973–2982. doi: 10.1016/S0006-3495(98)78004-X.

[6] B. Alberts, A. Johnson, J. Lewis, P. Walter, M. Raff, and K. Roberts. Molecular
Biology of the Cell: 6th Edition. Garland Science, 2017. isbn: 9781317563754.

[7] A. Alcinesio, I. Cazimoglu, G. R. Kimmerly, V. Restrepo Schild, R. Krishna Kumar,
and H. Bayley. Modular Synthetic Tissues from 3D-Printed Building Blocks. Advanced
Functional Materials (2021), p. 2107773. doi: 10.1002/adfm.202107773.

[8] A. Alcinesio, R. Krishna Kumar, and H. Bayley. Functional multivesicular structures
with controlled architecture from 3D-printed droplet networks. ChemSystemsChem
(2021), syst.202100036. doi: 10.1002/syst.202100036.

[9] A. Alcinesio, O. J. Meacock, R. G. Allan, C. Monico, V. Restrepo Schild, I. Cazimoglu,
M. T. Cornall, R. Krishna Kumar, and H. Bayley. Controlled packing and single-
droplet resolution of 3D-printed functional synthetic tissues. Nature Communications
11:1 (2020), p. 2105. doi: 10.1038/s41467-020-15953-y.

[10] S. Allazetta, A. Negro, and M. P. Lutolf. Microfluidic Programming of Composi-
tional Hydrogel Landscapes. Macromolecular Rapid Communications 38:15 (2017),
p. 1700255. doi: 10.1002/marc.201700255.

[11] E. Amalfitano, M. Karlikow, M. Norouzi, K. Jaenes, S. Cicek, F. Masum, P. Sadat
Mousavi, Y. Guo, L. Tang, A. Sydor, D. Ma, J. D. Pearson, D. Trcka, M. Pinette,
A. Ambagala, S. Babiuk, B. Pickering, J. Wrana, R. Bremner, T. Mazzulli, D. Sinton,
J. H. Brumell, A. A. Green, and K. Pardee. A glucose meter interface for point-of-care
gene circuit-based diagnostics. Nature Communications 12:1 (2021), pp. 1–10. doi:
10.1038/s41467-020-20639-6.

[12] M. I. Angelova and D. S. Dimitrov. Liposome electroformation. Faraday Discussions
of the Chemical Society 81 (1986), p. 303. doi: 10.1039/dc9868100303.

144

https://doi.org/10.1038/nchem.2644
https://doi.org/10.1126/science.1252079
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/S0006-3495(96)79517-6
https://doi.org/10.1016/S0006-3495(98)78004-X
https://doi.org/10.1002/adfm.202107773
https://doi.org/10.1002/syst.202100036
https://doi.org/10.1038/s41467-020-15953-y
https://doi.org/10.1002/marc.201700255
https://doi.org/10.1038/s41467-020-20639-6
https://doi.org/10.1039/dc9868100303


[13] S. K. Aoki, G. Lillacci, A. Gupta, A. Baumschlager, D. Schweingruber, and M. Kham-
mash. A universal biomolecular integral feedback controller for robust perfect adapta-
tion. Nature 570:7762 (2019), pp. 533–537. doi: 10.1038/s41586-019-1321-1.

[14] N. B. Arnfinnsdottir, A. V. Bjørkøy, R. Lale, and M. Sletmoen. Heterogeneity in
GFP expression in isogenic populations of P. putida KT2440 investigated using flow
cytometry and bacterial microarrays. RSC Advances 6:42 (2016), pp. 36198–36206.
doi: 10.1039/C5RA23757B.

[15] L. Aufinger and F. C. Simmel. Establishing Communication Between Artificial Cells.
Chemistry – A European Journal 25:55 (2019), pp. 12659–12670. doi: 10.1002/chem.
201901726.

[16] A. Baccouche, K. Montagne, A. Padirac, T. Fujii, and Y. Rondelez. Dynamic DNA-
toolbox reaction circuits: A walkthrough. Methods 67:2 (2014), pp. 234–249. doi: 10.
1016/j.ymeth.2014.01.015.

[17] S. Ballweg, E. Sezgin, M. Doktorova, R. Covino, J. Reinhard, D. Wunnicke, I. Hänelt,
I. Levental, G. Hummer, and R. Ernst. Regulation of lipid saturation without sens-
ing membrane fluidity. Nature Communications 11:1 (2020), p. 756. doi: 10.1038/
s41467-020-14528-1.

[18] M. K. Al-Banna, A. W. Kelman, and B. Whiting. Experimental design and efficient
parameter estimation in population pharmacokinetics. Journal of Pharmacokinetics
and Biopharmaceutics 18:4 (1990), pp. 347–360. doi: 10.1007/BF01062273.

[19] K. Batmanov, C. Kuttler, F. Lemaire, C. Lhoussaine, and C. Versari. “Symmetry-
Based Model Reduction for Approximate Stochastic Analysis”. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 7605 LNBI. 2012, pp. 49–68. doi: 10.1007/978-3-
642-33636-2_5.

[20] T. Beneyton, C. Love, M. Girault, T.-Y. D. Tang, and J.-C. Baret. High-Throughput
Synthesis and Screening of Functional Coacervates Using Microfluidics. ChemSystem-
sChem 2:6 (2020), syst.202000022. doi: 10.1002/syst.202000022.

[21] S. Berhanu, T. Ueda, and Y. Kuruma. Artificial photosynthetic cell producing energy
for protein synthesis. Nature Communications 10:1 (2019). doi: 10.1038/s41467-
019-09147-4.

[22] K. Bernitzki and T. Schrader. Entirely Artificial Signal Transduction with a Primary
Messenger. Angewandte Chemie International Edition 48:43 (2009), pp. 8001–8005.
doi: 10.1002/anie.200902973.

[23] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM Review 59:1 (2017), pp. 65–98. doi: 10.1137/141000671.

[24] O. Biner, J. G. Fedor, Z. Yin, and J. Hirst. Bottom-Up Construction of a Minimal
System for Cellular Respiration and Energy Regeneration. ACS Synthetic Biology
(2020). doi: 10.1021/acssynbio.0c00110.

[25] D. Blanken, P. van Nies, and C. Danelon. Quantitative imaging of gene-expressing
liposomes reveals rare favorable phenotypes. Physical Biology 16:4 (2019), p. 045002.
doi: 10.1088/1478-3975/ab0c62.

[26] J. J. Blow and R. A. Laskey. Initiation of DNA replication in nuclei and purified DNA
by a cell-free extract of Xenopus eggs. Cell 47:4 (1986), pp. 577–587. doi: 10.1016/
0092-8674(86)90622-7.

145

https://doi.org/10.1038/s41586-019-1321-1
https://doi.org/10.1039/C5RA23757B
https://doi.org/10.1002/chem.201901726
https://doi.org/10.1002/chem.201901726
https://doi.org/10.1016/j.ymeth.2014.01.015
https://doi.org/10.1016/j.ymeth.2014.01.015
https://doi.org/10.1038/s41467-020-14528-1
https://doi.org/10.1038/s41467-020-14528-1
https://doi.org/10.1007/BF01062273
https://doi.org/10.1007/978-3-642-33636-2_5
https://doi.org/10.1007/978-3-642-33636-2_5
https://doi.org/10.1002/syst.202000022
https://doi.org/10.1038/s41467-019-09147-4
https://doi.org/10.1038/s41467-019-09147-4
https://doi.org/10.1002/anie.200902973
https://doi.org/10.1137/141000671
https://doi.org/10.1021/acssynbio.0c00110
https://doi.org/10.1088/1478-3975/ab0c62
https://doi.org/10.1016/0092-8674(86)90622-7
https://doi.org/10.1016/0092-8674(86)90622-7
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Hasenauer. Multi-experiment nonlinear mixed effect modeling of single-cell translation
kinetics after transfection. npj Systems Biology and Applications 4:1 (2018), p. 42. doi:
10.1038/s41540-018-0079-7.

[81] R. S. Fuller, J. M. Kaguni, and A. Kornberg. Enzymatic replication of the origin of the
Escherichia coli chromosome. Proceedings of the National Academy of Sciences 78:12
(1981), pp. 7370–7374. doi: 10.1073/pnas.78.12.7370.

149

https://doi.org/10.1016/0006-291X(75)90798-6
https://doi.org/10.1038/ncomms6305
https://doi.org/10.1126/science.1070919
https://doi.org/10.1021/bp060110v
https://doi.org/10.1038/s41598-017-16767-7
https://doi.org/10.1021/acsnano.9b00220
https://doi.org/10.1021/acsnano.9b00220
https://doi.org/10.1073/pnas.0500044102
https://doi.org/10.1002/9780470559277.ch150174
https://doi.org/10.1016/j.chembiol.2015.04.018
https://doi.org/10.1021/ja508478x
https://doi.org/10.1016/j.nbt.2017.09.005
https://doi.org/10.1038/s41540-018-0079-7
https://doi.org/10.1073/pnas.78.12.7370


[82] A. Ganguly, D. Altintan, and H. Koeppl. Jump-Diffusion Approximation of Stochastic
Reaction Dynamics: Error Bounds and Algorithms. Multiscale Modeling Simulation
13:4 (2015), pp. 1390–1419. doi: 10.1137/140983471.

[83] M. C. Ganoza, C. Cunningham, and R. M. Green. Isolation and point of action of
a factor from Escherichia coli required to reconstruct translation. Proceedings of the
National Academy of Sciences of the United States of America 82:6 (1985), pp. 1648–
1652. doi: 10.1073/pnas.82.6.1648.

[84] K. A. Ganzinger and P. Schwille. More from less – bottom-up reconstitution of cell
biology. Journal of Cell Science 132:4 (2019), jcs227488. doi: 10.1242/jcs.227488.

[85] J. Garamella, R. Marshall, M. Rustad, and V. Noireaux. The All E. coli TX-TL
Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synthetic Biology 5:4
(2016), pp. 344–355. doi: 10.1021/acssynbio.5b00296.

[86] D. Garenne, C. L. Beisel, and V. Noireaux. Characterization of the all-E. coli transcription-
translation system myTXTL by mass spectrometry. Rapid Communications in Mass
Spectrometry 33:11 (2019), pp. 1036–1048. doi: 10.1002/rcm.8438.

[87] D. Garenne, S. Thompson, A. Brisson, A. Khakimzhan, and V. Noireaux. The all- E.
Coli TXTL Toolbox 3.0: New Capabilities of a Cell-Free Synthetic Biology Platform.
Synthetic Biology 5:4 (2021), pp. 344–355. doi: 10.1093/synbio/ysab017.

[88] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry 81:25 (1977), pp. 2340–2361. doi: 10.1021/j100540a008.

[89] D. T. Gillespie. A rigorous derivation of the chemical master equation. Physica A:
Statistical Mechanics and its Applications 188:1-3 (1992), pp. 404–425. doi: 10.1016/
0378-4371(92)90283-V.
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[99] A. Gräwe, A. Dreyer, T. Vornholt, U. Barteczko, L. Buchholz, G. Drews, U. L. Ho,
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replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature
Communications 9:1 (2018), pp. 1–12. doi: 10.1038/s41467-018-03926-1.

[271] S. Vanuytsel, J. Carniello, and M. I. Wallace. Artificial Signal Transduction across
Membranes. ChemBioChem 20:20 (2019), pp. 2569–2580. doi: 10.1002/cbic.201900254.

[272] M. A. Vibhute, M. H. Schaap, R. J. Maas, F. H. Nelissen, E. Spruijt, H. A. Heus, M. M.
Hansen, and W. T. Huck. Transcription and Translation in Cytomimetic Protocells
Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Syn-
thetic Biology 9:10 (2020), pp. 2797–2807. doi: 10.1021/acssynbio.0c00330.

[273] G. Villar, A. D. Graham, and H. Bayley. A Tissue-Like Printed Material. Science
340:6128 (2013), pp. 48–52. doi: 10.1126/science.1229495.

[274] A. M. Voloshin and J. R. Swartz. “Large-scale batch reactions for cell-free protein
synthesis”. Cell-free protein synthesis. 2008.

[275] P. L. Voyvodic, A. Pandi, M. Koch, I. Conejero, E. Valjent, P. Courtet, E. Renard,
J. L. Faulon, and J. Bonnet. Plug-and-play metabolic transducers expand the chemical
detection space of cell-free biosensors. Nature Communications 10:1 (2019), pp. 1–8.
doi: 10.1038/s41467-019-09722-9.

[276] T. Wada, K. ichi Hironaka, M. Wataya, M. Fujii, M. Eto, S. Uda, D. Hoshino, K.
Kunida, H. Inoue, H. Kubota, T. Takizawa, Y. Karasawa, H. Nakatomi, N. Saito, H.
Hamaguchi, Y. Furuichi, Y. Manabe, N. L. Fujii, and S. Kuroda. Single-Cell Infor-
mation Analysis Reveals That Skeletal Muscles Incorporate Cell-to-Cell Variability as
Information Not Noise. Cell Reports 32:9 (2020), p. 108051. doi: 10.1016/j.celrep.
2020.108051.

[277] S. Waldherr. Estimation methods for heterogeneous cell population models in systems
biology. Journal of the Royal Society Interface 15:147 (2018). doi: 10.1098/rsif.
2018.0530.

[278] S. Walker. An EM Algorithm for Nonlinear Random Effects Models. Biometrics 52:3
(1996), p. 934. doi: 10.2307/2533054.

[279] H. Wang, J. Li, and M. C. Jewett. Development of a Pseudomonas putida cell-free
protein synthesis platform for rapid screening of gene regulatory elements. Synthetic
Biology 3:1 (2018), pp. 1–7. doi: 10.1093/synbio/ysy003.

[280] Y. Wang and Y. H. Percival. Cell-free protein synthesis energized by slowly-metabolized
maltodextrin. BMC Biotechnology 9 (2009), pp. 1–8. doi: 10.1186/1472-6750-9-58.

[281] C. M. Waters and B. L. Bassler. QUORUM SENSING: Cell-to-Cell Communication in
Bacteria. Annual Review of Cell and Developmental Biology 21:1 (2005), pp. 319–346.
doi: 10.1146/annurev.cellbio.21.012704.131001.

[282] C. M. Waters, W. Lu, J. D. Rabinowitz, and B. L. Bassler. Quorum sensing controls
biofilm formation in Vibrio cholerae through modulation of cyclic Di-GMP levels and
repression of vpsT. Journal of Bacteriology 190:7 (2008), pp. 2527–2536. doi: 10.

1128/JB.01756-07.

[283] W. T. Watson, T. D. Minogue, D. L. Val, S. B. von Bodman, and M. E. Churchill.
Structural Basis and Specificity of Acyl-Homoserine Lactone Signal Production in
Bacterial Quorum Sensing. Molecular Cell 9:3 (2002), pp. 685–694. doi: 10.1016/
S1097-2765(02)00480-X.

164

https://doi.org/10.1038/s41467-018-03926-1
https://doi.org/10.1002/cbic.201900254
https://doi.org/10.1021/acssynbio.0c00330
https://doi.org/10.1126/science.1229495
https://doi.org/10.1038/s41467-019-09722-9
https://doi.org/10.1016/j.celrep.2020.108051
https://doi.org/10.1016/j.celrep.2020.108051
https://doi.org/10.1098/rsif.2018.0530
https://doi.org/10.1098/rsif.2018.0530
https://doi.org/10.2307/2533054
https://doi.org/10.1093/synbio/ysy003
https://doi.org/10.1186/1472-6750-9-58
https://doi.org/10.1146/annurev.cellbio.21.012704.131001
https://doi.org/10.1128/JB.01756-07
https://doi.org/10.1128/JB.01756-07
https://doi.org/10.1016/S1097-2765(02)00480-X
https://doi.org/10.1016/S1097-2765(02)00480-X


[284] A. Weinberger, F. C. Tsai, G. H. Koenderink, T. F. Schmidt, R. Itri, W. Meier, T.
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