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Abstract. Concrete domains have been introduced in Description Logics (DLs) to enable
reference to concrete objects (such as numbers) and predefined predicates on these objects
(such as numerical comparisons) when defining concepts. To retain decidability when
integrating a concrete domain into a decidable DL, the domain must satisfy quite strong
restrictions. In previous work, we have analyzed the most prominent such condition, called
ω-admissibility, from an algebraic point of view. This provided us with useful algebraic
tools for proving ω-admissibility, which allowed us to find new examples for concrete
domains whose integration leaves the prototypical expressive DL ALC decidable.
When integrating concrete domains into lightweight DLs of the EL family, achieving
decidability is not enough. One wants reasoning in the resulting DL to be tractable. This
can be achieved by using so-called p-admissible concrete domains and restricting the
interaction between the DL and the concrete domain. In the present paper, we investigate
p-admissibility from an algebraic point of view. Again, this yields strong algebraic tools
for demonstrating p-admissibility. In particular, we obtain an expressive numerical p-
admissible concrete domain based on the rational numbers. Although ω-admissibility
and p-admissibility are orthogonal conditions that are almost exclusive, our algebraic
characterizations of these two properties allow us to locate an infinite class of p-admissible
concrete domains whose integration into ALC yields decidable DLs.

Keywords: Description logic · concrete domains · p-admissibility · convexity · ω-admissibility
· finite boundedness · tractability · decidability · constraint satisfaction.

1 Introduction

Description Logics (DLs) [3,5] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such as
the Semantic Web [28] or biology and medicine [27]. A DL-based ontology consists of inclusion
statements (so-called GCIs) between concepts defined using the DL at hand. For example, the
GCI Human v ∃parent.Human, which says that every human being has a human parent, uses con-
cepts expressible in EL. This GCI clearly implies the inclusion Human v ∃parent.∃parent.Human,
i.e., Human is subsumed by ∃parent.∃parent.Human w.r.t. any ontology containing the above
GCI. Keeping the subsumption problem decidable, and preferably of a low complexity, is an
important design goal for DLs. While subsumption in the lightweight DL EL is tractable (i.e.,
decidable in polynomial time), it is ExpTime-complete in ALC, which is obtain from EL by
adding negation [5].
If information about the age of human beings is relevant in the application at hand, then

one would like to associate humans with their ages and formulate constraints on these numbers.
This becomes possible by integrating concrete domains into DLs [4]. Using the concrete domain
(Q, >), we can express that parents cannot be younger than their children with the GCI
>(age, parent age) v ⊥, where ⊥ is the bottom concept (always interpreted as the empty set)
and age is a concrete feature that maps from the abstract domain populating concepts into
the concrete domain (Q, >). While integrating (Q, >) leaves ALC decidable [33], this is no
? Supported by DFG GRK 1763 (QuantLA) and TRR 248 (cpec, grant 389792660).
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longer the case if we integrate (Q,+1), where +1 is a binary predicate that is interpreted as
incrementation [5,6]. In [34], ω-admissibility was introduced as a condition on concrete domains
that ensures decidability. It was shown in that paper that Allen’s interval logic [1] as well as the
region connection calculus RCC8 [37] can be represented as ω-admissible concrete domains. Since
ω-admissibility is a collection of rather complex technical conditions, it is not easy to show that
a given concrete domain satisfies this property. In [6], we relate ω-admissibility to well-known
notions from model theory, which allows us to prove ω-admissibility of certain concrete domains
(among them Allen and RCC8) using known results from model theory. A different algebraic
condition (called EHD) that ensures decidability was introduced in [19], and used in [32] to
show decidability and complexity results for a concrete domains based on the integers.
When integrating a concrete domain into a lightweight DL like EL, one wants to preserve

tractability rather than just decidability. To achieve this, the notion of p-admissible concrete
domains was introduced in [2] and paths of length > 1 were disallowed in concrete domain
constraints. Regarding the latter restriction, note that, in the above example, we have used the
path parent age, which has length 2. The restriction to paths of length 1 means (in our example)
that we can no longer compare the ages of different humans, but we can still define concepts
like teenager, using the GCI

Teenager v Human u ≥10(age) u ≤19(age),

where ≥10 and ≤19 are unary predicates respectively interpreted as the rational numbers
greater equal 10 and smaller equal 19. In a p-admissible concrete domain, satisfiability of
conjunctions of atomic formulae and validity of implications between such conjunctions must be
tractable. In addition, the concrete domain must be convex, which roughly speaking means that
a conjunction cannot imply a true disjunction. For example, the concrete domain (Q, >,=, <)
is ω-admissible [6], but it is not convex since x < y ∧ x < z implies y < z ∨ y = z ∨ y > z, but
none of the disjuncts. In [2], two p-admissible concrete domains were exhibited, where one of
them is based on Q with unary predicates =p, >p and binary predicates +p,=. To the best of
our knowledge, since then no other p-admissible concrete domains have been described in the
literature.

One of the main contributions of the present paper is to devise algebraic characterizations of
convexity in different settings. We start by noting that the definition of convexity given in [2]
is ambiguous, and that what was really meant is what we call guarded convexity. However,
in the presence of the equality predicate (which is available in the two p-admissible concrete
domains introduced in [2]), the two notions of convexity coincide. Then we devise a general
characterization of convexity based on the notion of square embeddings, which are embeddings
of the product B2 of a relational structure B into B. We investigate the implications of this
characterization further for so-called ω-categorical structures, finitely bounded structures, and
numerical concrete domains. For ω-categorical structures, the square embedding criterion for
convexity can be simplified, and we use this result to obtain new p-admissible concrete domains:
countably infinite vector spaces over finite fields. Finitely bounded structures can be defined by
specifying finitely many forbidden patterns, and are of great interest in the constraint satisfaction
(CSP) community [16]. We show that, for such structures, convexity is a necessary and sufficient
condition for p-admissibility. This result provides use with many examples of p-admissible
concrete domains, but their usefulness in practice still needs to be investigated. Regarding
numerical concrete domains, we exhibit a new and quite expressive p-admissible concrete domain
based on the rational numbers, whose predicates are defined by linear equations over Q.

Next, the paper investigates the connection between p-admissibility and ω-admissibility. We
show that only trivial concrete domains can satisfy both properties. However, by combining
the results on finitely bounded structures of the present paper with results in [6], we can show
that convex finitely bounded homogeneous structures, which are p-admissible, can be integrated
into ALC (even without the length 1 restriction on role paths) without losing decidability.
Whereas these structures are not ω-admissible, they can be expressed in an ω-admissible
concrete domain [6]. Finally, we show that, in general, the restriction to paths of length 1 is
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needed when integrating a p-admissible concrete domain into EL, not only to stay tractable,
but even to retain decidability.

2 Preliminaries

In this section, we introduce the algebraic and logical notions that will be used in the rest
of the paper. The set {1, . . . , n} is denoted by [n]. We use the bar notation for tuples; for
a tuple t̄ indexed by a set I, the value of t̄ at the position i ∈ I is denoted by t̄[i]. For a
function f : Ak → B and n-tuples t̄1, . . . , t̄k ∈ An, we use f(t̄1, . . . , t̄k) as a shortcut for the
tuple

(
f(t̄1[1], . . . t̄k[1]), . . . , f(t̄1[n], . . . , t̄k[n])

)
.

From a mathematical point of view, concrete domains are relational structures. A relational
signature τ is a set of relation symbols, each with an associated natural number called arity. For
a relational signature τ , a relational τ -structure A (or simply τ -structure or structure) consists
of a set A (the domain) together with the relations RA ⊆ Ak for each relation symbol R ∈ τ of
arity k. Such a structure A is finite if its domain A is finite. We often describe structures by
listing their domain and relations, i.e., we write (A,RA

1 , R
A
2 , . . . ).

An expansion of a τ -structure A is a σ-structure B with A = B such that τ ⊆ σ and RB = RA

for each relation symbol R ∈ τ . Conversely, we call A a reduct of B. The product of a family
(Ai)i∈I of τ -structures is the τ -structure

∏
i∈I Ai over

∏
i∈I Ai such that, for each R ∈ τ of

arity k, we have (ā1, . . . , āk) ∈ RΠi∈IAi iff (ā1[i], . . . , āk[i]) ∈ RAi for every i ∈ I. We denote the
binary product of a structure A with itself as A2.
A homomorphism h : A → B for τ -structures A,B is a mapping h : A → B that preserves

each relation of A, i.e, if t̄ ∈ RA for some k-ary relation symbol R ∈ τ , then h(t̄) ∈ RB. A
homomorphism h : A→ B is strong if it additionally satisfies the following condition: for every
k-ary relation symbol R ∈ τ and t̄ ∈ Ak we have h(t̄) ∈ RB only if t̄ ∈ RA. An embedding is an
injective strong homomorphism. We write A ↪→ B if A embeds into B. The class of all finite
τ -structures that embed into B is denoted by Age (B). A substructure of B is a structure A
over the domain A ⊆ B such that the inclusion map i : A→ B is an embedding. Conversely, we
call B an extension of A. An isomorphism is a surjective embedding. Two structures A and B
are isomorphic (written A ∼= B) if there exists an isomorphism from A to B. An automorphism
is an isomorphism from A to A.
Given a relational signature τ , we can build first-order formulae using the relation symbols

of τ in the usual way. Relational τ -structures are then just first-order interpretations. For a
structure A we denote its first-order theory, i.e., the first-order sentences that hold in A, with
Th(A). In the context of p-admissibility, we are interested in quite simple formulae. A τ -atom is
of the form R(x1, . . . , xn), where R ∈ τ is an n-ary relation symbol and x1, . . . , xn are variables.
For a fixed τ -structure A, the constraint satisfaction problem (CSP) for A [10] asks whether
a given conjunction of atoms is satisfiable in A. A conjunction of atoms with an existential
quantifier prefix (quantifying over some of the variables occurring in the conjunction) is called a
conjunctive query.

An implication is of the form ∀x̄. (φ⇒ ψ) where φ is a conjunction of atoms, ψ is a disjunction
of atoms, and the tuple x̄ consists of all the variables occurring in φ or ψ. Such an implication is a
Horn-implication if ψ is the empty disjunction (corresponding to falsity ⊥) or a single atom. The
CSP for A can be reduced in polynomial time to the validity problem for Horn-implications since
φ is satisfiable in A iff ∀x̄. (φ⇒ ⊥) is not valid in A. Conversely, validity of Horn implications
in a structure A can be reduced in polynomial time to the CSP in the expansion A¬ of A by the
complements of all relations. In fact, the Horn implication ∀x̄. (φ⇒ ψ) is valid in A iff φ ∧ ¬ψ
is not satisfiable in A¬. Note that, in the signature of A¬, ¬ψ can be expressed by an atom.

3 Integrating p-Admissible Concrete Domains into EL

Given countably infinite sets NC and NR of concept and role names, EL concepts are built
using the concept constructors top concept (>), conjunction (C uD), and existential restriction
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(∃r.C). The semantics of the constructors is defined in the usual way (see, e.g., [3,5]). It assigns
to every EL concept C a set CI ⊆ ∆I , where ∆I is the interpretation domain of the given
interpretation I.
As mentioned before, a concrete domain is a τ -structure D with a relational signature τ

without constant symbols. To integrate such a structure into EL, we complement concept and
role names with a set of feature names NF, which provide the connection between the abstract
domain ∆I and the concrete domain D. A path is of the form r f or f where r ∈ NR and f ∈ NF.
In our example in the introduction, age is both a feature name and a path of length 1, and
parent age is a path of length 2. The DL EL(D) extends EL with the new concept constructor

R(p1, . . . , pk) (concrete domain restriction),

where p1, . . . , pk are paths, and R ∈ τ is a k-ary relation symbol. We use EL[D] to denote the
sublanguage of EL(D) where paths in concrete domain restrictions are required to have length
1. Note that EL(D) is the restriction to EL of the way concrete domains were integrated into
ALC in [34], whereas our definition of EL[D] describes how concrete domains were integrated
into EL in [2].
To define the semantics of concrete domain restrictions, we assume that an interpretation
I assigns functional binary relations fI ⊆ ∆I ×D to feature names f ∈ NF, where functional
means that (a, d) ∈ fI and (a, d′) ∈ fI imply d = d′. We extend the interpretation function to
paths of the form p = r f by setting

(r f)I = {(a, d) ∈ ∆I ×D | there is b ∈ ∆I such that (a, b) ∈ rI and (b, d) ∈ fI}.

The semantics of concrete domain restrictions is now defined as follows:

R(p1, . . . , pk)I = {a ∈ ∆I | there are d1, . . . , dk ∈ D such that
(a, di) ∈ pIi for all i ∈ [k] and (d1, . . . , dk) ∈ RD}.

As usual, an EL(D) TBox is defined to be a finite set of GCIs C v D, where C,D are EL(D)
concepts. The interpretation I is a model of such a TBox if CI ⊆ DI holds for all GCIs C v D
occurring in it. Given EL(D) concept descriptions C,D and an EL(D) TBox T , we say that
C is subsumed by D w.r.t. T (written C vT D) if CI ⊆ DI holds for all models of T . For the
subsumption problem in EL[D], to which we restrict our attention for the moment, only EL[D]
concepts may occur in T , and C,D must also be EL[D] concepts.
Subsumption in EL is known to be decidable in polynomial time [17]. For EL[D], this is

the case if the concrete domain is p-admissible [2]. According to [2], a concrete domain D is
p-admissible if it satisfies the following conditions: (i) satisfiability of conjunctions of atoms
and validity of Horn implications in D are tractable; and (ii) D is convex. Unfortunately, the
definition of convexity in [2] (below formulated using our notation) is ambiguous:

(∗) If a conjunction of atoms of the form R(x1, ..., xk) implies a disjunction of such
atoms, then it also implies one of its disjuncts.

The problem is that this definition does not say anything about which variables may occur
in the left- and right-hand sides of such implications. To illustrate this, let us consider the
structure N = (N, E,O) in which the unary predicates E and O are respectively interpreted
as the even and odd natural numbers. If the right-hand side of an implication considered in
the definition of convexity may contain variables not occurring on the left-hand side, then N
is not convex: ∀x, y. (E(x) ⇒ E(y) ∨ O(y)) holds in N, but neither ∀x, y. (E(x) ⇒ E(y)) nor
∀x, y. (E(x)⇒ O(y)) does. However, for guarded implications, where all variables occurring on
the right-hand side must also occur on the left-hand side, the structure N satisfies the convexity
condition (∗). We say that a structure is convex if (∗) is satisfied without any restrictions
on the occurrence of variables, and guarded convex if (∗) is satisfied for guarded implications.
Clearly, any convex structure is guarded convex, but the converse implication does not hold, as
exemplified by N.
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We claim that, what was actually meant in [2], was guarded convexity rather than convexity.
In fact, it is argued in that paper that non-convexity of D allows one to express disjunctions
in EL[D], which makes subsumption in EL[D] ExpTime-hard. However, this argument works
only if the counterexample to convexity is given by a guarded implication. Let us illustrate this
again on our example N. Whereas ∀x, y. (E(x)⇒ E(y) ∨O(y)) holds in N, the subsumption
E(f) v∅ E(g) tE(g) does not hold in the extension of EL[D] with disjunction since the feature
g need not have a value. For this reason, we use guarded convexity rather than convexity in
our definition of p-admissibility. For the same reason, one can also restrict the tractability
requirement in this definition to validity of guarded Horn implications.

Definition 1. A relational structure D is p-admissible if it is guarded convex and validity of
guarded Horn implications in D is tractable

Using this notion, the main results of [2] concerning concrete domains can now be summarized
as follows.

Theorem 1 (Baader, Brandt, and Lutz [2]). Let D be a relational structure. Then sub-
sumption in EL[D] is

1. decidable in polynomial time if D is p-admissible;
2. ExpTime-hard if D is not guarded convex.

The two p-admissible concrete domains in [2] have equality as one of their relations. For such
structures, convexity and guarded convexity obviously coincide since one can use x = x as a
trivially true guard. For example, the extension N= of N with equality is no longer guarded
convex since ∀x. (x = x ⇒ E(x) ∨ O(x)) holds in N=, but neither ∀x. (x = x ⇒ E(x)) nor
∀x. (x = x⇒ O(x)).

In the next section, we will show algebraic characterizations of (guarded) convexity. Regarding
the tractability condition in the definition of p-admissibility, we have seen that it is closely related
to the constraint satisfaction problem for D and D¬. Characterizing tractability of the CSP in a
given structure is a very hard problem. Whereas the Feder-Vardi conjecture [23] has recently
been confirmed after 25 years of intensive research in the field by giving an algebraic criterion
that can distinguish between finite structures with tractable and with NP-complete CSP [38,18],
finding comprehensive criteria that ensure tractability for the case of infinite structures is a wide
open problem, though first results for special cases have been found (see, e.g., [14,15]).

4 Algebraic Characterizations of Convexity

Before we can formulate our characterization of (guarded) convexity, we need to introduce a
semantic notion of guardedness. We say that the relational τ -structure A is guarded if for every
a ∈ A there is a relation R ∈ τ such that a appears in a tuple in RA.

Theorem 2. For a relational τ structure B, the following are equivalent:

1. B is guarded convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2) whose σ-reduct is guarded, there exists a

strong homomorphism from the σ-reduct of A to the σ-reduct of B.

Proof. “2 ⇒ 1”: Suppose to the contrary that the closed implication ∀x1, . . . , xn. (φ ⇒ ψ) is
valid in B, where φ is a conjunction of atoms such that each variable xi is present in some atom
of φ, and ψ is a disjunction of atoms ψ1, . . . , ψk, but we also have B 6|= ∀x1, . . . , xn. (φ ⇒ ψi)
for every i ∈ [k]. Without loss of generality, we assume that φ, ψ1, . . . , ψk all have the same free
variables x1, . . . , xn, some of which might not influence their truth value. For every i ∈ [k], there
exists a tuple t̄i ∈ Bn such that

B |= φ(t̄i) ∧ ¬ψi(t̄i). (∗)
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We show by induction on i that, for every i ∈ [k], there exists a tuple s̄i ∈ Bn that satisfies the
induction hypothesis

B |= φ(s̄i) ∧ ¬
∨
`∈[i]

ψ`(s̄i). (†)

In the base case (i = 1), it follows from (∗) that s̄1 := t̄1 satisfies (†).
In the induction step (i→ i+ 1), let s̄i ∈ Bn be any tuple that satisfies (†). Let σ ⊆ τ be the

finite set of relation symbols occurring in the implication ∀x1, . . . , xn. (φ⇒ ψ), and let Ai be
the substructure of B2 on the set {(s̄i[1], t̄i+1[1]), . . . , (s̄i[n], t̄i+1[n])}. Since B |= φ(s̄i) by (†),
B |= φ(t̄i+1) by (∗), and φ contains an atom for each variable xi, we conclude that the σ-reduct
of Ai is guarded. By 2., there exists a strong homomorphism fi from the σ-reduct of Ai to the
σ-reduct of B. Since φ is a conjunction of σ-atoms and fi is a homomorphism, we have that
B |= φ

(
fi(s̄i, t̄i+1)

)
. Suppose that B |= ψi+1

(
fi(s̄i, t̄i+1)

)
. Since fi is a strong homomorphism,

we get B |= ψi+1(t̄i+1), a contradiction to (∗). Now suppose that B |= ψj
(
fi(s̄i, t̄i+1)

)
for some

j ≤ i. Since fi is a strong homomorphism, we get B |= ψj(s̄i), a contradiction to (†). We
conclude that s̄i+1 := fi(s̄i, t̄i+1) satisfies (†).
Since B |= ∀x1, . . . , xn. (φ⇒ ψ), the existence of a tuple s̄i ∈ Bn that satisfies (†) for i = k

leads to a contradiction. This completes the proof of of “2⇒ 1” of our theorem. Alternatively,
we could have obtained this direction as an instance of McKinsey’s lemma [25].

Before we proceed with the proof of “1⇒ 2”, let us take a closer look at the contraposition of
the guarded convexity condition. Suppose that we have a conjunction φ of τ -atoms and tuples
r̄ and s̄ over B together with disjunctions ψr̄ and ψs̄ of τ -atoms such that B |= (φ ∧ ¬ψr̄)(r̄)
and B |= (φ ∧ ¬ψs̄)(s̄), and the implications ∀x1, . . . , xn. (φ ⇒ ψr̄) and ∀x1, . . . , xn. (φ ⇒ ψs̄)
are guarded. Then clearly there must exist a tuple t̄ over B such that B |= (φ ∧ ¬ψr̄ ∧ ¬ψs̄)(t̄)
as otherwise B |= ∀x1, . . . , xn. (φ ⇒ (ψr̄ ∨ ψs̄)), but neither B |= ∀x1, . . . , xn. (φ ⇒ ψr̄) nor
B |= ∀x1, . . . , xn. (φ⇒ ψs̄) is true (which would lead to a contradiction to guarded convexity).
Now we continue with the proof of “1 ⇒ 2”. Let σ be an arbitrary finite subset of τ and

let A ∈ Age (B2) be an arbitrary finite substructure of B2 whose σ-reduct is guarded. Let
{(r1, s1), . . . , (rn, sn)} be the domain of A. Consider the tuples r̄ := (r1, . . . , rn) and s̄ :=
(s1, . . . , sn). Let φ(x1, . . . , xn) be the conjunction of all σ-atoms such that

A |= φ
(
(r1, s1), . . . , (rn, sn)

)
,

i.e., we consider all atoms built using a relation symbol from σ and containing variables from
{x1, . . . , xn}, assign (ri, si) to the variable xi, and take those atoms for which the corresponding
tuple of elements of A belongs to the respective relation in A.
Clearly, the tuples r̄ and s̄ both satisfy φ in B since the projection to a single coordinate

is a homomorphism from A to B. Now let ψr̄ be the disjunction of all σ-atoms which do not
hold on the tuple r̄ in B. Analogously, let ψs̄ be the disjunction of all σ-atoms which do not
hold on the tuple s̄ in B. Without loss of generality, both disjunctions are non-empty since
otherwise the projection onto one of the coordinates is a strong homomorphism and we are done.
In addition, the implications ∀x1, . . . , xn. (φ⇒ ψr̄) and ∀x1, . . . , xn. (φ⇒ ψs̄) are guarded since
the σ-reduct of A is guarded.
We have that B |= φ ∧ ¬ψr̄(r̄) and B |= φ ∧ ¬ψs̄(s̄). Since B is guarded convex, there must

exist a tuple t̄ such that B |= φ ∧ ¬ψr̄(t̄) ∧ ¬ψs̄(t̄). Now consider the map f that sends, for
every i ∈ [n], the tuple (ri, si) to t̄[i]. Clearly f is a homomorphism from the σ-reduct of A to
the σ-reduct of B because B |= φ(t̄). Moreover, f is a strong homomorphism because, if ψ is a
formula consisting of a single σ-atom, then B |= ψ(t̄) only if B |= ψ(r̄) and B |= ψ(s̄). ut

As an easy consequence of Theorem 2, we also obtain a characterization of (unguarded)
convexity. This is due to the fact that the structure B is convex iff its expansion with the
full unary predicate (interpreted as B) is guarded convex. In addition, in the presence of this
predicate, any structure is guarded.

Corollary 1. For a relational τ -structure B, the following are equivalent:
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1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), there exists a strong homomorphism from

the σ-reduct of A to the σ-reduct of B.

As an example, the structure N = (N, E,O) introduced in the previous section is guarded
convex, but not convex. According to the corollary, the latter should imply that there is a finite
substructure A of N2 that has no strong homomorphism to N. In fact, if we take as A the
substructure of N2 induced by the tuple (1, 2), then this tuple belongs neither to E nor to O
in the product. However, a strong homomorphism to N would need to map this tuple either
to an odd or an even number. But then the tuple would need to belong to either E or O since
the homomorphism is strong. This example does not work for the case of guarded convexity,
because the considered substructure is not guarded. In fact, a guarded substructure of N2 can
only contain tuples where both components are even or both components are odd. In the former
case, the tuple can be mapped to an even number, and in the latter to an odd number.

In the presence of the equality predicate, strong homomorphisms are embeddings and guarded
convexity is the same as convexity.

Corollary 2. For a structure B with a relational signature τ with equality, the following are
equivalent:

1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), the σ-reduct of A embeds into the σ-reduct

of B.

The three results shown so far in this section follow the same general pattern, namely, they
relate different versions of convexity to the existence of certain homomorphisms from all finite
substructures of the square of the given structure into the structure. It would be nice if we could
lift this property to a homomorphism from the whole square. We will see later (see Section 5.3)
that this is not always possible for a given structure D itself. However, we now show that it
is always possible for some elementary extension of D. An extension M of a τ -structure D is
elementary if, for every first-order τ -formula φ(x1, . . . , xn) and every tuple t̄ ∈ Dn, we have that
D |= φ(t̄) if and only if M |= φ(t̄). In particular, this means that the two structures have the
same first-order theory, i.e., Th(D) = Th(M).

Theorem 3. For a relational structure D with equality, the following are equivalent.

1. B is convex.
2. There exists an elementary extension M of D such that M2 ↪→M.

The proof of this theorem requires some basic concepts in set theory such as transfinite induction.
We allow the Axiom of Choice, i.e., every set can be well-ordered. A set S is an ordinal if it
is transitive, i.e., if S′ ∈ S, then S′ ⊆ S; and if the membership relation is a well-order on S.
Ordinals themselves are compared with each other using the membership relation—we write
S′ < S for ordinals S, S′ if S′ ∈ S. An ordinal is a cardinal if it does not admit a bijection to
an ordinal that is smaller w.r.t. to the membership order. Every set S admits a bijection to a
unique cardinal, denoted by |S|.
A theory in a signature τ is a set of first-order τ -sentences. The theory of a τ -structure D

is the set Th(D) of all first-order τ -sentences which are true in D. A 1-type of a theory T is a
set S of first-order formulas with a single free variable such that T ∪ S is satisfiable. A 1-type
S of Th(D) is realized in D if there exists d ∈ D such that D |= φ(d) for each φ ∈ S. For an
infinite cardinal κ, a structure D is κ-saturated if for every β < κ and every expansion Dβ of
D by unary relation symbols {Rα | α < β} which interpret in Dβ as singletons, every 1-type
of Th(Dβ) is realized in Dβ . Given a family {Rα | α < κ} of unary relation symbols which
interpret in D as singleton relations, we denote by cDα the unique element contained in RD

α .



An Algebraic View on p-Admissible Concrete Domains 8

Lemma 1 (c.f. Lemma 2.1 in [13]). Let B,C be τ -structures such that C is |B|-saturated.
Suppose that, for some cardinal κ < |B|, there are expansions Bκ and Cκ of B and C by unary
symbols {Rα | α < κ} for singleton relations such that every Boolean conjunctive query with
atomic negation which holds in Bκ also holds in Cκ. Then Bκ admits a strong homomorphism
to Cκ.

Proof. Without loss of generality we assume that {cBκ
α | α < κ} is a well-ordered set, in

particular, it contains no repetitions. Let {Rα | α < |B|} be a set of symbols with cardinality |B|
containing the original unary symbols, and let B|B| be an arbitrary τ ∪{Rα | α < |B|}-expansion
of Bκ by singleton relations such that {cB|B|α | α < |B|} is a well-ordering of B. For every ordinal
κ < λ < |B|, let Bλ be the τ ∪ {Rα | α < λ}-reduct of B|B|. We show by transfinite induction
on λ up to |B| that there exists a τ ∪ {Rα | α < |B|}-expansion C|B| of Cκ by singleton relations
such that every Boolean conjunctive query with atomic negation that holds in B|B| also holds
in C|B|. Then f(cB|B|α ) := cC|B|α is the desired strong homomorphisms.

The base case λ = κ follows from the assumptions in Lemma 1.
For the inductive step, we first consider limit ordinals λ. There the inductive hypothesis holds

as each Boolean conjunctive query can only contain finitely many symbols Rα whose indices
are less than some γ < λ. Now suppose that λ = γ + 1 is a successor ordinal. Let Σγ be the
set of all conjunctive queries with atomic negation φ(x) in the signature τ ∪ {Rα | α < γ} such
that Bγ |= φ(cB|B|λ ). By the induction hypothesis, we have Cγ |= ∃x. φ(x) for every formula
φ(x) from Σγ . Suppose that Σγ ∪ Th(Cγ) is not satisfiable. Then, by compactness of first-order
logic, there is a finite subset {φ1(x), . . . , φk(x)} of Σγ such that {φ1(x), . . . , φk(x)} ∪ Th(Cγ)
is not satisfiable. This means that {φ1(x) ∧ · · · ∧ φk(x)} ∪ Th(Cγ) is not satisfiable. But since
φ1(x)∧ · · · ∧φk(x) ∈ Σγ , this leads to a contradiction to the definition of Σγ . Thus Σγ ∪Th(Cγ)
is satisfiable, which means that Σγ is a 1-type of Cγ . By |B|-saturation of C, it is realized by
some element c ∈ C. We define Cλ by setting cCλλ := c. ut

Proof of Theorem 3: Let τ be the signature of D.
“2⇒ 1”: Suppose that D has such an elementary extension M. Then M is convex by Item 1

of Corollary 2. Note that convexity of D can be axiomatized by a set of first-order sentences of
the form (∀x1, . . . , xn. (φ⇒

∨k
i=1 ψi))⇒

∨k
i=1(∀x1, . . . , xn. (φ⇒ ψi)). Since Th(M) = Th(D),

we conclude that D is convex as well.
“1⇒ 2”: Now suppose that D is convex. If D is finite, then it follows directly from Corollary 2

that (D; =)2 ↪→ (D; =), which is impossible. Thus D is infinite. We build an elementary extension
M of D inductively. Let M0 be the empty τ -structure, and let M1 := D. Suppose that Mi is
already defined for some i > 1. Then we take as Mi+1 an arbitrary elementary extension of
Mi that is max(|τ |, |M2

i |)-saturated. Such an extension always exists by Corollary 8.2.2 in [26].
Finally, we set M :=

⋃
i∈N Mi. We claim that M is an elementary extension of D. Let t̄ ∈ Dk be

arbitrary, and let φ be an arbitrary k-ary τ -formula. Let x1, . . . , x` be the quantified variables of
φ. Suppose that D |= φ(t̄). Note that, if s̄ ∈M ` is a tuple of elements that are to be substituted
for the variables x1, . . . , x` in order to check whether M |= φ(t̄), then s̄ ∈ Mi for some i ≥ 1.
Since each Mi is an elementary extension of D and thus Mi |= φ(t̄), we conclude that M |= φ(t̄).
The other direction where we start with M |= φ(t̄) is analogous.

Next, we construct an embedding from M2 to M. We show by induction on i that every
embedding fi : M2

i ↪→Mi+1 can be extended to an embedding fi+1 : M2
i+1 ↪→Mi+2. Since M0

is the empty structure which trivially embeds into M1, this gives us a chain of embeddings
f0, f1, . . . such that fi+1|Mi

= fi for every i ≥ 0.
In the base case i = 0, there exists only one strong homomorphism from M2

0 to M1, namely
the empty map. Thus we only need to show that there exists an embedding from M2

1 to M2.
Let φ be a Boolean conjunctive query with atomic negation that holds in M2

1. Then φ is of
the form ∃x1, . . . , xn. ψ(x1, . . . , xn) for some conjunction ψ of atoms and negated atoms. There
exist t̄1, . . . , t̄n ∈M2

1 such that M2
1 |= ψ(t̄1, . . . , t̄n). Let σ be the finite set of all symbols from

τ which appear in ψ, and let A be the substructure of M2
1 on {t̄1, . . . , t̄n}. Since D is convex,

by Corollary 2, there exists an embedding e from the σ-reduct of A to the σ-reduct of M1.
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Thus M1 |= ψ(e(t̄1), . . . , e(t̄n)) and hence M1 |= φ. Since Th(M1) = Th(M2), we have that
M2 |= φ. Since M2 is |M2

1 |-saturated, it follows from Lemma 1 that there exists an embedding
f1 : M2

1 ↪→M2.
In the induction step, we assume the existence of an embedding fi : M2

i ↪→Mi+1 for some
i > 0. Let κ := |M2

i |, B := M2
i+1, and C := Mi+1. Moreover, let Bκ and Cκ be τ ∪{Rα | α < κ}-

expansions of B and C, respectively, such that {cBκ
α | α < κ} is a well-ordering on M2

i , and
cCκα := fi(c

Bκ
α ). Let φ be a Boolean conjunctive query with atomic negation that holds in

Bκ. Then φ is of the form ∃x1, . . . , xn. ψ(x1, . . . , xn) for some conjunction ψ of atoms and
negated atoms. There exist t̄1, . . . , t̄n ∈M2

i+1 such that Bκ |= ψ(t̄1, . . . , t̄n). Let Rα1 , . . . , Rαm
be the finitely many new unary symbols which appear in ψ. Let ψ+(x1, . . . , xn) be the con-
junction of all non-negated atoms in ψ. Then we clearly have (Mi+1; {cBκ

α1
[j]}, . . . , {cBκ

αm [j]}) |=
ψ+(t̄1[j], . . . , t̄n[j]) for both j = 1 and j = 2. However, for formulas ψ−(x1, . . . , xn) con-
sisting of a single negated atom from ψ, we only have (Mi+1; {cBκ

α1
[j]}, . . . , {cBκ

αm [j]}) |=
ψ−(t̄1[j], . . . , t̄n[j]) for j = 1 or j = 2. For j ∈ {1, 2}, let ψj,−(x1, . . . , xn) be the conjunction
of all negated atoms ψ− from ψ such that (Mi+1; {cBκ

α1
[j]}, . . . , {cBκ

αm [j]}) |= ψ−(t̄1[j], . . . , t̄n[j]).
Then (Mi+1; {cBκ

α1
[j]}, . . . , {cBκ

αm [j]}) |= ψ+(t̄1[j], . . . , t̄n[j]) ∧ ψ−,j(t̄1[j], . . . , t̄n[j]) for both j = 1
and j = 2. Since Mi+1 is an elementary extension of Mi, there exist s̄1, . . . , s̄n ∈ M2

i

such that (Mi; {cBκ
α1

[j]}, . . . , {cBκ
αm [j]}) |= ψ+(s̄1[j], . . . , s̄n[j]) ∧ ψ−,j(s̄1[j], . . . , s̄n[j]) for both

j = 1 and j = 2, i.e., (M2
i ; {cBκ

α1
}, . . . , {cBκ

αm}) |= ψ(s̄1, . . . , s̄n). Since fi is an embedding,
(Mi+1; {fi(cBκ

α1
)}, . . . , {fi(cBκ

αm)}) |= ψ(fi(s̄1), . . . , fi(s̄n)). By the definition of Cκ, it follows that
Cκ |= φ. Since φ was chosen arbitrarily and Cκ is |B|-saturated, it follows from Lemma 1 that
Bκ embeds to Cκ. By the definition of Bκ and Cκ, this means that there exists an embedding
fi+1 : M2

i+1 ↪→Mi+2 which extends fi.
Now it is easy to see that f defined by f :=

⋃
i∈N fi is an embedding from M2 to M. ut

5 Examples of Convex and p-Admissible Structures

We consider three different kinds of structures (ω-categorical, finitely bounded, numerical) and
show under which conditions such structures are convex. This provides us with new examples
for p-admissible concrete domains.

5.1 Convex ω-Categorical Structures

A structure is called ω-categorical if its first-order theory has a unique countable model up to
isomorphism. A well-known example of such a structure is (Q, <), whose first-order theory is the
theory of linear orders without first and last element. Such structures have drawn considerable
attention in the CSP community since their CSPs can, to some extent, be investigated using
the algebraic tools originally developed for finite structures. Countably infinite ω-categorical
structures can be characterized using automorphisms and orbits. For every structure A, the set
of all automorphisms of A, denoted by Aut(A), forms a permutation group with composition as
group operation [26]. The orbit of a tuple t̄ ∈ Ak under Aut(A) is the set {(g(t̄[1]), ..., g(t̄[k])) |
g ∈ Aut(A)}. The following result is due to Engeler, Ryll-Nardzewski, and Svenonius (see
Theorem 6.3.1 in [26]).

Theorem 4. For a countably infinite structure D with a countable signature, the following are
equivalent:

1. D is ω-categorical.
2. Every relation preserved by Aut(D) has a first-order definition in D.
3. For every k ≥ 1, there are only finitely many orbits of k-tuples under Aut(D).

For countably infinite ω-categorical structures the characterization of convexity of Corollary 2
can be improved to the following simpler statement, which is similar to the characterization in
Theorem 3, but using the structure itself rather than an elementary extension.
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Theorem 5. For a countably infinite ω-categorical relational structure B with a countable
signature τ with equality, the following are equivalent:

1. B is convex.
2. B2 embeds into B.

The proof of this theorem combines the proof of Corollary 2 with the following two facts,
which are implied by ω-categoricity of B. First, there exists a strong homomorphism from B2

to B iff there exists a strong homomorphism from A to B for every A ∈ Age (B2) (see, e.g.,
Lemma 3.1.5 in [10]). Second, to deal with the fact that τ may be infinite (which is problematic
for the proof of “1 ⇒ 2”), we can use Theorem 4, which ensures that, for every k ≥ 1, there
are only finitely many inequivalent k-ary formulae over B consisting of a single τ -atom. This
ensures that the formulae φ, ψr̄, ψs̄ constructed in the proof of “1⇒ 2” of Corollary 2 can be
assumed to be finite.

In the CSP literature, one can find two examples of countably infinite ω-categorical structure
that satisfy the square embedding condition of the above theorem: atomless Boolean algebras and
countably infinite vector spaces over finite fields. Since the CSP for atomless Boolean algebras is
NP-complete [8], this example does not provide us with a p-admissible concrete domain. Things
are more rosy for the vector space example.

As shown in [12], the relational representation Vq = (Vq, R
+, Rs0 , . . . , Rsq−1) of the countably

infinite vector space over a finite field GF(q) is ω-categorical, satisfies V2
q
∼= Vq, and its CSP

is decidable in polynomial time, even if the complements of all predicates are added. Here R+

is a ternary predicate corresponding to addition of vectors, and the Rsi are binary predicates
corresponding to scalar multiplication of a vector with the element si of GF(q). We can show
that these properties are preserved if we add finitely many unary predicates Rei that correspond
to unit vectors e1, . . . , ek.

Corollary 3. The structure Vq expanded with predicates Re1 , . . . , Rek for unit vectors e1, . . . , ek
is p-admissible.

Proof. We have V2
q
∼= Vq, i.e., both structures are vector spaces over GF(q) of countably infinite

dimension. Now if we fix finitely many unit vectors e1, . . . , ek ∈ Vq by expanding Vq with
the unary predicates Re1 , . . . , Rek , we can still extend the map which sends (ei, ei) to ei for
each i ∈ [k] to a bijection between bases of both vector spaces. This bijection then naturally
extends to an isomorphism from (Vq, R

e1 , . . . , Rek)2 to (Vq, R
e1 , . . . , Rek). Thus the convexity

of (Vq, R
e1 , . . . , Rek) follows from Corollary 2. The CSP in its expansion (Vq, R

e1 , . . . , Rek)¬ by
complements of all relations can be solved, similarly as in the Gaussian elimination algorithm, by
iterated elimination of variables from equations and subsequent search for unsatisfiable equalities
and/or inequalities between unit vectors (e.g., e1 6= e1) [12]. This implies that testing validity of
Horn implications in (Vq, R

e1 , . . . , Rek) is tractable as well. We conclude that (Vq, R
e1 , . . . , Rek)

is p-admissible. ut

For the case q = 2, the vectors in Vq are one-sided infinite tuples of zeros and ones containing
only finitely many ones, which can be viewed as representing finite subsets of N. For example,
(0, 1, 1, 0, 1, 0, 0, . . .) represents the set {1, 2, 4}. Thus, if we use V2 as concrete domain, the
features assign finite sets of natural numbers to individuals. For example, assume that the feature
dages assigns the set of ages of female children to a person, and sages the set of ages of male
children. Then R+(dages, sages, zero) describes persons that, for every age, have either both a
son and a daughter of this age, or no child at all of this age. The feature zero is supposed to
point to the zero vector, which can, e.g., be enforced using the GCI > v R+(zero, zero, zero). If
e1 is the unit vector (0, 1, 0, 0, . . .) and e4 is the unit vetor (0, 0, 0, 0, 1, 0, 0, . . .), then the concept
Human uR+(one, four, dages) describes humans that have daughters of age one and four, and
of no other age, if the TBox contains the GCI > v Re1(one) uRe4(four).
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5.2 Convex Structures with Forbidden Patterns

For a class F of τ -structures, Forbe(F) stands for the class of all finite τ -structures that do
not embed any member of F . A structure B is finitely bounded if its signature is finite and
Age (B) = Forbe(F) for some finite set F of bounds. Alternatively, one can say that B is finitely
bounded if its signature is finite and there is a universal first-order sentence Φ with equality1

such that Age (B) consists precisely of the finite models of Φ [7]. A well-known example of a
finitely bounded structure is (Q, >,=), for which the self loop, the 2-cycle, the 3-cycle, and
two isolated vertices can be used as bounds (see Fig. 1 in [6]). As universal sentence defining
Age (Q, >,=) we can take the conjunction of the usual axioms defining linear orders. For finitely
bounded structures, p-admissibility turns out to be equivalent to convexity.

Theorem 6. Let B be a finitely bounded τ -structure with equality. The following are equivalent:

1. B is convex,
2. Age (B) is defined by a conjunction Φ of Horn implications,
3. B is p-admissible.

Proof. “1 ⇒ 2”: Using the logical reformulation of finite boundedness mentioned above (see,
e.g., [7]), we know that B is finitely bounded if its signature is finite and there is a universal
first-order sentence Φ such that Age (B) consists precisely of the finite models of Φ. We bring Φ
into prenex normal form, and then transform its quantifier-free part in conjunctive normal form.
This shows that we can assume that Φ is a conjunction of implications (in the sense defined
in Section 2). Note that a universal sentence holds in a relational structure iff it holds in each
of its finite substructures. In particular, we have B |= Φ. For every implication in Φ where the
conclusion consists of at least two atoms, we apply the definition of convexity and reduce Φ
to a conjunction of Horn implications Φ′ such that B |= Φ′. This implies that Φ′ holds in all
elements of Age (B). In addition, by the construction of Φ′, the original formula Φ is a logical
consequence of Φ′. Thus, if a finite τ -structure satisfies Φ′, it also satisfies Φ, and thus belongs
to Age (B). This shows that Φ′ defines Age (B).

“2⇒ 3”: We first show that B is convex using Corollary 2. We set σ := τ and select an arbitrary
finite substructure A of B2. Let ∀x̄. (φi ⇒ ψi) be one of the Horn implications whose conjunction
Φ over i ∈ [`] defines Age (B). Let t̄ be a tuple over A such that A |= φi(t̄) for some i ∈ [`] and
let k be its arity. By the definition of A, t̄ is of the form ((x1, y1), . . . , (xk, yk)) such that B |=
φi(x1, . . . , xk) and B |= φi(y1, . . . , yk). Since the substructure of B on {x1, . . . , xk, y1, . . . , yk}
satisfies ∀x̄. (φi ⇒ ψi), we have B |= ψi(x1, . . . , xk) ∧ ψi(y1, . . . , yk), and thus A |= ψi(t̄). Since
the tuple t̄ and the index i ∈ [`] were chosen arbitrarily, we know that that A |= ∀x̄. (φi ⇒ ψi)
for all i ∈ [`]. Thus, we have A |= Φ, which implies A ∈ Age (B), i.e., A embeds into B.

Regarding tractability, note that the structure B satisfies a given Horn implication ∀x̄. (φ⇒
ψ)(x̄) iff this implication is satisfied by all elements of Age (B). This is the case iff the conjunction
of Horn implications Φ that defines Age (B) implies the Horn implication ∀x̄. (φ⇒ ψ)(x̄). It is
well-known that the entailment problem is decidable in polynomial time for Horn implications [22].

“3⇒ 1”: This direction is trivial. ut
The structure (Q, >,=) is not convex. In fact, since it is also ω-categorical, convexity would
imply that its square (Q, >,=)× (Q, >,=) embeds into (Q, >,=), by Theorem 5. This cannot
be the case since the product contains incomparable elements, whereas (Q, >,=) does not. In
the universal sentence defining Age (Q, >,=), the totality axiom ∀x, y. (x < y ∨ x = y ∨ x > y)
is the culprit since it is not Horn. If we remove this axiom, we obtain the theory of strict partial
orders.

Example 1. It is well-known that there exists a unique countable homogeneous2 strict partial
order O [36], whose age is defined by the universal sentence ∀x, y, z. (x < y ∧ y < z ⇒ x <

1 Here “with equality” means that the sentence may use equality even if the signature τ does not
contain it.

2 A structure is homogeneous if every isomorphism between its finite substructures extends to an
automorphism of the whole structure.
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z) ∧ ∀x. (x < x⇒ ⊥), which is a Horn implication. Thus, O extended with equality is finitely
bounded and convex. Using O as a concrete domain means that the feature values satisfy the
theory of strict partial orders, but not more. One can, for instance, use this concrete domain to
model preferences of people; e.g., the concept Italian u>(pizzapref, pastapref) describes Italians
that like pizza more than pasta. Using O here means that preferences may be incomparable. As
we have seen above, adding totality would break convexity and thus p-admissibility.

Beside finitely bounded structures, the literature also considers structures whose age can be
described by a finite set of forbidden homomorphic images [21,29]. For a class F of τ -structures,
Forbh(F) stands for the class of all finite τ -structures that do not contain a homomorphic image
of any member of F . A structure is connected if its so-called Gaifman graph is connected. The
Gaifman graph of a structure A is the undirected graph (A,E) such that there is an edge in E
between two elements a, a′ ∈ A iff they occur together in a tuple from a relation of A.

Theorem 7 (Cherlin, Shelah, and Shi [21]). Let F be a finite family of connected relational
structures with a finite signature τ . Then there exists an ω-categorical τ -structure CSS(F) that
is a reduct of a finitely bounded homogeneous structure and such that Age (CSS(F)) = Forbh(F).

We can show that the structures of the form CSS(F) provided by this theorem are always
p-admissible.

Proposition 1. Let F be a finite family of connected relational structures with a finite signa-
ture τ . Then the expansion CSS=(F) of CSS(F) by the equality predicate is p-admissible.

Proof. Let B := CSS(F). By Theorem 7, we have A ∈ Age (B) iff A does not contain a
homomorphic image of any F ∈ F as a substructure. If we can show Age (B2) ⊆ Age (B), then
we trivially also get Age

(
(B,=)2

)
⊆ Age

(
(B,=)

)
, and it follows from Corollary 2 that CSS=(F)

is convex. Suppose that there exists A ∈ Age (B2) such that A /∈ Age (B). Then there exists
F ∈ F such that F→ A. Since the projection to a single component is a homomorphism, this
shows that there is a homomorphism F→ B. But then the image of F under this homomorphism
is a finite substructure of B that does not belong to Forbh(F), which contradicts the fact that
Age (B) = Forbh(F). Thus indeed Age (B2) ⊆ Age (B) and CSS=(F) is convex.

Since there are, up to isomorphisms, only finitely many homomorphic images of each F ∈ F in
B, there exists a finite set F ′ of finite structures such that Age (B) = Forbe(F ′), which means
that B is finitely bounded. Note that CSS=(F) is also finitely bounded: we can simply expand
the universal sentence φ defining Age (B) by an additional conjunct that ensures the the binary
relation symbol R= in the signature of CSS=(F), which should be interpreted as the equality
predicate, indeed is interpreted in this way; e.g., we can append ∀x, y. (R(x, y)⇔ x = y) to φ.

Since CSS=(F) is convex and finitely bounded, its p-admissibility follows by Theorem 6. ut

This proposition actually provides us with infinitely many examples of countable p-admissible
concrete domains, which all yield a different extension of EL: the so-called Henson digraphs [24]
(see Example 2 below). The usefulness of these concrete domains for defining interesting concepts
is, however, unclear.

Example 2. A directed graph is a tournament if every two distinct vertices in it are connected
by exactly one directed edge. A Henson digraph is a homogeneous directed graph whose age
equals Forbe(N ) for some set N consisting of finite tournaments plus the loop and the 2-cycle
such that no member of N is embeddable into any other member of N .
We claim that Forbe(N ) = Forbh(N ) holds for any such set N . The inclusion Forbh(N ) ⊆

Forbe(N ) is true simply because every embedding is a homomorphism. To show the other
inclusion, suppose that A ∈ Forbe(N ). The loop clearly does not homomorphically map to
A because every homomorphism from the loop to A is an embedding. Since the loop does
not homomorphically map to A, every homomorphism from the 2-cycle to A is an embedding.
Thus, the 2-cycle does not homomorphically map to A. Since the loop and the 2-cycle do not
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homomorphically map to A, every homomorphism from a tournament to A is an embedding.
Thus, A does not admit any homomorphic image of a structure from N . We conclude that
Forbe(N ) ⊆ Forbh(N ).
For every selection N of finitely many tournaments that do not embed into each other, the

set N consists of connected structures since tournaments as well as the loop and the 2-cycle
are connected. Moreover, if N1,N2 are two distinct such sets, then Forbh(N1) 6= Forbh(N2) [35].
Since there are infinitely many such families N , Theorem 7 yields infinitely many non-isomorphic
p-admissible and finitely bounded concrete domains that have different ages. Consequently, the
ages of these structures are defined by conjunctions of Horn implications that are not equivalent.
This implies that, in the extension of EL with these concrete domains, different subsumptions
hold.
To make this more precise, assume that ∀x̄. (φ⇒ ψ) is a Horn implication that is satisfied

by all elements of Forbh(N1), but for which there is an element G of Forbh(N1) that does not
satisfy it. We can easily turn the conjunction of atoms φ and the atom ψ into concepts Cφ
and Cψ of the DLs EL[CSS=(N1)] and EL[CSS=(N2)] by viewing the variables in x̄ as features
and replacing the conjunct operators ∧ in φ by DL conjunction u. If we additionally ensure
that all these features are defined (using GCIs > v =(x, x) for all x occurring in x̄), then Cφ is
subsumed by Cψ w.r.t. these GCIs in EL[CSS=(N1)], but not in EL[CSS=(N2)].

A more general class of p-admissible structures can be obtained from connected MMSNP
sentences. A connected MMSNP sentence Φ in a finite relational signature τ is of the form
∃P1, . . . , Pn. ∀. x̄

∧
i ¬(αi ∧ βi) where

– P1, . . . , Pn are unary relation symbols not in τ ,
– each αi is a conjunction of τ -atoms,
– each βi is a conjunction of atoms and/or negated atoms involving relation symbols from
{P1, . . . , Pn},

– the canonical database DB(∃x̄i. αi) is connected for every i where x̄i represents all free
variables in αi; this is the τ -structure whose domain consists of the quantified variables x̄i
and whose relations are specified by the quantifier-free part αi.

Note that, for every family F as in Theorem 7, the class Age (CSS(F)) consists of all finite
models of a particular MMSNP sentence of the form ∀x̄.

∧
i ¬αi where each αi encodes a single

structure F ∈ F up to homomorphic equivalence using a conjunctive query. The following
proposition can be viewed as a generalization of Theorem 7 to more complicated forbidden
patterns involving existentially quantified unary predicates.

Theorem 8 (Theorem 7 in [11]). For every connected MMSNP sentence Φ in a finite
signature τ , there exists an ω-categorical τ -structure BΦ that is a reduct of a finitely bounded
homogeneous structure and such that Age (BΦ) consists of all finite models of Φ.

Similarly as in the case of Theorem 7, this theorem can be used to produce p-admissible
concrete domains. However, in contrast to Theorem 7, connected MMSNP is known to exhibit a
complexity dichotomy between P and NP-complete [15]. It follows from Proposition 2 below that
already within the class of reducts of finitely bounded homogeneous structures, p-admissibility
does not only depend on the convexity requirement, in contrast to what one might expect when
coming from Theorem 6.

Proposition 2. Let Φ be a connected MMSNP sentence in a finite signature τ . Then the
expansion of BΦ by the equality predicate is convex, and it is p-admissible if, and only if,
satisfiability of Φ in finite τ -structures can be tested in polynomial time.

Proof. We start with convexity. Let A be an arbitrary finite substructure of BΦ. Then A |= Φ
and this is witnessed by some P1, . . . , Pn ⊆ A. Suppose that A2 6|= Φ. For every i ∈ [n], we set
P ′i := Pi×A. Since A2 6|= Φ, there exists a tuple s̄ over A2 such that (A2, P ′1, . . . , P

′
n) |= (αi∧βi)(s̄)

for some i. Let r̄ be the tuple over A obtained from s̄ by taking the projection of each entry in
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s̄ to the first coordinate. By the definition of the product of structures and by the definition
of P ′i , we have (A, P1, . . . , Pn) |= (αi ∧ βi)(r̄) which contradicts A |= Φ. Thus A2 |= Φ, which
implies Age (B2

Φ) ⊆ Age (BΦ) and we trivially also get Age
(
(BΦ,=)2

)
⊆ Age

(
(BΦ,=)

)
. By

Corollary 2, the expansion of BΦ by the equality predicate is convex.
It remains to determine in which cases we can test validity of Horn implications in the

expansion of BΦ by the equality predicate in polynomial time. Let ∀x̄. (φ⇒ ψ) be an arbitrary
Horn implication. Since CSP(BΦ) = Age (BΦ) by the proof of Theorem 7 in [11], we have
BΦ |= ∃x̄. (φ ∧ ¬ψ) if and only if BΦ |= ∃x̄. φ and φ does not contain ψ as a conjunct.3 We
can assume that φ contains no occurrence of the equality predicate; otherwise we remove them
by repeated identification of variables. By a standard result in database theory, BΦ |= ∃x̄. φ
iff the canonical database DB(∃x̄. φ) homomorphically maps to BΦ [20]. We conclude that
BΦ |= ∀x̄(φ ⇒ ψ) iff φ contains ψ as a conjunct or DB(∃x̄. φ(x̄)) 6|= Φ. This can be tested in
polynomial time iff testing satisfiability of Φ in finite structures can be done in polynomial
time. ut

5.3 Convex Numerical Structures

We exhibit two new p-admissible concrete domain that are respectively based on the real and
the rational numbers, and whose predicates are defined by linear equations. Let DR,lin be the
relational structure over R that has, for every linear equation system Ax̄ = b̄ over Q, a relation
consisting of all its solutions in R. We define DQ,lin as the substructure of DR,lin on Q. For
example, using the matrix A = (2 1−1) and the vector b̄ = (0) one obtains the ternary relation
{(p, q, r) ∈ Q3 | 2p+ q = r} in DQ,lin.

Theorem 9. The relational structures DR,lin and DQ,lin are p-admissible.

Our proof of Theorem 9 uses the following simple observation about first-order definable relations.
Let D be a relational τ -structure. A relation R ⊆ Dk is defined by a τ -formula φ in D if it is of
the form R = {t̄ ∈ Dk | D |= φ(t̄)}. We say that R is first-order definable in D if there exists a
first-order formula that defines R in D.

Lemma 2. Let D be a structure for which there exists an isomorphism f from D2 to D.

1. If R is a relation definable in D using a conjunctive query, then f is an isomorphism from
(D, R)2 to (D, R).

2. If R is the complement of a relation of D, then f is a homomorphism from (D, R)2 to
(D, R).

Proof. (1) By a standard result in model theory, f is also a homomorphism from (D, R)2 to (D, R)
(see, e.g., Proposition 5.2.2 in [10]). Since f is bijective, it only remains to show that f is even a
strong homomorphism from (D, R)2 to (D, R). Let φ(x1, . . . , xk) := ∃xk+1, . . . , x`. ψ(x1, . . . , x`)
be the conjunctive query that defines R in D, where ψ is the quantifier-free part of φ. Let
r̄ ∈ R be an arbitrary tuple of the form r̄ = f(r̄1, r̄2) for some r̄1, r̄2 ∈ Dk. Then there exists
s̄ ∈ D`−k such that D |= ψ(r̄[1], . . . , r̄[k], s̄[1], . . . , s̄[` − k]). Since f is surjective, there exist
s̄1, s̄2 ∈ D`−k such that s̄ = f(s̄1, s̄2). Since f is a strong homomorphism from D2 to D, we have
D |= ψ(r̄i[1], . . . , r̄i[k], s̄i[1], . . . , s̄i[`− k]) for both i ∈ {1, 2}. This means that r̄1, r̄2 ∈ R, which
confirms our claim.

(2) This is an immediate consequence of the fact that an isomorphism is a strong homomor-
phism, and thus does not only preserve the relations from the signature, but also the complements
of these relations. ut

Proof of Theorem 9: To prove this theorem for R, we start with the well-known fact that
(R,+, 0)2 and (R,+, 0) are isomorphic [31], and show that this property can be extended to
3 Recall that, for a given structure B, CSP(B) consists of the finite structures that can homomorphically
be mapped to B.
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DR,lin. The first isomorphism exists because (R,+, 0)2 and (R,+, 0) are both vector spaces
over Q whose dimensions are uncountably infinite and of the same cardinality. Thus every
bijective map from a basis of (R,+, 0)2 to a basis of (R,+, 0) extends to an isomorphism. Now
we simply choose any two bases of (R,+, 0)2 and (R,+, 0), respectively, such that the first basis
contains (1, 1) and the second basis contains 1. Then we choose an arbitrary bijection from the
first basis to the second basis that sends (1, 1) to 1. This bijection extends to an isomorphism
f : (R,+, 0, 1)2 → (R,+, 0, 1). It is easy to see that every relation of DR,lin can be defined in
(R,+, 0, 1) using a conjunctive query. By Item 1 of Lemma 2, f is an isomorphism from D2

R,lin
to DR,lin. By Corollary 2, this yields convexity.
Regarding tractability, recall that validity of Horn implications in DR,lin can be tested in

polynomial time if the CSP for D¬R,lin can be tested in polynomial time. By Item 2 of Lemma 2,
f is a homomorphism from (D¬R,lin)2 to D¬R,lin. It follows from Corollary 5.10 in [13] that the
CSP for D¬R,lin is decidable in polynomial time. We conclude that DR,lin is p-admissible.
For Q, we cannot employ the same argument since (Q,+, 0)2 does not even admit a strong

homomorphism to (Q,+, 0). Instead, we use the well-known fact that the structures (Q,+, 0)
and (R,+, 0) satisfy the same first-order-sentences [31] to show that convexity of DR,lin implies
convexity of DQ,lin. We claim that a stronger statement is true, namely, that Th(Q,+, 0, 1) =
Th(R,+, 0, 1). Let φ be an arbitrary first-order sentence in the signature of (R,+, 0, 1). We
obtain the formula ψ(x) in the signature of (R,+, 0) by replacing the constant 1 in φ by a fresh
free variable x, i.e., (R,+, 0, 1) |= φ iff (R,+, 0) |= ψ(1). For every c ∈ R\{0}, the map x 7→ cx is
an automorphism of (R,+, 0) that sends 1 to c. Since {x ∈ R | (R,+, 0) |= ψ(x)} has a first-order
definition in (R,+, 0), it is preserved by all automorphisms of (R,+, 0) [26]. Now we distinguish
the following two cases. If (R,+, 0) |= ψ(0), then (R,+, 0, 1) |= φ iff (R,+, 0) |= ∃x. ψ(x).
Otherwise (R,+, 0, 1) |= φ iff (R,+, 0) |= ∃x.

(
¬(x = 0) ∧ ψ(x)

)
. Using an analogous argument

we have either (Q,+, 0, 1) |= φ iff (Q,+, 0) |= ∃x. ψ(x) in the case where (Q,+, 0) |= ψ(0),
or (Q,+, 0, 1) |= φ iff (Q,+, 0) |= ∃x.

(
¬(x = 0) ∧ ψ(x)

)
. Since φ was chosen arbitrarily and

Th(Q,+, 0) = Th(R,+, 0), we conclude that indeed Th(Q,+, 0, 1) = Th(R,+, 0, 1).
Since the relations of DQ,lin are definable in (Q,+, 0, 1) using the same conjunctive queries as

their counterparts in DR,lin and Th(Q,+, 0, 1) = Th(R,+, 0, 1), we conclude that p-admissibility
of DR,lin implies p-admissibility of DQ,lin. In fact, a counterexample to convexity in DQ,lin
would then yield a counterexample to convexity in DR,lin since it depends on the validity
status of certain first-order sentences in (Q,+, 0, 1). Similarly, the CSPs in DQ,lin and DR,lin are
determined by the validity status of certain first-order sentences in (Q,+, 0, 1) and (R,+, 0, 1),
repectively ut

It is tempting to claim that DQ,lin is considerably more expressive than the p-admissible
concrete domain DQ,dist with domain Q, unary predicates =p, >p, and binary predicates +p,=
exhibited in [2]. However, formally speaking, this is not true since the relations >p cannot be
expressed in DQ,lin. In fact, adding such a relation to DQ,lin would destroy convexity: x+ y > 0
implies x > 0 ∨ y > 0, but neither x > 0 nor y > 0. This example also works the other way
round, i.e., it shows that adding the ternary relation R+ = {(x, y, z) ∈ Q3 | x+ y = z} of DQ,lin
to DQ,dist destroys convexity. In particular, it shows that the concrete domain (Q, R+, >0) is
not convex.

Theorem 10. TBoxes of the DLs EL++[DQ,dist] and EL++[DQ,lin] have incomparable expressive
power, i.e., there is an EL++[DQ,dist] TBox T1 that cannot be expressed by an EL++[DQ,lin]
TBox and there is an EL++[DQ,lin] TBox T2 that cannot be expressed by an EL++[DQ,dist] TBox.

Proof. We define

T1 := {A v >0(f), >0(f) v A} and T2 := {A v R+(f1, f2, f3), R+(f1, f2, f3) v A}.

Assume that there is an EL++[DQ,lin] TBox T ′1 that is a conservative extension of T1, i.e.,
restricted to A, f , its models coincide with the ones of T1. Using T ′1 (possibly in renamed variants)
and the expressiveness of EL++[DQ,lin], we can the express TBoxes of EL[(Q, R+, >0)] by
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polynomially large TBoxes of EL++[DQ,lin]. However, by Theorem 1, reasoning in EL++[DQ,lin]
is polynomial, whereas it is ExpTime-hard in EL[(Q, R+, >0)], which yields a contradiction.
The assumption that there is an EL++[DQ,dist] TBox T ′2 that is a conservative extension of
T2 can similarly be shown to lead to a contradiction. ut

We expect, however, that DQ,lin will turn out to be more useful than DQ,dist in practice.

6 ω-Admissibility versus p-Admissibility

The notion of ω-admissibility was introduced in [34] as a condition on concrete domains D that
ensures that the subsumption problem in ALC(D) w.r.t. TBoxes remains decidable. This is
a rather complicated condition, but for our purposes it is sufficient to know that, according
to [34], an ω-admissible concrete domain D has finitely many binary relations, which are jointly
exhaustive (i.e., their union yields D ×D) and pairwise disjoint (i.e., for two different relation
symbols Ri, Rj we have RD

i ∩RD
j = ∅).

Only very simple structures can be at the same time jointly exhaustive, pairwise disjoint, and
guarded convex.

Proposition 3. Let D be a structure with a finite binary relational signature. Then the following
are equivalent:

1. D is guarded convex and its relations are jointly exhaustive and pairwise disjoint.
2. There exists a partition V1, . . . , Vm of D such that the non-empty relations of D are exactly

the ones of the form Vj × Vk for every (j, k) ∈ [m]2.

Proof. “1⇒ 2”: Let R1, . . . , R` be an enumeration of those symbols from τ that are interpreted in
D as a non-empty relation. For every i ∈ [`], we have D |= ∀x, y.

(
Ri(x, y)⇒ (

∨
j∈[`]Rj(x, x)) ∧

(
∨
k∈[`]Rk(y, y))

)
because the relations of D are jointly exhaustive. Using the distributive

law and the guarded convexity of D we conclude that, for every i ∈ [`], there exists a pair
(j, k) ∈ [`]2 such that D |= ∀x, y.

(
Ri(x, y) ⇒ (Rj(x, x) ∧ Rk(y, y))

)
. Since the relations of

D are pairwise disjoint and each Ri is non-empty, there can only be one such pair (j, k)
for every i ∈ [`]. Also, for every such pair (j, k) corresponding to a fixed i ∈ [`], we have
D |= ∀x, y.

(
(Rj(x, x) ∧Rk(y, y))⇒ (R1(x, y) ∨ · · · ∨ R`(x, y))

)
because the relations of D are

jointly exhaustive. Using the guarded convexity of D we conclude that there exists an i′ ∈ [`]
such that D |= ∀x, y.

(
(Rj(x, x) ∧Rk(y, y))⇒ Ri′(x, y)

)
. Since the relations of D are pairwise

disjoint, the index i′ must be the original i we started with. In sum, we have schown that

for every i ∈ [`], there exists precisely one pair (j, k) ∈ [`]2 such that
D |= ∀x, y.

(
Ri(x, y)⇔ (Rj(x, x) ∧Rk(y, y))

)
.

(∗)

For a given i ∈ [`], we distinguish the following two cases:

1. If there exists x ∈ D such that (x, x) ∈ Ri, then (∗) implies i = j = k and Ri = V 2
i where

Vi := {x ∈ D | (x, x) ∈ Ri}.
2. If there exists no x ∈ D such that (x, x) ∈ Ri, then (∗) implies the existence of j, k ∈ [`]

such that i, j, k are all pairwise distinct and Ri = Vj × Vk.

Without loss of generality, R1, . . . , Rm are the relations of the first kind, and Rm+1, . . . , R` are
the relations of the second kind. Since the relations of D are jointly exhaustive, V1, . . . , Vm form
a partition of D.

“2 ⇒ 1”: Clearly, the relations of D are jointly exhaustive and pairwise disjoint. We use
Theorem 2 to show that D is guarded convex. Thus, let A be an arbitrary guarded structure in
Age (D2). Observe that no pair (x, y) ∈ D2 such that x ∈ Vj and y ∈ Vk for j 6= k can be an
component of a tuple from a relation of D2. This is a direct consequence of our assumptions
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about the relations of D and the definition of the product of structures. Thus, since A is guarded
and embeds into D2, for every (x, y) ∈ A, we have x, y ∈ Vi for some i ∈ [m]. It is easy to see
that, in this particular case, the projection map (x, y) 7→ x is a strong homomorphism from A
to D. Since A was chosen arbitrarily, it follows from Theorem 2 that D is guarded convex. ut

In the presence of equality, only trivial structures can be jointly exhaustive, pairwise disjoint,
and guarded convex (which in the presence of equality is the same as convex).

Proposition 4. Let D be a structure with a finite binary relational signature τ that includes
equality. If D is convex, jointly exhaustive, and pairwise disjoint, then its domain D satisfies
|D| ≤ 1.

Proof. If |D| = 0, then we are done. Thus, assume that |D| ≥ 1 and let τ = {R1, . . . , R`}. Then
D |= ∀x, y. (x = x ∧ y = y ⇒ R1(x, y) ∨ · · · ∨R`(x, y)) since D is jointly exhaustive. Convexity
implies that there is an i ∈ [`] such that

D |= ∀x, y.Ri(x, y). (1)

Since the equality predicate is non-empty, pairwise disjointness implies that Ri must be equality.
But then (1) yields |D| = 1. ut

This proposition shows that there are no non-trivial concrete domains with equality that
are at the same time p-admissible and ω-admissible. Nevertheless, by combining the results of
Section 5.2 with Corollary 2 in [6], we obtain non-trivial p-admissible concrete domains with
equality for which subsumption in ALC(D) is decidable.

Corollary 4. Let D be a finitely bounded convex structure with equality that is a reduct of a
finitely bounded homogeneous structure. Then subsumption w.r.t. TBoxes is tractable in EL[D]
and decidable in ALC(D).

The Henson digraphs already mentioned in Section 5.2 provide us with infinitely many examples
of structures that satisfy the conditions of this corollary. In general, however, p-admissibility
of D does not guarantee decidability of subsumption in ALC(D). For example, subsumption
w.r.t. TBoxes is undecidable in ALC(DQ,dist) and ALC(DQ,lin) since this is already true for their
common reduct (Q,+1) [6].
Even for EL, integrating a p-admissible concrete domain may cause undecidability if we

allow for role paths of length 2. To show this, we consider the relational structure DQ2,aff over
Q2, which has, for every affine transformation Q2 → Q2 : x̄ 7→ Ax̄ + b̄, the binary relation
RA,b̄ := {(x̄, ȳ) ∈ (Q2)2 | ȳ = Ax̄+ b̄}.

Theorem 11. The relational structure DQ2,aff is p-admissible, which implies that subsumption
w.r.t. TBoxes is tractable in EL[DQ2,aff ]. However, subsumption w.r.t. TBoxes is undecidable in
EL(DQ2,aff).

We show p-admissibility of DQ2,aff using the fact that DQ,lin is p-admissible. Tractability of
subsumption in EL[DQ2,aff ] is then an immediate consequence of Theorem 1. Undecidability of
subsumption w.r.t. TBoxes in EL(DQ2,aff) can be shown by a reduction from 2-Dimensional
Affine Reachability, which is undecidable by Corollary 4 in [9]. For this problem, one is given
vectors v̄, w̄ ∈ Q2 and a finite set S of affine transformations from Q2 to Q2. The question is
then whether w̄ can be obtained from v̄ by repeated application of transformations from S.
It is not hard to show that 2-Dimensional Affine Reachability can effectively be reduced to
subsumption w.r.t. TBoxes in EL(DQ2,aff).

Lemma 3. The relational structure DQ2,aff is p-admissible.

Proof. First, note that validity of Horn implications in DQ2,aff can be reduced in linear time to
satisfiability of conjunctive queries and Horn implications in DQ,lin.
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It thus remains to show that DQ2,aff is convex. Let σ be a finite subset of the signature of
DQ2,aff and A a finite substructure of D2

Q2,aff . We claim that the σ-reduct of A embeds into the
σ-reduct of DQ2,aff . For every binary relation RM,v̄ of DQ2,aff we consider the 4-ary relation
{(x̄[1], x̄[2], ȳ[1], ȳ[2]) ∈ Q4 | ȳ = Mx̄+ v̄} of DQ,lin, which we denote by R′M,v̄. Consider the sub-
structure A′ of D2

Q,lin on the set of all pairs (x1, x2) ∈ Q2 for which there exists (x̄1, x̄2) ∈ A such
that (x1, x2) = (x̄1[1], x̄2[1]) or (x1, x2) = (x̄1[2], x̄2[2]). Let σ′ be a finite subset of the signature
of DQ,lin which contains a symbol for every relation R′M,v̄ for which there exists a symbol in σ
which interprets as RM,v̄ in DQ2,aff . Since DQ,lin is convex, by Corollary 2 there exists an embed-
ding f ′ from the σ′-reduct of A′ to the σ′-reduct of DQ,lin. Let f be the map from A to Q2 defined
by f(x̄1, x̄2) :=

(
f ′(x̄1[1], x̄2[1]), f ′(x̄1[2], x̄2[2])

)
. It is well-defined by the definition of A′. Let

(x̄1, x̄2), (ȳ1, ȳ2) ∈ A be arbitrary. Then (x̄1[1], x̄2[1]), (x̄1[2], x̄2[2]), (ȳ1[1], ȳ2[1]), (ȳ1[2], ȳ2[2]) ∈
A′ and, for every affine transformation x̄ 7→Mx̄+ v̄, we have the following chain of equivalent
statements.

(
x̄1

ȳ1

)(
x̄2

ȳ2

)
︸ ︷︷ ︸
∈RM,v̄

def.R′M,v̄⇐⇒


x̄1[1]
x̄1[2]
ȳ1[1]
ȳ1[2]



x̄2[1]
x̄2[2]
ȳ2[1]
ȳ2[2]


︸ ︷︷ ︸

∈R′M,v̄

f ′emb.⇐⇒


f ′(x̄1[1], x̄2[1])
f ′(x̄1[2], x̄2[2])
f ′(ȳ1[1], ȳ2[1])
f ′(ȳ1[2], ȳ2[2])


︸ ︷︷ ︸

∈R′M,v̄

def.f⇐⇒
(
f(x̄1, x̄2)
f(ȳ1, ȳ2)

)
︸ ︷︷ ︸
∈RM,v̄

This chain also holds for the equality predicate which can be written as RE,z̄ for E the 2× 2
identity matrix and z̄ = (0, 0). It follows that f is an embedding from A to DQ2,aff . By Corollary 2,
DQ2,aff is convex. ut

Lemma 4. Subsumption w.r.t. TBoxes is undecidable in EL(DQ2,aff).

Proof. We give a computable reduction of 2-dimensional Affine Reachability to subsumption
w.r.t. general TBoxes in EL(DQ2,aff). For given vectors v̄, w̄ ∈ Q2 and affine transformations
S = {x̄ 7→M1x̄+ v̄1, . . . , x̄ 7→Mkx̄+ v̄k}, we define the TBox T as follows:

– for every i ∈ [k], T contains the GCI > v ∃f, gf.RMi,v̄i ,
– T contains the GCI ∃g. L v L, and
– T contains the GCI ∃f, f.RZ,w̄ v L, where Z is the 2× 2 matrix consisting of zeros only.

Note that (x̄, x̄) ∈ RZ,w̄ if and only if x̄ = w̄.
We claim that ∃f, f.RZ,v̄ is subsumed by L w.r.t. T iff w̄ can be obtained from v̄ through

repeated application of affine transformations from S.

“⇐”: Suppose that there is a sequence of applications of affine transformations from S to v̄ that
yields w̄. Let I be a model of T and let a be an arbitrary element of ∆I with a ∈ ∃f, f.RZ,v̄,
i.e., fI(a) = v̄. Since T contains > v ∃f, gf.RMi,v̄i for every i ∈ [k] and w̄ is reachable
from v̄ through repeated application of affine transformations from S, there exists a role path
a→gI · · · →gI b to some individual b with fI(b) = w̄. Since T contains the GCI ∃f, f.RZ,w̄ v L,
we have that b is contained in LI . Since T contains the GCI ∃g. L v L, we have that a is
contained in LI . This finishes the proof of this direction since a was chosen arbitrarily.

“⇒”: Suppose that ∃f, f.RZ,v̄ is subsumed by L w.r.t. T . We construct the following interpre-
tation I:

– the domain of I is Q2,
– we define fI as the identity map on Q2,
– we set gI := {(x̄, ȳ) ∈ (Q2)2 | ∃i ∈ [k] such that ȳ = Mix̄+ v̄i},
– we set LI := {w̄} ∪ {x̄ ∈ Q2 | there exists a role path x̄→gI · · · →gI w̄}.

It is easy to check that I is a model of T . Since v̄ ∈ (∃f, f.RZ,v̄)I and this concept is subsumed
by L w.r.t. T , we have v̄ ∈ LI . It follows from the definition of LI that v̄ = w̄ or that w̄ is must
be reachable from v̄ through a role path for the role g. In both cases, w̄ is reachable from v̄ by a
sequence of applications of affine transformations from S. ut
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It is not clear whether undecidability also holds for EL(DQ,aff), where DQ,aff has domain Q
and the relations are defined by 1-dimensional affine transformations. However, Proposition 2
in [30] at least yields an NP lower bound for the subsumption problem in EL(DQ,aff).

7 Conclusion

The notion of p-admissible concrete domains was introduced in [2], where it was shown that
integrating such concrete domains into the lightweight DL EL (and even the more expressive
DL EL++) leaves the subsumption problem tractable. The paper [2] contains two examples of
p-admissible concrete domains, and since then no new examples have been exhibited in the
literature. This appears to be mainly due to the fact that it is not easy to show the convexity
condition required by p-admissibility “by hand”. The main contribution of the present paper is
that it provides us with a useful algebraic tool for showing convexity: the square embedding
condition. We have shown that this tool can indeed be used to exhibit new p-admissible concrete
domains, such as countably infinite vector spaces over finite field, the countable homogeneous
partial order, and numerical concrete domains over R and Q whose relations are defined by linear
equations. The usefulness of these numerical concrete domains for defining concepts should be
evident. For the other two we have indicated their potential usefulness by small examples.
We have also shown that, for finitely bounded structures, convexity is equivalent to p-

admissibility, and that this corresponds to the finite substructures being definable by a con-
junction of Horn implications. Interestingly, this provides us with infinitely many examples
of countable p-admissible concrete domains, which all yield a different extension of EL: the
Henson digraphs. From a theoretical point of view, this is quite a feat, given that before only
two p-admissible concrete domains were known. It is less clear whether these concrete domains
will turn out to be useful for defining concepts in practice.

Finitely bounded structures also provide us with examples of structures D that can be used
both in the context of EL and ALC, in the sense that subsumption is tractable in EL[D] and
decidable in ALC(D). Finally, we have shown that, when embedding p-admissible concrete
domains into EL, the restriction to paths of length 1 in concrete domain restrictions (indicated
by the square brackets) is needed since there is a p-admissible concrete domains D such that
subsumption in EL(D) is undecidable.
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