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ABSTRACT
Non-volatile random-access memory (NVRAM) is about to hit the
market and will require significant changes to the architecture of
in-memory database systems. Since such hybrid DRAM-NVRAM
database systems will keep the primary data solely persistent in the
NVRAM, efficient replication mechanisms need to be considered
to prevent data losses and to guarantee high availability in case
of NVDIMM failures. In this paper, we argue for a software-based
replication approach and present compute node-local mechanisms
to provide the building blocks for an efficient NVRAM replication
with a low latency and throughput penalty. Within our evaluation,
we measured up to 10x less overhead for our optimized replication
mechanisms compared to the basic replication mechanism of the
Intel persistent memory development kit (PMDK).
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1 INTRODUCTION
The approaching availability of non-volatile random-access memory
(NVRAM) – i.e., Intel 3D XPoint – will lead to significant changes in
the architecture of in-memory database systems. Since this novel
kind of memory allows persistent writes while featuring DRAM-
like characteristics such as byte respective cache line addressability
and low access latencies, it is likely to replace block-based sec-
ondary storage (e.g., HDDs or SSDs) for storing the primary data of
the DBMS [2, 10, 12, 16]. Moreover, the increased packing density
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Figure 1: Data structure replication on a single compute
node to protect primary data against NVDIMM failures.

of data cells on non-volatile DIMMs (NVDIMM) results in higher
capacities at lower cost compared to traditional volatile DRAM
DIMMs leading to a higher NVRAM-to-DRAM ratio in the system.
Nevertheless, NVRAM faces certain drawbacks such as a lower
write endurance, lower read and especially write latency, and an in-
creased error-proneness compared to DRAM. Since NVRAM-centric
database systems will keep the primary data solely persistent in the
NVRAM, efficient replication mechanisms need to be considered
to prevent data losses and to guarantee high availability in case of
NVDIMM failures. Such NVDIMM failures can range from single
data cell failures to region, chip, or entire NVDIMM failures. The
impact of such a failure becomes even more severe if the NVDIMMs
are operated in an interleaved mode, which is usually the case to
fully utilize all memory channels and reach the peak bandwidth.

Figure 1 schematically shows a hybrid DRAM-NVRAM platform
consisting of two sockets, each running the DRAM DIMMs and
NVDIMMs in interleavedmode. Hence, logical non-volatile memory
regions are physically stored in an interleaved way across the local
NVDIMMs of a single socket. In case of a single chip failure, the
data of all horizontally adjacent chips becomes unavailable too
and in case of a full NVDIMM failure, the entire NVRAM of the
affected socket becomes unavailable. To harden the DBMS against
all of those failures, non-volatile memory regions require a certain
degree or redundancy. The common approach to achieve this is to
replicate the data.

Discussion. Figure 2 presents a general overview of commonly
used replication flows. First of all, data copying can be implemented
on a physical or logical (log shipping) level. The former case is
typically most efficient as it performs pure duplication of mem-
ory regions and can be tuned for a particular hardware platform.
The latter case is usually used for hot standby remote replication
and induces significant delays due to the log synchronization and
replay [23]. Secondly, various backup storages can be deployed
ranging from expensive, though fast DRAM, which sacrifices the
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Figure 2: Replication flows to improve DB reliability and
high availability.

non-volatility property of NVRAM, to SSDs or network-based stor-
ages which either impose prohibitively high delays in synchronous
mode due to the network latency or reduce level of consistency in
asynchronous mode. We target compute node-local synchronous
physical NVRAM-backed approach since other alternatives can
not replace it for failure model discussed in Section 1 without the
drawbacks above. Under "compute node-local" we understand repli-
cation on the local socket and/or across multiple sockets, which also
improves data locality on non-uniform memory access (NUMA)
systems. Thus, NVRAM replication on a single compute node is
vital to avoid data loss and is possibly augmented by synchronous
or asynchronous disk or network replication [6, 7, 26] to further
improve high availability in case of complete machine crash. To
cope with DIMM failures, a commonly employed hardware-based
approach for DRAM is memory mirroring, which is comparable to
a RAID 1 as it partitions the local DRAM of a socket and issues all
write operations to both memory partitions simultaneously. How-
ever, the drawbacks of applying the same technology to NVRAM
are (1) that replication is limited to the local socket, (2) non-primary
data that is also kept in NVRAM is unnecessarily replicated and
occupies memory, and (3) the missing flexibility for the DBMS to
decide on the appropriate replication strategy for a specific mem-
ory region. Hence, in this paper, we argue for a software-based
approach and present compute node-local mechanisms to provide
the foundation for an efficient NVRAM replication with a low la-
tency and throughput penalty. Our considerations are based on the
Intel persistent memory development kit (PMDK)1 [18] that already
provides NVRAM-centric data structures and a basic replication
mechanism. Within our evaluation, we measured up to 10x less
overhead for our optimized replication mechanisms compared to
the basic PMDK replication.

Contributions. Our contributions are summarized as follows:
(1) We show that the built-in basic PMDKNVRAM physical replica-

tion mechanism imposes prohibitively high costs – in terms of
overhead per replica – by providing measurements for the com-
mon DBMS-employed data structures such as column stores
and indexes (key-value stores) with and without transactional
support (Section 3).

(2) We propose a rich set of building blocks for optimizations of
the basic PMDK NVRAM replication mechanism ranging from

1https://github.com/pmem/pmdk
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Figure 3: PMDK-Integrated DBMS Architecture.

instruction-level optimizations to thread-level optimizations
and propose a template-based approach to automatically gener-
ate advanced replication mechanisms (Section 4).

(3) We provide a thorough evaluation of our optimizations and
show that we were able to reduce the replication overhead up
to an order of magnitude. Moreover, we show that the choice of
the most efficient replication mechanism depends on multiple
parameters (Section 5).

Paper Organization. The remainder of the paper is structured
as follows. Section 2 provides the necessary NVRAM and Intel
PMDK background. Subsequently, Section 3 describes the basic
replication mechanism of the PMDK followed by Section 4, which
discusses our advanced replication mechanisms. Section 5 provides
an in-depth evaluation of proposed optimizations. Finally, Section 6
briefly summarizes the related work and Section 7 concludes the
paper.

2 NVRAM & PMDK BACKGROUND
In this section, we cover the necessary NVRAM and PMDK back-
ground. We start with an overview of the PMDK software stack
and its relation to a hybrid DRAM-NVRAM database system. Af-
terwards, we discuss important details like access methods for
NVRAM and the programming model. Finally, we introduce the
NVRAM-centric data structures employed for our experiments.

Hardware Setup. For all experiments in this paper, we use a dual
socket system equipped with Intel Xeon Gold 6154 processors
(Skylake-SP) and 384GiB DDR4 memory. Each processor features
18 physical cores (36 w/ HyperThreading) and was pinned to 3GHz
core frequency. We run a Ubuntu 16.04.4 with kernel version 4.15
(w/o page table isolation) and binaries are compiled with gcc 5.4.
Since NVRAM is not publicly available at this point in time and pro-
totype hardware was not provided to us, we use DRAM emulation2.
Nevertheless, our target metric is the relative replica overhead,
which does not depend on absolute latencies.

2.1 PMDK-Integrated DBMS Architecture
The PMDK [18] is a set of open source libraries that support the
development of NVRAM applications. In particular, it provides
2NVRAM emulation either uses /dev/shm or specific physical memory regions defined
at boot time via the memmap kernel parameter.
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Figure 4: Column store update throughput w/o replication
for different write back options and access methods.

libpmem that is an abstraction layer for platform-specific details
such as NVRAM access methods and required instructions for
NVRAM programming. Libpmem maps physcial NVRAM regions
into the virtual address space of the database system that are called
pools. The next level of abstraction is provided by libpmemobj,
which primarily adds an allocator to a pool that is able to persis-
tently allocate dynamically sized objects with position-independent
virtual addresses. Moreover, libpmemobj supports pool sets that
handle the replication (cf., Section 3) and additionally supports
persistent transactions to atomically update multiple memory lo-
cations within a pool or pool set. As depicted in Figure 3, a DBMS
can leverage the PMDK to implement its internal NVRAM-centric
data structures that are used for the actual query processing.

2.2 Access Methods
To efficiently access physical NVRAM, current Linux kernels imple-
ment the Direct Access (DAX) feature that maps physical NVRAM
regions into the virtual address space of an application while by-
passing kernel page and block-level caches. The following three
specific ways of accessing NVRAM (real or emulated) are currently
available:
DAXDEV. A DAX device is similar to a raw disk access. The pages
of the NVRAM region are contiguously mapped into the address
space of the application without any intervening file system.
DAXFS. The DAXFS access method requires the NVRAM region
to be formatted with a DAX-enabled file system (e.g., ext4) and
individual files are mapped into the virtual address space of the
application without intervening kernel page caches.
SHM. While the previous access methods require a specific phys-
ical memory region to be defined as NVRAM at boot time, the
shared memory (SHM) access method uses arbitrary DRAM mem-
ory pages (via tmpfs file system) and is thus solely meant for
NVRAM emulation.

Evaluation. As shown by Figure 4, the performance numbers of
the access methods do not vary significantly in case of a challeng-
ing random column store update workload. Nevertheless, we will
use the DAXDEV access method for all subsequent experiments,
because it provides the highest and most stable performance.

2.3 Programming Model
Because of the DAX feature, virtual memory pages are directly
mapped to physical NVRAM pages and thus, no system calls are
required to persist modified data to the NVRAM. However, the
presence of CPU caches requires explicit cache line write backs
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Figure 5: Update throughput w/o replication for different
data structures and key distributions using CLFLUSHOPT.

to ensure the persistency of a modification. Those write backs are
achieved via the following instructions:
CLFLUSH. This instruction writes back a specific cache line and
evicts it from the cache hierarchy in the coherency domain.
CLFLUSHOPT. This instruction works similarly to CLFLUSH, but
is executed asynchronously. The advantage is that multiple cache
lines can be flushed in parallel. However, this instruction requires
an additional SFENCE or MFENCE instruction to ensure the comple-
tion of all previously issued CLFLUSHOPT instructions, and there-
fore prevent write reorderings.
CLWB. This instruction asynchronously writes back a specific
cache line without explicit eviction. CLWB also requires an SFENCE
or MFENCE to ensure its completion. The CLWB instruction is present
on our Skylake-SP system. However, it currently seems to be
mapped to a CLFLUSHOPT as indicated by the CPU documenta-
tion [8] and the vast amount of experiments we conducted.
WBINVD/WBNOINVD. Both instructions are only executable in
kernel mode and write back all modified cache lines either with or
without eviction. The WBNOINVD instruction will be available on
the upcoming icelake server CPU generation.
MOVNT. The non-temporal MOV instruction bypasses the caches
and stores data directly to the memory. MOVNT is a SIMD extension
(SSE2, AVX, AVX2 or AVX512) that is also executed out-of-order
and thus requires an SFENCE or MFENCE to ensure its completion.

Evaluation. In Figure 4, we compared the performance of write
back instructions that are available to user mode applications on our
system using a random column store (1 GiB size) update workload
without replication. As shown, CLFLUSH and CLFLUSHOPT perfor-
mance numbers are close to each other with a slight advantage
for CLFLUSH, because it does not require an additional SFENCE. The
performance of the MOVNT is significantly lower.

2.4 NVRAM-Centric Data Structures
For our experiments, we consider two NVRAM-centric data struc-
tures that are fundamental for database systems:
Column Store (CS) The column store is an array of 4 Byte in-
tegers that is allocated via the libpmemobj API. We consider a
non-transactional (CS) and a transactional workload (CS TX) for
our experiments. The transactional workload also updates a single
integer, but uses the transaction feature of the libpmemobj, which
causes additional write overhead for the undo log.
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Algorithm 1 Basic PMDK pool replication algorithm
1: Flush(MasterAddress, Size);
2: SFence(); ◃ not for CLFLUSH
3: for each Replica do ◃ actual replication
4: Compute(ReplicaAddress);
5: MemCpy(ReplicaAddress, MasterAddress, Size);
6: Flush(ReplicaAddress, Size); ◃ not for MOVNT
7: SFence(); ◃ not for CLFLUSH

Key-Value Store (KV) Key-value stores are employed as indexes
within a DBMS. We use the pmemkv implementation3, which is a
hybrid DRAM-NVRAM data structure similar to the FPTree [14].
The leaf nodes of the tree are stored in NVRAM, while the re-
coverable inner nodes are stored in DRAM. Pmemkv uses the
transactional facilities of libpmemobj, to ensure atomic updates
to the persistent leaf nodes of the tree structure.

Evaluation. All experiments are executed single-threaded on the
same socket as the NVRAM regions are physically allocated on, ex-
cept it is explicitly stated differently. Figure 5 shows the throughput
for updates on the data structures (w/o replication) for a uniform
(Uni), binomial (Bin), and sequential (Seq) key distribution using
the CLFLUSHOPT instruction. The non-transactional CS workload
gives the best performance, because only a single cache line needs
to be flushed. In contrast, the CS TX workload uses transactions,
which causes additional cache line flushes as it is reflected by the
throughput numbers. We observed the worst performance for the
KV workload that faces the transactional overhead as well as ad-
ditional costs for updating to the inner tree nodes in DRAM and
may issues modifications to multiple NVRAM cache lines, when
modifying the leaf nodes. We also observe that all three workloads
are relatively insensitive to the key distribution, which is a result of
the cache line eviction issued by the CLFLUSHOPT instruction. This
especially hurts the performance of the sequential CS workload that
constantly evicts the cache line it needs for the next update. Due to
the adjacent cache line prefetch feature, the other key distributions
have a chance that the cache line to be updated was already fetched
during a previous operation. Nevertheless, this behavior is likely to
change with the full implementation of the CLWB instruction.

3 BASIC POOL REPLICATION
In this section, we discuss the basic replication mechanism of the
PMDK and present overhead measurements for our three work-
loads. As depicted in Figure 3, the libpmemobj already provides a
replication feature that replicates writes to a pool across a set of
pools (pool replication). The pool replication also works in combi-
nation with the transactional feature where transaction tables and
the undo log are additionally replicated across the pool set.

Algorithm 1 lists the pseudocode for the compute node-local
parts of the replication mechanism. The algorithm starts with flush-
ing themodified cache lines of themaster replica (line 1) followed by
an SFENCE to ensure the completion of the flush operations (line 2).
Subsequently, the actual replication is performed by looping over
the individual replicas (lines 3-7). For each replica, the algorithm

3https://github.com/pmem/pmemkv
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Figure 6: Relative update overhead w/ replication for differ-
ent workloads and replica counts. Uniformkey distribution.

computes the memory address of the modification within the repli-
cated pool (line 4); copies the data from the master replica to the
calculated replica address either using a memcpy or a MOVNT (line 5);
flushes the modified cache lines of the replica in case of a memcpy
(line 6) and finally, issues an SFENCE to ensure the completion of
the flushes respectively the MOVNT (line 7).

Evaluation. Figure 6 shows the overhead measurements relative
to the non-replicated throughput for our three workloads (cf., Sec-
tion 2.4) using a uniform key distribution. The overheads are given
for the temporal copy (memcpy) where replica modifications are
flushed using the CLFLUSHOPT and the non-temporal copy (MOVNT).
In both cases, master replica modifications are flushed using the
CLFLUSHOPT. Each pool of the set has a size of 1 GiB. The measure-
ments reveal that the non-transactional column store workload
(CS) faces about 200% additional overhead per replica, which is
located on the same socket. Note that the updates are executed
non-dependent on each other by the benchmark, which is a more
realistic setting for writes. Hence, the large pipelines, out-of-order
execution, and speculation efforts of modern processors hide the la-
tency for fetching the cache line of the master replica, which speeds
up the baseline and thus amplifies the replication overhead. In case
of dependent updates, the overhead is about 100 % per replica as it
would be expected. The other two workloads (i.e., CS TX and KV)
face a replication penalty of about 250% for three replicas. Such
overhead numbers are prohibitively high, especially in case of the
CS workload, and annihilate the advantage of using NVRAM as a
storage for primary data. Hence, we will reason about the origin
of this replication penalty and propose optimizations for the basic
replication mechanism in the following section.

4 ADVANCED POOL REPLICATION
In this section, we discuss the issues of the basic pool replication
mechanism that cause the high overheads during the NVRAM
replica maintenance. Afterwards, we present our advanced pool
replication mechanisms that are generated using a template-based
approach for automatically composing the individual building blocks
to a full replication mechanism. The basic pool replication mecha-
nism faces the following issues:
(1) The algorithm is over-synchronized, because cache line flushes

are synchronized via an SFENCE instruction after each replica.
(2) The master replica is updated first, which evicts the modified

data from the cache when using the CLFLUSH(OPT) or MOVNT
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instruction. Hence, the subsequent copy operation that updates
the first replica needs to refetch the data from the memory first.

(3) The memcpy operation that copies the modified data from the
primary replica to the other replicas effectively performs a read-
modify-write operation. Thus, the cache lines of the replicas to
be updated need to be present in cache, which is not considered
by the algorithm. MOVNT copies do not require the data to be
in the cache, but are executed faster if the virtual-to-physical
address mapping of the destination is already cached in the
translation lookaside buffer (TLB).

(4) Copy operations from the modified primary replica to the other
replicas are not parallelized and execute sequentially.

To overcome those issues, we present our template-based approach
for generating advanced replication methods in Figure 7. The tem-
plate describes how the individual building blocks are arrangeable
to guarantee persistent updates to all replicas of the pool. Gener-
ating starts from the top of the scheme and proceeds downwards
by configuring the desired option for a particular building block
(depicted in grey colour). In accordance to this approach, the basic
replication algorithm can be generated following a path indicated as
1-2-3 in Figure 7, while, for example, multiple threads optimization
is enabled by the right most path. In the following, we describe
the building blocks in detail and highlight how they cope with the
issues of the basic replication mechanism.
Flush Sync/Async (SF). To resolve issue (1), we add the Flush
Async building block that omits the SFENCE as an alternative to
Flush Sync (Flush followed by an SFENCE). Nevertheless, to ensure
completion of the NVRAM writes a single SFENCE (SF) is required
at the end (this flow is depicted by the green arrow). Doing so,
Flush Async is able to execute CLFLUSHOPT and MOVNT instructions
across replicas in parallel.
Master Replica Flush Reorder. To address issue (2), the template
for our advanced pool replication mechanism allows to execute
the master replica flush before (PRE) or after (POST) the other
replicas are written and flushed (reflected by the left most arrow).
Prefetch (PF). To cope with issue (3), we add the Prefetch building
block that preloads the first cache line of the memory location for
a replica. Consecutive cache lines that may need to be updated are
usually automatically loaded by the hardware prefetchers.

Scatter (SCA). To address issue (4) in case of small updates, we
use the AVX512 Scatter instruction4 that leverages data-level par-
allelism to update multiple replicas with a single instruction.
Threads. To address issue (4) in case of large updates, we employ
thread-level parallelism to additionally leverage the load-store
units (LSU) of other cores. Hence, for each slave replica a worker
thread is instantiated during the opening procedure of a pool
set that executes the Copy and Flush Sync building blocks for its
replica, if instructed so by the master replica thread.
Note that the Copy and Flush Sync/Async building blocks can addi-
tionally be switched to a different implementation, i.e., CLFLUSHOPT,
MOVNT, etc. With the help of our template-based approach, we are
able to evaluate all combinations of allowed and meaningful opti-
mizations for several workloads and workload parameters. More-
over, the template can be leveraged to automatically switch to the
optimal replication mechanism for the current conditions, which is
out of the scope for this paper and is left for future work.

5 EVALUATION
In this section, we evaluate our advanced replication mechanisms
and compare them to the basic replication mechanism of the PMDK
using our three workloads and key distributions. Moreover, we
investigate the influence of different pool sizes, the number of
consecutively updated column store elements (chunks), high replica
counts, and the socket placement of individual replicas.

Impact of Optimizations. Figure 8 shows the overhead numbers
of a selected set of activated optimizations including the baseline for
the nine workloads using the uniform, binomial and sequential key
distributions and up to three replicas (each pool 1 GiB). Themeasure-
ments show that enabling a single optimization already halves the
overhead for uniform and binomial non-transactional workloads
except for the POST optimization that postpones the master replica
flush. Activating combinations of optimizations further decreases
the replication overhead. For one replica, the SF+PF combination
gives the best results. For more replicas, the SF+SCA+PF combina-
tion performs best for the CS workload and additionally enabling
POST further improves the overhead of the transactional workloads.
We observe that replication behavior differs for sequential key
distribution due to cache line eviction issued by the CLFLUSHOPT
instruction. The same cache line needs to be refetched several times
to update its sequential keys. Nevertheless, combinations SF+PF
and SF+PF+SCA+POST give still the best improvement, while en-
abling just one optimization does not allow to halve the respective
overhead. Due to the adjacent cache line prefetch feature, uniform
and binomial key distributions have a chance that the cache line to
be updated was already fetched during a previous operation. As we
argued in Section 2, this behavior is likely to change with the full
implementation of the CLWB instruction. The Thread optimization
has a high initial overhead, because of the thread synchronization
costs that start to amortize with an increasing number of replicas.
We measured overhead savings of 91 % for the CS workload, 78 %
for the CS TX workload, and 67 % for the KV workload. Moreover,
our optimizations reduced the extra overhead costs for adding an
additional replica to the pool set.

4_mm512_mask_i64scatter_epi32 or _mm512_mask_i64scatter_epi64 intrinsic
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(a) Non-transactional column store workload (CS Uni).
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(b) Transactional column store workload (CS Uni TX).
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(c) Key-value store workload (KV Uni).
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(d) Non-transactional column store workload (CS Bin).
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(e) Transaction column store workload (CS Bin TX).
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(f) Key-value store workload (KV Bin).
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(g) Non-transactional column store workload (CS Seq).
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(h) Transactional column store workload (CS Seq TX).
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(i) Key-value store workload (KV Seq).

Figure 8: Relative overheads for different workloads, optimizations, replica counts and key distribution.
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(a) CS Uniform workload w/ 1 replica.
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(b) CS Uniform workload w/ 2 replicas.

0

200

400

600

800

1000

4 32 256 2048 16384

R
el

at
iv

e 
O

ve
rh

ea
d

 [
%

]

Chunk Size [Bytes]

(c) CS Uniform workload w/ 3 replicas.
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(d) CS TX Uniform workload w/ 1 replica.
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(e) CS TX Uniform workload w/ 2 replicas.
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Figure 9: Relative overheads for different workloads, optimizations, updated chunk sizes, and replica counts.
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Figure 10: Relative overheads for different workloads, key
distributions, and pool sizes. 3 replicas (SF+SCA+PF).

Updated Chunk Size. In these series of experiments, we vary the
size of the memory chunk that is updated by writing a varying
number of consecutively located column store elements per update
operation. Figure 9 visualizes the measured relative overheads for
the CS and CS TX workload using different optimization combi-
nations depending on the updated chunk size. The results show
that the best replication mechanism depends on the updated chunk
size as well as on the workload and replica count. For instance
Figures 9(c) and 9(f) shows (1) that the SCA building block gen-
erates more overhead for larger chunk sizes, (2) that the MOVNT
implementation of the Copy building block starts to become feasi-
ble at a chunk size of 64 Bytes, and (3) that the Threads building
block gives the lowest overhead starting at a chunk size of 2 KiB
and becomes feasible with replica count starting from 3. Since the
Threads building block is designed for large chunks, we added
a Threshold building block (Threads+Trs) that falls back on the
alternative SF+SCA+PF path for small chunk sizes (≤ 32 Bytes as
visible in Figure 9(a)) as they occur in the transactional part of the
CS TX workload. As seen from the Figures 9(d), 9(e) and 9(f) such
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Figure 11: Relative overheads for different workloads, key
distributions, and NVRAM socket allocations. CLFLUSHOPT
and SF+SCA+PF (Opt) replication mechanisms.

combined approach gives the most stable chunk size independent
improvement for transactional workloads.

Pool Size and Key Distribution. Figure 10 illustrates the relative
overhead measurements for the SF+SCA+PF building block combi-
nation depending on the size of a single pool of the pool set for all
workload and key distribution combinations. The results show that
the overhead measurements are insensitive to the size of the pool
and that all considered workloads face a similar overhead, except
for the sequential CS workload (cf., Section 2.4). This insensitivity
is a result of the Prefetch (PF) optimization that preloads all
required cache lines before data is copied from the master replica
to the slave replicas.
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Replica Socket Placement. In Figure 11, we placed the emulated
NVRAM either on the local socket, remote socket, or interleaved the
allocation – first replica remote, second replica local, etc. – and run
all workloadswith the uniform key distributionwith up to 7 replicas.
The measurements reveal that placing replicas on the remote socket
increases the replication overhead by about 75%. Employing the
SF+SCA+PF optimization combination (Opt) also faces an initial
75 % overhead penalty as soon as a single replica is located on the
remote socket. However, it still dramatically decreases the absolute
overhead and the additional overhead costs per replica.

Relation to Real NVRAM Hardware. It is important to men-
tion that our hardware currently does not fully support the CLWB
instruction and is not able to emulate the asymmetric read/write la-
tency that is expected for real NVRAM. Since any attempt to transfer
our measurements to upcoming NVRAM hardware is only specula-
tion, we are looking forward to run our evaluation on true NVRAM
hardware. Nevertheless, we are convinced that our template-based
advanced replication mechanisms will still significantly outperform
the basic built-in replication mechanism of the PMDK.

6 RELATEDWORK
The PMDK [18] is the de facto standard for NVRAM programming
and is a melting pot for NVRAM-related technologies that are ag-
ilely researched. In particular, persistent allocators [1, 3, 11, 13, 20,
25] and NVRAM-centric data structures [4, 5, 14, 15, 21, 22, 24]
have been thoroughly researched. For instance, the FPTree [14] is
a hybrid DRAM-NVRAM data structure that is implemented in a
modified version5 by the pmemkv library we leveraged for our ex-
periments. The PMDK additionally implements a basic mechanism
for compute node-local and RDMA-based replication across com-
pute nodes [9]. Moreover, RDMA-based replication mechanisms
for NVRAM have been addressed in the context of operating sys-
tems [26] and virtual machines [19]. The logical replication has
been NVRAM-optimized in ERMIA DBMS [23]. To the best of our
knowledge, efficient replication mechanisms within a single com-
pute node have not been further researched so far. Another related
research topic are hybrid DRAM-NVRAM database systems like
SOFORT [12, 16, 17], FOEDUS [10], or Peloton [2] that store the
primary data in NVRAM and provide instant recovery. Such DBMSs
are able to leverage our advanced replication mechanisms to im-
prove high availability.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we addressed the topic of efficient compute node-
local replication of NVRAM regions that is essential to prevent
data losses and ensure high availability on hybrid DRAM-NVRAM
database systems in case of NVDIMM failures. We proposed a
template-based approach for automatically assembling optimized
building blocks to physical pool replication mechanisms. Within
our evaluation, we experienced replication overhead savings of up
to 10x for replicas placed on the local as well as remote socket of
the compute node. Promising directions for future work are the
autonomous replication mechanism selection and the actual replica
allocation strategy for hybrid DRAM-NVRAM DBMSs.

5https://github.com/pmem/pmemkv/blob/master/ENGINES.md

8 ACKNOWLEDGMENT
This work is partly funded (i) by the German Research Foundation
(DFG) in the context of the project "Self-Recoverable and Highly
Available Data Structures for NVRAM-centric Database Systems"
(LE-1416/27-1), (ii) by DFG-CRC 912 (HAEC) and (iii) by the Cluster
of Excellence "Center for Advancing Electronics Dresden" (Orches-
tration Path).

REFERENCES
[1] Alfons Kemper Thomas Neumann Takushi Hashida Kazuichi Oe Yoshiyasu Doi

Lilian Harada Sato Mitsuru Alexander van Renen, Viktor Leis. 2018. Managing
Non-Volatile Memory in Database Systems. In Proceedings of the 2018 SIGMOD
International Conference on Management of Data, June, 2018, Houston. 691–706.
https://doi.org/10.1145/2723372.2746480

[2] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind Logging.
PVLDB 10, 4 (2016), 337–348. http://www.vldb.org/pvldb/vol10/p337-arulraj.pdf

[3] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm. 2016.
Makalu: Fast Recoverable Allocation of Non-volatile Memory. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016. 677–694.
https://doi.org/10.1145/2983990.2984019

[4] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database
Algorithms for Phase Change Memory. In CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings. 21–31. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper3.pdf

[5] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.
PVLDB 8, 7 (2015), 786–797. http://www.vldb.org/pvldb/vol8/p786-chen.pdf

[6] Rohit Dhamane, Marta Patiño-Martínez, Valerio Vianello, and Ricardo Jiménez-
Peris. 2014. Performance Evaluation of Database Replication Systems. In 18th
International Database Engineering & Applications Symposium, IDEAS 2014, Porto,
Portugal, July 7-9, 2014. 288–293. https://doi.org/10.1145/2628194.2628214

[7] Jinwei Guo, Chendong Zhang, Peng Cai, Minqi Zhou, and Aoying Zhou. 2016.
Low Overhead Log Replication for Main Memory Database System. In Web-Age
Information Management - 17th International Conference, WAIM 2016, Nanchang,
China, June 3-5, 2016, Proceedings, Part II. 159–170. https://doi.org/10.1007/
978-3-319-39958-4_13

[8] Intel. 2018. Intel Instruction Reference Manual (Vol 2A, 3-147). (2018).
[9] Tomasz Kapela. 2015. An introduction to replication. (2015). http://pmem.io/

2015/11/23/replication-intro.html.
[10] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 691–706. https:
//doi.org/10.1145/2723372.2746480

[11] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy
Ranganathan, and Nathan Binkert. 2013. Consistent, Durable, and Safe Memory
Management for Byte-addressable Non Volatile Main Memory. In Proceedings of
the First ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS
’13). ACM, New York, NY, USA, Article 1, 17 pages. https://doi.org/10.1145/
2524211.2524216

[12] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data
Recovery. In Tenth InternationalWorkshop on DataManagement on NewHardware,
DaMoN 2014, Snowbird, UT, USA, June 23, 2014. 8:1–8:7. https://doi.org/10.1145/
2619228.2619236

[13] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas
Willhalm, and Grégoire Gomes. 2017. Memory Management Techniques for
Large-Scale Persistent-Main-Memory Systems. PVLDB 10, 11 (2017), 1166–1177.
http://www.vldb.org/pvldb/vol10/p1166-oukid.pdf

[14] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16). ACM, New York, NY, USA, 371–386.
https://doi.org/10.1145/2882903.2915251

[15] Ismail Oukid and Wolfgang Lehner. 2017. Data Structure Engineering For Byte-
Addressable Non-Volatile Memory. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD ’17). ACM, New York, NY, USA,
1759–1764. https://doi.org/10.1145/3035918.3054777

[16] Ismail Oukid and Wolfgang Lehner. 2017. Towards a Single-Level Database
Architecture on Non-Volatile Memory. In 8th Annual Non-Volatile Memories
Workshop 2017 (NVMW).

[17] Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Willhalm, and Peter
Bumbulis. 2015. Instant Recovery for Main Memory Databases. In CIDR 2015,
Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA,

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", Art. Nr. 7, ISBN 978-1-4503-5853-8 
https://doi.org/10.1145/3211922.3211931

8 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/2723372.2746480
http://www.vldb.org/pvldb/vol10/p337-arulraj.pdf
https://doi.org/10.1145/2983990.2984019
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper3.pdf
http://www.vldb.org/pvldb/vol8/p786-chen.pdf
https://doi.org/10.1145/2628194.2628214
https://doi.org/10.1007/978-3-319-39958-4_13
https://doi.org/10.1007/978-3-319-39958-4_13
http://pmem.io/2015/11/23/replication-intro.html
http://pmem.io/2015/11/23/replication-intro.html
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2619228.2619236
http://www.vldb.org/pvldb/vol10/p1166-oukid.pdf
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/3035918.3054777


Efficient Compute Node-Local Replication Mechanisms for
NVRAM-Centric Data Structures DaMoN’18, June 11, 2018, Houston, TX, USA

USA, January 4-7, 2015, Online Proceedings. http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper13.pdf

[18] Andy Rudoff. 2015. Persistent Memory Programming. Login: The Usenix Magazine
42 (2015), 34–40.

[19] Vasily A. Sartakov and Rüdiger Kapitza. 2017. Multi-site Synchronous VM
Replication for Persistent Systems with Asymmetric Read/Write Latencies. In
22nd IEEE Pacific Rim International Symposium on Dependable Computing, PRDC
2017, Christchurch, New Zealand, January 22-25, 2017. 195–204. https://doi.org/
10.1109/PRDC.2017.33

[20] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner.
2015. nvm malloc: Memory Allocation for NVRAM. In ADMS@VLDB.

[21] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11). USENIX Association, Berkeley, CA, USA, 5–5.
http://dl.acm.org/citation.cfm?id=1960475.1960480

[22] Stratis Viglas. 2014. Write-limited sorts and joins for persistent memory. PVLDB
7, 5 (2014), 413–424. http://www.vldb.org/pvldb/vol7/p413-viglas.pdf

[23] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log
Shipping on Steroids. Proc. VLDB Endow. 11, 4 (Dec. 2017), 406–419. https:
//doi.org/10.1145/3164135.3164137

[24] Jun Yang, Qingsong Wei, Chundong Wang, Cheng Chen, Khai Leong Yong,
and Bingsheng He. 2016. NV-Tree: A Consistent and Workload-Adaptive Tree
Structure for Non-VolatileMemory. IEEE Trans. Computers 65, 7 (2016), 2169–2183.
https://doi.org/10.1109/TC.2015.2479621

[25] Songping Yu, Nong Xiao, MingzhuDeng, Yuxuan Xing, Fang Liu, Zhiping Cai, and
Wei Chen. 2015. WAlloc: An efficient wear-aware allocator for non-volatile main
memory. In 34th IEEE International Performance Computing and Communications
Conference, IPCCC 2015, Nanjing, China, December 14-16, 2015. 1–8. https://doi.
org/10.1109/PCCC.2015.7410326

[26] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. 2015.
Mojim: A Reliable and Highly-Available Non-Volatile Memory System. SIGARCH
Comput. Archit. News 43, 1 (March 2015), 3–18. https://doi.org/10.1145/2786763.
2694370

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", Art. Nr. 7, ISBN 978-1-4503-5853-8 
https://doi.org/10.1145/3211922.3211931

9 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper13.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper13.pdf
https://doi.org/10.1109/PRDC.2017.33
https://doi.org/10.1109/PRDC.2017.33
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://www.vldb.org/pvldb/vol7/p413-viglas.pdf
https://doi.org/10.1145/3164135.3164137
https://doi.org/10.1145/3164135.3164137
https://doi.org/10.1109/TC.2015.2479621
https://doi.org/10.1109/PCCC.2015.7410326
https://doi.org/10.1109/PCCC.2015.7410326
https://doi.org/10.1145/2786763.2694370
https://doi.org/10.1145/2786763.2694370

	Abstract
	1 Introduction
	2 NVRAM & PMDK Background
	2.1 PMDK-Integrated DBMS Architecture
	2.2 Access Methods
	2.3 Programming Model
	2.4 NVRAM-Centric Data Structures

	3 Basic Pool Replication
	4 Advanced Pool Replication
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgment
	References
	Lehner_Efficient compute node-local_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Mikhail Zarubin, Thomas Kissinger, Dirk Habich, Wolfgang Lehner
	Efficient compute node-local replication mechanisms for NVRAM-centric data structures




