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Zusammenfassung

Das Studium von Transportmechanismen in komplexen Organismen stellt eine zentrale
Herausforderung dar, nicht nur in medizinischen und biologischen Disziplinen, sondern
auch zunehmend in der Physik und Netzwerktheorie. Insbesondere sind bionisch in-
spirierte Designprinzipien zunehmend relevant, da sie zuverlassige Losungsansétze zu
verschiedenen theoretischen und technischen Problemen bieten. Herausstechend sind
dabei vaskuldre Netzwerke in Sdugetieren, deren Entwicklung auffallig stark auf Selb-
storganisation beruhen und die korrekte Verteilung von Sauerstoff, Wasser, Blut oder
Ahnlichem erlaubt. Dies wird erreicht durch ein komplexes biochemisches Signalsys-
tem, welches an makroskopische Stimulationen, wie z. B. Reibung und Stress, gekoppelt
ist. Die Morphogenese solcher Flussnetzwerke ist allerdings noch anderen Restriktio-
nen unterworfen, da diese raumlich eingebettete Objekte darstellen. Sie sind als solche
signifikant beschrankter in ihrer Skalierbarkeitund Dynamik.

Diese Dissertation addressiert daher relevante Fragestellungen zur Charakterisierung
von Netzwerken und der Morphogenesesimulationen von drei-dimensional eingebet-
teten Netzwerken Die Schliisselmechanismen auf die wir uns hier konzentrieren sind
Flussfluktuationen, Interaktionen zwischen Paarstrukturen und die Aufnahme von
Néahrstoffen. Zu Beginn zeigen wir, wie sich konventionelle Ansétze zu Flussfluk-
tuationen als allgemeine Einparametermodelle darstellen lassen. Wir demonstrieren
damit den kontinuierlichen Ubergang zu zunehmend vernetzten Strukturen und in-
dizieren Topologieabhiingigkeiten der Plexus in Anbetracht dieses Ubergangs. Da-
rauf aufbauend formulieren wir ein neues Adaptationsmodell fiir ineinander verwobene
Gefaflsnetzwerke wie sie auch in der Leber, Bauchspeicheldriise oder Niere vorkommen.
Wir diskutieren anhand dieser Strukturen lokale Wechselwirkungen von dreidimen-
sionalen Netzwerken. Dadurch kénnen wir zeigen, dass repulsiv gekoppelte Netzwerke
fluktuationsinduzierte Vernetzungen auflosen und attraktive Kopplungen einen neuen
Mechanismus zur Erzeugung eben jener darstellen. Als néachstes verallgemeinern wir
die Murray Regel fiir solch komplexe Wechselwirkungen und Fluktuationen. Die da-
raus abgeleiteten Relationen nutzen wir zur Regression der Modellparameter und testen
diese an den Gefafnetzwerken der Leber.

Weiterhin verallgemeinern wir konventionelle Transportmodelle fiir die Nahrstoffauf-
nahme in beliebigem Gewebe und testen diese in Morphogenesemodellen gegen die
bekannten Ansitze zur Dissipationsminimierung. Hier zeigen sich komplexe Uberginge
zwischen vernetzten Strukturen und unkonvetionelles Phasenverhalten. Allerdings in-
dizieren die Ergebnisse Widerspriiche zu echten Kapillargefaffen und wir vermuten
Adaptationsmethoden ohne Geféafigrokendnderung als wahrscheinlicheren Mechanis-
mus. Im Ausblick schlagen wir auf unseren Ergebnissen aufbauende Folgemodelle
vor, welche die Modellierung komplexer Transportprozesse zwischen verschrinkten
Gefafsnetzwerken zum Ziel haben.






Abstract

Understanding the transport of fluid in complex organisms has proven to be a key
challenge not only in the medical and biological sciences, but in physics and network
theory as well. This is even more so as biologically-inspired design principles have
been increasing in popularity, reliably generating solutions to common theoretical and
technical problems. On that note, vascular networks in mammalian organs display a
magnificent level of self-organization, allowing them to develop and mature, yet mirac-
ulously orchestrate the correct transport of oxygen, water, blood etc. This is achieved
by a dedicated biochemical feedback system, which is coupled to macroscopic stimuli,
such as mechanical stresses. Another important constraint for the morphogenesis of
flow networks is their environment, as these networks are spatially embedded. They
are therefore exposed to significant constraints with regards to their scalability and
dynamical behavior, which are not yet well understood.

This thesis addresses the current challenges of network characterization and morpho-
genesis modeling for three-dimensional embedded networks. In order to derive proper
maturation mechanisms, we propose a set of toy models for the creation of non-planar,
entangled and reticulated networks. The key mechanisms we focus on in this thesis are
flow fluctuation, coupling of pairing structures and metabolite uptake. We show that
in accordance with previous theoretical approaches, fluctuation induced nullity can be
formulated as a single parameter problem. We demonstrate that the reticulation tran-
sition follows a logarithmic law and find plexi with certain topologies to have limited
nullity transitions, rendering such plexi intrinsically wasteful in terms of fluctuation
generated reticulation. Moreover, we formulate a new coupling model for entangled
adapting networks as an approach for vasculature found in the liver lobules, pancreas,
kidneys etc. We discuss a model based on local, distance-dependent interactions be-
tween pairs of three-dimensional network skeletons. In doing so we find unprecedented
delay and breakdown of the fluctuation induced nullity transition for repulsive inter-
actions. In addition we find a new nullity transition emerging for attractive coupling,.
Next, we study how flow fluctuations and complex metabolic costs can be incorporated
into Murray’s Law. Utilizing this law for interpolation, we are able to derive order
of magnitude estimation for the parameters in liver networks, suggesting fluctuation
driven adaptation to be the dominant factor. We also conclude that attractive coupling
is a reasonable mechanism to account for the maintenance of entangled structures. We
test optimal metabolite uptake in Kirchhoff networks by evaluating the impact of solute
uptake driven dynamics relative to wall-shear stress driven adaptation. Here, we find
that a nullity transition emerges in case of a dominant metabolite uptake machinery.
In addition to that, we find re-entrant behavior in case of high absorption rates and
discover a complex interaction between shear-stress generation and feedback. Never-
theless, we conclude that metabolite uptake optimization is not likely to occur due to
radial adaptation alone. We suggest areas for further studies, which should consider
absorption rate variation in order to account for realistic uptake profiles. In our out-
look, we suggest a complex morphogenesis model for intertwined networks based on
the results of this thesis.
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Chapter 1

Introduction

1.1 Complex networks in biology

The world that we live in is defined by its numerous constituting components and the
manifold possible interactions among them. Modern mathematicians and physicists
have coined this very specifically: a complex system [11]. The approach to study,
understand and engineer such systems has ever been a bit schizophrenic though [78|.
Roughly four hundred years ago, influential polymaths such as Descartes and Newton
advanced the idea of the universe as a clockwork, being nothing more than the sum of
its parts. This reductionist approach prevailed for a long time, permeating the funda-
mental philosophy of the natural sciences, arguing that any elaborate system is to be
broken down into simpler and simpler isolated sub-components in order to make sense
of it. There has been criticism though on the effectiveness of this approach in modern
scientific disciplines, e.g. molecular biology [71], in terms of the overwhelming macro-
scopic output of incremental discoveries. In parallel, many scientists have advocated
alternative approaches, such as positing the emergence of complex behavior on the
grounds of non-trivial interactions of the systems sub-components [8]. In particular,
it has been proposed that non-linearity of these interactions is a prerequisite of emer-
gence as well as a separation of scales [33, 48|. This further encapsulate the notion that
such systems can be characterized by hierarchical levels of organization, which each are
governed by the emergent rule sets of its respective subordinate levels, who are in turn
not governed by the same laws. It would indeed be unfair to assume that these consid-
erations have not already begun to bear fruit in the biological sciences |28, 78], where
they even have given rise to interdisciplinary fields such as systems biology [63, 142].
In this interdisciplinary context, network theory has been utilized extensively in order
to study a multitude of complex biological problems in metabolism, genetics, neurology,
ecology, transport etc [95]. Though particular focus has been directed toward networks
which abstract the complex interactions of their agents, its is clear to see that another
discipline is increasingly gaining in popularity: Spatially embedded networks.

As these networks are physically embedded in their environment, with respect to their
junctions and links, there underlie significant constraints regarding their scalability
and dynamical behavior. In this thesis, the subclass of biological networks considered,
are the fluid transport systems of individual organisms. Such networks, e.g arteries,
veins and capillaries, are usually referred to as flow networks and are spatially em-
bedded objects, which imposes significant constraints regarding their topology and
connection characteristics. As laid out, for example by Barthelemy et al [12], one may
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argue that such embedded networks do not tend to display scale-free behavior, show
primarily short-range connections between branchings or hubs, and display limits of
effectiveness in their economic costs and transport capacities etc. Moreover, studying
and understanding the morphogenesis of such networks has become a sub-field of its
own. Strikingly, many such vessel systems are constantly developing and maturing
throughout an organisms lifespan, yet miraculously orchestrate the correct transport
of oxygen, water and blood etc, rerouting flow in case of vessel failure and seemingly
doing so without the guidance of a central plan or intelligence.

An extensive number of experimental studies have shown that this development is only
achieved by a dedicated biochemical feedback system controlling the dynamic process
for each specific vessel type [115, 74]. Further, it has been shown that in certain stages
of morphogenesis the relevant biochemical signaling pathways are triggered by macro-
scopic mechanical stresses [96]. This concept of mechanotransduction was observed
more than a hundred years ago for vasculature [134] and has become a widely popular
idea in biophysics [5]. Naturally the field has expanded to address network theoreti-
cal questions, i.e. formulating dynamic models, simulating the development of vessel
systems and analyzing the impact of different hydrodynamic approaches, the underly-
ing graph topologies and pathological deformations. In the process, it was repeatedly
demonstrated that the emergence of complex network structures can be accounted for
by a simple fluid-driven morphogenesis machinery. Although there is a consensus that
this phenomenon occurs in a self-organized matter for small vessel systems, one has
to recognize the seeming efficiency of these flow networks in terms of robustness and
resource management [121]. Even more so as modern analysis of genomes and fossils
suggest a tunability of the underlying machinery on an evolutionary scale [46, 18]. Sub-
sequently a growing focus has been directed toward the development of new metrics,
allowing for characterization and comparison of real flow networks with the output of
their model counterpart.

These design principles and derivative metrics are further increasing in popularity, as
they reliably generate solutions to common network theory problems. For example, one
may formulate morphogenesis problems to find the shortest paths through a maze [132],
optimize traffic [140] or generate Steiner trees [73]. Eventually it was demonstrated
that some metrics developed for vasculature are more generally suited to identify topo-
logical markers in complex spatial networks, e.g. cycle hierarchies [60, 85, 86].

In this thesis, we extend the theoretical framework of network morphogenesis as well
as its subsequent characterization. In the following sections we briefly lay out the de-
velopment and maturation processes found in vessel systems (sections 1.1.1 & 1.1.2),
and the state of the art of the modeling framework (section 1.2). This thesis will be
particularly focused on the morphogenesis of flow networks found in mammals, with
particular regard toward the vessel systems found in the liver lobule. We will accord-
ingly discuss the interaction of such systems and their respective environment, as well
as the importance of considering three dimensionally embedded networks. And finally,
in section 1.3 we shall present our problem statement, featuring the fundamental ques-
tions this thesis addresses
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1.1.1 Flow networks in mammals

Flow networks found in mammals have to fulfill a variety of tasks, quickly rising in
complexity the closer one dares to look, and being even more dangerous for researchers
to be lost in their seemingly bottomless magnificence. For example, the circulatory
system transport blood from the heart through a branching system of aortas, arteries,
arterioles, etc. toward the capillary beds where exchange of oxygen and other metabo-
lites can occur in the local tissue of the organs [139]. Then blood is recollected from the
capillary beds by the venous system and redirected towards the heart by a converging
tree structure. One finds the physiology of this system to greatly change from large
compliant arteries, built from multiple layers of endothelial cells, pericytes, muscles etc
toward endothelial monolayers of fenestrated capillaries which are densely meshed. One
also finds completely different hydrodynamic scenarios varying from highly dynamic
pulse wave propagation in aortas to nearly stationary flow on the capillary level [24].
And though this layering of complexity has been enough to keep researchers occupied
for centuries, it has become apparent that this system works seemingly in concert with
all the completely different organs along the way. Nearly every organ by itself has its
own secondary vessel system, e.g. for supplying and redistributing nutrients, hormones
and immuno cells or providing waste removal and water management [22].

As it would fill several textbooks to list all these organs and their vessels in detail,
taking precious space and time to display our own studies, we shall focus here on one
exemplary system: The liver.

The intention here is not to marginalize the work of other researchers, the significance
of the rest of organs, nor to limit the applicability of this thesis’ results. Nevertheless
it is hard not to see the liver as the metabolic workhorse of the mammalian body, while
simultaneously displaying some of the most interesting developmental and regenerative
characteristics found so far [22, 84]. In this thesis we particularly focus on the micro-
scopic vessel systems existent in the liver, rather than its macroscopic organ anatomy,
which changes significantly for each animal. Yet what seems preserved across species
are the essential tissue building blocks which are called liver lobules. We would like to
illuminate its histology here in detail: The liver lobule contains two highly reticulated
vessel systems, the sinusoids and the bile canaliculi, see Figure 1.1a. The sinusoids
are fenestrated capillaries distributing blood rich in oxygen and nutrient among the
hepatocytes. These hepatocytes are cells, which are the main building block of the
parenchyma (bulk of tissue). The hepatocytes’ membrane sections facing the sinusoids
are also referred to as 'basal’. The liver metabolism is performed primarily by the
hepatocytes, wherein they secrete waste products and bile salts together with water
into the bile canaliculi. The canaliculi are channels formed by fused membrane pieces
of neighboring hepatocytes, referred to as ’apical’. The secretions are collected in these
channels and transported towards the bile ducts at the portal triad. The portal triad
is a vessel cluster, consisting of a hepatic artery, a portal vein and the duct. While bile
is extracted from the liver tissue at this point (guided towards the bile bladder) we
also have blood entering the lobule at this section. The blood flows converges toward
the central vein, which is generally surrounded by six portal triads.

Though we have focused on the liver system here, note that other organs, such as the
kidneys [126, 125], pancreas [75, 137, 10|, brain [14], or the body spanning lymphatic
system [105], have similarly elaborated interactions and vessel organizations. Moreover,
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Figure 1.1: The liver lobule and its vessel systems: (a) Schematic representation of
the liver lobule accroding to [128] (b) Segment of bile canaliculi (green) and sinusoids
(magenta) in the mouse’s liver acinus (presented as network skeletons, see also [88]),
scale bar is 200 um.

while all these organs’ vessel systems display significant differences in their respective
organization and cellular make-up, they do display common design principles in accor-
dance to the liver.

First, these networks are physically embedded and non-planar in a graph-theoretic
sense (they can’t simply be laid out in a plane without crossing elements). In fact,
they need to be non-planar to ensure the existence of intertwined structures without
which none of the function described above could be performed. Note that we refer to
a graph abstraction of vasculature where branching points are seen as nodes or vertices
and the vessels in between as links or edges. Further interrogating such graphs one
finds degree distributions of d &~ 3 (number of edges per node), short-ranged connec-
tions between branching points yet largely varying levels of reticulation.

Second, these flow networks are entangled and interacting in one way or another with
the circulatory system. This form of spatial compartmentalization, where educts and
products of the organism’s metabolism are not in their entirety transported by the
same network, is crucial in preventing pathogens to be spread across the entire organ-
ism and keeping the relevant metabolic functions running. The exchange of material
between the circulatory system and the client organ networks is generally facilitated
by mediating tissue elements, adding another layer of complexity to the system as they
can act as simple filters or active pumps. These networks rarely have merging points
where the two networks are physically connected to exchange any material. The fact
that these complex systems are actually functioning in concert and provide the essen-
tial tools for an organism to survive become most painfully clear when they are not
doing so anymore. This may be of a pathological nature a living being may encounter
in its life eventually, but could also occur due to failures of the initial morphogenesis
of these structures at its very beginning.



1.1. Complex networks in biology 5

Morphogenesis of intertwined biological networks is still insufficiently understood dur-
ing embryogenesis and wound healing, when these flow networks are created or re-
created in their rudimentary form. Likewise, it is important to understand the com-
plexity of these design principles when dealing with pathological complications, such
as tumor growth [108| or poly-cystic diseases [145]. It is known that vessel networks
do not directly grow fully developed and matured in their final and functional form,
but seem to self-organize bit by bit in the context of its surrounding tissue, perfusion
and other stimuli over a long time span (in comparison to the hydrodynamic time
scales) [32]. And they have to do so again when general changes in the organism’s
metabolism occur, every time based on a complex biochemical signaling cascade [116].
In the next section we will elaborate on the nature of this organization process and
current efforts to illuminate its dynamics, experimentally and theoretically.

1.1.2 Network morphogenesis

Biological flow networks are dynamic throughout development and thereafter. To
demonstrate this let us walk through the creation of a new network during embryo-
genesis. In mammalian tissue this is usually performed in two separate steps: First,
rudimentary lumen are created from progenitor cells specific to the network type. Sub-
sequently the individual lumen merge and a network of high redundancy with little
care for sizing, overall volume or effectiveness of any kind is formed [135, 58|. Such a
prototype network is called a plexus in developmental biology and generally describes
the status of a network which is not yet perfused, though the lumen are kept open
and extend by internal fluid pressure. We will use the term ’plexus’ for the rest of the
thesis for such pre-built, non-perfused networks.

These plexi are then refined, given tissue specific stimuli, which lead to vessel expan-
sion or degeneration. If vessels grow large enough they will trigger secondary tissue
elements for support, e.g. forming additional muscle layer or connective tissue around
the vessel [135]. Degenerating vessels eventually collapse and are retracted, thereby
performing a process called ’pruning’, removing the link completely. Furthermore this
process is accompanied by sprouting events and intersucception, i.e. new vessel tips
emerge from pre-exisiting lumen and single vessels split in two. In the same manner
one observe the inverse operations, having vessel retract to their root or merge into
one [72]. The topology of the plexus will therefore change dramatically, from its initial
formation to a seemingly stable point which ensures perfusion of the tissue. Note that
it was argued that neither random pruning [31], nor morphogen-gradient models [42,
43|, to properly account for the structures observed.

The onset of refinement rather seems to be correlated with mechanical stresses (such
as shear flow) as has been explicitly shown in a variety of model vertebrae organisms,
e.g. in chicken [96|, zebrafish [72] or mouse [31]. This remodeling procedure is present
in the endothelium and epithelium alike, see Figure 1.2. It should be noted that this
principle of plexus build-up and flow driven remodeling seems universally present in
the biosphere, as it has also been observed in non-vertebrae, like plants [123] and slime
mold [132]. Whether this homology is actually based on a common building plan is
unclear, even though there seem to be indications for the existence of similar blueprints
inside certain groups [87, 104] Particular focus has been directed to the long-term re-
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Figure 1.2: Perfusion based morphology changes during embryogenesis: (a) Mouse,
pruning of the pancreatic duct shown for a time difference of six days, reprinted
from [31]. (b) Zebrafish, development and pruning of the sub-intestinal-vein (SIV)
over the course of 40 hours, reprinted from [72].

modeling of the capillary plexus and other rudimentary transport systems in the early
developmental stages of organisms, i.e. by studying complex signaling cascades involv-
ing growth factors like VEGF in vascular systems of mammals [115]. Recently it was
argued that initial plexus design is crucial in order to provide the network with the
chance to actually adapt, according to the principle: It is easier to tune and refine
an existing redundant structure than add pieces to an underdeveloped set [119]. This
brings us to the next important point: Adaptation and optimal network design.

As matured vessel networks do not display features of random networks, one might fol-
low the narrative that adaptation is based on the obvious macroscopic stimuli present
in either network type; perfusion and metabolite transport (or mechanical stability for
plants). In particular it has been argued over a century ago by Murray [92, 93| that
the design of arteries and veins is based on constrained minimization of the overall
hydrodynamic resistance. The principle of optimal flow networks has been the pri-
mary angle for theoreticians ever since and particularly for the last two decades, as
we will illuminate in the next section. In particular these optimality principles aim
at reproducing perfusion based pruning behavior and geometric relations of vascular
branchings as well as generating network topologies comparing to the redundancy and
degree sequence of real vessel systems. In the next section, we will give a brief review of
the current approaches for remodeling simulations and their metrics, which the general
approach of this thesis is based on.

It should be noted at this point again that understanding the principle design rules
of flow networks will enable us to understand the initial network morphogenesis , but
even more so its pathology: it has been shown that tumors and cystic diseases either
actively hijack the bio-mechanical machinery behind vessel remodeling, or display its
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complete disruption. Tumor cells can proliferate the endothelium by facilitating the
growth of vasculature, thereby enhancing the local supply with nutrients in order to
sustain further growth [108]. A cause of cystic diseases can be that epithelial ducts
locally loose the ability to sense mechanical stresses correctly, e.g. by hampering with
given surface cilia, see Figure [145]. Understanding the dynamics of vessel remodeling
in healthy as well as in compromised tissue shall give us essential knowledge on the
treatment of such diseases and the general field of developmental biology.
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1.2 State of the art

In this section we give a brief overview of the state of the art in theory and simulation
of plexus remodeling. Particular focus will be directed here towards radial adaptation
schemes, based on incremental changes of the circumferential size of vessels, while
reevaluating the driving stimuli. We will give a more detailed introduction to the
mathematical background of these techniques in chapter 2.

1.2.1 Modelling flow network adaptation

Early theoretical approaches by Murray [92, 93] posited that diameter adaptation would
minimize the overall power dissipation of the system, while constrained by the over-
all volume. Following this ansatz of network optimization, many recent models used
optimization schemes on expanded vessel networks taking into account variations of
link conductivity via changes of the geometric parameters of vessels. We would like
to direct our focus to such studies dealing with capillary networks approximated as
linear networks [38, 39, 141]: the plexi is seen as a Kirchhoff network, with defined
volume flow rate f. and conductance C, on its links. Generally one node is defined as a
root from which fluid is injected into the plexus while all other vertices are consumers,
acting as sinks to the current injected. Hence one may write for each node

Z Je =5 (L.1)

ecine(v)

where inc(v) indicates the set of incident edges for vertex v, i.e. the set of edges
connected to it. The term s, is the balance of incident flows, called a sink or source
depending on whether flow is extracted or injected here. Generally, in these previous
works [20, 61, 30], this was then dealt with as a Lagrangian problem where the Lagrange
function is constructed for the flow networks at hand:

ﬁ:g{é—imcg}Jr%: sv— > fo (1.2)

ecine(v)

Here the first term, from the left, is the power dissipation and the second a metabolic
cost term including the conductance C] explicitly, with proportionality factor a. This
second term encapsulates the notion that a biological organism is constrained by the
metabolic costs to deploy and sustain a vessel of a certain conductance. In detail this
assumes that in order to build larger vessels with increased volume or surface area the
tissue needs more cells which have to be supplied with oxygen and nutrients. The ex-
ponent y > 0 represents a degree of freedom to vary the relative importance of vessels
of low or high conductance.

The minimization of the function (1.2) is performed numerically by finding the set of
conductances C, which minimizes (1.2) for the given boundary conditions (1.1). In
order to simulate the long term refinement of real biological systems, such iterative
minimization of (1.2) is accompanied by the removal of edges with C, below a given

threshold.
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It has been shown that for systems with s,q0: > 0 (all other vertices s, < 0) one only ac-
quires spanning trees for v < 1 [20] from plexus refinement, see Figure 1.3a. These trees
connect, the predefined sinks and sources by direct pathways, while cutting down any
weakly perfused links, never leaving any loops intact; a dramatic reduction of the previ-
ous complexity and redundancy. This topological transition is seemingly independent
of the underlying plexus topology, but depends only on the chosen boundary conditions.
Reticulation may be restored in this framework by considering v > 1 [20], which will
restore the initial plexus. Further, the introduction of noisy flow patterns by breaking
links or varying the spatial correlations of sinks and sources has been proposed [121,
61]. With this ansatz one considers an effective separation of time scales, assuming
that developing vessels integrate stimuli multiple times before adapting. Hence one has
to compute the average dissipation instead, over the many instantaneous realizations

between two adaptation steps,
f2 f2
c. 7 \e (13)

which may also restore reticulation, see Figure 1.3b,1.3c.
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Figure 1.3: Topological transition in linear flow networks, from trees to meshes: (a)
Increasing cost scaling exponent from v > 1(left) to v = 0.5(right) leads to emerging
reticulated structures, reprinted from|[20] (¢) Broken links and randomized sink-source
closure will lead to a topological transition. The colormap indicates the pressure gra-
dient, reprinted from [61]. (b) Local adaptation model with spatially correlated sinks-
sources. A single source is created in the center together with a single random sink.
Inside a radius ¢ around the sink, any vertex is also becoming a sink, the wider the
spatial correlation becomes the more the network becomes a tree, reprinted from [121]

Though appealing at first one may recognize that this optimization process typically
assumes a global actor driving the organism into a desired state. On the other hand a
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variety of different schemes have been proposed to model self-organized adaptation of
single vessels inside a network. For example, in heuristic approaches proposed by Pries
et al [107], a set of local stimuli S, leads to individual radial changes as

Bire (t) = S, (£) e () (1.4)

In these studies stimuli S, would incorporate macroscopic hydrodynamic variables such
as wall shear stress (friction of the fluid layer on the inner vessel wall), transmural pres-
sure (pressure difference between lumen and surrounding tissue) and also hypoxia. Note
that wall-shear stress stimuli lead to shunting, i.e. the pruning of the plexi down to sin-
gle connecting channels. Yet saturation stimuli, incorporating the saturation of blood
with oxygen, may maintain redundancy. Further studies incorporating complex stimuli
such as wall shear stress or hemodynamical complications [27], or simple heuristic up-
take rules ensuring vessel pruning reproduce this topological transition behavior [133,
51, 120, 122, 57, 27|. It has further been shown that the outcomes of locally adapting
networks are robust against variations of the initial topological structure [51] and that
simultaneous plexus growth and correlated flow fluctuations can provide elaborate hi-
erarchies [120, 122], see Figure 1.3b.

It has been shown that there is a bridge between these two schools though: Following
the ansatz in [56] one may derive local temporal adaptation rules via the gradient de-
scent method directly from (1.2). The dynamical system constructed this way usually
takes the form

2

0,C. = ag (% — al) C, (1.5)
and has been studied in greater detail in combination with growth, flow fluctuations
and exponent variations by Ronellenfitsch et al[120, 122]. Particularly interesting is the
fact that (1.5) corresponds to an adaptation of the vessel to the wall-shear stress. Fol-
lowing this dynamical system one adapts the conductivity of any single vessel to a local
level of shear stress and simultaneously minimizes the global dissipation-conductance of
the system. An optimal network design via self-organization. This ansatz has further
been extended to continuous models as well, i.e. in porous media [52, 53]. Deriving
local dynamics from gradient descent based methods has become rather popular, as
it enables the construction of arbitrary self-organizing flow networks based on desired
design features|26]. The majority of self-organized adaptation models presented here
is conceived for perfusion based remodeling, intending to generate reticulated, space-
filling structures. But capillaries are not just passive actors, i.e. being the mere medium
of fluid transport between arterioles and venules. It is general consensus that any major
exchange of metabolites between vasculature and tissue, such as oxygen, salts, glucose,
proteins etc., is performed on the capillary level. Needless to say, theoreticians and
experimentalist have created a plethora of elaborate models on metabolite transport in
capillaries over the last century. In the process there have been suggestions for heuris-
tic metabolic stimuli ensuring perfusion of oxygenated blood throughout the capillary
bed [107, 124], lacking though a discussion of the actual capabilities of the embedding
tissue. Therefore it is interesting to note, that detailed studies of network morpho-
genesis for optimal solute uptake have just recently been conducted. Currently there
seem to be two frameworks in particular, celebrating a comeback in this discipline of
complex network theory: the Taylor dispersion model [130] and the Krogh model [66].
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Taylor dispersion has been discussed as a valid metabolite transport model for slime
molds in recent literature [6, 76|, but has since been utilized to account for the phe-
nomena found in plants and blood capillaries. In this context Meigel et al [82] argued
that the overall solute uptake of flow networks, which have their volume flow indepen-
dent of the metabolite concentration, is determined by the Peclet number and local
absorption rate of the vessel surface alone. In their studies [81] they demonstrated
the compatibility of the Taylor dispersion model with the Kirchhoff ansatz. Subse-
quently they formulated the conditions for optimal flow injection when homogeneous
absorption throughout the vessel networks is required. Further they suggested tuning
of vessel radii, for constant sink-source conditions. In neither case do they find uptake
driven radius adaption to lead to vessel pruning. A plexus will always stay a plexus in
this framework.

On the other hand, Garvrilchenko et al [45] suggested an adaptation model on the
grounds of the Krogh model. In this framework metabolites (primarily oxygen) are
diffusing on a given length scale into the tissue, determined by the tissue’s uptake rate.
Subsequently it is possible to distinguish a supplied volume element for example by the
sets of vessel lining it. In order to achieve homogeneous uptake, no radial adaptation
but a respective channel length adaptation was performed, reshaping the respective
volume elements in the process.

In this thesis we intend to focus in particular on systems with extended metabolic
cost functions in order to derive the individual vessel dynamics from gradient descent
methods. Furthermore we shall focus our efforts on metabolite transport using pre-
dominantly Taylor dispersion and radial adaptation mechanisms. We shall elaborate on
the ansatz of volume element supply as well though. We will discuss the mathematical
basics of these model frameworks in chapters 2 and 3.

1.2.2 Metrics for biological flow networks

In order to characterize real biological flow networks, a variety of invasive and non-
invasive techniques is abundant nowadays. For our purposes though we are in need of
methods providing the graph structure of capillary networks and their hydrodynamic
ramifications. Unfortunately, the applicability of any method is often limited by tissue-
depth resolution and tied to specific model organisms. Nevertheless, many researchers
have succeed in generating spatial graphs from microscopy data allowing the standard
tools for spatial networks to be applied, such as degree sequences, betweenness [12],
Rentian Scaling[101] etc.

Few metrics provide the means to fit or estimate the applied effective parameters of
adaptation models for real systems, even though time-lapse experiments [72|, counting
pruning events and topology analysis on pruned structures [122, 86] allow for qualita-
tive insights into the mechanism at hand for certain model organisms. In this thesis we
will focus on two network characteristics which are particularly useful for comparison
of the spatial and topological structure of biological networks to simulated optimal
networks: Scaling and Redundancy.
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Scaling in spatial networks

Why are the vessels organized the way they are? Is it possible to predict branching
patterns of real flow networks?
In order to address these questions West et al [141] operated on the following assump-
tions, with particular regard to fractal-like flow networks:
"First, in order for the network to supply the entire volume of the organism, a space-
filling fractal-like branching pattern [...] is required. Second, the final branch of the
network (such as the capillary in the circulatory system) is a size-invariant unit [...J.
And third, the energy required to distribute resources is minimized [...] Scaling laws
arise from the interplay between physical and geometric constraints implicit in these
three principles. "
Among other things they concluded that the size ratio of consecutive vessels on different
levels of the vascular hierarchy would scale with a power law of the form

Tirl _ p=t/a (1.6)

Ty

where r; is the radius of the parent vessel branching into its n children with r;,;. Scaling
of geometric properties on the basis of metabolic constraints has become increasingly
popular over recent decades [131], the notion to do is far older though.
First discussed nearly a hundred years ago by Murray [92] and W. Hess [55], they
proposed a Hagen-Poiseulle flow system minimizing its power dissipation while being
constrained by its overall volume, resulting in @ = 3. Ever since, extensive studies of
radial distributions in real vessels trees [2, 79, 94, 3| have indeed shown that a vessel
generation is often linked to the next in the form of

ri = Z Tit1 (L.7)
i

Generally it is suggested to account for a variations on the grounds of different hydro-
dynamical approaches and optimization constraints:

For example, dealing with the more elaborate theory of compliant vessels carrying pulse
waves, the case of & = 2 corresponds to an impedance matching for consecutive vessels,
reducing wave reflections [24]. Likewise, one would acquire this exponent for a purely
diffusive system [127]. Recently it has been discussed that insect trachea, which display
a < 2, may scale differently due to the existence of air sacs as gas reservoirs altering
the flux [2]. Naturally there have been additional studies suggesting even more elab-
orate hydrodynamics involving turbulence, non-Newtonian effects or hemodynamical
phenomena [144, 113, 91] In the formulation (1.7) it becomes readily apparent that one
may classify these networks as area preserving for a = 2, area-increasing for a > 2 or
area decreasing for a < 2, i.e. whether the overall cross section area of a vessel genera-
tion changes over the vascular tree, see Figure 1.4. As pointed out, optimally designed
networks, such as introduced in the previous section, supposedly leave fingerprints
behind in their radial distribution that allow for the prediction of a. For example,
Murray’s law corresponds almost directly to the solution of equation (1.2), (1.5) for a
single branching with v = 0.5. Generally for such dynamical systems, it can be shown
that (1.7) becomes,

2 1 2 1
SRS DLV (18)
J
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Figure 1.4: Branching patterns in vessel systems, reprinted from [2]: DaVinci’s Rule,
Murray’s Law, Nunome’s Pattern representing most prominent cases found in vacula-
ture.

using the optimization models for alternative 7 variations. Note that the relations (1.7),(1.8)
are generally only formulated for tree-like branching patterns where a clear definition

of parent to child is possible on the basis of edge weights, e.g using a Horton-Strahler
ordering scheme for the vessel radii. There have been suggestions to extend this scheme
toward reticulated networks by applying weight based (i.e.using radii, length) distinc-
tions [85]. The problem with this identification processes will become apparent as soon

as we try to apply complex flow patterns onto such reticulated networks, which do not
necessarily coincide with radii based ordering schemes.

Redundancy of flow networks

It seems somehow redundant to mention how important redundancy is. Yet for biolog-
ical flow networks this becomes particularly apparent as soon as occlusions or damages
occur [17]. For example, assume that a vessel gets clogged: now in a capillary bed
this might not matter much as fluid can be redirected almost instantaneously via other
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channels, thereby ensuring the general perfusion of large section of tissue. A phe-
nomenon that is partly possible as one does not have ’directed’ links in biological flow
networks. We cant really make this statement when considering aortas, where the same
blockade cuts off any supply to the subsequent arterial tree.

Which implies the questions: What is the best measure for arbitrary flow network
robustness? And is it possible to quantify the topological transition introduced in sec-
tion 1.2.1 with these? Recently, a couple of different methods have been proposed:
First, there are measures based on finding a percolation threshold [95, 101]. They
are well established for spatial networks and provide information on the topological
robustness of the network in case of integrated failure of links, marking the split of
a graph’s giant component into multiple sub components. In general it is computed
how many edge removals a graph can take before breaking into two sub components,
then this may be repeated for the larger components and so on until a set threshold
size is reached. This technique is comparatively heavy on the numeric side as many
realizations of the percolation have to be computed [101].

#removed edges till breakdown of giant component
R x (1.9)

#edges of graph

Flow entropy seems another appealing measure [30, 9]. Though primarily established
for stationary diffusion problems, one may quickly generalize this for any current prob-
lem on a Kirchhoff network. Considering the volume flow rate in a vessel as f, which
splits at a branching point into m new vessels, we know that the i-th vessel will carry
the fraction p; = % < 1 of the initial flow. Subsequently we may define this as the
probability of a fluid particle taking the i-th branch at the junction. This may nat-
urally be extended for an arbitrary path of consecutive edges ¢, denoted here as p, .
This enables us to a estimate the redundancy of the actual flow pattern as it evalu-
ates the probabilities of fluid particles transitioning along certain connections. Along a
spanning tree one will only have one certain path from root to leave, while it becomes

rather uncertain which route we took in a mesh. Hence the flow entropy reads

S o Z Pqlog [pg] (1.10)

gepath

The computation is rather expensive as the probabilities of all possible particle tra-
jectories through the network have to be computed, scaling problematically for highly
reticulated networks. The by far easiest computable measure is the graph nullity (often
referred to as loop density). Basically one counts the number of smallest cyclic paths
in a graph, thereby directly giving a measure of the amount of redundant pathways.
Interestingly these cycles form the basis of a vector space. Their linear combinations
build up all further cyclic pathways possible, thereby preventing the need to evaluate
all pathways. Trivially, for a simple graph of F edges and V' vertices, one simply finds
the dimension of this cycle space(amount of linearly independent cycles) as [143]

=E—-V+1 (1.11)

This measure doesn’t provide any information though on the actual flow or robustness
against targeted link removal. All these proposals allow an order parameter to be
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constructed by defining a null graph for comparison. For simplicity’s sake one usually
utilizes the plexus of the graph or constructs a null graph via greedy algorithms [101].
Most recent studies on network adaptation, .e.g such based on the Hu-Cai model, tend
to use nullity as an efficient way to present the emergence of complexity in a network,
see Figurel.5b In this thesis we will focus on the nullity as the primary redundancy

0.75

0.25

Figure 1.5: Quantifying redundancy: (a) : Redundancy changes in Hu-Cai model
by closing sinks with open probability 1 —p for v = 0.5, with left p = 0. and right
p=10.025. (b) Nullity transition in self-organizing flow networks is dependent of cost
scaling v and p, with d; = z/2, reprinted from [56]

measure due to its trivial computation even in topologically dynamical systems that
we intend to study. It has become apparent that a primary task of self-organization
models such as introduced in the previous section is to account for complex reticulated
patterns.
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1.3 Problem statement

As previously illuminated, we find the study of the basic principles of remodeling dy-
namics to be crucial to understand vascular development during embryogenesis, wound
healing and vessel pathology. Further it has been shown that these biologically inspired
algorithms present precious insights into the wider field of optimal network design. Re-
viewing previous studies we find this often done by applying metabolic constraints to
simulate dynamics on Kirchhoff networks for a set of desired flow patterns. And in the
context of metabolic cost models it has been proposed to derive scaling relationships
for the radii and lengths of consecutive vessel hierarchies in such networks.

Yet, most works disregard the key characteristic common to all fluid transport sys-
tems: spatial embedding, which matters especially in the case of capillary systems as
these directly interact with the surrounding tissue via transfer of metabolites. These
systems have to maintain a robust structure while being embedded in a possibly stiff
tissue environment potentially perturbing the shear stress driven adaptation mecha-
nism. Further, no attempts have been made to incorporate the findings of adaptation
models with fluctuating flows or more complex metabolic costs into scaling relations
such as Murray’s law.

This thesis thus intends to address these current challenges: Network theoretical char-
acterization of reticulated three dimensional networks and modeling adaptation for
spatially embedded networks in terms of geometric restrictions & optimal metabolite
transport.

1.3.1 Spatial embedding in metabolic costs models

As laid out previously, we intend to focus on the development and function of multicom-
ponent, flow networks, which influence each other based on their spatial architecture.
In living organisms, one finds these intertwined structures on any organ level, as these
systems often consist primarily of blood vessels and a secondary entangled network,
e.g. most prominent in liver, kidney and pancreas. It should be noted that the net-
works studied here are not planar, nor can they be in order to ensure an intertwined
embedding, which facilitates the function of the organ. Complex vessel systems are
known to be three-dimensional, space-filling structures, which is why we will study
predominantly network skeletons of triply periodic surfaces, see Figure 1.6. Though
such multilayer network approaches have been becoming increasingly popular [19], we
find the explicit coupling of multiple adapting transport networks not well studied.
In particular we shall study how geometric interactions impose topological changes
onto the partnered networks in combination with the conventional wall-shear stress
driven adaptation models. The ansatz we choose shall also explore the phenomenon
of a flow network being ‘caged’ by another complementary structure, e.g. capillaries
embedded in bone marrow [129] or other stuff tissues. For this study we will extended
the metabolic cost function ansatz to incorporate interactions between adjacent edges
of the multilayer system.
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Figure 1.6: Graph skeletons of triply periodic surfaces: (a) Cubic lattices as skeletons
of the P-surface (a) Diamond lattices as skeletons of the D-surface (a) Laves graphs
of opposing chirality as skeletons of the G-surface

We further revisit the fluctuation induced reticulation model presented in [61, 30, 56| in
order to discuss its interplay with the coupling mechanism. The theoretical framework
and numerical results of this study are presented in section 3.1, 3.2. Note, that part of
these results have been published recently in [65].

1.3.2 Characterizing three-dimensional reticulated networks

The analysis of three dimensional vessel systems on the organ level is inevitably con-
nected with the analysis of intertwined vessel structures, as mentioned previously in
section 1.1.1. In this thesis we discuss any measure of such intertwined structures on
the example case of the liver lobule (the smallest conventional tissue unit of the liver)
as our primary model system.

The architecture of the liver lobule ultimately results in two highly entangled flow
networks, sinusoids and bile canaliculi which have their load transported in opposite
directions, along the characteristic lobule’s axis, central vein to portal triad. Nei-
ther of these networks has direct contact with the other, potentially contaminating
its flux. Any mediation of solutes is performed by the hepatocytes, which actively
transport, from the sinusoids toward the canaliculi. Now, thanks to recent advances in
microscopy and image segmentation, meaningful graph extractions have become pos-
sible [88, 89]. So far, the hydrodynamic specifics have also been studied indicating
typical features of capillaries for the sinusoids and complex osmotically driven fluid
flows in the bile canaliculi [59, 100, 83]. The latter model frameworks will briefly be
discussed in chapter 4 in comparison to this thesis’ results. This has been done to the

extent that studies on the topological organization of the two respective networks have
been conducted [90].
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Figure 1.7: Radii and path length distributions in the mouse liver networks, sinusoids
(magenta) and bile canaliculi (green). The x represents the relative zonation in the
acinus, with y =0 at the central vein and y = 1 at the portal triad: (a) Degree
distribution in the reticulated networks (b) Radii distribution in liver capillaries with
modes and median indicated in the legend. (c) Length distribution in liver capillaries
with modes and median indicated in the legend.
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In Figure 1.7 we display basic geometric and network theoretical features of these
meshed networks which have been well studied so far: Both network have very con-
fined degree distributions, and display no significant changes of radii and path lengths
throughout the lobule. Paths are defined as the walks through the graph between two
branching points. Sinusoids tend to display larger vessel sizes are in comparison to bile
canaliculi. In neither network one observes distinct vessel hierarchies as seen typically
in spanning trees. Further, as the acquirement of these data sets is highly invasive, no
detailed flow patterns are known.

All taken together, this poses a particular problem when attempting to formulate scal-
ing relationships in the spirit of Murray’s law. Scaling of the geometric properties of
vascular networks has been rigorously discussed in terms of metabolic cost models,
generally trying to determine power law relations (1.7). Now these attempts are usu-
ally done for tree-like network, displaying a clear vessel hierarchy and parent-to-child
branching pattern, which coincide with the flow pattern. As indicated above, capillary
systems do not necessarily have such a defined structure, as they are dense meshes
with relatively narrow vessel size distributions, see Figure 1.1b. We were provided the
corresponding network skeletons of these vessel systems, extracted from grown mice
by our collaborators (Zerial Lab, MPI CBG), see section 3.3.1 for details. We tested
Murray’s law for these skeletons by fitting the exponent « in equation (1.7) for every
Y-branching. Here, the locally largest vessel is identified as the branching’s parent and
its children are considered to split the flow of their parent, such has found in a tree
branching. The resulting distributions for a are presented in Figure 1.8, displaying
broad, long-tail distributions for either network.
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Figure 1.8: Experimental falsification of Murray’s law for capillary vessels in liver
lobuli: Exponent distributions found for (1.7) and respective log-normal fits. The
distributions modes are used to estimate the exponents a. Sinusoidal systems (basal
marker) with mode o = e#*~°" ~ 3.75 and bile canaliculi systems (cd13 marker) with
mode a = e#’ 7" ~ 3.33.
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The modes of the acquired, log-normally distributed fit exponents are o =~ 3.75 for
sinusoids and a & 3.33 for bile canaliculi. It has been known for quite some time that
capillary systems defy the cubic relationship found by Murray [127]. We suspect this
mismatch to be correlated with the reticulated nature of these network types, where
the weight based parent-child classification is non-applicable. Yet, one may argue the
deviation of a = 3 is readily solved by adjusting Murray’s cost model with the exponent
~ which would be able to account for reticulation and « > 3 simultaneously, see (1.8).
Nevertheless applying (1.8) one would deduce v < 1 for the given liver lobule data sets,
which is in direct contradiction with the rescaled cost model [20], which predicts an
exponent v-induced nullity transition only for v > 1. On the other hand, this could
potentially be circumvented if fluctuation-induced loops are considered as well [61, 30].
However, to our knowledge it has not yet been discussed how such fluctuations alter
Murray’s law.

Further, any more complicated cost approaches (with more cost terms than currently
in (1.2)) will inevitably leave model parameters behind in (1.7). What we suggest here
is to reformulate Murray’s law as:

D ar =A(s) (1.12)

jeine(v)

where a;, a;, A (s,) become nontrivial functions of the parameters of the applied adap-
tation model and the local network properties. All this considered, we see the need to
reinterpret the value of Murray’s Law for flow networks:

To our knowledge no techniques have been proposed to directly extract model pa-
rameters from adaption models from real vasculature. Subsequently not only would a
qualitative comparison of features such as redundancy be possible, but also identifying
eligible states in the phase space of adaptation models. For that matter we intend to
interpolate model parameters for volume penalties, flow fluctuations and multi-layer
interactions directly from given graph topologies and radial distributions. The theo-
retical framework and results of this study are presented in section 3.3.1. Note, that
part of these results have been published recently in [65].

1.3.3 Optimal design for metabolite uptake

As indicated, one may remodel vascular plexi in order to achieve a multitude of net-
work topologies and radial distributions, and most studies are focused on perfusion
based adaptation in order to do so. But at present almost none of these studies dis-
cuss the actual implications for solute transport to the tissue for the refined networks.
In accordance with the recent studies of [82, 44] we here propose a model that takes
into account stimuli in the form of the actual metabolite uptake of the surrounding
tissue, and incorporates these into the metabolic cost function scheme. In particular
we intend to study the competition between wall-shear driven and metabolite uptake
driven adaptation in detail, combining pre-existent cost models. We do so particularly
in preparation for a combined model framework that allows for the optimization of
intertwined vessel networks for metabolite transport, see Figure 1.9. We further intend
to focus on local and volume-wise adaptation procedures to find out whether the par-
ticular spatial embedding affects overall network metabolite uptake. The theoretical
framework and results of this study are presented in section 3.4.
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Figure 1.9: Complex metabolite transport and uptake in intertwined systems, schemat-
ically represented for sinusoids and canaliculi.
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Chapter 2

Theory and Methods

2.1 Basic principles and mathematics

This section is intended to be a brief introduction to the mathematical, physical and
numerical basics and methods on which any further conduct is based. In case you are
familiar with these concepts, you may directly advance to section 2.2.

2.1.1 Mathematical basics

Linear equation systems

This section will briefly discuss the theory of linear equation systems, in particular
the solution theory for under determined systems. This will be necessary for the
following sections on graphs and Kirchhoff networks. Basic knowledge of linear algebra
and functional analytics will be assumed. For detailed introductions see for example
Wiist, [146].

Given the Euclidean vector spaces U C R™, W C R™ with elements x € U and y € V,
the elements may be mapped with a linear operator A € R™*™ as,

A-xz=y (2.1)

In this thesis we use "-" to denote the inner product. This linear map presented by
the matrix A has a kernel ker and an image im, defined as,

ker(A)={zecU:A-z=0} (2.2)
im(A)={yeV:y=A-z,xz U} (2.3)

The kernel is also referred to as the nullspace of A as it represents all elements of U
being mapped to the null element of W. The image on the other hand is the effective
vector space we map onto with A, with im (A) C W. Both the kernel ker (A) and the
image im (A) are vector spaces themselves.

When dealing with linear equation systems, we know that any solution, & of equa-
tion (2.1), can be written as the composition of its particular p and homogeneous zy
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solutions as

xg+axp=xzeclU (2.4)
with A -xzg =0, g € ker (A) (2.5)
and A-zp=1y (2.6)

The dimensions of the kernel and image are used to define the rank r¢g and defect def
of a linear operator A as

def (A) = dim [ker (A)] (2.7)
rg (A) = dim[im (A)] (2.8)

Hence a defect of zero means that only the null element of U maps onto the null element
of W. The defect is also referred to as nullity. The rank rg(A) is equivalent to the
maximal number of linear independent rows or columns of the matrix A. The rank
and defect of a map A are linked via the nullity-rank theorem as follows:

dim (U) =rg(A) +def (A) (2.9)

We will refer to this theorem later on when dealing with the basic concepts of graph
theory in section 2.1.1, as it allows us to deduce certain characteristics for linear op-
erators of graphs. For now, let us consider the concept of invertible matrices. In the
special case where m = n, we call the operator A a square matrix. If it were to have
full rank rg (A) = n it would further be called regular. This means there exists an
inverse element A~' € R™" solving the problem (2.1) uniquely as,

x=Ay (2.10)
ATTA=AA""=1, (2.11)

with identity matrix I, € R™*". In the case of a non-trivial kernel, i.e. rg (A) < n and
def (A) > 0, the matrix would be called singular, meaning it is non-invertible. Any
non-square matrix A € R™™ is by default singular.

Non-invertibility of matrices is precisely the problem one is faced with when dealing
with graphs and Kirchhoff networks: The most important linear operators derived from
graphs are generally represented by non-invertible matrices.

Fortunately, in the case of such a non-full-rank problem A € R™ ™, one may utilize so
called generalized-inverses (also called the Moore-Penrose inverses [102] ) to solve (2.1).
Hence a solution to (2.1) may be constructed with AT € R™*"

z=Aly+[I,—AlA]z (2.12)
AATA=A (2.13)
ATAAT = Al (2.14)
(AAN)" = AAT (2.15)
(ATA)" = ATA (2.16)

with an arbitrary z € U and identity matrix I,, € R™*™. The particular solution is
given by Ay paired with the homogeneous solution [I m— AfA] z. Unlike for regu-
lar matrices, one actually has to define these properties for right-sided and left sided
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scenarios respectively. Here, we will stick to the left-side notation.
It should be noted that the generalized inverse comes with its own special deriva-
tive [47]. This means in particular,

9,AT = —A19,AA1
+ [I,, — ATA] 5,AATT A
+ ATATI5,A [I,, — AAT] (2.17)

We will encounter this framework once again when dealing with remodeling dynamics
in network morphogenesis, see section 2.2.2.

Dynamical systems and optimization

Dynamical systems are mathematical tools used to describe the temporal develop-
ment of real biological or physical processes. This section gives a brief overview of
the applied terminology and techniques, for further details see Reitmann [112]. A
dynamical system is defined by a phase space M C R™ of possible states or system
configurations and a one-parametric family of mappings ¢*: M — M with continuous
parameter ¢t € T' C R, such that,

() =z, Ve M (2.18)
¢ (¢° (z)) = ¢z (2.19)
dO():TxM—-M (2.20)

The mapping ¢ is also called flux and describes the temporal evolution of the system
through the phase space M. In practice, many evolving processes may be modeled
with an autonomous ordinary differential equation (ODE)

Oz (t) = f (x (1)) (2.21)

with locally Lipschitz continuous vector field f. The trajectory of such a system can
then be formulated as o : T — M and is called the integral curve if « (0) =pe M
and O (t) = f (ax (2)).

The local flux theorem states that, given an autonomous system as above, there is a

subset D C T x M and flux ¢ : D — M, such that [112],

¢t ¢(s,p) = (t+s,p) (2.22)
¢(0,p) =p,VpeM (2.23)
Vpe M |t — ¢ (t,p) with t € T' is the integral curve of (2.21) (2.24)

Any system (2.21) effectively defines a dynamic system. The respective trajectories (or
so called orbits) usually characterize the state of a dynamical system.

For the biological systems at hand we are particularly interested in stationary states,
f(x(t)) = 0. In particular, simulating the dynamics of network morphogenesis, we
intend to construct dynamical systems as introduced in chapter 1. There, we described
how vasculature tends to refine over time from plexi to flow networks, which will be
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considered as stationary states. Finding these states and characterizing their stability
shall be thoroughly treated here in the sense of Lyapunov.

Let us consider a point p € M, a radius § € R and the open sphere defined as

Bs (p) = {xz € M|d(x,p) <} in the metric space (M,d) (d being for example the
Euclidean metric). Given arbitrary thresholds € € R one may refer to p as Lyapunov
stable if

Ve > 040 Vg € Bs(p)Vt > 0,t € T such that d(¢ (t,p), ¢ (t,q)) < € (2.25)

Further, a point p is called asymptotically Lyapunov stable if it is Lyapunov stable
and additionally holds,

JA Vq € B (p) such that lim d (¢ (t,p), ¢ (t,q)) =0 (2.26)

t—o0

Finally, a point p is considered Lyapunov unstable if
de > 0V6 > 0dq € Bs (p) 3to such that d (o (to, p), @ (to,q)) > € (2.27)

In order to construct dynamical systems with stable stationary points p € M, with
f (p) =0, the concept of Lyapunov functions will be employed extensively in this
thesis.

Given an environment U of a point p € M, a positive-definite function I' is a Lyapunov
function of the system {¢ (¢,p)},or in U when

I': U — R is continuous (2.28)

I'(p)=0and I'(p) >0 Ve € U/{p} (2.29)

dr' (¢ (t,p)) <OV (t,p) €U (2.30)

Hence, for any autonomous system (2.21) it follows in combination with (2.28) - (2.30)

that the temporal development of the dynamic system fulfills
T (z (1)) = VI (z (t)) - f (2 (1)) <0 (2.31)

for all « (t) € U. With this in mind, if such a function T exists, any one of its sta-
tionary points p is (asymptotically) stable in the sense of Lyapunov. Therefore one
may specifically construct an autonomous ODE system of the form (2.21) by defining
a function I' () > 0 Vo € U and setting

f(x(t) =-VI'(z(?)) (2.32)

Proceeding this way it becomes apparent that I' is yet again a Lyapunov function with
a stable stationary point.

This framework may readily be connected to the general concept of constrained op-
timization problems. Let us consider a continuous cost function on U c R™ and

A:U — R with p e U and
Alp) =N <A(x) Ve eU (2.33)

Hence A* is the minimum of A. For practical purposes, it might be useful to require
relation (2.33) to hold only for a local environment W of p as,

AN <A(x)VzeUnNW (2.34)
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One may refer to p as global solution if (2.33) or as local solution if (2.34). Furthermore,
we define sets of constraining functions g : U — R?, h : U — RY with components

gi(x) <0forie{l,..p} (2.35)
hj(x) =0 for j € {1,...,q} (2.36)

Subsequently, we may then define the continuous, constrained optimization problem
as

A(xz) — min for x € U (2.37)
and g (z) <0, h(xz) =0

In practice, one reformulates this problem with its Lagrange function : R™*Pt7 as

L(z,uv)=A+ul -g+o"-h (2.38)
w >0 (2.39)
ul .g=0 (2.40)

with g and h as defined in (2.35), (2.36). Such a constrained optimization problem
was previously discussed for network morphogenesis models in 1.2.1. For that mat-
ter, any metabolic cost function problem classifies as such a constrained minimization
problem (2.37). Although there is a plethora of possible numerical methods to find the
local or global minima available [97, 138], we just focus on one specific class: gradient
descent approaches . The gradient descent approach is mostly utilized for continuous
optimization problems, readily applicable to (2.37), and allows for intuitive derivation
of self-organized dynamics in biological systems. Roughly put, one chooses an initial
xo and then iteratively evaluates A by calculating a series of consecutive x,, as

Tpi1 = Tp — 0L - VA () (2.41)

where the specific calculation of & depends on the chosen algorithm. In this case it
is assumed that the gradient VA (x,,) represents a valid direction for descent, yet the
iteration (2.41) may be modified due to the given constraints g, h [97]. It should be
noted here that one may only find a global minimum this way if A is globally convex.
Otherwise, if A is only locally convex, applying (2.41) will generally result in the de-
tection of local minima when successful.

At this point, one might already see how this connects to the dynamical systems of
interest in this thesis: Solving the dynamical system (2.21), where the gradients are
derived from a Lyapunov function, numerical integration naturally uses such itera-
tive methods when relying on explicit solvers. Subsequently, we may have the cost
function A correspond to the Lyapunov function I' in this framework and have the
constraints (2.35),(2.36) incorporated into the backend computation of x. We will
illustrate this process in greater detail in section 2.2.2.

Graph theory

This section provides a brief introduction to graph theory, mainly based on the termi-
nology of |67, 95|. A simple graph G is a discrete mathematical construct consisting of
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ov +1
vertex
v w w+ 2
O > cycle z O > O
edge e
o w+3

Figure 2.1: Simple graph G and its components marked as vertices v, w, edges e =
(v,w) and cycles z = {(w,w+ 1), (w+ 1L, w+2),(w+2,w+3),(w+3,w)}. Edge
direction indicated by arrows going as a — w.

a set of vertices V and a set of edges E and ENV = &, see Figure 2.1a. Further, there
are two maps a,w with a: ' — V and w : F — V, uniquely defining each edge e €
as a tuple of vertices (a (e),w(e)), and a (e) # w (e). Two vertices are called adjacent
if they are connected by an edge. Two edges are called incident if they connect to the
same vertex. This term may also be applied to a vertex and an edge. A path is a
sequence of consecutively incident edges {ey, ..., €;,...,e;}. A subset V' C V of nodes
connected to each other via a set of edges E' C FE is called a connected component,
if there exists a path between any two vertices of V’. A graph may consist of several
such components (at max |V if there are no edges, min 0 if V = &). The degree of a
vertex, i.e. the number of edges d they are incident to can be written as D € NIVI*IVI

Duw = {d" fu=y (2.42)

0 else

Moreover, each edge may to be characterized by a set of attributes. In the case of spatial
transport networks, these attributes may encompass any useful descriptor such as ra-
dius, length, conductivity, flow, etc. Hence we may formulate a mapping ~ : E — R/l
with the field 4 being an arbitrary edge attribute. Graphs G (V, F, o, w) may be rep-
resented in matrix form by their incidence matrix. The incidence matrix B € ZIVI*IZl
displays which vertices and edges are incident, and in which direction they do so

1 if vertex v is incident with edge e and w (e) = v
B,e ={ —1 if vertex v is incident with edge e and «a (e) = v (2.43)
0 else

In this thesis, edge directionality shall be randomly assigned to edges, as it will only be
used for the definition of an arbitrary but consistently set orientation. This is important
when walking along circular paths, or whether edge flow is entering or leaving a node. In
a graph consisting of one connected component, this matrix has certain characteristics
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such as
def (BT) =1 (2.44)
rg (BT) =rg(B)=|V| -1 (2.45)
im (BT) L ker (B) (2.46)

where BT is non-invertible as it has a one-dimensional kernel. In addition, it is of
interest whether the graph displays any redundancies, effectively the existence of mul-
tiple, non over-lapping paths between two vertices, forming a cycle. Loosely, one may
identify the number of cycles in a network in the following way: Assuming that the
network is a simple graph with one connected component of |V'| vertices and |E| edges,
then one only needs |V|—1 edges to connect every vertex and thereby create a spanning
tree, i.e. a graph without a single cycle. Moreover, any additional edge added will form
a new cycle. Thus, the total amount of such cycles in a network z, is the number of
excess edges:

2= |E|—|V|+1 (2.47)

These redundancies may be written in the form of a cycle matrix Z € N**IEl given
one identified z cycles, with

(2.48)

7 _ 1 if cycle i contains edge e
)0 else

In a simple, connected graph the cycle matrix Z is inherently involved with the inci-
dence matrix B. One can show for a connected graph of one component that

def (Z)=|V| -1 (2.49)
def (B )zrg(z IEI - IVI +1 (2.50)
im (Z7) = ker (2.51)

(BT) = ker (2.52)

im (ZT) L ker (2.53)

(2.54)

This is interesting insofar as any walk along a cycle generates a null vector, if one adds
up nodal characteristics considering the edge orientation, as

Z-BT.2=0 (2.55)

which will be crucial when dealing with Kirchhoff networks. It also becomes clear that
z equals the rank of the cycle matrix, indicating that there are maximally z independent
cycles. The independence refers to the fact that these cycles form the basis of a vector
space, namely over the field Z?. Hence, one may deduct any other cycle found as a
linear combination of the z basis cycles, see [86]. This makes z the dimension of this
vector space, and any changes in the redundancy of a graph will affect it. The number
of cycles may be calculated for any simple multicomponent graph as

2= |E|—|V|+P (2.56)
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where P is the number of connected components of the graph [143]. This cycle dimen-
sion is often referred to as nullity as it is equivalent to the dimension of the incidence’s
matrix null space. Note that we shall use the m = |E| for the number of edges in
the graph and n = |V/| for the number of nodes in the graph from here on to improve

readability.

2.1.2 Basic hydrodynamics

This section gives a brief introduction basic concepts of hydrodynamics. Overall, this
section covers passive transport models such as Hagen-Poiseuille flow and Taylor dis-
persion and how these models are applicable to extended channel networks. For further
detail and terminology, see Landau et al [68].

In any continuum model of hydrodynamics, one requires a proper dynamical description
of key characteristics such as mass and momentum. Further, the medium at hand may
be bearer of secondary specifications, i.e. temperature and metabolite concentrations.
These characteristics will be briefly introduced in the following.

Momentum and mass balance

For the proper mathematical treatment, a fluid is primarily described by two fields,
the fluid’s velocity v (r,t) and mass density p(7,t). The mass transported through
any infinitesimal volume element is then given by the continuity equation,

Gip (r,t) + V- (p(r,t)v (r,t)) =0 (2.57)

This means that any change of mass inside a given volume will result from dynamics
in the density and effective mass advection. This particularly holds for the case of a
source-free system were the overall volume is fixed. Naturally, this may be extended
to complex mass transports for dynamically changing volume elements by applying
the Reynold’s transport theorem [114]. As we intend to focus on modeling long-term
dynamics of capillary beds, we consider short-term size fluctuations and compliance
to be negligible, meaning that (2.57) is sufficient for our purposes. Following the
trajectory of an infinitesimal fluid element as it is advected, one may further consider
its momentum density pv. The momentum will change due to forces F' acting on
the volume elements surface S, i.e. due to spatial pressure gradients, shearing against
adjacent fluid layers etc. This may subsequently be formulated with the stress tensor
o expressing the force density as in [68],

F:/J-dA:/V-O'dV (2.58)
s v

where V' is the fluid elements volume. Then, we may state the dynamic equation for
the momentum density as

plow (r,t) + (v (r,t) - V) (r, i) = V-0 (r,i) (2.59)

Now the stress tensor may be customized to encapsulate any complex interaction of the
fluid elements with each other. This is usually done via non-linear viscosity terms for
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blood and other colloid-like suspensions. The specifics of the viscosity profiles will be
neglected here as we intend to coarse-grain most of the network morphogenesis problem
into a lumped parameter model anyway. Subsequently, we consider the special case
of an incompressible (p = const), Newtonian fluid, i.e. turning (2.59) into the Navier-
Stokes equation as [68],

plow (r,t) + (v (r,t) - V) v (r,t)] = =Vp +nAv (r,1) (2.60)

Here, n is the fluid’s viscosity and p is the hydrostatic pressure. The first term on the
right-hand side describes the force densities due to pressure gradients and the second
term refers to the fluid’s inner friction due to shearing of neighboring fluid elements
along a velocity gradient. This equation may effectively be non-dimensionalized by
identifying relevant reference scales for velocity v, length L, viscosity 7 and density p
such that we write

Lr*=r (2.61)
vt = (2.62)

. : L
Tt" =t with 7 = — (2.63)

v

L
¢p* = p with ¢ = — (2.64)

vn
Re [0pv™ (r*,t*) + (0™ (r*,t7) - V") v* (r*,t")] = =V"p" + A™0" (r*, t") (2.65)
with the Reynolds number Re = %. With this formulation, one may easily assess

whether inertia or viscosity is the predominant phenomenon for either Re > 1 or
Re <« 1. This is particularly useful as capillary beds may in general be found in the
low Reynold number regime. Hence most transport phenomena, such as flow in thin,
long vessels, may be evaluated for the stationary case as

0~ V'p* — A%® (r*, 1) (2.66)

which is usually referred to as the Stokes equation.

Diffusion-Advection

Additional properties such as temperature and concentration often need to be included
into the tool set of transport equations. This is true particularly for biological flow
networks, as the entire system is constructed to transport these quantities. In the
simplest way this is done via the continuity equation, i.e. describing the macroscopic
dynamics of the concentration ¢ of an arbitrary solute as

Oc(r,t)+V-3(r,t)=0 (2.67)

Here, once again, we assume that the volume perfused is static. The solute flux 3 is
given in the simplest case as Fick’s law,

7 (r,t) = —=DVe(r,t) +v(r,t)c(r,t) (2.68)
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with D being the diffusion constant. Hence, when describing the transport properties
of molecules dissolved in the fluid, one needs to consider diffusion due to concentration
gradients and due to advection of the medium as

Oe (r,t) — DAc(r,t)+V - [v(r,t)ec(r,t)] =0 (2.69)

Here we would like to point out that diffusion-advection problems are generally char-
. . 2 _ !
acterized by the time-scale 7 = % and Peclet number Pe = %, so we rewrite the

continuity equation (2.85) as
Opc(r*,t") — A%c(r*,t") + PeV - [v* (", t%) ¢ (¢*, ") =0 (2.70)

With this non-dimensional parameter we are able to distinguish between purely diffu-
sive or advective problems, and thereby determine which transport mechanism is dom-
inant, see Figure 2.2. This becomes interesting especially when dealing with transport

- PE=R/L -PE=L/R

10%4
] Taylor dispersion

L/R

10"

advection

100_ axial diffusion'

102 10! 100 100 102
PE

Figure 2.2: Peclet number PE = % dependency of solute transport in a thin channel,
marking dominant regimes for axial diffusion, Taylor dispersion and advection.

in thin channels, which naturally arises when modeling capillary beds, see section 2.2.1.
We would like to note that we are dealing with passive fluids, i.e. it is assumed that
there are no explicit dependencies between v and ¢. This might not necessarily be the
case in some biological flow networks though. For instance, it has been discussed how
flows v may be driven and controlled by the active deposition of a metabolite [21, 100].
We will briefly consider such a case at the end, in chapter 4.

Flow in a thin channel

As the intention of this thesis is to model the flow in vascular networks, the simplest
way to do so is by abstracting any vessels as rigid cylindrical pipes perfused by a
passive, incompressible, viscous fluid For our purposes, the cylinder is oriented along
the z-axis. Due to its rotation-symmetry one has this channel characterized by its
length L, radius R and flow velocity v = v (r) e,. These channels are assumed to be
thin, i.e. L/R> 1 and the Reynolds number to be small, i.e. Re = %’3 < 1. One
may readily solve the resulting Stokes equation (2.66) with the 'no slip boundary’, i.e.
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v(R) =0, and pressure difference Ap =p(z = L) — p(z =0), to acquire the velocity
profile as

v (r) = o (1 - %22) (2.71)
vo = —Ap (2.72)

Further, one may calculate the entirety of the convected fluid volume through the
channel, of cross section S, per unit of time as

TR
fo fs v(r)-dA =LA (2.73)

where we call f the volume flow rate. Equation (2.73) is also referred to as the Hagen-
Poiseuille flow law. As the fluid is viscous, one naturally has friction of the adjacent
fluid layers, which vary radially in speed. In particular, one may calculate the stress
exerted by this fluid onto the boundary layer, at the inner coating surface of the channel,
which corresponds to the mechanical sensation cells may respond to. This component
is also referred to as wall shear stress, which corresponds to a single component of the
stress tensor o as [68],

0f'z|r=R - o7, (274)

2.1.3 Kirchhoff networks

This section intends to give a brief overview of Kirchhoff networks, which are linear
graph abstractions of the real biological vessel networks of interest for this thesis. In
this framework, any transport is conducted via the edges E and linked together by
nodes V. The vertices have no capacity to store fluid and represent the branching
points of the network. With this in mind, each edge carries a volume flow f such that
at any vertex the sum of all flows equals a nodal function s,

Y fe=s (2.75)

ecl(v)

where I(v) indicates the set of edges incident to vertex v. The function s is referred
to as a sink or source when s is non-zero, otherwise the node is called source-free.
Equation (2.75) is called Kirchhoff’s current law, which represents mass conservation
at every vertex. One can easily show that by adding up all s, as

D sy =0 (2.76)

v

displaying the entirety of injected and extracted flows to balance [36]. Further, in such
a network, one may formulate the flow as a linear function, Ohm’s law, as

f. = C.Ap, (2.77)
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where Cf is the conductance of an edge and Ap, its respective potential gradient. One
may thus characterize the flow in every vessel as a direct response to a gradient of
potential energy and have it scale linearly with the conductance which incorporates
the geometry and physical nature of the transport problem. The equation systems
formulated in (2.75) and (2.77) may be bundled in vector notation as

B-f=s (2.78)
f=C-Ap (2.79)

Here, B designates the incidence matrix as introduced in section 2.1.1 and C is a
diagonal matrix with C, on the diagonal. The potential gradients can be calculated
from nodal potentials as Ap = BT - p. Now, combining this fact with equations (2.78)
and (2.79), one finds the transformation between the sinks/sources and the potentials
as

B.-C-BT . p=s (2.80)

The incidence matrix is non-invertible, see sections 2.1.1, and therefore one needs the
generalized inverse [-]', see section 2.1.1, to solve equation (2.80) as:

Ap=B"[B-C-B"]'s (2.81)

This solution already corresponds to the least-square solution of equation (2.80) which
is due to the fact that previously Ap = BT - p was assumed. This actually corresponds
to the concept of a conservative potential field. Hence, all circular walks add up to a
zero potential difference, see section 2.1.1, and subsequently no circular potential flows
exist.

So far, we have treated these networks like boundary problems which needed defined
nodal sources s or alternatively nodal pressures p. One also refers to given nodal
sources as a Dirichlet problem and to nodal pressures as a Neumann problem [16]
Interestingly, one may show (2.81) to correspond to the flow pattern with minimal
dissipation, by applying the Thomson principle [62, 50]. Following this variational
principle, one considers the system to be characterized by a cost function, i.e. the
energy dissipation defined as A = Y, f2/é., with positive coefficients ¢, > 0. Further,
one may use this cost function to formulate a constrained optimization problem with
Lagrange multipliers p, and the boundary conditions (2.75) such that

£:Zfe2/ée+zpv Sy — Z fe-’ (282)

elel(v)

The aim is to find the set of flows f, which minimize the system’s cost, A, with respect
to the constraints given by the Kirchhoff current law. Doing so, one ends up naturally
with Ohm’s law, with the conductance C, = ¢, for the coefficients and the Lagrange
parameters p, representing the nodal potentials. These p, define the potential gradients
as Ape = (Pu(e) — Pa(e)), Where a(e),w(e) designate the initial and final vertex of any
edge e, see 2.1.1. This cost function ansatz enables one to find a unique solution for
the potential differences Ap in equation (2.80) as

T
Ap = C-/? [B - clfi’] s (2.83)
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This solution is equivalent to (2.81) and represents the optimal potential landscape,
which minimizes the overall power dissipation for a given landscape of conductance
and sinks [15, 103].

Note that this formalism may be applied to any stationary transport process following
the Thomson principle as well as random walks of particles on a lattice. This class of
systems is often referred to as lumped or linear systems, in analogy to simple electric
circuits [34, 37]. Even complex transport phenomena including pulsatile flow waves
and vessel compliance may be approximated in the Kirchhoff framework by adding
capacities and inductivities [139, 4]. The framework may further be expanded to non-
linear networks, e.g. including turbulent flows, with

f=C(p) (2.84)

and even generalize the Thomson principle accordingly [16]. For the rest of this thesis,
we assume that any given network is linear, and its flow rate will be treated accord-
ing to the Hagen-Poiseuille law, where the edge conductance is given by C, = 8?:] }E,
see equation (2.73). Henceforth, it will be assumed in accordance with [24] that no

turbulence or dissipation losses need to be considered at branching points.
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2.2 Complex transport problems

This section deals with the background of commonly applied theories which combine
multiple concepts discussed in section 2.1.1. It is strongly advised that the reader
has an understanding of these theoretical frameworks before proceeding to the thesis’
findings and discussions.

2.2.1 Taylor dispersion

As stated before in chapter 1 models involving complex adaptive flow networks have
been only recently deployed to capture metabolite transport and uptake phenomena.
In this section, we would like to review a specific model for metabolite transport in
thin channels with laminar flow, so called Aris-Taylor dispersion. To introduce readers
to the concept, consider the following thought experiment:

Two channels are to be perfused by a liquid carrying a species of molecules of concen-
tration c at time ¢ in a predefined volume element, as illustrated in Figure 2.3. The first
channel is to be perfused by a plug flow, i.e. all radial fluid layers move at the same
speed, and our concentration 'package’ will not be distorted by its advection over the
time span dt, see Figure 2.3a. Further, we observe that the metabolite diffuses in axial
direction as only an axial concentration gradient is present. On the other hand this is
not the case in the second channel displaying Hagen-Poiseuillle flow, see Figure 2.3b.
First, as radial layers move at different speed, one will see a parabolic distortion of the
concentration profile due to the advection. Second, axial and radial diffusion occurs
due to the axial concentration gradient (as before) and a radial concentration gradient
(due to the flow distortion). Therefore, it seems that the flow profile itself interferes
with the concentration gradient, thereby coupling the metabolite’s effective diffusion
to the fluid’s advection. Now, as we are dealing with passive fluids, we consider that

L (T

t t+dt t t+dt
(a) (b)

Figure 2.3: Diffusion of metabolite in a thin channel is altered by the flow profile: (a)
Plug flow with axially diffusing solute. (b) Hagen-Poiseuille flow with axially and
radially diffusing solute due to the parabolic velocity profile.

the flow velocity v is decoupled from the metabolite concentration ¢. Further, in a
rotation symmetrical channel, the metabolite concentration is given as ¢(z,r,t), as is
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the carrier liquid’s velocity profile v (z,7,t). So, we get from (2.67), (2.68)
Occ(z,r,t) — DAc(z,7,t) + V - (v (2,7, t) c(2,7,t)) =0 (2.85)

Moreover, as radial diffusion occurs on time scales much smaller than axial diffusion
or advection, one may decouple these effects. In particular, we intend to describe any
transport via its cross-section average ¢ and radial perturbation dc as,

c(z,rt) =¢(z,t) +dc(z,r,t) (2.86)
v(z,rt) =0 (2,t) + dv(z,r,t) (2.87)

The cross-section averages are to hold for the relations

c(z,t) = | (z,7,t)dA and dc = 0 (2.88)
v(z,t) = # v(z,7,t)dA and 6v =0 (2.89)

It is generally assumed that the flow profile is Hagen-Poiseuille. However, we haven'’t
considered any boundary effects for the metabolite on the vessel surfaces. Following
the ansatz in [82], we consider a channel of length L and radius R, whose surface is
absorbing at rate v, see Figure 2.4 . It should be noted here that we do not intend to
incorporate any explicit z or ¢ dependency into the rate v.

:T

v

S~ I
0 R

Figure 2.4: Capillary toy model: Advanced Taylor dispersion model as proposed in [82].

Fluid is advected by a parabolic profile while a metabolite of concentration ¢ is diffusing
with rate [ and absorbed at the vessel’s surface with rate v.

Here, this ansatz reflects a constant solute removal, untouched by complex saturation or
back-flow effects which we will discuss in chapter 3. We write this boundary condition
down as :

Orclr=r = ve(z, R, t) (2.90)

One may follow the elaborate derivation in [82] in order to approximate the continuity
equation similar to (2.85) for the stationary case as,

D (1 + %) 0,27 (2) — 70,5 (2) — (2?) Z(2) =0 (2.91)
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which enables us to describe the metabolite as a quasi one-dimensional problem. In
particular this approximation assumes small radial perturbations ¢ (z) > dc(z,r) and
low uptake rate vR < 1. It readily becomes apparent that the concentration pro-
file (2.91) is analytically solvable and expandable to complex Kirchhoff networks, for
which a discussion and ansatz is presented in [82]. Here, we would point out that the
system is distinguished by a new effective axial diffusion as

72 R? Pe? [ R\?
Deff == D (1 + 48D2) — D (1 ‘|— E (f) ) (292)

which represents the essence of Taylor dispersion in thin channels. As we increase the
Peclet number Pe or the radius-to-length ratio, we will increase effective diffusion in
the system, giving us a non-trivial coupling of the diffusion to the flow landscape inside
a channel.

We will deploy this model with the intention to simulate salt and protein uptake in the
sinusoids of the liver lobule in the framework of an extended network morphogenesis
model, see chapter 3. Note that we intend to do a rigorous analysis of this model for
the case D¢y — D corresponding to % (%)2 & 1, in section 3.4.1. Subsequently, we

set B = (2%’) and we may describe the metabolite transport via the ODE

Do, ,c —vd,c— e =0 (2.93)

2.2.2 Flow-driven pruning

The concept of characterizing any transport network by a cost, e.g. by applying the
Thomson principle, see equation (2.82), may readily be transferred to dynamic biolog-
ical systems. The cells which are forming the walls of vascular networks are able to
respond and adapt to a given set of stimuli, such as wall shear stress or hydrostatic
pressure [106]. This enables such systems to continuously change their own topology
and edge conductance in order to reach refined structures. The general framework of
this network morphogenesis model will be laid out here for discrete systems only. The
reader may refer to the overview given in [1], discussing continuum approaches.

Metabolic cost functions

To capture the biological behavior mentioned above, one may formulate a cost function
for a vessel system as for example proposed in [20]:

2

€

r=>%" o aCy (2.94)

where the first term is the power dissipation as in equation (2.82) and the second a
metabolic cost term C7, with proportionality factor a. This second term encapsulates
the notion that a biological organism is constrained by its metabolic costs to deploy
and sustain a vessel of a certain conductance. In detail this assumes that in order to
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build larger vessels, with increased volume or surface area, one needs more cells, which
have to be supplied with oxygen and nutrients. The exponent v > 0 represents a degree
of freedom to vary the relative importance of vessels of low or high conductance.

The minimization of the function (2.94) is performed by finding the set of conductances
C. which minimizes (2.94) for a given boundary condition, s. Following the ansatz
in [56] one may formulate the minimization of (2.94) in the form of temporal adaptation
rules for each vessel, where each element reacts to a local stimulus instead of a single
global optimization procedure. Now for that purpose let us rewrite (2.94) slightly as

2
F:ZLE{iﬁ—aKg} (2.95)

4
where we have the length reduced conductance as K, = WSTS. Here, we have the central

terms of the cost function in dependence of the radii distribution r.. We shall use
this particular form to derive an ODE system for the radii dynamics of the network’s
channels via gradient descent. This capitalizes on the idea of deriving an asymptotically
stable dynamical system from a Lyapunov function, as introduced in section 2.1.1.
First, we switch to the vector notation for the dissipation-volume terms, using (2.79)
and (2.81), to formulate it in terms of the nodal sinks/sources as,

Fr=AfT "K' L-Ap+aTr(K"-L) (2.96)
=Ap" -K-L' Ap+aTr(K"-L) (2.97)
= s"[B"K-L'B]'s+a Tr(K"- L) (2.98)

with L. as entries of the diagonal L. We calculate the (pseudo-)time derivatives of T’

i—f:si"at [B-K-L'-B"]"s
+2s" [B-K-L™"-B"]"0,s +ad,Tr (K" - L) (2.99)
The derivative of the generalized inverse B - K - L - BT = A being [47],
At = At (B.-g,K - L~ BT) A'
+[I-A"- Al (B-g,K-L'-B")A™T". A
+AT-ATH(BT-,K-L™'-B)[I - A- Al (2.100)

Fortunately the projector terms vanish as we have,

sT[I-A"-A]l=0and [I-A-Al]s=0 (2.101)

Together with the identity AT = (AT)Jr the total time-derivative of I' becomes,

@ _ AT (B.o,K.L.BT) As

dt
+2sT A'9,s + ad,Tr (K - L) (2.102)
With partial derivatives simplifying this formula as:

OTr(K"-L)=~Tr (K" "-L-9,K) (2.103)
d,s=0 (2.104)
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As we also have Ap = BT . A's, we may write the total time-derivative as

dr

i Ap"-6,K-L™' - Ap+ayTr (K" - L-6,K) (2.105)

= AfT- K2 -L-Af +ayTr (K" - L-9,K) (2.106)
Using this, we may rewrite the dynamical equations of K, derived from I' as:
O Ke x — 7. T (2.107)

The dynamics in equation (2.107) allow for a continuous local adaptation of the vessel’s
state by consideration of its local flux, current conductance and metabolic parameters
a,v. In accordance with [56] one may rewrite equation (2.107) to have the final adap-
tation rules as,

2
8K, = bo (W - bl) K. (2.108)

with positive coefficients by , b;.

Adaptation and topological transitions

Any adaptation of a given Kirchhoff network may simply be performed by initializ-
ing it with a source vector s and any conductance distribution Ky, [1|. Then we
integrate (2.108) using explicit numerical solvers, incorporating the following steps:

1. Compute the pressure and current landscape p,,, f, according to (2.78), (2.81)
2. Compute 0, K, according to (2.108)

3. Check if ), 8;K§,n < 6 > 0, if true: stop the loop

4

. Compute increment and next time step K, ;, using for example Runge-Kutta

or LSODA [138]
5. Check for pruning events, if K, 11 < K., edge e is removed from the graph
6. Return to first step

During each adaptation step, the flow landscape f,, is re-evaluated for the current K,
with equation (2.94) and all conductances updated according to equation (2.94). Inte-
grating (2.94) one minimizes the cost T' reaching a minimum which is asymptotically
stable. Doing so, we may follow the dynamics of each single vessel and subsequent
topological changes as part of this self-organization, see Figure 2.5.

Yet, for a complex system as such, all fixed points reached this way are in general only
local minima of I' depending on the initial conditions, such as K and s. In order to
reach a state to be a global minimum, one would most likely need to partially abandon
deterministic methods and refer to stochastic or hybrid methods, such as basin hopping
or annealing [61]. In this thesis only deterministic optimization is performed, while av-
eraging over a multitude of systems initialized with randomized K . Once reached,
any stationary states may now be analyzed for their respective network topology, e.g.
checking the number of independent cycles as discussed in section 2.1.1. This is useful
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Figure 2.5: Network morphogenesis as a dynamical problem according to the Hu-Cai
model [56]: A plexux is refined over time into its optimal form, adjusting the vessel
conductivity according to a set level in the wall shear stress, see (a) , (b) . The
algorithm is incorporating vessel pruning as K. — 0 reaching a local minimum of the
metabolic cost function T' in the process, see (c)

as it gives a first insight into the redundancy of transport networks and their capability
to circumvent broken links.

Interestingly, stationary points of (2.94) are always spanning trees for v < 1 [20], con-
necting sinks and sources by direct pathways, while cutting down any weakly perfused
links, never leaving any loops intact. This topological transition is for all we know
independent of the underlying plexus topology. Reticulation may be restored in this
framework by considering v > 1 [20], which will restore the initial plexus. Further,
introducing noisy flow patterns by breaking links or varying the spatial correlations of
sinks and sources [121, 61] may also restore reticulation. We will discuss these proce-
dures in particular in chapter 3 and 4.

In general, the field has become a playground for testing adequate flow patterns and
metabolic cost functions for their potential of topological complex stationary points [25,

81].
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In this thesis, we formulate any metabolic cost function as

r=>T; (2.109)

where each T'; represents a cost and its constraints as in (2.94). For multi-component
systems featuring several networks interacting with each other we write,

P=>"Ti+» Ty+> Tkt (2.110)
i 1,7

i!j!k

although we will restrict ourselves to pairwise interactions in this thesis.
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Chapter 3

Results

In this section, we present the results of the studies on fluctuation driven remodeling,
network coupling, parameter estimation and metabolite transport in complex networks
as indicated in section 1.3. In section 3.1, we revisit the fluctuation induced topological
transitions and merge this framework with the intertwined network model, see section
3.2. Afterwards, we discuss the ramification for Murray’s law based on these deductions
and estimate model parameter distributions for real flow networks, see section 3.3.1.
Note, that part of these results have been published recently in [65]. In the final section,
3.4, we discuss an extended metabolite uptake and adaptation model for topologically
arbitrary flow networks.

3.1 On single network adaptation with fluctuating flow
patterns

Ever since biological flow network models have been studied for their pruning behavior
it has been clear that any algorithm proposed had to deal with the shunting phe-
nomenon. It seemed particularly unclear how reticulated structures could be preserved
in order to account for the self-organized emergence of capillary beds, complex leaf ve-
nation or slime mold networks. It was possible to account for gradually shifting complex
reticulated hierarchies [61, 30, 56] by introducing noisy flow patterns, due to load vari-
ation and rerouting of flow in the vessel networks. In general, one may observe that
capillary load rapidly changes due to blockage or short-term vaso-constriction and re-
laxation [24]. Here we refer to events where red blood cells clog capillaries or sphincters
at supplying arterioles regulate the total inflow into the capillary bed. Furthermore,
one finds the capillary bed to exchange liquid with the surrounding tissue due to spatial
transmural pressure variations. That is not to say that elaborated metabolic demands
can not generate reticulation [107], but we shall discuss these models and their key
arguments later on.

In this section, we would like to discuss and analyze the concept of fluctuation driven
topological transitions. In doing so, we will in particular discuss the model extensions
made by Corson and Hu et al [30, 56], see chapter 1. In these studies it was proposed
that the pressure landscape would continuously be disturbed between two adaptation
steps, leaving the vessel to integrate the given stimuli for an effective update. At the
same time, the capillaries themselves would not vary significantly in size.



44 Chapter 3. Results

First, we will discuss how the fluctuation model proposed in [56] can be derived from
the ansatz in [30]. Subsequently we will test this model ansatz discussing the topolog-
ical transition behavior, to verify claims made in [56] on parameter dependency and
demonstrate explicit topological dependencies in the system. We shall later discuss a
broken-link model in accordance to [61] in chapter 3.4.1.

3.1.1 Incorporating flow fluctuations: Noisy, uncorrelated sink
patterns

Let us consider a Kirchhoff network as presented in chapter 2, with defined edge con-
ductance C' and Dirichlet boundary condition s. Further, we follow here the self-
organization approach as laid out in chapter 2, equation (2.108), as

2
0K, = (e — o) K. (3.1)
We switch to a radial formulation for this ODE system, setting v = 0.5, using K, = 7;':]3

and f, = £=Ap,. resulting in

= &
o\ 2
O,re = o (Apg (L—e) — c2) Te (3.2)

~1/2
with coefficients ¢y = (%) 1/2 bp and ¢y = (%) b, as the resultant model parameters.

Now we follow the narrative of the previous studies: Assuming a network is undergoing
rapid changes in the sink distribution s, any long-term adaptation simulated by an
incremental 7. variation shall first integrate over these instantaneous realizations to
arrive at an effective stimulus, see Figure 3.1a. For that, an ensemble average of all the
instantaneous realizations of the wall-shear stress, dissipation etc. would be evaluated
and used for adaptation. Here we do so by replacing the respective pressure term in
equation (3.2) with the ensemble averages (.)

o = co (<Ap§> (2) - ) . 33)

The fluctuations causing Ap to actually vary are formulated the following way: Con-
sider an ensemble of s-configurations in which there exists one source-node (here
Usource = 0) and all other nodes are randomly initialized sinks with the following char-
acteristics

(8y) = ptp with v > 0 (3.4)
<3'U3w> = PywOyOw T Hylly with v,w >0 (35)

with sink mean value u,, standard variation o, and correlation coefficient p. Note,
though the strength of individual sinks is varying, their distributions are uncorrelated
to each other. To simplify the matter at hand, these sinks are to follow the same
probability distribution, generating the same mean and standard deviations. Hence we
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Figure 3.1: Flow fluctuations in Kirchhoff networks: (a) Schematic representation
of the sink fluctuations (blue) for random realizations of the flow system, with a fixed
root position (red). (b) Mean to standard deviation ratios in the squared format

A3 = (;—;) for normal distributed sources.

set fy = pt, 0 = 0, and pyy = dypy. From the Kirchhoff law (2.75) and Ohm’s law (2.77)
we know that the sum of all in- and outflows of the system vanishes, i.e. ), s, = 0[36].
Further, we denote the number of nodes in the system as |V| = n. When considering
the sink conditions as well as the source constraint one may write further moments as

(s0) = - <Z> =(1-n)p 36)

(s0) = < > w> =(n—1)0"+(n—-1)"p (3.7)
(s08w) = — <Z sﬂsw> =—(n—1)p*—o° (3.8)

It is assumed that the conductances (radii) are constant for each instantaneous real-

ization. Hence one may calculate the squared-mean pressure Ap? by applying (2.83)

T [ i
B. Cl f2]

and formulating an auxiliary conductance tensor A%, = C.! [B .CcY/ 2]
[=24) ew
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(Apz) = <

as

ZC—lﬂ [B clxz] ] > ZA (Sp5uw) (3.9)

= A§ (s3) +2 Z Ao (308y) Z A, (SySw) (3.10)
v>0 v,w>0
=Af(n—1) [(n—1)p*+ 0% —2) A% [(n—1)p*+ 0% + Y A, [uuo® + 1]
>0 v,w=>0
(3.11)

— ZA (n—1) [(n—1) p* + 0°] bouow — [(n — 1) p* + 0] [(1 — Gow) dou]

— [(n — 1) p* + ] [(1 — o) Sow] + [6uwo® + 1] (1 — G0y) (1 — Gow) } (3.12)
Ordering the terms for g and o respectively, we get auxiliary coefficient matrices U

and V',

<Apg) =p’ Z A5y Up + 0 Z A Vow (3.13)
with Upy = [1 4 dovdown® — 1 (dou + dow)] (3.14)
and Vi = [0pw + (n + 1 4+ dpw) d0u00w — (1 + dpw) (dou + Sow)] (3.15)

We may subsequently calculate the average squared pressure as
<Apg) = o, + 0200, (3.16)

where the squared pressure functions are computed as

b= AL Upy (3.17)
5 = AL,Vuw (3.18)

The first term ¢, reflects the squared pressure in the case of a constant source-sink
landscape, in the absence of any variance o2. Further, the term d¢. describes the
pressure perturbation caused by fluctuations with variation o2 analogous to the Hu-
Cai model [56]. It may be useful to understand the general impact of these terms and
why a topological transition is inevitable for any network using this ansatz. Rewriting

equation (3.13) in terms of ( :) we see that

2
a
(Bp2) [1* = Y (MG — Afu — Ao + AGy) + 2 D (A5 —245, + A7) (3.19)

v,w>0 v=>0

We may further rewrite this as

Ag, = (0;1»’2 B-C'?| ;) (C;W B-C'2| Tw) —a

2

S (D) 2= Y (af - af) (0 —ad) + (“—) S (a5-al)?  (321)

(3.20)

= m

— (Ap? /i + (Z—) 3 (o — ag)? (3:22)
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demonstrating the impact of the fluctuations in the form of (f—l‘;) quite directly: All the
elements of the Y~ _ (af — af)? are positive semi-definite. Any uncorrelated fluctua-
tions of this kind will increase the positive feedback provided by the squared pressure
term (3.3). It is therefore inevitable that large enough ratios (ﬂ%) will generate retic-
ulated structures by stabilizing otherwise unnecessary links. We will subsequently
restrict ourselves to an analysis of equivalent probability distributions characterized by
the ratios (ﬂ%) , see Figure 3.1b. Note that, even though the distribution’s mean might
have a distinct sign, seemingly defining a source or sink, one may increasingly result
12
distributions. For a matter of fact, this is a useful feature when it comes to modeling
fluctuation fluid exchange between capillaries and the surrounding tissue. Respectively,

in identity changes of the boundary for (0—2) > 0, when sampling over non-restricted

one returns to the deterministically correlated state for (Z—;) — 0 leaving us with the

identity (Ap?) = (Ap.)> = Ap?. This form of correlation based feedback was recently
demonstrated in an alternative way by Ronellenfitsch et al [121] : In their study, a spa-
tially defined sub-population of vertices (inside a given region with diameter d around
a root vertex) has correlated sinks and sources. By increasing the diameter d more
and more sinks are deterministically correlated to each other, sub-sequentially break-
ing down any redundancy in the network previously generated. In general, one may
introduce arbitrary sink configurations. For arbitrary sinks, thanks to the linearity of
the problem, one may calculate any effective pressure configuration as

(Ap;) = [D-(s®s) - D] (3.23)

with D = BT (BCB")'.

ee

This allows us to handle averages more quickly using just one arithmetic mean over a
set of sink-source realizations s, as

(s® s) :%Zsm@}sm (3.24)

In [121] it was discussed to compute (3.24) utilizing an eigenvalue analysis. The
ansatz (3.5) may be readily extended to include additional sources, which act as clones
of the very first one, i.e. we will have s, = s, using the indices p, g for sources and m,n
for sinks. Then the conditions (3.6), (3.7) and (3.8) will become for a sources and b
sinks (with a + b =n)

<Z 5P> == <Z 5u> = —bp — (sp) = _gﬁ (3.25)
1 L0 5 a9
(spsq) = = <Z susv> == (bo® + b?pu?) (3.26)

(3p5u> = _é <Z 3U3u> = _é (b;‘.L2 - 02) (327)
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Hence we may calculate the mean squared pressure and its coefficient matrices respec-
tively as

(Aply =) A5’

+D_ Ao’
v,w

This formalism will be applied in section 3.3.1 for parameter estimation in real network
data sets. In the next section we will study in detail the implications of (u?,o?)
variations and resulting topological transitions.

b b
o > bpubqw — p > (pu0muw + Smolp) + Y amanw] (3.28)
pg m,n

p?m

% Z 5;005{1&' — éz (5W5mw + ‘5mv‘5pw) + Z 5mv‘5nw6mn]

pP.q p,m m,n

3.1.2 Fluctuation induced nullity transitions

In this section we numerically evaluate (3.3) in order to study topological transitions
during network morphogenesis, following the general update algorithm in section 2.2.2.
To do so, we derive a non-dimensional form of (3.2), by setting

L:=L./L (3.29)
rex =71/ (3.30)
* n
C: = Cots (3.31)
Sy = 8o/ (3.32)
* Y
t =t (3.33)

We set the system’s characteristic time scale as 7 = ‘%. Further we incorporate the
flow fluctuations (3.16) discussed in the previous section with an effective fluctuation
strength A3 = :I—; and therfore rewite (3.3) in total as

2
Bt = Do [(qf»;. +x50) (72) —)u] r:; (3.34)

Subsequently we have the dynamical system reduced to three non-dimensional param-

eters. The first one, A\g = (T—*fgﬁ) o, is the effective growth rate. Second, we have

Ay = (n‘;—;) ¢y for the volume penalty (or anticipated wall-shear stress). The last pa-

rameter, A3, scales the strength of pressure perturbations, which effectively impose an
increase in the wall shear stress term in equation (3.34). In this section, we would
like to demonstrate two particular phenomena: First, to confirm the robustness of the
model for a plexus represented by non-planar graphs, similar to [51]. Second, to test
the independence of the fluctuation-induced nullity transition from the volume penalty
Ao, as claimed by [56]. To do so, we calculate the adaptation with a single corner source
node (sinks otherwise) for a systematic scan of Ay and A3 (see Figure 3.4).

In order to quantify any potential topological transition of stationary states of (3.34)



3.1. On single network adaptation with fluctuating flow patterns 49

we will use the relative nullity as order parameter

0= m-—n+l (3.35)
20
where m —n + 1 is the number of independent cycles in the network with m edges
and n vertices, as discussed in chapter 1. The number of cycles, z, in the plexus from
which we start will be used for reference, as to measure the relative loss of redundancy.
Further, we will track the relative dissipation, D, of the system and its relative cross
section area, S, as

D=3) (f2*)/C: (3.36)
S = Z 2 (3.37)

We initialize any plexus with a randomly chosen landscape, C7, and therefore with
a random distribution of r;. Moreover, we intend to consider only highly symmetric
networks for this study, i.e. considering only the case L. = L. Any plexus tested here
will be based on a three-dimensional lattice, namely the cubic or diamond lattices as
well as Laves graphs, see Figure 3.2. We choose these lattices in particular as they rep-
resent well-known periodically expandable structures with distinct degree distributions
and girth (topological cycle length) characteristics. Will shall discuss the impact of
the chosen lattice topology on the order parameter g in detail in section 3.1.3. When
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Figure 3.2: Three dimensional plexi as test grounds for fluctuation induced nullity
transition: (a) Cubic lattice, with degree dp,q, = 6 and girth [, =4 (b) Laves graph,
with degree d,;,4, = 3 and girth [, = 10 (¢) Diamond lattice, with d,,,, = 4 and girth
l.=6.

integrating (3.34) we observe for any graph type the transition from tree-like config-
urations for fluctuations A3 < 1 toward states exhibiting fluctuation induced loops for
large A3. This transition, as well as its characteristic vessel dynamics is explicitly dis-
played for a cubic lattice in Figure 3.3. All data presented in this section was acquired
for cubic lattices. The results for Laves graphs and diamond lattices behave the same
qualitatively. Next, we turn toward a systematic scan of the model parameters Ay and
Az, see Figure 3.4. In Figure 3.4a we display the color-mapped nullity (3.35) for the
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stationary states of the system. It becomes clear that there is no impact of As on the
nullity. Only an increase in A3 results in an increase in the nullity, as indicated in earlier
studies [56]. Note, however, that the final vessel diameter as well as the time scale for
relaxation into a stable stationary state does depend primarily on the parameter As. In
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Figure 3.3: Adaptation dynamics and pruned network skeletons. The edge thickness is
representative of the relative tube radius. Sinks are marked as blue dots, the source as
a large red circle: (a) Spanning tree configuration for A, = A\3 = 1. (b) Saturation
of fluctuation induced loops for A\, = 1 and A3 = 102,

Figure 3.4b we display horizontal cuts through the previous nullity diagram, displaying
the As-dependency of p explicitly. For all Ay variations we find this transition to start
for A3 > 1 progressing logarithmically until a saturation level is reached. We find that
the logarithmic transition is approximately described by

0 (As) = Klogio (A3 — Ac) + 2o (3.38)

for any o > 0. Thereby we define the critical fluctuation, A., as the onset point for which
o > 0 is fulfilled. The parameters , py may be easily obtained by interpolation of the
curves in Figure 3.4b. Note here that the saturation level as well as the coefficients «, pg
are indeed dependent on the network’s topology and overall size. We discuss different
scenarios pertaining to that matter in section 3.1.3. Though the topological structure
of these networks is indistinguishable in terms of nullity for different levels Ay, we find
significant differences in the network’s geometric and hydrodynamic features, which
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Figure 3.4: Nullity o state diagram and transition trajectories indicate fluctuation, A,
induced nullity transition to be independent of volume penalty, A,, as:

(a) + (b) Uncoupled adapting networks display continuous, logarithmic Ao-
independent nullity ¢ transitions in an uncoupled system.

were directly incorporated in the metabolic cost function (2.95). In particular, we
see changes in the overall dissipation and cross section area of the system’s stationary
states, see Figure 3.5. In Figure 3.5a, we display the network,s overall cross-section
area, S, as defined in equation (3.37). While an increase in volume penalty A, reduces
S we find fluctuations A3 to increase S significantly, for A3 > A,. Highly reticulated
networks only have an increased cross section area when volume penalty is low. On
the other hand, we display the overall dissipation, D, in Figure 3.5b. One may easily
see that overall dissipation increases significantly for combined increases in A; and As.
Therefore it appears that from a physiological standpoint, one would like to avoid this
particular regime of Ay, A3 > 1 for capillary beds. Not only is it unfavorable to have
such an energetically inefficient network, but this regime also corresponds to the case
of low overall cross section area. In our framework, with fixed channel length L, the
square-root of the metric S is indicative for the overall surface area of the network.
Such a surface-minimizing regime would therefore likely effect the primary function
of real networks such as capillaries: the overall metabolite supply of the tissue. We
shall discuss models regarding this particular impairment of metabolite filtration in
section 3.4.1. In the next section, we would like to point out finite size effects of the
model framework, in particular on quantitative changes in the topological transition
behavior
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Figure 3.5: Network geometric and hydrodynamic features: (a) Overall vessel cross
section area S, as defined in equation (3.37). (b) Overall network dissipation D, as
defined in equation (3.36).

3.1.3 Finite size effects and topological saturation limits

In the previous section, we numerically evaluated the fluctuation induced nullity tran-
sition in alignment with the Hu-Cai model [56]. Whilst the algorithm generally seems
robust against a change of the general degree sequences of the plexus, we find detailed
quantitative differences in the nullity transition curves (3.38). Subsequently, we rewrite
the transition (3.38) to incorporate these network characteristics as

On,m (/\3) =k (n, m) log,, (/\3 - )‘C,n,m) + 0o (”: m) (3-39)

To explore this phenomenon we first turn toward the explicitly acting stimuli of the
model. We shall analyze the size dependencies of this ansatz, by looking into the
positive feedback terms in equation (3.34). Adding up U and V and rearranging the

2 .
terms around A3 = £, we rewrite (Ap?) as

Ape

Z A2, X (As) (3.40)
with Xmu = (1 + Sov0ow — dov — §0w) + A3 (61;11; — Jovdow

+(n—1)((n+ 1) dgy00w — dov — dow) [1 +

n—1

)
As ] (3.41)

Introducing further abbreviations, to improve readability, we rewrite (3.40) as

Xow = Xoww + X100 + Xopwh (A3, n) (3.42)
with Xoww = (1 + bov0ow — dov — dow)
X100 = (6pw — S0v00w)
Xoww = (n— 1) [(n+ 1) 000w — Sov — dou)]

A
h (A3, n) = _31
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Hence we have h(A3,n) — 1, for large networks with small fluctuations A3 < n, so
the solution in (3.42) becomes

X“Uw ~ (XO,U‘LU + XQ,mu) + Xl,vw)\3 (343)

Subsequently, only the size-independent elements X ,,, impact the fluctuations of the
pressure term, while (Xg 4 + X24w) corresponds to the constant unperturbed solution
of the system, involving the size dependency of the system quadratically. This is not
surprising, as we scale the numbers of sinks with (s,) = p with the number of nodes.
This result indicates that large networks are less likely to be affected by this type of
fluctuations.

Next, we simulated the nullity transition for different sizes of cubic and diamond lat-
tices and Laves graphs, see Figure 3.6. With network size we refer here to vertex and
edge numbers. The intention here is to display the effect of size changes for each net-
work type as well as type-dependent differences of the nullity saturation level. Hence,
one will ultimately change the overall complexity of ¢ transitions by varying the im-
pact of each individual edge removal, which might explain the differences in transition
steepness and saturation levels as a gauging artifact. Why does the algorithm not re-
produce the full plexus for any arbitrary graph topology though? Generally one finds
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Figure 3.6: Size and topology dependency of nullity transitions in three-dimensional
(periodic) graphs. The respective number of nodes and edges is indicated in the legend
as tuple (n,m): Top: Cubic lattice, Middle: Diamond lattice, Bottom: Laves graph.

the fluctuation induced nullity transition saturating for A3 ~ 10* in cubic and diamond
lattices at o < 1. As indicated in Figure 3.6, we find this to be the case for any network
size, and the particular saturation level appears to be independent of plexus size. No
full recovery of the plexus seems possible, even for A3 > 10%. On the other hand, Laves
graphs display full plexus recovery behavior. Unfortunately, we do not yet know the
cause of this particular pruning phenomenon, despite the presented arguments.
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Nevertheless, these findings may lead to another conclusion all together: Graphs repre-
senting three-dimensional embedded plexi with junctions of degree d > 3 consist of in-
herently redundant edges when considering fluctuation driven pruning processes. This
implies that the initial build of any such network is wasteful from the very start as
many of the vessels deployed will be removed eventually, regardless the flow.
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3.2 On geometric coupling between intertwined net-
works

Though network morphogenesis has been extensively studied for individual networks,
it becomes clear that these models lack the level of complexity necessary to describe
development in an environmental context. We find such a context to be crucial to
consider when dealing with entangled vessel systems which are common in mammalian
organs, as pointed out in chapter 1. In this study, we propose a toy model for two
intertwined networks, such as those in the liver, pancreas or kidneys. This model
framework may even be extended to one network being embedded in a rigid scaffold, as
in the case of bone marrow. These vessel networks are entangled to an extent where no
system can be removed without breaking the other, topologically and functionally, see
Figure 1.1b. In particular we shall consider here a model that describes the pruning
behavior of intertwined vessel networks on the basis of simple geometric relations,
such as local neighborhoods and Euclidean distances. We shall evaluate the impact
of additional negative or positive growth feedback as compared to fluctuation driven
pruning processes, which were described in the previous section.

3.2.1 Power law model of interacting multilayer networks

As indicated in the previous sections, we focus on radial adaptation of rudimentary
vessel networks. For this study we will do so for a multilayer system consisting of
two non-overlapping Kirchhoff networks. The representative subgraphs Gp (Vi, E1),
G4 (Va, E») shall be intertwined lattices, such as found for the network skeletons of triply
periodic minimal surfaces, see Figure 1.6, or other complex net formations [13]. These
graphs do not have any vertices or edges in common, V; NVo =@ and E1 N E>; = 3,
but are coupled by locally defined interactions between them. This local interaction
is defined pair-wise between two vessels of different graphs, positioned in a common
neighborhood. Subsequently, for this problem, we shall define a characteristic metabolic
cost function I' in accordance with monolayer systems, taking into account the local
neighborhood of vessels in either system. We define each neighborhood as the set of
nearest adjacent vessels of one network, for any given vessel of the other structure, as
indicated in Figure 3.7. Focusing once again on symmetric lattices as plexi, we find this
definition easily allowing for trivial distance criteria between two adjacent links e; and
ey (shortest Euclidean distance between their representing lines). Hence for each type
of intertwined networks we have a characteristic length scale set by the lattice constant,
L, and a characteristic number of adjacent vessels. Furthermore, approximating vessels
yet again to be cylindrical with radius re, we define the vessel surface distance as

Aree, = L — (Te, + Tey) (3.44)

where L as the lattice constant equals the distance in case of simultaneously vanishing
radii. In this toy model we still consider the two respective networks to underlay basic
wall shear stress based pruning, as discussed in chapter 2. We use the cost ansatz
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Figure 3.7: Modeling biological intertwined structures: (a) Cubic unit cell and
indication of spatial constraint for tube surfaces. (b) Complementary cubic lattices
as a model for a space filling intertwined networks.

R}

in (2.110) in combination with (2.95) and K, = WS,}E and v = 0.5, as
I'=TI'2+ Z I'; (3.45)
ie{1,2}
2
with T'; = o i zﬂ: Lei (I;; + az,gK;iﬁ) (346)

where ag; > 0 and ay; > 0 are proportionality coefficients for either network. From here
on we use the indices i € {1,2} for the two networks. Each network would indepen-
dently become dissipation minimized, constrained by its overall volume, as discussed
in chapter 2, if we performed a minimization of the cost (3.45) without considering any
interactions, represented by the term I';5. We shall discuss the interaction term I'y5 in
more detail in the next section, as we have not specified the nature of any distance-
based interaction.

Let’s assume here (without loss of generality, but for the sake of distinct terminology)
to be modeling a liver lobule with its sinusoids and bile canaliculi. To model such a
system of blood vessels entangled with a secondary, secreting vessel network, we require
that the respective tube surfaces must not fuse or get in contact with one another, i.e.
Are,e, > 0. Subsequently, as a first level approximation, we construct the interaction
term I'j5 for the combined system as a power law of the vessel surface distance Are,,

aq c
2= Y FoeArt,, (3.47)

€1€2

{1 if edges e; and e, affiliated

with F,,., = (3.48)

0 else

with positive coefficient a; > 0 and exponent € € R allowing us to switch between
a repulsive or attractive behavior of the interaction, see section 3.2.2. A repulsive
interaction is representing either the competition for space or a mechanism to decrease
mutual contact by increased pruning. An attractive interaction may be presented by
a tissue-facilitated proliferation signal, resulting in a positive feedback to increase the
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number of adjacent vessels. We have therefore arrived at the total cost function for the
system:

aq c
:5 E :F\‘3182AT8162

e1e2
+6012Lel( )+0022Le2( 2 +as Klﬂ) (3.49)

which we may now use to derive a self-organizing dynamical system in the next section.

3.2.2 Adaptation dynamics of intertwined vessel systems

In this section, we discuss the dynamical systems in detail by a applying a gradient de-
scent approach on the basis of the cost function shown in equation (3.49). As discussed
in chapter 2 and section 3.1.2 we do so by calculating the radial dynamics as

Oire; < =V, ('t +T12)
5}?’82 o _v?‘52 (FQ + F]Q) (351)

Now, using the definitions of I';, I';; of the previous section as well as the derivation
results of section 2.2.2 we may readily calculate the dynamics. To improve readability

we rescale the proportionality factors as bp; = 5—ap; and by; = \}%Wiag,@. Considering

2??
all these factors we obtain the equations of motion as

Ape Te 2 a,€ £
atrﬁoc(( L. ) _b”) (bole)ZFmA“lé (3:52)

€2
Ape Te 2 ae
8‘-‘:?"\‘32 oc ((ﬁ) — b2,2) TEQ (bo 2LE2) EZ F\‘3132 ATE]_EQ (3'53)

The interaction terms react to the relative vessel distance Ar and impose a feedback
term connected to the local neighborhood of each vessel which can be either positive
(attractive coupling) or negative (repulsive coupling) depending on the choice of .
Furthermore, we shall scale the impact of this interaction in terms of the wall-shear

stress driven adaptation process in either network, namely (bD“_lf )
Jdlieg

To perform a numerical evaluation of ODE system (3.52),(3.52), we define the unit Sys-
tem as in the previous section 3.1.2: the radii and edge lengths in units of the grid dis-
tance re, = Lr} , the nodal in- and outflow s,, = p;s;, , the conductance Ce, = 7; 1L3C’*

hence pressure Ap., = B Ap? and the networks’ surface distance Are,ep = LA::"EI\.32

We define the time scale via the volume flow rates in the primal network as ¢t = Ligx

1
Given positive proportionality constants y; > 0 in the equations (3.52), (3.53), we de-

e 2
fine the effective temporal response parameters in either network as \, = X (”‘—"371) i
p1 ML

, 2
We define the effective volume penalties as A, = 4b; » ( ”‘:j;i) .
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. . . . . e—3 .\ —
Further, we introduce the effective network coupling coefficients A} = a‘ll‘?ﬁ] (L)
i,

and an effective coupling function g; term as

* Sgn *E
gel — Z FﬂlﬂzA 81621 (354)

* Sgn ®E
982 — Z FEIEQA 61821 (3'55)

using the sign function sgn(e). For simplification, we consider the special case of
L., = 2L for all vessels in either network.

All considered, we arrive at the dimensionless form of the dynamical equations (3.52), (3.53)
for each network:

Oprs, = Ao (APEPrY — Mok + Nigl) (3.56)

e,e

As previously mentioned, we have the coupling term g; change qualitative behavior
of the interaction with variation of the exponent . In this thesis, we shall discuss
the special cases of an attractive coupling £ > 1 and a repulsive coupling € < 0, see
Figure 3.8. Note that for € = 1 we will obtain g corresponding to a positive constant
background stimulus, as proposed in earlier studies [120]. Quite in contrast to this,
we intend to consider the development of a vessel surrounded by dynamically sizable
vessels, with previously mentioned ¢ considerations. Unfortunately, one has the case
0 < € < 1 resulting in a diverging attraction for nearby vessels, whereas it is negligible
for Ar? . —— 1. These numerically unfavorable cases of 0 < € < 1 as well as the trivial

case € i 21 will not be considered hereafter. It should be noted that this model ansatz
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Figure 3.8: Qualitative behavior of the coupling term g; as defined in equa-
tions (3.54),(3.55): The interaction poses a positive growth feedback for g; > 0 and a
negative feedback for g; < 0. Function values of g; are presented here in dependence
of the distance of a single arbitrary vessel pairing. Curves are normalized to facilitate
comparison.

could be used in the same manner to introduce distance-dependent self-interactions I'y;
for vessels of the same network. Yet, a critical difference is the potential of congenial
vessel membranes to merge upon contact. In real biological organisms, this actually
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presents an alternative vascular pruning mechanism, in the endothelium referred to as
reverse intussusception [72]. Furthermore, we will introduce noisy sinks and sources to
our approach, as previously discussed in section 3.1.1. We find this ansatz particularly
fitting to model the liver lobule system, as sinusoids are fenestrated structures, i.e.
the vessel wall is perforated, allowing for rapid fluid exchange with the tissue. On the
other hand, one may argue that the fluid leak in the sinusoidal system is negligible in
comparison to the overall throughput rate, and an additional sink would have to be
placed at the opposing end of the plexus, extracting the majority of the fluid. Here, we
do not consider this factor, as one major sink would merely generate one (or a small
number of) distinct large vessel(s), without any further impact on the topological
complexity of the rest of the networks. Additionally, bile and water is frequently
secreted by hepatocytes (cells forming the bulk of the tissue and the basic metabolic
unit in the liver) into bile canaliculi, representing another noisy flow landscape. We

. 2
incorporate these flow fluctuations with an effective fluctuation strength A = Ef; in
equation (3.56) :

Opry, = N [(0, + X3007,) 2y — Mar?, + Mge,] - (3.57)

We shall discuss the numerical evaluation of this ODE system (3.57) in detail in the next
section for the special cases € = 3 (attractive) and € = —1 (repulsive). Any numerical
evaluation will be performed as indicated in the scheme in chapter 2 by integrating and
monitoring the system (3.57) until a stationary state is reached in both networks.

3.2.3 Repulsive coupling induced nullity breakdown

In this section, we will focus on the ODE system (3.57) for the case of repulsive in-
teractions, i.e. setting the coupling exponent to € = —1. Doing so we simulate two
vessel networks whose surfaces are seemingly repelling each other, prohibiting any di-
rect contact between them. This effectively constrains the network’s radial expansion,
which is why one may interpret this ansatz also as one network being embedded in a
stiff medium with excess pressure arsing from its compression. In order to differenti-
ate the impact of spatially-coupled network morphogenesis from flow-driven effects, we
systematically scan the effective network coupling, A;, and flow-fluctuation parameter,
A3, as defined in the previous section. Of particular interest is the influence of the
negative feedback g. < 0 which the network interaction introduces to the dynamical
system (3.57). As in the previous section 3.1.2, we characterize the network structure
by its redundancy via the relative amount of independent loops, g, see equation (3.35).
Moreover, we compute the corresponding total cross section area, S, and power dis-
sipation, D, for each network according to the definition given in (3.36) and (3.37).
For all simulations shown, we set the temporal response A\} = A3 = 10 and volume
penalty A\l = \2 = 10° (providing reasonable computation times for reaching fix points
and preventing stiffness).
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Figure 3.9: Adaptation Dynamics for a cubic lattice system and pruned network skele-
tons. The edge thickness is representative for the relative tube radius, 7}, and sources

are marked in red. The model parameters, coupling A; and fluctuation A3, which set
the dynamic behavior, are depicted in the individual sub-captions.

The initial edge radii are chosen randomly and are continuously monitored to fulfill
O<r,, +7,<landr, >0 (3.58)

in order to prevent negative radii, or radii combinations corresponding to intersections.
Sources are initialized as distant as possible form each other, placing them in diagonally
opposing corners of the two graphs; any other vertices are initialized as fluctuating
sinks, as described in section 3.1.1. To demonstrate the most basic behavior of this
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model system we have the parameters A}, A} set symmetrically for this study as

(3.59)
(3.60)

)tiE)\l
A;E)\‘g

All data presented here was acquired for cubic lattices, but the model has been further
evaluated for diamond lattices and Laves graphs, see appendix A. The qualitative be-
havior is preserved, regardless of the lattice chosen. That is further true for repeated
initialization of the coupled networks with slight displacement of the sources and ran-
domly initialized edge radii.

In Figure 3.9 we display the dynamics and stationary network structures resulting for
various selected parameters. We display here archetypal scenarios of the model (3.57),
ranging from fluctuation and coupling free adaptation, see 3.9a, toward excessively
coupled networks which are exposed to large fluctuations, see 3.9d. The cases of either
coupling or fluctuation dominated adaptation, are displayed in Figure 3.9b and 3.9c.
As discussed in the previous section, reticulated networks will emerge for fluctuation
dominated networks A3, as illustrated in Figure 3.9b. This is to be expected as this sce-
nario corresponds to the adaptation to two uncoupled cubic lattices, see section 3.1.2).
Coupling dominated regimes, as illustrated in Figure 3.9b, only display spanning tree
configurations. It can be seen that the nullity transition is altered for both parame-
ters Ay, A3 increased, going hand in hand with a shift in transition times and vessel
hierarchies.
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Figure 3.10: Nullity p state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for £ < 0. Displayed are the symmetric scans for coupling A; and fluctuation
A3, indicating coupling induced nullity breakdown for both networks.

We see that the topological transition disturbed by increased coupling strengths A;.
And elevated coupling levels A\; actually decrease the transition time to reach a station-
ary state while it simultaneously seems to eradicate the distinct root-to-leaf vessel hier-
archy found in conventional wall-shear stress driven pruning models, see section 2.2.2
and section 3.1.2. Taken together, all these findings indicate that we have found a
mechanism for retrieving spanning trees even in the presence of large flow fluctua-
tions. In other words, the repulsive coupling and fluctuation driven nullity onset seem
to be competing against one another: On the one hand, we have a wall-shear stress
driven pruning mechanism which is expanding vessels experiencing high stresses and
degenerating poorly perfused ones.
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Figure 3.11: Detailed nullity trajectories from state diagram 3.10 with network 1 on
the right-hand side and network 2 on the left-hand side: (a) Coupling A; induced
nullity breakdown for varying fluctuation A3. (b) Fluctuation A; induced nullity onset
for varying coupling A;.

On the other hand, any repulsive interaction tends to shrink adjacent vessels whose
surfaces get close to each other. Doing so we automatically put a size cap on vessels
near the root-vertices and create high shear stresses in the nearly collapsing vessels
near the other graph’s leaves. Yet, as the dynamical system (3.57) does not have an
inherent handling of collapsing vessels due to this repulsion, i.e. negative radii are
mathematically possible, we include a freezing mechanism as previously suggested in
section 2.2.2. This means potentially negative vessel radii are caught as exceptions,
the respective vessel radii are set to 7e = 1072° and not updated anymore. For the
remainder of our analysis these particular edges count as pruned. In Figure 3.10, we
present the resulting nullity state diagrams for both networks in stationary states for
a systematic scan of the parameters A\; and A3. The colormap displays the nullity
o0 (3.35) in either network, and indicates a complex transition landscape. First, we see
the fluctuation-induced nullity transition to be preserved for weak couplings, roughly
below a threshold of \; < 10*. This directly corresponds to the uncoupled case of
two separate monolayer systems, as mentioned before. Above this threshold, the sys-
tem’s nullity may not only be influenced by the rate of fluctuations, Az, but also by
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the mutual repulsion of the two networks. Due to the non-periodic construction of
the two intertwined lattices we do see boundary effects which become visible for the
different network skeletons in terms of the transition trajectory. One generally finds
the remaining reticulation in the case of high coupling and fluctuation to be present
on the surfaces of the cubic structures, as the local neighborhoods consist of fewer
edges, see 3.9. In Figure 3.11 we display these nullity transitions in detail for each
network. We do so for different parameter layouts in order to extract the explicit
A1 and A3 interdependencies. The general trends displayed suggest that the influence
of the repulsion is less significant by comparison, needing coupling parameters to be
orders of magnitude larger than the fluctuation rates to break down cycles. We also
find the fluctuation-induced nullity onset to be continuous, as it was for the monolayer
system, yet with the clear distinction that the onset becomes shifted and the total
nullity is reduced significantly. Starting as tree-like states at small fluctuations and
having ¢ increase monotonically in a logarithmic manner beyond a critical A3 > A., we
have the p-trajectory eventually saturating for large fluctuation rates Az > 10® toward
a maximal nullity gmax. This leaves the network in a reticulated state, still displaying
a visible vessel hierarchy towards the source. From there, we may recover tree-like
network states for increased repulsion rates, A;. We would like to point out that the
negative feedback caused by the repulsion of the two networks does not cause any
shunting (i.e. collapse and disconnection of large sections of the networks) whatsoever.
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Figure 3.12: Critical and saturation values for nullity transitions for both repulsively
coupled networks, with network 1 on the right-hand and network 2 on the left-hand
side.

To quantify these shifts we acquire the critical A, by identifying the trajectories’ de-
parture from zero in Figure 3.11b. The critical point A, seems to monotonically shift
with the coupling parameter A\;. Following up on this observation, we extrapolate the
onset of saturation in Figure 3.11b by means of sigmoidal fits. The shifts of these indi-
cators are shown in Figure 3.12 for each network, displaying a slight increase of both,
the critical value and the saturation, for increasing A;. As pointed out before, there
seems to be a competition of the adaptation mechanisms, although the scales on which
the interplay of these mechanisms unfold indicate a general dominance of fluctuation
driven mechanisms. Furthermore it seems that the saturation point slight shift does
not compare to the drop of the saturation level, meaning a trend for the overall nullity
to be diminished utterly for rising coupling levels. As we find the individual transitions
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to follow similar trajectories for either parameter scan we intend to derive an empirical
form of it as done before so in section 3.1.2. Using the critical values, ., we rescale the
trajectories of Figure 3.11 between the onset of the nullity transition and its saturation,
as shown in Figure 3.13. Introducing the reduced fluctuation parameter Ai;:‘“ we find
the trajectories to collapse onto a single master curve, following a trivial logarithmic

law as

(3.61)

oA, A3) ~ K (N) lloglo ()‘3;6)‘”) — 1]

with the coupling dependent scaling factor, x(A;), obtained by interpolation of the
data using equation (3.61). We find k to be a decreasing function of the coupling A,
as shown in Figure 3.13b. This demonstrates that the nullity breakdown and shift can
be tuned by the coupling alone for any given fluctuation rate.
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Figure 3.13: Rescaled transition curves from Figure 3.11 with network 1 on the right-
hand side and network 2 on the left-hand side: (a) Single curve collapse near fluc-
tuation induced nullity onset A, and scaled nullity o/x()3). We find the transition to
be approximated by g (A1, A\3) & K (A1) (loglo (A%?‘) — 1) (b) Coupling dependent

scaling factor (A1), as derived from linear interpolation of rescaled transition curves.
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Let us turn toward the network area cross section, S, and power dissipation, D, for in-
tertwined systems, see Figure 3.14. Note that the system’s dissipation in Figure 3.14a
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Figure 3.14: Dissipation, D, and area cross section diagrams, S, for repulsively coupled
networks, with network 1 on the right-hand side and network 2 on the left-hand side.

is not significantly raised by an increase of the coupling until significant values for
A1 > 10° are reached, indicating once again that systems for smaller A\; may be con-
sidered as uncoupled for the given A, configuration. In Figure 3.14b we show the
network’s overall cross section area S. We observe here that the tube system collapses
for A\; > 10° as opposed to the fluctuation induced increase of the system’s overall cross
section areas, which is in line with the overall rise in dissipation. Here, we once again
see that the typical vessel hierarchy is eradicated and the formerly wall-shear stress
optimized spanning trees or meshes become ineffective in that respect. We would like
to point out that similar results may be obtained when leaving one network as a static
cage, implying that the results found are based on the mere introduction of an repulsive
scaffold for either network.

We have shown in this section that a complex nullity transition may be generated, even
in case of symmetrically coupled and perfused networks. In particular we have found
the nullity onset due to fluctuation driven positive feedback to be retarded and the sat-
uration to be significantly reduced for increased repulsive coupling rates. Nevertheless
we find the fluctuation driven adaptation mechanism to be robust against vast ranges
of pertubations such as negative feedback due to spatial competition. On the other
hand, we interpret the trend of effective saturation levels limy, .., & — 0 to indicate
the theoretical existence of a critical point, i.e. a level of coupling for which no more
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reticulated networks possibly exist. Given the reticulation is fluctuation based. Cur-
rently it proves challenging from a computational point of view as the ODE system is
turning stiff for this regime of A\, which calls for a reformulation of the current unit sys-
tem. Asymmetrically coupled networks are not discussed here, but preliminary studies
suggest that coupled networks with different levels of reticulation can be generated.
Once again, note that this ansatz only intends to capture the qualitative behavior of
a scenario, where vessel surfaces are repelled from each other, a heuristic guess so to
say. We are still pending here between a mechanotransductive approach due to mutual
tissue compression and complex morphogen signaling between the endothelium and the
parenchyma. It is to expect that a more detailed discussion of the mechanical proper-
ties of the elastic compound of capillaries-tissue, could give us insight on the form of
appropriate repulsion term as will a closer look into each organs specific biochemical
milieu.

3.2.4 Attractive coupling induced nullity onset

In this section, we consider intertwined networks with an attractive spatial coupling.
The system is initialized with a positive coupling exponent, ¢ = 3. Remember that this
ansatz is supposed to capture additional positive feedback arising from the entangle-
ment of the networks, without having them touch directly or pass through each other.
We are particularly interested in how the positive feedback, g> > 0, alters the behavior
of the dynamical system (3.57) and how it compares with the fluctuation induced nul-
lity transition. We proceed as before: In order to distinguish the impact of spatially
coupled network morphogenesis from flow-driven effects, we systematically scan the
effective network coupling, A1, and flow-fluctuation parameter, A\s. As in section 3.1.2
we characterize the network structure by its redundancy via the relative amount of
independent loops, g, see equation (3.35), and compute the corresponding total cross
section area S and power dissipation D for each network according to the definitions
given in (3.36) and (3.37). For all simulations shown, we set the temporal response
A = A2 = 107* and volume penalty A} = A2 = 10° (providing reasonable computation
times for reaching fix points). The initial edge radii are chosen randomly and are
continuously monitored to fulfill the criterion (3.58) to prevent radii combinations cor-
responding to intersections. Once again, sources are initialized as distant as possible,
placing them in diagonally opposing corners of the two graphs. Any other vertices are
initialized as fluctuating sinks. To demonstrate the most basic behavior of this model
system we have the parameters A}, A} set symmetrically for this study as

A=)\ (3.62)
A=Ay (3.63)

As in the previous section, all data presented here is for cubic lattices only, for sim-
ulations on diamond and Laves structures, which display the same qualitative behav-
ior, see the appendix A. Note that as in the previous section we find the stationary
states (3.57) to display no significant variance in their quantitative and qualitative
behavior of different edge weight initialization and source displacement.
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Figure 3.15: Adaptation Dynamics for a cubic lattice system and pruned network
skeletons. The edge thickness is representative for the relative tube radius 7} and
sources are marked in red. The model parameters setting the dynamic behavior are
depicted in the sub-captions with coupling A\; and fluctuation As;.

In Figure 3.15 we display the dynamics and stationary points resulting for archetypal
coupling and fluctuation scenarios. Varying the fluctuation and attractive coupling
in (3.57) we find once again a nullity transition, ranging from fluctuation and coupling
free adaptation, see 3.15a, toward excessively coupled networks which are exposed to
large fluctuations, see 3.15d. The cases either coupling or fluctuation dominated adap-
tation, are displayed in Figure 3.15b and 3.15¢c. As discussed in the previous sections,
reticulated networks will emerge for fluctuation dominated networks A3, as illustrated
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in Figure 3.15b. Interestingly, we find a new nullity transition for increased coupling
levels A;. Coupling dominated regimes, as displayed in Figure 3.9b, display nearly full
plexus recovery. The transition times and vessel hierarchies do not significantly vary in
comparisons to the case of repulsive coupling. All these findings indicate that we have
found a new mechanism for generating reticulated networks. Moreover, it seems to
enable full recovery of the initial plexus, which should be impossible for certain graph
topologies in the context of fluctuation driven reticulation.
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Figure 3.16: Nullity o state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for £ > 1. Displayed are the symmetric scans for coupling A; and fluctuation
A3 indicating coupling induced plexus recovery, with network 1 on the right-hand side
and network 2 on the left-hand side.

In Figure 3.16, we show the resulting nullity state diagrams for this symmetric scan
of the couplings and fluctuation rates, indicating a fully reversed transition behavior
compared to the case of repulsive interactions, as discussed the previous section. First,
we observe that a new nullity transition emerges for increased A;, turning from tree
states of the pruned plexus into nearly full recovery of the initial graphs. This behavior
is generally preserved for other network topologies, but is particularly expressed for
cubic lattices. We see here a significant difference for this transition for either network,
which we presume to be a surface effect. The two entangled initial plexi have different
affiliation patterns for edges on the cube surfaces, leading inherently more complex
nullity behavior for the second network. Further we find the coupling transition to
occur on a linear scale rather than the known logarithmic scale from before. This
coupling mechanism represents therefore a rather sharp switch of the network’s entire
complexity. It should be noted here that combined increase in fluctuation and coupling
levels repeatedly fails in terms of the vessel contact criterion. The details of these
nullity transitions are illustrated in Figure 3.17. For increasing coupling strength, A;,
we see the emergence of a new nullity transition for A\; > 4000. Moreover we observe
significant differences in the transition trajectories for either network. While the nullity
trajectory for the first network depicts a step-like transition for either \; variation, we
find it washed out for the second network, depicting step like increments. In either
case we find recovery of virtually the entire initial plexus for \; — 10%.
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Figure 3.17: Detailed nullity trajectories from state diagram 3.16 with network 1 on
the right-hand side and network 2 on the left-hand side: (a) Coupling A; induced
nullity onset for varying fluctuation A;. (b) Fluctuation A3 induced nullity onset and
breakdown in dependence of coupling A;.

Any increase in fluctuations, A3, generates a positive offset of the nullity curve, indicat-
ing a constructive superposition of the mechanisms at hand, see Figure 3.17b. Yet, the
trajectory’s general form seems well preserved, while the saturation level is reduced
for increased A;. Simultaneously, one has the fluctuation induced nullity trajectory
lose its logarithmic growth behavior of increased coupling A;. We also observe a nul-
lity reduction in the fluctuation dominated region for A\; < 4000. Here, the wall-shear
stress driven adaptation towards a noisy flow landscape actually seems to reduce the
overall positive feedback. This would suggest that even in the presence of stimuli of-
fering nearly full recovery, we have fluctuations reducing the effective nullity. Once
again, we determine the transition’s onset and saturation regime, see Figure 3.18. To
do so for the onset, we calculate the trajectories’ root of the onset after subtracting the
trajectories’ offset. The saturation regime is extrapolated via a sigmoidal fit. We see
in Figure 3.18 a slight shift of the onset and saturation points of the coupling induced
transition. Moreover we see the coupling induced transition to preserve its form rather
well for a large variation of A3, occurring on a linear scale.
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Figure 3.18: Critical A\; for onset of nullity transition for A3 variation and extrapolated
saturation of nullity transition, with network 1 on the right-hand side and network 2
on the left-hand side.

As in the previous section, we are able to collapse the onset of the trajectories onto a
single master curve by following a simple linear law

A1 — Ae
Ac

0 (s ha) ~ & () ( ) + 00 () (3.64)

with rescaled axis % and coefficients k, go to be acquired from interpolation, see

Figure 3.19. It should be noted that we had to restrict simulations to Az < 300 as
affiliated edge pairs will violate the contact condition (3.58) beyond this range for
increased coupling levels. Eventually the network’s total cross section area, S, and
power dissipation, D, turn out rather trivial, as displayed in Figure 3.20. We find here
that neither S nor D depict any significant A; dependency. More so, we observe an
increase in either metric for an increase in A3. This would be somewhat, surprising as
an increase in reticulation does not result in a significant rise of the cross section area.
Nevertheless, as indicated in Figure 3.15¢, we find the majority of newly abundant
vessels to be negligibly small in comparison to the vessel of the inherent spanning
tree backbone. It is to assume that these vessels do not contribute significantly to
the transport of fluid as this would be indicated by a massive peak in the dissipation
diagram. We have shown in this section, that positive coupling between locally affiliated
edges of entangled networks display a new kind of nullity transition, while having their
overall cross section areas and power dissipation virtually unaffected. Coupling induced
nullity can account for full plexus recovery, no matter the underlying topology. This
algorithm tends to generate a vessel hierarchy consisting of the original spanning tree
backbone, known from wall shear stress driven pruning processes, in combination with
poorly perfused secondary vessels.
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Figure 3.19: Rescaled transition curves from Figure 3.11 with network 1 on the right-
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Figure 3.20: Dissipation D and cross section diagrams S for attractively coupled net-
works (¢ = 3), with network 1 on the right-hand side and network 2 on the left-hand

side.
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3.3 On generalizing and applying geometric laws to
complex transport networks

As introduced in chapter 1, metabolic cost function models, which operate on lin-
ear networks are particularly useful in predicting the exponents in radial scaling re-
lationships. Most prominent of all: Murrays’s law, is derived from such minimiza-
tion principles but has been done so only for source-free, hierarchical branchings with
non-stochastic flow patterns. In this section we would like to discuss our ansatz to
incorporate fluctuating sinks, as discussed in section 3.1.1, and complex multilayer in-
teractions, see section 3.2.2. In section 3.3.1, we propose a framework that allows for
the direct interpolation of effective model parameters of metabolic cost functions, from
the branching pattern alone. Moreover, we do so for any type of reticulated graph,
not just tree like structures for which the original Murray relation was conceived.
We demonstrate how parameter interpolation may be performed for lumped parame-
ter networks with high accuracy, see section 3.3.2 Eventually we test this framework for
real data sets of intertwined vessel structures, namely the liver lobule, see section 3.3.3.

3.3.1 Generalizing Murray’s law for complex flow networks

In this section, we discuss a generalized version of Murray’s Law, previously introduced
in chapter 1. Remember that in hierarchical networks, one has this particular scaling
relationship as

ri=> i, (3.65)
J

where the ith level of a vessel network is splitting into j offsprings on the (i + 1)th level.
Here, we revisit the derivation of equation (3.65) in order to incorporate the presence
of fluctuating sources as well as to demonstrate the effect of complex metabolic cost
functions.

In the original publication of Murray [92], one considers the Kirchhoff current law (2.75)
at an arbitrary node v with all its incident edges e carrying a Hagen-Poiseuille flow as

4
mTre .
) gnL, e = % (360

ecine(v)

In the original study, only sink-free vertices are considered, yet we will generally assume
in this section that s, # 0. Now, one would derive a relation for Ap. from the minima,
of a metabolic cost function ansatz, see for example (2.95). As these minima are the
stationary points of the corresponding dynamical system, see equations (2.108), we
may utilize these ODEs directly. Rewriting (2.108) by replacing the flow rates with
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their respective pressure gradients we get

K1;2
0,K, = by ( ;2 Ap? — b;,) K, (3.67)
8, K. re\>  [8n\"?
;{e = 0= Ap? (L—) - (?”) by (3.68)

This framework leads directly to equation 3.65 if the vertex is sink-free and flow direc-
tions are known. The flow directions are indicated here as the resulting sign of Ap,,
which is usually derived from the vessel hierarchy of Y-junctions, splitting from large
parent vessels into smaller children components.

Now there remains the case when this is simply not possible, because such a clear vessel
hierarchy is not present, as is the case for most mesh-like capillary beds? Moreover,
these might be systems where it is not experimentally possible to measure flow di-
rection or velocity. We argue that representative vertices in such capillary networks
should not be considered sink-free, as discussed in section 3.1.1. This furthermore im-
plies that there might not be a set direction of flow as re-routing frequently occurs.
We intend thus to present here a generalization of (3.65) for uncorrelated fluctuation
s, and suggest a workaround for unknown flow directionality.

Murray’s law for fluctuating flows

First, let us operate on the premise that the vessel system is adapting according to the
previously discussed ODE system (3.2)

2
e = ey (<Ap:f> (%) —CQ) re

with (Ap?) = ¢, + A\;d¢e, if pp, = pand o, = o, see section 3.1.1. We define the effective
sink-source fluctuation as A3 and the volume penalty A, as done in section 3.1.1. Let us
begin the derivation for the more general case of arbitrary fluctuation patterns, possibly
deviating from those patterns previously introduced. Formulate a non-dimensional
form of (3.2) and derive the stationary states as

v (o (1) ()

Opry B T\ Te A2
w07 (81?) L.~ \ @) (3.70)
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3/2
with the effective volume penalty Ay = (%1) %bg. In order to combine this result

with the current law (2.75) we take the ensemble average over all configurations occur-
ring due to changes in the sink configurations and obtain

4

> g Ar) = () (3.71)

eeinc(v)

= eveg T (Ape) | = (s0) (3.72)

ecine(v)

With eve — :i:]_

with an effective incidence factor ©,, distinguishing between in- and outgoing flows on
the relevant edges, see Figure 3.21.

Figure 3.21: Scheme of different flow combinations at a sink, determining the re-
spective sign of ©,., here shown for a Y-junction. We define an incidence triplet

© = (Og1, Opz, Op3), where the sink is indexed as v = 0 and the edges as e € {1, 2,3},
doing so one can define up to seven distinct incidence triplets for Y branch.

Next, we switch to a dimensionless formulation of (3.72) using the unit system proposed
in section 3.1.2

TTe
S Ougrr (B = (5) (3.73)
ecine(v)
Combining equations (3.70) and (3.73) and rewriting | (Ap?) | = 1/ (Apz)? we get
ve e = (s} :
egine(v) ’ (Ap‘:‘z)
(Apt)? *

Let us now deduct the ratio term -3 %) and sink averages (s}) in equation (3.74).
Note that we derived explicit expressions for the pressure averages in section 3.1.1,
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with (Ap?) = Y2, A, (svsw) and (Ape)® =0, AS, (su) (sw). One may rewrite the

ratio of these pressure terms in the form of the covariance of the sink fluctuations as

(Ap:2> _ vaAier (S’US’UU)
AP~ S A%y () (5) (3.75)
S A% 1(50) s}t (50 — (50)) (50 — (s))]
- S 0 Ay (50) (50 (3.76)
+ S A5 (50— {50)) (50— ()
S o A (50) (5) (3.77)

We see that due to the linear nature of the problem, any pressure ratio is primarily
dependent on the squared mean to variance ratio. Substituting this into (3.74) we
acquire for any vertex,

> art=(s) (379)

ecine(v)

A2

5w A (50— (50)) (s —(5w)))
1+ > o A% (50) (50

setting a, = Oy, (3.79)

Here we have formulated a first generalized, and dimensionless form of Murray’s law
for arbitrary noisy flow patterns of arbitrary mean directionality. At this point we
would like to discuss several strategies to make this approach fit for applications on
real flow networks. First one may simplify the equations (3.78), (3.79) significantly
by considering the following: When all randomly fluctuating sinks are uncorrelated

yet identically distributed, we have (s,) = p and (s,5,) = 0,02 + p?, as discussed in
section 3.1.1. Making this assumption simplifies the term (3.77),
2w Avw (80 — (80)) (8w — (5w))) — 2,20 09 (3.80)

va Agw <31-’> <S’w> (1258

with the fluctuation strength A; as defined before. Furthermore we chose our unit
system such that then we have (s}) = 1 which leads to the final result,

Y arP=1 (3.81)
ginc(v)
: A2
with a. = 0,, = )\3%
It is interesting to note at this point that increased fluctuation ratios Az tend to decrease
the magnitude of the coefficients a. as ‘ff‘* > 0. This naturally transits back to Murray’s
law for vertices with sinks as the noise perturbation become small A3 — 0. In this
particular case we have all edges entering equation (3.81) with the same weighting.
But for any A3 > 0 we find the network’s source-sink distribution and radii distribution
to impact the branching relation due to 2. Now, this ansatz might not seem of much
an advance at first as we have increased the complexity of the original problem by two
additional, abstract coefficients, rendering the original power law fitting method useless
unless all model parameters are known. We find this not to be a bug but a feature
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though, as we have the previously abstract and non-approachable model parameters Az,
A3 encapsulated in a purely geometric relation, allowing for their direct interpolation,
given we know the radial distribution. We will discuss this subject in further detail
in section 3.3.2, and subsequently demonstrate the effectiveness of this approach for
Kirchhoff networks.

Murray’s Law for extended metabolic costs models

As we have shown in the previous section it is possible to incorporate complex flow
landscapes into Murray’s law in the form of non-trivial coefficients a.. In this section
we would like to discuss a generalization of Murray’s Law when considering complex
metabolic cost functions (without fluctuations) as proposed in section 2.2.2 for the case
v = 0.5,

2
I = Z aoLe (}f{; + agK;fi’) +arlo (3.82)
withTo=> Ti+» Ty+.. (3.83)
i if

where I';, I';; are additional arbitrary metabolic costs for monolayer and multilayer
systems. Without loss of generality we may choose those here to be dimensionless
and have a; act as proportionality factor. There are no fluctuations included in this
framework. In order to establish the branching relations we first have to construct
the dynamical system again and look for it’s stationary points in the familiar manner
proposed in section 3.2,

£\ (Y 4nL.
835‘"3 oC ap ((E - % Ao | Te — G.'.]T [vtr].—‘ﬂ]e (384)

0 T‘; : 2 Le
& ;; o ((53) — )\2) —\ (T—) [V,To], (3.85)

8 T L
¢ " cE=0=> f: = T;S\/)\g + )\1 (—E) [V,.:Fo]e (386)
¥ Te
. 3/2 L3 anLt .
with volume penalty Ay = (% a2 and A\ = %2—2—; We use the unit system pro-

posed in the previous section 3.1.2. We refer to A, as coupling parameter as it corre-
sponds for our purposes to the coefficients introduced in section 3.2.2. Subsequently
we may insert equation (3.86) into the Kirchhoff current law (2.75) and get

Z a,ri = sk (3.87)

gine(v)

with a, = O,, \/ Ay + A (L—) [V To],
TE!

This provides us once again with a framework similar to the one derived in (3.81),
preserving the volume penalty as parameter and adding a second interaction coefficient
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to the parameter sets a., which scales any additional metabolic cost introduced to the
Hu-Cai model. Furthermore, equation (3.87) naturally transits back to Murray’s law
for vertices with sinks as the couplings become very small Ay — 0. Now we have to look
out for the nature of I'y, as surging negative gradients may lead to solvability problems
of (3.87). As demonstrated, it is consistently possible to incorporate complex cost
function models and hydrodynamics into geometric scaling relations. In particular,
assuming a Hagen-Poiseuille flow we find the exponents of Murray’s Law untouched
and the relation generalized by adding sink terms and weighting coefficients. Now
let us combine these approaches for multilayer networks as presented and discussed
in section 3.2. Fortunately, combining the results in equations (3.81) and (3.87) is
straightforward, so that we derive for either network the set of relations

D agrit=1 (3.88)

€

Ay — Aire gz,
with a0, — emﬁ 2 1 ew‘ Ge,
]- + )\3 ¢‘e-1:

The effective coupling g; as defined in equations (3.54), (3.55). Here we see that
fluctuations A3 and coupling A\, are seemingly antagonistically influencing the weighting
coefficients a.,. We find the effective coupling term g; to considerably influence the
solvabilty of the problem as it is the primary cause for sign changes in the root term
in dependence of the exponent ¢, see Figure 3.8. Furthermore we know the coupling
term g; to incorporate the relation of each vessel to its local environment which is now
encapsulated in the geometric scaling of the intertwined multilayer system proposed.
In the next section we will test our ansatz in order to extract the parameter triplets
(A1, A2, A3) for a given set of Kirchhoff networks, with the radius distribution and sink
placement being the only information available.

3.3.2 Interpolating model parameters for intertwined networks

In this section we intend to use the generalized version of Murray’s law (3.88) to esti-
mate model parameters such as effective coupling A, volume penalty A2 and fluctuation
Az from given network structures.

Given any intertwined graph system, we shall apply equation (3.88) to all branch-
ing points of degree d > 3. Further, we identify the edge radii distributions in both
networks, relevant length scales, the vertices’ positions and a consistent placement of
sink-sources in the system. As applying the fluctuation model of section 3.1.1, we only
need information on whether a vertex is a sink or a source, not their actual mean values
or variances of the flow. We further rewrite (3.88) for any junction as a root finding
problem:

#—1
A2 — ArTe; e,

oF.
1 + )\3 ¢x_l

=X (Xii: )‘ga XS) (3.89)

*,3
1-— E Ove, e,
€4

Having acquired the radii, nodal positions and source-sink locations, we may evaluate
*
€i

*
o,

the coupling terms g., and effective pressure ratios according to their definitions
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given in (3.54), (3.54) and (3.17), (3.18). Then, we numerically find the roots of
x (A1, A5, Ay) as formulated in (3.89), for a set of positive definite A} > 0, for every
eligible junction in the system.

As we do not necessarily have information on the direction of the currents at the sink
nodes, we do not have any specific information on ©. Therefore we evaluate (3.89)
for all relevant sign permutations at each branching, e.g. as depicted in Figure 3.21.
Successfully acquired parameter triplets of the form

A= (A%, X)) (390

are subsequently compared for their quality of fulfilling the root problem xy — 0. The
triplet A providing the smallest y is forwarded for further analysis, while the rest is
discarded.

Doing so we acquire the distributions of interpolated model parameters from static,
geometric data of the graphs alone. These parameters may then tell us which state
or interaction type a requested network system corresponds to, or whether the applied
model is any good at all. As A consists of effective dimensionless quantities one would
need further information, e.g the fluid’s viscosity or actual flow rates to interpolate the
coefficients from the original metabolic cost functions (3.49).

Testing ideal Kirchhoff networks

Due to the highly non-linear nature of the problem (3.89) one might argue that a con-
sistent derivation of model parameters from static data might prove fatal, as multitude
of solutions and numerical artifacts occur. Therefore we suggest a test on ideal Kirch-
hoff networks for which this approach is designed in the first place. With this test
we intend to demonstrate that consistent parameter estimation is indeed possible for
linear networks and may be performed with high accuracy.

We initialize intertwined system, utilizing the framework discussed in section 3.2. The
parameter triplets (3.90) A are set symmetrically and fixed points of (3.34) are nu-
merically acquired. We do so for repulsive and attractive coupling, as well as varying
fluctuation levels. The sources were positioned in random vertices of the system. Here,
all tests are performed on the intertwined Laves graphs, representing the network
skeletons of the gyroid, resulting in an abundance of Y-junction by default. In Fig-
ure 3.22 and 3.22 we represent such numerically acquired parameter distribution for
archetypal realizations of entangled networks. Generally we use a logarithmic rescaling
of the parameter axis in order to find a symmetric representation of the histogram
data, allowing us to perform a peak identification similar to [3]. Doing so we fit a
normal distribution A/(p, o) to the histogram’s maxima. Subsequently, we the terms
i (logyo Ay) + 0 (logyo A;) = p; £ 0; to denote the characteristics of the distributions of
log,, A; and evaluate the quality of the interpolation. In Figure 3.22 we present the
results for repulsively coupled networks, with coupling exponent ¢ = —1.
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Figure 3.22: Numerically extracting model parameters for repulsively coupled mono-
source Kirchhoff networks, according to (3.89). Sub-captions indicate the model pa-
rameters as A = (Aq, A2, Az).
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Figure 3.23: Under the microscope: Estimating distribution accuracy of main peak
in 3.22a, for initialized parameters A = (10%,10¢,10%). For repulsively coupled systems
we find accurate estimates of the initial model parameters and find the variance for
either network as o < 10—12.
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In Figure 3.24, we display the acquired distributions for attractively coupled networks
with € = 3. For the archetypal sets shown, we vary the strengths of A\; and Az, ranging
from coupling dominated networks toward fluctuation dominated ones. We also ex-
plore the cases in between, for negligible interactions and simultaneously active ones.
We see the applied model parameters indeed correspond to the emerging, sharp max-
ima in the distributions 3.23. We find these maxima to be in good agreement for the
majority of sampled parameter scenarios. Subsequently we are able to identify which
adaptation mechanism seems to be dominant in the system. Yet, one observes also the
emergence of side maxima, and long-tailed side shoulders in the histograms. Usually
one may ignore those due to the significance of the maxima. We further find small
coupling parameters A; to pose a problem in case of fluctuation dominated adaptation
dynamics, as the estimations deviate here considerably from the initialized value and
become broadly distributed. In Figure 3.23, we display the highly resolved maxima
fo the distrubtions shown in Figure 3.22a. These peaks are of marginal width, while
corresponding to the initial parameter triplets that where used to realize the adap-
tation problem. Generally we find the parameter estimations for repulsively coupled
Kirchhoff networks to be as accurate for a wide range of model parameters.

For the archetypal sets shown, we once again vary the strengths of A; and A3, ranging
from coupling dominated networks toward fluctuation dominated ones. We also ex-
plore the cases in between, for negligible interactions and simultaneously active ones.
Once again we are able to identify the initial parameter distributions and find high
levels of accuracy. This may be particularly seen in Figure 3.25, where the maxima
of 3.24a are displayed for higher resolutions. It seems here that the level of accuracy
is worse than the one found for repulsive coupling. Nevertheless it becomes clear that
the interactions in attractively coupled systems can be estimated with good confidence
as well.

One may argue that real complex intertwined systems will have more elaborate source-
sink configurations which might not be described with one effective source in the sys-
tem. We tested such model cases with the clone source-model presented in section 3.1.1
and can provide yet again distinct estimation of the model parameters. So far we
have not found any limitation of this approach for lumped parameter models. In the
next section we shall apply our framework to real entangled vessel system to estimate
effective model parameters of (3.88). Naturally this assumes that these vessel networks
are indeed characterized by a repulsive or attractive interaction. Hopefully, this pa-
rameter estimation ansatz allows a quality test of the applied toy models ,which where
discussed in section 3.2 and displayed a rich variety of network complexity.
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Figure 3.24: Numerically extracting model parameters for attractively coupled mono-
source Kirchhoff networks, according to (3.89). Sub-captions indicate the model pa-
rameters as A = (A1, A2, A3).
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Figure 3.25: Under the microscope: Estimating distribution accuracy of main peak
in 3.24a, for initialized parameters A = (5000, 106, 10%). For attractively coupled sys-
tems we find accurate estimates of the initial model parameters and find the variance
for either network as o < 10—3.
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3.3.3 Identifying geometrical fingerprints in the liver lobule

In this section we intend to deploy the framework developed in the previous sections to
the network skeletons of a real extracted vessel system. For that purpose we identify
the relevant edge characteristics and affiliations of the extracted graphs of the sinusoids
and canaliculi of the liver lobule, which we were highlighting in chapter 1.1.1. The
sample we analyze is called a liver acinus, the tissue segment between the central vein
and portal triad. A representation of the respective network skeletons is given in in
Figure 1.1b, where the apparent cavity marks the position of the central vein. The
data was provided by collaborators at the Zerial Lab, MPI-CBG in the following way:
Mouse livers from adult mice were fixed by trans-cardial perfusion, sectioned into 100
mm serial slices, optically cleared and immunostained, as described in [88]. To visualize
the different tissue components, the tissue sections were stained for nuclei (DAPI),
cell borders (Phalloidin), bile canaliculi network (CD13), and the extracellular matrix
(ECM, fibronectin and laminin) facing the sinusoidal network [90]. High-resolution
images of the liver lobule (central vein, portal vein axis) were acquired by using confocal
microscopy with a 63 x /1.3 objective (0.3 pum voxel size). Finally, the resulting images
were segmented and network skeletons containing mean vessel radii and vertex positions
calculated with the Motion Tracking software as described in [88, 89]. We consider this
vessel system, as mentioned earlier, an intertwined system and will therefore treat it
as a coupled multilayer network as modeled in section 3.2. Assuming this toy model
we deploy the generalized Murray law (3.89) for model parameter estimation. For a
meaningful validation of (3.89) we need to establish vessel affiliations of the entangled
networks as well as the source-sink distribution. For sinusoids we may consider any
vertices along the central vein directly as sources. We consider any other nodes as sinks.
Unfortunately we do not have detailed information about the portal triads’ position so
will we restrict the parameter estimation in this section to sinusoids only. As the vessel
pieces form seemingly irregular grids we redefine affiliations between the two networks.

Figure 3.26: Setting the range of interest for the sinusoidal (SI) and bile canaliculi sys-
tem (BC). Left: Vertices closest to the central vein (CV) are identified as sinks. Right:
Determine geometric center of mass of all sinks (CMS) and discard all components,
vertices, edges outside a set perimeter.
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To do so efficiently we first reduce the complexity of the graph skeletons. In order to
reduce the extracted skeleton’s size and complexity, we only consider vessels inside a
confined zone around the central vein and merge vessels along pathways. The applied
reduction procedure is displayed in Figures 3.26, 3.27. First, the vertices in the sinu-
soidal network which are closest to the central vein are identified. Using these vertices,
a geometric center of mass (CMS) is calculated and subsequently used as the center
of a sphere of radius R, representing the range of interest, see Figure 3.26. Any edge
consisting of two vertices outside the range of interest are discarded, leading to an
effective reduction of graph size. Any further operations, such as coarse-graining, are
conducted on these reduced structures. Next, all branching points in the sinusoidal
network are identified and all paths p = (e, ..., €;) consisting of consecutive edges e;
interconnecting these junctions. We proceed for the canaliculi the same way and check
for each segment of a path p whether there is another segment of another network’s
path p’ inside a perimeter é, see Figure 3.27.

Figure 3.27: Coarse-graining the sinusoidal (SI) and bile canaliculi system (BC).

Left: Deducting the distance of one path of a network to another path of the partner
network by calculating the pair-wise distances of all path-segments and finding its
minimum. Right: Coarse-graining paths into one effective edge, with new edge weight
according to addition theorem ¢f;; =3 L

e

If so, these paths count as affiliated. Then we merge all edges along a path into
a single edge by using the conventional addition theorems for series of resistors, as
Ceff =D 0 é, see Figure 3.27. The resulting analysis of these blood capillaries and
secretion channels relies on the particular range of interest, namely the radius R and
the affiliation perimeter § will affect the estimation of the parameters log,, A;. For
example, see Figure 3.28, when increasing the affiliation parameter § one will naturally
increase the number of edges affiliated with each other, possibly linking vessel structures
of several consecutive neighborhoods.

After all affiliations and source-sink relations are set we compute the coupling terms
g: and Jj,; for all coefficients in equation (3.89) using the multi-source to multi-sink
approach as introduced in 3.1.1. We do so, as stated before, only for Y-junctions
in the sinusoidal network. As there is no information on the nature of the coupling
though, we attempt to screen through a range of potential coupling exponents . The
intention is to identify potential parameter combinations for which the estimations
become sufficiently narrow as was the case for ideal Kirchhoff networks.
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Figure 3.28: Histogram displaying the number of affiliated neighbors (edges) found
for a given radius around a vessel (threshold, all values the inset in pm). Total num-
ber of pairings found overall for given threshold in the inset for set range of interest
R =397 um.

For the results presented here we chose the range of interest as R = 390 um and the
affiliation perimeter 4 = 30 um). Proceeding like this, we end up with a reduced si-
nusoidal network, with n = 318 vertices and m = 452 edges. We find the parameter
triplets A = (A1, A, A3) numerically by solving equation (3.89). Be reminded that we
have introduced the parameters in the previous sections, with A; as effective coupling,
A2 as effective volume penalty and A; as fluctuation rate. In Figure 3.29 and 3.30
we display the estimated distributions for selected ¢ depicting the different coupling
regimes. We choose a logarithmic scale for the parameter axis, as done in the pre-
vious section, in order to simplify identification of the histograms maxima. We find
the estimated parameter distribution for the attractively coupled network scenario to
span several order of magnitude, see 3.29. As the distribution are further relatively
noisy one find it inherently difficult to pin down a specific parameter realization of the
model. We find the same to be true for the repulsive coupling scenario, where a shift
of the estimated coupling A; becomes apparent for smaller e. We subsequently smooth
the distributions for either case and apply Gaussian fits in order to identify the max-
ima positions and width. The smoothed histograms as well as the calculated means
i (log,o A;) and standard deviations o (log,o A;) are indicated in Figure 3.31. We find
the parameter distributions to be considerably broadened single peak distributions,
indicating relatively stable means for log,, A2, log;, A3 with varying means of log,, A1
for exponent ¢ variations. Let us discuss the particular differences for repulsive and
attractive coupling in detail.

From the previous section 3.2.4, we concluded that attractively coupled networks
(e > 1) are able to generate robust, reticulated structures for increased coupling rates
of A\; and are potentially in competition with flow fluctuations A;.
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Figure 3.30: Estimated parameter distributions for repulsive coupling £ < 0 utiliz-
ing (3.89): Displayed are the relative frequencies of estimated model parameters for
various negative coupling exponents.

The estimates for the attractive coupling case in Figure 3.31a indicate that increased
fluctuation rates are present u (log;y A3) > 0 which may account for reticulated struc-
tures in flow driven adaption. Further, we observe monotonically increasing rates of
coupling for increasing €. We find the coupling rates poised just below the actual onset
of the topological transition, e.g. p (log,q A1) + o (log;y A1) = 2.56 + 1.04, for the cou-
pling exponent £ = 3.

Further we find the repulsive coupling case to reproduce the same regime of values for
log,o A2, log,, A3, indicating reticulation by flow fluctuation. Yet the coupling parame-
ter u (log,y A1) displays a monotonically decreasing behavior for decreasing values of ¢,
as depicted in Figure 3.31b. Those low values of log,, A\; suggest repulsive interactions
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to be negligible as the estimates lie far from the regimes with topological implication,
e.g., i (logio A1) £ o (logio A1) = 1.94 4+ 1.03 for the coupling exponent € = —1.
Unfortunately, all estimates p (log;q A:) are accompanied by large standard deviations,
which in the logarithmic context correspond to orders of magnitudes. Further, we find
no indication for a specific coupling scenario ¢, e.g., based on a collapse of the standard
deviation for a specific £, parameter distributions contradicting topological structure,
etc. We suspect these issues to originate from several sources: inherent limitations
of the toy model, segmentation inaccuracies during image analysis, crude approxima-
tion of the sink-source landscape of the system, the chosen algorithm of complexity
reduction, and ambiguity of numeric solutions due to the non-linearity of the problem.
Nevertheless, the fact that we find a confined distribution at all is significant, as it also
gives way to further interpretation: Assuming the that our toy model for intertwined
networks is actually appropriate, we find this to indicate that real network morphogen-
esis is determined by locally valid parameters A, representing the specific behavior of
individual vessels, rather a small set of globally valid A. This particularly corresponds
to the arguments of Pries et al [106], which indicated locally shifting wall-shear stress
levels in a vascular bed.

Ultimately, the very fact that we only make an educated guess about the adaptation
mechanisms might exclude other essential principles of self-organized vessel adaptation
in the liver lobule. Nevertheless, considering these findings and the restrictions of our
model’s approach, we assume the emergence of reticulated sinusoidal structures to be
the product of flow fluctuations rather than of the newly proposed geometrical inter-
actions. Though attractive coupling can not be totally ruled out as a factor. With this
technique, we have shown that it is possible to extract order of magnitude estimates of
otherwise inaccessible parameters of real adapting biological networks, and in doing so
to make qualitative statements about the relative strength or importance of different
feedbacks. We expect this ansatz to come in particularly handy in future work, when
identifying potential cost function parameters for even more elaborate cost models.
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3.4 On the optimization of metabolite uptake in com-
plex flow networks

We have pointed out in chapter 1 that the primary function of capillary systems is
to supply tissues with crucial metabolites such as oxygen, glucose, salts etc. It seems
therefore natural to describe this phenomenon in terms of self-organized adaptation
models which have been used so far in order to account topological complexity. Many
network models have been proposed discussing complex flow landscapes in order to
reach robust network structures during morphogenesis. In the context of capillaries
one may ask though whether networks acquired by such flow landscapes are any good
at transporting solutes to the tissue sections needed. Recent studies argue that this
metabolite uptake itself presents a new level of complexity which considerably changes
the emerging behavior during morpohogenesis [81, 45]|.

As indicated in 2.2.1, we focus on the transport of metabolites in accordance to the
extended Taylor framework, modeling any transport facilitated by a passive hydrody-
namic model inside a channel system. These kind of transport problems may be readily
extended for linear networks enabling us to incorporate them into the metabolic cost
function approach discussed in the previous sections. Furthermore we intend to cus-
tomize our ansatz toward sinusoid-like systems, i.e. fenestrated capillaries which are
meant to facilitate the transport cascade of metabolites into its surrounding tissue
components and subsequent clearance of the products into secondary secretion net-
works. Subsequently we study and evaluate the interplay of wall-shear stress driven
morphogenesis and metabolite uptake for networks of different spatial embedding and
topological ramifications.

3.4.1 Metabolite transport in thin channel systems

As mentioned before we intend to study the complex metabolite uptake behavior in self-
organizing biological flow networks. To do so we treat any representative vessel network
again as Kirchhoff networks perfused by Hagen—Poiseuille flows. In this case we have
the volume flow rate given as f = g—‘?:Ap. This ansatz considers the approximation of
thin cylindrical vessels of radius R and length L being perfused laminar by a fluid of
viscosity 7 and setting the conductivity on each link as C, = £ ‘E. Given that a solute
with concentration cross section average ¢ is diffusing and being advected through this
network we may apply the quasi-one dimensional relation (2.91) to every single channel,
see section 2.2.1. As we intend to evaluate the metabolite transport on the smallest

capillary scale we facilitate the reduced transport ODE as given in equation (2.93).

On single channel solutions

uL " the rescaled z-coordinate z* = z/L and

D
= 2
rescaling the effective surface absorption rate 8 = %

Reintroducing the Peclet number Pe =

, we rewrite (2.93) as

D,,+C = Ped¢+ Pe (3.91)
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Interestingly when applied to a channel system as intended, equation (3.91) mathe-
matically corresponds to the problem described by Heaton et al [54]. Here a dynamic
diffusion problem on a network with absorption is turned into a second order ODE
system of analogue shape by applying a Laplace analysis. Equation (3.91) may readily
be solved such that we get

c(2*) =Xpe"*" + X e (3.92)
: 1 -
with Y5, =3 (Pe + 4/ Pe? + ﬁ) (3.93)

Further one deduces from the channel boundaries ¢ (z = 0) = &, ¢(z = L) = ¢1, that

the coefficients X; are given as

EL — Eoe‘“

Xo= (3:94)
coe™ — ¢y,
= (3.95)

Now we generalize these channel equations for arbitrarily directed edge e, whose end
and starting vertices we label as w (e), a (e). Hence we label all nodal concentrations as
Ce,0 = Ca(e), Ce,L = Cu(e)- Using this notation we may rewrite the concentrations ¢ (2)
of each link e as

Pegz™

G () = % {aw(e) sinh (3’; ) ™5 — (e sinh (w) } (3.96)

with z, = 1/ Pe2 + 3, (3.97)

Each link is further assigned its cross section area Ae = mR?. We use the result in (3.96)
in combination with the one-dimensional version of Fick’s law (2.68), to calculate the
edge solute flux I, = A.j. (2*) as

Pegz™

I (2%) = % {Ew(e) lPeE sinh (m,;z ) — z, cosh (me; ):| et

-t [Pecin (D) o (ZEIN o
A.D

2L

with ¢, = (3.99)
For further purposes we use the notation I, (0) = I4), Ie (L) = L. In general we
apply Dirichlet boundaries or mixed boundaries for any such edge depending on its
position in the network, i.e. whether vertices are peripheral/terminal or internal. If
the vertex is a terminal, representing the inlet of fluid and solute, we will set Io. = Jo.
In case it’s the outlet terminal we will for all further purposes set it as an absorbing
boundary ¢, = 0. As an example, Figure 3.36 displays such a solution of (3.96),(3.98)
for single channel system (equivalent to any linear refinement of the channel into a
chain of channels). Now we may finally calculate the total solute uptake per edge e, as
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Figure 3.32: Single channel concentration and flux profile for the case of absorbing
boundary according to (3.96) with relative uptake parameter 5 = 0.1 and varying
Peclet number Pe.

suggested in [81], as ®, = L [, ¢ (z*) d2* and eventually get

Pee

e = ge {Ea(e) [:Ee coth (%) — % + Pe,
2

Pee
_ Te Te€ "2
+CM(E) [LBE Coth (5) - m - PeE] } (3. 100)

The result in equation (3.100) represents the amount of solute removed per unit time
by the entire absorbing surface of a single edge. To represent the effective uptake of any
vessel we apply logio(®/Jp) (fraction absorbed metabolite in comparison to the inlet
flux of metabolite) of a single channel with absorbing boundary in Figure 3.33. The
effective uptake ® of a single vessel is determined by the landscape of Peclet numbers
Pe and local uptake rates 5. It should be noted at this point that for any 3, ®/.J;
tends to reach a maximum if Pe — 0. Nevertheless the depicted behavior of (3.100)
will naturally change if confronted with complex networks where the concentrations ¢,
have to be computed simultaneously for complex Pe. landscapes and given sets of edge
absorption f.

On detailed absorption rate models

As demonstrated previously we are able to describe the metabolite uptake by consider-
ation of an effective absorption rate 5. So far we haven’t made clear how this parameter
is actually dependent on the environment of the particular channel and to what micro-
scopic absorption scenario it corresponds to. For that purpose we would like to discuss
another one-dimensional toy model for a metabolite absorbing tissue (non-endocrine,
no liquid exchange) as shown in Figure 3.34a. Here we consider the blood vessel (B)
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Figure 3.33: Effective solute uptake ®/.J; of a single channel with absorbing boundary
according to (3.100).

to be evenly surrounded by a relevant section of tissue (e.g. hepatocytes, H), with a
homogenous concentration of the solute of interest across the entire cross section. The
solute is distributed over the length of the vessel such that we only care for its z depen-
dency. The actual uptake process is here split into three main components: diffusion
across the membrane with effective permeability pgy, active transport a by membrane
proteins and tissue clearance p. With clearance we refer to metabolic processing of the
particular chemical species as well as transport, i.e. diffusion or secretion, into different
parts of the organ. All these parameters shall be molecule specific.

Figure 3.34: One-dimensional elimination model for uptake and clearance for solutes in
blood capillaries: Conceptual cross-section with symmetric tissue environment, trans-
port dependent on active transport «, cross-membrane diffusion pgy and tissue clear-
ance.
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Considering these processes, one could formulate the concentration dynamics in the
first order as continuity equations for the tissue cyg and the blood cp as

Ocen (2) = pea [ep (2) — cn (2)] + acp (2) — pen (2) (3.101)
Oiep (2) = DO,,cp (2) — 00,5 (2) — peH e (2) — ey (2)] — acg (2) (3.102)

Here it is assumed that the capillary is being perfused with mean velocity . The
tissue itself is treated as a bath like environment where lateral transport is negligible
in comparison to the solute exchange with the capillary The cross membrane transport
by diffusion is here given in the first order of the concentration difference. While
the solute clearance is only linearly dependent in this representation, one should be
reminded as metabolic processing often is enzyme dependent. On the same note is to
assume that transporter proteins in the membrane have an upper capacity. Here first
approximations are usually Michaelis—Menten like kinetics of the form

@

a———=uaqalec 3.103
S —a(en) (3.10)
H1

—- ——=1qfec 3.104

e p(cm) ( )

Hence active transport and clearance is pending between two limit cases of unsaturated
linear behavior and a constant capacity limit. We would like to focus in this thesis
on the special case of unsaturated kinetics with o — g—; — const and pu — ”‘—; = const.
A more rigorous discussion on the other case of saturated kinetics is given in the
appendix B.2 and outlook in chapter 4.

We solve the PDE system (3.101), (3.102) in accordance to the previous sections for
the stationary case as

ppH +

e (2) =0=cy (z2) =cp (z) —— 3.105

0 () =0 (2) = ca () 22E2 (3.105
P +

Ocp(2) =0=0=Dd,,cp(z) —ud,cp (z) — p———cp (2) (3.106)
PBH + [

So far we have required the continuity equation for the capillary concentration profile
in accordance with the channel solution (3.91) and may rescale it to acquire

0,,cp (2) = Ped,-cp (2) + Beg (2) (3.107)

with the effective surface absorption becoming

_ LQ 1—|—L B
B = (PBf) ) (ng) (1+ﬁf) = PBH (#) (1+a) (3.108)

Here we see from direct comparison with (3.91) that the effective absorption rate may

be expressed as a non trivial factorization of the model parameters, where a = ﬁ,

o= Eﬁ% and ppy = %. Hence the magnitude of B actually depends on the in-
terplay among membrane permeability, transporter activity and clearance as shown
in Figure 3.35a. Given a fixed effective permeability pgpy we have the variation of
transporter activity and clearance generate a variability of 3, meaning that high sur-

face absorption rates may only be achieved for high clearance rates i combined with
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Figure 3.35: One-dimensional elimination model for uptake and clearance for solutes in
blood capillaries: (a) Effective absorption rate 8 in relation to the effective membrane
permeability ppy (b) Effective concentration balance for effective clearance and active
transport.

high active transport. Subsequently one may interpret low 5 — 0 as regimes of low
clearance rates. It is hard to pin down though by how much the concentration balance
between the capillary and tissue is tilted, as can be seen in Figure 3.35b. This regime
seems virtually unaffected by active transport. It should be noted that such transport
models have already been discussed in different form, for extended Krogh models [44]
or even multi-layer systems, e.g. regarding coarse grained hepatic elimination [117,
118], see appendix B.2. Yet, only in part have those been utilized for complex network
and morphogenesis modeling. We shall generalize this ansatz for arbitrary networks
and discuss the framework on the example of noisy flow landscapes. We particularly
focus on the regime of small 3 for the rest of the thesis.

On linear network solutions

In this section we formulate the governing equations and solution algorithm for an
arbitrary Kirchhoff network transporting a metabolite, given that the flow landscape
f is known. To do so one may formulate the boundary conditions analogous to the
Kirchhoff current condition, see (2.80). In particular the balance of solute in- and
outflux .J, on each vertex sets the boundaries as

Jo=> Buele= > Ioe— Y lue (3.109)

ecout(v) ecin(v)

This set of boundary conditions determines the nodal concentration landscape ¢,. We
solve these equations according to a method described by Koplik et al [64]:
By sorting the combined equations (3.109) for the concentration terms, we bring them
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to the form
M-c=J (3.110)
with My = Z G [Bwpee + | Bue|ze coth (%)] Sow

Pee Peg
T.€ 2 Te€ —3°

-5 qei.;h(me wOw = Y T Sinh () Sex(e)w (3.111)
ecout(v) st ? ecin(v) 2

We generally set J, > 0 for any nodes with s,, > 0, thereby matching the sources and
solute influx. For any s, = 0 we will also have .J, = 0. In this thesis we only focus on
a system with absorbing boundaries, setting a subset of nodes ¢,, = 0 which coincide
with the system’s sinks, hence we rewrite (3.110) as

M.é=J (3.112)

where M is the reduced matrix of M, having the columns and rows {w} removed, while
& > 0 and J, > 0. The reduced system may then be solved uniquely by computing
the inverse of M. We would like to note at this point that the concentrations on
the non-outlet nodes ¢, # 0 become non-trivial functions of Pe, and B. Further, one
may easily show that the total absorption of such a network is given by the balance of

terminal fluxes
Zfb => Dt > Ju (3.113)

v,Jy >0 w, <0
@e w J’U)
:>267:1+E?¢ (3.114)
Eau,dqoo Jy Ev,.n,;»u Jy

In general we will evaluate the left hand term for the system in order to characterize it.
For the right-hand side we would need to evaluate Ew, J,<0 Juw for which the respective
Juw are yet to be computed from (3.111). In order to monitor the relative solute uptake
of any complex network we define the order parameter

o Ee q)e
o = log,, [m (3.115)

representing the overall fraction of solute absorbed in the network in comparison to
the total amount of metabolites flushed into the system. Hence we get o — 0 if the
network’s vessel surfaces absorbs the entire injected solute and o — —oc if there is no
absorption whatsoever.

On the uptake in spanning tree and reticulated networks

The framework presented so far enables us to compute the nodal concentrations and
link-wise solute uptakes in the presence of a given flow landscape in a Kirchhoff net-
work. We use this framework to point out the caveats of current flow driven adaptation
models typically employed to generate topologically complex structures. To do so we
shall deploy a compatible toy model for fluctuation driven reticulation in combination
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with solute uptake, similar to [61]:

We utilize another time-scale separation model, i.e. in order to compute a noisy flow
landscape, we construct the ensemble average of a set of individual flow realizations,
which are generated by randomly removing links from the representative graph G (V. F).
With removing, we refer to setting the respective edge conductivity to C* oc 1072,
During each individual realization we calculate a flow landscape according to (2.79).
We iterate the entirety of edges in G, blocking any of them with probability p, cor-
responding to the construction of a pseudo-random graph (rejecting realizations with
disconnected components). After matching all realizations with their respective con-
ductivity tensors C,,, we calculate the effective wall-shear stress as

((5) )= (o)

This construct is then used to evaluate the stress driven network morphogenesis, as
described in earlier sections,

Byre = co (< (AE‘:“)2> - c2) ro (3.117)

Subsequently we compute the corresponding adaptation of the network for varying
blockage probabilities p. Here we operate on hexagonal grids with sources and sinks
strictly separated to the pins of opposing grid sites. We set the homogeneous length
scale L, = L for links. All other nodes are considered source free. We acquire once
again a topological transition in this model framework by varying p in accordance to
the transition described in [61]. Although one may point out that our ansatz is allowing
for multiple edges to be shut simultaneously, instead of realizing single edge blockage
scenarios. In Figure 3.36, we display the spanning tree to mesh transition of such a
network, and may be characterized by the nullity ¢ according to equation (3.35). It

seems that this transition scales as g oc p°34, see Figure 3.37a. Once again we would like
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Figure 3.36: Link breakage probability p > 0 leads toward complex reticulated graph
structures. The colormap indicates the resultant concentration profile of the case of an
absorbing boundary problem, see (3.111) for 8 = 1072

to note that we only deployed this toy model to generate complex pruned networks with
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characteristic noisy flow landscapes for further evaluation. We shall demonstrate now
that any of these network’s solute uptake capabilities are virtually independent of their
p-dependent reticulation status. To do so we impose a solute influx on the source nodes
and consider sinks as absorbing boundaries, as laid out in the previous section. For the
final pruned networks we then recompute a noisy flow landscape due to random link
blockage and evaluate the resultant concentration profiles according to (3.111). The
resultant profiles for # = 10~2 are displayed in the color map of Figure 3.36. We further
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Figure 3.37: Nullity transition p and network filtration rate o for link blockage vari-
ations p: (a) Link-blockage induced nullity transition follows a power law indicated
by interpolation with exponent a & 0.3411 (b) Overall filtration is predominantly
dependent on f rather then the flow landscape in noisy, reticulated networks.

evaluated the concentration and uptake profiles for a range of different /3 for which the
total network filtration o, see equation (3.115), is displayed in Figure 3.37b. Here it
becomes immediately clear that the topological complexity of the network, which makes
it robust against random link failure and enables flow rerouting, does virtually nothing
in improving the overall solute uptake capabilities. The differences of the respective
flow landscapes in tree-like and mesh-like networks are negligible. We rather see a
solemn dependency on the absorption rate 3 for the filtration rate o. In Figure 3.38
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Figure 3.38: Histograms displaying single edge filtration rate ®./ EU, 7,50 Ju-

we display the link-wise filtration for spanning trees and reticulated systems in detail
for a variation of 5. Though one observes a slight change of the uptake patterns it
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is by far less significant than the changes resulting from 3. Now as mentioned in the
previous sections, we consider § here a constant. On the other hand one should be
reminded that 3 contains crucial information on the embedding as it may encapsulate
the vessel membrane permeability, density of active surface transporters, clearance rates
in the tissue etc. So this might suggest that robustness of biological flow networks is
achieved by complex flow landscapes but its actual metabolite interaction is dependent
on another level of complexity encapsulated by the absorption rate 5. But what if
there is a mechanism to generate flow landscapes in order to shift o for a given 37 Is
it possible to reach arbitrary filtration ¢ and topological robustness simultaneously?
Which topological structures, resulting from flow landscapes, reach desired filtration
o levels for any given 3?7 Or does one characteristic emerge independently from the
other?

3.4.2 Optimizing metabolite uptake in shear-stress driven sys-
tems

As was demonstrated in [81], optimizing for homogeneous solute uptake in a flow
network will not spark topological transitions or pruning events whatsoever, as long
as no penalty for keeping vessels open is introduced. In this study’s framework, edge
radii were adapted effectively altering the flow landscape and subsequently the Peclet
number distribution Pe. of the network, thereby shifting the uptake capabilities of
each vessel, e.g. see Figure 3.33. As we have demonstrated in the previous section, one
does not find such adapted Peclet number distributions in the case of noise induced
reticulation models and therefore only a 3 dependency on the uptake capabilities. We
would like to extend these frameworks by combining the conventional wall-shear stress
adaptation model with the solute uptake model discussed so far.

In this study we consider a dissipation-volume minimizing system equivalent to (2.95),
in combination with the metabolic needs of the surrounding tissue. Each vessel is to
be surrounded by tissue to which it is supplying a metabolite, as described in 3.4.
Each element of tissue i demands a basic influx of solute ®,, possibly mismatching
the current uptake ®. provided by the embedded vessels. We define a mismatch cost
S (@, Pg) > 0 and write

2
F:S(<I>,<I)g)—|—2;01%—|—ag}fg (3.118)

This mismatch S (®, ®,) we formulate as a metabolic cost which is to be minimized.
Doing so we create a system for a given absorption rate 3 where vessels are allowed
adjust their individual radii, which will alter the flow landscape and the local Peclet
numbers. The impact of the simultaneously given dissipation-volume constraints, as
in (2.94), is administered via the coupling parameters ap, «;. This approach as-
sumes that individual vessels act as fair players by adapting toward a specific need
and not beyond that. On the other hand it is to assume that tissues are to be
saturated at a certain point with the metabolite of need. Any further supply be-
yond the preferred might present a toxic overdosing, and shall be treated as such
here. Therefore we shall construct S (®,®() in such a way that deviation from the
demand @, is penalized. Generally we intend to construct the mismatch S (®, @)
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such that a certain value of o is preferred (3.115). We therefore expect the stimuli
given by wall shear stress and uptake optimization to compete against each other.
The radii changing optimization of equation (3.118) is performed using a gradient de-
scent approach. For the numerical evaluations presented in the following sections, we
orientate ourselves once again at the scheme presented in section 2.2.2. First we ini-
tialize a graph with a given reduced conductivity matrix K, and boundary conditions
of sources and sinks s, flux boundaries on the source nodes J, > 0 and absorbing
boundaries on the outlets ¢, = 0. In order to reduce the problem’s complexity we focus
here on the special case of constant channel length throughout the system L. = L and
set v = 0.5. We set a optimization threshold > 0 and integrate the dynamical system
derived from (3.118), using explicit numerical solvers, incorporating the following steps

. Compute the pressure and current landscape p,,, f, according to (2.78), (2.81)

. Compute the concentration and uptake landscape ¢,, ®, according to (3.100),(3.111)

1

2

3. Compute 9;ry,, with d;r, oc —V,I’

4. Check if >, [|@;r||* < d , if true: break
5

. Compute increment and next time step 7,1, using for example Runge-Kutta or

LSODA [138]
6. Check for pruning events, if 7,41 < Terie, €dge e is removed from the graph
7. Return to first step

Naturally this allows us only to find local minima of I depending on its initial K, and
boundary conditions. In appendix B.1 we give a detailed account on the derivation of
the necessary Jacobian matrices for ®, ¢ and Pe. In the next section we elaborate on
the mismatch S (®, ®,) for specific embedding and uptake scenarios.

Link-wise supply-demand model

Similar to previous setups in [66, 81, 107] we will focus here on a vessel network
embedded in a tissue environment, where each vessel is surrounded by a service volume
it supplies. Generally speaking these service volumes are ensembles of cells forming
an effective bulk environment, signaling affiliated vessels to adjust absorption properly.
Each such service volume demands a basic influx of solute ®, . possibly mismatching the
current uptake ®, provided by the embedded vessel, see Figure 3.39a. This mismatch
we formulate as a cost

S (q): q)D) = Z (q’e - (bﬂ,E)Q (3119)

[

Hence we write for the system cost (3.118),

2
r=>» l(fbe — D)’ + alf{—e + a«oKé] (3.120)
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ik

Figure 3.39: Link-wise supply demand model: (a) Every edge is assigned a demand
&g it intends to answer by a supply ®. (b) Hexagonal grids and Laves graphs with
multiple sources as inlet nodes for solutes and absorbing boundaries on the opposing
graph side. The colormap indicates the normalized nodal concentrations.

In fact if the service volume demands are identical for the entire network we recreate
the optimization framework studied in [81] extended by wall-shear stress driven prun-
ing. It should be noted once again that in this model framework every link becomes an
essential absorber and without any volume constraints, no pruning would take place
whatsoever. We numerically solve the minimization problem in (3.120) by initializing
a plexus in the form of planar hexagonal grids or laves lattices, see Figure 3.39b. We
impose sources and solute influx on all vertices of one side of the lattice and sinks
and absorbing boundaries on the opposing side. We initialize the system for different
absorption rates 3 and demand ¢, combinations, while scanning systematically for the
impact of the dissipation feedback a; and the volume penalty ag. In particular we here

realize all vessels to correspond to a demand ¢g, such that the network’s demanded
Ze Q"’D‘e
v dy>0 v’

initialize ¢y, homogeneously across the network, we do so for B as well. Following
the adaptation algorithm, as described in the previous section, we find the system’s
stationary states and analyze those for their nullity ¢ and actual filtration rate o.

In Figure 3.40 we present the collected results, as state diagram grids for these param-
eter screens. These diagrams were obtained for the hexagonal lattice plexus, and we
shall discuss the microscopic structures arising in such plexi later on. For the results
on three-dimensional plexi see the appendix B.3.1. Note that the grid’s x-axis is il-
lustrating different cases of absorption rates 8 while the demanded filtration rate o
variation is displayed on the grid’s y-axis. In detail, we present the system’s emerging
nullity g in Figure 3.40a, as defined previously in equation (3.35). In these diagrams we
observe the networks reticulation to vary significantly, when exposed to the competing
constraints of (3.120). For once we see that networks of high filtration demand depict
a nullity transition pending between spanning trees and full plexus recovery. In accor-
dance to previous studies on wall-shear stress driven adaptation we find that systems
dominated by dissipation and volume penalty are developing into spanning trees. On
the other hand we find the transition toward reticulated states shifting in dependence
of the filtration demand o, and absorption rate 3. Relating to the diagram grid 3.40a
as a matrix, we find the upper triangle (top-left) as well as the diagonal (bottom-left to

filtration rate would correspond to og = For the presented simulations, we
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top-right) elements, to display qualitatively similar pruning behavior in that matter.
The lower triangle (bottom-right) in 3.40a, illustrates non-trivial state changes, so far

unknown to us.
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Figure 3.40: Nullity and filtration diagrams for stationary states of the cost prob-
lem (3.120), with boundary parameter variation oy = 22;7131 e {10°,1071,1072},
B € {1071,1071,1072}; systematic volume penalty ap and dissipation a; are scanned
systematically: (a) The nullity phase diagram indicates a topological transition and
re entrant behavior. (b) Filtration diagram indicating varying quality of filtration
adjustment for varying 3.
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Here we observe the emergence of re-entry behavior, where we have spanning trees for
low dissipation coupling «; turning into a full plexus recovery for an increase of a;.
Further increase in a; will result in the breakdown of said reticulation and enter the
regime of wall-shear stress driven dominated adaptation again. We find this behavior
to be limited by the volume penalty, as an increase in o will ultimately result in the
breakdown of the reticulated interim phase. As indicated by the grid layout, this be-
havior only seems to prevail in the case of small filtration demands paired with high
absorption rates. In the second block, see Figure 3.40b, we display the network’s col-
lective filtration rate as defined in equation (3.115). Generally it becomes clear to see
that the ability of a network to achieve its demanded filtration goal is dependent on the
parameter initialization of o and 5. In analogy to 3.40a, walking through the upper
triangle of the diagram grid, we find the filtration filtration to display qualitatively
similar behavior. In particular we find that the initial filtration demand is quite well
matched for the dissipation a; and volume penalty ap regimes which correspond to the
reticulated states of the nullity diagram. We find the shift of this phase to correspond
once again to the variation of oo and . It appears that a decrease in these parameters
results in a shift of the phase borders toward smaller dissipation and volume penalty.
This comes somewhat intuitively, as such a decrease in o, 5 generally corresponds to
reduction of the demand-supply cost term in (3.120). Analyzing the diagonal we find
the filtration goal to be seemingly matched for any kind of network topology, given
the parameter space we explore at this point. The lower triangle displays a significant
mismatch though, displaying in general the resulting filtration to be higher than ini-
tially demanded. Note that these are the data sets corresponding to the emergence
of nullity re-entrant behavior discussed previously. Let us from here on discuss the
resulting network topologies and uptake patterns in detail, we shall do for archetypal
cases along the diagram grid’s diagonal (top-left to bottom-right) elements. We shall
discuss the nature of the newly emerging nullity phase transition and from there try
to reason which of these states represent the behavior of actual vascular beds.

In Figure 3.41 we showcase exemplary network formations and concentration profiles,
alongside detailed trajectories for nullity and filtration taken from the top-left dia-
grams in 3.40. This diagram’s data corresponds to the case of high demand in o9 = 1.0
and paired with low absorption 8 = 0.001. The stationary networks depicted in Fig-
ure 3.41a show that increasing a; will generally result in a nullity transition, displaying
frustrations on the sink side for the reticulated case as well as the formation of dangling
branches not connected to any sinks. This presents an interesting phenomenon, as is
illustrates the ability of such a system to adjust toward the unfavorable initialization of
0o, 5. Naturally, low 3 impair individual vessels from absorbing any significant amount
of solute being advected. In the reticulated case for small a;; we observe in general that
the majority of vessel are dilated while the very peripheral connections to the sinks are
degenerate and near seemingly near to collapse. As we operate on Neumann bound-
aries in order to calculate the volume flow rate of the Kirchhoff network we know that
a constant amount of fluid is to be transported through the network per unit time.
Hence by dilating the bulk of vessels one minimizes the overall Peclet numbers Pe in
the system, which increases overall uptake, as previous mentioned in section 3.4.1 and
illustrated in Figure 3.33a. Creating such a Peclet landscape is further resulting in a
homogeneous concentration landscape, as the this scenario corresponds to a stationary
diffusion problem for the bulk of network vessels.



106 Chapter 3. Results

1.0
1 =2e-05 1 =0. 00364 a1 =0.59166 a1 =22.43995
© /-\JJ"\ ,J'\-/'\ 0.8
©
el VIR N 10N
< ik
o 04
Q0 m
o 0.2
0.0
(a) Network skeletons and relative concentration profile
Qg a1 (ay] 23]
01.5e-07 +0.0001327 e2e-05 0.59166 01.5e-07 +0.0001327 e2e-05 0.59166
4.46e-06 0.001498 +0.00364 22.43995 4.46e-06 0.001498 +0.00364 22.43995
i \
s} \
_2 | "\.-_,-_,_.- | W
0.0 1 1 1 ‘I 1 1 l ‘-C"’ 1 1 1 1 1 1 1
1074 1072 10° 10-610-510-410-2 1074 1072 10° 10-10°10—*10—3
dissipation oy volume penalty ag dissipation oy volume penalty ag
(b) Nullity o (c) Filtration o

Figure 3.41: Formations of the adaptation model (3.120) with oy = 1.0 and 3 = 0.001,
displayed for selected dissipation ; and volume penalties o: (a) Network plots illus-
trating the relative concentration profiles and edge radii, depicted for ap = 4.4 - 1075.
(b) Nullity transitions displaying «; and ag induced reticulation breakdown. (c)
Filtration trajectories depicting switches in correlation to topological transitions.

The low absorption rates 3 barely crate a concentration gradient. In order to still
guarantee high filtration, as many vessels as possible have to stay open, resulting in
a reticulated network state. Limiting the size of peripheral vessels leads to a sudden
increase of the Peclet number Pe and allow for rapid solute clearance in accordance
to the boundary conditions. Naturally, these small vessels experience dramatically
higher wall-shear stress than the rest of the system, but due to small a; this remains
without much of a consequence. Subsequently, increasing «; breaks this pattering, as
it will open up exactly these vessels, hence decreasing Pe at the periphery and incident
vessel’s Pe.
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Figure 3.42: Formations of the adaptation model adaptation model (3.120) with
oo = 0.1 and B = 0.01, displayed for selected dissipation a; and volume penalties aqg:
(a) Network plots illustrating the relative concentration profiles and edge radii, de-
picted for agp = 4.4-1075. (b) Nullity transitions displaying a; and ap induced retic-
ulation breakdown. (c) Filtration trajectories depicting demand match by increase
of a; and mismatch by increasing ajq

This in turn changes the concentration landscape resembling more and more a network
wide gradient, resulting ultimately in the breakdown of high filtration rates. Now as
we still have a volume penalty we observe the break down of weakly perfused vessels,
which are not anymore stabilized by the uptake mechanism. We find this behavior well
reflected in the trajectory diagrams 3.41b and 3.41c. Note that this algorithm is able to
generate non-perfused branches, stabilized against the volume penalty by solute uptake
alone. Hence it seems indeed possible to adjust network solute uptake by adjustment
of the flow pattern with the help of radial adaptation, even though this may result in
seemingly unfavorable formations of peripheral vessels which have to endure extremely
high wall-shear stress in turn
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In Figure 3.42, we display exemplary cases of the same nature, for the central diagram
of the grid 3.40, corresponding to oo = 0.1 and S = 0.01. Here we see once again a
nullity breakdown due to increase of «;, yet the corresponding filtration trajectories
and concentration profiles are considerably different. We display characteristic network
formations for increasing a; in Figure 3.42a. Here one can see, that even for small a; a
system spanning concentration gradient is abundant, and no degeneration of peripheral
vessel takes place, as previously observed. The filtration diagrams 3.42¢ illustrate that
a seeming match of metabolite uptake is generally achieved in good approximation,
yet deteriorates for small dissipation factors a; paired with large volume penalties ay.
Increased volume penalties naturally lead to smaller vessel structures, simultaneously
increasing Pe and therefore hinder solute uptake. On the other hand, increasing the
dissipation factor a; will generally increase vessel size and decrease Pe, therefore in-
crease uptake. Further, we see that dissipation dominated regimes, where spanning
trees emerge as the distinct graph topology, still reasonably well fulfill the initial fil-
tration demand. It seems that these demand goals can be met for such levels of 3
for any network with increase dissipation feedback a;. Note that seeming quantitative
match is a coincidence, as even a turning the network into a spanning tree, with most
vessels being pruned, still leaves the network in this particular uptake regime. From a
filtration point of view, reticulation is not necessary.

In Figure 3.43, we display exemplary cases for the re-entrant behavior in the bottom-
right diagram of the grid 3.40, corresponding to oy = 0.01 and 8 =0.1. These sets
depict a regime in which the tissue is supposedly on low demand, yet confronted with
highly absorbing vessel surfaces. Naturally we should end here with a system that
displays vessels degeneration and near collapse in order to increase Pe, which in turn
diminishes solute uptake. Subsequently we are operating in a system that is experi-
encing high wall-shear stress for the majority of vessels in the network. That is indeed
the case and may be observed for the network plots in Figure 3.43a. How does this
lead to a re-entrant behavior in the nullity diagram though? Focusing on the nullity
trajectories in Figure 3.43b, we observe fully recovered plexi to appear for small volume
penalties aq for nearly all levels of dissipation a;. On the other hand, increasing the
volume penalty will at first lead toward the emergence of an reticulated interim zone of
a certain a; width, which is diminished for further increasing ay. Now we would expect
the system to prune down to the minimal amount of conducting channels with high Pe,
for increased volume penalties as this allows for an effective reduction of solute uptake.
We reason this to be exactly the case for small «;, where the negative feedback is not
countered by any significant positive feedback. As mentioned earlier this results in a
system with high wall-shear stress in the majority of vessels, now what would naturally
happen when we increase a;? The system is somewhat loaded with high shear stress
in all vessels to which an interim dissipation feedback jumps eagerly, stabilizing all of
the sudden a set of previously collapsing vessels, the system encounters a nullity tran-
sition. Further increasing a; pushes the system once again toward the wall-shear stress
dominated regime, where the adaptation stimulus for solute uptake becomes negligible
and we observe the emergence of large conducting channels. Looking at the filtration
diagram in Figure 3.43c, we find this reasoning to be plausible. First, an increase of the
dissipation feedback a; should only increase these channel’s radii and as such counter
any affords of Pe increase. This relaxation naturally pushes the filtration rate up.
Surprisingly an increase in «q is mostly resulting in an increase in the network’s solute
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uptake and continues to do so until an inflection point is reached. We suspect the jump
in filtration o to correspond to the onset of nullity in the system. This comes rather
intuitively as an increase in open, perfused vessels equals an increase in solute uptake
at this level of 3. Below this jump we see o to be virtually independent of a. But as
soon as the positive dissipation feedback kicks in, we see an adjustment rather to an
interplay between a; and ag rather than the demanded filtration level. The inflection
point of this trajectory corresponds to a critical oy at which the reticulation breaks
down once again.
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Figure 3.43: Formations of the adaptation model adaptation model (3.120) with
0o = 0.01 and B = 0.1, displayed for selected dissipation a; and volume penalties ayp:
(a) Network plots illustrating the relative concentration profiles and edge radii, de-
picted for ap = 1.33-107%. (b) Nullity transitions displaying «; re-entrant behavior
and ag induced reticulation breakdown. (c) Filtration trajectories depicting uptake
increase due to increase of a; and ay.
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In this section have shown that combining link-wise solute demand adaptation signifi-
cantly perturbs the conventional wall-shear stress driven adaptation algorithm, result-
ing a nullity transition of varying complexity depending on the demand request and
absorption capabilities of the vessels involved. We found that such systems are capable
of adjusting rather efficiently toward the demanded filtration level unless exposed to
high absorption rates. We expect this framework to become increasingly useful for
future studies involving spatio-temporal variations of oq and S. As all phenomena
found for this study, illustrated for visibility with hexagonal grids, are qualitatively
equivalent to three-dimensional plexi, see appendix B.3.1. In the next section we shall
discuss how a collective feeding mechanism , which couples several vessels to the same
service volume will alter the complex nullity and uptake landscape.

Volume-wise supply-demand model

In this section we alter the previous setup and focus our studies on a system defined by
shared volume elements rather than single vessel service volumes. Here, each service
volume element V' is in contact with a set of vessels supplying individually a fraction
of their uptake ®., see Figure 3.44a. Each volume V demands an influx of solute
®¢, potentially mismatching the summed uptake ), _,, ®, provided by the attached
vessels. We do so in accordance with a similar model by Gavrilchenko et al [45]. Once
again we focus on radial adaptation and link removal alone. In accordance to the
previous section’s setup, we propose a cost for volume-service in the form

S(éaéo) :Z{Q’O,U_Zq’e} (3121)

Vv ecV

Hence we formulate the system’s metabolic cost function,

2
r=>Y" {cbo,y - Zcbe} + Zcxlf{—g + K (3.122)
% e €

ecV

It should be noted that in this particular model framework, not every link is essential
to the absorbing volume, which technically, only needs to be in touch with at least
one supplying vessel. We numerically solve the minimization problem in (3.122) by
initializing a plexus in the form of planar hexagonal grids or laves lattices , see Figure
3.44b. For all planar systems we define the graph’s faces as service volumes. In order
to ensure the same amount of vessels per service volume and vice versa, we impose
periodic boundaries on the system. In the same manner we define each shortest cycle
as a service volume for any non-planar network and initialize it with periodic bound-
aries. With periodic boundaries we refer to the same kind of framework utilized in
molecular dynamics simulations [7]. We define a conceptual box around our spatially
embedded graph, whose nodes close to the box border get connected by additional
edges, where adjacency is determined by finding closets neighbors, regarding the peri-
odic displacements in the box. In any system with periodic boundaries we impose a
single sources with solute influx on a random position and a single sink with absorbing
boundary on one of the topologically most distant site. As before, we initialize the
system for different absorption rates 8 and demand ¢, combinations, while scanning
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1.0

Cmax

Figure 3.44: Volume-demand model setups: (a) Basic cycles are assigned a demand
®,, which is answered by a supply of its cycle edges ®.. (b) Hexagonal grids
and Laves graphs with dipole source-sink configuration acting as well as inlet and
absorbing boundaries. The colormap is indicates the normalized nodal concentrations.
Transparent, marked links are indicating periodic boundaries.

systematically for the impact of the dissipation feedback a; and the volume penalty a.
In particular, we realize all vessels to correspond to a volume demand ¢, such that

the network’s demanded filtration rate would correspond to oy = %. For the
v, Jy =02V

presented simulations, we initialize ¢, homogeneously across the network, we do so
for § as well. Following the adaptation algorithm, as described in the previous section,
we find the system’s stationary states and analyze those for their nullity ¢ and actual
filtration rate o, as defined in the previous sections. Beware that non-zero nullity, for
periodic boundaries, may correspond to the existence of topological generators (cycles
created by walking through the periodic boundaries).

In Figure 3.45 we present the collected results, as state diagram grids for these param-
eter screens. These diagrams were acquired for the hexagonal lattice plexus, and we
shall discuss the microscopic structures arising in such plexi later on. For the results
on three-dimensional plexi, see the appendix B.3.2. Note that the grid’s x-axis is il-
lustrating different cases of absorption rates  while the demanded volume filtration
rate o, variation is displayed on the grid’s y-axis. At first glance we find the systems
to depict the same qualitative behavior as single link demand systems previously. In
detail, we present the systems emerging nullity g in Figure 3.45a. In these diagrams
we observe the networks reticulation to vary significantly, when exposed to the com-
peting constraints of (3.122). In accordance to previous studies we find that systems
dominated by dissipation and volume penalty are developing into spanning trees. Note
that spanning trees correspond here to single conducting channels between the source
and sink nodes. We find the transition toward reticulated states shifting in dependence
of the volume filtration demand o, and absorption rate 3. Once again, we find the
upper triangle (top-left) as well as the diagonal (bottom-left to top-right) elements,
to display qualitatively similar pruning behavior in that matter. The lower triangle
(bottom-right) in 3.45a, illustrates non-trivial state changes, analog to (3.120).
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Figure 3.45: Nullity and filtration diagrams for stationary states of the cost prob-
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systematically: (a) Nullity phase diagram indicating a topological transition and
re entrant behavior. (b) Filtration diagram indicating varying quality of filtration

adjustment for varying f.
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The emergence of re-entry is preserved for variations of «a;, despite the topological
change of the problem as well as its initial uptake problem. As indicated by the grid
layout, this behavior only seems to prevail in the case of small filtration demands paired
with high absorption rates. In the second block, see Figure 3.45b, we display the filtra-
tion diagrams. In analogy to 3.45a, walking through the upper triangle of the diagram
grid, we find the filtration to display qualitatively similar behavior. In particular we
find that the initial filtration demand is quite well matched for the dissipation «; and
volume penalty aq regimes which correspond to the reticulated states of the nullity
diagram. Although the noisy nullity landscapes suggest that slightly reticulated net-
work and spanning trees are capable of matching the supply demand. We find the shift
of this phase to correspond once again to the variation of o and 3. It appears that
a decrease in these parameters results in a shift of the phase borders toward smaller
dissipation and volume penalty for the same reasons as in the previous section. An-
alyzing the diagonal we find the filtration goal to be seemingly matched for any kind
of network topology. As previously discussed, we expect this quantitative match to be
a coincidence. The lower triangle displays a significant mismatch though, displaying
in general the resulting filtration to be higher than initially demanded. Let us from
here on discuss the resulting network topologies and uptake patterns in detail, we shall
do for archetypal cases along the diagram grid’s diagonal (top-left to bottom-right)
elements. We shall discuss the nature of the newly emerging nullity phase transition
and from there try to reason which of these states represent the behavior of actual
vascular beds.

In Figure 3.46 we showcase exemplary network formations and concentration profiles,
alongside detailed trajectories for nullity and filtration taken from the top-left diagrams
in 3.45. This diagram’s data corresponds to the case of high demand in oy = 1.0 and
paired with low absorption S = 0.001. Be reminded that we operate with periodic
boundaries, indicated by dashed edges in 3.46a. Figure 3.46a generally shows that
increasing a; will result in a nullity transition. As before, we observe the formation
of dangling branches not connected to any sinks. We find the same mechanism at
work as discussed for 3.41a: Low /8 impair individual vessels from absorbing any sig-
nificant amount of solute, as a result we observe the majority of vessels dilated, while
the connection to the sinks is degenerated for small a; Hence by dilating the bulk of
vessels one minimizes the overall Peclet numbers Pe in the system, which increases
overall uptake. Creating such a Pe landscape is further resulting in a homogeneous
concentration landscape as low 3 barely crate a concentration gradient. In order to
still guarantee high filtration the service volumes, as many vessels as possible have to
stay open, resulting in the reticulated network state. Limiting the size of peripheral
vessels leads to a sudden increase of Pe and allow for rapid solute clearance in accor-
dance to the boundary conditions. Subsequently, increasing a; breaks this pattering,
as it stabilizes and expands links with high wall-shear stress. This in turn changes the
concentration landscape resembling more and more a network wide gradient, result-
ing ultimately in the breakdown of high filtration rates. We find this behavior well
reflected in the trajectory diagrams 3.46b and 3.46¢c. Note that this algorithm is able
to generate non-perfused branches and even non-perfused loops, stabilized against the
volume penalty by the solute uptake mechanism alone. In Figure 3.47, we display ex-
emplary cases for the central diagram of the grid 3.45, corresponding to og = 0.1 and
B = 0.01. Here we see once again a nullity breakdown due to an increase of ay and a;,



114 Chapter 3. Results

yet the corresponding filtration trajectories and concentration profiles are considerably
different.
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Figure 3.46: Formations of the adaptation model (3.120) with oy = 1.0 and 3 = 0.001,
displayed for selected dissipation a; and volume penalties ap: (a) Network plots
illustrating the relative concentration profiles and edge radii, depicted for ap =9 - 107°.
(b) Nullity transitions displaying «; and ag induced reticulation breakdown. (c)
Filtration trajectories depicting switches in correlation to topological transitions.

We display characteristic network formations for increasing a4 in Figure 3.47a. Here one
can see, that even for small a; a system spanning concentration gradient is abundant.
The filtration diagrams 3.47c¢ illustrate that a match of metabolite uptake is achieved
in good approximation, yet deteriorates for small dissipation factors «; paired with
large volume penalties ag. Increased volume penalties naturally lead to smaller vessel
structures, simultaneously increasing Pe and therefore hinder solute uptake.

In Figure 3.48, we display exemplary cases for the re-entrant behavior in the bottom-
right diagram of the grid 3.45, corresponding to oy = 0.01 and B = 0.1. These sets
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depict a regime in which the tissue is supposedly on low demand, yet confronted with
highly absorbing vessel surfaces.
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Figure 3.47: Formations of the adaptation model (3.120) with go = 0.1 and 8 = 0.01,
displayed for selected dissipation «; and volume penalties ap: (a) Network plots
illustrating the relative concentration profiles and edge radii, depicted for ap = 9-107°.
(b) Nullity transitions displaying «; and ap induced reticulation breakdown. (c)
Filtration trajectories depicting switches in correlation to topological transitions.

Hence we end up with a system that displays vessels degeneration and near collapse
in order to increase Pe, which in turn diminishes solute uptake. Subsequently we are
operating in a system that is experiencing high wall-shear stress for the majority of
vessels in the network. That is indeed the case and may be observed for the network
plots in Figure 3.48a. How does this lead to a re-entrant behavior in the nullity diagram
though? Focusing on the nullity trajectories in Figure 3.48b, we observe fully recovered
plexi to appear for small volume penalties aq for nearly all levels of dissipation ag. Note
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that we had the mechanisms for this behavior already discussed for the formations in
3.43 Looking at the filtration diagram in Figure 3.48¢, we find this reasoning once again
to be plausible.
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Figure 3.48: Formations of the adaptation model (3.120) with oy = 0.01 and 5 = 0.1,
displayed for selected dissipation a; and volume penalties ap: (a) Network plots
illustrating the relative concentration profiles and edge radii, depicted for ap =9 - 107°.
(b) Nullity transitions displaying «; and ag induced reticulation breakdown. (c)
Filtration trajectories depicting switches in correlation to topological transitions.

First, an increase of the dissipation feedback «; should only increase these channel’s
radii and as such counter any affords of Pe increase. This relaxation naturally pushes
the filtration rate up. Surprisingly an increase in aq is mostly resulting in an increase in
the network’s solute uptake, beyond a «; continues to do so until an inflection point is
reached. We suspect the jump in filtration o to correspond to the onset of nullity in the
system. This comes rather intuitively as an increase in open, perfused vessels equals
an increase in solute uptake at this level of 3. But as soon as the positive dissipation
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feedback kicks in, we see an adjustment rather to an interplay between «; and ao
rather than the demanded filtration level. In this section have shown that combining
volume-wise solute demand adaptation significantly perturbs the conventional wall-
shear stress driven adaptation algorithm, but displays the same and hydrodynamical
phases as link-wise demand models. We observe an inherently noisy nullity transition
of varying complexity depending on the filtration request and absorption capabilities
of the vessels involved. We found that such systems are capable of adjusting rather
efficiently toward the demanded filtration level unless exposed to high absorption rates.
As for the previous section, we expect this framework to become increasingly useful for
future studies involving spatio-temporal variations of o and 3. We advise the reader
to have a look a the supplementary material B.3.2, for the results on three-dimensional
plexi adaptation. Though most of the flow pattern formation is analogous to what we
have shown here, we find the nullity re-entry behavior to collapse when the topology
is changed. Beware that the simulation results were obtained for small systems and
finite-size effects can not be ruled out at this point. Therefore consecutive studies are
in order.
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Chapter 4

Discussion and Outlook

We would like to conclude this thesis by pointing out its key insights in comparison
to the current scientific discussion. For that we shall outline the significance of the
results discussed so far in the coming section, followed by an outlook on consecutive
and spin-off projects.

4.1 Summary of Results

As initially stated in chapter 1.3, this thesis intended to address current challenges of
network theoretical characterization, modeling the adaptation of spatially embedded
networks in terms of geometric restrictions & optimal metabolite transport and derive
new scaling laws for such complex constraints. Hence, we discussed current model
frameworks, developed a new multilayer model for entangled systems and compared
the compatibility and effectiveness in generating optimal network structures for con-
ventional and new approaches.

In section 3.1, we showed that fluctuation induced nullity, treated according to the
model framework of Corson and Hu et al [30, 56|, can be formulated as a single param-
eter problem. Further, we verified claims stated in the latter publication on volume
penalty independence and ramifications of the detailed framework. We demonstrated
that the transition indeed follows a logarithmic law. We then demonstrated the influ-
ence of plexus size as well as topological dependencies on the nullity transition.

In section 3.2 we formulated a new coupling model for entangled adapting networks as
a toy model approach for vasculature found in the liver lobule, pancreas, kidney etc.
Here we discussed a model based on local, distance-dependent interactions between
pairs of three-dimensional network skeletons, representing the cavities of triply peri-
odic minimal surfaces. Doing so, we found unprecedented delay and breakdown of the
fluctuation induced nullity transition for repulsive interactions, stabilizing spanning
trees in the face of noisy flow patterns. Moreover, we found a new nullity transition
emerging for attractive coupling, which account for virtually dissipation neutral and
volume neutral reticulation. These new phenomena seem to be mostly independent of
the initial plexus topology.

In section 3.3.1 we discussed parameter estimation from Murray’s Law for ideal Kirch-
hoff networks and intertwined networks. In particular, we discussed how flow fluctua-
tions and complex metabolic costs can be incorporated into Murray’s Law. Then we
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showed that one can derive model parameters of optimization models given experimen-
tal data alone. In the case of ideal Kirchhoff networks, for which this framework was
originally developed, we indeed found high accuracy parameter reconstruction to be
possible. On the other hand, when testing our framework on the skeletons of real vas-
culature, such as bile canaliculi and sinusoids, we observed this parameter estimation
to result in broad, long tailed distributions. Yet, we were able to derive an order of
magnitude estimation for the parameters, suggesting fluctuation driven adaptation to
be the dominant factor in these networks.

In section 3.4 we discussed optimal metabolite uptake for Kirchhoff networks. We
generalized the previous framework of Meigel et al [82] and evaluated the impact of
solute uptake driven adaption in comparison to wall-shear stress driven adaptation.
Here we found the emergence of a nullity transition in case of a dominant metabolite
uptake machinery, which potentially led to the formation of absorption efficient bottle-
neck systems for small absorption rates. In addition re-entrant behavior emerged in
case of high absorption rates, which displayed a complex interaction between shear-
stress generation and subsequent feedback. We tested this approach for different plexus
topologies and graph sizes, yet could not identify significant changes in the behavior
described above.
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4.2 Discussion

Here, we would like to progress with a more critical evaluation of the results presented
as well as on the intended impact of this thesis. In the beginning of this thesis we
found that a surprisingly small community has focused on network morphogenesis in
vascular beds. Fascinating as it was to be a newcomer in this field, reading up on the
theoretical frameworks and hypotheses developed up to this point, see 1.2.1, it became
even more exiting to discover how many questions seemed unanswered, or had not even
been posed, in particular with regard to three-dimensional, mesh-like flow networks.

In the first study in section 3.1, focused on the fluctuation induced nullity transi-
tion, we turned our attention to topology dependence to find out whether the algo-
rithm is sensitive to changes from planar to non-planar systems. As these frameworks
were originally tested in such networks, as toy models for leaf venation systems and
slime molds, we were wary of complications when moving forward to three-dimensional
capillary systems. Yet it turned out that, quite naturally, the algorithm was reli-
ably generating network structures from arbitrary plexi. Further, we showed that
one could do so in terms of a single parameter for arbitrary fluctuation scenarios,
without needing to constrain sinks to specific probabilistic models, see for example
Hu et al [56]. During that time we also became aware of the research conducted by
Ronellenfitsch et al [122], suggesting arbitrary, locally correlated sink fluctuations in
a single parameter model. In a sense their framework was more powerful, as it was
able to explicitly demonstrate correlation dependency of fluctuations to account for
reticulation in optimized flow networks, which we only suspected at this point. The
remarkable topological significance we found was that graphs with degree distribu-
tions d > 3 seem to display an inherent saturation limit in the nullity transition, ren-
dering such plexi intrinsically wasteful in terms of fluctuation generated reticulation.
Our second project in section 3.2 was developed within the context of liver lobule mor-
phogenesis. As such there existed a thriving community in Dresden to gain knowledge
and assistance from. In particular, the collaboration with the Zerial Lab at the MPI-
CBG turned out quite fruitful as they were able provide us with data sets on liver net-
works and advise us in terms of modeling approaches. Subsequently we developed the
power law model for intertwined networks, testing once again different graph topologies
of entangled networks. Though the model turned out to be robust for different graph
types, we found the interesting new nullity behavior to open up a new path in network
morphogenesis modeling. We found in particular the attractive model to display inter-
esting behavior as its coupling induced reticulation coincides with the notion of existent
flow highways in capillary networks, being surrounded by seemingly auxiliary vessels,
see Karschau et al [59]. It was during these studies that we found that seemingly no
one had tried to match the branching patterns of liver networks to Murray’s Law or
similar in the context of these recent morphogenesis models. Or any three-dimensional
non-hierarchical networks for that matter It was here that we started looking more
closely to readable markers in the geometrical and topological footprints of these net-
works. As such we formulated a generalized version of Murray’s Law, see section 3.3.1,
introducing edge weighting coefficients and sink influence. Though we found that this
approach still seems crude when applied to real liver networks we find these results
actually reassuring of the potential of this ansatz. For the first time we propose a di-
rectly applicable and quantifiable method to identify effective model parameters in flow
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networks. The results seem to highlight various aspects though: First, the broad distri-
butions found could be interpreted as a local variation of model parameters across the
network, which implies a new complex system on its own, as current model frameworks
assume globally homogeneous adaptation parameters for all vessels involved. Second,
the quality of data as well as our cost function model have to be improved significantly.
That is to say segmentation is still limited by occurrence of artifacts and geometric in-
consistencies, as well as difficulties of separating capillary surfaces automatically from
peripheral structures to allow for consistent terminal identification. Furthermore we
could were unable to falsify our cost model approach, which might be connected to the
circumstance that our model does not capture which adaptation mechanisms are at
hand in the first place. Therefore alternative interpolation methods might be in order.
While planning this thesis, we came across the works of Meigel et al [82], in particular
by personal communications with the author at the MPI-PKS. As initially intended
for this thesis, we wanted to incorporate metabolite uptake and transport in the inter-
twined models. Then, between first attempts and numerical evaluations to coarse-grain
the model framework further, colleagues of the MPI-CBG and MPI-PKS suggested dif-
ferent uptake strategies, one of which was volume-wise supply. Here, we were also made
aware of the works of Gavrilchenko et al [44], who employed a similar morphogenesis
model for solute uptake. We found that our ansatz to account for nullity transitions
due to radial adaptation of the vessel systems, optimizing solute uptake by regulation
of the flow pattern. Moreover we illustrated that these only partly correspond to real
vascular beds as frustrated optimization attempts were creating bottleneck structures.
Needless to say, such formations are unfavorable to real flow networks as they tend
to create extremely high wall-shear stress peaks, localized to a few peripheral capillar-
ies. Rather we find our results to indicate that an effective metabolite uptake should
be achieved by alternative adaptation processes, e.g. having a flow-driven machinery
generate robust capillary beds by fluctuation or external factors, with subsequent ad-
justment of local filtration and absorption rates. Therefore we think further studies on
absorption rate gradients to be extremely valuable, in particular as uptake gradients
were indicated in liver networks, see Meyer et al [83].

Considering these findings as well as the constructive feedback we received over time
from our collaborators, we are determined to continue our work in order to identify valid
adaptation mechanisms in these kind of embedded complex networks.
As a last, more personal note, let us note a rather recent revelation. From an en-
gineering point of view alone, the difficulties of designing a complex system and keep-
ing track of potential pitfalls are substantial. Just writing the code for theses studies
was ironically creating a complex software environment to understand another, even
more complicated system. Well, every programmer can sing a hymn to that [77]. Yet
developing a complex system for a given purpose is in general manageable, as we all
know considering the current status of modern technologies. Now you find yourself
confronted with the subsequent task: to make the periphery of the object you created
match and interact with other even more complicated systems, which all then are inter-
connected by your primary infant project. Of course, the collective efforts of mankind
have proven to be fruitful regarding this kind of task creating complex machinery,
cultures and ideas. As such we know that unintended complications arise for increas-
ingly more complex concepts as well as its higher potential for failure. Therefore, it is
somewhat awe-inspiring that the evolutionary process has brought about a robust set
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of mechanisms to create such a thing of beauty and functionality as the vasculature
system step by step [87]. Almost miraculously, any organism is realized from a genetic
blueprint, which has been created over millions of years by trial and error, without any
guidance on how to design such a system from scratch [35].

In that light, life actually did not turn out half bad, or at least, our vasculature did
not.
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4.3 Outlook

In this final section we would like to point out ongoing projects and future endeavors
derived from the studies in this thesis. We would like to highlight two projects in
particular with respect to intertwined systems and complex metabolic uptake scenar-
ios: Metabolite transport in the liver lobule and optimization of complex absorption
landscapes.

4.3.1 Metabolite transport in the liver lobule

Insight into the formation of the liver’s microscopic tissue structure has come a long way
since the first detailed physiological re-examinations [40, 41] in the 20th Century. In
particular, complex and elaborated models have been produced recently, modeling the
fluid dynamics inside the elementary tissue building blocks, i.e. the liver lobules [109].
There have been attempts to account for the initial formation of the respective vessel
networks [29, 128, 111, 49], their individual hydrodynamics [69, 70, 110] and metabolic
capabilities of the organ [80]. In particular one may observe a controversy on the mat-
ter of bile transport mechanisms, see [136] and [83]. With the framework developed
in this thesis, we propose another multilayer model for further studies, incorporating
the functional interplay between blood capillaries, hepatocytes and canaliculi. In this
complex morphogenesis model one approximates sinusoids once again as Kirchhoff net-
works which are coupled toward hepatocytes representing the second layer. On the
third layer we find the canaliculi approximated as a non-linear flow network, coupled
with the epithelial cells, the hepatocyes. We plan to utilize an extended version of the
Ostrenko model for this purpose. The peripheral networks, i.e. sinusoids and canaliculi
are coupled to a bath providing the sources and sinks of fluid and metabolites. We shall
elaborate on the details of the suggested framework with an eye particularly on the
generalized Ostrenko model and metabolite transport coupling in between the network
layers.

Expansion of the Ostrenko model

The bile canaliculi are an elaborate mesh of vessels formed by the apical surfaces of
the hepatocytes. It has been hypothesized that the flux of bile is generated by the
active deposition of bile salts and other chemical constituents into these channels. The
cross-membrane concentration gradient triggers an osmotic influx of water from the
epithelium, creating the outflow of concentrated bile. For any further purpose we treat
these channels as one-dimensional channels with mean flow velocities © (z), metabolite
concentration ¢ (z), effective radius R and deposition rate g. As shown in the model
framework of Ostrenko et al [100] one may model the osmotic driven flux in a single
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epithelial duct via the ODE system

5(z) = —‘;’i;azm) (4.1)
0.5 (2) = Q—I; (NakpTe(2) — p(2)) (4.2)
0=29 5 (c(2)5(2) (43)

Here we have the first equation (4.1) as the conventional stokes solution for thin chan-
nels. The second equation (4.2) is describes the increase or decrease of the flow velocity
due to the inlfux of water triggered by the difference in transmural pressure and concen-
tration between the channel and the tissue. Here we refer to x as the permeability of the
apical membrane. This means that the computation of the channel pressure becomes
a nonlinear problem, as the flow velocity is now coupled to the concentration profile,
unlike the passive hydrodynamics discussed in section 2.1.2. The last equation (4.3)
represents the stationary continuity equation for negligible diffusion processes along
the channel, merely taking into account the advection of solute and its deposition rate.
One may rewrite (4.3) in its integrated form

G(:) == [) T g () de = 2(2)(2) — 2(0) 5 (0) (4.4)

This equation system has unique analytic solutions if the concentration profiles ¢ are
known. Otherwise for boundaries only indicating the deposition rates g one may ef-
ficiently construct a numerical solution by employing finite element methods [98]. It
should be noted here that the qualitative behavior of any solution to depend on a single
parameter: The Miinch number M. This parameter scales as the resistances of fluid
flow through the channel versus the cross membrane influx of water as,

(4.5)

In particular one gets M — 0 for relative low channel flow resistance (wet-tip regime)
while M > 1 represents the case of high resistance (dry-tip regime). This regime
change is usually displayed by a shift of the spatial velocity profile, where we have sig-
nificant flow throughout the channel for M — 0 and a suppression of such for M > 1,
see [100]. We propose here a framework generalizing the single channel solutions
of (4.1)- (4.3) for arbitrary complex networks, for the case of analytic concentration
profiles. We do so primarily to derive an efficient algorithm, which is compatible with
the network morphogenesis models discussed in this thesis. Here we focus on solutes
with profiles which are expandable with coefficients f,, k, € R as

c= Z k= w1th Epim = frkn, (4.6)
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The equation system (4.1)- (4.3) may then readily be solved for the channel pressure
and velocity as

p(z) = [0eF* + e F| 1+ 02 () (47)
v(2) = —g;: {TM [qlevrbﬂz - Q26_@] + Q0,¢ (z)} (4.8)
G(z) = —g (E (z) {@ [qle\/LHz — qre fz] + Qo.¢e (z)}
+(0) {@ o=+ Q@.e(ﬂ)}) (49
with Q — %L";T (4.10)
1— 37/

These solutions and their M dependency have been thoroughly discussed in [99]. We
started working on generalizing this framework for arbitrary flow networks in the follow-
ing way: Given a representative graph G (V, E) with vertices v and edges e we consider
concentrations ¢, which are given according to (4.6) along every edge. Now we may
formulate respective concentrations on the start and end nodes as ¢ (2 = 0) = ¢4 and
Ce (2 = L) = ¢u(e) which are to match for incident edges. We proceed in the same man-
ner for the fluid velocity 7 (2 = 0) = Ta(e), Te (2 = L) = () and transmural pressure
Pe (2 = 0) = Pa(e), Pe (2 = L) = pue)- Subsequently we formulate for any such edge the
integrated continuity equation (4.4) for the accumulated deposit G (2 = L) = Gy as

Gw(e) - Ew(e)'ﬁw(e) - Ea(e)ﬁa(e) (411)

Thereby forming a system of m = |E| linear independent equations. We have further
the Kirchhoff law (2.75) giving n — 1 independent equations of the form:

Z ?TREQQ_JQ(E) - Z ?TRE’I_JM(E) = Sy (412)

ecout(v) ecin(v)

As this model is meant to capture the injection of fluid and metabolite into the system
via its vessels surfaces we generally have s, = 0. Further, we define one distinguished
sink-node meant to represent the systems periphery (or a set as such) with the relation

S = ?TZ Rg (ﬁa(e) - ’I_Jw(e)) (413)

derived from summing up all equations in (4.12). And eventually we need the transmu-
ral pressures to match at each node of degree d > 2, generating us d — 1 independent
constituting equations at each such node as

2K _ _
E (RTca(e)=1.! - po:(e):v) - azvo:(e):ﬂu
with Reﬁzﬁa(ei)ﬂ = ...= Rejaz’l_}w(ej)=v (414)

where i € out (v) and j € in (v)
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This particular set of equations needs careful handling as to adjust for the incidence of
the edges at branching points. In total we acquire ), (d — 1) = 2m — n independent
lines for the further usage. All together the equations (4.11), (4.12), (4.14) form a
system of 2m linear independent equation for the unknown coefficients ¢f, ¢5 allow-
ing us to uniquely determine the pressure (4.7), flow velocity (4.8) and accumulated
deposit (4.9) across an arbitrary flow network, e.g. see Figures 4.1. We display such
solutions via color coding of the relative flow velocity for a homogeneous concentration
profile ¢, = ¢5. Here one may see the conservation of the wet to dry tip transition for
due to the change of Miinch numbers M. We would like to note here that that the flux

4 _ g 101 104
™ 109
SO 103 -~

Figure 4.1: Flow velocity profiles for a homogeneous concentration landscape ¢y = 1
and one central sink, where the color map represents |v|U| We display here the iconic

ma:|-

scenarios for different Miinch numbers M: (a) Wet-tip M =1 (b) Dry tip M = 100

in this kind of system is purely generated by the osmotic influx of water via the vessel
membranes, and not by injection and drainage at terminal nodes. We propose this
framework to be applied to endothelial channel systems as well, as fenestrated capil-
lary systems are known to have a volatile exchange of fluid with the surrounding tissue,
mainly due to transmural pressure differences [24]. Note, that it would be crucial for
such systems to implement terminal nodes for fluid injection and drainage.

Complex multi transport probems in biology

We propose for future research to combine this extended Ostrenko model with the
metabolite uptake discussed in section 3.4 in order to obtain a complex model for the
morphogenesis of the sinusoids and canaliculi in the liver lobule, based on the transport
and processing of bile salt or drug components in between them. Hence we consider
this problem in the following multi-layer representation, see Figure 4.2a. As displayed
before, we may easily compute the flux landscape and deposition rates for given con-
centration landscapes in the canaliculi. Taking a reasonable landscape as the baseline
for any adaptation processes, we propose the vessel system to be remodeled to the
point that the Miinch numbers M ensure a wet-tip regime. Doing so will ultimately
alter the flow v and the deposition rates GG, which in turn will change the water in-
flux and solute transport of hepatocytes. In this model framework we assume that
demand will be matched by the supply of the sinusoids, in first instance we will do so
for metabolites only. Hence we may deploy the framework discussed in the previous
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advection-diffusion

osmotic water inlfux

hepatocytes

sinusoids canaliculi

Figure 4.2: Schematic liver transport model, in order to simulate and identify optimal
metabolite uptake and secretion patterns.

chapter, demonstrating the uptake dependence of the Peclet number and local absorp-
tion rate 3. Hence we could install an elaborated demand supply chain where the
canaliculi as consumers will direct the morphogenesis of the sinusoids. It has further
been shown that the concentration level of bile salt components in blood may alter the
overall perfusion of the liver [69]. Further it was discussed that sinusoidal pressure and
perfusion does not considerably alter bile output beyond a minimal perfusion thresh-
old [23]. Therefore it is advised to take into account saturating feedback models where
the actual supply of bile salt components will determine the subsequent deposition
rates and the osmotic influx of water and concentration landscapes as well as the total
outflux of bile. The total level of bile output is then to change the concentration in
blood after passing the digestion tract and altering the subsequent perfusion of the
lobules etc. We expect this scenario to require an increased numerical effort though,
due to its enormous complexity. It should be pointed out here, that this ansatz, likely
based on the metabolic cost function models, shall be customized for any interacting
endothelial and epithelial system, e.g. kidneys or pancreas.

4.3.2 Absorption rate optimization and microscopic elimina-
tion models

As discussed previously we are planning to extend the presented framework for metabo-
lite uptake in a chimera like ansatz: First, having topologically robust networks gen-
erated by wall-shear stress driven pruning mechanism involving noisy flow landscapes.
Second, performing an uptake optimization by variation of edgewise absorption rates
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B. We demonstrated that wall shear stress driven systems are partially capable of ad-
justing toward metabolic needs, and subsequently generating network wide filtration
levels of interest if given a specific B environment. Here we propose to increase the
configuration space of a flow network, which is so far rather geometrical, by the number
of edges in the network as 8 — 3. This procedure seems appealing as it emphasizes the
narrative of a local organization level simultaneously to the radial adaptation processes.
It seems unclear at this point whether the metabolic cost function ansatz discussed in
the previous chapters is suitable for this problem as one would be required to evaluate
the problem

dl' =V, IT . dr + VsI'T - dB (4.15)

Now, we would consider a separation of adaptation schemes where the 3 landscape
adjusts toward the finalized pruned structure for given » and Pe. In case there are
radial dependencies in the absorption rates to consider (which we utterly neglected in
this thesis) one has to incorporate this into the ongoing adaption evaluations as well.
One is to be confronted with a complexity explosion, when considering a microscopic
breakdown of 3 on the basic ideas presented in section 3.4 or the appendix B.2. Here
we could consider permeability changes of the membrane, clearance rates and density
of active transporters leading up to

dB = Dy (B) - dr + Do (B) - da+ D (B) - dp + Dy (B) - dppy + - (4.16)

where D (3) is the Jacobian of 8 and parameters are to be added depending on the
particular vessel system.
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Appendix A

More on coupled intertwined networks

In this appendix we provide additional material on simulations as performed in section
3.2 for alternative plexus types, such as Laves graphs and diamond lattices. Note that
no significant changes occur due to the change of the graph type. The only graph type
specific characteristic seems to be the already known change in saturation levels of the
nullity, which was discussed for monolayer networks in section 3.1.3.

A.1 Coupling of Diamond lattices

In this section we give an overview of the results for diamond lattices for repulsively and
attractively coupled systems. The lattices were generated by repetition of unit cells,
enabling us to define edge adjacencies of closest neighbors. In detail, the dual structure
was generated by first repeating a unit cell (consisting of points (0,0,0), (0.5,0.5,0.5),
(1,0,1), (0,1,1), (1,1,0) , connecting those pairs of relative distance § = 1/3/2) periodi-
cally with the three translation vectors @ = i % (1,0,0), b = j % (0,1,0), ¢ = k% (0,0,1)
with 4, j,k € Z and (i + j + k)mod2 = 0. The second network is acquired by copying
the first structure and shifting it by ¢ = (1,1,1). Subsequently one has one edge in
a network being affiliated with up to six edges of the other network. These six edges
form a loop by themselves, as diamond lattices are of girth six.

A.1.1 Repulsive coupling

We see the same nullity transition behavior as before for cubic lattices in section 3.2.3.
As the coupling, A, is increased we find the nullity reduced. In general we saturate
for purely fluctuation driven systems at the same nullity levels as discussed for mono-
layers. Further we find from the nullity state diagram in Figure A.1 the logarithmic
transition to prevail. The general switch of dissipation and volume optimized systems
are displayed in Figure A.2.
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Figure A.1: Nullity p state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for £ < 0. Displayed are the symmetric scans for coupling A\; and fluctua-
tion Az for a dual diamond plexus, indicating coupling induced nullity breakdown for

both networks.
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Figure A.2: Dissipation, D, and area cross section diagrams, S for a dual diamond
plexus, for repulsively coupled networks, with network 1 on the right-hand side and
network 2 on the left-hand side.
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A.1.2 Attractive coupling

Here we see right away that the new emerging nullity transition for attractively coupled
networks is preserved regardless the topology change. The nullity state diagram in Fig-
ure A.3 indicates logarithmic transition behavior as discussed in section 3.2.4. Unlike
for fluctuation induced nullity we have the coupling enabling full plexus recovery. We
once again find no significant change in the dissipation and volume development apart

from the A3 generated increase.
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Figure A.3: Nullity ¢ state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for £ > 1. Displayed are the symmetric scans for coupling A; and fluctua-
tion A3 for a dual diamond plexus, indicating coupling induced nullity onset and plexus

recovery for both networks.
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Figure A.4: Dissipation, D, and area cross section diagrams, S, for a dual diamond
plexus, for attractively coupled networks, with network 1 on the right-hand side and
network 2 on the left-hand side.

A.2 Coupling of Laves Graphs

In this section we give an overview of the results for laves lattices for repulsively and
attractively coupled systems. The lattices were generated by repetition of unit cells,
enabling us to define edge adjacencies of closest neighbors. In detail, the dual struc-
ture was generated by first repeating a unit cell (consisting of points (0,0,0), (1,1,0),
(1,2,1), (0,3,1), (2,2,2), (3,3,2), (3,0,3) , (2,1,3), connecting those pairs of rela-
tive distance § = v/2) periodically with the three translation vectors a =i x (4,0,0),
b=37%(0,4,0), ¢ =kx(0,0,4) with 4,5,k € Z. The second network is acquired by
mirroring in order to create the opposing chirality of the first structure, i.e. a — —a,
and shifting it by ¢ = (3,2,0). Subsequently one has one edge in a network being affil-
iated with up to eight edges of the other network. As a matter of fact one finds these
eight edges do not form a complete cycle as the girth of the Laves graph is ten.

A.2.1 Repulsive coupling

We see the same nullity transition behavior as before for cubic lattices in section 3.2.3.
As the coupling A, is increased we find the nullity reduced. In general we saturate for
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purely fluctuation driven systems at the same nullity levels as discussed for monolay-
ers. Once again it is only the Laves graph topology enabling full plexus recovery for
fluctuating flow patterns. The general breakdown behavior and saturation onset are
displayed in Figure A.5, we find slight shifting of these thresholds with variation of
the coupling A;. The general switch of dissipation and volume optimized systems are

displayed in Figure A.6.
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Figure A.5: Nullity ¢ state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for £ < 0. Displayed are the symmetric scans for coupling A; and fluctua-
tion Ag, indicating coupling induced nullity breakdown for both networks.
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Figure A.6: Dissipation, D, and area cross section diagrams, .S, for repulsively coupled
Laves graphs, with network 1 on the right-hand side and network 2 on the left-hand
side.

A.2.2 Attractive coupling

Here we see right away that the new emerging nullity transition for attractively cou-
pled networks is preserved regardless the topology change. The nullity state diagram
in Figure A.7 indicates logarithmic transition behavior as discussed in section 3.2.4.
Once again, unlike for fluctuation induced nullity we have the coupling generating full
plexus recovery. The onset and saturation of the A\, induced transition is displayed in
Figure A.7. We once again find no significant change in the dissipation and volume
development apart from the A; generated increase, see Figure A.8 .
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Figure A.7: Nullity ¢ state diagrams for stationary states of the coupled ODE sys-
tems (3.57) for € > 1. Displayed are the symmetric scans for coupling A; and fluctu-
ation A3 for dual Laves graphs, indicating coupling induced nullity onset and plexus
recovery for both networks.
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Figure A.8: Dissipation, DD, and area cross section diagrams, S, for attractivvely cou-
pled Laves graphs, with network 1 on the right-hand side and network 2 on the left-hand

side.
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Appendix B

More on metabolite uptake adaptation

In this appendix we provide additional information on the analytic framework discussed
in section 3.4.2 and following. Here we present the detailed derivation of the dynamical
system for the metabolic cost function ansatz, as well as a detailed discussion on
microscopic uptake toy models compatible which our approach. Further we illustrate
the resulting network structures for three-dimensional plexi, whose behavior is largely
described in section 3.4.2 and 3.4.2.

B.1 Deriving dynamical systems from demand-supply
relationships

In this section we would like to demonstrated the derivation of the dynamical equations
from the gradient as discussed in section 3.4.2 by considering the system,

I = Z —B.0) = ABT - AP (B.1)
with A® =& — P,

where @, denotes the actual metabolite uptake per edge and ®,  the surrounding tis-
sue’s demand. Here I' > 0 represents the cost of a flow network that is supposed to
deliver a metabolite at the exact rates ®, and any deviation from doing so is penal-
ized. That may be a reasonable first assumption as oversupply of glucose, proteins and
salts may results in unfavorable osmotic pressures while an under-supply may end in
starvation of the cells involved. Remember the framework elaborated on in section 3.4
in order to derive V,I' dependent radial adaptation modeling. As discussed in sec-
tion 3.4.1 we have the concentration landscape defined by the injection and drainage

of solute (3.110), (3.111) as
M-c=J (B.2)
. 3:8
with M, = Ze: e [Bﬁepee + | Bye|ze coth (5)] Opw

_&& Pee

2 T.e 2
Z quiIlh % w(e]w_ Z Qe 777 sin - (me

ecout(v) ecin(v)

) ct(e),w (BS)
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displaying M as an asymmetric matrix, with g, = %, We rewrite the edgewise
metabolite uptake (3.100) as

b = ¢e (Ea(e)Gg + Ew(e)G;)

(B.4)
I I e%
Gg = (LBE Coth (E) — m —|— Pee)

(B.5)
1 Te Te€ 2
G, = (3:6 coth (—2 ) () (m2 ) — Pee)

(B.6)
Hence we may calculate the gradient of (B.1)
V. =2D [A®]- AP (B.7)
where D [A®] is the Jacobian whose elements are of the form Dj. [A®] = 0,, P, = 0; .
reading,

Dje [Aq)] - ane (Ea(e)Gg + Ew(e)G;)

(B.8)
+ Ge (ajéa(e)Gg + 6jéw(e)G1)
+ e (Ca(e)05Ge + Cu(e)0;Ge)

Calculating the components one easily acquires the first derivates of g, as

5}(}8 = QTTRECS_;,’E (Bg)

For derivatives of concentration terms we need to employ (3.110) in its reduced form

for the absorbing boundary problem as discussed in section 3.4.1. Doing so we calculate

for all ¢, > 0 and J, > 0 using (3.112)
Oyes =0y (el -c) =€l -, (M)

e (N0, NN T) = —el - (0,01 -

In detail we calculate 8; M, to be

(B.10)
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Every other derivative of concentrations ¢, at the absorbing boundary is correspond-
ingly set with 9jc,, = 0 . Further we find the derivatives of the flow coefficients G? to
result in

3;,-'00 = O Pec {Pee [cosh (%) — e%] + sinh (E)

©~ Sinh (%) | @ 2
_QE‘JiIilieE%) te'e lPTB coth (%) - %] } (B.12)

0, = Sifﬁi;) {25 foonh () 8] = sint ()
_Qiﬁ it | Do (%) + %] } (B.13)

And eventually we calculate the explicit derivatives for the edgewise Peclet numbers
as

QPBJ'

ajPeE:T,j

§je—2 (2—;)2 c; (BT [BCBT}TB)jJ (B.14)

Now, using equations (B.9)-(B.14) we are able to evaluate the Jacobian (B.8), and may
compute

Ore x —2D [AD] - AP (B.15)

for any given flow and concentration landscape of a Kirchhoff network. For now any
vessel adapting according to (B.15), is essentially be informed on the uptake behavior of
all vessel in the network. We may apply our formalism directly for (B.1), corresponding
to the special case ag = 0 and a; = 0 of the model framework presented in section 3.4.2.
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B.2 Microscopic uptake models

In section 3.4.1 we discussed a toy mode for microscopic uptake of solutes for cylindrical
vessels, being surrounded by a bulk of tissue it feeds into. Here we would like to give
an account on alternative uptake scenarios and its respective solutions.

B.2.1 Detailed uptake estimation in single layer systems

As mentioned in 3.4.1 |, we proposed the first order approximation of this transport to
be modeled via the nonlinear PDE

831
Qg+ Cp

MFMQ—P—&—ﬂw@MBw

po + cp (2)
s

(B.17)

Oy (2) = ppu e (2) — ey (2)] + l

(451

Oyep (2) = DO,,cp (2) — 00,cp (2) — ppu [ (2) — cm (2)] — lm

where a Michaelis-Menten like dynamic was assumed for active transport and clearance
of the molecules of interest. We showed in section 3.4 that the linear regime with,
with @ — a;/ag and g — py/po, actually corresponds to the limit case of the Taylor
dispersion model. Now we would like to illuminate the framework (B.16), (B.17) for
abritrary parameter regimes. Doing so, we once again are interested in stationary
solutions, beginning with (B.16) we get:

Oucn () = 0= e (z) = 2 & (%)2 +a = f (s (2)) (B.18)
with o () = o+ [ = (Y e ()

)= s ()14 2 (2 )|

For which only the positive solution is eligible to ensure ¢y > 0, Solving (B.17) for the
stationary case in combination with results of (B.18)

e (2) =0 (B.19)
] cg(2) = ppuf (cp(2))

an
Qo + ¢cB

= D0,,cp (z) — v0,¢cp (2) — ppucp (z) — [

Now this look indeed like an unpleasant non-linear ODE problem. Luckily, one is gen-
erally interested the limit cases for which (B.19) simplifies significantly. We discussed
the linear case for ag > cp and o > cy already in section 3.4.1, as it coincides with
limit case of the Taylor dispersion framework. Now we also could elaborate a bit on
the opposite case for ap < ep and po < cg, Then we get for (B.18), (B.19)

cy = cp +ppu (1 — 1) (B.20)
0= Dd,,cp(2) — 10,cp (2) — ma (B.21)
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Therefore we readily solve (B.22) using the substitution k = D8,cp and acquire

D bz L2
K= — ;1 (l—ef):%cB(z):co— (#TD )

Pe% + (1 — ePE%)
L Pos ] (B.22)

Now this result would require a completely different handling for to be generalized for
arbitrary flow networks. As we do have cg (2 = 0) = ¢p and

e _ePe
cg(z=L)=cy— (#52) [P +£3162 )] from (B.22) one might expect conflicts regard-

ing the nodal concentrations not matching up in reticulated networks for a given flow
landscape and absorption parameters. Therefore computation of the networks nodal
concentration according to (3.110) is not possible. This problem partly corresponds to
the problem discussed in [82] where it is proposed that for any complex flow network,
where the solute transport through any channel is to be directed with the volume flow,
one may consider volume-less branching points enabling perfect mixing of incoming
solute. Hence one would be able to reformulate the solute conservation (3.109) as

J’U - Z Ia(e) [CU] - Z Iw(e) [ca(e)] (B23)

ecout(v) ecin(v)

which would be used to solve for ¢, defining a consistent ¢o for vessels carrying flow
out of the node.

B.2.2 Detailed uptake estimation in liver sinusoids

During the collaboration with the Zerial Lab, MPI-CBG, we were advised that the
microscopic breakdown of the absorption rate is not yet elaborate enough in the case
of liver lobule. Here we are confronted with the fact, that an inter-layer between the
sinusoids and hepatocytes displays its own dynamic behavior: The space of Disse.
In order to address this issue we propose the extension of the organ coarse-grained
hepatic elimination model discussed previously [117, 118], see Figure B.1. Here we

Figure B.1: One dimensional uptake model in accordance to the hepatic uptake
model [117]: Interplay between Blood capillaries (B), space of Disse (D) and hepa-
tocyte bulk (H)
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introduce the continuity equation for the respective metabolite concentrations cp, cy
and c¢p and the corresponding transport processes of cross-membrane diffusion ppy,
PpH, active transport at the basal membrane a and hepatic clearance p, The particular
characteristic involves the space of Disse, which is known to carry a flow that is generally
opposed to the portal vein to central vein directionality of the blood flow. For the sake
of simplicity we do not consider fluid exchange between adjacent tissue layers, i.e.
transmural responses or lymphatic functions. Hence we formulate the dynamics of the
problem in a first order approximation as

¢y = ppu (cp — ey) + acp — pey (B.24)
Oicp = Dp0,.cp — u0,cp — ppu (ep — cu) +pep (cB — ¢p) — acp (B.25)
Oep = Dp0,,cp — 0v0,c — PBD (CB — CD) (B.Zﬁ)

Here we introduce the advection velocities v for perfusion in the capillary and @ in
the space of Disse, with ¥ > u, The diffusion constants Dp, Dp are not necessarily
identical. Assuming here a linear regime, below the respective transport capacity and
clearance limit, one may formulate this problem as a coupled ODE system for its
stationary states as

6;CH =0=cy= pr (BZ?)
PpH + 1
5‘th =0 = 0= Dpazch — ﬂ@ch — lpBD (P: * pDH) * L (Ct‘ * pDH):| Ccp + PeDCRB
K+ PDH
(B.28)
Oicg = 0= 0= Dg0,,cg — v0.cnp — PBD (CB — CD) (B.Zg)

One may readily solve the system (B.28), (B.29) by writing a = (¢p,cg) and b = 9.a

and solving the system
a 0 I a

Here we have the matrices A, B, I with

1 0 PBD —PBD w 0
I = A = o . B == _ B.3].
l[} 1] ’ l_pBD PBD + #7;;1;0;{ )] l[} ’U] ( )

This framework simplifies significantly if we assume that diffusion-advection in space of
Disse is negligible in comparison to the surface based exchange of solutes. In particular
be would obtain a continuity equation for cg as

L—
— | ep + pBDC B.32
P5+PDH] DT EBDEE ( )

ppep (@ + ppm)
pep (1t + por) + p (o + ppu)

0~ — lpBD+a+pDH

Oicg = 0= 0= Dgb,,cg — v0,c —

cB (B.33)

On the other hand, it might be advisible to consider a further increase of the problems
complexity by adding fluid exchange between adjacent zones due to emerging trans-
mural pressure differences. We advise to treat this in first approximation with the
extended Ostrenko model, see section section 4.3.1.
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B.3 Metabolite uptake in three-dimensional plexi

In this section we present additional results of the metabolite uptake algorithm, as
discussed in section 3.4. In section B.3.1 we revisit the link-wise adaptation model for
three-dimensional lattices, the Laves graph in particular. In section B.3.2 we revisit
the volume-wise adaptation model in the same manner. Note that the significant
topological transitions are mostly preserved for changes from planar to non-planar
plexi.

B.3.1 Link-wise demand adaptation

In Figure B.2 we present the collected results as state diagram grids for systematic
parameter screens. Note that the grid’s x-axis is illustrating different cases of absorp-
tion rates B while the demanded filtration rate o is displayed on the grid’s y-axis.
In detail, we present the system’s emerging nullity g in Figure B.2a, as defined pre-
viously in equation (3.35). In these diagrams we observe the networks reticulation
to vary significantly, when exposed to the competing stimuli of (3.120). The results
correspond largely to the ones found and discussed for hexagonal grids in section 3.4.
In Figure B.3 we showcase exemplary network formations and concentration profiles,
alongside detailed trajectories for nullity and filtration taken from the top-left diagrams
in B.2. This diagram’s data corresponds to the case of high demand in oy = 1.0 and
paired with low absorption 3 = 0.001, Once again we find the formation of a ’bottle-
neck’ at the peripheral links, and as we increase the dissipation feedback a; we observe
an opening of these channels, which reorganizes the concentration landscape and the
reticulation pattern. In Figure B.4, we display exemplary cases of the same nature, for
the central diagram of the grid B.2, corresponding to oq = 0.1 and 3 = 0.01, Here we
see once again a nullity breakdown due to increase of a;. As previously discussed in sec-
tion 3.4, we find the filtration diagrams B.4c to display a seeming match of metabolite
uptake, which deteriorates for small dissipation factors «a; paired with large volume
penalties ap. In Figure B.5, we display exemplary cases for the re-entrant behavior
in the bottom-right diagram of the grid B.2, corresponding to o = 0.01 and 8 = 0.1,
These sets depict a regime in which the tissue is supposedly on low demand, yet con-
fronted with highly absorbing vessel surfaces. Naturally we should end here with a
system that displays vessels degeneration and collapse in order to increase Pe, which
in turn diminishes solute uptake. Subsequently we are operating in a system that is
experiencing high wall-shear stress for the majority of remaining vessels in the network.
As laid out previously, we find the interplay of wall-shear stress driven adaptation and
this mechanism for generating high shear stresses to be the cause for re-entry behavior.
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Figure B.3: Formations of the adaptation model (3.120) with oo = 1.0 and 3 = 0.001,
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trating the relative concentration profiles and edge radii, depicted for ag =4.4-1075,
(b) Nullity transitions displaying a; and «ag induced reticulation breakdown.

(c) Filtration trajectories depicting switches in correlation to topological transitions.
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trating the relative concentration profiles and edge radii, depicted for ag = 4.4 - 1076,
(b) Nullity transitions displaying «; and aq induced reticulation breakdown.

(c) Filtration trajectories depicting demand match by increase of a; and mismatch by
increasing ap.
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B.3.2 Volume-wise demand adaptation

In Figure B.6 we present the collected results, as state diagram grids for systematic
parameter screens. Note that the grid’s x-axis is illustrating different cases of absorp-
tion rates S while the demanded volume filtration rate o, variation is displayed on the
grid’s y-axis. In detail, we present the systems emerging nullity ¢ in Figure B.6a. In
comparison to the previous section, we find the final reticulation to significantly change
for the diagonal and lower triangle elements of the diagram grid. The re-entry behavior
as well as most of the reticulation transition is lost for the scanned parameter range.
In the second block, see Figure B.6b, we observe that the adaptability toward desired
filtration rate is once again impaired for the lower triangle. As indicated in the upper
triangle diagrams, we find the filtration matches to occur for reticulated states, which
correspond to lower nullity values than before. As previously discussed, we expect the
quantitative match for the diagonal elements to be a coincidence. In Figure B.7 we
showcase exemplary network formations and concentration profiles, alongside detailed
trajectories for nullity and filtration taken from the top-left diagrams in B.6. This
diagram’s data corresponds to the case of high demand in oy = 1.0 and paired with
low absorption S = 0.001, Be reminded that we operate with periodic boundaries, in-
dicated by dashed edges in B.7a. Figure B.7a generally shows that increasing «; will
result in a nullity transition. As before, we observe the formation of dangling branches
not connected to any sinks. We find the same mechanism at work as discussed for B.3a:
Low A impair individual vessels from absorbing any significant amount of solute, as
a result we observe the majority of vessels dilated, while the connection to the sinks
is degenerated for small a;, Note that this algorithm is able to generate non-perfused
branches and even non-perfused loops, stabilized against the volume penalty by the
solute uptake mechanism alone. In Figure B.8, we display exemplary cases for the
central diagram of the grid B.6, corresponding to o¢.1 and 5 = 0.01, Note that the
system becomes seemingly more fragmented, as nullity breaks down, which we display
in Figure B.8a for increasing a;, In Figure B.9, we show that no re-entrant behavior
is present anymore in bottom-right diagram of the grid B.6, corresponding to o = 0.01
and 5 = 0.1, Be aware that consecutive studies on size dependency are in order to rule
out finite size effects, as we can not dismiss the influence of topological generators for
small systems at this point.
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Figure B.7: Formations of the adaptation model (3.120) with oy = 1.0 and 3 = 0.001,
displayed for selected dissipation @; and volume penalties op: (a) Network plots
illustrating the relative concentration profiles and edge radii, depicted for ap =9 - 1076,
(b) Nullity transitions displaying «; and aq induced reticulation breakdown.

(c) Filtration trajectories depicting switches in correlation to topological transitions.
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