
Simon Stone
A Silent-Speech Interface using Electro-Optical Stomatography  

TUDpress



Studientexte zur Sprachkommunikation 
Hg. von Rüdiger Hoffmann 

ISSN 0940-6832 
Bd. 102



Simon Stone

TUDpress
2021

A Silent-Speech Interface using Electro-

Optical Stomatography



Supplemental Materials can be downloaded using the following code

Bibliografische Information der Deutschen Nationalbibliothek 

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 

Deutschen National bibliografie; detaillierte bibliografische Daten sind 

im Internet über http://dnb.d-nb.de abrufbar. 

Bibliographic information published by the Deutsche Nationalbibliothek 

The Deutsche Nationalbibliothek lists this publication in the Deutsche 

Nationalbibliografie; detailed bibliographic data are available in the 

Internet at http://dnb.d-nb.de. 

ISBN  978-3-95908-457-4

© 2021 Thelem Universitätsverlag & Buchhandlung GmbH & Co. KG

D-01309 Dresden

Tel.: +49 351 4721463

http://www.tudpress.de

TUDpress ist ein Imprint von Thelem 

Alle Rechte vorbehalten. All rights reserved.

Gesetzt von den Herausgebern.

Printed in Germany.



Technische Universität Dresden

A Silent-Speech Interface using Electro-Optical Stomatography

Dipl.-Ing.

Simon Stone

Von der Fakultät Elektrotechnik und Informationstechnik der Technischen
Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Hagen Malberg (TU Dresden)
1. Gutachter: Prof. Dr.-Ing. Peter Birkholz (TU Dresden)
2. Gutachter: Prof. Dr. rer. nat. habil. Gerhard Weber (TU Dresden)
3. Gutachter: Prof. Pascal Perrier, PhD

(Université Grenoble Alpes/Grenoble INP)

Tag der Einreichung: 22.10.2020
Tag der Verteidigung: 27.09.2021





Statement of authorship

I hereby certify that I have authored this document entitled A Silent-Speech Interface using Electro-
Optical Stomatography independently and without undue assistance from third parties. No other
than the resources and references indicated in this document have been used. I have marked both
literal and accordingly adopted quotations as such. During the preparation of this document I was
only supported by the following persons:

Prof. Dr.-Ing. Peter Birkholz

Additional persons were not involved in the intellectual preparation of the present document. I
am aware that violations of this declaration may lead to subsequent withdrawal of the academic
degree.

Dresden, 22nd October 2020

Simon Stone



Faculty of Electrical and Computer Engineering Institute of Acoustics and Speech Communication

Chair of Speech Technology and Cognitive Systems

Abstract

Speech technology is amajor and growing industry that enriches the lives of technologically-minded
people in a number of ways. Many potential users are, however, excluded: Namely, all speakers
who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to commu-
nicate with a machine by a convenient speech recognition interface without the need for acoustic
speech. They also can potentially provide a full replacement voice by synthesizing the intended ut-
terances that are only silently articulated by the user. To that end, the speech movements need to
be captured andmapped to either text or acoustic speech. This dissertation proposes a new Silent-
Speech Interface basedonanewly developedmeasurement technology called Electro-Optical Stom-
atography and a novel parametric vocal tract model to facilitate real-time speech synthesis based
on the measured data. The hardware was used to conduct command word recognition studies
reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using
the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was
also completed. While the intelligibility of synthesized vowels was high, the intelligibility of conso-
nants and connected speech was quite poor. Promising ways to improve the system are discussed
in the outlook.

Zusammenfassung

Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteres-
sierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausge-
schlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können.
Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes
Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem
prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still
artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor,
das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem
neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basie-
rend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworter-
kennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit
erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware
zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwen-
det wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde,
ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielverspre-
chende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.
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1. Introduction
Listen to the silence. It has so much
to say.

(Rumi)
The ability to produce, perceive, and understand speech is arguably the most important human

skill. As part of humanity’s on-going efforts to create machines ever more similar to itself, attempts
to develop a technology to mimic the human speech processing capability were only a matter of
time.
In the 20th century, the field of Automatic Speech Recognition (ASR) summarized these attempts

and grew into its own scientific discipline. The earliest recognized speech recognition system was
“Audrey”, introduced in [1], that came out of the legendary Bell Laboratories in 1952 (formore infor-
mation on that institutions stunning portfolio of inventions and discoveries, see [2]). This ground-
breaking, fully analog system was able to recognize the spoken digits from 0 to 9 with a reported
accuracy of 97 to 99%. In the following two decades, some first successes were achieved: William C.
Dersch’s “Shoebox” system, for example, was presented at the 1962World’s Fair in Seattle [3]. Shoe-
box extended Audrey’s vocabulary by six command words (including “plus”, “minus” and “total”) to
perform simple arithmetic operations entirely based on spoken input. The scientific community,
however, also saw some concepts emerge that would stay central to the research efforts in the
field of ASR. The “Phonetic Typewriter” [4], a phoneme recognizer developed at the Kyoto Univer-
sity, already tackled the difficult task of continuous speech recognition (as opposed to the isolated
command word recognition task other systems of the time focused on). At the University College
London, Denes [5] imposed phonotactic constraints by allowing only certain phoneme sequences
and thus introduced statistical syntax as another tool to the community. The pace quickened after
Vintsyuk [6] proposed dynamic programming to help with the difficult non-linear time alignment of
a reference and a sample utterance. This technique was most prominently featured in the Viterbi
algorithm [7], which became the de-facto standard for time-alignment (or Dynamic Time Warping
(DTW)) more than ten years later, after it crossed over into speech research from the field of infor-
mation theory, popularized by [8].
Since then, the performance and availability of computer systems rapidly increased and along-

side these developments, numerous breakthroughs in ASR researchwere achieved: HiddenMarkov
Models and stochastic language models greatly improved the performance of continuous speech
recognition systems in the 1980s (e.g., [9, 10]), the vocabularies of the systems grew quickly in the
90s, when statistical learning entered the field, and moved beyond the task of recognition towards
truly understanding speech and even entering a dialog with the user in the 2000s. For a more de-
tailed look at the history of speech recognition, see the review by Juang [11] (which was also the
basis of this short introduction) or, for an even more in-depth retrospective, the book by Pierac-
cini [12].
Today, ASR systems are ubiquitous, used not only as dictation systems on office computers but
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1. Introduction

also in cars, service hotlines, televisions, smart speakers, and many more. We even have voice-
enabled personal assistants on smartphones (e.g., Apple’s Siri, Google’s Google Now, or Amazon’s
Alexa) that attempt to engagewith the user in away that is supposed tomimic a human interlocutor.
The market for speech technology is enormous and still booming (see Figure 1.1).
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Figure 1.1.: Size of the speech recognition market worldwide from 2015 to 2024. The asterisk (*)
denotes projected years. Data according to [13].

However, there is one major problem with the current-day ASR systems: it excludes a significant
part of the population. Some people cannot talk to machines, either because of the circumstances
(e.g., the loud and noisy environment of a jet plane, the obstructions caused by the breathingmasks
of fire fighters or divers) or because of physical limitations (e.g., the elderly, laryngectomized can-
cer patients or intensive care patients with a tracheostoma). Especially the latter demographic is
completely shunned by the global innovation drivers in the sector of consumer speech technology
(i.e., Google, Amazon, and Apple), despite the fact that they together make up a sizable chunk of
the market: According to projections by the United Nations1, the median age in Germany will be
49 years by the year 2019. While future generations of elderly will be used to the convenience and
productivity of speech technology, the physical effort to produce speech makes it inreasingly diffi-
cult with age to continue using consumer devices in the same way they used to. But why is it even
necessary to talk to the machine? Why does sound need to travel through the air to the machine’s
microphone, only to be decoded into the actual signal of interest: the speech sound identities (and
subsequently the linguistic and semantic content of the speech sound sequence)?
While this is of course merely a matter of convenience and quality-of-life, laryngectomized peo-

ple have far more pressing concerns regarding speech technology. Given that this demographic is
not just of substantial size (five-year prevalence of 488900 wordwide2), but also growing steadily
(177422 new cases worldwide in 20183). In Germany in the year 2018 alone, more than 4800 pa-
tients have suffered loss or severe impairment of their voice due to a complete or partial laryngec-
tomy4.
A few therapies and prostheses are commonly used to rehabilitate the patients’ ability in clinical

practice, but all of them have their individual drawbacks. There are currently three major kinds of
techniques in use [14]: the electrolarynx, esophageal speech (more of a replacement voice than a
prostheses), and the so-called tracheoesophageal speech.
The electrolarynx [15] is a hand-held device that is usually pressed against the skin roughly at

the height of the (now removed) vocal cords. The device then sends vibrations (usually at a fixed
frequency) through the neck into the pharynx, where these vibrations turn into sound pressure

1https://population.un.org/wpp/
2https://de.statista.com/statistik/daten/studie/1095977/umfrage/zahl-der-weltweiten-krebsfaelle-nach-krebsart/
[In German]

3https://de.statista.com/statistik/daten/studie/286545/umfrage/zahl-der-krebsneuerkrankungen-weltweit/
[In German]

4Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik): Operationen und Prozeduren der vollstationären Patientin-
nen und und Patienten in Krankenhäusern. Online: www.gbe-bund.de[In German]
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waves and excite the vocal tract (for more on the speech production process see chapter 2). In
the roughly 100 years since the introduction of the first such device in the late 1920s, this basic
principle has remained the same and very little improvements of the sound quality and variation
of the fundamental frequency have been made [15], with very few notable exceptions (e.g., [16]).
Electrolaryngeal speech can be described as robotic, artificial, difficult to understand, and generally
unnatural sounding (for an example, please visit https://www.youtube.com/watch?v=Kmk46U2yjow
[Last visited on September 9, 2020]. Still, it is a widely used technique, probably because it requires
very little training (at least in its most basic form).
Esophageal speech avoids any kind of technology, because it re-purposes existing mucosa flaps

at the upper end of the esophagus as a pseudoglottis: By swallowing air and then expelling it through
the esophagus, these flaps can be excited to oscillate, similar to the way that air from the trachea
excites the actual vocal folds in a non-laryngectomized speaker (see section 2.1). This manner
of speaking is difficult to learn and, even when mastered, usually has a distinct “belching” sound
quality to it (visit https://www.youtube.com/watch?v=UTLg-2N4hyw for an example of a very capa-
ble esophageal speaker [Last visited on September 9, 2020]). Esophageal speech is therefore also
sometimes called ructus voice (ructus from Latin ructare - belch). Futhermore, many speakers never
learn to properly communicate in this way. Exact numbers are unreliable here because these statis-
tics are usually not recorded, but the voice prostheses manufacturer Atos Medical claims that only
20% of those who try to learn esophageal speech actually succeed 5.
Finally, today’s preferred method to rehabilitate laryngectomized patients is tracheoesophageal

speech using an artificial valve [14]. These valves are placed into a fistula, a surgically made con-
nection, between the trachea and the esophagus. If not speaking, the valve blocks airflow into
the esophagus and air is exhaled from the lungs through the tracheostoma, a hole in the patient’s
neck6. When the patient wants to speak, they can cover the tracheostoma and exhale, thus cre-
ating a positive pressure on the valve and forcing it open. The air then escapes into the pharynx,
where it is used to excite a pseudoglottis, similar to esophageal speech. In contrast to that, how-
ever, the fact that the air does not need to be swallowed and is instead simply exhaled, makes it
much more convenient and easier to speak in this way. The resulting high success rate (95% in
long-term users [14]) has helped this technique, which is also called a voice prostheses, claim its
place as the state-of-the-art in voice rehabilitation after total laryngectomy. But it is not without
substantial disadvantages: Laryngectomized patients are often elderly patients and as such have
the same difficulties as non-laryngectomized speakers regarding the effort of speech production.
The surgery to create the fistula is also not without risks and can result in harmful punctuations of
the trachea and/or esophagus. But the main disadvantage of this method is the dependency of the
patients on constant clinical and surgical care, because the valves must be regularly checked and
replaced to avoid clogging, inflammations, scarring, and other complications. This greatly limits the
patients’ mobility and self-determined living and may even result in health hazards if patients’ miss
their checkup appointments.
The state of the art in speech prostheses therefore raises some questions: If it is so difficult to

create a new internal voice source, why not try to create an external voice? So instead of bringing
the excitation source into the vocal tract, take the articulation out of the vocal tract and produce the
speech extra-orally?
Producing speech with technology has always fascinated researchers and records of attempts

to build speech producing machines go back to the 18th century and the days of Christian Got-
tlieb Kratzenstein [17], who built a set of acoustic resonators that produced vowel sounds, and
Wolfgang Von Kempelen [18], who developed a machine that was even capable to produce short
utterances (for more details and examples of historic speech analysis and synthesis systems and
devices see [19]). In the second half of the 20th century, three major branches of synthesis sys-
tems emerged: articulatory synthesizers (e.g., the Kelly-Lochbaum model [20]) that simulate the
5https://www.atosmedical.us/support/esophageal-speech/[Last visit: September 9, 2020]
6The tracheostoma is not made specifically for this voice prosthesis, but is necessary for all laryngectomized patients be-
cause the larynx also protects the trachea from contamination by food or saliva. When the larynx is removed, the con-
nection between the trachea and the pharynx therefore needs to be blocked and the tracheostoma is made to create an
airway for breathing.
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1. Introduction

propagation of sound waves through the human vocal tract for speech production, formant syn-
thesizers (e.g., Klatt’s well-known Klattalk system [21]) that use the source-filter model of speech
production ( [22,23]), and systems based on concatenation of very short pre-recorded speech seg-
ments (e.g., [24]). Today, artificial neural networks working in the cloud directly map written let-
ters to acoustic waveforms in end-to-end systems (e.g, WaveNet [25] and Tacotron [26]) and allow
high-quality speech synthesis in portable, miniature devices (as long as they have a fast and stable
connection to the internet).
So with a long history of speech synthesis research and a wide range of systems available, con-

necting a voice-less (or voice-impaired) user to such a system in some way seems like an obvious
way of restoring their ability to communicate. Especially since the users described above usually
retain their ability to still articulate speech, i.e. silently mouthing the intended words, this leads to
the fundamental ideas underlying a technology called Silent-Speech Interfaces: What if we could (a)
remove the acoustic stage from a speech recognition system and use the speechmovements as the
input, or (b) use the speech movements to control some kind of technological speech generator?
This dissertation presents the development of one incarnation of such a Silent-Speech Interface,

using a newly developed measurement technique to capture the speech movements, state-of-the-
art algorithms for a silent speech recognition system, and a novel vocal tract model to generate
speech based on the measured movements.

1.1. The concept of a Silent-Speech Interface

A Silent-Speech Interface (SSI) is a technologically enabled channel of communication between a hu-
man and a machine that uses speech to encode the information but does not require any audible,
acoustic speech. There are two basic paradigms for SSIs: Articulation-to-Text (ATT) and Articulation-
to-Speech (ATS). An ATS system can also incorporate an ATT frontend, which translates the articula-
tory data to text as an intermediary representation that is then usedwith a standard Text-to-Speech
(TTS) system to generate speech. These systems can possibly exploit text-based linguistic models
to regularize themapping from articulation to speech, but are limited to the pre-defined vocabulary
and thus the language they were trained with. An ATS system without a textual intermediary can-
not use text-level linguistic models but can, in theory, generate all speech (and even non-speech)
sounds by learning the direct mapping from articulation. Such systems are therefore also called
direct ATS systems.
The general framework of an SSI consists of three components: an articulatory data acquisition

frontend using some kind of sensor technology, a recognition (in ATT systems) or parametric syn-
thesis (in ATS systems) backend, and a mapping between the articulatory data and the vocabu-
lary (ATT) or the parameters of the synthesis (ATS) (see Figure 1.2). Due to the unstandardized
interfaces between the components, research around SSIs usually involves the entire pipeline, with
each research group setting up their own framework. Some efforts have been made to uncouple
research into each component, e.g., by publishing datasets of articulatory data for the specific pur-
pose of allowing other researchers to focus on the mapping. But because of the heterogeneous
input modalities across the various technologies, no unified framework or defined interfaces be-
tween components have been established in the field, making every SSI a stand-alone solution,
which usually needs to be developed “from scratch” every time.

1.2. Structure of this work

To understand the requirements and challenges of SSI development, an at least basic understand-
ing of the speech production processes is necessary. Chapter 2 therefore introduces the funda-
mentals of phonetics to the reader, limited to and focused on everything directly related to the
subjects of this dissertation. As described in section 1.1, developing the synthesis or recognition
backend of an SSI usually goes hand in hand with the development of the articulatory data acqui-
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ML

Hello
darkness

my old
friend

silent speaker

sensor

mapping

Articulation-to-Text 
(ATT)

Articulation-to-Speech 
(ATS)

Figure 1.2.: General framework of a Silent-Speech Interface. In the ATT paradigm, the mapping is
from the sensor data to a word label (classification). In the ATS paradigm, the mapping
is from the sensor data to a set of synthesis parameters. By using a regular TTS synthe-
sizer, an ATT system can be extended to an ATS system.

sition frontend. The literature review in chapter 3 therefore covers the state-of-the-art and the
history of both algorithms and measurement technologies in the field of SSI research. After this
overview, a newly developed articulometric technology called Electro-Optical Stomatography (EOS)
is presented in chapter 4 that aims to overcome the shortcomings and limitations of the previously
existing techniques. In chapter 5, EOS is used to develop and evaluate two command word recog-
nition systems in an ATT paradigm. Chapter 6 presents a study on using EOS in an ATS system. To
that end, a newly developed vocal tract model well-suited for real-time articulatory speech synthe-
sis is also presented therein. Two additional experiments on the generation of pitch and voicing
information in an ATS system close out the chapter. Finally, chapter 7 summarizes the findings and
contributions of this dissertation and presents an outlook on future work towards a fully-developed
SSI based on EOS.
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2. Fundamentals of phonetics

In order to understand the requirements and challenges of articulatory measurements, it is impor-
tant to understand how humans produce speech and how speech is structured from an articulatory
perspective. The field of phonetics, or more specifically articulatory phonetics, concerns itself with
the systematic analysis and description of exactly these characteristics of speech, has a long and
rich tradition, and is an ongoing, fertile field of research. Within the scope of this dissertation,
only the fundamentals of speech production are of immediate interest. To that end, I will discuss
the speech organs involved in the process (section 2.1), provide a basic breakdown of the various
sounds making up speech (section 2.2 and section 2.3), take a brief look at the acoustic properties
of speech sounds (section 2.4), and introduce a somewhat advanced concept called coarticulation,
which goes beyond the basics of phonetics but has an immediate bearing on Silent-Speech Inter-
face (SSI)-relatedmatters (section 2.5). Finally, the summary of these concepts in section 2.7 further
focuses on the presented aspects of speech and articulation most relevant in the context of SSIs.
The information presented in this chapter is based on [27], except where stated otherwise. The
languages of the world are a very diverse domain and it is not helpful (nor even possible) to de-
scribe the entire state of the art in phonetics in the context of this dissertation. Instead, only the
sounds most relevant to English and German are the major focus of this chapter because of the
global importance of the former and the latter’s use in the experiments of this dissertation. Even
within these two languages, there are numerous dialectal variants and accents that not only use
the same sounds in a different way but also use entirely different sounds. To avoid confusion, the
terms English and German are regarded as synonomous with General American English and Stan-
dard German, respectively. All schematic articulations in this chapter are reproduced from [28] and
slightly modified for clarity.

2.1. Components of the human speech production system

Speech sounds are produced by the time-varying interplay of three functional components (see
Figure 2.1): initiation of the airflow from the lungs, modulation of this airflow (phonation) to gen-
erate an acoustic excitation, and a “tube” formed by the upper airways and shaped by body parts
called articulators that functions as a resonator and/or an aerodynamic tube system (similar to the
body of a trumpet or trombone). The airflow from the lungs, funneled through the trachea, passes
through the larynx (also known as the “voice box”). Inside the larynx, small pieces of layered soft
tissue are stretched across the trachea. When at rest, they form a V-shape pointing towards the
front. These vocal folds (also sometimes imprecisely called vocal cords) typically have a length of
1.75 cm to 2.5 cm in males and 1.25 cm to 1.75 cm in females [29] and the area between them is
called the glottis. The vocal folds are kept wide apart (abducted) in a neutral state so that airflow
can pass unhindered through the open glottis in both directions during breathing. Themuscles that
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are part of the vocal folds can also completely shut them (keeping them adducted), which happens,
e.g., in the initial phase of coughing to build up pressure below the vocal folds. During speech,
the vocal folds are slightly less abducted for some sounds and are narrowed for others (see sec-
tion 2.2 and section 2.3). If the vocal folds are narrowed below a certain critical distance while air
is flowing through the gap in between, they start to vibrate and thus produce a complex, wideband
sound (similar to a vibrating reed in a woodwind instrument’s mouthpiece). This flow-induced os-
cillation is a complex and multi-faceted process and its analysis and modeling is subject of ongoing
research [30, 31]. For the purposes of this overview, it shall suffice to say that due to the airflow
from the lungs the pressure below the narrowly constricted (or even closed) glottis builds up until
the pressure differential across the vocal folds becomes too large and they are blown open again.
The rapid airflow through the glottis resumes and, thanks to the Bernoulli effect, the vocal folds are
drawn back together by the created suction, and another cycle of sub-glottal pressure rise, opening
burst, and closing suction begins. This oscillation continues as long as the airflow from the lungs is
kept up (and sufficiently fast for the Bernoulli effect to occur) and the distance between the vocal
folds is small enough. This vibration is called the voiced excitation of the vocal tract (i.e., the system
of cavities above the glottis consisting of the pharynx, the nasal cavity, and the mouth). Conversely,
if the vocal folds do not oscillate but air still flows through the glottis, it is called the voiceless exci-
tation. A mixed excitation, where only some part of the vocal folds oscillates and/or the glottis is
permanently open to some extent, is also not just possible but actually quite common. However,
since only the simplified binary voicing is used to group speech sounds, mixed excitation, the var-
ious voice qualities, and other idiosyncracies of the glottal excitation shall not be discussed here
and the reader is instead directed to [29] for further research. Similarly, other types of flow than
the egressive pulmonic airstream (exhaled air from the lungs), e.g., those occurring in the ejectives
or clicks of African languages, are ignored for the purposes of this dissertation.

The (voiced or voiceless) excitation signal is modified by the vocal tract before it results in speech
sounds. This modification depends on the geometry of the vocal tract, which can be shaped by
means of the articulators. Articulators are a set of body parts and anatomical landmarks, which in
combination can create the speech sounds of all languages from the two basic excitation signals.
There are two basic kinds of articulators: active articulators that can be (voluntarily or involuntarily)
moved by the speaker (the vocal folds, the larynx, the tongue, the soft palate, the lower jaw, and the
lips), and the passive articulators, which usually remain still in Western languages (the pharynx wall,
the hard palate, the alveolar ridge, and the upper teeth). Based on the shape created by the articu-
lators, the vocal tract acts in two different but not necessarily mutually exclusive ways: If the vocal
tract is mostly open, i.e. there are no narrow constrictions and it is essentially a tube through which
air can flow, it functions as an acoustic resonator with a distinct set of resonance frequencies that
is defined by the geometrical shape of the complex tube. If there are one or more narrow constric-
tions (e.g., less than 20mm2) anywhere in the vocal tract, they can cause aerodynamic turbulences
downstream that create noisy sound sources. Speech sounds, especially in running speech, are
usually created through a combination of these two cases, although they are often grouped by the
dominant of the two conditions of open versus constricted or even closed vocal tract. Sounds pro-
ducedwith an open vocal tract are called vowel sounds, while sounds producedwith a constricted or
closed vocal tract are called consonants. Besides this distinction, vowels and consonants can also be
grouped into two subsets called sonorants (which are produced with a non-turbulent airflow in the
vocal tract) and obstruents (which are produced with some sort of turbulence-causing obstruction
of the airflow). Before we can discuss speech sounds, we need an unambiguous way of transcribing
them. The orthographic spelling conventions of different languages make it difficult to map letters
to sounds in a general, language-independent way. And even within a language, the same letter is
used for very different sounds: for example the letter i denotes very different sounds in the English
pronoun I and in the preposition in. Sometimes there are also more sounds in a language than are
actually used to discriminate words and thus the letters of the alphabet may not be enough. There-
fore, the International Phonetic Association (IPA) developed an alphabet that uses unique symbols
to denote each sound. This International Phonetic Alphabet (IPA), which is unfortunately going by
the same acronym as its inventor, contains not only symbols for the general sounds (a broad tran-
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Figure 2.1.: Schematic view of the human vocal tract and places of articulation (adapted and ex-
panded from [27]).

scription), but also provides diacritics to mark the exact pronunciation variations andminute details
of phonation and articulation (a narrow transcription). The broad transcription is also called phone-
mic, because it only identifies the phonemes used to make up a word. Phonemes are the sounds
used to discriminate meaning in a language and are the smallest units that cannot be swapped for
a different one in a word without changing its meaning. Phonemic transcriptions are usually en-
closed in forward slashes /·/. Narrow transcriptions are also called phonetic because they transcribe
words at the level of the phones. Phones are any and all discernible speech sounds, regardless of
their importance regarding the meaning of words. Phonetic transcriptions use square brackets [·].
The slashes-versus-brackets convention is not generally adhered to, however, especially in more
technical-leaning works. A comprehensive chart with all symbols in the alphabet can be found in
Appendix A.

2.2. Vowel sounds

Vowel sounds (Latin vocalis meaning “voiced”) are produced with a mostly open vocal tract and a
voiced excitation (except when whispering, when they may be produced with a voiceless excita-
tion). They are usually entirely characterized by only three articulatory parameters: the degree of
lip rounding or spreading, and the tongue position along the high/low and front/back axes. From
the perspective of the airflow, a high tongue position means a more closed vocal tract, while a low
tongue position means a more open vocal tract. Therefore, the high/low dimension is also often
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2. Fundamentals of phonetics

called closed/open. Another way of grouping the vowels is by a quality called tension, where tense
vowels are those produced with largermuscular effort and generally longer durations than lax vow-
els. This is, however, a rather vague distinction, since it is not well-defined what constitutes large
effort, and the duration criterion is often fluid. The vowel system is very distinctive for any given
language and the subsets of vowels occurring in English and German are shown in the summary in
Table 2.2a at the end of this chapter. The IPA has compiled a vowel chart (see Figure 2.2a) based
on the tongue and lip characteristics, which is language-independent and should in theory be able
to assign a location for any vowel from any language. While this is certainly true with regards to
the relative configurations of the articulators, the acoustic realizations of these “canonical” vowels
can vary drastically across languages and not all vowels exist in every language. In some cases, the
same sound is transcribed with a different symbol due to historic conventions (e.g., the sound /5/

is often transcribed as /2/ in English). Articulations of some of themost common vowels are shown
in Figure 2.2c. Some languages also contain additional vowel sounds, e.g., the nasalized vowels in
French, which are produced with a lowered velum and thus require another articulatory dimen-
sion. Lastly, all the vowels discussed up to here consist of only a single, quasi-static articulatory
configuration and are therefore called monophthongs (Greekmonóphthongos frommónos “single”
and phthóngos “sound”). There are, however, also diphthongs ( Greek diphthongos from di “double”
and phthóngos “sound”), which are produced by a non-stationary articulation. where the beginning
vowel glides towards an end vowel: the phrase no highway cowboys, for example, contains five of
these gliding vowels, or diphthongs. The diphthongs occurring in both English and German are [aI

“
]

and [aU
“

], while German additionally contains [OY
“

] and English instead uses [OI
“

] and additionally [eI]

and [oU]. All vowel sounds are sonorants.

2.3. Consonantal sounds

Consonants (Latin consonans from conmeaning “with” and sonaremeaning “to sound”) are sounds
that are produced with an obstruction somewhere in the vocal tract (although confusingly, not all
consonants are also obstruents). They are classified by the place and manner of this obstruction.
The obstruction is formed when an articulator moves towards a place of articulation. A consonan-
tal sound can therefore be specified by naming these two components. A “labio-dental” sound,
for example, is a sound where the lower lip (Latin labium) as the articulator moves towards the
teeth (Latin dens) to form the obstruction (see the numbered arrows in Figure 2.1). To differenti-
ate further between sounds formed at the same place of articulation with the same articulators,
the so-calledmanner of articulation describes the way the sound is articulated at that place in cate-
gorical terms. There are a total of seven manners of articulation [35], although some sources use
six (e.g., [27], see section 2.3). Three of these categorize the degree of the obstruction: A stop is a
sound including a complete closure as the obstruction (e.g., [p] in peace), a fricative has a narrow
constriction instead (e.g., [f] in fleece), and an approximant has a slightly wider constriction (making
the sound vowel-like, e.g., [w] in wheeze). In addition to these, other manners of articulation used
to describe consonantal sounds are trill (caused by an airflow-induced vibration of the articulator,
e.g., [r] in Spanish perro), tap (which is essentially a very brief stop, e.g., [R] in latter), lateral (in which
the airflow is directed through a lateral canal formed by the tongue, e.g., [l] in fall), and nasal (which
is produced with a lowered velum, e.g., [m] in home). Since consonants can be produced using ei-
ther a voiced or voiceless excitation (see section 2.1), a fully qualified consonant name consists of
three components: (1) excitation mode, (2) articulator and place of articulation, and (3) manner of
articulation. The consonant chart in Appendix A uses this terminology to describe the consonantal
sounds of most languages. The subsets occuring in English and German, which are most relevant
for this dissertation, are summerized with examples at the end of this chapter in Table 2.2b. The
following subsections discuss the manners of articulation mentioned above in greater detail.
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(c) Example vowel articulations. The dashed lines are the contours of the side
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Figure 2.2.: Articulatory and acoustic vowel spaces. While the relative order of the vowels is very
similar in both spaces, the distances between the sounds are very different.

Nasals

A nasal sound is articulated with a lowered velum and thus an open velo-pharyngeal port, which is
the opening between the nasal cavity and the pharynx. Theoretically, many sounds can be nasalized
in this way (e.g., the French nasalized vowels [Õ] in bonjour), but in English and German, only the
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2. Fundamentals of phonetics

three nasal consonants [m], [n], and [N] exist as the nasalized versions of [b], [d] and [g], respectively
(see Figure 2.3). Nasalized sounds in English and German are always voiced. They are also counted
as sonorants because there are no major turbulences in the airflow through the vocal tract.

[m] [n] [ ]

Figure 2.3.: Example articulations of the three English andGermannasal consonants [m], [n], and [N].
Note the lowered velum and thus open velo-pharyngeal port, which causes the airflow
to continue despite the closed oral cavity. The dashed lines are the contours of the side
of the tongue.

Stops

During the articulation of stops, a complete closure is formed in the vocal tract that stops the airflow
(hence the name). With the airflow stopped and the velum raised, the pressure in the oral cavity
rises. After typically 50ms to 150ms of complete closure (and thus a short period of silence in the
speech signal), the closure is rapidly released and the built-up pressure discharges in a sudden
burst sound (see subsection 2.4.3), e.g., in pie or buy. The vocal folds can be either abducted (glottis
is open), which results in voiceless stop sounds ([p, t, k]), or adducted so that they start vibrating
once the airflow resumes (i.e., the closure is released), which results in voiced stops ([b, d, g]. Both
English and German use all six of these stops in addition to the glottal stop [P], which is a sudden,
deliberate closure of the glottis causing the flow-induced vocal fold vibration to stop.

[p|b] [t|d] [k|g]

Figure 2.4.: Example articulations of the three English and German stops [p|b], [t|d], and [g|k]. The
supra-glottal articulatory configuration is the same for each voiced-voiceless pair. The
dashed lines are the contours of the side of the tongue.

Some sources (e.g., [27]) include nasals such as [m] and [n] in this category, since they are very
similarly articulated and also include a closure in the oral cavity (see Figure 2.3). However, these
sounds do not exhibit the closure release dynamics that are characteristic for stop sounds and they
belong to the subset of sonorant sounds, whereas stop sounds are obstruents. Therefore, for the
purposes of this dissertation, I will adhere to the commonly used system that includes nasals as
their own manner of articulation.
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2.3. Consonantal sounds

Fricatives

Fricative sounds are produced by very close approximation of two articulators, which creates a nar-
row constriction that causes the airflow to become turbulent. The result is a hissing or whistling
sound as in, e.g., the words freeze or seize. Fricatives can be voiced or voiceless. The fricatives [f|v],
[s|z], and [S|Z], as well as the glottal fricative [h] occur in both German and English. In addition to
these, English also contains a dental fricative [T|D], and German contains the voiceless palatal frica-
tive [ç] and the voiceless velar fricative [x]. The voiced palatal fricative [J] is also sometimes described
as the palatal approximant [j] [36]. The voiced velar fricative is [G]. However, in this work, I will tran-
scribe the voiced counterpart of [x] by the symbol [K], which actually stands for the voiced velar
fricative or the velar approximant in narrow transcription. The so-called /r/-like (or rhotic) sounds
are a complicated subgroup of consonants that have various (sometimes context-dependent) re-
alizations in many languages. For the purposes of this dissertation, this broad transcription (as
phonetically imprecise as it may be) is adopted because it represents the way the [K] was produced
in the synthesis experiments (see chapter 6). All fricatives are obstruent consonants.

[f|v] [s|z]

[ | ] [ç| ] [x| ]

[ |ð]

Figure 2.5.: Example articulations of the fricatives [f|v], [s|z], [S|Z], [ç|J], and [x|K]. The supra-glottal
articulatory configuration is the same for each voiced-voiceless pair. The dashed lines
are the contours of the side of the tongue.

Affricates

When the release of a stop is extended in duration and strongly frictional, this phase can be per-
ceived as a separate fricative sound. When this segment is notably different from the two sounds
being produced “separately”, this compound sound is called an affricate (or affricative) [35]. In En-
glish, there are only the two affricates [

>
tS] (as in watch) and [

>
dZ] (as in jungle), while in German the

affricates [
>
pf] (as in Pflaume) and [

>
ts] (as in Katze) occur as well. When observing the two phases

of the affricate separately, they appear to be identical to the constituent stop and fricative. The
phonetic difference lies solely in the time dynamics due to the slower release of the stop. A con-
trastive example in English are the phrases why choose [waI

>
tSu:z] and white shoes [waIt Su:z], and in

German the wordsMattscheibe ["matSaI
“

b@] undMatschhose ["ma
>
tSho:z@]. Just like fricatives, affricates

are obstruent consonants.
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2. Fundamentals of phonetics

Approximants

When the approximation of the two articulators is too close to be a clear vowel, but not close enough
to cause a strongly turbulent airflow, the resulting sound is called an approximant. The palatal
approximant [j] occurs in both English (year) and German (Jahr), while English additionally contains
the labio-velar approximant [w] (as inwhat) and the alveolar (or post-alveolar) approximant [ô] (as in
read). In English and German, only voiced approximants exist. The palatal approximant [j] and the
palatal fricative [J] are often difficult to distinguish. For the purposes of this dissertation, they are
treated as the same sound and thus the voiced palatal fricative is transcribed as [j] for simplicity’s
sake. Approximants are sonorant consonants.

[j][ ][w]

Figure 2.6.: Example articulations of the approximants [w], [ô], and [j]. The dashed lines are the
contours of the side of the tongue.

Trills

A trill is produced by bringing a loosely-held articulator close enough to another articulator so that it
starts to vibrate. This vibration is induced by the airflow and thus similar to the vocal folds’ vibration.
In both Standard German and General American English, trills do not exist, but there are dialects in
both languages that do include them, especially as realizations of the phonem /r/ as in rye in the
Scottish dialect or richtig in many Bavarian German dialects.

Taps

Taps are a single tap of a loosely-held articulator against a second articulator and thus are essen-
tially very quickly articulated stops. In English, themiddle sound in letter is often realized in this way
but there are no taps in German. Taps are obstruents.

Laterals

A lateral sound is produced by closing the vocal tract along the mid-line, but leaving one or two
openings on the side (laterally), where the airflow can still continue. In English and German, this
is only the case for the sonorant sound [l] as in, e.g., love or Liebe. There is no voiceless lateral
consonant in English or German.
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2.4. Acoustic properties of speech sounds

[l]

Figure 2.7.: Example articulation of the lateral [l]. Note the lowered side(s) of the tongue (indicated
by the dashed line), which forms a narrow lateral canal for the air to flow through.

2.4. Acoustic properties of speech sounds

Most of this chapter deals with the articulation of speech sounds (articulatory phonetics), but a
brief excourse into the acoustic properties of speech sounds (acoustic phonetics) will also be help-
ful to discuss certain aspects of the articulatory synthesis in chapter 6. The symbolic notation used
throughout this work is according to [37], while the concepts and relationships presented are ac-
cording to [29] and [23]. Speech acoustics can be deconstructed into two components: a harmonic
component, which is caused by a vibrating sound source (usually the vocal folds) and shaped by
the vocal tract acting as an acoustic resonator, and a noisy component, which is caused by aerody-
namic, turbulent sources in the vocal tract “tube”. Both components will be discussed separately
here but always occur together in different compositions in natural speech.

2.4.1. Vocal tract resonances and formants

As mentioned in section 2.1, a (mostly) open vocal tract acts as an acoustic resonator that is excited
by the airflow pulses injected through the oscillating glottis (voiced excitation). These resonance
frequencies fRi (where i is the index of the resonance ordered from low frequencies to high frequen-
cies) of the resonator are determined by its geometric configuration, i.e., the tongue position and lip
rounding. These resonances shape the acoustic spectrum of the glottal excitation signal and lead
to local maxima of the energy in the spectrum of the radiated speech called formants, which are
usually identified by their center frequencies Fi. However, the maxima measured in speech spectra
are not necessarily identical to the resonance frequencies fRi due to the interaction of the vocal tract
frequency response with the harmonic excitation structure. The latter are the maxima of the con-
tinuous frequency transfer function of the vocal tract that is independent of the excitation signal.
But since the excitation signal is a (continuous) periodic signal, it has a discrete spectrum containing
spectral lines at the fundamental frequency f0 of the vocal fold oscillation and all integer multiples
thereof (the harmonics). Under the assumption that an open vocal tract is a linear acoustic system
and thus does not add any frequency components to the input signal, each formant frequency Fi
can only be one of the discrete signal components already present in the excitation signal (see Fig-
ure 2.8). Formant extraction methods may correctly estimate the envelope of the spectral signal,
but the most frequently used methods based on Linear Predictive Coding (LPC) are still prone to
errors due to influences of the glottal time dynamics [38, 39]. Formants are most frequently used
to describe vowel sounds, which have very distinct, individual formant structures (see the exam-
ple spectrograms shown in Figure 2.9). In fact, when analyzing the first two formants F1 and F2 of
different vowels, a pattern emerges (see Figure 2.2b) that is very similar to the vowel chart shown
in Figure 2.2a. Note that despite the apparent correlation between the acoustic property F1 and
the articulatory property of tongue height or vocal tract openness, and between F2 and the tongue
frontness/backness, these relationships should not be considered to be one-to-onemappings since
other degrees of freedom of the vocal tract (e.g. the lip protrusion) may also affect the formants
(as in /i/ versus /y/). Nevertheless, the perceptual relevance of the first two formants and the diffi-
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Figure 2.8.: Excitation spectrum (source), vocal tract transfer function (filter), and spectrum of the
signal at the lips. For low f0 (black and gray lines), the high density of harmonics means
that the difference between the formant frequencies Fi and the resonance frequencies
fRi may become smaller. When f0 is high (only black lines), however, the harmonic struc-
ture becomes more sparse and fRi and Fi diverge more strongly.
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Figure 2.9.: Spectrograms of (synthetic) realizations of the corner vowels /a/, /i/, and /u/. The for-
mants Fi show up as dark, high energy bands and their absolute and relative positions
are major acoustic distinctive features of the sound identity.

culty to precisely measure higher-order formants led to the common convention of defining vowel
sounds by their first two formant frequencies (see Figure 2.2b).
While formants are the result of the resonances of the main tube of the vocal tract (the pharynx

and oral cavity), other side branches (e.g., the nasal cavity during nasalized articulations) impact
the final transfer behavior, too. These side cavities add resonances but also absorb energy from
the sound wave in the vocal tract in a frequency-selective way and thus introduce attenuations
at certain frequencies defined by their geometric dimensions called antiresonances, consequently
creating antiformants in the speech signal.
Although mostly used to describe vowel sounds, formants are a result of a voiced excitation of

the vocal tract in a specific configuration. Therefore, any sound with a voiced excitation exhibits a
formant structure, including consonants (as shown by the examples in Figure 2.10). However, the
relationship between the observablemaxima in spectra of non-vowel sounds and the resonances of
the vocal tract is much more entangled due to the complex interactions of the (supraglottal) sound
sources and the vocal tract. Therefore, consonants are generally discerned by a different property
(the side cavities for nasals and laterals, the temporal pattern for stops, or the noise components
for fricatives) and thus usually not described in terms of their formants.

2.4.2. Noise sources in the vocal tract

Whenever the airflow in the vocal tract becomes turbulent, a new additional sound source is created
that adds a noisy component to the speech signal. This noise can be very subtle and have little im-
pact on the perceived sound identity (e.g., during breathy phonation), it can be a distinctive feature
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2.4. Acoustic properties of speech sounds

to distinguish between sounds (e.g., in voiced/voiceless pairs of consonants like [v] and [f]), or un-
wanted and/or pathological as in hoarse voices. The characteristics of these noise sources depend
on the exact configuration of the turbulence-causing constriction (cross-sectional area, circumfer-
ence, involved articulators) and on the position within the vocal tract or, more specifically the tube
systems up- and downstream from the constriction. Examples for different noise characteristics
are given in Figure 2.10.
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Figure 2.10.: Example spectrograms of voiced (left) versus voiceless (right) minimal pairs. In the
voiced examples, formants can still be recognized as they stand out from the noise
floor. In the voiceless examples, the signals apparently consist entirely of shaped noise
with no harmonic structure.

2.4.3. Time dynamics

Some sounds are mostly defined by the static vocal tract shape (like vowels and fricatives) and
thus have fairly static acoustic properties, while others are very distinctly defined by their temporal
pattern and therefore have more pronounced time dynamics. The flow-induced vibration of the
primary articulator in trills, for example, causes a secondary oscillation in the time domain, which is
superimposed on the periodicity caused by the (higher) fundamental frequency of the vocal folds
vibration. Stops, however, have an even more complex temporal acoustic structure, reflecting the
two articulatory stages (closure, release) by five acoustic stages: When the vocal tract is closed, there
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is very little acoustic signal (stage 0). Instead, the pressure in front of (upstream) the constriction
rises until it matches the subglottal pressure, causing the airflow through the glottis to stop. When
the primary articulator starts to release the full closure, the initial release is accelerated by the force
exerted by the pressure upstreamof the constriction, causing an initial transient (stage 1) of acoustic
energy as the airflow suddenly increases. This increase of airflow comes with a sudden pressure
drop and the rate of increase of the area at the constriction becomes slower after this initial flow
pulse. The small opening in the beginning of the release now causes turbulence in the airflow
and thus frication noise (stage 2). As the constriction becomes larger, the friction noise turns into
aspiration noise (stage 3) before the voicing sets in (stage 4) for the following vowel. The aspiration
noise is generated at a secondary constriction arising from the articulatory context, i.e., not at the
place of articulation itself. The time from the release of the closure to the beginning of the voicing of
the following sound is called Voice Onset Time (VOT) and is an important feature that varies across
different places of articulation (see examples in Figure 2.11), but also across languages [40] and
many other factors, e.g., age [41]. Besides VOT, Figure 2.11 also illustrates how the other stages
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closure transient frication aspiration voicing
Figure 2.11.: Voice Onset Time (VOT) of voiced (top) and unvoiced (bottom) stops produced in an

[a:] context. Not all stages are present in all sounds.

are also affected by the voicing of the stop and the place of articulation: voiced stops generally
have hardly any aspiration noise as the vocal folds resume oscillating soon after the supra-glottal
pressure drops in the initial transient. In (voiced and unvoiced) labial stops, the transient burst
sound is barely noticable. In alveolar and velar stops, the transient burst ismuchmore pronounced.
The exact temporal composition, sequence and pattern of the four stages (and even the duration
of the “stage 0” closure) may all contribute to the discrimination of the different stop sounds.

2.5. Coarticulation

So far, each phoneme (the smallest unit of speech that is used to distinguish different words [42])
was assigned a single articulatory realization or phone. However, the same phoneme may be re-
alized very differently depending on the sounds preceding and following it (the phonetic context).
This phenomenon is called coarticulation. In [43], the authors explain the concept by comparing
the articulatory domain to the written word: When a typewriter produces a sentence, it produces
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it one letter at a time, using a separate hammer for each letter with no inter-dependencies or in-
terferences between each individual symbol. When the vocal tract produces connected speech, it
cannot “jump” from one articulatory configuration to the next one. Instead, it has to move along
a path that is very distinctly defined by the starting and end point, all the while speech is being
produced continuously. A more fitting analogy than the static typewriter, the authors claim, would
be cursive handwriting, where the letters are produced in a connected, continuous fashion and
each letter therefore may look slightly different depending on which letters came before or after
it. While these metaphors are slightly contrived (since they, e.g., do not consider the motor task of
hitting the sequence of typewriter keys), they serve to illustrate two main aspects of coarticulation:
(1) The planning of the motor task of articulation and (2) the physical and biomechanical influence
of the context on a particular realization of a speech sound. An example for coarticulated phones
corresponding to the phoneme /k/ are the words caw [kO:] and key [ki:]. In the former realization,
the lips are likely already in the rounded configuration of the following [O:]while they are likely quite
unrounded in the latter realization, as necessary to produce the [i:] following the stop. You could
say that the vocal tract anticipates the later articulations, which is why this influence of a later sound
on the articulation of one or more preceding sounds is called anticipatory coarticulation. Coarticu-
lation can also have the opposite effect, where a preceding sound influences the articulation of one
or more later sounds. This is called carry-over coarticulation and was, e.g., observed in the articu-
lation of vowels in nasal contexts [44], where the vowels are nasalized due to the velum still being
lowered from previous nasals. There are many studies regarding coarticulation (see [43] for a good
introduction) and numerousmodels (see [45] for an overview) based on various assumptions of the
underlying mechanics. A basic explanation for the observed effects can be found in the principle of
economy of the speechmotor system: A speaker only realizes the minimum requirements for their
speech to be understandable. If an articulatory feature does not obfuscate the sound identity to
the point that it might be mistaken for another sound, it does not have to be changed. The lowered
velum of the first [n] in banana [b@"næn@], for instance, can be kept in that position for the entire
utterance even though it causes the vowel [æ] to be nasalized because nasalization of vowels is not
a discriminant feature in English. That way the movement to lower and raise the velum does not
have to be repeated for the second [n], which is more economical in terms of energy conservation
but would also otherwise limit the speech rate because of the inertia of the velar movement. Simi-
larly, an inter-vocalic fricative might look very much like the vowel vocal tract shape, except for the
critical constriction used as a distinctive cure for the respective fricative.
The notion of economy is only a very shallow understanding of coarticulation, however, which is a

complicated and deep issue, subject to many studies and analyses (as reviewed in [45]). Within the
scope of this dissertation, the important concept to point out is that the actual observable number
of different vocal tract configuration is much higher than the number of phonemes in a language
and even higher than the number of canonical phones because the context in both directions (be-
fore and after the sound of interest) can have an effect on the specific realization of a sound.

2.6. Phonotactics

While the phenomenon of coarticulation greatly inflates the number of vocal tract shapes to con-
sider in connected speech, there are also some constraints on the possible sequences of sounds
permitted in any given language. These constraints are called phonotactics (from Greek phōné
“voice, sound” and tacticós “having to do with arranging”) and are not part of phonetics, because
they are not part of the speech production processes, but of the linguistic discipline of phonology,
because they are part of the structure of a language. They are therefore highly language-specific
and can be formulated at the level of syllables aswell as the level of phonemes. Syllables are divided
into three parts: onset, nucleus (Latin for “core”), and coda (Italian for “tail”). Onset and coda are
generally optional, while the nucleus is obligatory. Within each of these parts, not all combinations
of phonemes are allowed. Onset and coda generally do not include vowel sounds. The nucleus
usually contains a (monophthong or diphthong) vowel, but may also be a so-called syllabic conso-
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nant, e.g., the [n] in the two-syllable word bitten ["bIt.n
"
] (the . symbol marks the syllable boundary).

This structure alone hardly reduces the number of possible sequences, however. To give a tangi-
ble example of the importance of phonotactics, we will follow the argument and rules for English
presented in [46]: We can assume that an English syllable consists of zero to three consonants in
the onset, always a vowel sound or syllabic consonant in the nucleus, and zero to four consonants
in the coda. The long-form calculations necessary to arrive at the numbers in the following are
given in section B.1. If all combinations of the sounds introduced in this chapter were allowed in
English, there would be about 75 billion possible syllables. This staggeringly high number, how-
ever, is greatly reduced by a number of phonotactic rules. As mentioned above, these rules are
very language- (and even dialect-) specific and cannot be generalized. For English, one very basic
rule is that no consonants can be consecutively repeated in any part of a syllable. This constraint
reduces the number of syllables to about 61 billion, a reduction of almost 20%. Other phonotactic
rules are that the velar nasal /N/ never occurs in the onset of a syllable and the glottal fricative /h/

never occurs in the coda, which leaves about 45 billion possible syllables. The affricates /
>
tS/ and

/
>
dZ/ and the glottal fricative /h/ can only occur in the onset if they are the only sound. This slightly
more complex rule leaves about 29 billion syllables. In two-consonant onsets, a number of rules
can be applied. The first consonant must be an obstruent (so a fricative or stop) and the second
consonant must not be a voiced obstruent. Also, if the first consonant is not an /s/, the second
consonant must be /l/, /ô/, /w/, or /j/. These constraints on two-consonant onsets reduce the
number to 28 billion. For longer sequences of consonants, every subsequence must itself obey all
the phonotactic rules. For the onset, that means that the second consonant in a three-consonant
onset must obey both the rules for the first and the second consonant in a two-consonant onset.
Therefore, it can only be an obstruent (because of the rule for the first consonant) but it cannot
be a voiced obstruent (because of the rule for the second consonant. This leaves only the voice-
less obstruents /p/, /t/, /k/, /f/ and /T/ as options for the middle consonant in a three-consonant
onset. Since only voiceless obstruents are allowed as the second consonant, only /s/ is allowed
as the first consonant and only /l/, /ô/, /w/, or /j/ are allowed as the third consonant, according
to previously defined rules. This constraint on three-consonant onsets in addition to the rule that
the syllable coda must not contain /w/ or /j/ reduces the number of possible syllables by several
orders of magnitude to approximately 284 million. A final simple rule that can be applied to the
coda is that the second consonant in a two-consonant coda cannot be /N/, /D/, /ô/ or /Z/. Also
considering this for substrings in a three-consonant coda, this brings the number of syllables down
to about 147 million syllables. These simple rules therefore eliminate more than 99% of the possi-
ble combinations of articulations in General American English. This number can be reduced even
further by more specific rules governing the co-occurrence of certain sounds to eventually arrive at
only around 6 million syllables (a reduction of 99.99%, see [46]).

For German, the phonotactic constraints aremore easily defined explicitly, instead of formulating
them as rules. Assuming the same syllable structure as for English, the total number of possible
German syllables would be about 85 billion. According to [47], however, there are only 50 possible
consonant sequences in the syllable onset in German and about 160 possible sequences in the coda
(as shown in Table 2.1). This immensely reduces the total by more than 99.9% to only 136000.
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— h j z f S Sp St b d g p pf t ts tS k

l fl Sl pl bl gl pl pfl kl

r fr Sr Spr Str br dr gr pr pfr tr kr

v Sv tsv kv

m Sm

n Sn gn kn

sk

skl

(a) Onset

— l r m n N p t pf k f S ç x

lm ln lp lt lk lf lS lç

rl rm rn rp rt rk rf rS rç

mp mpf mS plus additional suffixes

-s, -t, -st, -ts

nf nS nç

Nk

tS

pS

ft

(b) Coda

Table 2.1.: Consonant sequences occurring within German syllables (according to [47]).

Other languagesmay have similar or different rules andmay bemore or less constraining regard-
ing sound sequences. The large difference between the numbers of possible syllables in German
and English can be easily demonstrated by the concept of a minimal set. All words that only differ
in a single sound in the same position form a minimal set. In English, large sets can be easily found
(e.g., crock, creek, crook, crack, crick, crake, croak - [kôAk], [kôik], [kôUk], [kôæk], [kôIk], [kôeIk], [kôoUk]),
while in German, these sets tend to be smaller due to the phonotactic constraints.
Similar to theway that phonotactics limit the possible sequences of articulations that formaword,

higher-order linguistic concepts can limit the sequences of words that form a connected utterance.
A language-specific grammar, for instance, can define the part-of-speech of a word in a specific lo-
cation, which may exclude certain words and thus limit the number of possible combinations, as
well. Thesemodels are summarily called language models and are commonly used in Large Vocabu-
lary Continuous Speech Recognition (LVCSR) to limit the number of words the system has to choose
from for any given context. Sometimes these models are explicit (e.g., rule-based) and sometimes
they are learned as part of the system (e.g., by using a Recurrent Neural Network (RNN)). In the
former case, they are based on expert-knowledge and in the latter case they are based on a large
set of labeled training utterances.

2.7. Summary and implications for the design of an SSI

Speech sounds are produced by airflow from the lung through the glottis and a variably shaped
vocal tract. Speech consists of a finite, relatively small set of phonemes, which are the smallest
units of speech that, when swapped, change the perception of the word. Each phoneme can be
realized by one or more phones, which are the actual articulatory configurations of the vocal tract
that result in the acoustic speech signal. The phonemes of English and German are summarized
in Table 2.2. They can be grouped into vowels and consonants. Vowels are marked by a mostly
open vocal tract, while consonants have a very narrow constriction or even closure somewhere
inside the vocal tract. Consonants can be produced with a voiced excitation (the vocal chords are
vibrating) or voiceless excitation (the vocal chords are not vibrating) and this voicing is a feature
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that is used to distinguish between phonemes. In connected speech, sounds before or after a
particular sound can influence its articulation, which is an effect called coarticulation. The number
of actual vocal tract configurations for any given language is thereforemuch larger than the number
of its phonemes. Linguistic models (phonotactics or higher-order language models) can reduce the
number of possible sequences of articulations by eliminating impossible or unlikely combinations,
but must be explicitly specified or learned from a large number of examples.
From the perspective of an SSI, a number of challenges arise from this basic understanding of

articulatory phonetics: The approximation of the vocal tract as a shapeable tube calls for a data ac-
quisition frontend that is not only able to capture the position of the primary articulators, but also
has to keep track of the secondary articulators (for consonants) or the vocal tract boundaries (for
vowels) relative to them so that the tube shape can be extracted. The sensing of the articulators
should also cover at least the entire oral cavity and the lips. Even thoughmost articulations are well-
defined by the mid-sagittal slices shown in the schematic figures in this chapter, some sounds are
more precisely identified by additional lateral information. Besides for the obvious lateral sounds,
this is also useful for the accurate measurement of the cross-sectional area of critical constrictions,
which is very important for the noise characteristics of fricatives and stops in an Articulation-to-
Speech (ATS) system. The temporal resolution also needs to be sufficiently high to not only correctly
capture the transient movements from one phone to the next one, but also to resolve the various
stages within stop sounds, at least in an ATS system. The spatial resolution of the measurement
technique needs to be high enough to distinguish the various places of articulation, which can be
just a few millimeters apart, especially near the incisors and the alveolar region. The number of
phones is a challenge for the mapping algorithms employed in both Articulation-to-Text (ATT) or
ATS systems, especially when also considering coarticulation. From the overview in Table 2.2, it is
evident that the vowel systems are quite rich (especially the German one) and there are many vow-
els that have very similar articulations. Similarly, the various manners of articulation of consonants
are also very similar in terms of articulation, even though they have quite different acoustic results.
The sounds [ô], [z] and [d], for example, only differ by a fewmillimeters in distance of the tongue tip
from the alveolar ridge, but the acoustic result ranges from harmonics-dominated (approximant)
through noise-dominated (fricative) to silence (closure phase of the stop). Theseminute differences
require a highly-precisemeasurement technique. Some shortcomings of ameasurement technique
may be compensated by using a language model, which can improve the recognition rate in an ATT
system by eliminating impossible or unlikely combinations. In ATS, however, this kind of process-
ing would impose language-specific constraints on a theoretically language-independent system
(at least in direct ATS) and adds another layer of processing, which may be critical in a real-time
application.
All of the requirements described above are difficult to quantify in a generalized way. Instead,

as long as one can reasonably assume that a measurement technique meets them sufficiently well
(i.e., there are no fundamentally unsuitable properties like a seconds-long measurement period),
the technology should always be evaluated in terms of the recognition or synthesis result in an
end-to-end fashion. Therefore, chapter 3 presents the current state-of-the-art of articulatory data
acquisition techniques in SSIs by using those metrics as indicators for their performance.
Finally, some sounds can only be distinguished by their voicing, while the supra-glottal articula-

tion is the same. Similarly, the fundamental frequency f0 is generated by the vocal folds and as
such not “visible” in the supra-glottal articulatory data. These issues are of general concern for all
data acquisition techniques and thus form a somewhat separate problem than choosing the right
measurement technology. Therefore, they will be separately investigated in section 6.7.
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Sound Example Sound Example
English German English German

/A/ palm — /I/ kit mit
/a/ — Bahn /O/ thought offen
/e/ — Beet /U/ foot Butter
/i/ fleece Tiere /œ/ — Götter
/o/ — Boote /Y/ — Mütter
/u/ goose Bude /aI

“
/ price Mai

/æ/ trap — /OI
“

/ choice —
/E/ dress Bett /OY

“
/ — Heu

/ø/ — Höhle /aU
“

/ mouth Sau
/y/ — Güte /eI/ face —
/5/ strut Ober /oU/ goat —
/@/ about viele

(a) Monophthong and diphthong vowels.

Sound Example Sound Example
English German English German

/p/ pit Post /b/ bit aber
/t/ tin tief /d/ din Ader
/k/ cut kurz /g/ gut Lager
/f/ fat Fahrt /v/ vat Wange
/T/ thigh — /D/ though —
/s/ sap Last /z/ zap Wiese
/S/ dilution Schule /Z/ delusion Plantage
/ç/ — ich /j/ you jung
/x/ — Buch /r/ run rot
/h/ ham Haus /w/ we —
/

>
pf/ — Topf /m/ map Mord

/
>
ts/ — Zaun /n/ nap Nord

/
>
tS/ cheap deutsch /N/ thing Ding

/
>
dZ/ jeep — /l/ left alle

(b) Voiced and voiceless consonants.

Table 2.2.: Examples of the (General American) English [48] and (Standard) German [49] monoph-
thong and diphthong vowels and consonants.
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3. Articulatory data acquisition
techniques in Silent-Speech
Interfaces

3.1. Introduction

As the previous chapter 2 has shown, many articulators are part of the speech produciton pro-
cess. Unfortunately, most of them are not easily observed during articulation because they are
hidden from view inside the vocal tract. In order to analyze, capture, and classify articulatory data,
these movements need to be made accessible by technological means in the form of some kind
of articulatory data acquisition technique. When comparing the technological landscape in SSIs
with the one in traditional, acoustic signal-based speech interfaces, the major difference is the lack
of an “articulatory microphone”: There is no gold standard of a data acquisition technique, which
makes comparing different approaches to SSIs and “cross-pollination” between different research
groups is very limited, since the findings of one group using one particular technology may barely
apply to another group’s different technology. Even if both technologies major the same under-
lying processes of articulation, the nature of the captured data may be very different in terms of
dimensionality, complexity, specificity, noise level, and so on. Therefore, algorithms that work well
with one kind of data, do not necessarily work well with others. So while during the design of an
acoustic speech processing system an engineer can easily pick and choose some well-established
building blocks across the entire pipeline (e.g., denoising, beamforming, feature extraction meth-
ods, or pre-trained models language or speaker models), each SSI has to be created from the very
bottom up and the data acquisition frontend is usually inextricably entwined with the recognition
or synthesis backend. Consequently, this chapter presents an overview of the technologies that
have been developed for and/or employed in Silent-Speech systems alongside with the studies and
algorithms they were used in.
This overview was greatly facilitated by the review papers [50] and [51], but updated and ex-

panded where appropriate. The structure of each entry in this chapter is as follows: after a brief
review of the historical context, each articulatory data acquisition technology is discussed sepa-
rately. Each discussion follows roughly the same pattern: the respective pioneering works are dis-
cussed in detail, then the development of the technology over the years is summarized, and finally
the state-of-the-art in that particular area is presented in more detail once again. This structure
was chosen to highlight how immediate any successes using this particular technology were from
the start and where the bar was moved over the years until now. Since the field of SSI research
is quite fragmented, the goal of this approach is to give an idea if a technology remains promising
andmay deliver even better results if a wider audience were interested in it, or if results have never

25



3. Articulatory data acquisition techniques in Silent-Speech Interfaces

really improved beyond the initial work because of some intrinsic shortcomings and idiosyncrasies
of the respective technique. This chapter also deviates from the conventional structure of separat-
ing the summary of the state-of-the-art from the descriptions of the methodical background and
instead explains the various pattern recognition and signal processing techniques in the context of
the respective studies that used them. Again, the fragmentation and non-existence of standards
and conventions in the field of SSI research led to a sprawling catalog of methods, where almost
every study used entirely different processing pipelines. Therefore, these in-situ descriptions were
preferred in order to have all the necessary information in the same place.

While there are of course numerous challenges inherent to every individual technology, some
issues are more general problems in the context of SSIs. One of these issues is the modality
of the speech that is used as input. As several studies using different technologies have shown
(e.g., [52, 53]), there is a significant difference in both the static articulator positions and also their
movement depending on the speakingmodeof audible speech, whispered speech, and truly silently
mouthed speech (sometimes called the silent Lombard effect because of a similar, well-known ef-
fect [54] occurring in acoustic speech in noisy environments). Another important sidenote is that
most SSIs only capture supraglottal articulation, whichmeansmost importantly that no voicing and
pitch information is directly available. For a practical SSI, these limitations have to be considered
but since they are independent of the sensor technology, they are not explicitly discussed and not
part of the review here. Another important challenge is the articulatory analog of Voice Activity De-
tection (VAD): articulatory movements are not easily distinguishable from backgroundmovements,
e.g., swallowing or even their resting position. Without some kind of framing signal (either derived
from the articulatory data itself or from some sort of external trigger), the intention of the user to
communicate cannot be considered. Because of the technologically fragmented field, no concerted
efforts have yet beenmade to develop such an articulation activity detection algorithm and this issue
is therefore also not considered in this review. Instead, section 6.7 includes a brief discussion of
the state-of-the-art of these issues before presenting some novel approaches to some of them.

For the sake of a concise and succinct comparison of the numerous reviewed studies, the var-
ious performance measures commonly used in the evaluation of ATT systems have mostly been
converted to word accuracy (which is the number of correctly recognized words divided by the
total number of words to recognize). This measure is usually only applied for isolated command
word recognition but used throughout the entire chapter due its intuitiveness. Other measures
(like Word Error Rate (WER)) were converted where applicable. In addition to the different metric,
isolated command word and continuous speech recognition are also difficult to compare. Instead
of discussing this difference for every study individually, I therefore preface the review here with a
small caveat for the reader to consider when comparing between different paradigms: Intuitively,
one would think that continuous word recognition is a much harder task because the number of
words tends to be much larger than in isolated command word recognition studies. However, as
has been brieflymentioned in section 2.6, speech phrases are not just a randomly chosen sequence
of words sampled from the vocabulary but follow a certain syntactical structure (e.g., a noun often
follows an article), which can be exploited to limit the search spacewhen predicting the next word in
a sequence. In isolated command word experiments, this is not the case. The performance of com-
mand word recognition systems therefore scales very poorly with the vocabulary size, while scaling
the vocabulary of a continuous speech recognition is less punishing. The same basic principle can
also be extended to lower-level speech units: isolated phoneme recognition is also a more diffi-
cult task than command word recognition, because just as sentences are a syntactical sequence of
words, words are a phonotactical sequence of phonemes, which can also be used to limit the search
space (see section 2.6). Generally speaking, for the same intuitive performance of an ATT system,
one should expect the phoneme accuracy to be the lowest, the isolated word recognition accu-
racy to be slightly higher, and the continous word recognition accuracy to be the highest (assuming
language models at the phoneme and word level).
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3.2. Scope of the literature review

Even though the field of SSI research is quite young, it is very diverse and a plethora of sensor tech-
nologies have been used in studies to register and/or visualize articulatorymovements. To distill the
current state-of-the-art to a selection of the most relevant technologies, I excluded all techniques
that are obviously non-portable (e.g., Magnetic Resonance Imaging (MRI)), potentially harmful to
the user (e.g., X-ray), or cannot be used silently (e.g., Non-Audible Murmur (NAM) microphones).
In addition to these, all Brain-Computer Interfaces (BCIs) are not included. BCIs are a subset of
SSIs that use some sort of brain-related signal as an input modality, thus essentially constituting a
“Thought-to-Speech” system. Technologies involved in this field are Electroencephalography (EEG),
Magnetoencephalography (MEG) and Electrocorticography (ECoG) (measuring the electric activity of
cortical neurons), and functional Magnetic Resonance Imaging (fMRI) and functional Near-Infrared
Spectroscopy (fNIRS) (measuring the oxygenization of blood as an indicator of neural processing).
However, research using these technologies is currently either lab-bound (ECoG, fMRI, MEG), offers
extremely inconsistent results (EEG), or is even wrapped in scandalous controversies1(fNIRS). Due
to their highly experimental status, BCI-related works are therefore beyond the scope of this review
and I instead point to the review in [55] for further information in this regard.

3.3. Video Recordings

The most intuitive approach to realize an SSI is probably by emulating lip reading, which essentially
constitutes a natural SSI employed by humans as both ameans of supporting and replacing acoustic
speech perception. The term “lip reading” is however somewhat misleading, because human lip
readers also incorporate cues from facial movements, jaw positions, arm and hand gestures, and
even the tongue (when it is visible) into their interpretation. Therefore, this technique is also often
more accurately called speechreading.
In a technical speechreading system, a video camera captures the speaker’s upper body and/or

face during articulation ofwords and the video data stream is then processedwithmachine learning
techniques to classify the image sequences into utterances. So far, all published systems were ATT
systems, but extending these systems by a Text-to-Speech (TTS) stage would be a trivial problem.
The first reported such systemwas developed in 1984 by Eric David Petajan in his dissertation [56]

and then four years later published in an improved version in [57]. His goal was not, however, to
develop an actual SSI, but to support a regular Automatic Speech Recognition (ASR) system with
information from the lip reading subsystem to improve the recognition accuracy in noisy environ-
ments. This multi-modal approach is well-motivated by the fact that humans also use both acoustic
and visual information when interpreting speech sounds; to the extent that the visual information
can entirely override the acoustic information under certain circumstances (the so-called McGurk
effect [58]).
Petajan’s setup consisted of a solid-state camera (with a capture rate of 60 fps), two sets of in-

candescent lamps, and a microphone (for the ASR part of the system) mounted to a head band
in a way that allowed the adjustment of the viewing angle and range. Since the mouth opening
was assumed to be much darker than the facial area, the images were thresholded to produce
binary images where an open mouth (and the nostrils) appeared black and everything else was
white. In these binary images, the contour of the mouth opening was calculated for every frame.
After recording a number of utterances, the contour images were clustered using a custom image
distance measure (which was essentially a Hamming distance scaled by the total black area in the
two operand images). From each cluster, a representative mouth image was taken and added to a
codebook of mouth images (see Figure 3.1).
The system was evaluated using two vocabularies consisting of the spoken English alphabet and

the English digit words zero through nine, respectively. Each utterance was repeated eight times by

1https://www.discovermagazine.com/the-sciences/the-fall-of-niels-birbaumer
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Figure 3.1.: Example codebook of binarymouth images taken from [57]. Each image represents one
speech sound. Themouth opening is not necessarily continuous due to a visible tongue
or teeth.

four subjects and two samples of each letter were used to create the speaker-dependent codebook
for each subject. For each utterance, a binary image sequence was obtained as described above.
To evaluate the system, each image sequence was used as a test sequence once and compared
to all other image sequences of that subject in the respective data set (leave-one-out evaluation).
The comparison was done with Nearest Neighbor classification in two different domains: either by
calculating the distance between the test image sequence and the vocabulary image sequence in
the image domain using the distancemetric described above, or by first vector-quantizing all images
using the aforementioned codebook and calculating a simple difference between the codebook
indices. In both cases, the time alignment was done using dynamic programming. The speaker-
dependent results using only the lip reading modality showed an average performance of 72% to
80% for the letter recognition task and 93% to 100% for the digit recognition task depending on
the subject and whether or not vector quantization was used (with vector quantization generally
degrading the performance).
The authors point out the limitations of their system in the error analysis, which is a general

problem for visual speechreading systems: the set of visually distinguishable phonemes (the so-
called visemes [59]) is a subset of all phonemes in a language. In their vocabularies, this was evident
in the confusion of the letters A (/eI

“
/) and K (/kheI

“
/), B (/bi:/) and P (/pi:/), C (/si:/) and Z (/zi:/), D

(/di:/) and T (/ti:/), S (/Es/) and X (/Eks/), andQ (/kju:/) andU (/ju:/). This list shows that in addition to
the inability to distinguish voiced-unvoiced minimal pairs, which is an often encountered problem
in SSIs, lipreading systems are “blind” to consonants with posterior places of articulation (e.g., /k/

or /ç/) if only the shape of the mouth opening is considered as a feature.
Subsequent work has therefore focused mostly on improving the feature extraction component

of such a system (see [60] and [61] for reviews of these efforts), using hand-crafted features pro-
cessed by shallow (i.e., non-deep learning based) classification models. The state-of-the-art system
from that era [62] reported recognition rates of approximately 50% to 70% on a ten word vocab-
ulary when using manually corrected regions of interest in the image data, albeit in a more robust
(i.e., speaker-independent) fashion. Still, even with these feature engineering efforts and the appli-
cation of (at the time) state-of-the-art classifiers, the problem of distinguishing phonemes that emit
the same viseme remained even in such small vocabularies.
After the meteoric rise of deep learning, Chung and Zisserman [63] were the first ones to signif-

icantly scale up the vocabulary size, which so far had generally been set at ten phrases or words
(with the exception of the spoken alphabet dataset). Instead of relying on the small existing corpora
of visual speech, Chung and Zisserman created their own, substantially larger dataset by automat-
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ically mining BBC broadcasts of news shows and their accompanying subtitle tracks to generate
thousands of hours of spoken text covering thousands of different words with over 1 million word
instances and more than 1000 different speakers. From this vast amount of essentially random
data, a structured subset was selected to constitute the corpus: The 500 most frequently (and at
least 900 times) occurring words between 5 and 10 characters in length. The lower bound of the
word length is chosen to avoid homophenes, which are words consisting of identical visemes (e.g.,
“pat”, “bat”, “mat”) and more likely to occur in short words. The upper bound of the word length
is due to the fact that each word is represented by a one-second video clip, no matter how long
the actual word is (i.e., there is word-level context information in the sequences). The dataset was
partitioned into three non-overlapping subsets: one for training (containing at least 800 instances
of each of the 500 words), one for validation and one for testing (each containing 50 instances per
word). A sample of the speakers and a clip from the dataset is shown in Figure 3.2.

(a) A subset of the over 1000 speakers in the corpus

(b) Two one-second clips containing the word “about” (/@"baUt/)

Figure 3.2.: The Lip Reading in the Wild corpus (both figures taken from [63])

In their landmark paper introducing the dataset, Chung and Zisserman also trained and tested a
Convolutional Neural Network (CNN) to classify the 500 words. The best achieved word recognition
accuracy was 61.1%, while the best Top 10 accuracy (i.e., the true word label was within the first
ten most likely guesses) was 90.4%. Considering the fact that the vocabulary size was an order of
magnitude larger than in all preceding works, these results were very impressive at the time and for
the first time showed the promise of an actually practically relevant automatic speechreading sys-
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tem. However, the exclusion of short words somewhat tarnishes the results, since it is exactly the
problem of resolving homophenes that is the hardest to solve for a speechreading system. Human
speechreaders distinguish between homophenes by incorporating (among other things) syntactic
and phonotactic knowledge, sentence-level context, and even discourse-level context. These tem-
poral patterns are more efficiently learned by RNN and as Chung and Zisserman point out them-
selves in their conclusion, an RNN such as a Long Short-Term Memory (LSTM) to represent a lan-
guagemodel might further improve the results. Indeed, the current state-of-the-art performance is
achieved by Stafylakis et al. in [64] by using a combination of residual networks and LSTMs to score
a word accuracy of 83.0% and a Top-10 accuracy of 98.3% on the Lip Reading in the Wild dataset.
This basically models the phonotactics word-level patterns (since every sequence in the training set
is essentially just one word with an uncontrolled, small number of words preceding and following
it), but no higher-level patterns like syntax or discourse-level patterns (like the domain). The infer-
ence time for a single utterance was in the order of tens of seconds, according to an independent
measurement in [65]. While these results are quite impressive compared to earlier work, the vo-
cabulary size of 500 words is still rather small compared to acoustic-based ASR, where vocabulary
sizes of several 1000 words are quite common. In [66], for example, the authors describe a mobile
ASR system that achieves an accuracy of 88.7% in an open-ended dictation task with a vocabulary
size of 64000 words.

Summary and conclusion

Visual speechreading is a well-investigated task with amajor emphasis on improving the algorithms
to classify individual words. Deep learning based systems are performing at a level where a mean-
ingful system with a limited vocabulary size in the order of hundreds could already be constructed.
The problem of homophenes has so far only been addressed by incorporating word-level context,
but higher-level context has been ignored so far because no dataset is available that contains prop-
erly labeled data for this kind of modeling. Given the difficulty of the task, it seems unlikely that all
homophenes can be resolved through higher-level context modeling, especially when considering
very short words (which have been generously excluded from the state-of-the-art training set). An-
other issue is the data acquisition frontend: the current state-of-the-art systems were trained on
data extracted from TV news broadcasting with an ideal broadcasting studio lighting scene and very
frontal camera viewing angle. For a portable system, the algorithms would have to deal with differ-
ent viewing angles on top of the already existing challenges. Lastly, the state-of-the art system has a
very slow inference speed in the order of tens of seconds, which makes it unsuitable for a real-time
system. Despite their limitations, speechreading systems have been successfully used to support
acoustic-based ASR systems. They could therefore also be considered as an auxiliary modality in a
multi-modal SSI, where the primary modality might be able to resolve the homophenes.

3.4. Ultrasonography

Ultrasonography (US) is a well-known medical imaging technique that exploits the different reflec-
tive characteristics of different tissue compositions. To obtain an image using ultrasound (a sono-
gram), high-frequency (above 20000Hz) sound pulses are emitted into the tissue under analysis
using a transducer probe. Inside the tissue, at every interface of layers with different compositions
and therefore different acoustic impedances, the ultrasound waves are partly reflected and partly
transmitted. The reflected part (the echo) can be registered at the transducer probe and used to
construct an image. The most common way to construct an image from these recorded echos is
to associate the time delay between sending out the pulse and receiving an echo to a tissue pen-
etration depth and the amplitude of the echo (which is a function of the reflection coefficient of
the interface it originated from) is related to a brightness value. This procedure is therefore called
brightness mode or, more commonly, B-mode imaging and is the mode exclusively used in SSIs ap-
plications to date. The images in all US-based SSIs are midsagittal images of the tongue, recorded
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with a transducer probe attached under the chin. An example image is shown inFigure 3.3.

Figure 3.3.: An example sonogram (taken from [67]) similar to the ones used in US-based SSIs. At
the interface between the tongue surface and the air in the mouth cavity, almost the
entire sound wave is reflected, causing the bright white line in the B-mode image.

Both ATT and ATS systems have been developed using US as the data acquisition frontend. The
first such system was presented by Denby and Stone in [68]. Since movement of the head or the
transducer can greatly impact the image quality, a previously introduced support system [69] was
used to immoblize the speaker’s head and maintain a fixed position of the transducer (see Fig-
ure 3.4).

Figure 3.4.: The head and transducer support system (HATS) used in [68] (image taken from [69]).
The head of the subject is completely immobilized to keep the relative positioning of
the transducer under the chin as constant as possible.

With this setup, a dataset was recorded using one subject who read two repetitions of one six-
sentence passage and one nine-sentence passage that were designed to containmultiple examples
of all English phonemes. In total, the data consisted of roughly 2.5min of speech represented by
4491 ultrasound images and a simultaneous audio recording. The authors then extracted 14 points
on the tongue contour in each image using a maximum smoothed spatial intensity gradient crite-
rion. The coordinates of these 14 points were thenmapped to the 12 parameters of the synthesizer
(a parametric vocoder) using a Multi-Layer Perceptron (MLP) with four layers containing 14, 20, 20
and finally 12 neurons per layer. Using a 90%/10% training/test split, the mapping was learned
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using backpropagation. According to the authors, the resulting audio was “not recognizable; but
alternating between original and synthesized recordings, the listener can soon easily pick out most
of the correspondences”. A quantitative measure for the synthesis quality was not provided. De-
spite the poor performance of this first attempt, many subsequent studies have tried to improve on
this system by using different synthesizers, different features, and most importantly, using a video
recording of the mouth as an additional input modality.
The major driver of US-based SSIs was the French research project “Ouisper” [70] that ran from

2006 to 2009 and produced numerous studies that thoroughly advanced the state-of-the-art in the
field. The data acquisition frontend of Ouisper extended the setup by Denby & Stone by a video
camera pointed at the mouth (see Figure 3.5a).

(a) Setup of the data acquisition component

(b) Sample images during recording

Figure 3.5.: The Ouisper system (both images taken from [71])

With this setup, both ATT and ATS systems were developed and evaluated. During the original
funding period of Ouisper, work mostly focused on engineering better features to represent the
tongue shapes in the ultrasound images using statistical models [72] and to optimize the multi-
modal data acquisiton setup [73]. Pilot studies on using the data for an ATS system were carried
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out as well. In [74], the group built a phoneme-level ATT system, which they then extended in [75] to
an ATS by a unit-selection synthesis stage. They reported a phoneme recognition accuracy of 60%
on a dataset made up of 41 of the 44 English phonemes. Intelligibility evaluations of the synthesis
were at this stage not possible due to the rather low accuracy.
The research efforts continued with the same general framework beyond the initial funding pe-

riod of Ouisper and after some incremental improvements in the early 2010s (e.g., [52]), the ATT
stage was finally dropped and a direct ATS systemwas presented in [71], using a statistical mapping
from the hand-engineered tongue and mouth contour features to a statistical, parametric speech
synthesizer without any intermediate recognition step. In order to still benefit from context model-
ing, the authors used full-covariance Hidden Markov Models (HMMs) with dynamic features, which
allowed them to model the timing organization of the articulatory movements as well as the static
tongue and lip shapes. The synthesis quality was evaluated by a transcription test, where ten native
French speakerswere asked to transcribe 30 synthesized French sentenceswith no prior knowledge
of their content. The average word accuracy was around 60%.
In the last few years, a number of studies (also from outside the original Ouisper group) have

started to employ deep learning techniques both for only the feature extraction stage and for the
mapping of the articulatory data to the synthesizer parameters [76]. In [77], CNNs were used to
extract features from the video stream and sonograms, but the recognition itself used statistical
models (HMM-Gaussian Mixture Model (GMM)) to classify the phonemes. The reported phoneme
accuracy was 80.4% trained on a dataset using 34 French phonemes in 488 sentences. The study
in [78] trained a feed-forward Deep Neural Network (DNN) to map hand-crafted features of the
articulatory data to vocoder parameters. The mapping was evaluated in a listening test with 23
Hungarian native speakers rating the naturalness of 15 synthesized Hungarian sentences. The av-
erage naturalness rating was approximately 3 out of 10 (where 10 is very natural and 0 is very
unnatural). Systematic intelligibility tests were not conducted. The same group recently published
a study [79] using an autoencoder network to compress the US images and was able to improve
the naturalness rating to 4 out of 10.
The current state-of-the-art in US-based SSIs was, however, set by [80], using Discrete Cosine

Transform (DCT) features to compress the input images, a feed-forward DNN combined with HMM
decoding to classify the sequences into words, and a language model to constrain the decoding.
This system achieved a word accuracy of 94.13% on a set of 1023 words, greatly improving their
own previous benchmark of 84.3% [81] using the same data and feature extraction technique, but
no DNN and instead going straight to the HMM stage.

Summary and conclusion

Ultrasonography-based SSIs are quite mature and ongoing research is mostly concerned with bet-
ter feature extraction and mapping techniques, while the design of data acquisition composition
seems relatively stable: a transducer probe attached below the chin and a frontal view video cam-
era directed at the mouth. One major drawback, however, is the rigidness of the setup and the
necessary immobilization of the subject. US image quality depends strongly on the coupling be-
tween the transducer and the tissue. Even small disturbances of the coupling can lead to strong
artifacts in the images to the point that any small air gap between the transducer and the tissue
causes total reflection before the ultrasound even penetrates the skin. To improve the coupling,
a hydrogel is used, which needs to be reapplied over time as it wears off during use. It is true, as
most authors in the field point out in their papers, that US is conceptually a portable technology.
Since the setup commonly used in the published studies, however, imposes these restrictions, the
factual portability is severely limited.
On the algorithmic side of the system, achievable word accuracy on practically relevant vocab-

ulary sizes has reached a level that useful out-of-lab ATT systems seem feasible, thanks to deep
learning techniques. For direct ATS systems, the limited number of visible articulators seems criti-
cal: only the tongue back and themouth opening are clearly visible. The tongue tip is often invisible
in the sonogram, as are the palate and the velum. Many minimal pairs can therefore not be distin-
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guished using only the visible information (e.g., the nasal /n/ and the stop /d/, which only differ in
the velumposition, see chapter 2), although someof themmaybe resolved using temporal informa-
tion and languagemodels. The technique therefore intrinsically suffers from the same homophene
problem (albeit with different homophenes) as video-only-based systems (see section 3.3). Lastly,
it is currently unknown how speaker- and session-dependent the trained models are. Given the
diverse anatomy of speakers and the difficult reproducible placement of the transducer probe (es-
pecially without an immobilizing head fixture), it seems unlikely that the systems can be scaled up to
more speakers (or even across several sessions of the same speaker) without severe performance
losses.

3.5. Electromyography

Electromyography (EMG) is a technique to capture the activity (contraction and relaxation) of skele-
tal muscles. The history of EMG runs in parallel with the history of electricity and the slow discovery
of the underlying physiology of what causesmuscle contractions [82]: from Luigi Galvani’s discovery
that electricity can cause amuscle contraction in frog legs in 1797 [83] all the way to the Nobel Prize
in 1932 awarded to Edgar Douglas Adrian and Charles Sherrington for their work on the function
of neurons [84], progress in the neurology and physiology was slow but steady, finally culminat-
ing in the understanding of the underlying processes we have today. The contraction of muscles
is controlled by neural activity [85, Chapter 5-6]: A bunch of muscle fibers are connected to the
nervous system through the endings of a motor nerve. Along that motor nerve, a small electric po-
tential called an action potential can be sent by the nervous system to signal contraction. Due to
chemical imbalances between the inside and the outside of a nerve cell, the resting potential differ-
ence across the cell membrane is −80mV to −90mV (inside is more negative). An action potential
is a rapid depolarization of this membrane potential, i.e., it suddenly becomes less negative, that
spreads along the nerve fiber membrane and can thus establish communication between distant
neurons. The sudden depolarization is caused by the rapid inflow of positive sodium (Na+) ions,
allowed access by voltage-gated sodium channels, and quickly approaches zero or, in case of large
nerve fibers, even overshoots the zero level and becomes positive. After a few microseconds, the
sodium channels begin to close again and potassium (K+) channels begin to open (more than dur-
ing the resting state), allowing the diffusion of positively charged potassium ions to the exterior and
thus the repolarization of the membrane. A typical action potential is shown in Figure 3.6.
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Figure 3.6.: Typical action potential (recreated from [85, Figure 5-6]). The exact timing and ampli-
tudes vary across the different kinds of cells.

When such an action potential reaches the nerve endings innervating muscle fibers, it triggers
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the secretion of a neurotransmitter (acetylcholine). The neurotransmitter in turn triggers an action
potential at each muscle fiber membrane, which travels along the membrane in the same way it
would trave along a nerve fibermembrane. The action potential depolarizes themusclemembrane
and causes the release of calcium ions from a membrane-bound pocket called the sarcoplasmic
reticulumwithin the tissue. These calcium ions then cause attraction between the components that
mostly make up themuscle fiber (large polymerized proteinmolecules called actin andmyosin) and
the fiber contracts. After a fewmilliseconds (the exact number depends on the type of muscle), the
calcium ions are pumped back into the sarcoplasmic reticulum causing the contraction to cease
and the fiber is relaxed again until the next muscle action potential comes along.
Multiple muscle fibers are usually innervated by the same neuron and form amotor unit. On av-

erage, a motor unit consists of about 80 to 100 muscle fibers, but the exact number depends on
the type of muscle: fast-reacting muscles with fine-grained control have more neurons but fewer
muscle fibers per neuron than comparatively slow and imprecise but very strong muscles. Within
a muscle, motor units are not necessarily separate, distinct entities but can also overlap other mo-
tor units to allow supporting contractions without being individually triggered. The intensity of the
muscle contraction can be increased by adding together several of the individual twitch contrac-
tions described above, either by recruiting more motor units to contract simultaneously (multiple
fiber summation) or by increasing the frequency of contraction (frequency summation). In sum-
mary: even a “simple” movement consists of many, many well-coordinated twitch contractions and
many, many action potentials overlapping each other in time and space. Physiological studies and
diagnoses therefore often used needle electrodes [86] to better individually select motor units or
even individual fibers instead of recording only the sum activity. For non-clinical studies, however, a
non-invasive measurement was desirable. Since the electric signals involved in the muscle control
are detectable on the skin surface, a variant called Surface Electromyography (sEMG) was devel-
oped that used surface electrodes to measure the action potentials of the motor neurons on the
skin surface. These electrodes are glued to the skin and measure the compound activity of all mo-
tor units in a comparatively large area with a diameter of up to several centimeters. The signal
quality is therefore much lower than that of intramusculuar EMG: The clearly defined peaks of the
action potentials of the motor unit of interest are “drowned out” by a noise floor caused by a large
number of nearby motor units and even other effects like varying coupling impedance, mechanical
disturbance of the electrode and so on. An example of the difference in signal quality is shown in
Figure 3.7.
SEMG has such low specificity that as of the technological state in the year 2000, the American

Academy of Neurology did not recommend it for diagnosis of neuromuscular diseases or lower
back pain in a report that analyzed more than 2500 articles, reviews and books on the subject
matter [88]. The Academy did find sEMG suitable to record bursts of activity as in chewing, walking,
and breathing and so considered it an “acceptable tool” (a Type C recommendation) for kinesiologic
analysis ofmovement disorders, evaluating gait and posture disturbances, and similar applications.
The report notes that sEMG offers only low signal resolution and is highly susceptible to movement
artifacts. Others have even found an effect of body temperature on the frequency components of
the sEMG signal [89]. Because it is so difficult minimize such interferences, an entire body of work
exists that is only concerned with the right positioning of the electrodes for various applications
and even different subjects (see, e.g., [90–92]).
Nevertheless, articulator activity is a kind of movement and since sEMG is an acceptable tool for

movement analysis (see above), various groups were motivated to explore its suitability for an SSI.
The first documented attempts to use sEMG data in this context were attempted by Sugie and
Tsunoda in 1985 [93] andMorse andO’Brien in 1986 [94] at a time, whenmicroprocessor-controlled
sEMG systems were starting to enter the market [95]. The study by Sugie and Tsunoda aimed at
a full speech prosthesis: recognizing the articulated speech and synthesizing the corresponding
sound (indirect ATS). Since this was the first foray into this application for an at the time still fairly
new technology, they limited the vocabulary to the five Japanese vowels /a/, /e/, /i/, /o/ and /u/.
They employed an sEMG system using off-the-shelve components available at the time to acquire
data with three differential pairs of sEMG electrodes. The electrode pairs were positioned around
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Figure 3.7.: Example comparison between an intramuscular EMG signal measured with a needle
electrode and a an sEMG signal measured with a surface electrode (image taken from
[87]). A: Plantar flexion torque during an isometric ramp contraction from 0% to 40%
Maximum Voluntary Contraction (MVC). B: Surface and C: intramuscular EMG signals
recorded from the medial gastrocnemius muscle. D+E: zoomed-in segment of each sig-
nal. While the overall contraction level appears reflected in the signal level of the sEMG,
the individual discharge instants of the motor unit seem much more difficult to derive
from the sEMG than from the EMG.

the mouth opening of the subject: one pair on the upper lip, one on the chin, and one on the
right cheek. The envisioned speech prosthesis used a two-step technique: recognize the sound
based on the muscle activity (i.e., obtain a text label representing the articulated sound) and then
synthesize audio from the text label. Unfortunately, the authors used a (at least in the field of speech
recognition) non-standard evaluation metric, which makes it necessary to introduce their classifier
in greater detail: The three-dimensional feature vector used for the classification contained the
binary activation of each of the three muscles associated with the electrode positions (0: muscle is
not active, 1: muscle is active). This activation pattern was obtained every 10ms and fed into a finite
statemachine (FSM). An FSM is a way tomodel the output to a given input sequence [96, Chapter 3].
The (purely abstract) “machine” starts in a start state X and can receive input in the form of an
element from a finite set (the input alphabet). In the case of above vowel recognition study, the input
alphabet consisted of all possible combinations of muscle activations, i.e., all binary vectors from
(0, 0, 0) to (1, 1, 1). The machine can then transition into another state (or even into the same state
again) depending on the input according to a state transition table. It then waits for another input
and continues to transition between states until it reaches a final state, which is associated with a
certain output. Here, the final states are associated with the five vowels so that if the machine gets
to such a state, the corresponding vowel has been recognized. The excerpt of the state transition
diagram from [93] is reproduced in Figure 3.8 to illustrate the principle of their classifier.
The rules for the transitions of the FSM of course critically affect the accuracy of the detection.

Unfortunately, even though the authors state the ad hoc transition rules for this particular study
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Figure 3.8.: Excerpt of the state transition diagram, reproduced from [93, Fig. 5]. X is the start state
representing articulatory “silence”, “a” and “i” are two of the five final states representing
the corresponding vowels, and the remaining states represent intermediary states that
hint at a particular vowel detection but need further input to give a confident output.
The binary triplets are the muscle activation patterns extracted from the sEMG data
used as input.

in [93, Table I], they do not explain how those were generated or how to adapt them to different vo-
cabularies. To evaluate the classifier, data from three adult male subjects were recorded during the
articulation of the 50 Japanese consonant (C)-vowel (V)monosyllables (e.g., /a/,/e/,/i/,/ka/,/ke/,/ki/

and so on). Without the authors stating this explicitly, the various signal traces in [93, Fig. 6] indicate
that the subjects were instructed to sustain the vowel parts of the utterances for approximately 1 s.
The output of the FSM was generated at a frame rate of 100Hz and evaluated at every output tran-
sition of the FSM, i.e., every time the classifier changed its output, it was compared to the ground
truth. The reported error metric was therefore the number of correct output transitions divided by
the total number of output transitions, i.e., the correct rate. Using the same transition table for all
three subjects, the correct rates for each vowel instance (calculated over the duration of each vowel)
ranged from 42% to 100%, depending on the subject and context. The global average was 64%.
The result from the classifier was used to synthesize vowel sounds using a partial autocorrelation
(PARCOR) synthesizer. The output of the synthesizer was rated by 10 listeners on a scale from 1
(very poor) to 5 (excellent). The result was an average rating of 2.9 for all synthesized sounds with
the rating correlating rather strongly with the objective correct rate of the FSM output transitions.
There are numerous possible criticisms to this study, but the most glaring ones are the lack of

generalization of the transtioning table, making the setup very hard to adapt or extend. The signif-
icance of the results is also somewhat limited by the artificially sustained articulations. Given the
high frame rate of the system of 100Hz, the speech could have easily been produced in amore nat-
ural manner while still acquiring enough data frames for the FSM to reach a final state. The reason
this was not done most likely lies in one of the disadvantages of EMG: the high noise level. The FSM
approach with several intermediary states and the long durations of the vowel sounds were both
used in an effort to counter the fluctuations of the EMG signal and to get a more stable output. But
in spite of these harsh limitations, the correct rates still went down to 42% in some cases because
of the extremely noisy signal. Nevertheless, the study was pioneering work in the field and the
paper even introduced a real-time system implementing the entire pipeline and thus representing
the first closed-loop direct speech synthesis voice prosthesis, albeit with a very limited vocabulary
of just five vowels.
The second, almost concurrently published, pioneering study by Morse and O’Brien [94] did not

try to synthesize the intended speech but focused on the recognition of entire words instead of
just isolated vowels. They used four electrode pairs (i.e., four channels of differential data), three
of which were placed at the neck and the fourth was placed on the forehead. The EMG signal was
processed so that the output was the average magnitude of each channel over 50ms. For each
channel, the averaged magnitude signal was integrated over the duration of an utterance to calcu-
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late a feature value (essentially representing the energy level of the corresponding channel during
the articulation), resulting in a fourdimensional feature vector for every utterance. A maximum
likelihood classifier was trained using these feature vectors. The study was comprised of five ex-
periments differing by the vocabulary and subject used: The largest vocabulary (used in experiment
2) was a set of 17 pseudowords consisting of a trigger syllable with presumed high muscle activity
(/tôoU/) followed by one of 17 CVC syllables designed to have a minimal pair relationship with at
least one other syllable in the set (e.g., /pat/ or /ôat/). Experiment 1, 3 and 4 used a 12 word subset
of the vocabulary of experiment 2, varying the number of channels (two or four) and the subject
(male, 24, or female, 24). Experiment 5 used the ten English digit words (“zero”, “one”, “two” and so
on). In experiment 1, each word was repeated 10 times. The other three experiments contained 20
repetitions of each word. For each subject and each data set, a maximum-likelihood classifier (also
called a Naive Bayes classifier) was trained using all the available data of each set. A maximum-
likelihood classifier models the probability P(k|�x) that an observed feature vector �x belongs to a
class k ∈ K , where K is the total number of classes. Since this a-posteriori probability is unknown, it
is derived from the a-priori joint probability density function (PDF) p(�x|k) (modeling the probability
to observe a feature vector �x given the class k) using Bayes’ theorem:
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)
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p
(
�x
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In their study, Morse and O’Brien presumably assumed an equal prior probability P(k) of each
class, meaning that every word was equally likely to occur. In that case, the P(k) can also be omitted
since it does not affect the argmax result and the final decision rule therefore becomes simply:

e = argmax
k=1,...,K p

(
�x|k
)

(3.5)

So in order to train the classifier, the joint PDF p
(
�x|k
)
needs to be estimated from the training

data for each class k. This is usually done by assuming that p
(
�x|k
)
has the general shape of a

multivariate Gaussian distribution of the the same dimensionality D as the vector �x:
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(2π)D|Σk|
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{
–
1
2
(�x – �μk)TΣ–1k (�x – �μk)

}
, (3.6)

where the class-related means �μk and the class-related covariance matrices Σk can be readily calcu-
lated using the labeled training data set.
The overall accuracy (number of words correctly recognized divided by total number of words)

for the experiments using 12 words hovered around 50% and dropped to 35% for 17 words. The
accuracy when classifying the numbers data set was approximately 65%. The study also investi-
gated the accuracy of a classifier trained with data from one speaker and tested on data from the
other speaker (inter-speaker dependency) and with data from the same speaker but from another
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recording session (inter-session dependency). The result was that the accuracy for the 12 word vo-
cabulary dropped from around 35% when training and testing with data from the same speaker
and session to 30% when using data from the same speaker but different sessions, showing the
high session dependency of the technique. When data from different speakers was used for train-
ing and testing, the even higher speaker dependency caused the accuracy to drop below chance
level. After further analyses of their system in [97], the authors conclude that one of the major
problems was the signal noise.
In follow-up studies [98,99] using the same experimental setup and classifier, the effect of addi-

tional features (average energy and the standard deviation of each channel) on the accuracy was
examined but yielded no additional improvement. When the backpropagation algorithm moved
into the mainstream (for the first time) in the early 1990s [100], Morse et al. [101] even employed a
(unspecified) neural network to the same task, using 16 (also unspecified) spectral features obtained
from the power spectral density of each utterance. The results are not presented in a systematic
way and are therefore somewhat anecdotal, but the authors report a “dramatically better” accuracy
when compared to using time-domain features, citing the noise robustness of spectral features as
the biggest contributor. The final publication from the group regarding this topic in 1990 [102]made
some methodological improvements to the experimental setup by using eight subjects and three
non-overlapping vocabularies of the same size: one with ten pseudwords following their estab-
lished pattern, one with the ten English digit words, and one set of ten two-syllable English words.
For all eight subjects, the reported accuracy ranged from 20% to 30% but the probability of the cor-
rect response being among the first five guesses of the classifier (Top-5 accuracy) was much higher
(approximately 70% to 80%). While the studies by Morse et al. had numerous issues regarding the
experimental (non-systematic variation of vocabulary size, subject, number of channels) and eval-
uation setup (different number of channels used for intra- and inter-speaker analyses, unspecified
experimental settings, unsystematic report of results), they identified some of the main issues of
the application of sEMG to SSIs: the reproducibility of the data for different sessions and subjects,
and the generally noisy signal.
It took about a decade for the research community to rediscover sEMG for silent-speech recogni-

tion (or synthesis, for that matter) and in the early 2000s, quick improvements weremade using the
more advanced analog (for the measurement hardware) and digital (for the signal processing and
pattern recognition) technology of the time. In [103], the authors tackled the problem of session
dependency, i.e., the variance of the accuracy when training and testing with data from the same
subject but different recording sessions. The study used seven pairs of electrodes to collect sEMG
data from three subjects (one female, two male) in four sessions, each recorded on four different
days. The vocabulary consisted of the silently articulated ten English digit words from “zero” to
“nine” and each session contained thirty repetitions of each word. The first measure to reduce the
session dependency was to prepare a plaster mask for each subject that would cover their faces
and leave holes for the sEMG electrodes to be wired through. This was supposed to ensure a repro-
ducible positioning of the electrodes and thus was expected to reduce the session variance. Using
spectral features obtained from a Short-time Fourier transform, HMMs were used to classify the
data. The study used a five-state left-to-right HMM with 12 Gaussians per state for every word in
the vocabulary. For in-session training and testing, a leave-one-out cross-validation scheme was
used. For inter-session training and testing, the training sessions were split into subsets of equal
sizes, each containing 30 instances of each vocabulary word, and a different model was trained
for each subset. The reported testing result was the average of the test results using these models.
The accuracy of the recognition for the in-session condition using all available channels ranged from
96% to 98.8% for the ten words, averaged across all four sessions for each speaker. When using a
different session for training and testing (but just one of each) without any further normalization,
the accuracies dropped down to up to 48.8% with an average of 76.2%. By using three of the four
available sessions for training and and the fourth for testing, and by additionally standardizing the
feature vectors to zero mean and unit variance, the session dependence could be greatly reduced
to an average of 87.1% across the three subjects.
In the 2010s, many more improvements were made, driven by essentially two groups: the group
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around Geoffrey Meltzner in the United States, and the group around Michael Wand in Germany.
Both groups individually settled on a particular electrode setup and kept itmostly constant through-
out their work. The Meltzner group arranged the sensors unilaterally (see Figure 3.9a), motivated
by the possibility of using a handheld device similar to a mobile phone that would hold an array of
sensors and would be used in much the same way, except that instead of a microphone capturing
the acoustic speech, the electrode array would capture the sEMG signal. This handheld device was
never realized, though, but the sensor arrangement was kept regardless. The Wand group, while
also dabbling in a sensor array setup for a bit (see, e.g., [104]), generally used the bilateral setup
shown in Figure 3.9b. Neither group developed the respective hardware themselves and instead
used commercially available (and slightly modified) sEMG equipment.

(a) Setup according to the Meltzner group [105–
107]

(b) Setup according to the Wand group [108–110]

Figure 3.9.: Sensor setups used by the two main research groups driving development of sEMG-
based SSIs

After several years of steady improvements, both groups have published their (as of today) best
results using an ATT paradigm. The Meltzner group used HMMs for the classification and reported
in [111] a recognition accuracy of 90.4% for isolated word recognition using a vocabulary of 65
words. In a continuousword recognition task (which allows the use of languagemodels to constrain
the search), they achieved an accuracy of 91.1% across various domains with a vocabulary of 2200
words. The system was speaker-dependent and required 2h to 3h of training material from each
new speaker to train an individualmodel. It is unknownhow the performance varied acrossmultiple
sessions using the same speaker because both training and testing data were recorded in a single
session. Given the noisiness of the data and the sensitivity with respect to the sensor positions,
session-invariance is, however, of vital importance for a practically relevant system.
The Wand group published their best ATT results in [104], where they used an HMM classifier

and reported an accuracy of 89.9% in a continuous word recognition task using a vocabulary of 108
words. While the Meltzner group has exclusively employed shallow models, the Wand group even-
tually graduated to deep learning in [112], where they used a DNN as a frontend, whose outputs
were decoded by an HMM. For this setup, they reported a session-dependent recognition accu-
racy of 23.8% for the same continuous speech recognition task with a vocabulary of 108 words.
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Instead of scaling up the vocabulary for the session- (and thus speaker-) dependent paradigm,
their followingwork focused on improving the reproducibility and lowering the session-dependency
(see, e.g., [108,109]). Their most recent effort was published in 2018 in [110] and applied domain-
adversarial training of the DNN stage to achieve an average across-session accuracy of 28.5% with
a reported floor accuracy for some sessions of approximately 25%, in which case the adversarial
training even lowered the accuracy.
While all of the studies discussed so far have investigated an ATT paradigm, the Wand group

has also looked into the development of an sEMG-based, direct ATS system: Using sEMG to pre-
dict vocoder parameters [113], the result was, in the authors’ own words, a “mostly unintelligible
[...] speech-like audio” signal. A systematic evaluation was not conducted. In a follow-up study
in [53], they used a joint distribution of the EMG signals and the target vocoder parameters as a
mapping and conducted an objective evaluation using a spectral distortion measure on the synthe-
sized speech. The lowest speaker- and session-dependent average distortionwas 4.53dB, while the
best session-independent, but speaker-dependent distortion was 6.04dB. The results are difficult
to contextualize, however, because spectral distortion measures are a good way to rank various
variants of a speech processing pipeline, but cannot be quantitatively or qualitatively related to the
intelligbility or naturalness of the ouput. Finally, a DNN was applied to map the EMG data to the
vocoder parameters in [114] and achieved a distortion of 4.56dB to 5.61dB. A test to transcribe the
ATS result or compare it to natural speech was not conducted because of the generally low intelli-
gibility. Curiously, using the synthesized speech as input to an HMM-based ASR system, the word
accuracy was higher than in their previous ATT system (92.7% vs. 89.9% in [104]), even though the
same data was used and human intelligibility was considered too low by the authors to warrant
a listening test. The real-time factor of the DNN system on a desktop PC (Intel Core i7-2700 CPU
running at 3.5GHz) ranged from 2.9 s to 16.2 s, depending on the feature set used.

Summary and conclusion

SEMG-based SSIs have been under heavy developement in the last decade, although both main
research drivers in the field appear to have moved on to other topics given the lack of published
work in the last year (especially compared to their previous output pace). Sensor positioning and
attachment is challenging, even in a lab environment. The signal quality is generally low, the sensors
are very unspecific in the muscle activity they register, they are prone to (non-articulator-related)
movement artifacts and to Electromagnetic Compatibility (EMC) isses due to the small analog volt-
ages involved. The current state-of-the-art has produced continous speech recognition ATT sys-
tems with vocabulary sizes that are already suitable to domain-specific applications, although still
at least one order of magnitude lower than acoustic-based ASR (2200 vs., e.g., 65 000 [66]). A ma-
jor limitation on the systems’ relevance in practical application is, however, the heavy speaker- and
session-dependence. Whilemany attempts weremade to lessen the performance dropwhen using
the systems with speakers that it was not trained with, no satisfying solution has been found yet.
The training material needed to adapt a system to a new speaker and/or session is also quite ex-
tensive (e.g., 2 h to 3h), making an individually trained system impractical. Authors in the field have
mentioned the possibility of transfer learning or other adaptation strategies involving less training
material from the target speaker, but no algorithms or models have been proposed for this yet.
Deep learning techniques have been successfully applied to both of the SSI paradigms (ATT and
direct ATS), but have not yielded the performance boost they have facilitated in other fields. It is
possible that more (and more diverse) data from more speakers are necessary to fully exploit the
potential of DNNs.

3.6. Permanent-Magnetic Articulography

In 2005, a research group around Fagan filed a patent for a newmeasurement device specifically de-
signed to capture speech movements for silent-speech processing [115]. In their application, they

41



3. Articulatory data acquisition techniques in Silent-Speech Interfaces

describe the operation of the device as follows: a number of small magnets are attached to the
tongue, lips, and/or teeth of a subject. In addition, the subject wears a support structure (similar to
the frame of a pair of eyeglasses) carrying a number of magnetic field sensors. During (silent or au-
dible) speech, themagnetic field changes at the sensor positions because of the relative movement
of the magnets in and on the mouth. These changes are registered by the sensors and passed to a
processor that can then further analyze and interpret the signals. This measurement modality was
(later) named Permanent-Magnetic Articulography (PMA). In their patent, the authors pointed out
the possible applications of recognizing the spoken words, using the device as an input modality to
control other devices or machines, and to use it to identify the individual wearing it. In their first
paper based on their invention three years later [116], the group started investigating the suitability
of their system to be used in an SSI. To evaluate if the magnetic field sensor data contains informa-
tion that can be related to the spokent utterances, they devised two experiments: one experiment
using a vocabulary of 13 phonemes and one experiment using a vocabulary consisting of 9 words.
Each word or phoneme was spoken 10 times by a single subject. For this study, one magnet was
attached to the center of the subject’s tongue tip and two pairs of magnets were attached to the
upper and lower lips symmetrically positioned with regard to the face’s center line. The magnetic
field of these five magnets was sensed by a total of six dual axis magnetic sensors mounted on the
frame of a pair of eyeglasses (see Figure 3.10).

(a) Setup from Fagan’s pilot study [116] (b) Most recent iteration used in [117]

Figure 3.10.: Permanent-Magnetic Articulography setups

The data used for classification were the twelve (2 channels times six sensors) magnetometer
signals, which were low-pass filtered with a cut-off frequency of 40Hz for noise suppression. The
classifier was a nearest-neighbor classifier using all 10 repetitions of each of the vocabulary en-
tries as templates and Dynamic Programming using a Euclidean distance measure to implement
Dynamic Time Warping (DTW) and find the most similar match to a given test sample among the
templates. Unfortunately, the authors failed to explain how they generated test samples but it can
be assumed that they recorded one additional repetition of each word/phoneme to use for the
testing. The recognition accuracy with this setup was 94% for the 13 phonemes and 97% for the 9
words. Two years later, the same group published the results of a follow-up study in [118], that used
the samemeasurement device and classifier, but different vocabularies: one vocabulary consisting
only of the 10 English digit words “zero” to “nine” (the numbers set) and one vocabulary additionally
consisting of 47 other words (the words set) chosen to cover a wide range of phones. Using ten rep-
etitions of the numbers set and five repetitions of the words set, the DTW classifier was evaluated
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using leave-one-out cross-validation for three speakers using only the data from each speaker, i.e.,
not evaluating inter-speaker performance. The recognition rates ranged from 82% to 100% for the
numbers set and from 76% to 99% for the words set, depending on the speaker.
Acknowledging the small vocabulary size and thus the limited usefulness of the system at this

stage, the authors identified a fewways to improve the system,mostly by usingmore elaborate data
processing and patternmatching techniques. Consequently, the next few publications bymembers
of the group [117,119,120] focused on these aspects to improve the results, while also increasing
the vocabulary size:
In [121, 122], they replaced the DTW-based recognizer with statistical sequence modeling using

HMMs and thus achieved a leave-one-out cross-validated word accuracy of 92% to 98.8% on the
words set for a single speaker, depending on the signal condition used (time signal, plus first time
derivative, plus second time derivative, first time derivative only). Going a little further in [122] they
also performed a digit sequence recognition experiment using HMMs and achieved a sequence
accuracy of 61.1% to 81.7%, again depending on the signal condition.
While these results were all obtained using only a single speaker, in [123] the same general setup

was used to train and test models for three speakers individually (again using only data from the
same speaker for training and testing). The results for the word accuracy ranged from 82.72% to
90.97% and the sequence accuracy from 74.89% to 86.76%.
Most work around PMA-based ATT has focused on PMA as the only modality, with the notable

exception of the study by Sahni et al. [124], which additionally included an intra-aural sensor that
measured the miniscule deformations in the ear canal caused by jaw movements. They achieved
a speaker-dependent, sentence-level accuracy of 83.3% to 96.4% on a set of 11 sentences from
a medical domain (e.g., “I need water” or “It hurts”). Since this study was a one-off project by the
group and had numerousmethodological weaknesses, the results have to be considered anecdotal,
although it is still noteworthy because of the multimodal approach.
Lately, PMA was also used for a direct ATS system. Recording simultaneous audio and PMA,

Gonzalez et al. [125] tried a statistical approach using joint distributions of PMA data and vocoder
parameters. The synthesis was trained and tested using two vocabularies: one consisting of the
ten English digit words (“zero” to “nine”), and one consisting of 48 consonant-vowel (CV) syllables
containing all combinations of four vowels and twelve consonants. The joint distributions were
trained in a speaker-dependent fashion and the mapping was objectively evaluated using 10-fold
cross-validation and a spectral distortion measure. Depending on the mixture components in the
mapping and the window length of the PMA data , the spectral distortion was around 3dB to 7dB
(similar to sEMG-based ATS, see section 3.5) for both the digit words and the isolated consonants
and vowels. A listening test was conducted to evaluate the subjective quality and naturalness of
the synthesis2. The naturalness was rated by 25 human listeners as approximately 2.25 out of
5 (where 5 is very natural) when no additional information was used and apporx. 3 out of 5 when
voicing information from the original audio files was used. For the CV syllables, the intelligibility was
subjectively evaluated by a transcription experiment involving 25 human transcribers. The average
accuracy was 68% but showed great variance across the various possible CV combinations, to the
extreme that some syllableswere always correctly transcribed (e.g., “shoo” - /Su/) andother syllables
were never correctly transcribed (e.g., “rue” - /ru/).
Following up on this study, Gonzalez et al. replaced the statistical mapping with an RNN consist-

ing of Gated Recurrent Units (GRUs) [117]. Data from six speakers were used for training speaker-
dependent mappings with the number of sentences ranging from 353 to 519. The synthesis quality
was rated about the same as with the statistical mapping (40 on a 100 point scale), but the intelligi-
bility was improved significantly by the RNN in a direct comparison with an average word accuracy
of 73.49% (vs. 65.25% using statistical mapping) across speakers and a peak accuracy of 91.53%
(vs. 79.18%) for one of the six speakers.
Gilbert et al. [126] used an LSTM network for the same task of mapping the PMA data to the

2The intelligbility was not assessed for the digit words because the authors found the synthesis completely intelligible.
This underlines the aforementioned fact that spectral distortion measures are difficult to interpret: For a very similar
distortion level, the authors in [114] described their synthesis’ intelligibility as “overall very low” (see section 3.5).
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vocoder parameters using the same training data and achieved a similar objective distortion level.
They have not, however, reported any subjective test results.
While most studies involving PMA did not consider session-dependency or robustness against

various possible interferences (movement or EMC issues), two notable exceptions exist. In [120],
an algorithm to remove motion artifacts in the PMA data is presented. The results showed that
the word accuracy of a PMA-based ATT system using a vocabulary of eleven English digit words
(“zero” and “oh” representing the number 0 and the digits “one” through “nine”) degraded from
about 90% during no head movement down to 2% during normal conversational movement. The
proposed algorithm was able to reduce the impact significantly and retain a word accuracy of ap-
proximately 80% despite conversational movement. In [127], the session-dependency of the PMA-
basedATS system [125]was evaluated using the aforementioned spectral distortionmeasure. With-
out a session adaptation strategy, the distortion level more than doubled from 4.5dB to approx-
imately 9.8 dB. Using an MLP-based adaptation technique, the distortion could be lowered to ap-
proximately 5.5 dB. This analysis was only done for the digit synthesizer described in [125] but not
for the CV setting, and no subjective tests of the adaptation technique were conducted.

Summary and conclusion

PMA is an extremely promising technique regarding both ATT and ATS and, in fact, can be regarded
as the current state-of-the-art in the field, given the good results presented by the group around
Gilbert and Gonzalez and the technological maturity of their device. Unfortunately, attaching the
magnets to the tongue in a safe and reliable way is a non-trivial issue. The authors have used
tissue adhesive in their studies but pointed out that, ultimately, the magnets would have to be
implanted into the tongue for the device to be used longer than just a single recording session in a
lab environment and to avoid accidental swallowing of the magnets, which can be very harmful to
the subject. So even though the reported results have been quite impressive so far, an actual user
study has yet to be conducted, possibly due to this issue. Another open question is the speaker
dependency in the recognition paradigm: the accuracy can swing quite significantly depending on
the speaker, even when trained on the same speaker’s data. It is yet to be seen how the system will
perform when training with data recorded with different speakers than the test data (inter-speaker
evaluation). The session dependency has been briefly described but not systematically explored.
Similarly, the impact of movement artifacts was successfully reduced for the ATT paradigm, but
it is unclear if this strategy can be generalized to more scenarios (e.g., walk-and-talk), to the ATS
paradigm, and to other sources of interference (i.e., EMC-related issues).

3.7. Electromagnetic Articulography

Electromagnetic Articulography (EMA), or sometimes called Electromagnetic Midsagittal Articulom-
etry (EMMA)when only used in themidsagittal plane, is a technique to track fixed points on the artic-
ulators during speech production and is a commonly used tool in instrumental phonetics. Since the
mid-90s, several systems have been commercially available (see Figure 3.11 for an example), but
their basic principle is the same: Small sensor coils are attached to the subject’s articulators (usually
the tongue, the lips, and the jaw). The subject is placed into an alternating electro-magnetic field,
created by a field generator. The varying field induces a small Alternating Current (AC) voltage in
the sensor coils, which changes depending on the relative orientation and position to the surround-
ing field and these spatial data can therefore be reconstructed from the sensor signal. While the
reconstruction is fairly complex, it is possible with a very small error (e.g., less than 1mm [128]) and
at a high temporal resolution (e.g., 500Hz [129]). Some SSI-related studies have used EMA in con-
junction with other input modalities (see section 3.9), but the first EMA-only system was proposed
by Heracleous and Hagita in [129]. The authors used the positional information of three coils on
the tongue, two coils on the lips and one coil on the lower jaw as features (after decorrelation) and
trained a speaker-dependent HMM-based ATT system to recognize 16 different French consonants
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Figure 3.11.: A subject using an EMA system (here: NDI Wave). The sensor coils are individually
glued to the subject’s articulators and thewires are required to pick up the small signals
induced by the alternating electro-magnetic field generated by the field generator next
to the subject’s head.

and 14 different French (oral and nasal) vowels. On a test set of 682 vowel instances and 568 conso-
nant instances, they achieved a phoneme-level accuracy of 93.1% for the vowels and 75.2% for the
consonants. In 2015, Hahm & Wang [130] presented a speaker-dependent ATT system that uses a
DNN for the articulatory modeling and an HMM-based decoding stage. The authors used the po-
sitions of five coils (three on the tongue and two on the lips) on the midsagittal posterior-anterior
(x) axis and superior-inferior (y) axis, but also added their time derivatives (delta features) to the
feature vector (five coils × two positions + their first and second derivatives for a feature vector
size of 30). With a vocabulary of 44 English phonemes, the system achieved a phoneme accuracy
of 64.5% for a male speaker and 62.9% for a female speaker. In a more recent study in 2016 [131],
the authors used a very similar setup (midsagittal positions as features and a DNN-HMM classifier),
except with only four sensor coils (two on the tongue and two on the lips) and achieved a phoneme-
level accuracy of 27.2% on a set consisting of 39 phones. Since they only used monophones (which
means less restrictions on the search space), this seemingly low accuracy was compared to a base-
line acoustic ASR system which achieved a phoneme accuracy of 37%. While all of these systems
were speaker-dependent, Kim et al. [132] described a speaker-independent system that used artic-
ulatory normalization (both physiologically and statistically driven) and i-vector methods (a sparse
representation of a feature vector sequence commonly used in speaker and language recognition)
to achieve a speaker-independent phoneme accuracy of 44% on a set of 278 unique words consist-
ing of 39 unique phonemes. Using a bigram language model, they also achieved a word accuracy
of 44.8%.
A larger number of studies have proposed EMA-based ATS systems. The first such systemwas in-

troduced in 2011by Toutios et al. [133] andwas actuallymotivatedby studying acoustic-to-articulatory
inversion (so the inversemapping of an ATS system) in an analysis-by-synthesis paradigm. While the
study does not conduct a subjective intelligibility or naturalness test, it is noteworthy due to the fact
that it is one of the two only ATS studies (across all proposed technologies) that used an articulatory
synthesizer as a backend instead of a statistical vocoder. The input EMA data was recorded using
four sensor coils on the tongue, four on the lips, and one on the lower incisor. The mapping was
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found by linear regression. The results were given in terms of the formant frequencies of the vocal
tract shapes of six French vowels produced by the mapping but not summarized by the authors. It
is evident, however, that the formant error is generally within one to two standard deviations from
the statistical mean of the formant frequencies of human French speakers.
Amuchmore thoroughly designed EMA-based ATS systemwas introduced five years later by Boc-

quelet et al. in [134]. The authors presented two experiments: one speaker- and session-dependent
experiment and one speaker-adaptation experiment. For the first one, they used the same basic
sensor setup as Toutios et al. but extended it by a sensor on the soft palate and recorded themove-
ment in all three dimensions instead of just the midsagittal plane. With this setup, they recorded
about 45min of audio and EMA data from one speaker containing an unevenly distributed number
of each of the 34 phonemes of French. The synthesizer was a vocoder and its parameters were
predicted from the EMA data using a DNN with three hidden layers. The intelligibility of the syn-
thesis was evaluated subjectively in a listening test with 12 human listeners. Without any further
information from the audio (i.e., without the original pitch contour), the recognition accuracy of 10
synthesized vowels was 87% and of 16 different consonants was 45%.
The second experiment used fewer sensor coils (three on the tongue, two on the lips, and one

on the jaw) to enable real-time data processing, but more speakers (three male and one female).
The goal of the second experiment was to use the mapping trained in the first experiment for new
speakers without the need of recording another large training dataset. Because the new speak-
ers’ articulation may differ, the input EMA data had to be transformed into the articulatory space
of the reference speaker from the first experiment. To find this articulatory-to-articulatory map-
ping, the new speakers were asked to repeat a set of 50 sentences from the training set of the
first experiment. Using these sentences, a linear mapping was trained and inserted as a speaker
adaptation module in the framework between the data acquisition and the (pre-trained) mapping
of the adapted EMA data to the vocoder parameters. The speaker-adapted real-time synthesis was
also evaluated in terms of its subjective intellibility and achieved an accuracy (averaged across the
four speakers) of 86% for the vowels and 49% for the consonants. However, nasal and unvoiced
sounds were excluded from the evaluation because no velum sensor was used and voiced and un-
voiced sounds had been difficult to distinguish in the first experiment. The recognition accuracy of
the reduced set in the first experiment (with a matched training and testing speaker and session)
was 99% for the vowels and 61% for the consonants. Given the mismatch of training and testing
speaker in the second experiment, the reduction in accuracy was statistically significant but not
catastrophic.
Around the same time of the landmark study by Bocquelet et al., Liu et al. [135] investigated if

excitation information (power, voicing, and pitch) can be predicted from the EMA data alongside
the spectral parameters or even from both EMA and the predicted spectral parameters using a cas-
caded mapping. Their best-performing systems used the EMA data (including the first and second
order time derivatives to represent the time dynamics) as input and achieved a spectral distortion of
3.09dB (using an LSTM-RNN), a Root-Mean-Square Error (RMSE) of the power prediction of 0.56dB
(also using an LSTM-RNN), an error rate of the voicing decision of 20.29% (using a non-recurrent
DNN), and an RMSE of the pitch prediction of 22.76Hz (also using a feed-forward DNN). A subjective
evaluation was only carried out with regards to the subjects’ preference of different variations of
their system, which is difficult to contextualize. Still, the group managed to show that even though
only superglottal articulation is captured by EMA, the excitation information can still be derived to
some extent using deep learning techniques. A similar study was conducted in [136] and essentially
validated the results by Liu et al. using a DNN for the mapping.

Summary and conclusion

EMA is a highly precise and well-established, commercially available measurement technique in the
field of instrumental phonetics and speech and language esearch. The tracking of the sensor coils
is very robust and the collected data can be qualitatively and quantitatively related to articulatory
movements and even adapted between different speakers. The only “blind spot” of EMA is the hard
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palate, which can, however, be approximated by asking the subject to trace the hard palate with
their tongue at the beginning of a session. EMA is also sometimes accompanied by other measure-
ment modalities more suitable to covering the palate (see section 3.9). The number of the captured
articulators is otherwise only limited by the number of channels of the particular system in use.
However, not all subjects tolerate all sensor positions: while it is, for example, possible to attach a
sensor to the velum, the gag reflex of many subjects prevents its use. This is even true for posterior
tongue positions, which can also trigger gag reflexes for some subjects. Even in more convenient
positions, the sensor coils are wired and, even though they are themselves quite small, the very
limited real estate on the tongue makes it difficult to find a good compromise between a high spa-
tial resolution and a tolerable level of discomfort for the subject. Despite the so-far unconvincing
performance of EMA-based ATT systems, EMA-based ATS systems are very mature and are even al-
ready trying tomove towards predicting other speech characteristics then just the spectral features
(e.g., voicing and pitch) with promising results. Because of the availability of several large datasets,
deep learning techniques have been used extensively on EMA data to great effect. The major dis-
advantage of EMA besides the discomfort for the subjects is that no truly portable system exists
as of the time of this writing. Given the alternating magnetic field necessary to induce the sensor
voltages, EMC-related issues are to be expected but currently uninvestigated.

3.8. Radio waves

A very small number of studies have investigated the suitability of High-Frequency Radio Waves as
a sensing modality for SSIs. In their 1998 patent [137] and then in two accompanying papers [138,
139], Holzrichter et al. described (but never evaluated) a system, that used low-power radar sen-
sors at a frequency of 2.3GHz to measure the movement of various articulators (see Figure 3.12a)
and to (potentially) use those measurements in an ATT or ATS system. Their approach was to
spatially resolve the signals modulated by the different organs and thus get interpretable, artic-
ulatory information on their respective activity. Instead of attempting to use several HF-antennas
to sense individual articulators, Eid & Wallace [140] used only one antenna placed 2 cm in front
of the subject’s mouth (see Figure 3.12b). Sending out a sweep signal over the range of 500MHz
to 10.000 × 103 MHz with a resolution of 100 kHz, they recorded the time-varying complex reflec-
tion coefficients for each frequency during the articulation of the ten English digit words (“zero” to
“nine”). After reducing the data to the points from 3GHz to 10GHz, they classified 25 instances of
each target word by comparing their feature vectors to a vocabulary of 30 (different) instances of
each word and finding the closest match (Nearest Neighbor classification). The word accuracy was
remarkably high for such a simplistic approach at 93%. Subsequent studies by the group focused
on the antenna design [141,142] but did not further pursue any applications in SSIs. A similar setup
was devised in [143] (see Figure 3.12c), which used one antenna for transmitting and one antenna
for receiving. They used a pulsed radar signal with a frequency range from 6GHz to 10.2GHz di-
rected at the subject’smouth at a distance of 10 cm to 16 cm (to simulate the distance of a hand-held
device). The reflected signal was then captured by the receiving antenna and the distance of the
reflecting surfaces is estimated, resulting in a “distance spectrum”where a set of equally spaced dis-
tances (4mm resolution) were associated with the received signal amplitude captured at the time
delay that corresponds to that distance. The frame rate of the measurements was 100Hz. Using
this setup, the authors conducted two ATT experiments: a vowel recognition and a command word
recognition task. For each tasks, a Nearest Neighbor template matching classifier with DTW was
applied. The leave-one-out cross-validated vowel recognition accuracy for a single speaker and five
English vowels (/a/, /æ/, /i/, /O/, /u/) was 94%. The command word recognition was studied with
five different speakers and the ten English digit words (“zero” to “nine”). The leave-one-out cross-
validated speaker-dependent word accuracy was 85% and thus slightly lower than in the previous
study in [140] mentioned above, possibly due to the larger number of subjects. No follow-up study
to this initial attempt has been published since.
Themost recent HF-based SSI research was published by Birkholz et al. in 2018 [144]. Their setup
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(a) Setup used by Holzrichter et al. [138] (b) Setup used by Eid & Wallace [140]

(c) Setup used by Shin & Seo [143] (d) Setup used by Birkholz et al. [144]

Figure 3.12.: Setups for HF-based SSIs. Figures taken from the respective publication.

also consisted of two antennas (see Figure 3.12d), but attached them to the subject’s skin and used
both of them for sending and reception of high-frequency sweeps ranging from2GHz to 12GHz. Be-
cause of their chosen geometric setup, the authors were able to capture the transmission through
the vocal tract from one antenna to the other one as well as the reflection (which was the only quan-
tity used by all previous studies). The spectral magnitudes of the signals recorded along all possible
paths between the two antennas were calculated and averaged across the entire duration of a tar-
get utterance to form a feature vector representing this utterance (using no dynamic, time-related
information). The authors conducted an ATT experiment with this setup using two subjects and
sustained articulations of 25 different German phonemes. The best phoneme accuracy was 93%
for subject 1 and 85% for subject 2, achieved using a Linear Discriminant Analysis (LDA) classifier
and all available signal paths (two reflection spectra and one transmission spectrum). Of the three
signal paths, the transmission path from one antenna to the other was the one with the highest
predictive power, achieving a phoneme accuracy of up to 86% even when only features derived
from that path were used.

Summary and conclusion

HF-based SSI research is extremely underdeveloped compared to the various other technologies
but already shows great promise, at least with regards to ATT systems. ATS systems, while men-
tioned as a possible application, are yet to be actually presented. The different antenna setups
proposed in the literature offer different advantages: the approach by Eid et al. and Shin et al. is
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contactless, but does not offer a lot of information about posterior places of articulation and the
setup is difficult to control in a real-life application. The approaches byHolzrichter et al. and Birkholz
et al. require the antennas to be attached to the user, but the setup is easier to keep constant and
therefore potentially less speaker- and/or session-dependent. The most salient advantage of the
Birkholz setup is, however, the possibility of measuring the transmission path between the two an-
tennas, which appears to be the path containing the highest amount of information on the vocal
tract configuration and thus the sound identity and sets the method more distinctly apart from a
video-based speechreading system. While the initial results using HF-sensing are very promising,
the technology is structurally just as sensitive to speaker- and session-dependency as the other
techniques described in this report but no systematic studies in this regard have been conducted
yet. For a practically relevant system, themeasurements also need to be both robust against incom-
ing electro-magnetic interferences and must at the same time not interfere with other electronic
devices in the immediate vicinity (EMC).

3.9. Palatography

Palatographic measurements originate in instrumental phonetics and are a class of techniques
to capture the lingual (i.e., tongue-related) articulation. In most cases, palatography records the
palato-lingual contact pattern, i.e., the area of contact between the tongue and the palate, usually
during articulation of speech sounds. For the very first iterations of palatography (see [145] for a
historic review), researchers used to paint the roof of the mouth with, e.g., a mixture of flour and
mucilage [146] or a mixture of charcoal and powdered chocolate [147]. After applying the mix-
ture, the subject articulated a single utterance. In case of the flour mix, the malleable mass was
shaped by the tongue and could be extracted from the mouth for further study. The charcoal mix
was wiped off at the locations of tongue contact with the palate and, using a set of mirrors, the
result could be photographed for further analysis. Any time characteristics inherent to the studied
utterance were therefore integrated and only the superposition of a sequence of tongue contacts
could be analyzed with a single measurement. The first palatographic technology to capture the
time-varying palato-lingual contact pattern was Electropalatography (EPG), which uses an artificial
"pseudopalate": a plastic plate form-fitted to the subject’s actual palate. On the pseudopalate sits
an array of small metal electrodes. A small reference voltage is applied to the subject wearing
the pseudopalate. When the tongue touches any of the electrodes, this reference voltage is then
picked up by the electrode. By sampling all electrodes repeatedly, the time-varying palato-lingual
contact pattern can be recorded during continuous speech (or non-speech articulator movements,
e.g., swallowing [148]). Different EPG systems use different numbers and distributions of the small
metal contacts on the pseudopalate. The first EPG system, also known as the "Palatometer", in-
troduced in 1972 by Hardcastle [149] and patented in 1977 by Fletcher & McCutcheon [150]. The
patent described the pseudopalate as an acrylic base and top layer between 0.1mm and 0.5mm
thick. The two layers were vacuum-formed to a plaster model of a subject’s upper jaw and covered
the entire hard palate, as well as extending over the teeth, providing a tight fit that did not require
additional fixture. On the lingual top layer (facing the tongue), a 96 electrodes were arranged in a
regular grid pattern for general purpose investigations (see Figure 3.13, left).
In [150], Fletcher et al. stated that specialized pseudopalates with electrode patterns matching

specific sounds of interest (e.g., an alveolar cluster of electrodes for investigations of /s/) could
also be manufactured. For each electrode, a thin conductor was sandwiched between the top and
base layer and routed towards the posterior end of the pseudopalate. The conductors were led
towards the mouth opening between the buccal side of the teeth and the inside of the cheeks and
exited the mouth in two bundles (see Figure 3.13, left). The reference voltage used in the system
was an AC voltage of 200mV at a frequency of about 10 kHz. The original patent suggested an
extra-oral electrode secured to the subject’s wrist but according to [151], the Palatometer system
manufactured by Kay Elemetrics in the 1990s (the so-called "Kay palate") used an additional four
electrodes, two on each buccal surface of the teeth, that made permanent contact with the cheeks
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Figure 3.13.: Comparison of (from left to right) the Kay, Articulate, and Reading palate (taken from
[151]).

and were used to apply the reference voltage intra-orally. The system was discontinued in 1998
with the high cost of the manufacture of the palates being cited as a significant factor [151].
Building on the works of Fletcher et al., a group around William J. Hardcastle at the University of

Reading (Scotland, UK) developed another palate, dubbed the Reading palate (seeFigure 3.13, right),
in the 1980s [152,153]. The Reading palate was conceptually very similar to the Kay palate but used
only 62 silver electrodes. The pseudopalate was made from an acrylic resin and did not cover the
teeth but instead used stainless steel Adams clasps (specialized orthodontic fixtures). Similar to the
Kay palate, each electrode was soldered individually to a fine copper wire embedded in the base
plate and the 62 wires exited around the back of the posterior molars in two bundles sealed in
flexible tubing. This manufacturing process was intricate and expensive and so in 1979, Rion Co
Ltd in Japan developed a flexible circuit board that contained the contact sensors and could directly
be applied to the subject’s palate [154]. It was discontinued shortly after due to materials-related
safety issues. In 1989, Hardcastle [152] also developed a flexible circuit design intended to be used
as an EPG device but it was deemed too uncomfortable [151] and thus never saw much use.
EPG is well-known and widespread in experimental and clinical phonetics and has been used in

numerous scientific studies (see [152,155]) from a host of different fields (see Figure 3.14). Table 3.1
shows a summary of the existing systems and some of their key features.

Name Technology No. of palate electrodes Sample rate [Hz] Palate cost [e] Status

Kay Palatometer wired 96 100 ca. 300 discontinued
Reading wired 62 100 ca. 220 available
Rion flexible circuit 63 N/A N/A discontinued
SmartPalate flexible circuit 122 100 ca. 230 available

Table 3.1.: Properties of several EPG systems described in [151] (pricing according to manufacturer
inquiry).

Several studies have been conducted regarding EPG-based ATT systems. The first one to explore
the feasibility of recognizing words by their EPG patterns was Fletcher in [156]. However, he trained
human subjects to identify 16 different words based on their contact pattern, similar to historic ASR
research where human subjects were trained to read spectrograms of acoustic speech [157]. The
subjects learned to identify the words quickly and some of them achieved 100% accuracy, proving
the distinctiveness of the patterns. The first automatic ATT system involving EPG data in [158] used
a hybrid EMA-EPG frontend and a statistical HMM-based classifer to achieve a peak word accuracy
of 55% on a set of 460 sentences (using 5-fold cross-validation). The weight of the EPG features ver-
sus the EMA features was not discussed. In another study using the same data [159], the authors
achieved a phoneme-level accuracy of 33.2% using EMA and EPG data (and additional voicing in-
formation) and 33.9% when using only EMA (plus voicing). The EPG data was therefore apparently
largely redundant with the EMA data, but unfortunately no results were reported for the only-EPG
condition. In the various studies making up the dissertation in [160], only EPG data was used to
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Figure 3.14.: Distribution of the research topics covered by EPG studies (image taken from http:
//www.articulateinstruments.com/epg-in-clinical-practice/).

recognize a set of 50 English words. Using various different features and (shallow) classifiers, the
best setup achieved a reported word accuracy of 94.14% on non-rejected words, but the system
was allowed to reject unknown input causing 17.74% of the presented words to be rejected. The
best system without a rejection stage achieved only 82.5% word accuracy. Most recently, a group
at Google [161] presented an EPG-based ATT system with a vocabulary of 21 words. Using four
speakers and a Support Vector Machine (SVM) classifier, they achieved speaker-dependent word
accuracies of 74% to 93%. When using data from all speakers in a 75% to 25% holdout validation
(i.e., the data was not partitioned by speaker so material from the test speakers could be part of
the training set), the word accuracy was 84%. Attempts to create an EPG-based ATS system have
not been reported yet. Themain disadvantage of EPG is the lack of information gained during artic-
ulation of sounds with little to no palato-lingual contact, e.g., vowels and the lack of lip information.
Given the numerous minimal pairs of words that are only distinguishable by the vowel sound (e.g.,
“moon” /mu:n/ vs. “man” /mæn/), this is a major limitation that needs to be compensated by a
second input modality if any meaningful system is to be designed. Because of this “blind spot” of
the EPG, another palatographic method called Optopalatography (OPG), or sometimes glossome-
try, was proposed by [162]. Instead of contact sensors, it used optical distance sensors mounted
on a pseudopalate that measure the distance between the tongue and the hard palate along their
respective optical axes. The resultant points can then be connected to form the midsagittal tongue
contour, which is especially characteristic of vowel articulations. Several measurement setups ex-
ist to perform the optical distance sensing: Masuda et al. [163] proposed a combination of two
sinusoidal light sources of 90° relative phase arranged around one detector, where the phase of
the detected signal was related to the distance between the sensor and a reflector. However, this
technique does not lend itself well to an application in the vocal tract, so instead the basic prin-
ciple proposed in [162] has been commonly adopted and extended in subsequent works: A light
source of constant brightness emits a beam of light onto the tongue surface which diffusely re-
flects the incident light. The reflected light intensity is detected by a light detector located directly
next to the source. The detected light intensity can then be related to the reflector distance, as
the intensity decreases the further the reflector is away. To measure the palato-lingual distance at
several locations, multiple sensor units are used. In most studies, the light sources are switched in
sequence and only the directly adjacent detectors are sampled to reduce cross-talk between sen-
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sors (see, e.g., [164], [165]). Wrench et al. [166] experimented with a setup where all light sources
are turned on at the same time and the detectors are sampled in sequence but they also returned
to the single-switched setup (see, e.g., [167, 168]). Birkholz et al. also further developed OPG and
expanded upon the principle by adding another optical sensor to measure lip movements as well
(see [169], [170] and [171]). A major road block in the development of practical OPG systems was
the calibration of the distance sensors. Because of the individual reflective properties of a sub-
ject’s tongue, which change not only by subject but also intra-individually over time, e.g., because
of food or drink residue or saliva, themapping from the raw sensor values to a distance needs to be
adapted both inter- and intra-individually. A basic method using spacers to sample the mapping at
discrete distances extra-orally was devised [170] but required the subject to be present during the
devices manufacturing process and was also not adaptable to changing intra-individual conditions
once the device was assembled.

Summary and conclusion

Palatographic measurements are an established suite of tools and EPG in particular has been used
extensively in speech research, diagnostics, and therapy. The sparse information during articu-
lations with little to no palato-lingual contact, especially during vowel articulations, greatly limits
the suitability of this technique for SSI applications. OPG measurements could potentially capture
such articulations more accurately, but there is no commercially available system and the lack of
an adaptable calibration procedure that does not require the targeted individual subject to partake
in the device assembly process makes it equally unsuitable for the task.

3.10. Conclusion and Discussion

As has been mentioned before, the data acquisition technologies for SSIs are difficult to compare
due to the lack of standardized (or at least just conventions regarding) datasets, vocabularies, met-
rics, and more. The individual strengths and weaknesses of the techniques have already been de-
scribed above in the respetive sections. For the purposes of this dissertation, a single technology
needed to be identified to develop further into an SSI. Most of the presented techniques have al-
ready been extensively developed and have therefore probably hit their respective performance
ceilings, which narrows the field down to video recordings and PMA as the techniques with the
highest performance ratings, and HF, EPG, and OPG as the currently underdeveloped techniques.
To choose a candidate to use among these remaining technologies, several factors should be con-
sidered. Firstly, it is clear that session- and speaker-dependency are a general problem for all sensor
modalities. Due to the insular and fragmented research landscape, no data-driven adaptation al-
gorithms have been successfully applied. Therefore, more interpretable data as in speechreading,
EPG, and OPG should be preferred over the more opaque data acquired by PMA or HF. Secondly,
there should still be reasonable room for improvement so that a performance increase is likely.
For video-based speechreading systems, there is very little that can be done to improve the data
acquisition. Since the problem of the homophenes remains, current state-of-the-art performance
is likely as good as it can get and the technology should only be used as an additional, auxiliary
sensor modality. PMA is also quite advanced at this point, but the use of a permanent magnet at
the core of the measurement principle limits its usefulness in both non-permanent and permanent
SSI applications, because users probably would not want to get a tongue piercing or have a mag-
net implanted into their tongue for various reasons, chief among them the hazardous prospect
of accidentally swallowing the magnet. This leaves HF and palatographic techniques as the most
promising options. Since HF-based hardware is immensely complex and a system that goes beyond
the initial proof-of-concept presented in [144] goes far beyond the scope of a doctoral project, only
the palatographic techniques remain as viable candidates. As has been pointed out in section 3.9,
EPG and OPG are remarkably complementary and work on combining them has already begun but
ultimately stalled when the issue of an adaptable calibration technique arose. However, in this dis-
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sertation, I present a new approach to a multi-modal palatographic measurement technology that
removes this road block using a calibration technique that can be adapted to a new user or vary-
ing tongue surface conditions even while the user is wearing the device. Great care was taken to
develop not another lab-only system (like, e.g., EMA-based SSI) but to contribute the foundations
for an actually practically useful and relevant device that may be further developed to reach end-
users “in the wild”. The following chapter 4 is dedicated to the description of the hardware and the
calibration process of this new technology.
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As described in section 3.9, the already existing technologies EPG and OPG are complementary
in nature and using both modalities in a multi-modal system is a promising idea. Initial work to
combine them in a single device was already conducted [169, 171]. As part of this dissertation, I
continued these efforts and present the most advanced prototype of the multimodal palatography
called Electro-Optical Stomatography. This chapter is dedicated to the description of all system
components, ranging from the sensor specifications and characteristics, to the calibrationmethods
involved, and the available software frontends designed for different use-cases of the hardware.
The schematics and layouts of all hardware components are reprinted in Appendix C and available
on the optical disc accompanying this dissertation in the subfolder Hardware. Some subcircuits (like
the sensor detector circuits) are shown in this chapter in simplified drawings for ease of reference.
The software source code and executables for 64-bit Windows 7 or above are also available on the
accompanying optical disc in the subfolder Software. The measurement system was designed with
its applications in an SSI context in mind. Therefore, portability was a key requirement, in terms of
the form factor as well as the energy and computational demands. Since EOS was a new invention,
however, accessibility of all components for hardware and software debugging was also desirable.
As a workable compromise, I opted for a system design consisting of three parts (see Figure 4.1): (I)
a sensor unit, which is worn by the user and carries all EOS sensors on a pseudopalate, (II) a control
unit, which is connected to the sensor unit by a wired connection, gathers and preprocesses the
data, and (III) a desktop computer or laptop, which receives the data from the control unit and
further processes it in analysis, recognition, or synthesis software.
Another requirement for the system was low cost. While custom-made sensor chips or elabo-

rately produced pseudopalates might certainly produce the best possible sensor system, off-the-
shelf components and simple assembly drives down the cost even for a small number of units,
which is very desirable for this proof-of-concept work.
The following sections describe the three main components of the system in detail, following the

flow of the articulatory data (from sensors, to the sensor unit, to the control unit, to the software).
While several iterations of each component were developed and produced, only the final ones are
presented, except where earlier versions add some special insights or motivated otherwise less-
obvious design choices.

4.1. Contact sensors

The general principle of the contact sensor measurement is shown in Figure 4.2 (ignoring the ad-
ditional components for now, they will be explained in section 4.5): A small reference voltage is
applied to the user’s body (Vbody). The tongue now essentially acts as a switch with the contact sen-
sor being the throw and when the switch is closed (the tongue touches the sensor), the voltage
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(II) control unit

(I) sensor unit

(III) laptop PC with custom software

Figure 4.1.: Components of the proposed EOS system: (I) An individually fitted sensor unit (see sec-
tion section 4.4) is connected to (II) a control unit (see section 4.5), which preprocesses
the raw sensor data and passes the processed data to (III) a laptop computer for vi-
sualization, analysis, and/or further processing in various application-specific software
frontends (see section 4.6).

Vcontact can be measured at the contact sensor.
The design of the contact sensors was largely informed by the EPG systems mentioned in sec-

tion 3.9 and the review conducted in [166]. In EOS, the contact sensors were realized as exposed
conductor track endings. While the conductor tracks themselves were usually made from copper,
the endings were plated with gold for improved conductivity, which directly impacts the sensitivity
of the sensor regarding tongue contact. While silver would offer even better conductivity (and was
therefore used in the commercial Reading EPG system), it is prone to corrosion when exposed to
moist air. Since the sensors are often exposed and the mouth cavity is a very damp environment,
this severely impacts the suitability of silver for the contact sensors, especially if long-term use is
considered. While soft gold is commonly used for plating contacts (e.g., in the Kay palate [150])
and has considerable advantages like solderability and ideal biocompatibility, the contact sensors
in the EOS system were plated with hard gold (cobalt alloyed with pure gold). Hard gold, while

Vbody

C1

2.2 μF

Tongue C1

2.2 μF

R2 10 kΩR3 10 kΩ

R1 10 kΩ

3.3 V

Vcontact

Figure 4.2.: Simplified equivalent circuit of the contact sensor measurement
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being potentially slightly less biocompatible due to the cobalt, has the added advantage of being
much more resistant to wear caused by repeated, sometimes even sliding contact events with con-
siderable force (the force exerted by the tongue can easily go beyond 10N [172]). Since cobalt is
an element that is already present in the human body [173], the biocompatibility was expected to
be only minimally affected by it (although this assumption was admittedly never tested and other
chemicals involved in the bonding process of the hard gold could also theoretically affect the bio-
compatibility).
Besides the surface material of the sensors, the contact area is another major factor to consider:

Using a smaller contact area, more sensors can be fitted onto the a pseudopalate but a larger
contact area increases the conductance of the connection (see section B.3. Previous systems (in
chronological order) used 1mm (Kay), 1.4mm, (Reading), and finally 1.5mm (Articulate). The EOS
system uses circular contact sensors with a diameter of 2mm to ensure good conductivity at the
expense of spatial resolution. Since the commerical EPG systemswere all designedwith the analysis
of pathological speech in mind (see Figure 3.14), they needed to have a higher spatial precision
to be able to, e.g., differentiate a “good” /S/ from a “bad” /S/ in a cleft-palate patient. In an SSI
context, it should be enough to capture the general place of articulation, which requires much less
precision: There are only nine places of articulation in the anterior mouth cavity (bilabial to uvular,
see chapter 2) that need to be distinguished, even fewer for some languages.
The contact sensors are arranged in an irregular grid (see Figure 4.3). To prevent saliva from

short-circuiting two or more sensors, the distance between the sensors should be not too small.
Since the exact distance depends, among other things, on the conductivity of the saliva, which in
turn depends on various influence factors including recently consumed food and drink, only a best-
practice value can be assumed here. Previous systems used between 1mm in very dense parts of
the layout to 3mm in more sparse areas. As a compromise between these extremes, EOS contact
sensors are spaced approximately 2mm apart (edge to edge). There were iterations of the sensor
unit that included 124 and 64 contact sensors of reduced diameter and increased density, but these
units were very unreliable due to issues with the additional components necessary to address the
additional sensors (see subsection 4.4.2). The final number of contacts used was 32. This puts EOS
at the lower end of the spectrum in comparison with other EPG systems (see Table 3.1), but given
the limited application scope described above, robustness was preferred over spatial resolution.

contact sensors body clock contact

2 mm

Figure 4.3.: Contact sensor arrangement on the unmounted circuit board (see section 4.4 for more
details on the assembled sensor unit).

4.2. Optical distance sensors

Figure 4.4 summarizes the basic principle behind the optical distance sensing in its simplest form (a
more complexmodel will be derived in subsection 4.2.3): A light source of some kind emits light into
free space. If an object is placed in front of this light source, someof its emitted light is absorbed and
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some of it is reflected at the object’s surface. Some of this reflected light is scattered at an angle
that it eventually hits a light-sensitive detector, which measures the incident light intensity. This
light intensity can be related to the distance of the detector from the object: the further the object
is from the detector, the lower the measured light intensity becomes. Even with this high-level

Light emitter Light detector 

Re ective surface

Distance d

Figure 4.4.: The basic principle of optical distance sensing: A light source emits light, which is re-
flected by an object’s surface and captured by a detector. The light intensity at the de-
tector is related to the distance d of the object.

understanding of the measurement setup, a few design considerations are immediately apparent:
What kind of light source and detector should be used and how should they be arranged? What
kind of circuit should drive the light source and detect the received light intensity?

4.2.1. Selection of the source and detector components and setup

The bandwidth of the light used in the system should be in the infrared range (i.e., wavelengths of
700nm and longer), since flashes of visible light inside the mouth cavity would be irritating to the
user and the people around them, and ultraviolet light (i.e., wavelengths of 400nmand shorter) was
excluded due to its acute and long-term effects on human skin. Another important requirement
was a small package, so that the overall size of the sensors would be as small and unobtrusive as
possible. Earlier iterations of the EOS device used a Vishay VSMY2850 infrared (peak wavelength of
850nm) Light Emitting Diode (LED) as a light source, since it was previously identified as the best
candidate in a comparisonmade by Birkholz et al. [171]. Due to its focusingminiature lens, it offered
a narrow beam angle of only ±10°, which was very desirable to achieve a high directivity and long
range of the sensor. The same study determined that the Vishay TEMT7100 phototransistor (peak
sensitivity at 870nm) was the optimal receiver. Its broad angle of half sensitivity of ±60° further
increased the range of the sensor setup. Both of these components are shown in Figure 4.5b and
Figure 4.5a, respectively. The circuitry necessary to power the led (the driver circuit) and sense the
photocurrent through the transistor (the detector circuit) were also adopted from [171] in earlier
iterations and is shown in Figure 4.6. The driver circuit is a voltage-controlled current source using
an operational amplifier to stabilize the output under load. However, since portability was a major
design goal of EOS, the relatively high current consumption of the VSMY2850 LED was rather con-
cerning. Therefore, a TT electronics OP280V vertical-cavity surface-emitting laser (VCSEL) diode was
selected as the light source for the final prototype, which offered a similar beamwidth of±18° at the
samepeakwavelength of 850nmbutwas rated at amuch lower forward current of only 7mA, which
could be sourced by the microcontroller used in the control unit (see section 4.5) directly andmade
the inclusion of a dedicated driver circuit obsolete in later iterations. The detector circuit produces
an output voltage that is inversely proportional to the incident light and thus an inverse function
of the reflector distance: the closer the reflector, the more light falls onto the phototransistor, the
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2 mm
(a) Vishay TEMT7100 phototran-

sistor

2.3 mm
(b) Vishay VSMY2850 infrared

LED (only used in early itera-
tions)

2.3 mm
(c) TT electronics OP280V VCSEL

diode (used in later iterations)

Figure 4.5.: Optical components for the distance sensors. The VSMY2850 LED was replaced by the
OP280V vertical-cavity surface-emitting laser (VCSEL) diode in the later iterations of the
EOS system.
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(a) Driver circuit for the VSMY2850 infrared LED (only used in early
iterations)
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Figure 4.6.: Circuitry surrounding the optical components.

higher the collector current gets, the higher the voltage drop across resistor R and thus the lower
the measured voltage becomes. The variable resistor R can be adjusted to change the sensitivity
of the circuit. Given the same current, a larger value of Rmeans a larger voltage drop compared to
a smaller value of R and thus a higher sensitivity. However, the sensor becomes “saturated” when
the collector current ipt of the phototransistor becomes large enough so that ipt · R = VCC. There-
fore, the sensitivity needs to be adjusted to a level that allows both a good sensitivity, so that larger
distances can be measured, but that does not at the same time drive the voltage Vout to ground
at too large distances, as well. However, the relationship between the phototransistor current and
the distance of the tongue cannot be easily defined analytically and thus this trade-off can also not
be determined without experimental exploration.

Measuring the distance sensing characteristic

A measurement setup was devised similar to the one described in [170] to define the mapping
of the phototransistor current to the distance of the tongue in millimeter. Instead of deriving the
mapping analytically (as was attempted by [162]), the characteristic is approximated by sampling
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the sensor value at a discrete set of distances and then interpolating linearly between these known
points. To that end, the tongue is placed at a number of fixed distances from the sensor. The
sensor output voltage is digitized and recorded for each distance. To get precise and reproducible
results, the tongue needs to be held at a fixed distance by some sort of spacer during the measure-
ment. At the same time, the spacer should not cause additional reflections, which could strongly
impact the sensor reading. In one of the studies leading up to this dissertation in [170], Birkholz and
Neuschaefer-Rube used a set of acrylic glass tubes (inner diameter of 26mm) of various lengths,
capped with an acrylic glass grid to keep the flexible tongue tissue from protruding into the tube
and thus inadvertantly shortening the effective measurement distance. While the design of these
spacers was well-motivated, there was no experimental validation of the impact of these spacers
on the measured sensor values compared to the “free-floating” tongue. As part of this dissertation,
a series of measurements was conducted on various modified versions of the original spacer de-
sign to quantify the difference of measurements using these spacers to a reference measurement
performedwithout a spacer [174]. The spacers were all made of the same acrylic glass used in [170]
but in the following four configurations (also summarized in Table 4.1): The most basic design was

Configuration Inner diameter [mm] Black coating Grid

1 26 no no
2 34 no no
3 34 yes no
4 34 yes yes

Table 4.1.: Configurations of the analyzed spacers

Figure 4.7.: Configuration 1: an acrylic glass tube with an inner diameter of 26mm and a length as
labeled on the tube (in mm).

a set of seven acrylic glass tube sections with an inner diameter of 26mm and lengths of 2, 5, 10,
15, 20, 25, and 30 (all in mm), as shown in Figure 4.7. Even though the acrylic glass transmitted
99% of the incident light (according to the manufacturer), under visual inspection very noticable
reflections (at least of visible light) were apparent, most likely due to the curved shape. A set of
similar tube sections of the same material and the same lengths but a larger inner diameter of
34mm were therefore manufactured and included in the study. To avoid even more reflections on
the inner wall of the tubes, a third set with the larger inner diameter and additionally with a black
inside coating made of thin black matte cardboard was created (configuration 3). Finally, because
as was already pointed out in [170], the tongue tissue tends to protrude into the spacer and needs
to be restrained in some way. Following the example of [170], a configuration 4 was created by
adding an acrylic glass grid with square grid openings with a width of 4.5mm and a strut thickness
of 0.5mm. To identify the optimal configuration between these four, all other influencing factors
during the measurements have to be kept constant. In particular the tongue, however, is a major
source of uncertainty because its surface tissue is not homogenous and saliva or residue from food
or drink may change the reflective properties between measurements, invalidating the compar-
isons between the spacer configurations. To eliminate this problem for the purpose of identifying
the optimal spacer, an artificial reflector was used that consisted of a 5 cm × 5 cm piece of solid
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4.2. Optical distance sensors

cardboard covered with red velour (see Figure 4.8). The fabric was chosen because it resembled
the tongue both in color and texture. Because of possible deviations across sensor units due to the
production and assembly processes, the measurements were conducted using five sensor units,
arranged on a flexible circuit board strip taped to a matte black surface to avoid stray reflections
(see Figure 4.10a). The sensors used the OP280V laser diodes and were controled and sampled us-
ing an EOS control unit, which used an Atmega SAM3S4B 32-bit ARM Cortex-M3 RISC processor to
source the current for the VCSEL diodes and to convert the detector circuit output voltage to digital
values using the built-in 12-bit Analog-to-Digital Converter (ADC) (more details follow in section 4.5).
To ensure the same conditions as during the actual application of EOS, the same basic measure-
ment protocol was used but with slightly different timing (see subsection 4.5.1): The light sources
were switched on one at a time in sequence for 500μs each. During the on-time, the ADC gathered
160 samples of the detector voltage continuously with a sampling frequency of fadc = 320 kHz. Of
these 160 samples, the first 32 were discarded (corresponding to the first 100ms of the on-time)
to avoid transient effects. The remaining 128 samples were averaged to obtain the final sensor
reading for a single measurement frame. The frames were sampled and sent to a desktop PC for
further processing at a frame rate of fS = 100Hz. Each measurement value in the spacer study
was obtained by averaging again over 1 s (=̂100 frames) to further reduce the measurement noise
(see subsection 4.4.1). In order to find the optimal spacer configuration, a ground truth sensor

1cm1cm

Figure 4.8.: Reflectors used in the spacer study: large reflector (15 cm×15 cm, left) for the reference
measurement and small reflector (5 cm × 5 cm, right) for the spacer measurements.

value needed to be determined for each distance. These reference values were obtained with a
15 cm×15 cm large reflector made of the same material as the smaller one, which was put in front
of the sensor by resting it on three configuration 1 spacers placed at the very edge of the large re-
flector, which ensured that they would not have any impact on the measured value (see Figure 4.9).
Using this setup, a reference value was recorded for each of the seven distances of interest and
each of the five sensors. Because the slightly inhomogenous surface of the reflector may also im-
pact themeasurement, everymeasurement was repeated three times after fully disassembling and
reassembling the setup between measurements. Finally, the mean and standard deviation across
these 15 data points (three repititions measured at five sensors) were calculated and recorded. Us-
ing the spacers of the four configurations, a similar protocol was followed: each spacer (in each
configuration and of each length) was placed so that one of the five sensors was in its center. The
small reflector was then placed on top of the spacer and the sensor was sampled and averaged
over 1 s. The reflector and spacer were then removed and the same procedure repeated two more
times for the same spacer for a total of three samples (each representing the 1 s average) from each
of the five sensors. As with the reference measurements, the mean and standard deviation across
these 15 repetitions were calculated and recorded for each spacer configuration and length. To
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Sensor under test
(here: 3)Large re ector

Spacers

1cm

Figure 4.9.: Setup for measuring the reference sensor value: The spacers were moved relatively far
away from the sensor under test to emulate a “free-floating” reflector.

Sensors

1

2

3

4

5

(a) Flexible circuit board with the
five sensors

Re ector

Spacer 1cm

(b) Artificial reflector on a (configuration 2) spacer and centered on
sensor 3

Figure 4.10.: Setup of the spacer comparison study

compare the characteristics obtained in this way to the reference characteristic, the RMSE would
intuitively seem like a good choice. But due to the non-linearity of the sensor characteristic, it is not
advisable to calculate any such globalmetric across the entire characteristic. Instead, the point-wise
differences δi were calculated for each of the spacer configurations i = 1, . . . , 4 between the mean
sensor value at each distance (averaged across all five sensors) and the corresponding reference
value. The final results are shown in Table 4.2.
The first finding was that measured sensor values are generally lower than the corresponding

reference values for configuration 1 and 2. Given the inverting behavior of the detector circuit (see
Figure 4.6b), this equated to more light getting reflected back to the detector. Since these two con-
figurations were the only twowith no black lining, themost likely explanation is that the acrylic glass
walls of the spacers reflected a significant amount of light, as was already suspected from the ob-
servations under visible light. This hypothesis was further supported by the fact that configuration
2, which used a larger inner diameter and thus had a larger distance between the detector and the
inner wall of the spacer, was also causing lower sensor values than in the reference setup but was
closer to the ground truth overall. Between the two black-lined configurations, configuration 3 was
slightly closer to the reference values than configuration 4, but both were well within the first stan-
dard deviation of the respective distribution, showing that the grid on top of the spacer has only a
minimal impact on themeasured value. Although configuration 3 was best overall, the lack of a grid
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4.2. Optical distance sensors

Distance Reference Configuration 1 Configuration 2 Configuration 3 Configuration 4
d

[mm]
μref

[ADC]
σref

[ADC]
μ1

[ADC]
σ1

[ADC]
Δ1

[ADC]
μ2

[ADC]
σ2

[ADC]
Δ2

[ADC]
μ3

[ADC]
σ3

[ADC]
Δ3

[ADC]
μ4

[ADC]
σ4

[ADC]
Δ4

[ADC]

2 208.1 24.5 – – – 209.7 21.3 1.6 209.2 22.7 1.1 199.4 17.2 -8.8
5 605.6 354.9 526.9 264.7 -78.7 557.3 251.8 -48.4 614.5 238.2 8.9 517.3 304.9 -88.3
10 2654.9 134.0 2580.9 123.0 -74.0 2623.8 96.9 -31.1 2685.5 99.1 30.7 2715.0 143.9 60.1
15 3380.7 63.0 3278.9 59.7 -101.8 3334.9 50.3 -45.8 3394.7 40.4 14.0 3402.5 57.5 21.8
20 3665.9 32.0 3566.3 33.7 -99.5 3612.4 27.2 -53.5 3662.8 23.8 -3.1 3671.2 35.1 5.3
25 3816.3 19.4 3715.9 26.9 -100.4 3767.6 18.0 -48.7 3810.7 15.7 -5.7 3810.5 24.6 -5.8
30 3900.1 11.9 3805.0 20.9 -95.1 3845.0 13.9 -55.1 3889.6 11.8 -10.5 3884.7 17.0 -15.4

Table 4.2.: Mean μi and standard deviation σi measured across the five sensors under test for each
configuration i = 1, . . . , 4 of the spacers and the reference setup using the free-floating
reflector (subscript ref), and the difference Δi = μi – μref. The smallest errors were
achieved using configuration 3 (black lined spacer with no grid), followed very closely
by configuration 4 (black-lined spacer with grid).
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Figure 4.11.: Sampled characteristics using the four spacer configurations (see Table 4.1) with the
free-floating reflector as a reference. The whiskers extend to ±σ.

makes it a poor choice for use with an actual tongue, because the tongue tissue would protrude
into the spacer. Therefore, configuration 4 was ultimately identified as the optimal choice.

Detector sensitivity setting

As mentioned above, the resistor R in the detector circuit (see Figure 4.6b) can be used to adjust
the sensor characteristic to find the optimal trade-off between sensitivity at large distances versus
sensitivity at very small distances. This adjustment ideally is made at an individual level, because
every subject’s tongue is likely to be slightly different in its reflective properties. Although some
of these differences can be alleviated by the in-vivo calibration scheme developed later in subsec-
tion 4.2.2, it is advisable to adapt the detector gain to obtain a baseline characteristic that should
be as similar as possible across all subjects. As a reference to guide this manual process, a series of
measurements was conducted to illustrate the influence of the detector gain on the characteristic.
The basic measurement setup followed the design described above using spacers. However, in this
case a subject’s tongue (male, 28 years old) was used to record the characteristics. The light source
used in the sensors was the VSMY2850 infrared LED at a forward current of IF = 200mA. The mea-
sured characteristics (see Figure 4.12) show that for smaller detector gain resistors the resolution
in terms of ADC-values per mm was significantly larger, but at the expense of a very poor resolu-
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tion of larger distances. For larger values of R, the sensitivity at larger distances becomes much
higher but a saturation effect can be observed at small distances. The characteristic for R = 372Ω
was found to be a good middle-ground between these conflicting requirements and this value was
therefore used for the measurements using the VSMY2850 as a light source. For the OP280V, the
measurement was informally repeated and a resistor value of 3.5 kΩ was determined to achieve a
similar trade-off and used in all measurements using the OP280V as a light source.
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Figure 4.12.: Sensor characteristics for different detector gains (using the VSMY2850 LED)

Gap between the source and detector

With the selected components and their specified circuitry, one final important degree of freedom
in the sensor design was the size of the gap between the source and the receiver. The study by
Birkholz et al. had only reported their findings for a roughly constant-sized gap of 3mm to 3.5mm,
but the effect of the gap was not studied and no optimal value was determined. Therefore, two
series of measurements were conducted using a subject’s tongue (human male, 28 years old), the
VSMY2850 light source at IF = 200mA, and an older EOS control unit using a 10-bit ADC. The mea-
surements followed the protocol to measure the distance sensing characteristic for two different
sensor-detector gaps (3.2mmand 3.8mm), measured between the centers of the two components.
The results are shown in Figure 4.13.
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Figure 4.13.: Distance sensing functions for two sensor units with different distances between the
light source (VSMY2850) and the receiver (TEMT7100): 3.2mm (small gap) and 3.8mm
(large gap)
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4.2. Optical distance sensors

The larger gap caused a higher light intensity to be measured at the detector position, which was
most likely due to an increase in optical cross-talk. Nevertheless, both measured characteristics
are essentially parallel-shifted copies of each other, which means that the cross-talk only added a
constant offset to the measurements. Given the much easier handling of the sensor units with a
larger gap during the assembly of a pseudopalate (see section 4.4), a layout with a gap of 3.6mm
was chosen for the final sensor layout as a compromise between the level of cross-talk and the
practicality constraints.

Comparison between the VSMY2850 and the OP280V

As mentioned above, the high current consumption of the VSMY2850 LEDs was a concern during
the development of the system. While this component was the most suitable one available at the
time the development process began, in another round of market research later in the develop-
ment process the OP280V VCSEL diode (see Figure 4.5c) was discovered as an even better option,
since it promised a much lower current consumption while also offering similar beam angle and
optical power. In order to avoid the repetition of all the experiments already conducted using the
VSMY2850 but still be able to use the findings gleaned from them, it was desirable to reproduce
the distance sensor characteristic of the VSMY2850 using the OP280V. The assumption was that
if the distance characteristic was very similar, all other properties should also be very similar. To
that end, a series of measurements was conducted using a single subject’s tongue (male, 29 years
old) and the OP280V as the light source, otherwise following the established protocol (see above)
to measure the sensor output at eight distances. The forward current through the VCSEL diode was
varied in three steps from a very low current to the maximum forward current recommended in
the data sheet. The exact values were chosen due to the available values for the series resistor in
the driver circuit (see section B.4 for details and the actual calculation). According to the results of
these measurements (see Figure 4.14), the best approximation of the VSMY2850 characteristic was
achieved using a forward current of 11.5mA. With this setting, the sensor is slightly more sensitive
to small distances which is likely due to the larger beam angle of the OP280V (18°) compared with
the VSMY2850 (10°). However, due to the non-linearity of the characteristic, it was more important
to achieve a good approximation at large distances, since small errors in raw output would translate
to large errors in mm here. Therefore, the OP280V was used at a forward current of 11.5mA for
the remainder of this work. All studies and results presented below were conducted and obtained
using this setup, while some references to the VSMY2850 are made only to describe earlier design
approaches.

4.2.2. Calibration

So far, the mapping between the sensor values and the distance in mm was determined by inter-
polating between known reference points. While this technique works well for measurements to
characterize the sensors in a lab setting, it does not lend itself well to in-vivo measurements in an
actual use-case scenario: Once the sensors are intergrated into a pseudopalate, it is impossible (or
at least very impractical) to establish the conditions necessary to follow the measurement protocol
and so the distance sensing function cannot be adapted should the properties of a subject’s tongue
change due to food residue, saliva, tissue changes, or similar outside influence. Some sort of para-
metric calibration scheme that allows the reconstruction of the entire distance sensing function
based on just a few, easily in-vivo obtainable parameters was therefore very desirable. Two basic
options present themselves to define the mapping: Either by implicitly modeling the analytic func-
tion, or a regression-based approach. Both approaches are presented here, while the latter was
also published in [175].
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Figure 4.14.: Comparison of the OP280V at different forward currents and the VSMY2850 at the pre-
viously determined optimal setting. The best agreement was achieved using a forward
current of 11.5mA.

Analytic approach

In the first publication on optopalatography by Chuang and Wang [162], the authors derived an
analytic approach to model the mapping from received light intensity to reflector distance, based
on the assumption that the tongue surface behaves like an ideal Lambert reflector and diffusely
reflects the entire incident light. They arrived at the following equation (notation adapted to the
conventions of this dissertation):

sC(d) = B (d + de)((d + de)2 + x20)3/2 + A, (4.1)

where sC(d) is the sensor output for a given reflector distance d, B is a free parameter propor-
tional to the maximum intensity of the light source, de is a correction term that takes the tongue’s
surface structure into account, x0 is the distance between the light source and the detector, and A is
another free parameter. Because the detector circuit used in EOS was inverting, equation 4.1 was
inverted as well and offset by the maximum possible digital sensor output value of 4095. Since the
ultimate purpose of the distance sensing function would be to use it for calibration, the function
also needed another degree of freedom that would allow its adaptation to different sensor and
tongue properties. This degree of freedom should be representative of the inter-sample variance
(the variance across both subjects and sensors) and at the same time easy to obtain both in vivo
and after the assembly of an EOS unit. The sensor value measured at a distance of 0mm (so during
gentle tongue-sensor contact) would be such an accessible data point and so the final equation was
written as:

s(d) = 4095 –
B(s0)
2π

·
d + de(s0)((d + de(s0))2 + x20)3/2 + A(s0) (4.2)

with (4.3)

A(s0) = A′ · (4095 – s0)3/2 (4.4)

B(s0) = B′ · (4095 – s0)3/2 (4.5)

de(s0) = d′
e · (4095 – s0)3/2 (4.6)
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4.2. Optical distance sensors

So in equation 4.3, the original free parameters from equation 4.1 were replaced by functions
of s0, which introduced new free parameters A′,B′ and d′

e. These parameters could be determined
to optimally fit a set of given measured distance characteristics as long as the sensor output value
s0 at a distance of d = 0mm was known for each series of measurements. Once optimal values
for A′,B′ and d′

e were determined in this way, only s0 remained as a degree of freedom of s(d) and
would thus allow the adaption of the distance mapping by inserting the measured sensor output
while gently pressing against the sensor with the tongue.
The necessary data for evaluating this approach were recorded using 5 subjects (all male, 29-62

years old), the OP280V light source, 5 different sensor units, and following the established mea-
surement protocol, except that the sensors were sampled at seven distances from 0mm to 30mm,
spaced in equal 5mm steps. The 25 characteristics (5 subjects times 5 sensors) measured in this
way are shown in Figure 4.15a.
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(d) Leave-one-out cross-validation error in
mmof the analytic distance sensing func-
tion at each distance across the 25 sam-
ples. The thick line is the median,
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and 75th percentiles, and the whiskers
stretch to the most extreme points.
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Figure 4.15.: Fit and evaluation of an analytic distance sensing function proposed in [162]

The most important observations from this (admittedly slightly convoluted) plot is that the char-
acteristics had larger variances at small distances and converged towards large distances, but were
generally of the same shape. This supports the assumption made above that the entire shape of a
sensor characteristic can be derived from s0. The equation proposed by Chuang andWang, adapted
into the form given in equation 4.3, was then fitted to the measured data points in a least-squares
sense using the Matlab function lsqcurvefit from the Optimization Toolbox and the trust-region-
reflective algorithm. Each fit used the data of 24 of the 25 measured characteristics and was evalu-
ated on the remaining one (leave-one-out cross-validation) by calculating the pair-wise differences
between the measured sensor outputs sd and the analytically calculated function values s(d) at the
corresponding distances d. When comparing the goodness-of-fit at the various distances across the
characteristics, the non-linearity of the characteristic required special attention. Instead of calculat-
ing the RMSE in ADC values, which would not represent the non-linearity of the characteristics, the
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differences |sd – s(d)| were converted to mm taking the local resolution (slope of the section) into
account and the RMSE was therefore calculated in mm. The best fit achieved an RMSE of 2.1mm
(see Figure 4.15b) and the worst fit had an RMSE of 5.6mm (see Figure 4.15c). This error was also
unevenly distributed across the seven evaluated distances, as shown by Figure 4.15d: at larger dis-
tances, the error was also generally larger and in extreme cases went up to almost 15mm. This
was most likely due to the fit being optimized using the digital values and a fit after converting
to mm might have reduced these outliers, but the overall accuracy was still severely limited. In
summary, the analytic approach, even when determining the unknown parameters through exper-
imental data, did not accurately reflect the complex processes resulting in the observered variance
of distance sensing characteristics across subjects and sensors.

Regression-based piece-wise approach

Adapting an analytic base function did ultimately not deliver sufficiently precise results. However,
the assumption that the different reflective properties of different tongues and the slight variations
across different sensors might be sufficiently represented in the sensor value s0 at a distance of
0mmmight still be valid and only themodel function from [162]may have beenwrong. The function
s(d) is probably not as simple as the approach by Chuang and Wang, but it is difficult to say what
it should be in explicit terms, since it could possibly be very complex. A piece-wise definition of
the distance sensing function using linear interpolation in each subdomain might be simpler and
still sufficiently accurate. For that piece-wise approach, the sensor outputs sdi corresponding to
distances di (d1 - d6: 5, 10, 15, 20, 25, and 30mm) could be used as the interval boundaries. So
the problem of finding the entire distance sensing function now becomes the problem of finding
a family of functions fi(s) that relates the sensor output during tongue contact s0 to the six sensor
outputs sdi . The exact functions in this family are also likely to be very complex. However, we can
expand each fi into a Taylor series and truncate it to the power of two, i.e., the second-order Taylor
polynomial as shown in equation 4.7. This is a non-linear approximation of the unknown function
fi at the point pi. If we expand these terms and sort by the power of s we obtain equation 4.8. As pi
is a specific value, we can further simplify the expression to equation 4.9.

fi(s) = fi(pi) +
f ′
i (pi)
1!

(s – pi) +
f ′′
i (pi)
2!

(s – pi)2 (4.7)

= fi(pi) –
f ′
i (pi)
1!

pi –
f ′′
i (pi)
2!

p2i︸ ︷︷ ︸
ai,0

+
(
f ′
i (pi)
1!

–
f ′′
i (pi)
2!

2pi
)

︸ ︷︷ ︸
ai,1

s +
f ′′
i (pi)
2!︸ ︷︷ ︸
ai,2

s2

(4.8)

= ai,0 + ai,1s + ai,2s2 (4.9)

A mathematically equivalent approach would be to simply describe the unknownmappings from
s0 to sdi by linear regression using a a second-oder polynomial basis function, leading to the same
equation as equation 4.9.
We now would have to determine the scalar coefficients ai,0, ai,1, and ai,2 so that fi(s0) becomes

sdi . Because a single exact solution to this problem that holds for all tongues and sensors with just
a single set of coefficients for each distance is not possible, we need to find optimal sets that yield
a good approximation fi(s0) = ŝdi ≈ sdi . To that end, we need a number of known tuples (s0, sdi )
for each distance di to set up an overdetermined set of (in the coefficients) linear equations as
in equation 4.10, where sdi is a column vector containing sensor values measured at distance di,
S0 = (1, s0, s02) (where s0 is a column vector of sensor values at a distance of 0mm and s02 denotes
the element-wise square of s0), and ai = (ai,0, ai,1, ai,2)T .

sdi = S0 · ai (4.10)
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4.2. Optical distance sensors

This system of equations was set up for each distance di and solved for ai in a least-squares
optimal sense using a standard QR decomposition algorithm implemented in the Matlab built-in
function mldivide. This eventually yielded one set of coefficients for each distance of interest.
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Figure 4.16.: Fit and evaluation of the regression-based, piece-wise distance sensing function

The regression-based distance sensing function was also evaluated in a leave-one-out paradigm
using the data set described above and the result is summarized in Figure 4.16. The best fit (see
Figure 4.16b) achieved an overall RMSE of 0.1mm, while the RMSE of the worst fit was 1.1mm
(see Figure 4.16c). The error distribution at each of the six evaluated distances was slightly less
dispersed compared to the results using the analytic approach, both for the leave-one-out cross-
validation (see Figure 4.16d) and the test data (see Figure 4.16e). The median error in the leave-
one-out setting was less than 0.1mm at all distances while the maximum error was 1.8mm at an
actual distance of 30mm. The median error on the test set, recorded with a sixth subject and five
additional sensors not used for the training data set, was less than 1mm at most distances except
at 10mm where it amounted to 1.17mm, the maximum error was 1.95mm at an actual distance
of 25mm.

Discussion

The regression-based, piece-wise approach achieved much smaller errors than the analytic ap-
proach. The results in the leave-one-out cross-validation setting were significantly better and more
consistent than the results on the second evaluation set. This was due to the fact that by leaving
only one trial out, data from the tongue that was used in this trial was still present in the training
set, albeit recorded with another sensor. Analogously, the one sensor used in the left-out trial was
still represented in the training set through measurements with different tongues. Therefore, the
results from the second evaluation set with the entirely new speaker should be considered indica-
tive for the true quality of generalization and representative for the error one should expect to find
in real-world applications. By adding trials with more sensors and more subjects to the training
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corpus, the results are likely to further improve as the generalization error most likely goes down.
The results also showed that the error can become generally larger at greater distances than at
closer distances. Because of the decreasing ADC

mm resolution between the calibration points with in-
creasing distance, a small error in the calculated sensor value becomes an increasingly larger error
in mm at greater distances (see Figure 4.16). If the resolution could somehow be increased at these
distances, maybe even at the expense of the resolution at closer distances, this effect might be
compensated to some extent.
The measured calibration points during tongue contact s0 in the training data set also varied

significantly across subjects and sensors between about 300 to 1400 ADC counts. While small dif-
ferences in the sensor values could be attributed to the varying optical properties between subjects
and sensors, this range seems too large to be explained solely by these variables. Future studies
should therefore somehow ensure that the subjects apply consistent pressure to the sensor when
their tongues are placed directly on it, e.g. by fixing the sensor-under-test on a pressure-sensitive
plate. A less scattered distribution of s0 values might further reduce the error when calculating the
calibration points. On the other hand and in defense of the approach taken here, an unconstrained
measurement of the s0 value makes the acquisition of this calibration point easier to complete in a
real-world scenario and the mapping should be robust against this kind of noise, which may add a
regularization effect to the training.

Examples of measured contours

In order to test the plausibility of tongue contours obtained with the regression-based calibration,
synchronized audio and EOS data of 10 realizations each of five sustained vowels (/a:, e:, i:, o:, u:/)
uttered by a single speaker (male, 29 years old) were recorded (see section 4.6 for a description
of the measurement software and visualization techniques). Data from this speaker were part of
the training corpus of the calibration model but the sensors mounted on the pseudopalate were
different from both the ones used in the training and the test corpus. Using the phonetics software
Praat [176], the recordings were segmented and the middle section of each realization extracted,
keeping the section length approximately constant at about 300ms. We then averaged the EOS
data over these intervals. The resulting mean, lowest and highest contours of the five vowels are
presented in Figure 4.17. The tongue shapes were generally plausible and in line with the phonetic
features height and frontness/backness (see Figure 2.2). There was also only a very small difference
between the lowest and highest shapes within the 10 repetitions of each vowel which indiciates a
high reproducibility within a series of measurements.
The tongue shape of /o:/ shows one potential weakness of this method of drawing the tongue

contour: When an optical sensor (especially the most anterior one near the incisors) measures a
distance of 30mm, it cannot be determined for certain if the tongue is indeed very low or if it is so
far back that the light is actually reflected by the floor of the mouth. Therefore the system cannot
precisely locate the tongue tip. However, it is also possible to predict the entire tongue contour
from the measured data and section 4.6 discusses this approach in greater detail.

Conclusions

As the results on the test set and the contours given in Figure 4.17 show, the automatic calibration
using equation 4.9 and the coefficients determined in this study performed sufficiently well to yield
realistic and meaningful measurements. The small errors were outweighed by the ability to quickly
adapt to varying optical conditions during a measurement and the fact that a subject no longer has
to do a calibration trial at several distances with each sensor before or after the pseudopalate is
assembled. Future work should focus on further reducing the calibration error by increasing the
size of the training data and reducing the variance of the s0 distribution by controlling the level of
force the tongue exerts on the sensors. Another important future experiment is to perform some
other articulometric technique with a known precision (e.g., sonography or EMA) in conjunction
with EOS measurements to evaluate the absolute precision of this system in situ.
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Figure 4.17.: Tongue shapes of five vowels obtainedwith the regression-based calibration. The solid
black line is the mean shape (of 10 repetitions each), gray solid lines are highest and
lowest shapes, and the dashed gray line is the contour of the neutral vowel /@/ as a
reference.

4.2.3. Angle correction

The calibration so far relies on a single sensor reading and was trained using a parallel surface
as the reflector. If the reflector is not perpendicular to the optical axis of a sensor, however, the
sensor output is likely to change as a function of the reflector angle even while the nominal distance
stays the same. This section, the contents of which were also published in [177], investigates the
relationship between the reflector angle and the sensor output both by means of a simulation
and experimental validation. Based on these findings, a correction term is derived that uses the
output from multiple adjacent sensors to reduce the distance measurement error introduced by
the reflector angle. To conduct these analyses, a model of the light propagation for optical distance
measurements is needed.
During the optical distancemeasurements, light travels from the source to the reflector and from

there to the detector (assuming no significant source-detector-crosstalk). To model the propaga-
tion, we need to accurately describe the irradiance of light from the source onto the reflector and
the irradiance onto the detector from the reflector. To that end, we need tomodel the setup during
the optical distance measurement first.

Source-reflector-detector geometry

We define the geometric setup of the source, the reflector, and the detector during the optical dis-
tance measurements inside the mouth cavity as follows (see also Figure 4.18): A punctiform light
source (representing the Optek OP280V infrared laser diode used in EOS) is located at a point S =(
Sx, Sy, Sz

)
in three-dimensional space, and a punctiform detector (modeling the Vishay TEMT7100

phototransistor used in EOS) at point D = (
Dx,Dy,Dz

)
. Because we only have one lit light source

at any given moment, it is convenient to put that source in the xy-plane (i.e., Sz = 0), which corre-
sponds to the sagittal plane of the vocal tract. The detectors on the other hand can theoretically
be arbitrarily placed, though on the EOS sensor units, they are always laterally displaced by 3.6mm
from the source in z-direction. The reflecting plane is located in the xz-plane at y = 0. The point
of origin is moved to the intersection of the optical axis of the source and the reflector plane. The
orientation of the optical axes of the source and detector are given by �nS and �nD, respectively. The
normal of the reflector plane is given by �nP. To examine different inclination angles of the reflector,
the source and detector are rotated around the origin by the corresponding angle, therefore the
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4. Electro-Optical Stomatography

z-component of all optical axes is assumed to be zero whereas the normal vector of the reflector
plane is constantly �nP = (0, 1, 0)T . In measurements during speech, this is of course the other way
around as the sensors’ positions stay the same but the reflecting surface effectively rotates around
the sensors, which only changes the absolute coordinates of the elements in the scene but not their
relative positions and thus does not affect the outcome of the calculations. The entire scene has
the following Degree Of Freedoms (DOFs):

• Position of the light source in the xy-plane in polar coordinates (2 DOFs).

• Angle of the optical axis �nS in the xy-plane (1 DOF).

• Position of the detector D = (Dx,Dy,Dz)T (3 DOFs).
• Angle of the optical axis �nD in the xy-plane (1 DOF).

x

y

z

Light source S

Light detector D

P Origin (0,0,0)
(arbitrary point on re ective surface)

nS

nP

nD

Figure 4.18.: Principal geometry of the optical distance measurement setup

Calculation of the Irradiance at a Detector Position

For this geometry, we are ultimately interested in the irradiance ED at the position of the detector.
Under the assumption that there is no significant crosstalk between the light source and the de-
tector, the irradiance ED solely depends on the light that is reflected from the reflector plane, i.e.,
the radiance M of the xz-plane, which is non-uniformly distributed on the surface. To determine
the radiance at any point P on the reflector, we use the radiosity equation, as first introduced in the
context of computer graphics by [178]. This equation yields the sought radiance M(P) as

M(P) = Mself(P) + ρ(P) · E(P) (4.11)

Here, Mself(P) is the self-radiation, ρ(P) the reflectivity of the surface and E(P) is the incident irra-
diance (at the point P, respectively). Since the tongue does not emit any self-radiation, to compute
the radiance M(P) we only need the incident irradiance E(P) given by1:

E(P) = ∫
P′∈S

M(P′)
1
πr2

cos(φP) cos(φP′ ) dP′ (4.12)

In this equation, S are all points P′ on light emitting surfaces in the scene, r is the distance between
the points P and P′, and φP and φP′ are the angles the normal vectors at P and P′ form with the line
through P and P′, respectively.
1This equation is given in discrete form in [178].
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4.2. Optical distance sensors

The major assumption underlying this equation is that all surfaces (reflectors and sources) are
ideally diffuse actors (i.e., Lambertian scatterers and radiators), which means they emit or reflect
light equally well in all directions. However, the OP280V light sources used in EOS are not Lam-
bertian (i.e., diffuse) radiators. The radiation lobes of these laser diodes are not perfect circles but
instead significantly more focused. Wemodel this behavior by introducing an exponent θ > 1 to the
second (source-related) cosine term in equation 4.12, which is borrowed from the Phong reflection
model where this technique is used to model specular reflections (see [179] for details). By solving
0.5 = cosθ(αhalf) for θ, where αhalf is the half-power angle of the VCSEL diode provided by the data
sheet, we obtain an exponent of θ = 13.8 for the light sources used in the EOS system.
Considering that the light source in our scene is punctiform (i.e., S in equation 4.12 becomes only

a single point), the anglesφP andφP′ correspond to β and α in Figure 4.18, and the distance becomes
r = |P – S|. This yields

E(P) = I0
π|P – S|2

cos(β) cosθ(α), (4.13)

where I0 is the radiant intensity of the source along the optical axis. According to equation 4.11,
the resultant radiance of the reflector is the irradiance on the surface multiplied by the reflectivity.
The radiance of a homogeneous reflector (where ρ is constant) therefore becomes:

M(P) = ρ · E(P). (4.14)

However, the tongue is far from a simple, perfectly homogenous surface reflector: The incident
light is only partially reflected at the surface. It also partially penetrates the surface, is repeat-
edly scattered and reflected between non-uniform protrusions on the tongue called lingual papillae
(which give the tongue its distinctive rough texture) and is finally either absorbed by the tissue or
contributes to the tongue surface’s total radiance as an additive diffuse component. This complex
response to incident light is in fact desirable because it is what makes continuous distance sens-
ing even possible, as already described in [162]. In the same paper, Chuang and Wang modeled
the partial transmittance of light into the tongue tissue by an additional observed measured dis-
tance, which basically assumes a “virtual reflective plane” inside the tissue (see de in equation 4.1).
This simplification, however, was likely contributing to the unsatisfying precision of their analytic ap-
proach to the distance sensing function (see subsection 4.2.2) and so it seemed advisable to adopt a
more refined model of the response. To that end, consider the tongue to be a linear system, where
the input (the irradiance distribution E caused by the light source) is convolved with the impulse
response h to yield the output (the tongue’s radiance M)2. Therefore, we replace equation 4.14 by

M(x, z) = (E ∗ h)(x, z) (4.15)

= ∞∫
–∞

∞∫
–∞

E(χ, ζ) · h(x – χ, z – ζ) dχ dζ (4.16)

where χ and ζ are the dummy variables necessary for the integration. To model the impulse re-
sponse h, we first need to determine the general shape of the model function. The parameters of
that model function can then be adjusted until it produces results that approximate in-vivo mea-
surements. To obtain an initial guess of the impulse response shape, the following experiment was
conducted: An LED emitted a bright red light dot directly onto a human subject’s tongue dorsum
via an optical fiber of a diameter of 0.5mm. The dot, even though not infinitely small and bright,
was assumed to be sufficiently so to approximate an actual impulse. Using visible red light with
2Technically, this approach implies that the tongue is a linear translation-invariant system. Even though the linearity seems
intuitively plausible due to the fact that non-linear optical systems are highly complex crystalline structures andnon-linear
effects typically only occur at very high light intensities [180], the translation-invariance seems not to be. However, we
assume the light spot on the tongue from the light source to be small enough to consider the tissue locally homogeneous
in that very confined area.
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a wavelength of approximately 650nm instead of the near-infrared light used in EOS (peak wave-
length of 850nm) was possible because the optical properties of the tongue could be expected to
be sufficiently similar within this narrow band. The tongue’s response to the bright dot was pho-
tographed with a digital Single-Lense Reflex (SLR) camera on a tripod (Sony A580, Tamron 18mm
to 200mm lense, 1/4 s shutter speed). Ambient light was eliminated by conducting the experiment
in an unlit, windowless room. The resultant image can be seen in Figure 4.19. The raw digital data
of the camera’s image sensor for the red color channel is shown in Figure 4.20, represented by the
horizontal and vertical brightness profiles.

1mm

optical ber

Figure 4.19.: Photo of the tongue’s radiance when reflecting a light dot. The small dot, emitted onto
the tongue through the 0.5mm wide optical fiber, is spread into a blurred spot by the
sub-surface scattering inside the tongue tissue.
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Figure 4.20.: Brightness profiles of the blurred spot in Figure 4.19, red color channel only. Due to
the left-aligned data format of the SLR camera, an ADC value of 512 corresponds to a
brightness value of 0. Distance is measured from the point of maximum brightness.
The dashed lines show the shape of an optimally fitted 2D exponential function.

The “dot response” suggests an exponential shape for the underlying impulse response along
both the horizontal and vertical dimension, as illustrated by the fitted exponential (dashed lines)
in Figure 4.20. The choice of an exponential as the model function is further motivated by Stam’s
modeling of multiple scattering in [181], wherein he also describes an exponential reduction of the
incident intensity as the incident light is diffused by sub-surface scattering. Therefore, we assume
the impulse response h in our model to be a 2D exponential function of the form:

h(x, z) = ρ0 · e–
√( xrx )2+( zrz )2 (4.17)
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Here, ρ0 is a linear reflection coefficient and rx and rz are the parameters to control the decay
of the function in x- and z-direction. Because the exact impulse response of a human tongue is
likely to be slightly different across different tongues, we need to find the optimal parameter pair
(rx, rz) by comparing the results produced with our model to results measured on actual tongues
and minimizing the squared Euclidean distance between them as a function of (rx, rz).
To model a detector value for a given geometry that considers sub-surface scattering, we insert

equation 4.17 into equation 4.16 to calculate the radiance “output” M of the tongue to a given irra-
diance “input” E:

M(x, z) = ∞∫
–∞

∞∫
–∞

E(χ, ζ) · ρ0 · e
–
√( x–χrx )2+( z–ζ

rz

)2
dχ dζ (4.18)

To proceed, we need to derive E in its Cartesian notation: If we replace the cosine terms in equa-
tion 4.13 by the dot product of the normal vectors enclosing the respective angles, we obtain:

E(P) = I0
π|P – S|2

·
�nP · (S – P)
|P – S|

·

(
�nS · (P – S)
|P – S|

)θ

(4.19)

which becomes

E(P) = I0
π
[�nP · (S – P)] · [�nS · (P – S)]θ

|P – S|3+θ
(4.20)

and considering P = (x, 0, z)T we obtain finally:

E(x, z) = I0
π
Sy · [nSx · (x – Sx) + nSy (–Sy)]θ[
(Sx – x)2 + Sy2 + z2

](3+θ)/2 (4.21)

Next we insert equation 4.21 for E in equation 4.18:

M(x, z) = ρ0I0
π

∞∫
–∞

∞∫
–∞

Sy
[
nSx (χ – Sx) – nSySy

]θ[(χ – Sx)2 + S2y + ζ2](3+θ)/2
·e
–
√( x–χrx )2+( z–ζ

rx

)2
dχ dζ

(4.22)

To finally obtain the irradiance ED at the detector, we use equation 4.12 for our specific geometry:

ED = ∫
P∈Π

M(P) ·
1

π|P – D|2
cos(γ) cos(δ) dP (4.23)

where Π is the set of all points on the reflector, M is the radiance of the reflector and γ and δ are
the angles as denoted in Figure 4.18. The directional sensitivity of the detector in the EOS system
is described by the cosine function according to its data sheet, therefore making an exponent here
redundant. In this equation, we now insert equation 4.22 for M(P), replace the cosines as before
and, after expanding and rearranging, obtain an equation to calculate the scalar irradiance at a
given detector position ED as a function of the given geometry that considers sub-surface scattering
of an inhomogeneous reflector:

ED = ρ0I0
π2

∞∫
–∞

∞∫
–∞

∞∫
–∞

∞∫
–∞

Sy
[
nSx (χ – Sx) – nSySy

]θ[
(χ – Sx)2 + S2y + ζ2

](3+θ)/2
·e
–
√( x–χrx )2+( z–ζ

rx

)2
dχ dζ

·
Dy
[
nDx(x – Dx) – nDyDy

][
(x – Dx)2 + D2y + (z – Dz)2

]2 dx dz.
(4.24)
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Evaluation of the light propagation model

To evaluate the model, simulation results for a specific geometry with a given pair of parame-
ters (rx, rz) should be compared with in-vivo measurement results obtained with the same source-
detector-reflector setup. To that end, the same data as in the previous section was used (see sub-
section 4.2.2). For this study, however, three detectors were sampled: one detector only laterally
displaced from the source, one detector positioned more posterior and one more anterior in ad-
dition to the same lateral displacement. This was translated to the geometry shown in Figure 4.21
(when φ = 90°).

Detector Dc

Origin (0,0,0)

nS nDc
,nDp

nDa

d

Source S Da

Dp

x

y

z
Figure 4.21.: The geometry of the in-vivomeasurements translated to the model scene. To find the

optimal pair of model parameters, φ was set to 90° and d was varied.

For each detector position Di and each distance di, an irradiance value EDi (di) was computed using
a discretized version of equation 4.24 in a Matlab script with a reflector plane of 10 cm by 10 cm
represented by a grid with equidistant 0.1mm gridlines along both dimensions. Additional values
EDi were computed for distances between the in-vivo samples (i.e., 0.25 cm, 0.75 cm, 1.25 cm, and
so on). The simulated results were compared to the measured samples by calculating the RMSE for
each detector position (center, posterior, anterior) across all distances. Both sets (model results and
measured results) were normalized to their individual maximum, because it was only of interest
to fit the relative shape, not the linear scaling factor of the model function. The parameter set
(rx, rz) that produced the smallest summed RMSE across all five averaged in-vivo trials and the three
detector positions was considered to be optimal. After performing an exhaustive search through
the set [0.1, 10] cm × [0.1, 10] cm in 0.01 cm increments the results calculated with the pair (rx =
0.42 cm, rz = 1.25 cm) produced the best fit and are shown in Figure 4.22.
To validate the model with these optimal parameters, both the inclination angle and the distance

of the reflector were varied in a second run of the simulation and the results were compared to
in-vivo EOS data at two different reflector distances (1.7 cm and 2.2 cm) and eight inclination an-
gles between 90° and 125° (in 5° steps). These data were recorded following the same protocol as
before, except that instead of using spacers of different length, spacers which put the the tongue
at different angles towards the optical sensor axes were used. All other parameters during the
measurements were the same and the same subjects were used. For the simulations, the gen-
eral geometry of the scene was kept the same, except that now measurements at 11 distances
di = {0.5, 0.75, 1.0, . . . , 3.0} mm and at 15 inclination angles between 55° and 125° (in 5° steps) for
3 detector positions (relative positions as above) were simulated, for a total of 11×15×3 = 495 sim-
ulations. As Figure 4.23 shows, the thusly computed irradiance profiles on the tongue surface under
different inclinations exhibited a shift of the maximum depending on the angle. This shift was con-
sequently also present in the radiance profile and caused a change in the irradiance sampled at the
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Figure 4.22.: The normalized simulated irradiance (solid line) calculated at three different detec-
tor positions compared with the normalized measured irradiance (averaged across
five sensors in three configurations for each subject; black dashed lines) at different
distances for a fixed inclination angle of 90°. All three detectors were laterally (in z-
direction) displaced from the source by 3mm.

three detector positions. As shown in Figure 4.24, this change was also present in the in-vivomea-
surements. The model therefore accurately represented real-world measurements even beyond
the conditions it was trained with (i.e., with a perpendicular reflector) and allows the examination
of the influence of the reflector inclination on the sensor value.
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Figure 4.23.: Normalized irradiance, impulse response and radiance of the tongue surface (sagittal
slice) for three reflector angles at a source-reflector distance of 3 cm. The irradiance
distribution is convolvedwith the impulse response to obtain the radiance distribution.
Changing the angle of the reflector moves and scales the maximum of the irradiance
and radiance distributions.

Compensation of the reflector angle’s influence on the sensor output

As shown in Figure 4.24b, a non-perpendicular reflector introduces a change of the irradiance at
the detector, which subsequently results in an erroneous distance if a calibration characteristic is
used that was obtained for a perpendicular reflector (e.g., using the calibration scheme derived
in subsection 4.2.2): Instead of the true source-reflector distance d, an erroneous distance d′ is
measured, which is gained from linear interpolation between known calibration samples taken at a
90° reflector angle, and carries both the error due to the piece-wise linearization of the non-linear
mapping between distance and irradiance (see Figure 4.22b) and the error due to the reflector
inclination. Therefore, d′ is only correct at the calibration distances when at the same time the
reflector is perpendicular to the optical sensor axis. However, in both the simulation results and
the in-vivo data, the change of the measured irradiance is not independent of the detector position
(see Figure 4.24a and Figure 4.24c). If the irradiance is measured at three positions (one directly
next to the source, one more posterior, and one more anterior), it seems possible to combine the
information from the more anterior and more posterior detector to adjust d′ derived from the
central detector value by a correction term to obtain a corrected distance d̂.
To further examine this notion, we take a look at the ratio of posterior to anterior detector values

EDp
EDa

for different angles φ and distances d, where Dp and Da are the posterior and anterior detector
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Figure 4.24.: The normalized simulated irradiance (solid line) calculated at three different detector
positions is compared with the normalized measured irradiance (averaged across five
sensors for each of the five subjects; black dashed line) at different angles for a fixed
distance of 1.75 cm. While the trends are mostly the same, the difference between in-
vivo data and the simulation results becomes slighty larger at large angles. However,
for large angles, it also becomes increasingly difficult for the subject to cover the entire
top area of the spacer used in the experiment, especially in the anterior area, which
makes the in-vivo results less reliable for large angles.

position respectively, which is shown in Figure 4.25. Two things are evident: (1) the irradiance ratio
EDp
EDa

changes along both dimensions (except for an angle of 90°) and (2) the function EDp
EDa
(d,φ) appears

to be of no higher than third order. Based on these two observations, it can be hypothesized that
the inclination-induced change of the irradiance measured at the center detector (and therefore
the distance estimate d′) can be corrected by multiplying d′ by a factor w, which in turn is a function
of EDp

EDa
. As the exact function w

(
EDp
EDa

)
is unknown, it is instead approximated by its third-order series

expansion. This yields the following equation for the corrected distance d̂:

d̂ = d′ ·

(
a0 + a1

(EDp

EDa

)
+ a2

(EDp

EDa

)2

+ a3
(EDp

EDa

)3
)
. (4.25)

The unknown coefficients ai (i = 0, . . . , 3) are estimated in a least-squares regression scheme
using the simulation results with varying angle above to set up an overdetermined system of equa-
tions according to equation 4.25, where d̂ is substituted by the known true distance d. The thusly
found optimal coefficients were than evaluated by calculating d̂ for every simulated trial. The im-
provement of d̂ over using d′ is illustrated by Figure 4.26. The corrected distance d̂ was consistently
much closer to the true distance: Across all distances, themean relative error (i.e., the relative accu-
racy) is significantly reduced from 4.71% to 0.06% while the standard deviation of the overall error
distribution (i.e., the precision) is also significantly improved from 4.07% to 2.53% (unpaired t-test:
p < 0.0001).

The same coefficients foundwith the simulated results can also be used to correct the distances in
the in-vivomeasurements, because the simulations replicated the same geometric setup in and only
the derived quantity d′ and the ratio EDp

EDa
(where the linear scaling factor, which is independent of the

sensor position, cancels itself out) were used. The results are shown in Figure 4.27. Even in these
real-world data that were not part of the training set the overestimation of the distance caused
by linear interpolation and inclination is reduced significantly (unpaired t-test: p < 0.0001) both in
terms of accuracy (from 7.38% to 2.25%) and precision (from 2.79% to 1.9%). It can therefore be
concluded that themodel is suitable to simulate real-worldmeasurements of a given geometry and
that the coefficients a0 to a3 in equation 4.25 can be trained with those simulation results to help
improve the accuracy and precision of real-world measurements of the same geometry.

78



4.2. Optical distance sensors

0

5

1

20
300

320
0

3

5

4

Distance d [cm]
Angle [deg]

E
D

p
E

D
a
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Figure 4.26.: Model data: Ratio of measured distances to true distances across all 11 angles. The
respective median error, marked by the red line, is shown above each box.

Accurate tongue contour visualization in real-time EOS measurements

The compensationmethodproposed in this paperwas testedwith a real EOSpalate (see section 4.4)
and a human subject. The technique was applied to themeasurements of the three center sensors,
where both amore anterior and amore posterior detector was available. The geometric setups (rel-
ative positions and angles) of the three possible combinations of one light source and its respec-
tive three nearest detectors were extracted from a 3D scan of the pseudopalate and a simulation
was performed for each setup to obtain coefficients for equation 4.25 as described above. The
equations were adapted to each sensor geometry and then used in real-time EOS measurements
to correct the distance at runtime. Figure 4.28 shows tongue contours acquired in this way for
one subject’s sustained realizations of the five German vowels /a:, e:, i:, o:, u:/, averaged over 10
utterances each. The tongue contours are both physiologically plausible and the articulatory fea-
tures frontness/backness and height show the expected pattern. When comparing the measured
distances with the distances obtained using a single-detector setup, the corrected value is always
smaller. This is plausible because an inclined reflector causes less light to be registered by the
detector, which in turn leads to an overestimated distance. The tongue contours also appear to
be most strongly curved in the central region during articulation of high vowels, as shown by the
relatively large corrections during /e:/ and /i:/ for d2.
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Figure 4.27.: Subject data: Ratio of measured distances to true distances across all angles. Each box
represents the deviation from the true distance d across eight angles between 90° and
125° in combined trials at two different distances (1.7 cm and 2.2 cm). The respective
median error, marked by the red line, is shown above each box.

Comparison of corrected EOS distance measurements and EMA

The technique most closely related to the EOS system is EMA, the de-facto standard in articulatory
kinematic data acquisition. The two commonly used commercial EMA systems (Carstens Articulo-
graph AG500 andNDIWave) achieve a lowest reportedmedian error of 0.5mmand outliers of up to
2mm (see [182] for the Articulograph and [128] for the Wave system). Using the correction scheme
proposed above and regarding the absolute measurement error, the distance sensing in the EOS
system achieved a median error of 0.4mm (averaged across five subjects, eight angles, and two
distances) with the largest outlier at 1.2mm. Therefore, even when the angle between the tongue
and the sensor axis is varied, the results of the optical distance sensors in EOS generally stay within
the reference error margin set by EMA. While this is an encouraging estimate, further studies with
larger sample sizes of EMA and EOS data are advised.

Conclusion

A novel approach was proposed to model propagation of light during optopalatographic distance
measurements inside the vocal tract as performed in EOS, using a computer-graphics and systems-
theory-based approach. By simulating optical distance measurements with this model, a linear re-
gression model was trained that allowed the correction of the erroneous distances gained from a
calibration characteristic that assumed a 90° reflector angle to account for the influence of the re-
flector’s actual inclination angle. In the training data, the overall mean distance error was reduced
from 4.71% to 0.06% and the overall standard deviation from 4.07% to 2.53%. In in-vivo data un-
seen by the training algorithm used to optimize the compensation coefficients, the improvement
of the corrected distance over the interpolated distance was consistently significant across the EOS
measurements from five evaluated subjects: the overall mean error (accuracy) was reduced from
7.38% to 2.25%, while the standard deviation of the error was reduced from 2.79% to 1.9%. These
error margins were comparable to the measurement errors of the established EMA systems. The
technique yields plausible (in terms of frontness/backness and height) and consistent (i.e., low vari-
ance) tongue contours in real-time measurements.
Since the simulations need the exact, subject-dependent geometric setup of the sensors and

detectors, a method still needs to be devised to efficiently capture this geometry. For the purposes
of this study, the palate contours were traced by hand and the sensor positions were determined
manually. Unfortunately, this process is laborious and time and resource consuming. Since one of
themajor design goals of EOS was to create a system that can be easily produced enmasse and the
current technique to obtain the sensor geometrywas incompatible with that goal, some preliminary
work has been undertaken in a student’s thesis [183] to automatically capture the geometry using a
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Figure 4.28.: Electro-Optical Stomatography tongue contours of five German vowels, averaged over
10 realizations of the same speaker. The solid black line is the mean tongue contour
across all 10 realizations, the solid gray lines are the highest and lowest contour, and
the dashed gray line is the mean contour of the neutral vowel /@/. The measured dis-
tances di along the central three sensors’ optical axeswere adjusted to compensate the
influence of the reflector angle. The relative change by applying the angle-correction to
the single detectormeasurements is denoted as Δdi. Except for the four valuesmarked
by *, all improvements are statistically significant (unpaired t-test, p < 0.05).

desktop 3D scanner and a custom image processing software. This work is currently on-going and
has not yet yielded results that could be integrated into the EOS production workflow, therefore the
measurements for the ATS and ATT studies (see chapter 5 and chapter 6) were conducted without
the angle correction described above.

4.3. Lip sensor

Previous optopalatographic systems have exclusively captured tongue movements. As described
in chapter 2, however, the lips are another major articulator and should not be ignored by the
articulometric frontend of an SSI. For EOS, three different designs for an optical lip sensor were
explored: one using a single light source and a single detector, one using a single light source and
two detectors, and one using two light sources and two detectors.

4.3.1. Single-source, single-detector design

Themost basic design followed the example of [169] and used the same layout as the optical tongue
distance sensors (see section 4.2) and thus consisted of a single light source and a single detector,
positioned on the upper incisors so that the sensor’s optical axis was directed towards the upper
lip. As illustrated by Figure 4.29, there were indeed different sensor outputs for different sounds.
However, the example sounds also show a problem inherent in the single-detector design: The

lip configuration for the two sounds /a:/ and /u:/ does not just differ by the degree of the lip open-
ing (/a:/ very wide lip opening, /u:/ very narrow opening), but also by the degree of lip rounding
or protrusion (/a:/ neutral protrusion, /u:/ very protruded). The output of the single-detector lip
sensor depends on both of these orthogonal parameters of the lips, however, as is evident in the
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Figure 4.29.: Examples for the lip sensor output using the single detector design

sensor output for the consonant /m/ in two different contexts ((a) and (u)). Due to coarticulation
(see section 2.5), the lips are fully closed for both of these contexts, but the protrusion is coarticu-
lated to match the surrounding sounds. Since the sensor output is different for the two different
contexts, the single detector therefore is sensitive to both opening and protrusion and both param-
eters are expressed in a single value, which may be problematic for recognition tasks. Figure 4.30
gives a schematic description of the ambiguity to further illustrate the issue.

[(a)m(a)]

[a]

[u]

[(u)m(u)]

upper incisor

lower lip

upper lip

sensor
optical axis

Figure 4.30.: Schematic description of the ambiguity inherent to the single detector design: There
are several combinations of protrusion and opening that can lead to the same sensor
output value if only a single detector is used.

4.3.2. Single-source, dual-detector design

To resolve the ambiguity of the single-detector paradigm, a second detector was placed closer to
the lower edge of the incisors and the other detector was moved further towards the gums. The
hypothesis behind this approach, illustrated by Figure 4.31, was as follows: The lip sensor, even
though capturing the articulatory dimensions opening and protrusion, is essentially still an optical
distance sensor. Since the lip forms a slope when it is protruded, the two detectors in the indi-
cated positions would measure different intensities (which would normally be related to different
distances) for protruded lips, with the difference increasing with increasing protrusion.
To validate this hypothesis and evaluate the suitability of this single-source, dual-detector setup,

a study was conducted as part of a student’s thesis [184]. The study gathered optical lip sensor data
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Source
Detector 1

Detector 2

Incisor

Upper lip

(a) Optical paths when the lips
are closed: light travels
through the tissue to both
detectors approximately
symmetrically.

(b) Optical paths when the lips
are open: the lower detector
captures very little light, while
the upper detector still cap-
tures as much light as in the
closed configuration.

(c) Optical paths when the lips
are protruded: The slope of
the protruded lips causes the
radiated light to be reflected
at different distances from the
detectors, which results in dif-
ferentmeasured intensities at
the detector positions.

Figure 4.31.: Schematic description of the single-source dual-detector design (illustration based on
[184, Figure 2.2, p. 16]): Solid red arrows indicate light traveling through air, dashed
red arrows indicate light traveling through tissue.

from four subjects, as well as reference data collected similarly to [185], except that both a frontal
and a profile view were recorded using two cameras. The cameras were fixed in place relative to
the speaker’s head using a custom-made mounting system and the reference trajectories of both
lip protrusion and opening were extracted using a custom image processing pipeline [186]. The
recorded utterances in the study were of the pattern /VmV/, where V was replaced by the German
tense vowels /a:, e:, i:, o:, u:, E:, 2:, y:/ to cover the entire articulatory space along both dimensions
(opening and protrusion) of the lips. Using these data, a correlation analysis was conducted to
estimate the information gain by adding the second detector (see Table 4.3).

rp,o rd1,d2
subject 1 -0.28 0.87
subject 2 -0.59 0.75
subject 3 -0.35 0.79
subject 4 -0.15 0.72

Table 4.3.: Pearson correlation coefficient of the two detectors in the single-source, dual-detector
lip sensor design (data taken from [184]): Even though the ground truth parameters lip
opening and lip protrusion were generally not highly correlated with one another, the
detector outputs were quite correlated, indicating redundancy in the sensor readings
and thus a non-optimal setup.

For 3 out of the 4 analyzed subjects, the Peason correlation coefficient between the articulatory
parameters lip opening and protrusion was fairly low (rp,o < 0.4). The detector outputs, however,
were quite correlatedwith one another (up to rd1,d2 = 0.87) , whichmeans there is a high redundancy
in the outputs, i.e., very little information gain by adding a second sensor. Because of the findings of
this study, the single-source, dual-detector setup was once again revised and extended by a second
light source.

4.3.3. Dual-source, dual-detector design

One major implicit assumption underlying the single-source designs was that the lip configuration
could be derived from capturing data of the upper lip alone. However, as experiments in [184]
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and an unpublished diploma thesis [187] have shown, the lip opening is in fact only very weakly
represented by the upper lip. So in order to capture it, a downward facing source-detector pair as
proposed by [187] would be desirable. Therefore, the final sensor configuration developed as part
of this dissertation was the dual-source, dual-detector design, where one source-detector pair was
basically identical with the single-source, single-detector design, and a second source-detector pair
was placed on a flap of flexible circuit board that was folded at an angle that would direct the sensor
towards the lower lip (see Figure 4.32).

Upper Lip
Incisor

Source 1
Detector 1

Source 2

Detector 2

Figure 4.32.: Schematic description of the dual-source, dual-detector design (illustration based on
[187, Figure 8.3, p. 55]): Each source-detector pair captures a different lip.

Intuitively, one might think that in this setup, the downward facing source-detector pair would
measure the lip opening and the forward facing pair wouldmeasure the protrusion. However, both
pairs capture a mix of both articulatory degrees of freedom, because the reasoning given above
regarding the upper lip are analogously valid for the lower lip: the same measured “distance” can
be caused by different combinations of lip opening and protrusion. However, it is to be expected
that each pair’s output is dominated by the respective degree of freedom and that by combining
the outputs of both pairs, e.g., in a linear regression model, the actual articulatory dimensions lip
opening and protrusion could be extracted, as was attempted in [187] for a similar setup. While
the extraction would be of interest from a feature engineering standpoint since they appear to be
approximately orthogonal features and thus maximize the discriminant information, it was beyond
the scope of this work. For the machine learning models used in the ATT and ATS experiments of
this dissertation, it was deemed sufficient to use the raw sensor output and let the downstream
mapping from the feature vectors to the classification or regression output implicitly model the
mapping from the detector outputs to the latent articulatory space, as well.

4.4. Sensor Unit

The electrical and optical sensors described in the previous sections need to be integrated into a
probe of some kind (a sensor unit), that is then inserted into the subject’s mouth to measure the
speech movements. As a palatographic measurement technique (see section 3.9), EOS uses an in-
traoral sensor unit that is worn on the upper jaw (maxilla), similar to a dental brace or mouthguard
(see Figure 4.1(a)). The design concept of the sensor unit emphasizes portability and low cost: it
consists of a plastic base plate (made of polyethylene) that is individually thermoformed to fit a
subject’s maxilla and palate, and a flexible circuit board that carries the sensor electronics and is
attached to the base plate with a light-curing, resin-based dental restorative material. While the
previous sections described the sensors themselves, this section presents the sensor unit that en-
compasses a specific setup of the described sensors on a flexible circuit board fixed to a base plate
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and the manufacturing process that was developed to allow a quick and simple assembly of this
sensor unit.

4.4.1. Concept of the multi-modal measurements

Before the sensor unit is described, a brief discussion of the reasoning behind combining two dif-
ferent kinds of sensing modalities on the device should be provided, because in theory, a sensor
system could be conceived that exclusively uses optical sensors. Spread out across the entire hard
palate, essentially forming a grid of OPG sensors instead of just a single row along the midsagittal
line, it would look similar to the optopalate proposed in [166]. However, since the optical sensors
can only be sampled one at a time to avoid optical crosstalk (as shown by [166]), the number of
sensors directly impacts the possible sampling period and thus the rate at which the entire palate
can be scanned (the frame rate). Using the optopalate in [166] as an example: Given the frame rate
of 100Hz and assuming no additional overhead due to switching times, transient behaviour or data
transfer protocols, the sampling period Tn for each sensor is

Tn = 1
100Hz · n

= 10ms
n

, (4.26)

where n is the number of sensors in the setup. The optopalate and its 9 sensors could therefore
achieve a sampling period of approximately 1.1ms under ideal circumstances. Assuming a low-
cost ADC and a reasonable analog-to-digital conversion rate of 10 kHz (as provided by, e.g., the
ATmega328 [188], which powers the popular Arduino developer board), this would correspond to
11 samples per sensor, which are averaged to obtain the final sensor value. Oversampling the signal
in this way and then averaging across all K samples greatly improves the Signal-to-Noise Ratio (SNR)
by reducing the noise power by a factor of K (see section B.2). If only 4 sensors were used (e.g., the
four midsagittal ones in the optopalate setup), the sampling period per sensor would increase to
2.5ms and the number of samples accordingly to 25. In terms of the SNR, the additional 14 samples
would reduce the noise power by an additional factor of 2.3. This simplified example demonstrates
that while it is desirable to use a high number of sensors to obtain a good spatial resolution of the
measurements, it is at the same time beneficial to maximize the sampling time for each sensor
to improve the SNR of the sampled signal. The frame rate is the limiting factor here and forces a
trade-off between these two requirements.
However, the entire predicament described above only comes about because of the singlemodal-

ity in the system and the inability to sample several sensors concurrently because of the optical
crosstalk. Using electrical contact sensors alongside the optical sensors resolves this dilemma. With
any microcontroller that supports Direct Memory Access (DMA) and interrupt-controlled program-
ming (which are very common features), the sensing of the two modalities can be interleaved to
greatly speed up the data acquisition (see Figure E.1). Using contact sensors in the lateral dimen-
sions of course means the loss of some distance information. For an accurate 3D reconstruction of
themouth cavity, this wouldmost likely pose a severe limitation. For the analysis of speech sounds,
however, this is much less of an issue: As described in chapter 2, speech sounds are discriminated
by their (midsagittal) tongue contour and the degree of lip rounding (in case of vocoids), or by their
place of articulation and their articulator (in case of consonants). If those features can be reliably
captured, then the speechmovements are unambiguously identifiable. Because of these synergetic
properties, the EOS system adopted this multimodal setup.

4.4.2. Combined sensor board

The sensors are mounted onto a flexible printed circuit board (PCB), made to fit onto the relatively
small area of the hard palate. The upper boundaries for the geometrical dimensions of this flex PCB
were taken from a study conducted for [189], whomeasured the palate dimensions of 191 subjects
(85male, 106 female, age 11-55) along the lines shown in Figure 4.33a. For the flex PCB dimensions,
the lines marked as A1 through A4 (summing up to the palate length), as well as the line B1 (the
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maximum palate width) are of greatest importance. As shown in Figure 4.33b and Figure 4.33c,
the distributions of these dimensions were approximately normal with a mean of 49.95mm and a
standard deviation of 4.19mm for A1+A2+A3+A4, and amean of 46.1mm and a standard deviation
of 4.45mm for B1.

B1

B2

B3
B4

A1

A2

A3

A4H1

H2 H3

L

(a) Measured dimensions in the study. The
length of the line B1 and the sum of the
line segments A1 through A4 are of im-
mediate interest to constrain the PCB di-
mensions for an intraoral measurement
device like EOS.
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(b) Distribution of the palate length A1 +
A2 + A3 + A4 across all 191 subjects (μ =
49.95mm, σ = 4.19mm)
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(c) Distribution of the palate width B1 across
all 191 subjects (μ = 46.1mm, σ =
4.45mm)

Figure 4.33.: Palate dimensions measured in a large-scale study performed in [189]

To design a sensor unit that fits on most palates, two lengths of flexible PCB were initially con-
sidered: one large sized PCB for a palate length of 53mm (approximately one standard deviation
above the mean) and one small sized PCB for a palate length of 46mm (approximately one stan-
dard deviation below the mean). In contrast to the palate length, which should not be overshot
to avoid a gag reflex of the user, the PCB width can be slightly larger than the actual palate width
without causing any uncomfortable side effects. Therefore and in order to keep the total number
of different sizes small, both the larger and the smaller size were designed with a maximum width
of 46mm, which was approximately the mean of the width distribution in the subject study. While
PCBs were designed for both of these sizes for earlier iterations of the sensor unit, the final pro-
totype currently only comes in the larger size (see section C.5), since no subjects encountered in
the ATT and ATS experiments of this dissertation actually needed a small-sized palate. However,
scaling the large sized palate down to the smaller size is a straight-forward procedure and can be

86



4.4. Sensor Unit

done at a later time, if necessary.
The next step in the design of the sensor unit was to arrange the individual sensors. For the con-

tact sensors, the pattern was already discussed in section 4.1. Since the optical tongue sensors had
to be midsagittal by definition of the tongue contour measurement concept, the five sensors were
regularly spaced after aligning the most anterior sensor with the base of the incisors. The different
lip sensor designs also required different PCB designs. For both single-source designs, the sensor
was placed on the face of the upper incisors facing the lip. For the dual-source design, the first
source-detector pair was placed approximately at the same position as the single-detector sensor.
The second source-detector pair was laterally displaced and put onto the bottom of a foldable flap
of the PCB. After the component placement, the flap would then be folded at a roughly 90° degree
angle and fixed in place using the same orthodontic agent used in the assembly of the entire sensor
unit (see below).
After positioning all the sensors in the available space of the PCB, the wiring necessary to control

and read the individual sensors using an external control unit (see section 4.5) had to be routed. If
every contact sensor were routed to the outside control unit individually, the number of wires exit-
ing themouth would eithermean (a) a very wide flexible PCB at themouth opening, which would in-
terfere strongly with the lip articulation, or (b) a flexiblemulti-layer PCB, which is several timesmore
expensive than a two-layer one and would therefore go against the design premises of the system,
or (c) a manual individual soldering of microwire to each contact sensor, as was done for previous
EPG systems (see Figure 3.13) and is the main cause for their high cost per unit. So in order to
avoid that, the EOS palate included an analog 1:32 multiplexer (Analog Devices ADG731 [190]) with
a three-wire, Serial Peripheral Interface (SPI)-compatible serial interface. This reduced the number
of wires from 32 (if each sensor was connected individually) to six (one wire for the serial clock, one
for the serial data line, one chip-select line, one supply-voltage line, one ground connection, and
one line for the multiplexer output). In earlier iterations of the sensor unit (e.g., the one shown
in Figure 4.34a), two or even four of these multiplexers were used to connect 64 or 124 contact
sensors, respectively (4 contact sensors had to be excluded because of the geometric constraints).
However, these designs were abandoned because they failed to result in robust units. With four
multiplexer Intergrated Circuits (ICs), there was not enough room to route all the necessary lines
along the midline of the board, so the ICs had to be laterally displaced into areas where the palate
tends to be much more curved. The ICs locally increased the stiffness of the flexible circuit board
in that area which caused the flaps with the ICs on their back to stand up slightly, becoming noti-
cable, obstructive protrusions in the mouth and creating a potential breaking point due to added
mechanical stress from the tongue pushing against the circuits, bending the leads and connector
pads. With only two multiplexers, the ICs could be squeezed onto the midsagittal line, but one of
the ICs had to move to the back of the palate, where it was also prone to breaking because of me-
chanical stress during the assembly and the use of the sensor unit. Ultimately, the single-IC solution
was preferred due to the increased robustness at the cost of a lower spatial resolution.
In order to register tongue contact at the contact sensors, a small reference voltage needs to be

applied to the subject (see section 4.5 for details on the specification of this voltage). In earlier pro-
totypes, this voltage was applied through a hand-held electrode (similar to the commercial WinEPG
system by Articulate Instruments). For the final prototype, this hand-held electrode was replaced
by a large foldable flap of the circuit board that carries an array of gold contacts and protrudes
beyond the hard palate (see Figure 4.34b). When the flexible PCB is glued to the acrylic base plate
(see below) during the assembly of the sensor unit, this flap is folded around the posterior edge of
the base plate and then glued to the back of the unit, so that it ends up sandwiched between the
sensor unit and the subject’s hard palate when the unit is worn. The tight fit of the thermoformed
base plate (see below) ensures a slight, constant pressure that keeps the contacts on the folded
flap pressed against the hard palate.
The final part of the flexible circuit board was the connector. Earlier iterations used a non-

standard connector layout based on the way slotted extension cards in personal computers are
connected using edge connectors: A row of blank traces that plug into a matching socket. The
socket itself was not available in the appropriate size, so a larger socket was sawed off to the right
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length. Since these sockets are made for solid PCBs, the much thinner flexible sensor circuit board
had to be thickened using a piece of solid PCB material, sanded down to the right height so that
the total thickness including the flexible PCB (glued on with a cyanoacrylate adhesive) would match
the sockets opening. This process was unnecessarily labor-intensive and also prone to erros, since
none of the parts conformed to established standards, which easily caused accidentalmisalignment
or reversed polarity. Therefore, the final iteration used a standard 12x2 box header as a socket on
the sensor circuit board, which received an Insulation-Displacement Connector (IDC) plug affixed
to a ribbon cable and thus connected to the control board. An example of an now obsolete circuit
board from earlier iterations developed as part of this dissertation is shown in Figure 4.34a, while
the most recent design is shown in Figure 4.34b.

contact sensorontact sensor

optical sensor
(using VSMY2850)

folded part

multiplexer (bottom)

4 mm

(a) Obsolete flexible circuit board using the
VSMY2850 LED, four multiplexers to connect
124 contact sensors, the single-source, dual-
detector lip sensor and an external voltage
reference for the contact sensing.

(b) Final iteration of the sensor circuit board using
the OP280V, the dual-source, dual-detector lip
sensor design (soldering pads for the down-
ward facing source-detector pair is on the bot-
tom of the lateral flap), a single multiplexer to
connect 32 contact sensors, and the reference
voltage contact matrix on the foldable poste-
rior flap.

Figure 4.34.: Circuit boards carrying the sensors

As was already mentioned, the flexible PCB carrying the sensors was glued to an acrylic base
plate. This base plate is thermoformed to perfectly fit each subject’s maxilla using a plaster model
of their upper jaw (see Figure 4.35).
The material used for the base plate was Erkodent Erkodur with a thickness of 0.5mm before the

thermoforming. This material was chosen because it is a commonly used orthodontic material and
readily available and low cost. Affixing the flexible circuit board to the thermoformed base plate
is a non-trivial task, because commonly used agents like superglue should not be used inside the
mouth cavity. The first iterations used a vinylpolysiloxane relining material called GC Reline Soft,
which is used for denture relining as a kind of artificial gingiva. The material was chosen because
it was approved for intra-oral application and because of its adhesive qualities. However, its high
viscosity eventually proved cumbersome when trying to seal the small structures on the sensor
board, and the very short curing time made the process unecessarily slow. Instead, another set
of orthodontic materials was ultimately chosen based on advice from orthodontic experts3: The
3A very cordial thank you to the very helpful team of Müller Dental, Dresden, and Peter Birkholz is in order here for their
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Figure 4.35.: Thermoformed base plate of the sensor unit fit to a plaster model of the subject’s
maxilla. The red color is from bits of wax that is used to fill-in the small gaps between
the incisors to facilitate the removal of the thermoformed material from the plaster
model.

flowable radiopaque composite Tertric EvoFlow, which is used as a linder and a restorativematerial
for filling small cavities, and the light-curing bonder Primotec Primostick, which is used to prime the
surface to ensure good adhesion. Using these materials and a thorough trial and error process, a
workflow for the assembly of the base plate and the flexible PCB into a sensor unit was established
that should allow even non-specialist to produce units at great speed and with little room for error.
The process was documented in a step-by-step guide and can be found in Appendix D. Completely
assembled sensor units are shown in Figure 4.36. The schematics for the final sensor unit design
are shown in section C.4 and the layout for the corresponding flexible circuit board is shown in
section C.5.

4.5. Control Unit

While the ideal system would incorporate all the hardware necessary to capture the articulatory
data and the preprocessing on the sensor unit itself and then wirelessly transmit those to a pocket-
sized device (e.g., a smartphone) that runs the recognition or synthesis software, the experimental
state of this new technology did not make that approach seem advisable at the time. During the
development of the EOS system presented in this dissertation, an attempt was made to have an
external company design an integrated version of the sensor unit that combined the sensor and
control unit on the pseudopalate, but no working prototype was produced. Still, future work should
focus on integrating the hardware described here, which has finally reached a mature and station-
ary enough stage so that initiating the next steps of integration, miniaturization, and increasing
usability is the logical next stage. For now, however, the EOS sensors are controlled and read by
an extra-oral device connected to the sensor unit via a 24-wire ribbon cable. This control unit was
developed alongside the various versions of the sensor unit and adapted to the requirements of
the sensors. Therefore, earlier iterations of the control unit incorporated current sources based on
operational amplifiers to drive the now obsolete VSMY2850 (see Figure 4.6a) and a different pinout
to contact the various lip sensor designs. This section only presents the final prototype, which was
given the revision number 3.2, and was designed to control the most advanced sensor unit shown

help in identifying the materials and refining the assembly workflow.
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optical
sensor

OP280V laser
diode phototransistor

lip 
sensor

contact sensor

plaster model 
of the upper jaw

base plate

(a) Assembled, obsolete sensor unit from an ear-
lier iteration using the OP280V VCSEL diode,
the single-source, dual-detector lip sensor, 124
contact sensors, an external reference voltage
for the contact sensing, and the GC Reline seal-
ing material (red material in the picture).

(b) Assembled final sensor unit using the OP280V
VCSEL diode, the dual-source, dual-detector
lip sensor, 32 contact sensors, the internal
reference voltage (contact matrix is folded to
the back of the base plate), and sealed using
EvoFlow (the beige material).

Figure 4.36.: Assembled sensor units

in Figure 4.36b. The schematics of the control unit are shown in section C.1 and the board layout is
given in section C.2.
The control unit measures 160mm × 100mm and thus fits on a standard Eurocard solid PCB. It

acts as a bridge between the sensor unit, which captures the raw data, and a personal computer,
which does the high-level processing of the captured data. To fulfill this purpose, the control unit
needs to be able to control and read the sensors on the sensor unit and communicate the digitized,
measured data to the computer. From the design of the sensor unit, the specifications of the control
unit can therefore be directly derived. The control unit (and therefore the processor or controller
powering the control unit) must offer:

• A current supply of 11.5mA for the optical sensors.

• A fast ADC with a high number of quantization levels to measure the analog optical sensor
output with high precision.

• An SPI to interfacewith the ADG731 32:1multiplexer to connect the individual contact sensors.

• A Digital-to-Analog Converter (DAC) to generate the reference voltage signal for the contact
sensor measurements (see below).

• Some way to allow concurrent processing of the multi-modal measurements for an improved
frame rate.

• Sufficient processing power to perform fast low-level measurement data pre-processing.

• A widely supported communications interface to communicate with the connected personal
computer for high-level processing.

• The option to be battery-powered, i.e., low supply voltage and current consumption.
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A Microcontroller Unit (MCU) is perfectly suited for a portable device like this. While there are
many options by various manufacturers on the market, the Atmel SAM3S4B was ultimately chosen.
The SAM3S provides the folloing features that meet or exceed the requirements defined above:

• A maximum output current of 18mA.

• An ADC with 12-bit resolution at a 1MHz conversion rate and up to 16 input channels, making
an additional external multiplexing of the optical sensor data unnecessary.

• A three-wire SPI matching the interface specification of the ADG731 multiplexer.

• A DAC with 12-bit resolution, up to 2MHz conversion rate, and up to two output channels.

• A peripheral DMA controller which removes processor overhead by reducing its intervention
during the transfer from peripherals (like the ADC and DAC) to memory and vice-versa and
thus enables quasi-concurrent processing.

• A main clock of 64MHz and 48 kB high-speed SRAM, making it more than capable to pre-
process the sensor data stream.

• Various serial communication standards, including a two-wire universal asynchronous receiver-
transmitter (UART) interface.

• A low supply voltage range of 1.62V to 3.6 V and low-power “sleep” modes for all peripherals,
allowing a long battery life.

The SAM3S4B was available in different versions differing in number of pins and the package.
To allow easy manual soldering, the SAM3S4BA-AU was selected for the control unit because it
offered a Low-Profile Quad Flat Package (LQFP) with 64 pins and a pitch of 0.5mm, which was still
manageable using manual soldering. As is evident by the list of features, choosing the SAM3S was
not the most parsimonious approach. But given the low cost of the controller (about 4.33 e4), it
was still considered an affordable component and left some design space to try different hardware
approaches regarding the sensor.
Since the chosen MCU already included many of the necessary peripherals, only a small amount

of additional circuitry was necessary. Besides some standard circuitry to power and program the
MCU and connect the UART, four additional functional circuits were necessary: the current source
and the detector circuit for the optical sensors, the generation of the reference voltage and the
detector circuit for the contact sensors.
The current source for the optical sensors was implemented by simply adding a series resistor

between one of the general purpose output pins of the MCU and the pin connecting to the respec-
tive light source on the sensor unit. Each light source was therefore controlled by an independent
output. This approach made an external multiplexer unnecessary, but required careful timing of
the switching so that only one light source was turned on at any given time. As was already shown
by [166], the optical cross-talk between the different light sources otherwise becomes too large
beyond 5mm. While an external multiplexer could have enforced this switching rule, the added
complexity in the circuitry and the additional switching overhead to control the muliplexer was not
considered proportionate and instead it was left to the firmware to ensure the strictly sequential
switching.
The detector circuit for the optical sensors was implemented as shown in Figure 4.6b using one

circuit for each sensor. Again, the repetitive circuitry could have been simplified using amultiplexer,
but since concurrent sampling of several phototransistors was also of interest (see subsection 4.2.3)
and the detector circuit was quite simple, this parallel approach was chosen.
The reference voltage for the contact sensors was generated by the DAC controller of the MCU

because an AC voltage was required to avoid cytolytic effects a unipolar voltage might have when
continuously applied to human tissue. According to [152], the reference voltage in their EPG system
4Retrieved on June 06, 2020 from https://www.mouser.de
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continuously applied to human tissue. According to [152], the reference voltage in their EPG system
(which used the same basic measurement principle) was 300mV at a frequency of 15 kHz. Since a
higher frequency allows a faster registration of contacts (see below), the EOS system’s reference
voltage is generated at 40 kHz but at a lower amplitude of 200mV, which was found to be sufficient
in an exploratory, informal measurement. The control unit is generally designed with a unipolar
supply voltage, and therefore the DAC can only generate a unipolar signal. Therefore, the reference
voltage is first generated at an offset of 900mV, shifting it well into the available positive voltage
range, and then filtered using an analog first order RC low-pass filter to shift the voltage back to
an offset of zero. The Bode plot of the filter is shown in Figure 4.37 and shows that the offset is
well-suppressed, while the actual reference voltage signal at 40 kHz is unaffected by the filter.
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Figure 4.37.: Filter response of the reference voltage output filter for the contact sensor measure-
ments

Thedetector circuit for the contact sensorswas basedon the simplified circuit shown in Figure 4.2.
The goal of the detector circuit is to turn the analog, bipolar, noisy, low-amplitude sinusoidal voltage
at the contact sensors into a unipolar, full-range rectangular voltage representing a 1-bit digital
signal with the same frequency that can then be further processed by the digital input pins of the
MCU. The first stage therefore shifts themeasured voltage to the center of the supply voltage range
at 1.65V. Because the voltage at the contact sensors may have a spurious offset due to external
influences, it is first filtered using another RC low-pass filter with the same filter response as the
reference voltage output filter and then the offset is added. To turn the sinusoidal voltage into
a 1-bit digital signal, it is then compared to 1.65V by an LM339 opamp comparator, configured
with a hysteresis of approximately 20mV to avoid output oscillation for a small input signal delta.
The output of the comparator is wired to a general purpose pin of the MCU configured as a digital
input. Since the contact sensors are multiplexed on the sensor unit, only a single detector circuit is
required. All schematics, layouts, and bills of material for both the sensor unit and the control unit
are provided in Appendix C.

4.5.1. Firmware and measurement protocol

The firmware running on the MCU was written in the programming language C using Atmel Stu-
dio 7.0 (an Integrated Development Environment (IDE) provided by the MCU manufacturer), which
included an extensive software framework to allow high-level programming access to the various
hardware components of the MCU. The program flow was kept intentionally simple: when the de-
vice is powered on, several initialization and configuration routines are run. After initialization, the
firmware enters an infinite loop. In each iteration of this infinite loop, the sensor unit is scanned
once, sampling all sensors. The lower boundary for an acceptable frame rate (number of complete
sensor unit scans per second) to properly capture each vocal tract configuration and the transi-
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tions in between can be derived from the assumption of quasi-stationary speech [191]: a commonly
adoptedwindow length in acoustic analyses is 20ms to 40ms assuming that the source for the signal
does not change within that time window. Therefore, the vocal tract configuration does not change
significantly. To be able to resolve changes on that time scale, the vocal tract configuration would
have to be captured at a frame rate of more than 2

40ms = 50Hz (according to the Nyquist-Shannon
sampling theorem [192]). The specified frame rate of the proposed EOS system was therefore set
to 100Hz to bewell above the critical rate while still allowing for sufficient sampling periods for each
sensor. Earlier versions of the EOS hardware (up to revision number 2.x) used a strictly sequential
program flow for the measurements: Each sensor, starting with the optical sensors followed by the
contact sensors, was sampled in sequence. This firmware version also supported the sampling of
the two adjacent detectors for each sensor (see the angle correction technique derived in subsec-
tion 4.2.2). The sampling code could be switched from sampling only one detector to also sampling
the adjacent ones through a control parameter received from the connected computer software
EOS Workbench (see subsection 4.6.1). The measurement data frame format for this deprecated
version of the firmware is shown in Table E.1, while the frame format for the incoming control
parameters is shown in Table E.2.
To allow longer sampling times and thus more stable measurements (see section B.2), as well as

to leave enough time for the serial communication to the downstream computer and the switching
and settling times for all involved sensors, the sampling of the optical sensors and the sampling of
the contact sensors were interleaved using hardware interrupts. This strategy enabled a certain de-
gree of concurrency in the program flow and was used for the final hardware revision number 3.2.
The programflow is visualized in Figure E.1. Themeasurement protocol was as follows: Before each
optical measurement, the ambient light level was determined by sampling the detector while all the
light sources were off. Then, an optical measurement was triggered: The light source of the respec-
tive optical sensor was switched on and a hardware timer of 100μs was started. After the timer
ran out, the ADC sampling of the detector circuit voltage was started and 40 digital samples were
collected, corresponding to a signal length of 125μs. Both the timer and the ADC were controlled
by the peripheral DMA controller of the MCU. Therefore, during the collection of the sensor value
of an optical sensor, some of the contact sensors were sampled concurrently. To sample a contact
sensor, first the multiplexer on the sensor unit was switched to the corresponding input. Due to
the measurement principle of the contact sensing (see section 4.1), the sampling required register-
ing the presence or absence of the reference voltage at the selected sensor. Because the analog
contact sensor signal was digitized by the external comparator circuitry (see above), the sampling
was implemented bymeasuring the time between the first two rising and falling edges in the digital
signal during a period of 60μs. If this pulse width was half the reference voltage period of 25μs
(with a tolerance of ±3μs), the sensor was registered as contacted. Once all sensors were sampled,
a data frame was built according to the frame format given in Table E.3. The data frame was then
sent via UART (managed once again by the peripheral DMA controller in the background) and the
remainder of the current measurement period was waited before another cycle began. A full scan
of the palate was performed in a little less than 5ms, theoretically allowing for a higher frame rate
than 100Hz. However, since future applications (e.g., the addition of the angle-correction mode or
a velum state sensor) may require more measurement time, it was considered wise to leave some
room so that the frame rate would not have to change between different versions of the sensor unit
or different measurement modes. The timing of a single sensor unit scan is shown in Figure 4.38.

4.6. Software

Downstream of the data acquisition, themeasurement data is further processed and visualized in a
Graphical User Interface (GUI) by a consumer-grade personal computer. Since EOS can be used for
many more applications than “just” the data acquisition frontend of an SSI, experiments regarding
its other possible uses were carried out as well. In order to avoid a convoluted and complicated user
interface, a specialized program was written for each use-case. Not all of the studies carried out
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Figure 4.38.: Timing of a single complete sensor unit scan

using EOS were directly connected to the research goals of this dissertation and their methods and
results are therefore not described in this work (the reader is directed towards the corresponding
papers instead). However, to give a complete picture of the software suite surrounding EOS, the
respective software is briefly described.
All EOS software was written in C++ for Windows 7 upwards using the wxWidgets cross-platform

GUI toolkit, which should allow relatively easy portation to other operating systems. During the de-
velopment of the earlier iterations of EOS, the software used to receive and display the sensor data
streams was called EOS Workbench (see subsection 4.6.1). While the capabilities of EOS as an ar-
ticulometric technique were being explored, a tool to visualize live-feedback of a user’s articulation
in a “talking head” fashion (the Vocal Tract Visualization Tool, see subsection 4.6.2), and a serious
game that used EOS data to enable a tongue-controlled game of skill aimed at speech therapy and
rehabilitation (the Biofeedback Game, see subsection 4.6.3), were also developed. The main soft-
ware for EOS in its most advanced form was Second Voice PC (see subsection 4.6.4), which allowed
both the collection of EOS data and the concurrent synthesis of speech based on those data in
real-time.

4.6.1. EOS Workbench

The original purpose of the EOS Workbench was as a debugging and analysis tool for the raw data
streams coming from the EOS control unit. A screenshot of its GUI is shown in Figure 4.39. It was
written using wxWidgets 2.8.
Each optical sensor is shown as a function of time in an individual track and the resulting tongue-

contour is displayed in a cross-sectional view near the top of the window. The contact pattern is
also displayed in its own track (currently hidden in Figure 4.39) and in a contact pattern view next
to the tongue contour. An audio track is also recorded during the measurements and displayed for
reference.
The EOS Workbench can be set to three different modes using the radio buttons on the top left.

In real-time feedback mode, the stream of sensor data is displayed in real-time on the screen and
the views near the top of the window always show the current frame of measurement data. In
recording analysis mode, no additional data is recorded and instead the current record can be
scrolled through, with the top views showing the frame at the current cursor position in the audio
and/or sensor tracks. The third mode is used for statistical analysis. In this mode, the beginning
and end of a segment of data can be selected and averaged using a right-click context menu. The
top views then display the averaged frame data.
To correctly map the raw ADC data of the tongue distance sensors to a distance inmm and to use

a non-generic hard palate outline for the visualization, a user-dependent palate description file is
used. This palate file has an XML-like structure and describes the geometry of themidsagittal palate
outline and provides a set of pairs of ADC and mm values that are used to describe the distance
sensing function and the coefficients necessary for the angle correction (see subsection 4.2.2). An
example palate file is shown in Appendix F. The EOS Workbench currently exclusively uses the
deprecated data frame format (see Table E.1) and is thus only compatible with EOS hardware up to
revision 2.x.

94



4.6. Software

tongue contour

audio track

sensor tracks

contact pattern

Figure 4.39.: Graphical User Interface of the EOS Workbench

4.6.2. Vocal Tract Visualization Tool

Using the samebackend as EOSWorkbench, the Vocal Tract Visualization Tool (written usingwxWid-
gets 2.8) extended the tongue contour view from EOS Workbench to a full midsagittal view of a
talking head. Since only five points on the tongue contour are measured, the contour is estimated
using a linear regression approach and the measured distances as the predictors in a set of regres-
sion models (see [193] and [194] for details). Using this software, a pilot study was conducted to
investigate whether the displayed tongue contour can be used in a biofeedback paradigm. Since
the use-case of this software is not within the scope of this dissertation, the reader is directed to the
description and discussion of the study in [195] instead. A few screenshots of the GUI are shown in
Figure 4.40 to illustrate the animation model.

4.6.3. Biofeedback Game

Essentially an extension of the Vocal Tract Visualization Tool, the Biofeedback Game (written using
wxWidgets 2.8) is a proof-of-principle of a biofeedback application using the optical sensor data
from EOS. The game is entirely controlled by tongue movements. The objective of the game is
to keep a boat level while it is being tossed back and forth by the waves. The player can counter
the tipping movement of the boat by putting their tongue either on the most anterior sensor (to
counter the boat tipping to the left) or the most posterior sensor (to counter the boat tipping to
the right). The intention of the game is to improve oral motor skills by offering an accessible user
interface and an entertaining task. A few screenshots illustrating the game interface and the basic
control scheme are shown in Figure 4.41. Since the use-case for this software is outside the scope
of this dissertation, the reader is referred to [196] for more details.

4.6.4. Second Voice PC

Starting with EOS hardware revision 3.0, a different, more specialized software called “Second Voice
PC” was used to facilitate the recognition and synthesis experiments (see chapter 5 and chapter 6).
A screenshot of the GUI is shown in Figure 4.42. Since the use case of Second Voice PC was its appli-
cation in an SSI, the user interface contained the synthesis components alongside the sensor data
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(I) (II) (III)

tongue contour

optical sensor axis

lips

/i:/ /a:/ /u:/

(a) Still frames of the animation model taken from a real-time measurement using the same speaker with the
tongue contour painted in red: (I) Front vowel /i:/, (II) low back vowel /a:/, (III) high back vowel /u:/.

subject's hard palate

optical sensor axis real-time tongue contour

(b) Screenshot of the 2D animation model during articulation of /j/. The hard palate is loaded individually for
each subject using a palate file. The solid red tongue contour is updated in real-time. The dotted lines mark
the optical axes of the sensors.

Figure 4.40.: Screenshots of the Vocal Tract Visualization Tool

and control. The real-time tongue profile and the current contact pattern were removed from the
interface because real-time articulatory feedback was no longer the major interest of this software.
Instead, the focus was on building a transparent link between the EOS data and the articulatory syn-
thesis model (see section 6.3). To that end, the articulatory feedback section of the EOS Workbench
was replaced by a synthesis feedback section, which contains both the vocal tractmodel and the cor-
responding vocal tract transfer function. The vocal tract model’s parameters can be manipulated
manually by clicking and/or dragging the marked control points, selecting pre-defined vocal tract
shapes from the dropdown menu in the control section, or by enabling the direct mapping from
the EOS data to the vocal tract parameters using the pre-trained models presented in section 6.6.
Twomore tracks were added to the optical and contact sensor tracks to leave space for articulatory
and phonatory information that may be captured by additional sensors in the future: one track for
the fundamental frequency f0 , voicing, breathiness, and lung pressure (see section 6.7) and one
track for a prospective velum sensor (see, e.g., [197,198]).
Second Voice PC is compatible with EOS hardware revision 3.0 and newer and uses the frame

format according to Table E.3. A palate file is no longer required since the palate outline used for
articulatory feedback is no longer needed.
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(a) Real-time vocal tract view (b) Game view

[k]

[t]

(c) Basic concept of the game: The boat is about to capsize and must be kept from tipping over by specific
tongue positions.

Figure 4.41.: The tongue-controlled Biofeedback Game
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Figure 4.42.: GUI of the most recent EOS data analysis and processing software Second Voice PC.
The software combines recording and dispaly of EOS data with the display and control
of the speech synthesis model (see chapter 6).
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5.1. Introduction

As described in the introduction to this dissertation in chapter 1, Articulation-to-Text (ATT) refers
to the concept of classifying speech utterances without any acoustic data based entirely on artic-
ulatory information. As presented in chapter 3, numerous technologies have been employed for
this task in the past to varying degrees of success. Using the novel articulometric measurement
technique presented in chapter 4, two studies were conducted to assess the feasibility of an ATT
systemusing EOS as the data acquisition frontend. The first study, published in [199] and presented
in the following section 5.2, was a pilot study using an earlier prototype of the EOS device, a single
user, and a basic classification model. Building on the promising results from this pilot, a larger-
scale study using the most recent version of the EOS hardware was conducted with four speakers,
a more sophisticated classification scheme, and an inter- and intra-speaker analysis of the results
(see section 5.3). The result of that study were also published in [200].

5.2. Command word recognition pilot study

The goal of the pilot study was to deliver a proof-of-principle of ATT using EOS. The setup was there-
fore quite basic: EOS data of a single speaker articulating 30 common, isolated German words was
recorded in two sets. One set was then used for training, while the other set was used for validation.
The study used EOS hardware revision 1.2 (single-source, dual-detector lip sensor, and 124 contact
sensors). An additional page was added to the interface of EOS Workbench (see subsection 4.6.1)
that allowed the training and validation of the classifier inside the software. Figure 5.1 shows a
screenshot of the interface.

5.2.1. Data

The words used in the pilot study were 30 of the most common German nouns, adjectives, and
verbs (10 of each, see the first three columns in Table 5.1). Besides their relevance because of their
high frequency in German, the words in the data set also cover a wide range of German phonemes
(cf. chapter 2). EOS data of 5 repetitions of each of the 30wordswas recorded using a single speaker
(male, 31 years old). The words were randomized during the recording to avoid successive repeti-
tions of the same word. Each word was produced in the normal, audible way, but only the articula-
tory information was used in the remainder of the study.
The measurement protocol was as follows:

1. The subject was shown a dialog box with the label of the word to be uttered.
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Figure 5.1.: Screenshot of the user interface for the command word recognizer in EOS Workbench.
The SSI tab holds buttons for training and testing the word models.

2. The subject hit the enter key on a computer keyboard and the recording started.

3. The subject produced the utterance.

4. The subject hit enter and the recording stopped.

5. Repeat from step 1 until all recordings were made.

No further segmentation of the recordings was made, since the applied classification scheme
can tolerate short initial and final periods of no articulatory activity (see subsection 5.2.2). Two
complete sets were recorded independently with a short break between the recordings. During
that break, the EOS sensor unit was removed from the subject’s mouth and the subject rinsed his
mouth to “reset” the intraoral conditions as much as possible. The first recorded set of EOS data of
150 utterances (5×30 words) was used as the training set, and the second set of the same size and
composition was used for evaluation.

Noun Adjective Verb Digit

Jahr Ja:ö neu nOœ
“

werden v"e:5dn
"

Null nUl

Uhr u:5 andere "and@K@ haben h"a:bm Eins aE
“
ns

Prozent pK
˚

ots"Ent groß gKo:s sein zaE
“
n Zwei tsv

˚
aE
“Million mIli

“
on erste "e:5st@ können k"œn@n Drei dKaE

“Euro "Oœ
“

Ko: viel fi:l müssen m"Ysn
"

Vier fi:5

Zeit tsaE
“
t deutsch dOœ

“
tS sollen zOln Fünf fYnf

Tag ta:k gut gu:t sagen z"a:gĲN Sechs zEks

Frau fK
˚

aO
“

weit vaE
“
t geben g"e:bm

"
Sieben z"i:bm

"Mensch mEnS klein klaE
“
n kommen k"Om@n Acht axt

Mann man eigen "aE
“
g ĲN wollen vOln Neun nOœ

“
n

Table 5.1.: Standard pronunciation of the words used in the ATT studies (according to and following
the transcription conventions of [201]). The pilot study used only the nouns, adjectives,
and verbs, while the small-scale study additionally used the digits in a separate set.
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5.2. Command word recognition pilot study

The EOS data for training and evaluation of the ATT system consisted of five 12-bit ADC values
from the optical distance sensors that were related to a distance in cm using the calibration scheme
described in subsection 4.2.2. Each EOS data frame also contained the two 12-bit ADC values from
the single-source, dual-detector lip sensor, and 124 binary values of the contact sensors repre-
senting the palatolingual contact pattern. The measured distances and the lip sensor values were
directly used as features, but in order to reduce the dimensionality of the feature vectors, the coef-
ficients proposed by [202] were used instead of the entire contact pattern. In summary, the articu-
latory feature vector therefore consisted of 11 features (2 lip, 5 tongue distance, 4 contact pattern).
All features were transformed to the same range by maximum-absolute-value normalization.

5.2.2. Training

To obtain an articulatory word model for each of the 30 words, a standard Viterbi algorithm (using
the Euclidean distance as the cost function) was used to find an average sequence of EOS feature
vectors that optimally represented the five repetitions of each word. The Viterbi algorithm was im-
plemented in the EOS Workbench and used the following conventions: The length of each word
model was set to half the median length of all corresponding utterances in the training set. The
initial model was found by linearly projecting the sequence of feature vectors from each utterance
to the shorter model vector sequence and calculating each model vector as the average of all asso-
ciated utterance vectors. Next, the initial model was improved by remapping the vectors from the
utterance sequences to themodel vectors using Dynamic Programming. There were no time distor-
tion, skip, or loop penalties because the utterances were not manually segmented and penalizing
skips would make themodel less robust against initial and trailing articulatory silence. The squared
Euclidean distance measure was used to calculate the distance between vectors. The mapping was
updated using each training utterance until the change in themodel vectors was below an ε of 0.01.
All models converged after at most ten epochs, i.e, after ten iterations through the entire training
set.

5.2.3. Evaluation

In the evaluation step, each repetition of each utterance was classified by finding the label of the
most similar articulatory word model (Nearest Neighbor classification). The similarity was deter-
mined using Dynamic Programming and the Euclidean distance as a cost function. Once again
there were no penalties for time distortion, node loops, or skips and the parameters of the Dy-
namic Programming itself were not optimized, since the goal of the pilot study was not to fine-tune
an optimal recognition engine but to investigate the general suitability of EOS data for ATT.

5.2.4. Results

When using the entire feature vector, only very poor recognition accuracies of less than 15% were
achieved. Through successive feature elimination, the contact sensor data was identified as too
noisy and therefore subsequently excluded from this study. The final results were achieved by
using only the optical sensors and reached 92% recognition accuracy on the evaluation set. The
confusion matrix of the classification is shown in Figure 5.2.

5.2.5. Conclusion

The pilot study confirmed that EOS is in principle well-suited to perform silent-speech recognition,
or ATT. Even with the implemented very basic training and matching algorithms, competitive per-
formance accuracies could be achieved. The simplicity of the system allowed the quick training of
a small vocabulary command word recognizer. However, the fact that high accuracies could only
be achieved by exclusively using the optical distance sensors showed the limitations of the early
prototype of the EOS hardware. This was the most important evidence for a major revision of the
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5. Articulation-to-Text
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Jahr 5
Uhr 5

Prozent 5
Million 5
Euro 5
Zeit 5
Tag 4 1
Frau 5

Mensch 5
Mann 3 2
neu 5

andere 4 1
groß 5
erste 5
viel 1 4

deutsch 5
gut 5
weit 5
klein 5
eigen 5
werden 5
haben 3 1 1
sein 1 2 2

können 5
müssen 1 4
sollen 4 1
sagen 5
geben 5

kommen 5
wollen 5

Verbs

N
ou
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A
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ve
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Ve
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Nouns Adjectives

Figure 5.2.: Confusion matrix of the classification results on the evaluation set (which was entirely
distinct from training set). Only the optical distance sensor data were used, resulting in
an overall Performance Accuracy of 92%.

contact sensor setup of the early iteration of the EOS hardware and led to the increase of the con-
tact sensor size at the expense of a lower total number of contact sensors in later iterations (see
chapter 4). Another limitation of the study was the single-speaker setup, which did not allow any
robust estimates of the speaker-dependency of an EOS-driven ATT system. The second study was
therefore designed differently to address these shortcomings of the pilot study.

5.3. Command word recognition small-scale study

The results of the pilot study, while encouraging, were obtained with a non-optimized hardware
version of both the sensor board and the control unit and validated on a rather small number of
repetitions. Most importantly, though, only one speaker was recorded, which excludes the analysis
of inter-speaker differences. Another study was therefore designed in a similar fashion, but with
more speakers and using further developed hardware. This small-scale study was also presented
in [200].

5.3.1. The dataset

The study used four native German speakers (all male, age 30-41), the same 30 most common
German words as in the pilot study and additionally the ten German digit words for the digits 0 to 9
(similar to the setup in [118], see Table 5.1). Each group of words was repeated 10 times for a total
of 300 instances in the frequent words data set and 100 instances in the numbers data set for each
speaker.
The data was collected using the software “Second Voice PC” (see subsection 4.6.4), a Plantronics

Blackwire C720 M stereo headset (for reference audio) and an EOS device with the internal version
number 3.2 using a sensor unit with 32 contact sensors, five optical tongue distance sensors, and
the dual-source, dual-detector lip sensor design. The recordings were made in a quiet office envi-
ronment. The speakers were prompted to read a carrier word (the German indefinite article “eine”
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5.3. Command word recognition small-scale study

- /"aE
“
n@/) followed by the word of interest. The schwa /@/ at the end of the carrier word ensured a

neutral vocal tract configuration at the beginning of the word of interest. The words were produced
in a natural way, i.e., with phonation and at an unregulated speaking rate of each speaker’s indi-
vidual choice. The EOS data was recorded continuously and therefore needed to be segmented so
that each training sequence only contained data from the actual articulation of the target word (and
not from the carrier word or from the neutral vocal tract configuration between items). In terms
of acoustic speech recognition, this would be done by VAD. But since articulation and the acoustic
result are not entirely aligned in time, the individual words were manually segmented using both
the EOS data and the reference audio and the following technique:

1. Set the beginning of the word to the center of the first sound in the word (which may be a
glottal stop in case of an initial vowel) as identified in the audio.

2. Set the end of the word to the first turnaround point in the EOS tongue distance sensor data
that occurs after the audio. If no such point can be easily identified, set it to the end of the
audio.

An example segmentation is shown in Figure 5.3. For a fully automatic recognition system, this step
would need to be automated as well to achieve an “Articulation Activity Detection”, analogously to
VAD. However, this poses its own problems that are beyond the scope of this work.

Figure 5.3.: An example of the manual segmentation of the words used for the recognition small
scale study. Here: the word “neu” (/nOœ

“
/, engl.: “new”).

A sequence of feature vectors was created from the segmented data. Each feature vector con-
sisted of the ADC data of the 2 lip sensor detectors, 5 distance sensor values, and 3 factors de-
scribing the contact pattern for a total of 10 features per vector. The distance sensor values were
(depending on the hyperparameter setting) either raw ADC values or converted to mm using the
calibration scheme described in subsection 4.2.2, the latter potentially reducing the in-session vari-
ance of the measurements. The contact pattern factors were calculated to reduce the dimension-
ality of the feature vectors, as the raw contact pattern would introduce 32 binary features instead.
The factors were inspired by the factors used in the Articulate Assistant software [203], which was
the user interface for a discontinued commercial EPG system. To calculate the factors in a concise
way, the non-rectangular contact sensor layout is considered as a rectangular matrix, where each
cell represents a contact sensor and can either have the value 0 (no contact) or 1 (contact). Some of
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5. Articulation-to-Text

Figure 5.4.: The non-rectangular contact sensor layout in rectangular matrix representation. Cells
with solid lines correspond to physical contact sensors on the sensor board and can
adopt the values 0 (no contact) or 1 (contact), while the dashed cells do not have physical
correspondences and therefore are assumed to be always 0.

the cells in the regular grid do not have correspondences to physical sensors on the sensor board
and are simply considered to be always 0 (see Figure 5.4).
The chosen factors are the normalized sum of the activity s, the center of gravity c, and the later-

ality measure l:

s = 1
K

M∑
m=1

N∑
n=1 x(m,n) (5.1)

with K being the total number of contact sensors (32),M,N being the number of rows and columns
of the contact pattern matrix (7 and 6, respectively) and x(m,n) being the binary contact sensor
value at the position (m,n) in the pattern. Using the same naming conventions, the center of gravity
c calculation was:

c = 1 –

M∑
m=1

N∑
n=1 (m – 0.5) x(m,n)
M ·

M∑
m=1

N∑
n=1 x(m,n)

(5.2)

and finally, the laterality measure l was given by:

l =
M∑

m=1
N∑

n=1 |n –
N+1
2 | · x(m,n)

N
2

M∑
m=1

N∑
n=1 x(m,n)

. (5.3)

These three measures represent normalized measures of the total palato-lingual contact area
(given by s), of the ratio of contact in the front of the palate over contact in the back (given by c),
and of the ratio of contact on the lateral edges of the palate as opposed to the contact near the
midline of the palate (given by l). Other measures exist in the literature but are either motivated by
capturing pathologies (e.g., the asymmetry measure) or by analyzing patterns over time (e.g., the
standard deviation measure). Therefore, only the three factors described above seemed useful for
the intended purpose of describing normal articulatory states.
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5.3. Command word recognition small-scale study

5.3.2. Training

A Bidirectional Long Short-Term Memory (BLSTM) network was trained to recognize the command
words and validated usingMatlab 2018b. The network was trained for both data sets (numbers and
frequent words) independently. Due to the large number of hyperparameters of BLSTM networks,
some of the hyperparameters were set to reasonable, fixed values: the number of hidden layers
was set to 1 because of the small number of training data. The gradient was clipped at 1, which is
common practice to avoid the exploding gradient problem. The number of training epochs was set
sufficiently large (300) but at the same time early stopping was used, so the training never actually
timed out but was always stopped due to a diverging validation loss. The validation frequency for
early stopping was 10 iterations and the validation patience was 5. These values were empirically
determined bymanual examination of the training progress with various settings. The learning rate
was set to a constant value of 0.01 and the size of the mini-batches was aligned with the size of the
respective vocabulary (i.e., 10 in the case of the numbers data set and 30 in the case of the frequent
words data set). The number of neurons N in the hidden layer, the dropout ratio δ, and the choice
of the data format (raw ADC values or converted tomm) were subject to Bayes optimization with 30
evaluations of the cost function. The search space for these was the integer interval between 100
and 256 for N and the continuous interval between 0.2 and 0.9 for δ. All other hyperparameters
and options were set to the default values suggested by Matlab. Regardless of the considerations
behind the choices for these parameters, the hyperparameters of a BLSTM network are largely
without interactions, according to [204]. Therefore, they can be optimized independently, which
means that the optimal values found for the examined parameters will likely hold even if future
work varies some or all of the hyperparameters that were fixed in this study. A summary of the
hyperparameter settings is shown in Table 5.2.

Hyperparameter Evaluated values/ranges

Number of hidden layers 1
Number of neurons N [100, 256]
Dropout δ [0.2, 0.9]
Gradient threshold 1
Max. number of epochs 300
Validation frequency 10
Validation patience 5
Learn rate 0.01
Mini-batch size 10 (numbers), 30 (frequent words)
Data format {ADC, mm}

Table 5.2.: Hyperparameter settings of the BLSTM networks used in the small-scale recognition
study. The optimal hyperparameter combination was found using Bayes optimization
with 30 evaluations of the cost function.

5.3.3. Results

Twodifferent evaluation paradigmswere used: a speaker-dependent evaluation and a cross-speaker
evaluation.

Intra-speaker validation

In this paradigm, the data sets recorded with each of the four speakers were used independently to
train the BLSTM network. Since both data sets contained 10 repetitions of each item, one instance
of each item was excluded from training and used for evaluation while the other 9 instances were
used for training the network. This strategy is a special kind of leave-one-out cross-validation or
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5. Articulation-to-Text

non-randomly partitioned 10-fold cross-validation and was chosen to keep the number of models
to train low while at the same time giving a fair estimation of the accuracy of the prediction on
unseen data. The accuracy on the evaluation set was measured by predicting the label for each
instance and determining the percentage of correct predictions. This procedure was repeated until
every instance was part of the evaluation set once. The results using the optimal hyperparameters
(see previous section) are given in Table 5.3 and Table 5.4.

Subject 1 2 3 4 Average

Hyperparameters N = 151, δ = 0.31, [mm] N = 132, δ = 0.14, [ADC] N = 133, δ = 0.88, [ADC] N = 123, δ = 0.34, [mm]
Fold 1 100% 100% 100% 100% 100%
Fold 2 100% 100% 100% 100% 100%
Fold 3 100% 100% 100% 100% 100%
Fold 4 100% 100% 100% 100% 100%
Fold 5 100% 100% 100% 100% 100%
Fold 6 100% 100% 100% 100% 100%
Fold 7 100% 100% 100% 100% 100%
Fold 8 100% 100% 100% 100% 100%
Fold 9 100% 100% 90% 100% 97.5%
Fold 10 100% 90% 100% 100% 97.5%

Average 100% 99% 99% 100% 99.5%

Table 5.3.: Recognition accuracy in the intra-speaker evaluation on the numbers corpus. Each fold
contained one instance of each of the ten digit words.

Subject 1 2 3 4 Average

Hyperparameters N = 132, δ = 0.84, [mm] N = 215, δ = 0.39, [mm] N = 202, δ = 0.16, [ADC] N = 248, δ = 0.67, [ADC]
Fold 1 96.67% 96.67% 96.67% 93.33% 95.84%
Fold 2 93.33% 100% 100% 100% 98.33%
Fold 3 96.67% 100% 93.33% 100% 97.5%
Fold 4 96.67% 90% 100% 96.67% 95.84%
Fold 5 93.33% 100% 100% 100% 98.33%
Fold 6 96.67% 96.67% 100% 96.67% 97.5%
Fold 7 96.67% 100% 96.67% 90% 95.84%
Fold 8 96.67% 90% 96.67% 96.67% 95%
Fold 9 100% 96.67% 100% 96.67% 98%
Fold 10 100% 96.67% 100% 93.33% 97.5%

Average 96.67% 96.67% 98.33% 96.33% 97%

Table 5.4.: Recognition accuracy in the intra-speaker evaluation on the frequentwords corpuswhen
using the raw ADC sensor values. Each fold consisted of 30 words containing one in-
stance of each word from the dictionary.

Inter-speaker validation

Articulatory data is generally highly specific to each individual. In the EOS data, themain differences
likely originate in the different sensor positions relative to each subject’s anatomy of their anterior
mouth cavity. While the sensors have the same relative positions to one another because they are
mounted to flexible circuit boards of the same layout, the incisor geometry and curvature of the
hard palate is different for every subject. Therefore, the optical axes of the optical sensors were at
different angles for different subjects and the contact sensors ended up in different areas of the
hard palate. An extreme example is shown in Figure 5.5: for subject 2, the optical axis of one of the
light sources of the lip sensor is so skewed towards the base of the lip that it cannot capture any
movement of the lip at all (as shown in Figure 5.6). This is an extreme example for similar problems
across all sensors and subjects. To quantify the impact of this inter-speaker variability in the sensor
data, another set of four BLSTMnetworks was trained using the data from three of the four subjects
for training and the data of the fourth subject for validation so that every subject’s data was used for
validation once (leave-one-speaker-out cross-validation). The hyperparameter tuning followed the
same procedure as described in subsubsection 5.3.3 and used the same search space. The results
are shown in Table 5.5 for the numbers and in Table 5.6 for the frequent words dataset.
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5.3. Command word recognition small-scale study

subject 1

subject 2

Figure 5.5.: Comparison of the lip sensor setup of subject 1 and subject 2: the arrows indicate the
optical axes of the lip sensors. Similar differences are present across all subjects and
can be observed for the other optical sensors as well.

Hyperparameters: N = 117, δ = 0.45, [mm]
Evaluation speaker 1 2 3 4 Average

Accuracy 33% 52% 80% 82% 61.75%

Table 5.5.: Recognition accuracy in the inter-speaker evaluation on the numbers corpus. Four net-
works were trained to fit the data of three speakers and classify the data of the fourth
speaker, using a different speaker for testing for each network (leave-one-speaker-out
cross-validation).

5.3.4. Discussion

The results of the intra-speaker evaluation are comparable to the state-of-the-art in the field set
by [118], who achieved an accuracy of 99% on an English digits corpus for one male speaker and
82% for a female speaker, as well as an accuracy of 95% (male) and 76% (female) on frequent
words corpus using 47 English words in addition to the ten digit words. The reported errors are
in-sample errors, however, and swing wildly between the two subjects. The results from this study
were obtained in a more systematic fashion and are more consistent across the (admittedly all-
male) speakers, while at the same time slightly surpassing the previous benchmarks. EOS therefore
appears to capture the individual’s articulation sufficiently well to discriminate between a limited
set of words. It remains to be investigated if and how the accuracy decreases with increasing vo-
cabulary size. It should also be investigated if the isolated evidence from [118] regarding a drop
of the accuracy for a female subject can be reproduced systematically using EOS. Intuitively, there
is no reason to assume that a female speaker’s articulation should be harder to capture with EOS.
The most salient difference between male and female anterior vocal tract geometry is the average
size, which is not expected to adversely impact the measurement principles involved in EOS. Still,
experimental evidence is needed to answer this question definitively.
The inter-speaker analysis identifies further room for improvement on the current system. The

inter-individual differences of the speakers led to a precipitous drop in accuracy from an average of
99.5% to an average of 61.75% on the numbers corpus and from an average of 97% to an average
of 56.17% on the frequent words corpus when training the system with other speakers. However,
even for the worst evaluation speaker the accuracy was still way above chance level. Also, the
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Figure 5.6.: Effect of the different sensor axes during the sentence “Heute ist schönes Frühlingswet-
ter” (subject 1 above, subject 2 below): Dashed line is the downward facing light sensor,
solid line is the sensor on the incisor.

Hyperparameters: N = 119, δ = 0.387, [mm]
Evaluation speaker 1 2 3 4 Average

Accuracy 56% 52.33% 63.67% 52.67% 56.17%

Table 5.6.: Recognition accuracy in the inter-speaker evaluation on the frequent words corpus. Four
networks were trained to fit the data of three speakers and classify the data of the fourth
speaker, using a different speaker for testing for each network (leave-one-speaker-out
cross-validation).

variance of the accuracy across speakers is quite high: the achieved performance ranged from 33%
all the way to 82%, depending on the evaluation speaker (see Table 5.5). When only considering
the numbers data set, it appears that speaker 3 and 4 are more similar to one another than they
are to the other speakers and than the other speakers are to one another, resulting in a higher
cross-validation accuracy. However, as the vocabulary size increases to the frequent word data set,
the variance across speakers diminishes and the individual performance is closer to the average.
Nevertheless, a speaker adaptation of some sort is needed to achieve practically useful accuracy
levels. This adaptation could be as simple as obtaining more training data from more speakers, or
more elaborate and involve finding “alignment utterances” that map a speaker’s articulatory space
to a generic model speaker’s space, in which the classification is subsequently performed. In both
cases, more data needs to be acquired before further investigations can be pursued.
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6. Articulation-to-Speech

6.1. Introduction

Articulation-to-Speech is the second major paradigm in the context of SSIs, as described in chap-
ter 1, and summarily describes systems that convert articulatory data into audible speech. Despite
the fact that articulatory data is obtained, the current state of the art in this field (see chapter 3)
almost exclusively relies on speech signal generators that use statistical mappings to acoustic fea-
ture vectors to create speech (i.e., vocoders). One of the core ideas of this dissertation is to break
away from the mainstream here and use the articulatory data (in this case EOS data) to drive an
articulatory synthesizer. This chapter therefore describes the concept of articulatory synthesis in
section 6.2, introduces a new vocal tract model suitable for the real-time synthesis of speech based
on articulatory data in a closed-loop of capturing data and converting it to speech (see section 6.3,
presents the evaluation of this model using both objective metrics (see section 6.4) and perceptual
quality (see section 6.5), and includes a pilot study on using the new vocal tract model driven by EOS
data for direct, real-time speech synthesis in an ATS system (see section 6.6). Finally, the chapter
concludes with some additional analyses on important components of speech currently not cap-
tured by the articulatory data acquisition frontend (see section 6.7). The novel vocal tract model
was also published in [205], while the results from the pilot study were published in [206].

6.2. Articulatory synthesis

Toproperly introduce and contextualize articulatory synthesis, it is necessary to give a brief overview
of speech synthesis techniques in general. The techniques to perform speech synthesis, i.e., the ar-
tificial production of speech sounds, have historically been grouped in two distinct sets [207]: para-
metric synthesis (also called first generation techniques [208]) and concatenative synthesis. Given
the recent advances of applying neural networks to directly generate a continuous speech signal
waveform from text input (e.g., WaveNet [25], Tacotron [26] and Tacotron 2 [209]) and its domi-
nance in the industrial applications of speech synthesis, these end-to-end techniques should be
added to the list as a third set. But as important as these techniques are for the major consumer
applications using speech synthesis, e.g., Google Assistant, their suitability for an ATS system is
severely limited. Firstly, their focus is on text as an input and they are not easily adapted to a differ-
ent kind of input space. Secondly, the amount of data needed to train such an end-to-end system
is prohibitive for small-scale studies common in the academic field. Therefore, end-to-end systems
were not considered for the synthesis backend in this dissertation.
Concatenative or unit-selection synthesis was the previous state-of-the-art in speech synthesis

before the rise of end-to-end systems and is still deployed in many major consumer applications,
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e.g., Amazon Alexa or in-car assistants. Unit-selection synthesis relies on a large database of speech
units of various lengths, ranging from individual phones, diphones, triphones, syllables, and words
all the way to entire phrases in all kinds of different contexts. During synthesis, the system attempts
to find the best-fitting unit, searching through its database from longest to shortest, trying to find
a speech unit that was taken from the ideally exact same position in an utterance as the target ut-
terance. The individual units are then concatenated to form the target utterance. Defining the cost
function to identify the best-fitting unit is a complex task for any non-trivial system because it needs
to incorporate the context of the utterance on many different levels, from neighboring phones up
to the sentence or even paragraph level. Ill-fitting units can result in unnatural sounding speech,
both in terms of intonation and articulation. To smooth out these shortcomings, a subsequent sig-
nal processing step can be applied that uses various techniques to manipulate the signal to achieve
a more desirable outcome. Since the signal processing introduces artifacts and noise to the signal,
the overall quality of the synthesis greatly depends on the size of the database and the number of
speech units to choose from. However, larger databases also mean longer lookup times and the
round-trip latency (the time from putting in the text to starting the audio playback) of a high-quality
unit-selection synthesis system can be in the order of seconds. As described in section 1.1, a system
could be conceived that maps the articulatory data to text first and then uses any TTS system to
synthesize the speech, but that unnecessarily limits the possibilities of the ATS system to the pos-
sibilities of a TTS system. That is, specific articulation patterns, variations of the speech rate, and
numerous other paralinguistic features would be irretrievably lost, which would greatly diminish
the naturalness and individuality of the synthesized speech. It is therefore important to look at
these synthesis techniques through the lens of direct synthesis, where the articulatory input data is
mapped to the degrees of freedom of the synthesis. This formulation immediately disqualifies the
concatenative techniques for a real-time ATS system, and a concatenative synthesis was therefore
not considered for this dissertation.
Parametric synthesis, according to [208], encompasses all techniques based on parametric mod-

els derived from the theory of speech production as laid out in chapter 2. This comprises formant
synthesis, classical linear prediction, and articulatory synthesis. The differences between formant
synthesis and classical linear prediction are very minor here. Both are based on the source-filter
model of speech production and use a vocal tract filter to filter an excitation source signal. In for-
mant synthesis, this vocal tract filter is usually a parallel filter bank, while in linear prediction, a
single all-pole filter is used. According to [208], formant synthesis can theoretically produce very
natural sounding speech if the parameters of the filter bank are very accurately chosen but this is
extremely hard to do without laborious manual trial-and-error. The parameters of the linear pre-
diction filter, on the other hand, can be very easily estimated from natural speech samples and
LPC-based speech coding is still a very relevant technique in speech transmission codecs (like the
Adaptive Multi-Rate (AMR) codec) or in consumer technology like the “Speak and Spell” toys, an
IEEE milestone in speech technology1. In the absence of reference speech samples for the param-
eter estimation, the synthesis quality is quite poor, however, and applications of linear prediction
therefore mainly use it for speech signal compression and transmission instead of synthesis “from
scratch”.
The third major parametric synthesis technique, articulatory synthesis, is the most complex one.

Articulatory synthesis computationally produces speech by simulating the air flow through the vocal
tract during articulation using three basic components: a model of the vocal tract, a model of the
articulatory control, and a model of the aerodynamic and/or acoustic processes to simulate the
air flow. Depending on the level of detail to which these components are modeled, articulatory
synthesis is in theory capable of simulating any given speech production system and can therefore
potentially recreate any voice, any speaking style, and any vocal expression (e.g., emotional speech).
In fact, its potential is so alluring that some consider it the way forward in speech synthesis in the
long term [210]. Admittedly, that position paper was written well before the advent of end-to-end
systems, and the commercial success of Big-Data-driven systems with less flexibility but very high

1https://ethw.org/Milestones:Speak_&_Spell,_the_First_Use_of_a_Digital_Signal_Processing_IC_for_Speech_
Generation,_1978
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naturalness have largely confined articulatory synthesis to the academic sector. But especially in
the context of an SSI, articulatory synthesis offers a number of advantages unmatched by the other
techniques:

• Low data requirements

• No signal processing artifacts or added noise (as opposed to, e.g., vocoder-based techniques)

• Explainable degrees of freedom

• Control parameters (often) have articulatory correlates, which match the measured articula-
tory input data

Especially the last point, the congruency of the input domain of an articulatory synthesizer and the
nature of the measured articulatory data, strongly motivates an attempt to use it as the synthesizer
in an ATS system.
A few modern articulatory synthesis systems exist, e.g., the Configurable Articulatory Synthesis

(CASY) sytem [211], the ARTISYNTHproject [212], or the VocalTractLab [213]. As pointed out in [214],
the main challenge in the design of these systems is to successfully integrate models for all three
components mentioned above: the vocal tract (e.g. [215–223]) and the vocal folds (e.g. [30, 224]),
the articulatory control (e.g., [214,225,226]), and the aero-acoustic simulation (e.g., [227,228]). Cur-
rently, the most advanced, feature-rich, and continuously developed articulatory synthesizer is ar-
guably the VocalTractLab by Peter Birkholz [213]. On its website2, it is described as “an interactive
multimedial software tool to demonstrate the mechanism of speech production” meant to “facili-
tate an intuitive understanding of speech production for students of phonetics and related disci-
plines”. It combines a powerful aero-acoustic simulation backend with a three-dimensional vocal
tract model, a (geometric or physical) glottis model, and an articulatory model based on the Target
Approximation Model [228,229]. A GUI allows convenient and intuitive interaction with the various
complex components of the very extensive program. While the naturalness and overall quality of
speech synthesized with VocalTractLab is generally very high, there are a few obstacles that make
it impossible to just “slot” the synthesizer into an ATS system as-is:

1. The three-dimensional vocal tract model has a large number of degrees of freedom, which
makes the mapping from the articulatory data to the synthesizer very difficult.

2. The computational complexity involved in processing the three-dimensional vocal tract is very
high.

3. The numerical solver used in the simulation backend has a real-time factor of more than 1 (as
of version 2.1), which is too slow for a real-time application.

While the third point has been remedied by a different solver available since version 2.2 [230], the
first two points are still a major issue. Both of them are, however, specific to the three-dimensional
vocal tract model. If a simpler vocal tract model can be found that has a lower complexity with
only negligible reduction in quality, a high quality, real-time articulatory synthesis controlled by
measured articulatory data will be possible. Before a novel such model is presented in section 6.3,
a brief discussion of various various forms of vocal tract models is required to properly motivate
the approach taken.

6.2.1. Vocal tract models

As discussed in chapter 2, human speech is the result of acousticwave propagation through the con-
tinuously reshaped “tube” of the vocal tract, i.e., the pharynx, the oral and nasal cavities. Thanks to
modern imaging technologies, we have an accurate picture of what exactly these vocal tract shapes
may look like. From the pioneer 2D X-ray images of vowels [231] and other articulations [232] to
2www.vocaltractlab.de
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modern day MRI with high spatial resolution [233] and/or temporal dynamics [234–236], the un-
derstanding of the complex morphology and anatomy of the human vocal tract has grown rapidly.
In order to simulate speech production, these complex volumetric shapes need to be described in
some way by a vocal tract model. Defining such a model, however, is a daunting task due to the
level of detail that may or may not be necessary to produce intelligible, natural sounding speech.
Nevertheless, several approaches exist in the speech research community that can be grouped by
their domain: modeling the entire 3D geometry of the vocal tract, reducing it to the 2D midsagittal
plane, or reducing it even further by defining a 1D function that describes the cross-sectional area
at any given position in the vocal tract (the vocal tract area function).

The approach using the fewest simplifications, the detailed reproduction of the 3D geometry, can
be done in three different ways: explicitly modeling individual vocal tract shapes from imaging data
(usually MRI) as a 3D mesh, e.g. [237–239], statistically modeling 3D vocal tract shapes as a mixture
of the principal components found in a corpus of 3D scans of articulatory configurations [219,240],
or simulating the biomechanics involved in the shaping of the vocal tract, e.g., [217,241]. Exploiting
assumed symmetry of the vocal tract with respect to the midsagittal plane, many 2D vocal tract
models discard the lateral dimension. The approaches here are similar to the 3D problem: direct
geometric modeling, e.g., [215,242], or statistical modeling by superimposing differently weighted
component shapes, e.g., [133, 243, 244]. The geometry of the vocal tract can be simplified even
further if the assumption of planar sound wave propagation is made: In this case, the only rele-
vant measure is the cross-sectional area along the vocal tract and thus its acoustic properties can
be derived from the 1D vocal tract area function. Even though this assumption disregards higher
modes [245], the differences are negligible in the perceptually relevant frequency range [246] and
it has been known for a long time to work well for fast and high-quality synthesis. This kind of mod-
eling also discards much of the anatomical detail present in 2D or 3D models but is comparatively
fast and simple, which is a crucial factor when trying to perform direct ATS. In fact, even when
used for any kind of speech synthesis, many of the 2D and 3D models are only used as intermedi-
ary steps to ultimately calculate the area function, which is then used for the actual synthesis (see,
e.g., [133,213,217,237,238,241,242]). Therefore, it might be the most efficient approach to model
the 1D area function directly. Simply specifying an array of cross-sectional area values and corre-
sponding positions in the vocal tract for a set of sounds as in [247] could certainly work, but this
brute-force approach to modeling the area function is not only wasteful (in terms of the number of
model parameters) but also difficult to control when you want to move from one vocal tract shape
to another, i.e., produce connected speech. Therefore, a lower-dimensional model (with regards to
the parameter space) is desirable. Ideally, these parameters would also have some sort of physio-
logical or articulatory correspondence, whichwouldmake themanual control of such amodelmore
intuitive. A well-known model to attempt this is the Three Parameter Model by Fant [22, 248,249].
Originally inspired by tube resonator models of the vocal tract, Fant refined the model in his later
work to allow non-cylindrical segments and thus more natural area functions. The three parame-
ters are the place of the constriction along the midsagittal section xc, the area at the constriction
Ac and the ratio of the overall tract length over the area of the lip opening l0

A0 . These three parame-
ters are used in three sets of equations, called prototypes, which break the possible area functions
down into three cases: front, mid and back vowels. Depending on the class of vowel to be syn-
thesized, a different set of equations is used. Each prototype uses a concatenation of linear and
higher-order functions to model the corresponding sounds. While the parameterization and order
of the interpolation functions change, all prototypes use the same larynx segment, itself a 2.5 cm
long concatenation of constant segments of 0.5 cm length each and different cross-sectional ar-
eas. Consonants are modeled by decomposing the area function into an overall vocalic part (us-
ing parameters that yield the desired coarticulation) and a consonantal part, which then modifies
or replaces the vocalic part [249, 250]. This consonantal part is defined by four more parameters
(bringing the total number of parameters up to seven): the place xcc of the midsagittal constriction
or closure, the area Acc at the constriction, the width w of the local modification projected on the
vocalic area function, and a tilt factor kS, controlling the asymmetry of the constriction. The idea
of mixing certain basic patterns or factors to form a final area function was also used concurrently
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by Fitch et al. [251] and Ru et al. [252], who both built on the factors found by Harshman et al.
in [253]. Their models describe any vowel (but only vowel) area function as a linear combination
of two sinusoidal base factors t1 and t2. The most sophisticated “statistical mixture model” is the
model by Story ( [254–258]). Conceptually combining Badin et al.’s guided PCA [240] and Öhman’s
notion of a vowel “substrate” with superimposed consonantal perturbations [243], he developed
an extensive model that determines the area function as a composite of four perturbation “tiers”
applied to a neutral area function (defined as an area function that produces equidistant formants).
In each tier, time-invariant base structural components, derived by PCA of an MRI data corpus of
vocal tract shapes, are mixed using time-varying control values to form intermediate outputs used
in the next tier. These intermediate outputs are in order of tiers: the vowel substrate, the conso-
nantal perturbation, vocal tract length changes, and nasalization. Finally, the intermediate outputs
are mixed together to obtain the area function (the mixture of the vowel substrate and the conso-
nantal perturbation), the warped location axis (length changes applied to the linear location axis),
and the time-dependent area of the nasal port. The parameters of the model are therefore the
weights applied to the base components in each tier, 14 in total.
Another 1Dmodel by Ishizaka [259] discards the superpositional approach and insteadmodels all

possible area function shapes by concatenating a constant-area larynx tube section, two weighted
cosine functions (one period of each), connected at the place of constriction xc, and a constant area
lip tube section. In total, the Ishizakamodel uses six parameters: the total length L of the vocal tract,
the maximum cross-sectional area Ab in the back (posterior) part of the mouth cavity, the location
xc of the constriction, the area Ac at the constriction, the area Af in the front (anterior) part of the
mouth cavity, and the area Am of the mouth opening. In [260], Wei et al. devised a model that uses
9 distinct extremal points and interpolates between those points using a prototype function that
depends on the distance of the glottis and the sound that is to be modeled.
Of all themodels introduced above, Ishizaka’smodel uses the least parameters while still allowing

high flexibility in terms of the area functions that may be produced. However, the assumption of
symmetric cosine sections is a substantial simplification that accounts for most of the deviations
from real area functions (as is evident in their ownevaluation of theirmodel in [259]). Wei somewhat
eliminated those shortcomings by using different prototype functions in different sections, but in
doing so greatly limited the variability of the possible shapes.

6.3. The six point vocal tract model

In this section, a new parametric one-dimensional vocal tract model is introduced that combines
elements of Ishizaka’s model and Wei’s model, but overcomes their limitations by using half peri-
ods of cosine segments to interpolate between six control points that can additionally be shaped
by a non-linear warping. The model uses a total of 16 parameters in the full configuration or 11
parameters in a reduced configuration, which achieves the lower dimensionality at a slightly re-
duced quality. The comparatively large number of parameters in the full configuration allows max-
imum variability of the vocal tract shapes that can be modeled without the inter-dependencies
between different areas of the vocal tract inherent in factor-based models. The parameters also
have anatomical correspondences, which makes their control potentially more intuitive than, e.g.,
the control of statistical weights. Through the introduction of virtual targets, similar to the concept
introduced by [261], the model is furthermore capable to realistically model closures during stops,
which Ishizaka and Wei did not discuss for their models. In contrast to Story’s model, the parame-
ters of the proposed model have a more direct anatomical correspondence to points in the vocal
tract and can therefore be controlled according to observations of the geometrical features of the
area function. These correspondences also allow the mapping of segments of the area function to
articulators that dominantly shape that section, which is very important for the high-quality syn-
thesis of consonants (see [262]). Finally, Story’s statistical model needs to be recalculated with new
speaker data to adapt it to a new speaker while the proposed model can be easily implemented
using just a simple, piecewise function and manually fitted to any given area function by a simple,
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manual or automated, geometric fit.
In keeping with the Ishizaka and the Wei model, the proposed six point vocal tract model given

by equation 6.1 defines the area function as a piece-wise concatenation of cosine functions and
constant-area segments. An example of an area function created by the model is shown in Fig-
ure 6.1.

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Alar for 0 ≤ x ≤ xlar
Ap+Alar

2 + Ap–Alar
2 · cos

(
π
(

xp–x
xp–xlar

)nlar,p)
for xlar < x ≤ xp

Ac+Ap
2 + Ac–Ap

2 · cos
(
π
(

xc–x
xc–xp

)np,c)
for xp < x ≤ xc

Aa+Ac
2 + Aa–Ac

2 · cos
(
π
(

xa–x
xa–xc

)nc,a)
for xc < x ≤ xa

Ain+Aa
2 + Ain–Aa

2 · cos
(
π
(

xin–x
xin–xa

)na,in)
for xa < x ≤ xin

Alip for xin < x ≤ xlip

(6.1)

where:

x: Position along the vocal tract center line in cm

A(x): Cross-sectional area in cm2 at the position x

xlar: Length of the larynx tube in cm

Alar: Cross-sectional area in cm2 of the larynx tube

xp: Position of the posterior control point in cm

Ap: Cross-sectional area in cm2 at the posterior control point

nlar,p: Warping exponent of segment between the larynx and the posterior control point

xc: Position of the constriction in cm

Ac: Cross-sectional area in cm2 at the constriction

np,c: Warping exponent of segment between the posterior control point and constriction

xa: Position of the anterior control point in cm

Aa: Cross-sectional area in cm2 at the anterior control point

nc,a: Warping exponent of segment between the constriction and the anterior control point

xin: Position of the incisors in cm

Ain: Cross-sectional area in cm2 at the incisors

na,in: Warping exponent of segment between the anterior control point and the incisors

xlip: Vocal tract length in cm

Alip: Cross-sectional area in cm2 at the lips

The vocal tract model uses six points (xi, Ai), i ∈ {lar, p, c, a, in, lip}, as parameters: the length xlar
and the cross-sectional area Alar of the larynx tube define the larynx control point, the position
xp and its corresponding area Ap the posterior control point, the position xc and the area Ac the
constriction control point, the position xa and area Aa the anterior control point, the position xin and
area Ain the incisor control point, and finally the position xlip (also the length of the vocal tract) and
area Alip of the lip control point. Except for the larynx tube and the segment between the incisor and
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Figure 6.1.: Example (neutral, /@/-like) area function created with the six point model

Figure 6.2.: Effect of the exponents n in the model equations (dashed line: n = 1): The argument of
each cosine segment is normalized to the interval [0, π] but non-linearly warped by the
exponent n. When n > 1, the segment becomes more convex and could even approxi-
mate a right angle for very large n. When n < 1, the segment becomes more concave.
To avoid discontinuities, only exponents n > 0 were used.

the lip control point, which are of constant cross-sectional area, the area function is calculated by
interpolating between each two consecutive control points using half a period of a cosine function.
In addition to the six control points, four warping parameters nlar,p, np,c, nc,a and na,in are used to
independently warp the corresponding cosine segments (see Figure 6.2), bringing the total number
of parameters up to 16.
Compared to the Ishizaka model, the use of half a period per cosine section allows asymmetric

perturbations (with respect to the local maximum or minimum area) and the warping factors allow
an even wider range of possible shapes, making the Ishizaka model essentially a special case of the
six point model.
To model closures in the vocal tract, the domain of the area parameters is extended into the

negative range. The codomain of the area function is, however, still constrained to the positive
range: when a calculated A(x) becomes less than zero, it is instead set to zero. This way, when
a control point is moved into the negative area range (becoming a “virtual target” point), a wider
segment of the area function can become zero (see Figure 6.3).

6.3.1. Parameter reduction

The six point model aims at maximum flexibility regarding the shape of the area function and
therefore allows independent manipulation of all six control points. However, not all parameters
of the model are necessarily degrees of freedom of the vocal tract shapes actually occurring in
speech. Therefore, the 16 parameters were analyzed regarding simplifications by exploiting non-
discriminatory variance or mutual dependencies in the evaluated vocal tract shapes discussed in
section 6.4. Firstly, following the example of [259] and [215], the larynx tube length xlar was set to
2 cmand its area Alar to 1.5125 cm2 (i.e., the averagemean area across the first 1.5 cmof all reference
area functions). Because the position xp of the posterior control point anatomically corresponds to
the piriform sinus and its morphological relationship to the larynx tube opening, a constant posi-
tion of the larynx tube opening directly implies a constant position xp and, by extension, a constant

115



6. Articulation-to-Speech

Figure 6.3.: Modeling closures (here, a velar closure): a control point is moved below the zero
threshold to a “negative area” and thus becomes a virtual target. The calculated area
function is clipped at zero, creating a wide segment of closure.

xlar = 2 cm

Alar = 1.5125 cm2

nlar,p = 1

xp = 3.0948 cm

xa = –2.347 – 0.061 · xc – 2.052 · nc,a – 0.159 · Aa
+1.161 · xin + 0.143 · xcnc,a

Table 6.1.: Eliminated degrees of freedomof themodel. Using these constraints, the six pointmodel
is fully determined by the remaining 11 free parameters (the reduced configuration).

transition (i.e., nlar,p = 1) as well. To determine this position xp, the model was geometrically fitted
to the reference area functions as described below, but using the fixed larynx control point and only
optimizing the posterior control point. The final position xp = 3.0948 cm was then calculated as the
average across all sounds. The possible mutual dependencies between the remaining parameters
of the model were investigated with a leave-one-out paradigm using stepwise multiple linear re-
gression: All but one parameter were predictors and the remaining parameter was the response
variable. Starting with a simple constant model, the stepwise multiple linear regression algorithm
(using Matlab’s built-in stepwiselm function) then determined the optimal linear regression model
including combinations of predictor variables and allowing up to quadratic terms. Because they
were needed to form stops or constrictions, Ac, Ain and Alip were excluded from the list of possible
predictors and responses. Of the regression models found, only the one for xa had an adjusted
coefficient of determination R2adj > 0.9 and was thus above the commonly used threshold for a
sufficiently precise model and therefore included in the area function model, eliminating another
degree of freedom. Table 6.1 summarizes the eliminated 5 free parameters and their replacement
values or function. The reduced number of parameters inherently comes at the cost of reduced
flexibility because dependencies are introduced. To investigate if the reduction of complexity is
worth the potential reduction in precision and quality, the model was evaluated in both the full 16
parameter configuration and the reduced 11 parameter configuration.

6.4. Objective evaluation of the vocal tract model

To objectively evaluate both the full and the reduced configuration of the six-pointmodel, themodel
was fitted to a set of reference area functions derived from MRI data and both the geometric error
and the acoustic error (in terms of formant deviation) were determined.
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MRI stack with teeth 
inserted

Segmented 3D vocal 
tract

Calculate centerline & 
cross-sections

Final area function
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Figure 6.4.: Workflow to obtain the reference area functions: After the 3D scans of the plaster jaw
models were inserted into the MRI stack, we segmented the vocal tract and converted it
into a 3Dmesh. The centerline was calculated in this mesh and the cross-sectional area
sampled at 129 positions, yielding the final area function.

6.4.1. Reference vocal tract shapes

The reference vocal tract shapes were obtained from a corpus of MRI data consisting of 22 sounds
produced by one male 38-year-old German native speaker: the German vowels /a:, a, e:, E:, E, i:,

I, o:, O, u:, U, ø:, œ, y:, Y, @/ and the German consonants /l, f, s, S, ç, x/. The MRI images were
acquired on a Siemens 3T TIM Trio with a 12-channel head coil combined with additional neck el-
ements. To image the throat, we used a sagittal 3D volume interpolated gradient echo sequence
(VIBE - fl3d_vibe) with 1.2mm × 1.2mm × 1.8mm resolution, 44 sequential slices, matrix size 192,
field of view = (230mm)2, repetition time TR = 5.53ms, echo time TE = 2.01ms, flip angle 9°, Q-
fatsat, 22 lines per shot, 7/8 phase partial Fourier, 6/8 slice partial Fourier, ipat factor 2 (PE only), 24
reference lines and a bandwidth of 220Hz/pixel. The acquisition time for one volume was 14 s dur-
ing which the speaker sustained the articulatory configuration and phonated the sounds. Because
MRI cannot capture the teeth, which can have a significant impact on the radiated sound according
to [263], plaster models of the subject’s upper and lower jaw were scanned using a NextEngine 3D
scanner and inserted into theMRI images by aligning anatomical landmarks present in both theMRI
data and on the jaw models (e.g., the hard palate contour). For this purpose, we used the open-
source software Meshlab [264] (for retouching of the 3D scanned models) and ITK-SNAP [265] (for
the actual insertion and unification to obtain the final volume). The subsequent segmentation of the
vocal tract in the combined volume was also done with ITK-SNAP. To calculate the vocal tract area
function, we used a similar workflow and a custom software previously described in [266]: The seg-
mented vocal tract was converted to a 3D mesh. The centerline was estimated according to [262],
begins at the glottis and was terminated at the lips. More precisely, the acoustic termination at the
lips was set halfway between the corners of the mouth and the connecting line between the upper
and lower tips of the lips [267]. If the contour of the cross-section in that termination plane was not
closed, wemanually closed it using half-circle segments before calculating the lip opening area. The
beginning and end of the segmented vocal tract was terminated with a straight cut perpendicular
to the centerline using Meshlab. Between these first and last sections, 127 more, equally spaced
sections were inserted. The cross-sectional area of the vocal tract was then determined for all sec-
tions, resulting in 129 samples of the reference area function per sound. The overall workflow is
illustrated by Figure 6.4. The vocal tract data is included as subject 1 of the Dresden Vocal Tract
Dataset (DVTD) [268].

6.4.2. Geometric evaluation

For each of the 22 reference area functions, we determined a set of 16 parameters for the full
configuration of the vocal tract model that produces an optimal approximation of the respective
reference. The parameters were initialized manually by moving the control points to appropriate
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Figure 6.5.: Root-mean-square error (RMSE) in cm2 for the area functions produced with the model
with the full set of 16 degrees of freedom (DOF) and with the model and the reduced
set of 11 DOF. The box plots to the left show the median error (horizontal line inside
the box), the edges of the boxes show the 25th and 75th percentile and the whiskers
extend to the outliers. To the right, the results are further broken down by sound.

starting positions using a graphical user interface (GUI) written in Matlab. The optimal solution was
found using the Nelder-Mead algorithm [269] implemented in the built-in Matlab function fmin-
search. The lip control point and the incisor control point were not subject to the optimization
because they were landmark points that could be unambiguously identified in the reference func-
tions. The remaining parameters were optimized so that the mean squared error between the
logarithmized reference and the logarithmized model area function became minimal. The order of
the control points was not allowed to change (meaning that their positions had to monotonously
increase) to keep their anatomical correspondences intact. The warping factors had a lower limit
of 0 because negative powers would turn the cosine sections into secant sections. The logarithm
was taken of the area values to avoid a collapse of constrictions and emphasize the error at small
constrictions as opposed to errors at sections of already large areas. After a set of optimal param-
eters was found, the root-mean-square error (RMSE) of the model area function was calculated for
each reference. The results are shown in Figure 6.5: The error ranged from 0.302 cm2 for /a:/ to
1.142 cm2 for /l/ and the median error across all sounds was 0.891 cm2 (produced by the model
area functions for /o:/ and /I/). All references and the geometrically fitted area functions using the
full configuration of the model are shown in Figure 6.6. The largest deviations of the model area
function from the reference occurred in the region of the epiglottis and the vallecula.
The same optimization was done for the reduced configuration using only 11 free parameters

and the error results are also shown in Figure 6.5. Compared to 16 free parameters, the RMSE rose
drastically for some sounds (e.g., by 137% for /u:/) and only very little for others (e.g., by 6% for
/s/). Plots of the area functions in the reduced configuration are provided in Figure G.1.

6.4.3. Acoustic evaluation

An objective measure to compare the acoustic properties of the area functions generated with the
proposed model that applies to all sounds is difficult to define. The relevant acoustic features for
fricatives that are measured in acoustic realizations are heavily dependent on the noise source,
which is in turn determined by the cross-sectional area of the critical constriction of the vocal tract.
Since the spatial resolution of the MRI scanner (1.2mm × 1.2mm × 1.8mm) was too low to capture
these very fine constrictions reliably, an objective evaluation was not possible for these sounds and
the subjective evaluation of the consonantal area functions onlymade sense aftermanual optimiza-
tion of these critical constrictions (see subsection 6.5.1). For vowels, however, the objectively rele-
vant acoustic properties are the first three formants F1, F2 and F3. To compare the formants of the
vowel reference area functions obtained from the MRI data and of the corresponding model area
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Figure 6.6.: Area functions of tense vowels (left column), lax and neutral vowels (center column),
and consonants (right column). Dashed lines mark the references and solid lines the
geometrically fitted model area functions in the full configuration. The black dots mark
the six control points.
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Sound F1ref F116 ΔF116 F111 ΔF111 F2ref F216 ΔF216 F211 ΔF211 F3ref F316 ΔF316 F311 ΔF316

/a:/ 611 645 5.56% 589 3.6% 1214 1219 0.41% 1249 2.88% 2478 2553 3.03% 2510 1.29%
/e:/ 319 315 1.25% 318 0.31% 2080 2084 0.19% 2065 0.72% 2543 2633 3.54% 2501 1.65%
/i:/ 245 246 0.41% 260 6.12% 2098 2098 0.43% 2144 2.19% 3002 3115 3.76% 3342 11.36%
/o:/ 275 290 5.45% 289 5.09% 609 614 0.82% 635 4.27% 2293 2325 1.4% 2368 3.27%
/u:/ 258 251 2.71% 289 12.02% 709 689 2.82% 667 5.92% 2131 2249 5.54% 2180 2.3%
/E:/ 524 522 0.38% 502 4.2% 1822 1845 1.26% 1802 1.1% 2542 2579 1.46% 2505 1.46%
/ø:/ 291 281 3.44% 280 3.78% 1292 1297 0.39% 1274 1.39% 1981 2006 1.26% 1992 0.56%
/y:/ 212 216 1.89% 227 7.08% 1336 1440 7.78% 1396 4.49% 1938 1973 1.81% 2022 4.33%
/a/ 610 635 4.1% 568 6.89% 992 1015 2.32% 984 0.81% 2493 2616 4.93% 2552 2.37%
/E/ 516 525 1.74% 496 3.88% 1678 1707 1.73% 1659 1.13% 2564 2614 1.95% 2565 0.04%
/I/ 352 354 0.57% 408 15.91% 1568 1563 0.32% 1480 5.61% 2346 2498 6.48% 2390 1.88%
/O/ 396 420 6.06% 418 5.56% 698 743 6.45% 739 5.87% 2508 2674 6.62% 2574 2.63%
/U/ 276 284 2.9% 294 6.52% 591 596 0.85% 603 2.03% 2325 2455 5.59% 2561 10.15%
/œ/ 444 441 0.68% 441 0.68% 1237 1227 0.81% 1227 0.81% 2100 2132 1.52% 2124 1.14%
/Y/ 342 337 1.46% 339 0.88% 1173 1171 0.17% 1195 1.88% 2257 2237 0.89% 2230 1.2%
/@/ 386 380 1.55% 374 3.11% 1670 1674 0.24% 1647 1.38% 2415 2451 1.49% 2399 0.66%

all – – 2.51% – 5.35% – – 1.69% – 2.66% – – 3.2% – 2.89%

Table 6.2.: Formant frequencies inHz for the first three formants of the vocal tract transfer functions
calculated from the model in the full parameter configuration (subscript 16) and the
reduced parameter configuration (subscript 11) compared to the reference (subscript
ref) vowel area functions obtained from the MRI data.

functions, the volume velocity transfer functions were calculated using a transmission-line model
with lumped elements according to [227] implemented in VocalTractLab 2.2. The tube approxima-
tion used 40 tube segments. The formant frequencies were determined as the first three peaks in
the transfer function. The results are given in Table 6.2. The results for the full configuration of the
model using 16 parameters show that the small geometric errors also result in fairly small formant
deviations (ranging from 2.51% to 3.2% on average). The reduced configuration (using 11 param-
eters) achieved similar deviations across all sounds, but the sounds /u:/ and /I/ that were already
noticable outliers in the geometric evaluation also showed consistently large deviations from the
reference functions’ formants.

6.5. Perceptual evaluation of the vocal tract model

The ultimate goal of the vocal tract model is the production of identifiable sounds. The objective
evaluation of the geometric error and the formant deviations compared to the reference area func-
tions does not necessarily predict the perceptual results, though. Even though the formant frequen-
cies of themodel are objectively fairly close to the formant frequencies of the references, the nature
of the references calls for additional fine-tuning: as described above, the references are based on
MRI recordings. During an MRI session, the speaker is in a horizontal (supine) position, which has
been shown to influence articulation in a highly subject-dependent fashion [270]. Furthermore,
each recorded sound had to be sustained for at least 14 s, which may be difficult to do correctly,
especially for the lax vowels. Finally, the segmentation process is prone to small geometric errors
that may add up to larger perceptual errors. To counter all of these potential errors, a perceptual
optimization with respect to the best sound identification rate was conducted.

6.5.1. Perceptual optimization

To offset the errors described above, the parameters of the model area functions were optimized
again, this time with respect to the formant frequencies following the algorithm described in [214].
Initially, target formant frequency values extracted fromaudio recordings of the speaker used in the
MRI recording were considered. Due to the noisy environment in the MRI scanner, we recorded the
audio of the speaker separately in a studio setting. However, even after careful selection of the anal-
ysis parameters, the formants calculated with Praat [176] did not lead to satisfying results in terms
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6.5. Perceptual evaluation of the vocal tract model

of the perceptual quality of sounds synthesized using those values. More references taken from
Table 1 in [214], Table 1 in [271], and Table 2(b) in [34] were therefore included in the analysis. The
optimization was performed repeatedly and the sound corresponding to the optimized area func-
tion synthesized after each passthrough until the achieved result was approved by a phonetics ex-
pert. The synthesis was performed using the time-domain aero-acoustic simulation backend of the
articulatory synthesizer VocalTractLab 2.2 that is based on an acoustic tube system [213,227,272].
For the simulation, each continuous model area function was discretized into 40 tube segments
of equal length and preceded by two tube segments representing the glottis (shaped according to
the triangular glottis model by Birkholz et al. [273]) and a uniform tube of 14 cm representing the
trachea. The final formant frequencies are given in Table G.5.
The critical constrictions of the fricative area functions were manually corrected as well to com-

pensate the compound error of the MRI recording resolution, the precision of the plaster jaw mod-
els, the 3D scan resolution, and the precision of the manual insertion of the scanned jaw models.
The control points governing the respective constrictions were slightly adjusted until each fricative
was perceptually clearly identifiable by a phonetics expert. The synthesis was once again performed
with the time-domain simulation backend of the VocalTractLab 2.2. As shown in [262], the synthesis
of consonants is greatly improved by specifying the primary articulator forming a constriction for
every tube segment. The area function was therefore divided into four regions and each region was
assigned the respective articulator based on the model parameters: all tubes from the glottis to xp
were assigned an unspecified articulator, segments from xp to the last full tube segment before xin
were associated with the tongue, the tube segment around xin was marked as the lower incisors,
and the segments from the first tube segment after xin to xlip were assigned the lower lip.
After the formant optimization of all vowels and the manual perceptual tuning of the consonants

for both the full configuration and the reduced configuration (using 16 and 11 free parameters,
respectively), their intelligibility was assessed in an identification test. The geometrically fitted area
functions in the full configuration from section 6.4 were also included in this test as a baseline.

6.5.2. Selection and synthesis of stimuli

The stimuli were the isolated tense vowels /a:, e:, i:, o:, u:, E:, ø:, y:/ (8 stimuli), the lax vowels
/a, E, I, O, U, œ, Y/ embedded in the carrier pseudo-word /bVb@/ (7 stimuli), the consonants /b,

d, g, l, f, s, S, ç, x/ in CV syllables using /a:, i:, u:/ as context (9 · 3 = 27 stimuli), each produced
by the geometrically fitted full configuration, the perceptually optimized full configuration, and the
perceptually optimized reduced configuration of the area functions for a total of 42 ·3 = 126 stimuli
per trial. The neutral vowel /@/ was excluded from the evaluation because it is difficult for non-
experts to identify. Since there were no reference area functions available for the stops /b, d, g/,
they were manually created by starting with the respective context vowel and inserting a closure at
the corresponding place of articulation (using the lip, the anterior or the constriction control point,
respectively) as described in Figure 6.3. The synthesiswas once again performed as above, using the
time-domain simulation backend of VocalTractLab 2.2. In order to keep asmany synthesis variables
as possible constant, all stimuli used the same settings for the triangular glottis model: Subglottal
pressure 1000Pa, lower and upper vocal cord rest displacement 0.1mm, arytenoid area 0 cm, and
an aspiration strength of −40dB. These parameters result in modal phonation. Therefore, items
generated with the area functions of originally unvoiced consonants now should sound voiced.
However, the constrictions in the geometrically fitted area functions of /s/, /S/ and /ç/were so small,
that the intra-oral pressure in the simulation became so large that it pushed the vocal folds open
resulting in unvoiced sounds. These unrealistically small constrictions were corrected as part of
the perceptual optimization (see subsection 6.5.1), so all of the stimuli generated with perceptually
optimized area functions sounded voiced using the voiced excitation source. To avoid confusion
and to stay consistent with the previous labeling, we will continue to identify all stimuli using their
unvoiced transcription.
The synthesis was controlled by specifying the time variation of each of the free parameters of

the model functions. Their temporal trajectories were calculated by specifying area functions for
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6. Articulation-to-Speech

the target shapes in each stimulus (e.g., a stop in the closed phase and a context vowel for the
CV syllables) and interpolating between those shapes using half a cosine period to insert smooth
transitions. An example of a varying area function is given in Figure 6.7. The durations for the static
and transient periods and the f0 contour of the excitation in each stimulus were approximated to
samples from natural speech and were kept constant across each group of stimuli (tense vowels,
lax vowels, consonants). Finally, the amplitude of all stimuli was normalized.
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Figure 6.7.: Example of a time-varying area function: A connected utterance is created by defining
the target shapes (in this case /s/ and /a:/) and their respective stationary durations,
and the transition time between them. During this transition, the parameter values of
the area function are interpolated between the initial and the final shape by using a
cosine interpolation for each parameter. The transitional shapes marked are after (1)
one third and (2) two thirds of the transition time.

6.5.3. Subjects and test setup

The 126 stimuli were presented to 18 subjects (German native speakers, 4 female, 14 male, age 23-
64, median age 30, with backgrounds in education and engineering) using Praat [176]. Each group
of stimuli (tense vowels, lax vowels, consonants) was presented in a separate trial. During each trial,
the subjects were asked to identify the utterance in a forced choice setup with no time limit and
five allowed repetitions. In the consonant trial, the buttons were labeled with both the voiced and
unvoiced version of each sound because this discrimination was out of the scope of this test. The
subjects were also providedwith a printout of a table of all the occurring sounds and corresponding
common examples in German words to avoid confusion.

6.5.4. Results and discussion

The perceptual results for the vowel area functions are shown in Figure 6.8.
It is evident that the area function model is generally capable to reproduce all reference vowel

area functions sufficiently precise to preserve the intelligibility of the corresponding sounds in all
tested configurations (full or reduced) and conditions (geometrically fitted or perceptually opti-
mized). However, the geometrically fitted area functions of the lax vowels /I/, /œ/ and /Y/ resulted
in significantly lower recognition rates than the ones of the tense vowels. Their fairly average geo-
metric errors (see Figure 6.5) and small formant errors (see Table 6.2) may contribute to the confu-
sion, but it is also likely that the references were already not perfectly intelligible, especially since
lax vowels are difficult to sustain for the entire 14 s of the recording. Unfortunately, no reference
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/a / /e / /i / /o / /u / / / /ø / /y / /a/ / / / / / / / / /œ/ / / /a / /e / /i / /o / /u / / / /ø / /y / /a/ / / / / / / / / /œ/ / / /a / /e / /i / /o / /u / / / /ø / /y / /a/ / / / / / / / / /œ/ / /
/a / 18 18 18
/e / 17 4 17 5 17 6
/i / 14 13 12
/o / 17 1 18 18 7
/u / 1 17 18 11
/ / 1 18 1 18 1 18
/ø / 18 1 18 1 18 1
/y / 17 17 17
/a/ 15 1 18 2 13 3
/ / 18 18 17 6 1
/ / 8 15 1 10
/ / 3 18 4 18 4 5 18 5
/ / 2 18 3 11 18 2 18 4
/œ/ 1 10 12 6 1 1 10 4
/ / 7 7 3 9 1 9

R
es

po
ns

e

Full configuration, geometrically fitted Full configuration, perceptually optimized Reduced configuration, perceptually optimized

Figure 6.8.: Absolute number of responses for the tense and lax vowels out of N = 18 responses
per sound. The recognition rate was improved by the perceptual optimization and de-
teriorated after the parameter reduction, especially for lax vowels.

audio recordings taken simultaneously with the MRI were available due to the noisy environment
in the MRI scanner. After the perceptual optimization, the results were somewhat improved, but
only for /I/ was the increase in correct responses statistically significant (p < 0.05, calculated using
Fisher’s exact test). The simplificationsmade to reduce the number of parameters evidently caused
a decrease of the intelligibility of several tense and lax vowels, which is in-line with the larger ge-
ometric errors shown in Figure 6.5. The global recognition rates were 85.2% (geometrically fitted
full configuration), 90.7% (perceptually optimized full configuration), and 83% (perceptually opti-
mized reduced configuration). To put those numbers into perspective, the identification rates of 11
English vowels in a similar listening test using Story’s model (see [257]) ranged from 79% to 87%
depending on the modeled speaker. The comparison should however not be used as a true bench-
mark since both studies used different sounds (English vs. German vowels) and different modeled
speakers. The consonant confusion matrices are shown in Figure 6.9.
The stops, which were modeled by starting with the area function of the context vowel and then

inserting the closure, achieved some mixed results: the recognition rate ranged from 0% to 100%,
depending on the place of articulation and the context vowel. Considering the large influence of
coarticulation on stops and the importance of the closure duration and exact timing during the
release of the closure and the transition to the vowel, this is probably largely due to the very ba-
sic temporal control of the synthesizer chosen here, which does not allow to influence these fine
details directly. Also, the voice-onset time was not controlled here, which is another cue for the
discrimination of different stops (see, e.g., [274, 275]) and may have adversely affected the recog-
nition rate here. The further loss of control of the transitions caused by the parameter reductions
appears to exacerbate these issues as well (with the notable exception of /b(i)/), to the degree that
/g/ was hardly identifiable at all.
The lateral approximant /l/ was also rarely recognized in any context for the geometrically fit-

ted area functions. The recognition rate was even worse after the perceptual optimization in the
reduced configuration but slightly improved in the full configuration, at least for /l(a)/. However,
this sound is generally difficult to synthesize using the acoustic tube model as implemented in Vo-
calTractLab, because it assumes a central air stream with no turns, therefore the flow along the
side(s) of the tongue is not accurately modeled. This conceptual shortcoming of the synthesis in
general makes it difficult to interpret these results with respect to the capabilities of the area func-
tion model.
The labio-dental fricative synthesized using the geometrically fitted area function was only iden-

tified correctly in 14.8% of the responses. It appears that this was caused by improperly placed
teeth in the MR images, which are crucial for the correct production of this sound. After correcting
the lip opening area during the perceptual optimization the recognition rate surged to 83.3%. A
similar correction improved the recognition rates of the palatal and velar fricatives from 66.7% to
88.9% and 55.6% to 90.7%, respectively. The alveolar and postalveolar fricatives remained largely
unchanged, but it should be noted that the optimization removed the unrealistically small constric-
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(a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u)
/b/ 18 11 17 2 3 3 2 2 1 1 2 3 5
/d/ 7 18 16 15 7 16 6 1
/g/ 1 1 16 1 2 2 1
/f/ 6 6 2 1 3 2 1 3 3
/l/ 15 1 10 4 6 6 5 2
/s/ 18 17 18 1 1 1
/ / 1 12 16 17 1 1
/ç/ 2 5 1 12 5 10 4 2 1 16 7 13 6 1
/x/ 1 1 4 2 1 2 18 4 8

(a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u)
/b/ 17 9 14 3 2 1 3 6
/d/ 9 2 13 16 17 11 17
/g/ 1 1 1 15 2 1 1
/f/ 1 1 1 17 16 12 2 1 2 1
/l/ 1 12 3 3 3 1 2
/s/ 1 18 16 15 1
/ / 1 1 14 15 17 1
/ç/ 1 1 1 6 4 11 3 1 1 17 16 15 1 1 2
/x/ 5 2 4 4 17 17 15

(a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u) (a) (i) (u)
/b/ 18 17 17 5 2 2 8 8 2 4 1
/d/ 1 18 13 16 18 1
/g/ 1 3 8 1 2
/f/ 2 1 17 15 13 3 1 1 3 1 1 1 3
/l/ 2 3 1 2 3 3
/s/ 15 15 17 1
/ / 1 1 2 1 11 13 9
/ç/ 1 16 2 11 1 1 7 2 9 18 9 15 5 1
/x/ 10 3 4 1 3 4 1 2 17 5 10
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e

/b/ /d/ /g/ /f/ /l/ /s/
Full configuration, geometrically fitted

Full configuration, perceptually optimized
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Reduced configuration, perceptually optimized
/b/ /d/ /g/ /f/ /l/ /s/ / / /ç/ /x/

Figure 6.9.: Absolute number of responses for the consonants out ofN = 18 responses per syllable.
The subjects were not asked to identify the context vowel. The recognition rate was
greatly improved by the perceptual optimization but deteriorated after the parameter
reduction.

tions as described above. Formost fricatives, the parameter reduction did not significantly improve
and mostly worsened the recognition rate.
The total recognition rates across all consonants of the geometrically fitted full configuration, the

perceptually optimized full configuration, and the perceptually optimized reduced configuration of
the area functions were 61.2%, 73.2%, and 64.1%, respectively.

6.5.5. Summary

A new 1D vocal tract model for articulatory synthesis of speech sounds was proposed that directly
models an arbitrary area function using 16 parameters in a full configuration or 11 parameters in
a reduced configuration. The model is conceptually and computationally simple, can be easily im-
plemented with a single, piecewise function, and the control points have interpretable anatomical
correspondences allowingmanual adjustment of themodel according to phonetic standard config-
urations, even in the absence of any reference data. The model was evaluated based on real vocal
tract area functions fromMRI image stacks of a male human speaker. After fitting the model to the
references and tuning the parameters with respect to the perceptual result, the recognition rate
of 15 different German vowel sounds was 90.7% and of 9 German consonants in 3 different vowel
contexts was 73.2%. The median geometric error between the references and the model functions
was 0.891 cm2 and thus fairly low, while some sounds (especially stops) achieved a low perceptual
recognition rate. This shows that the temporal control and coordination of the parameters is very
important, especially for stops. The uncontrolled voice-onset timemay have also been amajor influ-
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ence on the low recognition rates of the stops. Future work should investigate these relationships
further and discard the simplistic cosine interpolation between static shapes used in this work for a
more sophisticated control mechanism. The results of the identification tests also show the limita-
tions of the MRI data used in this study: the consonantal shapes were not context-dependent and
thus difficult to recognize in some cases. Future studies should therefore adopt a similar approach
as in [214] and record consonants in different contexts as references. The parameter reduction
should also be investigated further and the effect of each discarded degree of freedom analyzed
individually to find the optimum number of free parameters for the model. The model currently
does not include a parameter describing the velum. To complete it, further reference vocal tract
shapes of nasals including the velo-pharyngeal opening area are needed. All optimal parameter
values for each of the configurations (full and reduced) and conditions (geometrically fitted and
perceptually optimized) described in this section are provided in Appendix G, and the stimuli used
in the listening test are included in the digital supplemental material to this dissertation.
In spite of the open research questions, it has been successfully demonstrated that the proposed

six point vocal tractmodel resolves the remaining issues regarding the use of the VocalTractLab syn-
thesis backend in an ATS system as laid out in section 6.2: The one-dimensional model has only 16
parameters in the full configuration instead of the 23 parameters of the original three-dimensional
model [214]. The computational complexity could also be greatly reduced, because no further pro-
cessing of a three-dimensional model is necessary to eventually arrive at the vocal tract area func-
tion, but instead the area function is modeled directly, completely skipping the slow and complex
calculations of the cross-sectional areas in 3D space. Finally, both of these simplifications could
be achieved with a minimal impact on the intelligibility, as proven by the perception experiment.
Therefore, the six point vocal tract model is used in the following section 6.6 as part of an ATS pilot
study.

6.6. Direct synthesis using EOS to control the vocal tract model

6.6.1. The concept of direct synthesis

As discussed in section 1.1, an SSI can include a synthesis component that produces the corre-
sponding acoustic result of a sequence of articulator movements. This form of an SSI is also called
an ATS. While there is, of course, the possibility to implement an ATS as a two-step system, where
an articulatory speech recognizer is followed by a traditional TTS system, the direct mapping of
articulatory data to the corresponding acoustic result (i.e., direct synthesis) offers a number of ad-
vantages. Because all non-linguistic information (e.g., timing or articulatory precision) is part of the
input data for the synthesis, all of this para-linguistic information, which can encode the speakers
emotional or even physical state (e.g., hasty or slurred speech, or overly enunciated speech), can
potentially be preserved by simply synthesizing the speech exactly as intended. However, this is
only possible if the synthesizer can actually produce and manipulate such details, which essentially
requires an articulatory synthesizer (see section 6.2). Again, a two-step solution could be imagined,
e.g., where the first step is recognizing the speaker’s emotional state and then using an emotion-
ally expressive synthesis system to convey this state in the synthesized utterance. But research into
what exactly encodes information in speech (let alone in articulation) is still on-going (see, e.g., [276]
for a recent review) and even if the target emotions were determined, their synthesis is also not yet
consistently and convincingly possible to a sufficient degree (see [277]). Direct synthesis using an
articulatory synthesizer offers a critical advantage over these two-step solutions, which require both
descriptive and generative models of emotion in speech: Speech can be produced from the artic-
ulatory movements without any knowledge about its contents, both linguistic and para-linguistic.
Therefore, anything that is encoded in the articulation will be transferred to the acoustic speech,
provided the synthesizer is sufficiently accurate. Without further proof, it can be assumed that the
vocal tract model proposed in section 6.3 and the aero-acoustic simulation backend provided by
VocalTractLab, is at least in theory able to deliver the necessary accuracy. It is beyond the scope
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of this dissertation to prove this claim, because VocalTractLab is in under continuous development
and must be considered “on its way” to this level of expressiveness. But if it can be shown that the
synthesizer can be controlled using the articulatory data, all future improvements of the synthesizer
can directly benefit the direct synthesis.
In summary, the concept of direct synthesis as proposed in this dissertation is as follows: The

idea is to control the parameters of the vocal tract model in real time using kinematic articulatory
data. Since there is no one-to-one mapping from the EOS data to the degrees-of-freedom of the
vocal tract model proposed in section 6.3, a more complicatedmapping needs to be found. For this
mapping, a number of approaches can be taken: the most straight-forward one would be a classi-
fication approach that selects a vocal tract model parametrization from a list of defined vocal tract
shapes based on the EOS data. This would ensure that only valid shapes are adopted and thus be
very robust to noisy measurement data. To synthesize connected speech, however, the database
of vocal tract shapes would have to be very large to properly incorporate not only the static ar-
ticulations but the transitions between sounds, as well. This approach would also be plagued by
the same limitations that a two-step solution with a unit-selection synthesis would suffer from: the
range of possible outputs would be limited to the samples from the training set and all the expres-
sive potential of the articulatory synthesizer would be lost. So instead of mapping the continuous
range of the EOS data to a discrete set of vocal tract shapes, the mapping should therefore be from
the continuous range of the EOS data to the continuous range of the vocal tract model parameters,
i.e., it should be performed by a regressionmodel of some kind. To explore the feasibility of this ap-
proach, a small study was devised that trained four different families of regression models to map
average frames of articulatory EOS data recorded during the stationary phase of the articulation of
various speech sounds produced by four subjects to the corresponding vocal tract shapes. In an
informal evaluation, the mapping was then applied to continuous EOS data from the same subjects
to explore the ability of the models to generalize to transitional vocal tract states, as well. This pilot
study was also published in [206].

6.6.2. Dataset

The training and evaluation data was recorded using the same subjects as in the small-scale recog-
nition study: four native German speakers, all male, age 30-41. A more diverse and larger set of
subjects would of course be desirable. But given the experimental stage, the necessity to produce
costly and labor-intensive hardware, and the fact that, for now, only a subject-dependent system
was trained, this limitation was deemed acceptable. The recorded dataset consisted of two parts:
one subset of recordings to train the mapping from EOS sensor data frames to vocal tract shapes
(the training set), and a second subset of recordings to evaluate the mapping on continuous sensor
data (the evaluation set).
Training themapping required example EOS sensor data frames recorded during the articulation

of each of the target sounds (or vocal tract shapes), i.e., the German vowels /a:, e:, i:, o:, u:, E:, ø:,

y:, a, E, I, O, U, œ, Y/ and consonants /b, d, g, j, K, v, z, Z/. To account for the effect of coarticulation
(see section 2.5), each target sound was produced in different articulatory contexts. To that end,
the subjects were asked to produce a number of pseudowords: The vowel-specific pseudowords
had the form /CVtd@/, where Vt were the tense vowel of interest (i.e., /a:, e:, i:, o:, u:, E:, ø:, y:/), or
/CVlt@/, where Vl were the lax vowels /a, E, I, O, U, œ, Y/. The consonant-specific pseudowords had
the form /VtCVt/, where Vt were once again the tense vowels. Although lax vowels would also be of
interest in the articulatory context, they are very difficult to produce in this manner for untrained
subjects and were therefore excluded. Another limitation was the use of only symmetric contexts
(same vowel before and after the sound of interest) for the consonants and asymmetric contexts
(different consonants before and after the sound of interest) for the vowels. However, including
all kinds of contexts would have greatly increased the number of items to record for each subject
beyond a reasonable amount. Even with these limitations in place, the numer of recorded items for
each subject was 165 vowel pseudowords (15 vowels × 11 context vowels) and 88 consonant pseu-
dowords (11 consonants times 8 tense vowels) for a total 253 unique sound-context-combinations.
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The evaluation set consisted of the words from the small-scale recognition study (see Table 5.1)
and additionally of 20 sentences from the “Berlin sentences” [278, page 243], which are a set of
phonetically balanced German sentences. The list of the sentences used in this study is given in
Table 6.3.

Sentence Translation

1 Heute ist schönes Frühlingswetter. hOI
“

t@ Ist Søn@s fKy:lINsvEt5 It’s a nice spring weather today.
2 Die Sonne lacht. di: zOn@ laxt The sun is smiling.
3 Am blauen Himmel ziehen die Wolken. am blaU

“
@n hIml

"

>
tsi:n di: vOlkn

"
Clouds are moving across a blue sky.

4 Über die Felder weht ein Wind. y:b5 di: fEld5 ve:t aI
“

n vInt A wind is blowing through the fields.
5 Gestern stürmte es noch. gEst5n Sty:Kmt@ Es nOx It was still stormy just a day ago.
6 Montag war es uns zu regnerisch. mo:nta:k va:5

“
Es Uns

>
tsu: Ke:gn@KIS Monday was too rainy for us.

7 Riecht ihr nicht die frische Luft? Ki:çt I5
“

nIxt di: fKIS@ lUft Can’t you smell the fresh air?
8 Die Nacht haben Maiers gut geschlafen. di: naxt habm

"
maI

“
5s gu:t g@Sla:fn

"
The Maiers slept well last night.

9 Jetzt sitzen sie beim Frühstück. jE
>
tst zI

>
tsn

"
zi: baI

“
m fKy:StYk Now they are having breakfast.

10 Es ist acht Uhr morgens. Es Ist axt u:5
“

mOKgn
"
s It is eight o’clock in the morning.

11 Vater hat den Tisch gedeckt. fa:t5 hat de:n tIS g@dEkt Father has set the table.
12 Mutter konnte länger schlafen. mUt5 kOnt@ lEN5 Sla:fn

"
Mother could sleep in.

13 Der Kaffee dampft in den Tassen. de:5
“

kafe: dam
>
pft In de:n tasn

"
The coffee is steaming in the cups.

14 Messer und Gabel liegen neben dem Teller. mEs5 Unt ga:bl
"

lIgĲN ne:bm
"

de:m tEl5 Knife and fork are sitting next to the plate.
15 In der Mitte steht ein Brötchenkorb. In de:5

“
mIt@ Ste:t aI

“
n brø:tç@nkOKb In the center, there is a bread basket.

16 Wer möchte keinen Kuchen? ve:5
“

mœçt@ kaI
“

n@n kUxn
"

Who does not want any cake?
17 Hans isst so gerne Wurst. hans Ist zo: ge:5

“
n@ vUKst Hans really likes to eat sausage.

18 Gib mir bitte die Butter! gIp mi:5
“

bIte di: bUt5 Please pass me the butter!
19 Bald ist der Hunger gestillt. balt Ist de:5

“
hUN5 g@StIlt Soon the hunger is sated.

20 Wer möchte noch Milch? ve:5
“

mœçt@ nOx mIlç Who wants some milk?

Table 6.3.: Standard pronunciation of the sentences used in the ATS study (according to [49]).

Note that both words and sentences contained voiceless sounds, while the training utterances
only included voiced sounds. Since EOS currently captures only supraglottal articulation, the dis-
tinction between voiced and voiceless sounds was not made in this study. So even in a best-case
scenario, the utterances in the evaluation set would sound entirely voiced. As will be shown in sec-
tion 6.7, this limitation is, however, not necessarily required even when capturing only supraglottal
articulation, if the measured data are sufficiently precise. Still, it was imposed here to keep the
setup as simple as possible.
The data was collected in the same session as the data for the small-scale recognition study and

the measurement therefore followed the same protocol using the software “Second Voice PC” (see
subsection 4.6.4), a Plantronics Blackwire C720 M stereo headset (for reference audio) and an EOS
device with the internal version number 3.2 using a sensor unit with 32 contact sensors, five opti-
cal tongue distance sensors, and the dual-source, dual-detector lip sensor design. The recordings
were made in a quiet office environment. The speakers were prompted to read a carrier word (the
German indefinite article “eine” - /"aE

“
n@/) followed by the (pseudo-) word of interest. The schwa /@/

at the end of the carrier word ensured a neutral vocal tract configuration at the beginning of the
word of interest. In case of the sentences, there was no carrier word and the prompts were shown
at a slow-enough pace so that several seconds of (articulatory) silence clearly marked the space
in-between the items. The words were produced in a natural way, i.e., with phonation and at an
unregulated speaking rate of each speaker’s individual choice. The words in the evaluation set were
the same ones used in the small-scale command word recognition study and were segmented in
the same way (see section 5.3). The sentences were cut out of the continuous recording starting
at the time instant just before articulatory movements were visible in the EOS data stream up to
the point of post-sentence silence in the audio stream. From the sound of interest in each training
utterance, a segment of about 100ms for the tense vowels and about 50ms for the consonants
and lax vowels was extracted, which was approximately stationary in terms of articulatory move-
ments. If no stationary segment of this length was identifiable, the longest possible segment was
extracted from the center of the sound of interest. From this segment, the median frame was ex-
tracted. The feature vector used as input for the mapping was also the same vector as used in the
recognition study, consisting of the ADC data of the 2 lip sensor detectors, 5 distance sensor values,
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6. Articulation-to-Speech

and 3 factors describing the contact pattern for a total of 10 features per vector. In contrast to the
small-scale recognition study, the distance sensor value format (raw ADC values or converted to
millimeter) was not treated as a hyperparameter because no cross-speaker training or evaluation
took place and a calibration was thus considered unnecessary.

6.6.3. Regression models

To illustrate the approach in a loosely formalized way, let the desiredmapping from the continuous
sensor data �s to the continuous vocal tract shape (described by its cross-sectional area function) A(x)
be a called g:

A(x) = g
(
�s
)
. (6.2)

Using the six point vocal tract model defined in section 6.3, we can also describe the area function
A(x) as a function f of the vocal tractmodel parameters and the location x along the vocal tract center
line:

A(x) = f
(
x, xlar, Alar, . . . , Alip

) = g
(
�s
)
. (6.3)

The function f is the six point vocal tract model. Therefore, mapping the sensor data to the
vocal tract shape can be accomplished by finding a mapping from the sensor data �s to the model
parameters

(
xlar, Alar, . . . , Alip

)
:

h
(
�s
) = (xlar, Alar, . . . , Alip

)
. (6.4)

Since the analysis of the vocal tractmodel parameters in section 6.3 has shown little inter-dependency
of the parameters, this vector function h can be decomposed into its individual components, so that
the 10-to-16 mapping becomes a set of 16 10-to-1 mappings, each using the sensor data as input
and only one of the model parameters as output:

hxlar
(
�s
) = xlar (6.5)

hAlar
(
�s
) = Alar (6.6)
...

hAlip
(
�s
) = Alip. (6.7)

Each of thesemappings could be provided by a different kind of regressionmodel. For this study,
four families of models were therefore investigated, for each mapping independently, using the
Statistics and Machine Learning Toolbox in Matlab 2019b: linear models (linear regression using
L2 (ridge) and L1 (LASSO) regularization, and a linear SVM), linear and non-linear SVMs, ensemble
models of random trees (using both bagging and boosting as the ensemble meta-algorithm), and
Gaussian Process Regression (GPR). Each model was trained on the training set and 5-fold cross-
validated to optimize the respective hyperparameters using Bayes optimization and 100 iterations.
The optimized hyperparameters are listed in Table 6.4. The 5-fold loss from this training step for
the optimal hyperparameter combination was the objective measure for the prediction accuracy.
To allow a subjective evaluation, each model was trained again using the previously identified opti-
mal hyperparameters and a leave-one-out cross-validation (where “one”means one sound-context-
combination) to produce predicted area function model parameters based on data unseen in the
training. These predictions were then used to synthesize sounds, which could be acoustically eval-
uated. Finally, the best model was determined individually for each parameter (based solely on the
objectivemeasure of 5-fold loss), and used to predict the vocal tract shape trajectories based on the
EOS data from the evaluation set (both words and sentences). These trajectories were then synthe-
sized to allow acoustic, subjective evaluation, but because of the lack of known target trajectories,
no objective error measure could be calculated.
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Model Hyperparameter Evaluated values/range

Linear models Learner {least-squares, linear SVM}

Lambda log-scaled in
[
4 × 10–8, 4 × 108

]
Regularization {ridge, LASSO}

Standardize predictors yes

Non-linear SVMs Box constraint C log-scaled in
[
1 × 10–3, 1 × 103

]
Slack variable ε log-scaled in

[
1 × 10–3, 1 × 102 · IQR (y)]

Kernel function {linear, Gaussian, polynomial}
Kernel scale γ log-scaled in

[
1 × 10–3, 1 × 102

]
Polynomial order {2, 3, 4}

Standardize predictors {yes, no}

Ensemble trees Ensemble meta-algorithm {bagging, boosting}

Number of learning cycles integer in [10, 500]
Learning rate log-scaled in

[
1 × 10–3, 1

]
Minimum leaf size log-scaled in [1, 126]
Maximum number of splits integers in [1, 252]
Number of variables to sample integers in [1, 10]

GPR Basis function {constant, none, linear, pure quadratic}
Kernel function {exponential, squared exponential,

Matern kernel (3/2 and 5/2), rational quadratic}
plus each kernel with separate length scale per predictor

Kernel scale
[
1 × 10–3 · smax, smax

]
(where smax is the maximum predictor range)

Noise standard deviation σ
[
1 × 10–4,max(1 × 10–3, 10 · σy)

]
(where σy is the standard deviation
of the predicted area function parameter)

Standardize predictors {yes, no}

Table 6.4.: Optimized hyperparameters of the investigated regression models

6.6.4. Results

All models were trained on the subset of data from each subject individually. The results of the
hyperparameter optimization in terms of the 5-fold loss are shown in Table 6.5. The respective
optimal hyperparameter values are given in Appendix H.
The subject-dependent results show that for all area functionmodel parameters, non-linearmod-

els should generally be preferred over linear least-squares models. The differences across the non-
linear models are, however, mostly fairly small. Nevertheless, GPR and ensemble models of regres-
sion trees were generally the best-performing ones (in that order), with SVMs a close second. The
averaged best performance across the four subjects was μbest = 0.7433 with a standard deviation
of σbest = 0.065. The overall best performance with the lowest average 5-fold loss across all area
function parameters was subject 4.
Since the loss as an objective metric is hard to relate to the perceived quality of the synthesis,

a series of informal listening tests was performed. To realistically evaluate the synthesis quality,
the identified optimal hyperparameters were used to train one more model from each evaluated
family for each subject and area function parameter, and each sound-context combination in a
leave-one-out paradigm. All parameter sets predicted in this way are provided as text files (file
extension “.params”) in the digital supplemental materials to this dissertation and can be loaded
in the Second Voice PC software (see subsection 4.6.4) to synthesize the corresponding audio. To
give an impression of the range of the quality, synthesized samples using optimal GPR models of
each target sound for subject 1 (the worst average loss) and subject 4 (the best average loss) are
also provided as WAVE files. Listening to these isolated sounds, which are based on data frames
from the same recording session as the training data and whose only challenging property is the
different context sound, it was immediately obvious that vowels would be fairly well identifiable,
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Subject 1 Subject 2 Subject 3 Subject 4

Parameter Linear
models

Ensemble SVMs GPR Linear
models

Ensemble SVMs GPR Linear
models

Ensemble SVMs GPR Linear
models

Ensemble SVMs GPR

xlar 0.3931 0.3823 0.3613 0.3697 0.4065 0.3588 0.3230 0.3034 0.3553 0.3052 0.3527 0.2677 0.3992 0.3300 0.3395 0.2529
Alar 0.1663 0.1184 0.1541 0.1285 0.1605 0.1176 0.1269 0.1170 0.1531 0.1088 0.1373 0.1145 0.1616 0.1050 0.1240 0.1054
nlar 0.9320 0.8263 0.7208 0.7327 0.9384 0.6212 0.7553 0.6493 0.8674 0.5814 0.5595 0.5735 0.9195 0.5200 0.7195 0.5026
xp 0.9772 0.9035 0.9390 0.7966 0.9493 0.7878 0.8255 0.7569 0.9136 0.6379 0.7258 0.5824 0.9308 0.5992 0.7461 0.5622
Ap 1.4231 1.2905 1.2404 1.1237 1.3374 1.3130 1.3579 1.2022 1.3115 1.0387 1.2109 1.1414 1.2232 1.1949 1.0407 1.0265
np 1.3183 0.8847 0.9998 0.9301 1.2480 0.9872 0.9498 0.8643 1.2617 0.8528 1.0538 0.8942 1.2437 0.8446 0.7636 0.9604
xc 1.5313 1.3173 1.3010 1.3058 1.4858 1.2369 1.3627 1.2067 1.4545 1.1806 1.2658 1.0381 1.2829 1.0878 1.2589 1.0166
Ac 0.2463 0.1983 0.2082 0.2010 0.3020 0.2721 0.2650 0.2546 0.2852 0.2142 0.1948 0.2165 0.3106 0.1760 0.2001 0.1768
nc 0.7884 0.7904 0.6865 0.7462 0.8043 0.6947 0.7280 0.6468 0.8138 0.7860 0.7355 0.6623 0.8305 0.5831 0.4807 0.4538
xa 1.2904 1.2404 1.1116 1.1932 1.2505 1.2417 1.2683 1.2363 1.2332 1.1396 1.2930 1.1092 1.2465 0.8597 0.8054 0.9035
Aa 2.1235 1.8832 2.0819 2.0255 2.0760 1.9899 2.0492 2.0454 2.1722 1.8650 2.0612 1.8420 2.1155 1.6210 1.6217 1.6266
na 1.6526 1.2585 1.3281 1.1708 1.6211 0.9492 1.3946 0.9928 1.5609 1.2044 1.1287 1.2086 1.6360 1.1817 1.2074 1.2339
xin 0.7160 0.5545 0.6171 0.6057 0.6307 0.6125 0.6187 0.5810 0.6385 0.4961 0.6289 0.4937 0.5834 0.5082 0.4654 0.4969
Ain 0.6463 0.4487 0.4950 0.4304 0.6235 0.5454 0.6232 0.4803 0.6491 0.3778 0.4777 0.4850 0.5472 0.4220 0.4967 0.4707
xlip 0.7717 0.5597 0.6635 0.6556 0.6045 0.5329 0.5915 0.5912 0.6615 0.4930 0.6511 0.5685 0.5855 0.4645 0.4298 0.4505
Alip 0.6937 0.5055 0.5256 0.5083 0.5660 0.5163 0.5592 0.5283 0.5696 0.3603 0.3986 0.4322 0.5089 0.3556 0.3030 0.3234

Mean 0.9794 0.8226 0.8396 0.8077 0.9378 0.7986 0.8624 0.7785 0.9313 0.7276 0.8047 0.7269 0.9078 0.6783 0.6876 0.6602

Table 6.5.: Subject-dependent cross-validation results (in terms of the 5-fold loss) using the optimal
hyperparameters for each model. The highlighted cells contain the subject-related min-
imum loss across the investigated models for this area function parameter.

but consonants would not be intelligible at all. Instead of identifying the place of articulation (as in
normal consonant perception), only the context vowel was perceived. Given this poor quality, the
evaluation on the words and sentences was limited to the objectively best-performing subject 4.
Using all available data from this subject’s training set, an optimal model was trained for each area
function parameter (i.e., the highlighted models in Table 6.5 using their respective optimal hyper-
parameters from Appendix H). Then, using the recorded data of subject 4’s evaluation set, the area
function model parameters were predicted frame-by-frame and the audio signal was predicted in
10ms increments using the function vtlTubeSynthesisAdd from the VocalTractLab 2.2 Application
Programming Interface (API). The results (also provided in the digital supplemental materials) were
also informally evaluated and confirmed the initial impressions from the leave-one-out evaluation
on the training set: the synthesized result is almost entirely vocalic and hardly any consonants can
be heard, with the notable exception of some occasional stops. Given the overall very poor quality
of the synthesis, a formal listening test with a large number of naive participants was not conducted.
Despite the fairly low regression error averaged across all target sounds, the synthesis results

for words and sentences were very poor, which was probably due to the poor intelligibility of con-
sonants, which were not even reliably synthesized in the leave-one-out cross-validation using the
training data. The most likely explanation for this is the coarticulatory effect of the context vowels
(see section 2.5) on the adjacent consonant. This is very apparent in the low-dimensional projec-
tions of the EOS training data in Figure 6.10.

6.6.5. Discussion

The t-SNE projections show that the EOS frames containing a particular target consonantweremore
similar to EOS frames containing that consonant’s context vowel than to EOS frames containing
the same consonant (but with a different context vowel). The EOS frames containing vowels, on
the other hand, were mostly similar to one another and not as strongly affected by their context
consonants. This means that the vowel subset of the training data contained fairly compact (high-
dimensional) clusters, one for each vowel, and the context consonants introduced only a modest
amount of noise. For the consonants, however, the training data did not contain any clusters, which
means that any consonant-context combinationwould need its own target area function shape, and
that there was only a single instance of each co-articulated consonant for the models to learn from.
To remedy these issues, co-articulated area function shapes for all target consonants and contexts
would be required. Therefore a very large database of MRI images would have to be recorded to
obtain the target area function parameters as described in section 6.4. Given the number of pos-
sible coarticulatory contexts (even if only considering symmetric contexts), this approach appears
infeasible. As an alternative, coarticulated shapes of each consonant could be manually produced,
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(e) All subjects

Figure 6.10.: Low-dimensional projection of the high-dimensional training data (using t-
SNE) for the four subjects
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similarly to the shapes of the stop sounds in subsection 6.5.2, but this approach is also challenging
(as is evident by the rather poor results of the stop sounds in the listening test in Figure 6.9) and
prone to errors and inconsistencies.
An entirely different approach would be to reformulate the regression problem: Instead of sam-

pling the area function parameter trajectories at a finite number of discrete, canonical vocal tract
configurations, themapping could be trained in a frame-by-frame sequence-to-sequence paradigm
using, for example, LSTM neural networks or other sequence-based predictive algorithms. Unfor-
tunately, the corresponding area function parameter trajectories for a particular speaker are un-
known. Therefore, preliminary work would have to find an inverse mapping from the acoustics of
speech sounds to the corresponding area function (or other vocal tract model) parameters so that
reference data for a supervised machine learning algorithm could be generated. This is, however,
considered vastly out of scope for this dissertation.
Despite the poor performance of the direct synthesis, the optimal models for speaker 4 were im-

plemented in Second Voice PC to allow on-line direct synthesis based on themeasured EOS data as
a proof of principle. The synthesis runs close to real-timewith only the processing power of the host
computer limiting the output latency. On a consumer laptop using an Intel Core i7-3520M (2.9GHz),
there is someminor (but noticable) stutter in the output introduced by the computationally expen-
sive inferences of the 16 regressionmodels, which are currently implemented in sequence. Using a
more powerful host computer and by running the inference step in parallel, real-time speed is very
likely achievable in future work.

6.6.6. Conclusion and outlook

Using EOS data from four subjects, optimal regressionmodels were identified that provided amap-
ping from the EOS data to the parameters of the vocal tract model proposed in section 6.3, which
allows direct control of an articulatory speech synthesizer using the measured articulatory input
data. However, only vowel sounds were identifiable, while the synthesis of isolated consonantal
sounds was considered too poor in quality to warrant a formal listening test. As shown by a t-SNE
analysis of the EOS training data, the coarticulatory effect of the context vowels on the consonants
was very strong. This had a two-fold effect: it effectively reduced the number of training instances
for each consonantal shape to just a single example, and it introduced a large amount of noise
to the mapping since all EOS data frames representing the same consonant were related to the
exact same reference area function shape, despite their large (coarticulation-induced) differences.
Given the difficulty of obtaining context-dependent shapes either through manual creation or sys-
tematic measurements, an entirely different approach is recommended, which should move away
from the idea of mapping individual frames to discrete vocal tract shapes and instead considers the
mapping as a sequence-to-sequence problem, using appropriate predictive models. Future work
should explore this avenue of investigation and to that end will first have to find a way to obtain the
target vocal tract trajectories, e.g., through an inverse mapping from the speech acoustics to the
parameters of the vocal tract model.

6.7. Pitch and voicing

6.7.1. Introduction

As was mentioned above, an articulatory synthesizer is capable of producing synthetic speech at
the same level of detail and with the same expressive range as human speech. To fully harness this
potential, however, data on the supraglottal vocal tract state (as recorded by EOS) seems insuffi-
cient. While there are many more layers and levels of speech production, two major components
shall be discussed in this section in greater detail: the f0 contour of an utterance over time (i.e., the
intonation), and the distinction between voiced and voiceless sounds (i.e., the voicing). Based on
phonetic knowledge (see chapter 2), it should not be possible to derive either of these components
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from supraglottal articulation alone but would necessitate glottal, or at least laryngeal, information
on the vocal tract excitation source, as well. However, in a truly silent system, there is no active
excitation that could be measured. This leaves two options: a manual control of these features or
a (somewhat phonetic theory-defying) prediction based on the trajectories of the supraglottal ar-
ticulatory data, under the assumption that the temporal patterns of fluent speech may hold latent
information that could be used for the prediction of voicing and intonation.
In the remainder of this section, both of these approaches are investigated in two proof-of-

principle studies. The two respective research questions were as follows:

1. Can a human user learn to manually control the intonation of an utterance in a way that pro-
duces natural sounding speech?

2. Can intonation and voicing be predicted based on supraglottal articulatory information alone?

Both studies aimed at eliminating all factors not directly connected to these questions to investi-
gate the feasibility of the respective approach on principle, not necessarily only when using EOS or
the six point vocal tract model. Therefore, instead of using the ATS system proposed in section 6.6,
generated intonation patterns were impressed on natural speech material to minimize perceived
quality due to synthesis artifacts. To avoid a large impact of possible shortcomings of the precision
or accuracy of EOS data, the gold-standard in articulometry, EMA (see section 3.7), was used to in-
vestigate the second question. Even though the results in both cases are therefore not immediately
applicable outside of a lab setting, they set an upper limit for what seems feasible. Themanual into-
nation control study was also published in [279] and the study on predicting intonation and voicing
was published in [280]. Both studies were conducted in cooperation with two students as part of
their respective theses, which are cited were applicable.

6.7.2. Manual intonation control

In human speech, numerous prosodic features encodediverse information ranging from the speaker’s
intention (e.g., [281,282]) to their emotional state (e.g., [283,284]). The absence of prosody in a syn-
thesized utterance therefore immediately degrades the perceived naturalness and thus the quality
of the synthesis. One major prosodic feature is the change of the fundamental frequency f0 over
time. Current text-to-speech systems (e.g., MARY TTS [285]) derive the intonation from a combi-
nation of prosody rules based on parts-of-speech tagging and punctuation information. While this
technique yields satisfying results, it requires the use of a labeling system (e.g., the German Tones
and Break Indices (GToBi) [286]) to mark up the text or phonetic representation of the desired
utterance. However, in systems where the synthesis is directly driven by acoustic or articulatory
features, this information is not available unless explicitly passed as an additional feature. Because
our system does not use any text or linguistic representation of the articulated speech, rule-based
or parts-of-speech approaches are immediately disqualified. Instead, the user of the system could
provide the time-varying f0 contour manually, on-line and in real-time. The direct approach to ob-
tain the contour from the user would be to let them “direct” the speech like a director would lead a
choir or orchestra, using finger and hand gestures corresponding to pitch accents or tone height.
In fact, systems based on this approach exist in the context of the so-called “performative voice
synthesis” (e.g., [287]). As the name of these systems suggest, they are however exclusively used
in artistic performances and for educational or edutainment purposes. Because of the constant
cognitive load of directly controlling the f0 contour, a generative intonation model is required that
only requires the user’s attention at critical moments during an utterance or phrase.
Numerous f0 models exist and among the most commonly used in speech synthesis are the Tilt

Model by [288], the Target Approximation Model (TAM) by Xu [289, 290], and the Fujisaki Model
[291]. The Tilt Model is purely mathematical, in the sense that there are no underlying motivations
from physiological processes during speech production. It is essentially a concatenation of param-
eterized curve segments to obtain any desired intonation trajectory. The user sets the duration,
amplitude and tilt of each segment sequentially. While this allows total freedom in the creation of
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the intonation, there is also no way to limit this technique to guarantee realistic or at least physi-
ologically possible trajectories. In contrast, the TAM is physiologically motivated. In [289], the au-
thors describe their model as the simulation of “the effects of the aggregated force of the laryngeal
controls”. It uses syllable-based pitch targets, set by the user, that can either be constant (a static
f0 level) or dynamic (a linearly rising or falling target f0). The pitch targets of an utterance are con-
catenated and then passed to the model, which generates the intonation curve by asymptotically
approximating the target using an exponential function. By imposing reasonable limitations onto
the parameters, the model will therefore always generate realistic intonation curves and artifacts
can mostly be avoided. However, both the Tilt and the Target Approximation Model are based on
sequentially concatenating segments (of the f0 curve directly or of the f0 targets, respectively). In a
real-time system, this demands a lot of planning and precise control by the user, since they have
limited possibilities to correct themselves once the segment has been parameterized.
The Fujisakimodel, on the other hand, is superpositional in nature. Themotivation for this parallel

approach, according to [292], is that the variation of the f0 in speech is caused by the cricothyroid
muscle moving the thyroid cartilage, which in turn changes the tension of the vocal folds that are
attached to it and, consequently, the f0. This movement has two degrees of freedom (translation
and rotation) and thus can be described by two components that are independent of one another:
a phrase component and an accent component. These components are the responses of critically-
damped second-order low-pass filters to an impulse (the phrase command) as given by

Gp(t) =
{
α2te–αt t ≥ 0
0 t < 0,

(6.8)

where α is the time constant of the phrase component, or to a step-wise function (the accent com-
mand) as given by

Ga(t) =
{
min(1 – (1 + βt)e–βt, γ) t ≥ 0
0 t < 0,

(6.9)

where β is the time constant and γ is the ceiling level of the accent component. The generated
components are summed up and then added to a logarithmic base frequency to calculate the final,
logarithmic f0. As the example in Figure 6.11 shows, even complex f0 contours can be generated
with just a few commands.
Table 6.6 summarizes the properties of the three models introduced above. Even for a simple

contour, the curve segments in the Tilt Model are too complicated and unintuitive for the user to pa-
rameterize in real-time and the model’s non-physiological background may lead to very unnatural
sounding contours, when non-optimal parameters are chosen. The TAM should generally produce
natural sounding contours and may be a good choice for simple contours (e.g., a continuously de-
clining f0), but becomesmuchmore difficult to handle in real-time if used to generatemore complex
contours involving accents. The Fujisaki model, however, only needs a single parameter for a basic,
declining contour and only two more for each accent. More detailed contours can easily be gen-
erated by superimposing simple contours. Therefore, it is the most suitable for the purpose of a
real-time intonation generator with minimal cognitive overhead for the user.

Tilt Model Target Approximation Model Fujisaki Model

Motivation purely mathematical physiological physiological

Elements pitch events syllables phrases and accents

Contour generation sequential sequential superpositional

Parameters 3 (per element) 3 (per element) 2 per phrase, 3 per accent

Table 6.6.: Comparison of three intonation models commonly used in speech synthesis

To evaluate the feasibility of manipulating the intonation of an utterance in real-time, a soft-
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Figure 6.11.: The Fujisaki intonation model (figure recreated from [292]): The final f0 contour is a
superposition of a phrase component and an accent component. The phrase compo-
nent is generated as the response of a critically-damped second-order lowpass filter
to sequence of (weighted) impulses (the phrase commands Ap) and the accent compo-
nent is the response of another critically-damped second-order low-pass to a step-wise
function of varying height and width (the accent commands Ap). The components are
summed up and added to a base frequency fb in the logarithmic domain to obtain the
final contour.

ware called Wearable Intonation Generator (WIG) was developed by Konrad Schulze as part of his
student’s thesis [293] using the C++ library wxWidgets (version 2.8.12, www.wxwidgets.org). The
software consists of a graphical user interface (see Figure 6.12) that allows the user to load a wave
file into the program buffer. After pressing the “Play Sound” button, the file is played back and the
user can manipulate the intonation contour using the Fujisaki model, which is then impressed on
the played-back utterance in real-time using a Time Domain Pitch-Synchronous Overlap and Add
(TD-PSOLA) algorithm. The control of the Fujisaki model is further simplified by setting the parame-
ters α, β and γ and the phrase and accent command magnitudes for the entire utterance using the
settings tab. Because the Fujisaki model is superpositional, the user can reclaim some of the free-
dom that is lost due to the static parameters by “stacking” several commands, which is not possible
with the other models. While this restricts the shape of the components that can be generated, it
reduces the entire control of the intonation generation to setting the timing of the commands using
only two buttons: one to trigger a phrase command (an impulse) and one to trigger an accent com-
mand (push to step up, hold, release to step down). The software supports two input modalities
to use as these controls: the keyboard ( Spacebar for phrase, Strg for accent commands) or the
mouse (left button for phrase, right button for accent commands). Since the system is intended
to be used as a component in a wearable speech synthesis system, WIG also supports the use of
the wireless Mycestro 3D mouse (www.mycestro.com), which is a small device that is strapped to
one of the user’s index fingers and communicates with the PC via Bluetooth. The Mycestro mouse
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supports three buttons and a scroll wheel, of which only two buttons (left and right) are needed to
control the WIG.

Figure 6.12.: Graphical user interface of the Wearable Intonation Generator. The settings tab hides
the parameter settings for the Fujisaki model. During playback of the wave file, the
user can generate phrase and accent components by setting the timing of the corre-
sponding commands using the keyboard or a wearable 3D mouse. The f0 of the wave
file is manipulated on-line using a TD-PSOLA algorithm.

Even though only two buttons are needed to create even complex f0 contours, the task to give
the commands on-line and in real-time is unusual for the user and requires a usability test. A study
was therefore designed with 16 subjects (native-level German speakers, age 21-30) whowere asked
to manipulate the f0 contours of 10 German sentences (based on the Wenker sentences used in
[294], see Table 6.7). The sentences were recorded with a professional male speaker and their
intonation flattened to a constant f0 of 100Hz using the software Praat [176]. As mentioned above,
this approach was chosen over a (unit selection or articulatory) synthesis of the sentences with a
constant f0 because the introduction of additional unnaturalness due to synthesis artifacts was to
be avoided. It also provided a truly natural sample for reference during the rating part.

German English translation

1. Das Feuer war zu heiß, die Kuchen sind ja unten ganz schwarz. The fire was too hot, the cakes are all black on the bottom.

2. Wem hat er denn die neue Geschichte erzählt? Whom did he tell the new story?

3. Ihr dürft nicht solche Kindereien treiben! You should not horse around!

4. Das war recht von Ihnen! You did good!

5. Ich bin mit den Leuten da hinten über die Wiese ins Korn gefahren. I drove with the people over there across the meadow into the field.

6. Wir sind müde und haben Durst. We are tired and thirsty.

7. Es hört gleich auf zu schneien, dann wird das Wetter wieder besser It is going to stop snowing soon, then the weather will improve again.

8. Wie viel Pfund Wurst und wie viel Brot wollt ihr haben? How many pounds of sausage and how much bread do you want?

9. Ich verstehe euch nicht, ihr müsst ein bisschen lauter sprechen. I don’t understand you, you have to speak a little louder.

10. Er ist vor vier oder sechs Wochen gestorben. He died four or six weeks ago.

Table 6.7.: List of German test sentences used in the usability study and their English translation for
reference

In preparation of the experiment, each subject was asked to familiarize themselves with the con-
trols of the software using it with a standard desktop mouse on their own computer and by manip-
ulating a continuous 100Hz sine tone. During the experiment, each subject used the lab computer
and the Mycestro 3D mouse. In order to avoid mistakes due to the use of this unusual input de-
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vice, each subject did a little exercise where they had to repeatedly click with the 3D mouse into a
specific cell of a spreadsheet. Once they were comfortable with the handling of the device, each
subject was presented with one of the 10 monotone sentences and was asked to manipulate the
intonation in real-time during playback to make it sound more natural. If they were not satisfied
with the result of a manipulation, they were allowed to try again with the same sentence. Once the
subject was content with the result or after a maximum allowed manipulation time of three min-
utes, the last generated contour and the corresponding manipulated audio file were saved and the
experiment continued with the next sentence. The order in which the sentences were presented
was randomized for each subject. After all 160 manipulations (16 subjects times 10 sentences) had
been made, the entire set of 160 manipulated audio files plus the 10 original recordings (with a
natural intonation) and the 10 recordings with a flattened intonation was rated by each subject on
a naturalness scale from 1 (totally unnatural) to 5 (totally natural).
For each subject, 10 manipulations were rated. Calculating the global mean across all 10 manip-

ulations would potentially yield large standard deviations (SDs), since some of the sentences may
have been easier to manipulate than others. So instead of the global mean and SD, the mean and
SD of the ratings of each manipulation were calculated. Since every manipulation produced by a
subject is a manifestation of that subject’s ability to use the system efficiently, this proficiency could
be regarded as a stochastic process and the manipulation as a realization from that process. To
characterize each subject’s ability to produce natural sounding contours, a naturalness score ν was
calculated by combining the means and standard deviations across the manipulated samples from
each subject by iteratively multiplying the corresponding (presumably) Gaussian density functions.
The result of eachmultiplication of a distribution with amean μi and an SD σi and a distribution with
a mean μj and an SD σj is again a Gaussian density function with mean μij and an SD σij according
to:

μij = μiσ2j + μjσ
2
i

σ2i + σ
2
j

and σij =
√√√√ σ2i σ

2
j

σ2i + σ
2
j
. (6.10)

The results of the study are summarized in Figure 6.13. Compared to the sample with a flat
intonation, only subject 14 was generally not able to improve the naturalness of the intonation
with our system. While a distinct gap remains in the perceived naturalness between the original
recording and even themanipulationsmade by the best subject, themajority of the subjects (10 out
of 16) achieved a naturalness score of more than three, which is considered natural. As illustrated
by Table 6.8, there is only a very weak positive correlation between the average time to settle on a
contour and its naturalness, and a somewhat stronger, but still weak, negative correlation between
the average number of attempts and the naturalness.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean manipulation time [min:s] n/a n/a 1:14 1:28 0:39 1:06 1:28 0:47 1:00 1:00 1:11 1:19 0:55 1:16 1:11 0:57

Mean number of attempts n/a n/a 11 9.1 5.1 9.8 12.4 7.7 10.7 10.7 16.2 19.9 13.9 21.6 17.3 5.8

Naturalness score 3.03 3.59 3 3.34 3.6 3.2 3.6 2.7 3.5 2.5 3.1 3.75 3.14 1.56 2.6 3.1

Table 6.8.: Average amount of time andmean number of attempts each subject needed to settle on
a contour. The time and number of attempts was not tracked for the first two subjects.
The correlation coefficient between the average manipulation time and the naturalness
score is ρt = 0.012 and the correlation coefficient between the number of attempts and
the naturalness score is ρn = –0.38.

Summary and conclusion

Intonation is a major component of natural speech but cannot be directly measured from supra-
glottal articulation. A manual control of the intonation is conceivable, but the usability of such a
system needed to be investigated. To that end, the presented system used a wearable input device
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Figure 6.13.: Mean (dots) and variance (whiskers) of the perceived naturalness ν (rated by all sub-
jects) of the 10 samples generated by the respective subject i. The original sample
was a natural recording, the flat sample was the same recording manipulated to a flat
100Hz intonation.

(Mycestro 3D mouse) and a PC software to allow the real-time on-line manipulation of the into-
nation of pre-recorded sentences with flat intonation. The system’s usability was evaluated by a
small-scale user study and the results showed that the majority of the users were generally able
to produce natural sounding f0 contours. However, the users were given an indefinite number of
retries and a rather long time period to manipulate the short sentences. Future studies should
therefore examine, how the naturalness is affected by stricter limitations, since the final applica-
tion is supposed to be in a wearable speech synthesis system, where usually only a single attempt
for each sentences is possible. Another future study should also examine, how subjects improve
over time as they train on one set of sentences with an indefinite number of attempts and are then
tested on a different second set with only one attempt per sentence. It is also of interest to see if the
users’ proficiency can be improved by teaching them the theory behind the Fujisaki model. In the
presented study, the users were not told anything about the underlying concept of distinct phrase
and accent components to avoid bias in how they use the system. As illustrated by Figure 6.14, a
basic understanding of this concept may lead to better results.
Another possible improvement could be to use a declining base f0 or even a phrase component

as a base. This would further reduce the user’s workload to triggering the accents only, which may
be easier to accomplish because of the more immediate response to a command (as opposed to
the comparatively slowly rising response to a phrase command). This is especially advantageous
for the target audience of a speech prosthesis, among which cognitive impairments are likely to
occur. Lastly, because the present study did only consider the general naturalness (a fairly abstract
measure), another experiment should examine to what extent the subjects are able to intention-
ally convey information using the artificial intonation (e.g., stressing specific words or syllables to
resolve ambiguities).

6.7.3. Predicting voicing and intonation from supraglottal articulatory
trajectories

As discussed above, voicing and intonation are components of speech that originate in the exci-
tation source of the vocal tract, which is not included in supraglottal articulatory data as captured
by, e.g., EOS. However, recent studies have shown that the f0 contour can nevertheless be derived
from the articulatory data directly (e.g., [135,295–298]), from respiration [299], or by predicting the
parameters of an intonation model [300]. While those studies showed promising results, they used
different data sets, classifiers, regressionmodels, different strategies for dealing with unvoiced seg-
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f
f

Figure 6.14.: Example f0 contours generated by the highest-scoring subject (above) versus the
lowest-scoring subject (below). Apparently, both subjects had a similar target contour
in mind (one phrase with two accents) but subject 14 seemingly had some difficulties
with both timing and choice of the commands.

ments and non-speech segments, and performed several predictions at the same time (e.g., a full
articulation-to-speech mapping), which makes a reproduction and comparison of their results dif-
ficult. Given the focus on deep neural networks in most current studies, it was also of interest if
a simpler model architecture that is less complex to train and has fewer hyperparameters to tune
may be a good alternative in case of limited resources. Especially in the context of ATS systems,
which are currently exclusively developed in academic research contexts and thus lack the access
to large-scale data from many different speakears, this is an important advantage. The presented
study therefore systematically explores the performance of a set of commonly used models on the
freely available mngu0 corpus [301] containing synchronous speech audio and EMA data. Both the
ternary classification of silent, voiced and unvoiced segments as well as the prediction of the f0 con-
tour were performed and evaluated. EMA data was chosen over EOS data because of its superior
and well-proven accuracy in recordings with many speakers. While this helps eliminate the error
introduced by a possibly imprecise articulometric technique, it unfortunately alsomakes the results
from this study inapplicable to real-world ATS systems, since EMA data can only be recorded in a
lab setting (see section 3.7). But since the research question of this investigation was concerned
with the general feasibility of such predictions, it was considered the best option to establish an
upper limit for such an approach.
In a setup described above, where only the supraglottal articulation is measured and used to

drive a speech synthesizer, no information on the voicing or even the voice activity is available. This
poses two problems: when should the synthesizer be started and stopped and when should the
synthesizer produce the voiced or the unvoiced instance of the same supraglottal articulation (e.g.,
when should it output a /g/ vs /k/)? These two distinct problems call for two separate, binary clas-
sifiers: one to classify speech from non-speech and one to classify voiced from unvoiced speech.
These classifiers can be cascaded, so that the speech/non-speech classifier only passes frames con-
taining speech to the voiced/unvoiced classifier, or run in parallel and then superimposed (where
results from the voiced/unvoiced classifier are gated by the decision of the speech/non-speech clas-
sifier). While speech activity and voicing is a ternary classification problem, the prediction of the f0
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at any given point in time is a regression problem, since the pitch can take on any value in a con-
tinuous range between certain physiological constraints. Therefore, the f0 contour was predicted
using the same methods as for the voiced/unvoiced/silence classification but modified to be used
for the regression problem.

The machine learning techniques applied in this study were all implemented by Philipp Schmidt
as part of his diploma thesis [302] using the C++ machine learning toolkit “dlib” [303]. While the
toolkit offers a plethora of tools and algorithms, three of the most commonly used families of algo-
rithms were chosen for this investigation: SVM, Kernel Ridge Regression (KRR), and DNN. For both
investigated problems, the kernel functions used for the SVM and KRR were a linear kernel (LK),
the radial basis function kernel (RBK), and the histogram intersection kernel (HIK). The DNNs were
trained with one, three and five hidden layers with 512 neurons in each layer (to study the impact
of the depth), and with two hidden layers with 512 neurons in the first and 1024 in the second layer
(tomirror the configuration used by [296]), all of them using a Rectified Linear Unit (ReLU) activation
function [304]. In addition to the properties described above, the hidden layers of these DNNs were
fully connected, i.e., every neuron in each layer was connected to every other neuron in the next
layer. To train and evaluate these machine learning models, a corpus of articulatory data with cor-
responding pitch contours was required, since all of these techniques were supervised methods.
One such corpus is the publicly available mngu0 corpus [301] containing synchronous speech audio
and, among other forms of articulatory data, electromagnetic articulography data of one speaker
from two recording sessions. We used the Day 1 set of EMA data along with the corresponding
audio data and extended Speech Assessment Methods Phonetic Alphabet (SAMPA) annotation for
training and evaluation of the classification and regression models. The Day 1 set contains 1354 ut-
terances by onemale British professional speaker amounting to 67min of speech data, which were
randomly split (without breaking up utterances) into a training set (80% of the total data frames)
and a test set (the remaining 20% of the data). The sentence lengths ranged from 1 to 48 words and
included questions, statements and exclamations (and therefore a variety of intonation contours).
In total, the set contained approximately 1715 unique diphones and 12322 unique triphones. The
EMA data was sampled using the Carstens AG500 articulograph, which is capable of tracking 12
EMA sensor coils in 3D space with two angles of rotation for a total of 5 measurements per sensor
coil. The study used only the x- and y-coordinates of six coils (placed on the upper lip, the lower lip,
the lower incisor, the tongue tip, the tongue body, and the tongue dorsum) in the midsagittal plane
for a total of 2 x 6 = 12 channels (number of dimensions times number of coils). This limitation was
imposed to remain within the subset of data that the authors of the corpus had already evaluated
and processed themselves: The mngu0 corpus contains processed EMA data of these 12 channels.
Due to possible overlap of some of the corresponding audio files (according to the dataset’s readme
file), the raw data were used and then standardized channel-wise so that each channel (containing
data representing one spatial dimension of one coil) exhibited amean of 0 and a standard deviation
of 1. The corpus contains two sets of audio recordings: one recorded using a Sennheiser MKH50
hypercardioid, which picked up background noise from the AG500 starting at about 7.5 kHz, and
a PHON-OR noise-canceling optical microphone, which had a smaller bandwidth and did not pick
up low frequencies very well. Because this study was interested in the fundamental frequency,
the Sennheiser MKH50 audio recordings were used for training and evaluating the f0 prediction as
the noise interference was well above the expected frequency range of interest. The data were pre-
sented to themachine learning algorithms as a series of feature vectors, each of which represented
one frame of EMA data sampled every 5ms. The feature vectors consisted of the 12 channel data
in that frame (x- and y- coordinates of the six sensor coils as described above), the element-wise,
normalized difference of the current 12 channel data to the previous 12 channel data (i.e., delta
features), and the element-wise, normalized difference of the current difference to the previous
difference (i.e., delta-delta features). In total, each feature vector therefore had a length of 36. To
include an articulatory context for each feature vector, several consecutive feature vectors were
stacked. Two different kinds of context were studied: using only previous feature vectors and ad-
ditionally using subsequent feature vectors, as well. The former case is feasible in a real-time ATS
synthesis system as described above, while the latter setting was expected to improve the results
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at the cost of a small delay. Context lengths of 25ms, 50ms, and 75ms were studied, but for the
sake of conciseness, only the best results are reported here, which were achieved with a context of
50ms corresponding to 10 frames for both look-back and look-ahead.
To train the supervised machine learning models used in this study, each training frame was

assigned a label for unvoiced/voiced/silence classification and an f0 value for regression. The silence
label could be directly extracted from the extended SAMPA annotation of the mngu0 corpus. But
since no narrow transcription of the utterances was available, we based the voiced/unvoiced label
on the results of the f0 extraction: if no f0 could be determined, the frame was labeled “unvoiced”,
otherwise it was considered “voiced”. The f0 of each non-silent frame was determined using Praat’s
[176] autocorrelation-based To Pitch... function with a pitch floor of 50Hz and a pitch ceiling of
200Hz. As illustrated by the histogram in Figure 6.15, these parameters accurately captured the
f0 range present in the data while at the same time avoiding octave errors by constraining the
search space.
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Figure 6.15.: Histogram of the pitch values included in the analyzed subset of the mngu0 dataset

If the Praat algorithm could not find a sufficiently clear peak in the autocorrelation-function, it re-
turned the value “undefined” for that frame. This was replaced by the numeric value -1 and used as
the unvoiced-flag so that for the voiced-unvoiced classification all positive values were interpreted
as a “voiced” label. In total, 363 502 voiced samples and 368021 unvoiced samples were used for
training, and 126651 voiced frames and 121965 unvoiced and silent frames for testing the clas-
sifiers. The regression models were trained and tested with the voiced frames only, although un-
voiced or silent frames were included in the articulatory feature vectors if they appeared in the
context of a voiced frame.
Even though the mngu0 corpus proposes a standard split for training, validation and testing, a

new split was made following a practice suggested by [305]. As described above, 80% of the fea-
ture vectors and their corresponding labels were used for the training of all investigated classifiers
and regression models and 20% of the data was kept separately for testing. The validation set for
hyperparameter tuning (as a subset of the training set) was determined differently for each class
of models: The neural networks were trained using a mini-batch paradigm with a batch size of 512.
The learning rate was the only hyperparameter that was tuned. Its optimum was found by succes-
sively shrinking the learning rate from 0.1 by a factor of 10 after every training epoch and evaluation
on the test set. The hyperparameters of the SVMs were optimized using a grid search of the param-
eter space and a two-fold cross-validation on the training set. Due to the large training set, a higher
number of folds was too computationally expensive. The hyperparameter λ for the KRR was found
using leave-one-out cross-validation since training was much faster and thus allowed a more thor-
ough cross-validation. The final hyperparameter values for all models are summarized in Table 6.9
and Table 6.10.
After training the models on the training sets using these optimal hyperparameters, the trained

models were then evaluated on the respective test sets. The evaluation was performed using both
objective measures (the classification score and the regression error) and a subjective listening test
using human listeners. The classification score was calculated by dividing the number of correctly
classified voiced and unvoiced frames by the total number of frames in the test set. The regression
error was determined in terms of the RMSE between the predicted f0 and the reference f0 deter-

141



6. Articulation-to-Speech

SVM KRR DNN
LK RBK HIK LK RBK HIK all

Context (before | after)
in ms

C C γ C λ λ γ λ LR

50 | 0 2e+06 9.842e+05 0.0045 3e+05 0.0001 0.01 0.0081 0.01 0.0001
50 | 50 2e+06 2e+06 0.0015 3e+05 0.0001 0.001 0.0009 1 0.0001

Table 6.9.: Optimal hyperparameters for the silence/voiced/unvoiced classifiers. The optimal learn-
ing rate (LR) was the same for every number of hidden layers of the DNN.

SVR KRR DNN
LK LK RBK HIK all

Context
(before | after)
in ms

C λ λ γ λ LR

50 | 0 1.968e+05 1e-05 0.01 0.0009 0.01 1e-07
50 | 50 5e+05 1e-05 0.1 0.0009 0.01 1e-07

Table 6.10.: Optimal hyperparameters for the f0 regression. The optimal learning rate (LR) was the
same for every number of hidden layers of the DNN.

minedwith Praat (see above). The results of the evaluation are shown in Figure 6.16 and Figure 6.17.
It is evident that in both settings the non-linear kernel methods outperformed the linear methods.
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Figure 6.16.: Voiced/unvoiced/silence classification score in percent of correctly classified frames

The DNNs also generally slightly outperformed SVM and KRR models for classification. For the re-
gression task, the DNNs are generally on par with the Support Vector Regression (SVR) or KRRmod-
els with a KRR using a radial basis kernel achieving the overall best result of an RMSE of 10.3Hz.
This is somewhat surprising, given the dominance of deep networks in almost every field. An expla-
nation could be the vast number of possible network topologies and hyperparameter settings of a
DNN. Even with the careful approach taken here, there is no guarantee that the true global opti-
mumwas found. Compared to the previous benchmark set by [296], which was an RMSE of 12.6Hz
achieved on the same corpus using an LSTM network, the results from this study are an improve-
ment of approximately 17%. However, another study using an LSTM [298] performed slightly better
with a reported RMSE of 10.162Hz when using the same input data as in this study, most likely due
to using a (well-tuned) LSTM instead of a simple feed-forward DNN. While adding a look-ahead for
the articulatory context improved the results marginally, the proposed techniques are still suffi-
ciently precise for a real-time application in an ATS synthesis system even when no “future” context
is used.
While the RMSE is a commonly used objectivemeasure to evaluate a regressionmodel and a good

index to compare different algorithms, it is not intuitively clear how it relates to perceived quality or
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Figure 6.17.: RMSE of predicted f0 contour with respect to the reference f0

naturalness of the produced contours. Therefore, a listening test was conducted, where a subset
of the results was rated by 20 human listeners (8 female, 12 male, age 22-56, average age 30.4).
To limit the number of the stimuli to a reasonable amount, the utterances from the test set were
grouped into tertiles using the RMSE: the best (lowest RMSE) third (T1), the median third (T2), and
worst (highest RMSE) third (T3). Then, one short, one long and one medium long utterance were
randomly selected from each third. For each of these nine utterances, the f0 contour in the original
audio recordings was manipulated to match the f0 contour predicted by the best regression model
with look-ahead and without look-ahead using Praat. A sample of each utterance with a completely
flattened intonation (setting it to its mean f0) and the unmodified recordings of each sample were
also added to the set3. The resulting 9 utterances × 4 versions = 36 utterances were presented
to the subjects three times in a randomized fashion for a total of 108 items per test. The items
were presented to the listeners in a quiet room using a Focusrite Saffire Pro 40 audio interface and
a pair of Beyerdynamic T70p headphones. The raters were asked to grade each item on a scale
from 1 (unnatural) to 4 (very natural). The results of the test are shown in Figure 6.18. The original
f0 contours and the flattened f0 contours scored highest and lowest, as could be expected. The
ratings of the predicted f0 contours were also consistent with the objective evaluation. The selected
sentences are provided in the digital supplemental material accompanying this dissertation.
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1.26

Figure 6.18.: Average naturalness rating in the listening test of the resynthesized utterances using
the orignal, predicted, and flattened f0 contours.

Summary and conclusion

A systematic comparison of a number of machine learning algorithms’ (SVM, KRR, and DNN) per-
formances for f0 prediction from articulatory data was presented. The results show that DNNs are
generally a good option for both classification of voiced/unvoiced frames and predicting the f0 in
3“Unmodified” means that we passed it through Praat’s pitchmanipulation algorithm once without changing anything. This
seemingly redundant step was necessary because the pitch manipulation algorithm introduces a small amount of noise
that would otherwise unfairly skew the comparison.
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voiced frames. The results were only marginally worse when using only the current feature vector
and the previous 50ms of data as opposed to a look-ahead of 50ms, indicating the suitability of the
proposed methods for a real-time system. The best classification score was 86% and achieved by a
DNN with two hidden layers and 50ms of context both before and after the frame of interest. The
lowest prediction error was 10.3Hz and achieved using symmetric context of 50ms and KRR with a
radial-basis function kernel.
Besides confirming the idea of predicting voicing and intonation from only supraglottal articu-

lation, a significant finding of this study was that even drastically simpler techniques like KRR can
achieve performancemeeting or exceeding the performance of a DNN, which needs large amounts
of data, demands computationally expensive training and is notoriously difficult to optimize. An-
other significant finding was the fact that not using a look-ahead did not significantly decrease the
performance of both unvoiced/voiced/silence classification and f0 regression. This is an important
fact for the design of real-time ATS systems. The results from the listening test suggest that the
RMSE is a valid errormeasure even if ultimately perceptual quality is of importance, since the tested
items were rated in the same relative ranked order than their respective RMSE.

6.7.4. Conclusion and Outlook

As shown by each study and discussed in the respective section, both the manual control of the
intonation and an automated approach based on machine learning are generally feasible. For the
voicing decision, a manual control seems inadvisable because it would require immensely precise
timing to trigger the correct voicing that seems superhuman to achieve. Here, a purely machine
learning based approach as described above could be a solution, given the very good performance
of approximately 85% correctly classified frames on the EMA data. A possible explanation for this
might be that the classifiers implicitly learn a languagemodel: since articulatory context is provided,
the probability of certain sequences of articulations factors into the decision. For the intonation,
however, an entirely automatic approach with no user input on the f0 contour may be frustrating
to the user. It is likely that the reason for the fairly low errors is the limited range and variety of
intonation contours in the analyzed dataset. In real-world scenarios, the user will probably want
to stress certain words to emphasize and broadcast intend. It remains to be investigatted if pitch
accents could also be derived from the timing and the pattern in the supraglottal articulatory data.
Future work should also explore if a hybrid approach may deliver the most satisfying experience
to the user: An automated generation of the phrase component of the Fujisaki intonation model
based on the articulatory trajectories and amanual, user-controlled trigger for accent components.
Finally, additional sensors might be used in the data acquisition that capture not the excitation
source, but correlated signals, e.g. the movement of the eye brows during speech, which have
been shown to correlate with intonation [306].
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7. Summary and outlook

7.1. Summary of the contributions

This dissertation made three major contributions to the field of silent-speech interfaces:

1. A novelmeasurement technique tomeasure articulatorymovements in the anterior oral cavity
called Electro-Optical Stomatography (EOS).

2. A low-dimensional, parametric vocal tract model for high-quality, natural-sounding articula-
tory synthesis in real-time.

3. A new Articulation-to-Text (ATT) system performing at a state-of-the-art level.

Furthermore, it explored the possibility of using EOS in an ATS system, which was not able to reach
state-of-the-art performance, yet. However, it succeded in pinpointingmajor obstacles in the devel-
opment of such a system and made specific recommendations on how to proceed in future work.
The articulatory measurement technique EOS was developed with its application in portable

silent-speech systems in mind. The measurement hardware is therefore compact (the control unit
measures only) 160mm× 100mm) and battery powered. EOS uses a pseudopalate, which the user
wears on their upper jaw like a retainer. On the pseudopalate, two kinds of sensors measure the
movement of the lips and the tongue: electrical contact sensors register the palato-lingual contact
pattern, and optical sensors measure the midsagittal tongue contour and the lip opening and pro-
trusion. The distance measurements can be calibrated using a newly developed calibration model.
Themodel predicts a set of calibration points (pairs of digital values and distances inmillimeters) for
each optical distance sensor based on a single digital sensor value measured during direct contact
between the user’s tongue and the sensor. A calibration characteristic is then generated by interpo-
lating between these calibration points. Since distance values obtained with this characteristic may
still be subject to an error caused by angular displacement of the tongue towards the optical axis
of the sensor, a second, additional calibration model was developed that compensates this error.
Beyond the use in silent-speech interfaces, EOS can be used in any context where tracking the intra-
oral articulation is of interest and several possible applications were pointed out (and explored in
studies considered out-of-scope for this dissertation).
The six point vocal tract model proposed in this dissertation is an improvement on previous para-

metric 1D vocal tract models because it can model all kinds of sounds with the same set of param-
eters (as opposed to, .e.g., the Three Parameter Model by Fant [249]) using intuitively meaningful
degrees of freedom with phonetic/articulatory correspondences (as opposed to, e.g., the statisti-
cal mixture model by Story [258]). It extends the Ishizaka model [259] in numerous ways to allow
the modeling of sounds with much greater flexibility. The intelligibility of sounds synthesized with
the six point models was proven in a listening experiment and approaches the levels of natural
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speech for most analyzed sounds. The availability of a flexible, low-dimensional parametric vocal
tract model that can produce intelligible speech on par with more complex models (e.g., 3D vocal
tract models as in [214]) is a great boon to any silent-speech system that wants to include low-
latency, real-time articulatory synthesis. Thoroughly evaluated parameter sets for most German
speech sounds were provided.
The presented ATT system achieved state-of-the-art performance ofmore than 90% in a speaker-

dependent command word recognition task. In addition to that, the inter-speaker performance
was also evaluated and shown to be still within the range of some speaker-dependent ATT systems
based on other articulometric frontends, even without any explicit speaker adaptation strategy.
The ATS study, unfortunately, did not match the high performance of the other contributions of

this dissertation. The chosen approach of finding a mapping from EOS sensor data frames to their
corresponding discrete area function shapes proved to be too naive. Despite thorough evaluation
and in-depth optimizations of a suite of regression models, no model could overcome the strong
coarticulatory influence on the consonants in the data and the lack of properly coarticulated target
area function shapes. However, the realization that this approach was too simplistic could in itself
be considered a (minor) contribution to the field of ATS research.

7.2. Outlook

In addition to the contributions outlined in theprevious section, each component of this dissertation
could of course be further improved in future work.
For EOS, some short-termwork will have to deal with the unfortunate fact that the OP280V VCSEL

diode is no longer available on the market at the time this is written. A possible replacement is
the VC850M-SMD infrared VCSEL by Roithner LaserTechnik GmbH, which has similar specifications
and even comes in a much smaller 0603 package of only 1.60mm × 0.8mm. Given the slightly
different electrical and optical characteristics, though, it is unclear if it can serve as a simple drop-in
replacement or if recalculation of the calibration models are necessary, which would require the
re-recording of the data used in subsection 4.2.2 according to the specifications outlined in that
chapter.
It should also be investigated if a more phonetically motivated arrangement of the contact sen-

sors (similar to the EPGReading palate in Figure 3.13) on an EOS sensor unit can improve the results:
A more densely spaced group of contact sensors in the alveolar and postalveolar region might help
discriminate better between soundswith those places of articulation. Furthermore, the contact sen-
sor detection circuit should be optimized. While the current input filter circuit has a very well-suited
frequency response, the step response (as shown in Figure 7.1) is too slow.
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Figure 7.1.: (Down)step response of the contact sensor input filter

This means that the fast multiplexing of the contact sensors causes a rather “muddled” signal,
where the various contact sensor signals partially overlap in time. Tuning the components in the
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detector circuit to achieve a better (faster) step response may therefore greatly increase the time
resolution of the contact sensor data.
While some attempts were made to relate the raw lip sensor data to the phonetic dimensions

lip opening and protrusion (mostly in parallel to this dissertation in [187]), none were satisfyingly
precise so far. Especially the issue illustrated by Figure 5.5 shows the necessity for some kind of lip
sensor calibration for the EOS data to become less speaker-dependent.
The EOS control unit could be further miniaturized to improve portability. Also, a wireless data

transfer from the control unit to the measurement computer would be desirable. This could be
comparatively easily accomplished by adding a Bluetooth transceiver. Muchmore complicated, but
even more beneficial to the usability and user-friendliness of the EOS system would be a wireless
sensor unit. Since the EOS sensors are active sensors (requiring power towork), this involves finding
an embeddable power source (a battery, most likely) in addition to developing a board layout that
squeezes the necessary circuitry for the power management and the wireless communication into
the small space available on the hard palate.
The six point vocal tract model could also be further improved. In addition to finding optimal

parameter sets for speech sounds from other languages than German, especially a better dynamic
control would be of great interest to improve the synthesis of stops. Also, amodel for coarticulation
similar to the one proposed in [214] would most likely greatly improve the quality and intelligibility
of synthesized consonants.
The promising results from the ATT studies should be repeated with a larger vocabulary and for

more speakers, eventually developing the system into a large vocabulary continuous articulatory
speech recognizer, leveraging articulatory sound and language models to further boost the perfor-
mance. Along these lines, possible improvements of the inter-speaker performance, e.g., by using
alignment utterances to normalize the articulatory spaces of the speakers, should also be explored.
Finally, the biggest room for improvement remains for the ATS system. As discussed in sub-

section 6.6.6, the approach taken in this work appears to be a dead-end, because of the strong
influence of coarticulation. Future work should therefore reformulate the problem of mapping in-
dividual EOS data frames to sounds into a sequence-to-sequence mapping between continuous
EOS data and continuous vocal tract trajectories. To that end, the unknown vocal tract trajectories
necessary to train a supervised sequence-to-sequence model (e.g., an LSTM network), first need to
be estimated in an inverse mapping from acoustic speech data to the vocal tract model parame-
ters. This mapping could be learned by minimizing the perceptual difference between synthesized
speech using the vocal tract model and the input acoustic speech signal as a function of the vocal
tract model parameters. This would be of great interest to articulatory synthesis in general and
could benefit all kinds of ATS systems (not just the one presented in this dissertation using EOS) but
is obviously a challenging task for multiple future works.
Beyond EOS, more articulometric technologies are constantly being proposed and developed,

and even the field of BCIs, whichwas entirely excluded from the review in chapter 3, may experience
rapid acceleration in the near future with increased industrial interest partly generated by Elon
Musk’s company Neuralink. But to paraphrase the final words from the landmark SSI review paper
by Denby et al. [50], which is as true at the time of this writing as it was in 2010: The last word on
silent-speech interfaces has not been spoken!
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A. Overview of the International
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Bilabial Labiodental Dental Alveolar Postalveolar x Palatal Velar Uvular Pharyngeal Glottal

Plosive           
Nasal           
Trill           
Tap or Flap           
Fricative           
Lateral
fricative           
Approximant           
Lateral
approximant           

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

Clicks Voiced implosives Ejectives

Bilabial  Bilabial  Examples: 

Dental  Dental/alveolar  Bilabial 

(Post)alveolar  Palatal  Dental/alveolar 

Palatoalveolar  Velar Velar 

Alveolar lateral  Uvular Alveolar fricative 

Front Central  Back
Close      

     
Close-mid     

    
Open-mid    

    
Open     

Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

Voiceless labial-velar fricative Alveolo-palatal fricatives

Voiced labial-velar approximant Voiced alveolar lateral ap

Voiced labial-palatal approximant Simultaneous and

Voiceless epiglottal fricative
A ricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary.

Voiced epiglottal fricative

Epiglottal plosive

Primary stress

Secondary stress

Long

Half-long

Extra-short

Minor (foot) group

Major (intonation) group

Syllable break

Linking (absence of a break)

LEVEL   CONTOUR

or Extra or Risinghigh

High Falling

Mid High
rising

Low Low
rising

Extra Rising-
low falling

Downstep Global rise

Upstep Global fall

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018)
CONSONANTS (PULMONIC) © 2018 IPA

CONSONANTS (NON-PULMONIC)

OTHER SYMBOLS

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.

VOWELS

SUPRASEGMENTALS

TONES AND WORD ACCENTS

 Voiceless    Breathy voiced    Dental   

 Voiced    Creaky voiced    Apical   

Aspirated    Linguolabial    Laminal   

 More rounded    Labialized    Nasalized   

 Less rounded    Palatalized    Nasal release   

 Advanced    Velarized    Lateral release   

 Retracted    Pharyngealized    No audible release  

 Centralized    Velarized or pharyngealized     

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root      

 Rhoticity    Retracted Tongue Root      

Figure A.1.: IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart,
available under a Creative Commons Attribution-Sharealike 3.0 Unported License.
Copyright © 2015 International Phonetic Association.
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B. Mathematical proofs and
derivations

B.1. Combinatoric calculations illustrating the reduction of
possible syllables using phonotactics

The following calculations are in support of the example in section 2.6. The syllable structure in
English (according to [46]) is zero to three consonants in the syllable onset, one obligatory vowel
(or syllabic consonant) in the nucleus, and zero to four consonants in the coda:

(C)(C)(C)︸ ︷︷ ︸
onset

nucleus︷︸︸︷
V (C)(C)(C)(C)︸ ︷︷ ︸

coda

(B.1)

In chapter 2, I introduced 24 consonants and 15 vowel sounds in English. If no constraints are
imposed, the number of possible syllables N would be:

N = ( 24 · 24 · 24︸ ︷︷ ︸
all 3 positions

in onset are filled
with one of 24 consonants

+ 24 · 24︸ ︷︷ ︸
only 2 positions
in onset are filled

+ 25︸︷︷︸
one or none positions
in onset are filled

) (B.2)

· 15︸︷︷︸
one of 15 vowels in coda

(B.3)

· (24 · 24 · 24 · 24 + 24 · 24 · 24 + 24 · 24 + 25)︸ ︷︷ ︸
zero to four positions
in coda are filled

with one of 24 consonants

(B.4)

= 14425 · 15 · 346201 (B.5)= 74909241375 (B.6)

If no consecutively repeated consonats are allowed in onset and coda, the possible combinations
are:

N = (24 · 23 · 23 + 24 · 23 + 25) · 15 · (24 · 23 · 23 · 23 + 24 · 23 · 23 + 24 · 23 + 25) (B.7)= 13273 · 15 · 305281 (B.8)= 60779920695 (B.9)

Removing the velar nasal /N/ as an option in the onset and the glottal fricative /h/ from the coda
leads to:

N = (23 · 22 · 22 + 23 · 22 + 24) · 15 · (23 · 22 · 22 · 22 + 23 · 22 · 22 + 23 · 22 + 24) (B.10)= 11662 · 15 · 256566 (B.11)= 44881090380 (B.12)
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Excluding the affricates /
>
tS/ and /

>
dZ/ and the glottal fricative /h/ fromcomplex onsets,means that

there are only 20 possible options to choose from in the onset if there is more than one consonant:

N = (20 · 19 · 19 + 20 · 19 + 24) · 15 · (23 · 22 · 22 · 22 + 23 · 22 · 22 + 23 · 22 + 24) (B.13)= 7624 · 15 · 256566 (B.14)= 29340887760 (B.15)

Excluding the six remaining sonorant consonants as options for the first consonant in the onset
and the seven remaining voiced obstruents as options for the second consonant, when there are
exactly two consonants, leads to:

N = (20 · 19 · 19 + 14 · 13 + 24) · 15 · (23 · 22 · 22 · 22 + 23 · 22 · 22 + 23 · 22 + 24) (B.16)= 7426 · 15 · 256566 (B.17)= 28578886740 (B.18)

If the first consonant in a two-consonant onset is an /s/, the second consonant cannot be /S/. If
the first consonant is not an /s/, the second consonant must be /l/, /ô/, /w/, or /j/:

N = (20 · 19 · 19 + 1 · 11︸ ︷︷ ︸
first consonant

is an /s/

+ 13 · 4︸ ︷︷ ︸
first consonant
is not an /s/

+24) · 15 · (23 · 22 · 22 · 22 + 23 · 22 · 22 + 23 · 22 + 24)

(B.19)= 7307 · 15 · 256566 (B.20)= 28117067940 (B.21)

Applying the rules for two-consonant onsets to both substrings of a three-consonant onset and
considering that there is no /w/ or /j/ in syllable codas, leads to the following:

N = ( 1︸︷︷︸
only /s/
is possible

· 5︸︷︷︸
only /p, t, k, f, T/

are possible

· 4︸︷︷︸
only /l, ô, w, j/
are possible

(B.22)

+ 1 · 11 + 13 · 4 + 24) · 15 · (21 · 20 · 20 · 20 + 21 · 20 · 20 + 21 · 20 + 22) (B.23)= 107 · 15 · 176842 (B.24)= 283831410 (B.25)

Removing /N/, /T/, /ô/, and /Z/ as options for second to fourth coda consonants leads to:

N = (1 · 5 · 4 + 1 · 10 + 13 · 4 + 24) · 15 · (21 · 16 · 16 · 16 + 21 · 16 · 16 + 21 · 16 + 22) (B.26)= 107 · 15 · 91750 (B.27)= 147258750 (B.28)

In German, the syllable structure is the same but there are 18 vowels and 24 consonants. There-
fore the theoretical maximum number of syllables is:

N = (24 · 24 · 24 + 24 · 24 + 25) · 18 · (24 · 24 · 24 · 24 + 24 · 24 · 24 + 24 · 24 + 25) (B.29)= 14425 · 18 · 346201 (B.30)= 89891089650 (B.31)

Limiting the combinations to the sequences according to [47], the number is reduced to:

N = 50 · 18 · 160 (B.32)= 136000 (B.33)
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B.2. Signal Averaging

In 4.4.1, I postulated that averaging over K samples reduces the noise power by a factor of K . The
following proof of this statement closely follows the argument layed out in [307].

• Let s(t) be a signal of constant power, which is corrupted by uncorrelated noise n(t).

• Let n(t) be a realization of the process N with a mean μ = 0 and constant variance σ2.

• Let the SNR be defined as SNR = Psignal
Pnoise = E[s2]

E[n2] .

When several frames of the noisy signal are averaged, the signal power remains the same (be-
cause it is constant). However, when averaging K realizations ni of the random process N, we get:

Var

(
1
K

K∑
i=1 ni

) = 1
K2

Var

( K∑
i=1 ni

) = 1
K2

K∑
i=1 Var (ni) (B.34)

Since the noise variance Var(n) = σ2 is constant and thus the same for each realization, we may
write the above equation as:

1
K2

K∑
i=1 Var (ni) =

1
K2

Kσ2 = 1
K
σ2 (B.35)

This demonstrates that the variance of the averaged noise realizations, and by extension the SNR,
is inversely proportional to the number of averaged realizations K . Or in other terms: averaging K
realizations of the same, uncorrelated noise reduces the noise power by a factor of K .

B.3. Effect of the contact sensor area on the conductance

Section 4.1mentions an proportional relationship between the area of a contact sensor and its con-
ductance. A high electrical conductance means that current can more easily flow into the contact,
improving the coupling between the tongue and the sensor and lessening any voltage drops due
to resistance at the interface. The conductance G is the reciprocal of the resistance R and can be
calculated by [308]:

G = 1
R
= A
ρl
, (B.36)

where ρ is the resistivity of the conducting material. As equation B.36 shows, the conductance is
directly proportional to the conductor area and large contact sensor areas are therefore advanta-
geous for the signal coupling.

B.4. Calculation of the forward current for the OP280V diode

The OP280V VCSEL diode is rated at a forward current of 7mA. Since the MCU used in the EOS
control unit (Atmel SAM3S, see section 4.5) can supply up to 9mA continuously according to the
data sheet, the light source can be controlled directly by the MCU using a general purpose digital
output pin without any additional circuitry except for a current-limiting series resistor. The value of
the series resistor Rvcsel determines the forward current through the diode, since the output pins of
the MCU are digital and can only switch back and forth between Low (corresponding to a voltage of
0 V) and High (corresponding to 3.3 V). When the output voltage at the MCU pin becomes High, the
OP280V turns on and the voltage drop across the diode typically becomes 1.95V (according to the
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data sheet). The remaining 3.3 V – 1.95V = 1.35V drop across Rvcsel. The current through Rvcsel and
consequently the forward current IF through the VCSEL therefore can be calculated by the following
simple formula:

IF = 1.35V
Rvcsel

(B.37)

The value of the series resistor necessary to set a required forward current can be obtained by
simply rearranging this equation:

Rvcsel = 1.35V
IF

(B.38)

In practice however, the value for Rvcsel is usally rounded towards the next value available as a
single physical component. Resistor components come at values of so called preferred numbers for
inventory simplification and more flexible supply chains. These preferred numbers are defined in
a couple of normed series (DIN IEC 60063), one of which is the commonly used E12 series. This
series, which was also used for this dissertation, defines 12 different values per decade (hence the
name): 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8 and 8.2. Multiplying any of these values by the
desired power of ten then results in a resistor value in Ohm that should be readily available on the
market as a single physical component.
With these constraints in mind, a desired forward current of I′F = 7mA in equation B.37 leads to:

R′
vcsel = 1.35V

0.007A
(B.39)

= 192.86Ω (B.40)

The next resistor in the E12 series has a value of 180Ω. Using that component, the actual forward
current IF becomes:

IF = 1.35V
180Ω

(B.41)

= 7.5mA (B.42)

The maximum rated forward current for the OP280V is IF,max ≈ 12mA. Using a resistor value of
120Ω sets the forward current to 11.25mA, while 100Ω (the next smaller E12 value) would over-
shoot it at 13.5mA. Finally, measurements using about 3.5mA (half the rated forward current) may
deliver interersting data points as well, which can be achieved using a series resistor of 390Ω.
These theoretical values assume that the forward voltage of the VCSEL is always 1.95V, indepe-

dently of the forward current, that there is no additional series resistance in the pin connection and
the VCSEL itself, and that the digital output level High ideally reaches the full supply voltage rail of
3.3 V. All of these assumptions are simplifications, however, and therefore, the actual forward cur-
rents for each of these resistor values were verified by measuring the voltage drop across Rvcsel and
their exact values as used in the comparison between the VSMY2850 and the OP280V were thusly
determined as 3mA, 7mA and 11.5mA for resistor values of 390Ω, 180Ω and 120Ω, respectively
(see subsection 4.2.1).
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C. Schematics and layouts

C. Schematics and layouts

C.1. Schematics of the control unit.
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Figure C.1.: Connections to and from the ATSAM3S4B microcontroller.
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C.1. Schematics of the control unit.
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Figure C.2.: Incoming and outgoing board connections (Joint Test Action Group (JTAG) for debug-
ging, UART for communication with the computer software, and a custom connector to
connect the sensor unit) and optical sensor detector circuitry.
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C. Schematics and layouts
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C.1. Schematics of the control unit.
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Figure C.4.: Analog contact sensor circuitry: Reference voltage generation, incoming contact sensor
signal registration, and analog filtering.

161



C. Schematics and layouts
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Figure C.5.: Incoming and outgoing board connections: JTAG for debugging, UART for communica-
tion with the computer software, and a custom connector to connect the sensor unit.
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C.2. Layout of the control unit

C.2. Layout of the control unit

Figure C.6.: Layout of the control unit for a double-sided PCB.
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C. Schematics and layouts

C.3. Bill of materials of the control unit

Pos Name Value Package Pos Name Value Package

1 C1 100nF 1206 50 K15 GND 1X01
2 C2 100nF 1206 51 K16 V_LED6 1X01
3 C3 100nF 1206 52 K17 UART DE09 socket
4 C4 100nF 1206 53 K18 On/Off Switch A 1X01
5 C5 100nF 1206 54 K19 On/Off Switch B 1X01
6 C6 10μF SMD R4X6 e-cap 55 K20 V_LED2 1X01
7 C7 4.7μF SMD R4X6 e-cap 56 K21 V_LED3 1X01
8 C8 100nF 1206 57 K22 V_LED4 1X01
9 C9 100nF 1206 58 K23 V_LED5 1X01
10 C10 100nF 1206 59 K24 EPG_MUX0 1X01
11 C11 100nF 1206 60 K25 EPG0 1X01
12 C12 4.7μF SMD R4X6 e-cap 61 K26 K2X12 2X12
13 C13 2.2μF SMD R4X6 e-cap 62 L1 10μH/100mA 0805
14 C14 20pF 1206 63 Q1 12MHz HC49 SMD
15 C15 20pF 1206 64 R1 25 kΩ potentiometer VISHAY_64W
16 C16 100nF 1206 65 R2 56 kΩ 1206
17 C17 100nF 1206 66 R3 10 kΩ potentiometer 1206
18 C18 100nF 1206 67 R4 5 kΩ potentiometer 1206
19 C19 100nF 1206 68 R5 1 kΩ potentiometer 1206
20 C20 100nF 1206 69 R6 120Ω 1206
21 C21 100nF 1206 70 R7 220Ω 1206
22 C22 100nF 1206 71 R8 220Ω 1206
23 C23 2.2μF SMD R4X6 e-cap 72 R9 220Ω 1206
24 C24 100nF 1206 73 R10 100 kΩ 1206
25 C25 2.2μF SMD R4X6 e-cap 74 R11 100 kΩ 1206
26 C26 2.2μF SMD R4X6 e-cap 75 R12 100 kΩ 1206
27 D1 LED_RED 1206-D 76 R13 100 kΩ 1206
28 D2 LED_GREEN 1206-D 77 R14 100 kΩ 1206
29 D3 LED_YELLOW 1206-D 78 R15 100 kΩ 1206
30 D4 13V SMA 79 R16 120Ω 1206
31 F1 2A 1206 80 R17 120Ω 1206
32 IC1 LF33CDT TO252 81 R18 120Ω 1206
33 IC2 MAX3232CSE SO16 82 R19 120Ω 1206
34 IC3 LM339D SO14 83 R20 120Ω 1206
35 IC4 TS912ID SO8 84 R21 120Ω 1206
36 K1 PT6 1X01 85 R22 10 kΩ VISHAY_64W
37 K2 ERASE Pin header 1x02 pitch 2.54mm 86 R23 10 kΩ VISHAY_64W
38 K3 JTAG Box socket 2 rows 20 pins 87 R24 10 kΩ VISHAY_64W
39 K4 UART_RX_TX Pin header 1x02 pitch 2.54mm 88 R25 10 kΩ VISHAY_64W
40 K5 9V_Battery SL-MTA 2 pins pitch 2.54mm 89 R26 10 kΩ VISHAY_64W
41 K6 EPGref 1X01 90 R27 10 kΩ VISHAY_64W
42 K7 PT0 1X01 91 R28 10 kΩ 1206
43 K8 PT1 1X01 92 R29 10 kΩ
44 K9 PT2 1X01 93 R30 10 kΩ VISHAY_64W
45 K10 PT3 1X01 94 R31 560Ω 1206
46 K11 PT4 1X01 95 R32 1 kΩ 1206
47 K12 PT5 1X01 96 R33 1 kΩ
48 K13 V_LED0 1X01 97 S1 Buzzer CPM 121 Pitch 7.62
49 K14 V_LED1 1X01 98 U1 ATSAM3S4BA-AU QFP50P1200X1200X160-64N
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C.4. Schematics of the sensor unit

C.4. Schematics of the sensor unit
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Figure C.7.: Schematics of the sensor unit.
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C. Schematics and layouts

C.5. Layout of the sensor unit

Figure C.8.: Layout of the sensor unit for a double-sided flexible PCB. The area around the connector
socket should be stiffened with a thicker polyamide layer.

166



C.6. Bill of materials of the sensor unit

C.6. Bill of materials of the sensor unit

Pos Name Value Package

01 00 to 31 Tongue contact sensor Blank hard gold plated pad
02 Body Clock Reference voltage contact Matrix of hard gold plated pads
03 D0, D1, D2, D3, D4, D5, D6 OP280V PLCC-2
04 Pt0, Pt1, Pt2, Pt3, Pt4, Pt5, Pt6 Phototransistor TEMT7100
05 ptMux ADG731 TQFP
06 toEosControl Pin header 2 rows times 12 pins
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D. Sensor unit assembly
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Workflow for the assembly of an EOS sensor unit 
 

1. Thermoform the Erkodur 0.5 mm base 
plate; remove protective foil 

 

2. Trim the base plate to perfectly fit the 
plaster model and check the fit of the 
flexible sensor circuit board, especially 
if the contact array flap can be folded to 
the back side of the base plate 

 

3. Mark the edge of the flexible circuit 
board on both top and bottom of the 
base plate 

 



4. Mask all contacts (sensors and pads) 
with masking tape. Try to mask only the 
blank areas and cover as little of the 
area around it 
Mask dimensions: 
Optical sensors (7x) 6 mm x 6 mm 
Multiplexer (1x): 12 mm x 12 mm 
Connector (1x): 40 mm x 20 mm 
Contact sensors (2x): 60 mm x 30 mm) 
Contact array (1x): 21 mm x 21 mm 
  

5. Using a sandblaster, roughen the base 
plate (2 bar, 50 μm): Base plate top 
(sensor side) and bottom (contact array 
side) and front (lip sensor side) 

 

6. Using a sandblaster, roughen the 
unmasked area of the cover layer oft he 
circuit board (2 bar, 50 μm). 

7. Remove contact sensor masking tape 
and mask the contact array and the 
connector on the bottom side of the 
board 

 



8. Sandblast the bottom of the flexible 
circuit board (2 bar, 50 μm) 

9. Remove all masking tape  

10. Clean base plate and circuit board using 
an alcohol wipe 

 

11. Mount all electronic components on the 
circuit board 

 

12. Apply Dentona Primostick Primer to the 
roughened areas of the base plate (top, 
front, and bottom) 

 
13. Apply Dentona Primostick to the 

roughened area of the circuit board 
bottom 

 
14. Harden the primer in UV oven (4 

minutes per side) 

 



15. Seal the multiplexer on the bototm of 
the circuit board using Tetric EvoFlow 

16. Harden the EvoFlow using a blue light 
lamp. 

 
The following step is ideally performed 
by two people: 

17. Affix the circuit board to the base plate 
using EvoFlow. Apply the glue in the 
order according to 
SecondVoice_SensorBoard_glueAreas.pdf 
and hard it with the blue light lamp 
after every step. 
 

 

18. Fold the downward facing source-
detector pair of the lip sensor, apply 
primer and let it harden in the UV oven. 

 

19. Fix the folded flap in place using 
EvoFlow. Harden with blue light lamp. 

 



20. Apply primer around all the optical 
sensors and let it harden in the UV oven. 

 
21. Seal all optical sensors using EvoFlow. 

Harden with the blue light lamp. 
 

22. Seal the edges of the circuit board with 
EvoFlow. Harden with the blue light 
lamp. 

 

23. Fix the circuit board part that exits the 
mouth in place using EvoFlow. Harden 
with the blue light lamp. 

 

 



I

II

III
IV IV

Edge of the incisors

Posterior edge of the base plate

V

Figure D.1.: Instructions given in SecondVoice_SensorBoard_glueAreas.pdf regarding the order of
glueing the flexible PCB to the base plate
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E. Firmware flow and data protocol

Block meaning Header Mode Frame index Lip sensor Optical sensor 1 Optical sensor 2-5 Contact sensors Checksum

Mean top Mean bottom Not used Mean center Mean anterior Mean posterior
...

1 bit per sensor Sum of all bytes except
header bytes (overflow possibleByte value 0xA5 0x5A 0x00 L U L U L U 0x00 0x00 L U L U L U

Table E.1.: Deprecated frame format of the data sent from the control unit up to revision number
2.3 to the computer. All multi-byte data are sent with the lower byte (L) before the upper
byte (U), i.e., in ittle-endian format.

Block meaning Header bytes Mode Checksum

Byte value 0xA5 0x5A 0x00 or 0x01 Equals the Mode byte

Table E.2.: Frame format of the control parameter frame sent from the computer to the MCU. The
Mode parameter could be “0” to sample only one detector per sensor, or “1” to sample
the adjacent detectors, as well.
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E. Firmware flow and data protocol

Device 
power on
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Reference voltage frequency: 40 kHz
Reference voltage DC offset:  900 mV

Maximum measurement window length: 10 ms

Settling time optical sensors: 100 μs
Sampling time contact sensors: 60 μs
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(b) Flow of the (infinite) measurement loop

Figure E.1.: Program flow of the firmware
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F. Palate file format

The palate files used to describe the palate outline and the sensor unit configuration have an XML-
like structure. The following shows an example file:

<palate name="4−Simon">
<shape_2d points_x_y_cm =" −0.102000 0.010000 −0.669000 0.065000 −1.184000 0.127000
−1.937000 0.158000 −2.354000 −0.052000 −2.783000 −0.571000
−3.103000 −0.936000 −3.451000 −1.446000 −3.869000 −1.833000
−4.366000 −2.303000 −4.683000 −2.576000 −5.073000 −2.100000
−5.323000 −1.594000 " />
<contact_sensors quantity = "64">
</ contact_sensors>
< l ight_sensors quantity = "6">
< l ight_sensor index ="0"
x_cm = " −5.170000 "
y_cm = " −1.900000 "
angle_deg = " −153.700000 "
calibration_dc_mm_adc = " 0.000000 0.000000 30.000000 4095.000000 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
< l ight_sensor index ="1"
x_cm = " −4.140000 "
y_cm = " −2.090000 "
angle_deg = " −46.600000 "
calibration_dc_mm_adc = " 0.000000 439.465494 5.000000 2159.479062
10.000000 3308.020694 15.000000 3670.415668
20.000000 3831.927234 25.000000 3923.939653
30.000000 3972.534454 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
< l ight_sensor index ="2"
x_cm = " −3.300000 "
y_cm = " −1.230000 "
angle_deg = " −34.300000 "
calibration_dc_mm_adc = " 0.000000 1000.360965 5.000000 2447.305798
10.000000 3388.112120 15.000000 3704.338295
20.000000 3850.458449 25.000000 3934.754741
30.000000 3975.982471 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
< l ight_sensor index ="3"
x_cm = " −2.550000 "
y_cm = " −0.290000 "
angle_deg = " −39.600000 "
calibration_dc_mm_adc = " 0.000000 1528.228752 5.000000 2506.601168
10.000000 3460.317472 15.000000 3736.252028
20.000000 3868.718543 25.000000 3947.935527
30.000000 3987.481818 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
< l ight_sensor index ="4"
x_cm = " −1.540000 "
y_cm = "0.140000 "
angle_deg = " −92.600000 "
calibration_dc_mm_adc = " 0.000000 418.100000 5.000000 2143.920000
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F. Palate file format

10.000000 3304.840000 15.000000 3669.090000
20.000000 3831.210000 25.000000 3923.650000
30.000000 3970.040000 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
< l ight_sensor index ="5"
x_cm = " −0.360000 "
y_cm = "0.040000 "
angle_deg = " −95.500000 "
calibration_dc_mm_adc = " 0.000000 276.100000 5.000000 2032.080000
10.000000 3283.990000 15.000000 3660.500000
20.000000 3826.670000 25.000000 3921.460000
30.000000 3972.100000 "
coe f f i c i en t s _ t r i p l ePT = " 1.000000 0.000000 0.000000 0.000000 " />
</ l ight_sensors>
</ palate>

The individual tags have the following meaning:

palate: The palate tag encapsulates the entire palate file. Its only attribute is name, which holds the
name of the palate file to be displayed in the GUI.

shape_2d: This self-closing tag has only one attribute points_x_y_cm, which is a list of x- and y-
coordinates of the mid-sagittal cross-section of the sensor unit. The origin for these coordi-
nates may be chosen arbitrarily, but using the most posterior point of the sensor unit profile
is recommended.

contact_sensors: This tag has only one attribute quantity stating the number of contact sensors on
the palate.

light_sensors: This tag has one attribute quantity, which holds the number of optical sensors (lip
and tongue) on the sensor unit. Its content is a series of light_sensor tags.

light_sensor: This self-closing tag has the following attributes:

index: Index of the optical sensor (usually from front to back)

x_cm: x- coordinate in cm of the sensor along the palate profile using the same origin as
shape_2d.

y_cm: y- coordinate in cm of the sensor along the palate profile using the same origin as
shape_2d.

angle_deg: Angle in degree of the optical axis of the sensor

calibration_dc_mm_adc: Pairs of distances in mm and the corresponding sensor output in
ADC for the distance sensing function (see subsection 4.2.2).

coefficients_triplePT: Coefficients used for the angle-correction (see subsection 4.2.2).
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G. Supplemental material regarding
the vocal tract model

Sound xlar Alar nlar,p xp Ap np,c xc Ac nc xa Aa nc,a xin Ain xlip Alip

/a:/ 1.866 1.153 0.418 2.893 5.755 7.363 8.477 0.951 0.852 14.385 6.655 0.543 17.028 2.706 17.099 2.787

/e:/ 0.458 1.474 0.208 3.043 7.055 0.833 12.78 0.478 0.473 17.236 3.199 0.586 17.499 3.859 18.142 2.485

/i:/ 1.644 2.046 2.391 5.625 8.834 0.955 13.45 0.275 0.298 17.323 4.055 1.408 17.936 2.929 18.136 3.298

/o:/ 1.059 1.983 0.217 2.839 7.53 0.722 11.405 0.421 0.4 17.574 14.351 0.736 20.3451 2.087 21.425 0.638

/u:/ 1.278 1.904 4.252 6.448 8.881 2.13 14.457 0.782 1.043 18.572 9.436 1.019 20.002 2.288 21.519 0.423

/E:/ 2.477 0.772 1.066 2.647 3.614 0.773 12.300 1.316 1.635 15.279 2.632 8.927 16.851 4.133 17.422 4.392

/ø:/ 0.895 1.460 0.324 3.122 9.609 0.653 14.390 1.305 0.873 18.767 4.274 1.583 19.101 2.221 20.538 0.62

/y:/ 1.510 1.776 3.013 6.103 11.572 0.935 15.014 0.597 0.592 18.637 2.741 0.918 19.313 1.044 20.688 0.342

/a/ 2.319 0.685 1.268 3.247 4.311 6.154 9.551 0.776 1.593 15.677 8.536 0.725 18.042 3.637 18.421 3.216

/E/ 2.756 0.772 1.276 2.643 3.818 0.275 8.136 1.325 0.508 16.795 3.951 0.594 17.38 3.283 17.474 4.015

/I/ 1.606 1.958 3.7 6.628 7.822 2.747 12.842 1.155 1.082 16.456 4.364 0.629 17.894 3.368 18.712 2.681

/O/ 0.0 0.817 0.428 2.625 4.504 0.941 10.556 0.506 1.798 17.55 10.108 0.808 19.366 2.08 20.241 1.563

/U/ 0.863 1.978 0.515 2.098 8.708 0.792 11.086 0.347 0.925 17.442 12.732 0.852 19.684 1.584 20.848 0.816

/œ/ 1.634 1.526 0.791 3.369 7.445 1.928 6.158 2.493 5.605 10.767 5.019 0.225 18.042 2.929 19.012 1.405

/Y/ 0.594 1.167 0.464 2.773 8.247 0.905 12.8 1.894 0.761 16.428 5.053 0.581 18.201 2.858 19.541 0.816

/@/ 0.0 1.077 0.208 3.074 6.256 0.726 12.783 1.456 2.679 16.725 1.773 0.896 17.407 2.575 18.56 1.405

/f/ 0.021 0.753 0.18 1.922 6.776 0.367 11.861 1.804 1.319 16.584 3.22 0.743 17.894 0.548 18.302 1.622

/l/ 1.013 1.726 0.618 3.139 10.243 0.817 13.349 1.085 0.703 15.843 1.807 1.388 16.374 1.201 18.767 1.796

/s/ 0.968 0.855 0.301 2.554 9.109 1.525 14.274 2.416 1.222 16.495 0.092 0.586 17.407 1.301 17.892 1.561

/S/ 2.35 1.079 5.222 5.154 9.078 1.301 16.442 0.127 0.438 17.329 6.732 1.77 18.519 1.867 19.765 3.172

/ç/ 2.545 0.875 9.361 6.716 6.61 1.002 14.464 0.311 1.5 16.9 0.16 0.57 17.982 2.877 18.812 2.681

/x/ 2.406 0.718 0.074 2.406 1.822 0.806 9.412 0.2 0.741 14.815 8.271 1.392 16.93 6.115 17.745 3.708

Table G.1.: Parameter values for the geometrically fitted full configuration of the six point model.
All positions xi, i ∈ {lar, p, c, a, in, lip}, are in cm, all areas Ai in cm2 and all warping
exponents ni are dimensionless.
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G. Supplemental material regarding the vocal tract model

Sound Ap np,c xc Ac nc Aa nc,a xin Ain xlip Alip

/a:/ 5.755 7.363 8.477 0.951 0.852 6.655 0.543 17.028 2.706 17.099 2.787

/e:/ 7.055 0.833 12.78 0.478 0.473 3.199 0.586 17.499 3.859 18.142 2.485

/i:/ 8.834 0.955 13.45 0.275 0.298 4.055 1.408 17.936 2.929 18.136 3.298

/o:/ 7.53 0.722 11.405 0.421 0.4 14.35 0.736 20.345 2.087 21.425 0.638

/u:/ 8.881 2.13 14.457 0.782 1.043 9.436 1.019 20.002 2.288 21.519 0.423

/E:/ 3.614 0.773 12.3 1.316 1.636 2.632 8.927 16.851 4.133 17.422 4.392

/ø:/ 9.609 0.653 14.39 1.305 0.873 4.274 1.583 19.101 2.221 20.538 0.62

/y:/ 11.572 0.935 15.014 0.597 0.592 2.741 0.918 19.312 1.044 20.688 0.342

/a/ 4.311 6.154 9.551 0.776 1.593 8.537 0.725 18.042 3.637 18.421 3.216

/E/ 3.818 0.275 8.136 1.325 0.508 3.951 0.594 17.38 3.283 17.474 4.015

/I/ 7.822 2.747 12.842 1.155 1.082 4.364 0.629 17.894 3.368 18.712 2.68

/O/ 4.504 0.941 10.556 0.506 1.798 10.108 0.808 19.366 2.08 20.241 1.563

/U/ 8.708 0.792 11.086 0.347 0.925 12.732 0.852 19.684 1.584 20.848 0.816

/œ/ 7.445 1.928 6.158 2.493 5.605 5.019 0.225 18.042 2.929 19.012 1.405

/Y/ 8.247 0.905 12.8 1.894 0.761 5.053 0.581 18.201 2.858 19.541 0.816

/@/ 6.256 0.726 12.783 1.456 2.679 1.773 0.896 17.407 2.575 18.56 1.405

/f/ 6.776 0.367 11.861 1.804 1.319 3.22 0.743 17.894 0.548 18.302 1.622

/l/ 10.243 0.817 13.349 1.085 0.703 1.807 1.388 16.374 1.201 18.767 1.797

/s/ 9.109 1.525 14.274 2.416 1.222 0.092 0.586 17.407 1.301 17.892 1.561

/S/ 9.078 1.301 16.442 0.127 0.438 6.732 1.77 18.519 1.867 19.765 3.172

/ç/ 6.61 1.002 14.464 0.311 1.5 0.16 0.57 17.982 2.877 18.812 2.681

/x/ 1.822 0.806 9.412 0.2 0.741 8.271 1.392 16.930 6.115 17.745 3.708

Table G.2.: Parameter values for the geometrically fitted reduced configuration of the six point
model. All positions xi, i ∈ {lar, p, c, a, in, lip}, are in cm, all areas Ai in cm2 and all warp-
ing exponents ni are dimensionless.
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Figure G.1.: Area functions of tense vowels (left column), lax and neutral vowels (center column),
and consonants (right column). Dashed lines mark the references and solid lines the
geometrically fitted reduced configuration of the six point model. The black dots mark
the six control points.

185



G. Supplemental material regarding the vocal tract model

Sound xlar Alar nlar,p xp Ap np,c xc Ac nc xa Aa nc,a xin Ain xlip Alip

/a:/ 2.066 1.143 0.118 2.693 5.745 6.963 8.277 0.941 1.252 14.19 6.665 0.243 16.52 2.83 16.53 2.969

/e:/ 0.658 1.464 0.208 2.943 7.045 1.233 12.98 0.488 0.473 17.14 3.189 0.586 17.5 3.859 17.94 2.495

/i:/ 2.044 2.026 0.891 3.352 8.991 0.8 13.39 0.216 2.413 16.06 0.714 0.814 17.32 3.421 17.63 2.925

/o:/ 1.359 1.963 0.217 2.789 7.51 1.522 11.01 0.441 0.6 17.17 14.33 1.536 20.45 2.107 21.02 0.658

/u:/ 1.477 1.894 3.852 6.138 9.035 1.33 14.31 0.628 0.843 18.26 11.42 0.919 20.2 2.545 21.52 0.762

/E:/ 2.627 0.762 0.666 2.847 3.624 0.673 12.4 1.306 1.235 15.38 2.622 9.327 16.65 4.143 17.27 4.402

/ø:/ 1.295 1.463 0.024 3.122 9.589 0.753 14.74 1.325 1.273 18.82 4.284 1.583 19.1 2.221 20.19 0.64

/y:/ 1.91 1.756 2.213 6.103 11.55 0.935 15.41 0.617 0.392 18.69 2.761 0.618 19.46 1.054 20.29 0.362

/a/ 2.519 0.675 0.868 3.047 4.301 6.554 9.751 0.786 1.193 15.88 8.527 0.325 18.17 3.647 18.22 3.226

/E/ 2.556 0.762 0.876 3.987 3.808 0.375 8.336 1.335 0.308 16.59 3.961 0.194 17.38 3.293 17.4 4.015

/I/ 1.806 1.948 3.3 6.428 7.812 2.347 13.04 1.165 0.682 16.66 4.354 0.229 18.09 3.378 18.51 2.691

/O/ 0.4 0.797 0.028 2.525 4.484 0.641 10.51 0.526 1.398 17.95 10.09 0.008 19.37 2.06 19.84 1.583

/U/ 1.663 1.938 0.015 2.048 8.668 1.992 10.54 0.387 0.325 17.74 12.73 1.052 20.14 1.308 20.14 1.291

/œ/ 1.834 1.517 0.391 3.569 7.435 2.328 6.358 2.503 5.205 10.97 5.009 0.625 17.89 2.919 18.81 1.415

/Y/ -0.2 1.107 1.508 2.074 6.206 1.926 12.18 1.486 3.879 16.13 1.808 0.496 17.86 1.9 18.76 1.395

/@/ 0.2 1.067 0.108 2.874 6.246 1.126 12.58 1.466 3.079 16.52 1.783 1.296 17.46 2.585 18.36 1.415

/l/ 1.017 1.727 0.624 3.149 10.26 0.826 13.4 1.07 0.719 15.67 1.732 1.177 16.33 1.298 18.09 1.721

/f/ 0.0 0.75 0.179 1.922 6.799 0.379 11.88 1.878 0.456 14.68 3.321 0.582 17.43 2.504 18.3 0.259

/s/ 0.968 0.855 0.301 2.554 9.109 1.525 14.27 2.416 1.222 16.5 0.149 0.586 17.41 1.301 17.89 1.561

/S/ 2.35 1.079 5.222 5.154 9.078 1.301 16.44 0.212 0.438 17.33 6.732 1.77 18.52 1.867 19.77 3.172

/ç/ 1.644 2.046 2.391 5.625 8.834 0.955 14.02 0.202 0.313 15.44 0.569 1.114 17.61 3.255 18.14 3.298

/x/ 2.406 0.718 0.074 2.406 1.822 0.806 9.441 0.14 0.741 14.82 8.271 1.392 16.93 6.115 17.75 3.708

Table G.3.: Parameter values for the perceptually optimized full configuration of the six pointmodel.
All positions xi, i ∈ {lar, p, c, a, in, lip}, are in cm, all areas Ai in cm2 and all warping
exponents ni are dimensionless.
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Sound Ap np,c xc Ac nc Aa nc,a xin Ain xlip Alip

/a:/ 5.735 8.163 8.077 0.971 1.452 6.655 0.543 17.03 2.726 17.05 2.787

/e:/ 7.045 1.233 12.58 0.488 0.373 3.189 0.986 17.55 3.869 17.94 2.495

/i:/ 8.824 1.055 13.5 0.285 0.198 4.065 1.008 17.74 2.939 17.94 3.298

/o:/ 7.52 1.122 11.21 0.431 0.6 14.36 0.736 20.3 2.097 21.23 0.648

/u:/ 8.858 1.43 14.41 0.795 0.643 9.421 1.619 19.55 2.273 21.09 0.515

/E:/ 3.604 0.873 12.35 1.306 1.435 2.642 9.327 16.65 4.143 17.22 4.402

/ø:/ 9.599 0.753 14.59 1.315 1.073 4.264 1.483 19.3 2.211 20.34 0.63

/y:/ 11.56 0.935 15.11 0.607 0.192 2.751 0.818 19.16 1.044 20.49 0.352

/a/ 4.301 6.554 9.701 0.786 1.193 8.527 0.325 18.17 3.647 18.22 3.226

/E/ 3.808 0.375 8.336 1.335 0.408 3.961 0.194 17.38 3.293 17.4 4.015

/I/ 7.812 2.347 13.04 1.145 0.682 4.354 0.229 18.09 3.378 18.51 2.691

/O/ 4.474 0.641 10.21 0.536 1.698 10.08 0.108 19.69 2.344 19.87 1.622

/U/ 8.698 0.592 11.19 0.357 0.525 12.72 1.252 19.88 1.594 20.65 0.826

/œ/ 7.425 2.728 6.158 2.513 5.105 4.999 0.925 18.19 2.917 18.61 1.425

/Y/ 8.217 2.105 12.2 1.924 0.261 5.06 0.981 18.35 2.868 18.94 0.846

/@/ 6.246 1.126 12.58 1.466 3.079 1.783 1.296 17.46 2.585 18.36 1.415

/f/ 6.776 0.367 11.86 1.804 1.319 3.22 0.743 17.89 0.272 18.41 0.277

/l/ 10.24 0.817 13.35 1.085 0.703 1.807 1.388 16.37 1.201 18.77 1.796

/s/ 9.109 1.525 10.71 2.416 1.222 0.134 0.586 17.41 1.301 17.89 1.561

/S/ 9.078 1.301 16.11 0.156 0.438 6.622 1.77 18.65 1.895 19.77 3.172

/ç/ 6.61 1.002 14.52 0.247 1.5 0.192 0.57 17.98 2.877 18.81 2.681

/x/ 1.822 0.806 9.412 0.182 0.741 8.271 1.392 16.93 6.115 17.75 3.708

Table G.4.: Parameter values for the perceptually optimized reduced configuration of the six point
model. All positions xi are in cm, all areas Ai in cm2 and all warping exponents ni are
dimensionless.
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G. Supplemental material regarding the vocal tract model

Sound F116 F111 F216 F211 F316 F311

/a:/ 702 622 1246 1123 2679 2676

/e:/ 323 319 2132 2141 2709 2679

/i:/ 257 258 2066 2174 3038 3124

/o:/ 325 311 601 602 2646 2583

/u:/ 265 286 751 848 2122 2161

/E:/ 528 504 1905 1832 2591 2550

/ø:/ 298 286 1300 1269 2025 2014

/y:/ 228 225 1657 1614 2056 2119

/a/ 671 569 1130 1106 2487 2432

/E/ 523 493 1805 1717 2566 2591

/I/ 355 394 1756 1652 2470 2480

/O/ 463 453 890 844 2522 2477

/U/ 327 287 997 750 2402 2391

/œ/ 464 473 1313 1301 2224 2252

/Y/ 372 380 1366 1290 2380 2316

/@/ 406 390 1626 1607 2520 2477

Table G.5.: Formant frequencies in Hz for the first three formants of the vocal tract transfer func-
tions calculated from the the perceptually optimized full configuration (subscript 16) and
the perceptually optimized reduced configuration (subscript 11) of the six point model.
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H. Articulation-to-Speech: Optimal
hyperparameters

This appendix lists the optimal hyperparameters for the best-performing regression models in the
ATS study (see chapter 6) for each subject. The names of the various basis and kernel functions
are given in Matlab terminology (e.g., “pureQuadratic”) for ease of reference. Complete logs of
the entire parameter optimizations (including all evaluated hyperparameter combinations and the
optimal values for the other, not best-performing models) are given in the digital supplemental
materials accompanying this dissertation.

Subject 1

Parameter Best model Optimal Hyperparameters
xlar SVM linear, C = 3.2689, ε = 0.10424, standardized
Alar Ensemble bagging, 497 cycles, min. leaf size 1, max. splits 200, variables 10
nlar SVM Gaussian, C = 70.427, γ = 0.87274, ε = 0.0053359, standardized
xp GPR basis constant, kernel ardexponential, σ = 0.23552, not standardized
Ap GPR basis linear, kernel ardmatern32, σ = 0.0060051, standardized
np Ensemble boosting, 439 cycles, learn rate 0.011384, min. leaf size 16, max. splits 6, variables 10
xc SVM polynomial order 2, C = 0.018994, ε = 0.032298, standardized
Ac Ensemble bagging, 45 cycles, min. leaf size 1, max. splits 96, variables 10
nc SVM Gaussian, C = 927.34, γ = 0.86081, ε = 0.001962, standardized
xa SVM Gaussian, C = 28.632, γ = 0.73133, ε = 0.0031091, standardized
Aa Ensemble bagging, 107 cycles, min. leaf size 2, max. splits 135, variables 6
na GPR basis constant, kernel ardexponential, σ = 0.1947, not standardized
xin Ensemble boosting, 499 cycles, learn rate 0.042238, min. leaf size 1, max. splits 170, variables 4
Ain GPR basis none, kernel matern32, σ = 0.00037503, kernel scale 3.9826, standardized
xlip Ensemble bagging, 249 cycles, min. leaf size 1, max. splits 203, variables 6
Alip Ensemble boosting, 499 cycles, learn rate 0.013175, min. leaf size 2, max. splits 177, variables 3

Table H.1.: Optimal hyperparameters for the best-performing regression models of subject 1
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H. Articulation-to-Speech: Optimal hyperparameters

Subject 2

Parameter Best model Optimal Hyperparameters
xlar GPR basis linear, kernel ardmatern52, σ = 0.45901, standardized
Alar GPR basis constant, kernel exponential, σ = 0.0021071, kernel scale 3.8253, standardized
nlar Ensemble boosting, 328 cycles, learn rate 0.049207, min. leaf size 8, max. splits 20, variables 1
xp GPR basis constant, kernel exponential, σ = 0.0078458, kernel scale 3.8239, standardized
Ap GPR basis constant, kernel exponential, σ = 0.00010236, kernel scale 3.9581, standardized
np GPR basis none, kernel ardexponential, σ = 0.71897, not standardized
xc GPR basis constant, kernel ardexponential, σ = 0.00015348, standardized
Ac GPR basis none, kernel exponential, σ = 0.1859, kernel scale 3.7686, standardized
nc GPR basis pureQuadratic, kernel rationalquadratic, σ = 0.003132, kernel scale 142.39, standardized
xa GPR basis none, kernel rationalquadratic, σ = 0.021129, kernel scale 39.396, not standardized
Aa Ensemble bagging, 425 cycles, min. leaf size 2, max. splits 70, variables 7
na Ensemble boosting, 143 cycles, learn rate 0.088615, min. leaf size 3, max. splits 23, variables 10
xin GPR basis linear, kernel exponential, σ = 0.42712, kernel scale 3711.6, standardized
Ain GPR basis none, kernel exponential, σ = 0.00069188, kernel scale 3700, standardized
xlip Ensemble bagging, 38 cycles, min. leaf size 4, max. splits 43, variables 8
Alip Ensemble bagging, 44 cycles, min. leaf size 4, max. splits 204, variables 5

Table H.2.: Optimal hyperparameters for the best-performing regression models of subject 2

Subject 3

Parameter Best model Optimal Hyperparameters
xlar GPR basis constant, kernel exponential, σ = 0.32651, kernel scale 3849.9, not standardized
Alar Ensemble boosting, 460 cycles, learn rate 0.059927, min. leaf size 8, max. splits 88, variables 8
nlar SVM Gaussian, C = 11.92, γ = 988.21, ε = 0.0013191, not standardized
xp GPR basis linear, kernel rationalquadratic, σ = 0.013517, kernel scale 3854.6, not standardized
Ap Ensemble boosting, 418 cycles, learn rate 0.17623, min. leaf size 1, max. splits 6, variables 9
np Ensemble boosting, 394 cycles, learn rate 0.0076947, min. leaf size 9, max. splits 106, variables 9
xc GPR basis linear, kernel ardexponential, σ = 0.00010261, kernel scale 3854.6, not standardized
Ac SVM Gaussian, C = 48.198, γ = 4.2594, ε = 0.029579, standardized
nc GPR basis constant, kernel ardrationalquadratic, σ = 0.83801, standardized
xa GPR basis pureQuadratic, kernel ardexponential, σ = 1.06, standardized
Aa GPR basis none, kernel exponential, σ = 0.20942, kernel scale 3329.2, standardized
na SVM Gaussian, C = 50.643, γ = 0.82798, ε = 0.0043948, standardized
xin GPR basis none, kernel exponential, σ = 0.00010338, kernel scale 2839.8, standardized
Ain Ensemble boosting, 256 cycles, learn rate 0.052565, min. leaf size 4, max. splits 187, variables 3
xlip Ensemble boosting, 365 cycles, learn rate 0.14381, min. leaf size 2, max. splits 104, variables 1
Alip Ensemble boosting, 194 cycles, learn rate 0.062969, min. leaf size 1, max. splits 167, variables 4

Table H.3.: Optimal hyperparameters for the best-performing regression models of subject 3

Subject 4

Parameter Best model Optimal Hyperparameters
xlar GPR basis constant, kernel ardexponential, σ = 0.00026394, not standardized
Alar Ensemble bagging, 136 cycles, min. leaf size 1, max. splits 202, variables 7
nlar GPR basis constant, kernel exponential, σ = 0.00012277, kernel scale 11.942, standardized
xp GPR basis linear, kernel exponential, σ = 0.00011001, kernel scale 3609.2, not standardized
Ap GPR basis constant, kernel exponential, σ = 0.00125, kernel scale 71.779, standardized
np SVM Gaussian, C = 1.6301, γ = 844.01, ε = 0.0008347, not standardized
xc GPR basis none, kernel rationalquadratic, σ = 0.39846, kernel scale 1568.1, not standardized
Ac Ensemble boosting, 486 cycles, learn rate 0.023963, min. leaf size 1, max. splits 15, variables 2
nc GPR basis constant, kernel ardmatern32, σ = 0.00028977, standardized
xa SVM Gaussian, C = 7.3972, γ = 994.47, ε = 0.015899, not standardized
Aa Ensemble boosting, 434 cycles, learn rate 0.13478, min. leaf size 1, max. splits 80, variables 1
na Ensemble boosting, 334 cycles, learn rate 0.014869, min. leaf size 4, max. splits 180, variables 2
xin SVM polynomial order 2, C = 0.079779, ε = 0.2974, standardized
Ain Ensemble boosting, 405 cycles, learn rate 0.16239, min. leaf size 8, max. splits 5, variables 3
xlip SVM polynomial order 3, C = 0.048712, ε = 0.048712, standardized
Alip SVM Gaussian, C = 4.289, γ = 3.6078, ε = 0.016092, standardized

Table H.4.: Optimal hyperparameters for the best-performing regression models of subject 4
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