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Abstract

Simple counting quantifiers that can be used to compare the number of role successors
of an individual or the cardinality of a concept with a fixed natural number have been
employed in Description Logics (DLs) for more than two decades under the respective
names of number restrictions and cardinality restrictions on concepts. Recently, we have
considerably extended the expressivity of such quantifiers by allowing to impose set and
cardinality constraints formulated in the quantifier-free fragment of Boolean Algebra with
Presburger Arithmetic (QFBAPA) on sets of role successors and concepts, respectively.
We were able to prove that this extension does not increase the complexity of reasoning.

In the present paper, we investigate the expressive power of the DLs obtained in this
way, using appropriate bisimulation characterizations and 0–1 laws as tools to differentiate
between the expressiveness of different logics. In particular, we show that, in contrast
to most classical DLs, these logics are no longer expressible in first-order predicate logic
(FOL), and we characterize their first-order fragments. In most of our previous work
on DLs with QFBAPA-based set and cardinality constraints we have employed finiteness
restrictions on interpretations to ensure that the obtained sets are finite, as required by
the standard semantics for QFBAPA. Here we dispense with these restrictions to ease the
comparison with classical DLs, where one usually considers arbitrary models rather than
finite ones, easier. It turns out that doing so does not change the complexity of reasoning.

1 Introduction

Description Logics (DLs) [6] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [17]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). Adapting an example from
[7, 3] to a different domain, the concept of a Computer Science author can be formalized by
the concept description

Person u ∃published.(Paper u ∀topic.CS),
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which uses the concept names Person, Paper and CS, and the role names published and topic,
as well as the concept constructors conjunction (u), existential restriction (∃r.C), and value
restriction (∀r.C). It describes the set of all persons that have published a paper all of whose
topics lie in the area of Computer Science. The concept inclusion (CI)

CS-author v Person u ∃published.(Paper u ∀topic.CS)

can then be used to state that Computer Science authors need to belong to this concept de-
scription.

Numerical constraints on the number of role successors (so-called number restrictions) have been
used in DLs for more than three decades [9, 19, 18]. For example, using number restrictions,
we can define prolific authors as those having published at least 100 papers:

Prolific-author v Person u (> 100 published.Paper).

The exact complexity of reasoning in ALCQ, the DL that has all Boolean operations and number
restrictions of the form (6n r.C) and (>n r.C) as concept constructors, was determined by
Stephan Tobies [28, 30]: it is PSpace-complete without CIs and ExpTime-complete w.r.t. CIs,
independently of whether the numbers occurring in the number restrictions are encoded in unary
or binary. Note that, using unary coding of numbers, the number n is assumed to contribute
n to the size of the input, whereas with binary coding the size of the number n is log n. Thus,
for large numbers, assuming binary coding (or coding w.r.t. any base larger than 1) is more
realistic.

Numerical constraints have also been used in DLs to formulate cardinality restrictions on con-
cepts (CRs) [5, 29]. For example, the CRs1

|Conference u ∃uses.Easychair| > 75000 and |Person u ∃uses.Easychair| 6 3000000

state that at least 75 thousand conferences and at most 3 million persons use the conference
management system Easychair.2 Whereas number restrictions are local in the sense that they
consider role successors of an individual under consideration (e.g. the papers published by
a particular author), CRs are global, i.e., they consider all individuals in an interpretation.
Cardinality restrictions can express CIs since, clearly, C v D is equivalent to |C u ¬D| 6 0.
They are, however, considerably more expressive. The higher expressivity of CRs over CIs can,
for example, be seen from the fact that CIs in ALCQ are closed under disjoint union of models,
but models of a CR like |A| 6 1 are clearly not (see Section 2.3 for more details).

In addition, CRs increase the complexity of reasoning: for the DL ALCQ, consistency w.r.t. CIs
is ExpTime-complete [30], but consistency w.r.t. CRs is NExpTime-complete if the numbers
occurring in the CRs are assumed to be encoded in binary [29]. With unary coding of numbers,
consistency stays ExpTime-complete even w.r.t. CRs [29], but the above example considering
3 million conferences clearly shows that unary coding is not appropriate if numbers with large
values are employed. It should be noted that both number restrictions and CRs can be expressed
in C2, the two-variable fragment of first-order logic with counting quantifiers [14, 25], whose
satisfiability problem is known to be NExpTime-complete [26].

The logic C2, and thus also number restrictions and CRs, are expressible in FOL. In contrast,
the counting extensions considered in the present paper actually leave the realm of FOL. The
classical number restrictions available in ALCQ can only be used to compare the number of role
successors of an individual with a fixed natural number. They cannot compare the numbers
of different kinds of role successors to each other without relating them to a fixed number.

1Note that the syntax we use here for CRs differs from the one introduced in [5] to make it more similar to
the syntax used later on for our extensions of CRs.

2See https://www.easychair.org/, last accessed November 24, 2019.
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This would, e.g., be required to describe persons that have developed more theorem provers
than conference management systems, without fixing what these numbers actually are. To
overcome this deficit, we have extended ALCQ by allowing the statement of constraints on
role successors that are more general than the number restrictions of ALCQ [1]. To formulate
these constraints, we have used the quantifier-free fragment of Boolean Algebra with Presburger
Arithmetic (QFBAPA) [22], in which one can express Boolean combinations of set constraints
and numerical constraints comparing the cardinalities of sets. In the resulting logic, called
ALCSCC, the above constraint regarding theorem provers and conference managements systems
can be expressed using a cardinality constraint on the role successors:

Person u succ(|developed ∩ TP | > |developed ∩ CMS |). (1)

In general, such a succ-expression considers the set of all role successors of a given individual,
and requires certain subsets to satisfy the stated QFBAPA constraints. In our example, for
a person Andrei to belong to this concept, the cardinality of the set of developed -successors
of Andrei that belong to the concept TP (collecting all theorem provers) must be larger than
the cardinality of the set of developed -successors of Andrei that belong to the concept CMS
(collecting all conference management systems).

Adding such cardinality constraints strictly extends the expressive power of ALCQ. In [1] it
is shown that the constraint succ(|r| = |s|), which describes individuals that have the same
number of r-successors as s-successors, cannot be expressed in ALCQ. In [4], the constraint
succ(|r ∩ A| = |r ∩ ¬A|), which describes individuals that have exactly as many r-successors
belonging to A as r-successors not belonging to A, is shown to be not even expressible in first-
order logic. Intuitively, both kinds of constraints can, e.g., be used to describe people that have
the same number of sons and daughters, where in the first constraint one uses roles son and
daughter , whereas in the second one uses the role child and the concept Male. In spite of this
considerable increase of the expressive power, we were able to show in [1] that this does not
increase the complexity of reasoning: like for ALCQ, the complexity of the satisfiability problem
in ALCSCC is PSpace-complete without CIs and ExpTime-complete w.r.t. CIs. While the
PSpace result also follows from previous work [11] on modal logics with Presburger constraints,
the ExpTime result was new.

Just like classical number restrictions, CRs can only relate the cardinality of a concept to a
fixed number. In [7], we have introduced and investigated more general constraints on the
cardinalities of concepts, which we called extended cardinality constraints. The main idea was
again to use QFBAPA to formulate and combine these constraints. An example of a constraint
expressible this way, but not expressible using CRs is

2 · |Paper u ∀topic.DL| 6 |Paper u ∀topic.AR|

which states that papers with topic Automated Reasoning outnumber papers with topic De-
scription Logic by a factor of at least two. In [7] it is shown that, in the DL ALC, the complexity
of reasoning w.r.t. extended cardinality constraints (NExpTime for binary coding of numbers)
is the same as for reasoning w.r.t. CRs. In addition, the paper introduces a restricted version
of this formalism, which can express CIs, but not CRs, and shows that this way the complexity
can be lowered to ExpTime. The NExpTime upper bound for the general case actually also
follows from the NExpTime upper bound in [31] for a more expressive logic with n-ary relations
and function symbols, but the ExpTime result for the restricted case was new.

In [2, 3], we combined the work in [1] and [7] by considering extended cardinality constraints in
ALCSCC. This turned out to be non-trivial since the local cardinality constraints of ALCSCC
may interact with the global ones in the extended cardinality constraints. Nevertheless, we
were able to show that the complexity results (NExpTime-complete in general, and ExpTime-
complete in the restricted case) hold not only for ALC, but also for ALCSCC.

3



Complexity and Expressiveness of DLs with Counting Baader and De Bortoli

The purpose of the present paper is twofold. On the one hand, we give a compact representation
of the known complexity results for the DLs with extended counting facilities mentioned above,
and transfer them to a setting where arbitrary rather than just finite models are considered (see
below). On the other hand, we investigate the expressive power of these DLs in detail. A first
step in this direction was already made in [4], where the expressive power of concept descrip-
tions was examined using appropriate bisimulation relations. Basically, we showed there that
ALCSCC is not expressible in FOL, and determined a sub-logic of ALCSCC, called ALCCQU ,
that is the first-order fragment of ALCSCC. We also showed that ALCCQU is more expressive
that ALCQ. Here, we recall these results, and then extend them to TBoxes, CRs, and extended
cardinality constraints, by adapting methods and ideas from [24]. As in [4], we consider variants
of QFBAPA and ALCSCC that allow for possibly infinite sets and interpretations, respectively.
This change has no influence on the complexity of reasoning, but it eases the comparison with
classical DLs, for which one usually employs arbitrary models rather than finite ones when
defining the semantics. It also adds flexibility since finiteness can be expressed in these logics,
and thus one can actually switch between arbitrary model reasoning and finite model reasoning.

2 DLs with counting quantifiers

In this section, we formally introduce the DLs with extended counting facilities mentioned
in the introduction, and recall the known complexity results for reasoning in these logics. As
mentioned above, we will not restrict the semantics to finite models. For this reason, the results
originally obtained for the “finite model” case need to be adapted. We start with introducing
the infinite variant of QFBAPA upon which all our logics are based.

2.1 An infinite variant of QFBAPA

We recall the definition of QFBAPA∞ as introduced in [4].3 In this logic one can build set terms
by applying Boolean operations (intersection ∩, union ∪, and complement ·c) to set variables
as well as the constants ∅ and U . Set terms s, t can then be used to state inclusion and equality
constraints (s = t, s ⊆ t) between sets. For example, if Vampire and Easychair are set variables,
then the set constraint

Barstool ∩ Easychair = ∅
says that barstools are not easychairs.

Presburger Arithmetic (PA) expressions are built from numerical variables, integer constants,
and set cardinalities |s| using addition as well as multiplication with an integer constant. They
can be used to form numerical constraints of the form k = ` and k < `, where k, ` are PA
expressions. For example, the numerical constraint

|Vampire| > 10·(|Easychair|+ |Barstool|)

says that there are more than ten times as many vampires as there are easychairs and barstools
together. A QFBAPA∞ formula is a Boolean combination of set and numerical constraints.

The semantics of set terms and set constraints is defined using substitutions σ that assign a set
σ(U) to U and subsets of σ(U) to set variables.4 The evaluation of set terms and set constraints
by such a substitution is defined in the obvious way, using the standard notions of intersection,
union, complement,5 inclusion, and equality for sets. PA expressions are evaluated over N∞ =

3A variant of QFBAPA∞ with a slightly different expressivity, but the same complexity of reasoning, was
introduced in [21].

4In QFBAPA, σ(U) is constrained to be a finite set.
5The complement is built w.r.t. σ(U), i.e., σ(sc) = σ(U) \ σ(s).
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N ∪ {∞}, i.e., the natural numbers6 extended with a symbol for infinity. Thus, substitutions
additionally assign elements of N∞ to numerical variables. The cardinality expression |s| is
evaluated under σ as the cardinality of σ(s) if this set is finite, and as ∞ if σ(s) is not finite.7
When evaluating PA expressions w.r.t. a substitution σ, we employ the usual way of adding,
multiplying, and comparing natural numbers, extended by the following rules that deal with
infinity: ∞ + N = N +∞ = ∞ = ∞ +∞ for all natural numbers N , 0 · ∞ = 0 = ∞ · 0,
N · ∞ = ∞ = ∞ · N for all positive integers N , N < ∞ and ∞ 6< N for all natural numbers
N , and ∞ =∞ as well as ∞ 6<∞.

A solution σ of a QFBAPA∞ formula φ is a substitution that evaluates φ to true, using the
above rules for evaluating set and numerical constraints and the usual interpretation of the
Boolean operators occurring in φ. The formula φ is satisfiable if it has a solution.

Note that, in QFBAPA∞, we can enforce infinity of a set although we do not allow the use of
∞ as a constant. For instance, |s| =∞ is not an admissible numerical constraint, but it is easy
to see that the constraint |s| + 1 = |s| can only be satisfied by a substitution that assigns an
infinite set to the set term s.

The set constraints in QFBAPA∞ are actually syntactic sugar since they can be expressed using
numerical constraints. In fact, the set constraint s ⊆ t is equivalent to the numerical constraint
|s∩ tc| 6 0. Note that, for finite sets, this could equivalently be expressed as |s∪ t| = |t|, but for
infinite sets the latter constraint is not equivalent to s ⊆ t. Since set constraints are syntactic
sugar and > and < can easily be simulated in N∞ using > and 6, we can assume without
loss of generality that any QFBAPA∞ formula is a Boolean combination of atomic QFBAPA∞
formulae of the form

N0 +N1|s1|+ · · ·+Nk|sk| 6M0 +M1|t1|+ · · ·+M`|t`|, (2)

where the si, tj are set terms and the Ni,Mj are natural numbers.

The logic CQU as introduced in [4] is obtained from QFBAPA∞ by restricting numerical
constraints to be of the form k 6 N and k > N , i.e., a CQU formula is a Boolean combination
of set constraints and numerical constraints of this restricted form. By using the same arguments
as above, we can show that any CQU formula is equivalent to a Boolean combinations of atomic
formulae of the form (2) where k = 0 or ` = 0. In addition, in this setting sums can be expressed
using disjunction. For example, saying that |s|+ |t| 6 1 is equivalent to saying that |s| 6 0 and
|t| 6 1, or |s| 6 1 and |t| 6 0. Thus, when it comes to expressive power, we can assume without
loss of generality that formulae of CQU are Boolean combinations of numerical restrictions of
the form |s| 6 N or |s| > N .

It is actually not hard to see that the logic CQU as defined here and in [4] has the same
expressivity as C1, the one-variable fragment of first-order logic with counting (see, e.g., [27]).
The logic originally called CQU in [13] is the fragment where only conjunctions of atomic
restrictions of the form |s| 6 N or |s| > N can be used. However, when using CQU within
our DLs with counting quantifiers, this difference is irrelevant since the Boolean operations are
available anyway on the DL level.

2.2 Concept descriptions that count

We are now ready to define the DL ALCSCC∞ and some of its sub-logics. Basically, ALCSCC∞
provides us with Boolean operations on concepts and constraints on role successors, which are

6We assume here that the natural numbers contain 0. We call the natural numbers without 0 “positive
integers.”

7Note that we do not distinguish between different infinite cardinalities, such as countably infinite, uncount-
ably infinite, etc.
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expressed in QFBAPA∞. In these constraints, role names and concept descriptions can be used
as set variables, and there are no numerical variables allowed.

Definition 1 (Syntax of ALCSCC∞). Given finite, disjoint sets NC of concept names and
NR of role names, the set of ALCSCC∞ concept descriptions over the signature (NC , NR) is
inductively defined as follows:

• >,⊥, and every concept name in NC is an ALCSCC∞ concept description over (NC , NR);

• if C,D are ALCSCC∞ concept descriptions over the signature (NC , NR), then so are
C uD, C tD, and ¬C;

• if Con is a set or numerical constraint of QFBAPA∞ using role names and already de-
fined ALCSCC∞ concept descriptions over the signature (NC , NR) as set variables, then
succ(Con) is an ALCSCC∞ concept description over (NC , NR).

For example, the description (1) in the introduction is an ALCSCC∞ concept description that
uses the QFBAPA∞ numerical constraint |developed ∩ TP | > |developed ∩ CMS |, in which
developed , TP , and CMS are viewed as set variables. Of course, successor constraints can also
be nested, as in the ALCSCC∞ concept description

succ(|friend ∩ succ(|developed ∩ CMS | > 1)| = |friend ∩ succ(|developed ∩ TP | > 1)|),

which describes all individuals having as many friends that have developed at least one con-
ference management system as they have friends that have developed at least one theorem
prover.

For the sake of simplicity, we will sometimes use “concept” in place of “concept description,”
and often dispense with explicitly mentioning the signature. As usual in DL, the semantics of
ALCSCC∞ is defined using the notion of an interpretation.

Definition 2 (Semantics of ALCSCC∞). Given finite, disjoint sets NC and NR of concept and
role names, respectively, an interpretation of NC and NR consists of a non-empty set ∆I and
a mapping ·I that maps every concept name A ∈ NC to a subset AI of ∆I and every role name
r ∈ NR to a binary relation rI over ∆I . Given an individual d ∈ ∆I and a role name r ∈ NR,
we define

rI(d) := {e ∈ ∆I | (d, e) ∈ rI} and arsI(d) :=
⋃
r∈NR

rI(d).

The function ·I is inductively extended to ALCSCC∞ concept descriptions over (NC , NR) by
interpreting u, t, and ¬ respectively as intersection, union and complement as well as > as
∆I and ⊥ as the empty set. Successor constraints are evaluated according to the semantics of
QFBAPA∞: to determine whether d ∈ succ(Con)I or not

• U is evaluated as arsI(d) (i.e., the set of all role successors of d),

• ∅ as the empty set,

• roles r occurring in Con as rI(d) (i.e., the set of r-successors of d),

• and concept descriptions D as DI∩arsI(d) (i.e., the set of role successors of d that belong
to D). Note that, by induction, the sets DI are well-defined.

Then d ∈ succ(Con)I iff the substitution obtained this way is a solution of the QFBAPA∞
formula Con.

6
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The ALCSCC∞ concept description C is satisfiable if there is an interpretation I such that
CI 6= ∅. The ALCSCC∞ concept descriptions C,D are equivalent (written C ≡ D) if CI = DI

for all interpretations I.

The sub-logics ALCQ, ALCQt, and ALCCQU of ALCSCC∞ can be obtained from ALCSCC∞
by restricting the successor constraints appropriately:

• The DL ALCQ is the fragment of ALCSCC∞ in which only successor constraints of the
form succ(|C ∩ r| > N) or succ(|C ∩ r| 6 N) are allowed, where N is a natural number,
r is a role name, and C is an ALCQ concept description. These constraints are usually
written as (>N r.C) and (6N r.C), and are called qualified number restrictions.

• The DL ALCQt is the fragment of ALCSCC∞ in which only successor constraints of
the form succ(|C ∩ τ | > N) or succ(|C ∩ τ | 6 N) are allowed, where N is a natural
number, τ is a safe role type, and C is an ALCQt concept description. A safe role
type is an intersection of role names r (positive occurrence) and complements rc of role
names (negative occurrence) such that every role name in NR occurs either positively or
negatively, and at least one role name occurs positively. Using the syntax for qualified
number restrictions, these constraints can be written as (>N τ.C) and (6N τ.C).

• The DL ALCCQU is the fragment of ALCSCC∞ in whose successor constraints only con-
straints of CQU are allowed.

By definition, ALCQ is a sub-logic of ALCCQU , and ALCCQU is a sub-logic of ALCSCC∞.
In addition, ALCQt is clearly a sub-logic of ALCCQU . Moreover, it is shown in [4] that any
ALCCQU concept description can be expressed by an equivalent ALCQt concept description,
and thus that ALCCQU and ALCQt have the same expressive power.

We will see below that ALCSCC∞ concept descriptions can in general not be expressed in FOL.
In contrast, the concept descriptions of the three fragments introduced above can be expressed
by first-order formulae with one free variable. This is well-known for ALCQ [8], and can be
shown for ALCQt by a simple adaptation of the first-order translation for ALCQ, where safe
role types are translated into first-order formulae with two variables in the obvious way. For
ALCCQU this follows from its equivalence with ALCQt.

Proposition 3. If L ∈ {ALCQ,ALCQt,ALCCQU}, then L is a fragment of FOL, i.e., for
every L concept description C there exists a first-order formula with one free variable C](x)
such that C and C](x) are equivalent in the sense that, for every interpretation I, we have
CI = {d ∈ ∆I | I |= C](d)}.

The logic ALCSCC∞ and its sub-logics are local in the sense that the decision on whether a
certain individual belongs to a concept depends only on this individual and other individuals
connected via roles to it. For this reason, evaluating a concept in the disjoint union of interpre-
tations corresponds to evaluating it separately in the single interpretations. To be more precise,
given a family (Iν)ν∈N of interpretations, we define their disjoint union I =

⊕
ν∈N Iν as

∆I := {(d, ν) | ν ∈ N and d ∈ ∆Iν},
AI := {(d, ν) | ν ∈ N and d ∈ AIν} for all A ∈ NC ,
rI := {((d, ν), (e, ν)) | ν ∈ N and (d, e) ∈ rIν} for all r ∈ NR.

The following is now easy to show, using the locality of ALCSCC∞ concept descriptions men-
tioned above.

Lemma 4. Let C be an ALCSCC∞ concept description. Then we have

CI = {(d, ν) | ν ∈ N and d ∈ CIν}.

7
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2.3 TBoxes and cardinality boxes

In classical DLs, terminological knowledge is represented using so-called TBoxes, which are
finite sets of CIs of the form C v D for concepts C,D. Cardinality boxes extend TBoxes
by allowing for the formulation of cardinality constraints also on this level. To simplify the
comparison with cardinality boxes, in which Boolean combinations of numerical constraints are
allowed, we also consider Boolean TBoxes.

Definition 5. Let L be one of the DLs ALCQ, ALCQt, ALCCQU , or ALCSCC∞.

1. A Boolean L TBox is a Boolean combination of CIs C v D, where C,D are L concept
descriptions. An L TBox is a conjunction of such CIs.

2. A Boolean L CBox is a Boolean combination of CRs of the form |C| 6 N and |C| > N ,
where C is an L concept description and N is a natural number. An L CBox is a
conjunction of such CRs.

3. An L ECBox is a Boolean combination of inequations of the form

N0 +N1|C1|+ · · ·+Nk|Ck| 6M0 +M1|D1|+ · · ·+M`|D`|, (3)

where the Ci, Dj are L concept descriptions and the Ni,Mj are natural numbers.

4. An L RCBox is a conjunction of inequations of the form

N1|C1|+ · · ·+Nk|Ck| 6M1|D1|+ · · ·+M`|D`|, (4)

where the Ci, Dj are L concept descriptions and the Ni,Mj are positive natural numbers.

We say that the interpretation I is a model of

1. the CI C v D if CI ⊆ DI holds,

2. the CR |C| 6 N if |CI | 6 N , and of the CR |C| > N if |CI | > N ,

3. an inequation of the form (3) if

N0 +N1|CI1 |+ · · ·+Nk|CIk | 6M0 +M1|DI1 |+ · · ·+M`|DI` |,

4. an inequation of the form (4) if

N1|CI1 |+ · · ·+Nk|CIk | 6M1|DI1 |+ · · ·+M`|DI` |.

The notion of a model is extended to Boolean combinations of such constraints in the obvious
way.

Obviously, the CI C v D can be expressed by the CR |C u ¬D| 6 0. Equivalently, one can
express this restriction as |Cu¬D| 6 |⊥|, which shows that CIs are also expressible by ECBoxes
and RCBoxes. Thus, TBoxes can be expressed using CBoxes, ECBox, or RCBoxes. CBoxes
and RCBoxes are clearly expressible by ECBoxes. However, the expressiveness of CBoxes
and RCBoxes appears to be orthogonal. While the former only allow us to compare concept
cardinalities with a fixed number, this is exactly what is prohibited in RCBoxes. On the other
hand, RCBoxes enable us to compare the cardinalities of different concepts whereas this is not
possible in CBoxes.

In case the underlying DL L is expressible in FOL, L TBoxes and L CBoxes are clearly also
expressible in FOL. Together with Proposition 3 this observation yields the following:

8
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Corollary 6. If L ∈ {ALCQ,ALCQt,ALCCQU}, then L (Boolean) TBoxes and CBoxes can be
expressed in FOL, i.e., for every (Boolean) L TBox or CBox T there exists a first-order sentence
T ] such that T and T ] are equivalent in the sense that they have the same interpretations as
models.

We can use disjoint unions to show inexpressibility results for some of our box formalisms.

Definition 7. Let L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞} and T be a (Boolean) TBox,
CBox, RCBox, or ECBox. We say that the models of T are closed under disjoint union if
the following holds: if the interpretations Iν for ν ∈ N are models of T , then their disjoint
union I =

⊕
ν∈N Iν is also a model of T . The models of T are invariant under disjoint union if

additionally the implication in the other direction holds, i.e., if the disjoint union I =
⊕

ν∈N Iν
is a model of T , then so are the interpretations Iν for ν ∈ N .

Using Lemma 4, the positive statements of the following proposition are easy to show.

Proposition 8. If L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞}, then

1. the models of L TBoxes are invariant under disjoint union;

2. the models of L RCBoxes are closed under disjoint union, but in general not invariant
under disjoint union;

3. the models of L ECBoxes or CBoxes are in general not closed under disjoint union;

4. the models of Boolean L TBoxes are not closed under disjoint union.

Regarding the negative statement in 2., consider the RCBox |A|+ |B| 6 |C| for concept names
A,B,C. If we consider interpretation I1 and I2 in which AI1 contains one element, BI1 one
element, CI1 one element, AI2 one element, BI2 one element, and CI2 three elements, then the
disjoint union of I1 and I2 is a model of the RCBox, but I1 is not. Regarding 3., it should be
clear that the models of |A| 6 1 cannot be closed under disjoint union. Finally, it is also easy
to see that the models of the Boolean TBox (A v ⊥) ∨ (B v ⊥) are not closed under disjoint
union.

As an immediate consequence of the above lemma, we obtain the following inexpressibility
results.

Proposition 9. If L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞}, then

• L TBoxes in general cannot express L RCBoxes, ECBoxes, CBoxes, and Boolean TBoxes;

• L RCBoxes in general cannot express L ECBoxes, CBoxes, and Boolean TBoxes.

2.4 Reasoning in DLs that count

For a DL L, the fundamental inference problems are satisfiability and subsumption of concepts:

• Given an L concept C, the satisfiability problem asks whether C is satisfiable, i.e., whether
there is an interpretation I such that CI 6= ∅.

• Given L concepts C,D, the subsumption problem asks whether C is a subconcept of D
(written C v D), i.e., whether CI ⊆ DI holds for all interpretations I.

9
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If the DL L can express ⊥ as well as conjunction and negation of concepts, then subsumption
and satisfiability can be reduced to each other in polynomial time since C v D holds iff Cu¬D
is unsatisfiable, and C is unsatisfiable iff C v ⊥ holds.

These two inference problems can also be considered w.r.t. the kinds of boxes introduced in
the previous subsection. Let C,D be L concepts and T an L TBox, CBox, ECBox, or RCBox.
Then we say that

• T is consistent if it has a model,

• C is satisfiable w.r.t. T if there is a model I of T such that CI 6= ∅,

• C is subsumed by D w.r.t. T (written C vT D) if CI ⊆ DI holds for all models I of T .

Again, it is well-known that these problems can be reduced to each other in polynomial time if
⊥,>,¬, u, and qualified number restrictions of the form (> 1 r.C) are available. In fact, T is
inconsistent iff > vT ⊥ holds, and C is satisfiable w.r.t. T iff T ∪{> v (> 1 r.C)} is consistent,
where r is a new role name occurring neither in C nor in T .

Since the prerequisites required for the reductions mentioned above are satisfied by the DLs
ALCQ, ALCQt, ALCCQU , and ALCSCC∞, and all our box formalisms can express CIs, we can
restrict the attention to the satisfiability problem in case there is no box, and to the consistency
problem in case there is a box, when investigating the complexity of reasoning.

Reasoning without a box in ALCSCC∞ and its sub-logics

The satisfiability problem in ALCQ was shown to be PSpace-complete in [28]. In [1] it was
proved that this result can be extended to ALCSCC, and in [4] it was demonstrated that the
same is true for ALCSCC∞. Since we have a PSpace lower bound for ALCQ, which is the
least expressive DL considered in this paper, even for unary coding of numbers, as well as a
PSpace upper bound for ALCSCC∞, which is the most expressive one, even for binary coding,
this determines the exact worst-case complexity of the satisfiability problem for all the DLs
introduced above.

Theorem 10 ([28, 4]). If L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞}, then satisfiability of L
concepts is PSpace-complete independently of whether numbers are encoded in unary or binary.

Reasoning w.r.t. CBoxes and ECBoxes

Consistency of ALCQ CBoxes was shown to be NExpTime-complete in [29] if binary coding
of numbers is used, whereas for unary coding it stays in ExpTime. In [2, 3] we were able to
prove a NExpTime upper bound for consistency of ALCSCC ECBoxes with numbers encoded in
binary. Basically, the proof of this result takes the ALCSCC ECBoxes E and translates it into an
exponentially larger QFBAPA formula δE that is satisfiable iff E is consistent. Since satisfiability
in QFBAPA is NP-complete for binary coding of numbers, this yields the NExpTime upper
bound for ALCSCC. This results can easily be transferred to ALCSCC∞ by using the same
translation, but then testing satisfiability of δE in QFBAPA∞ rather than in QFBAPA. In [4]
it is shown that the satisfiability problem in QFBAPA∞ is also in NP.

Theorem 11 ([29, 7, 2, 4]). If L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞}, then consistency
of L (Boolean) CBoxes and ECBoxes is NExpTime-complete if numbers are encoded in binary.
For ECBoxes, NExpTime-hardness already holds for unary coding of numbers.

10
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The reason why the coding of numbers is irrelevant in the presence of ECBoxes is that one can
use iterated multiplication to create large numbers from small ones (see [7] for a more detailed
argument).

Reasoning w.r.t. TBoxes and RCBoxes

It is well-known that consistency of ALCQ TBoxes is an ExpTime-complete problem [30]. This
result was extended in [1] to ALCSCC TBoxes, and in [4] it was argued that it also holds for
ALCSCC∞. RCBoxes were introduced in [7] to obtain a restriction of ECBoxes that lowers
the complexity of the consistency problem from NExpTime to ExpTime. For ALCSCC (i.e.,
the case of finite models), it is shown in [2, 3] that the consistency problem for RCBoxes is
ExpTime-complete. It would not be hard to demonstrate that the approach employed there to
prove the ExpTime upper bound for the “finite model” case can be adapted to the infinite case
as well. However, below we give a simpler proof of this result for ALCSCC∞, which uses that
fact that it is sufficient to consider solutions of inequations of the form (5) where the concepts
Ci are either empty or have infinite cardinality.

Recall that an ALCSCC∞ RCBox R is a system of inequations of the form

N1|C1|+ · · ·+Nk|Ck| 6 Nk+1|Ck+1|+ · · ·+Nk+`|Ck+`|, (5)

where the Ci are ALCSCC∞ concept descriptions and the Ni are positive integers. Our al-
gorithm reduces consistency of ALCSCC∞ RCBoxes to consistency of ALCSCC∞ TBoxes. It
receives an ALCSCC∞ RCBox R as input and initializes the ALCSCC∞ TBox T as T := ∅. It
then proceeds with the following steps:

1. Check whether the ALCSCC∞ TBox T is consistent. If this is not the case, then terminate
with failure. Otherwise, for all concepts C occurring in an inequation of R, check whether
T implies C v ⊥. If this is the case, then add C v ⊥ to T . Then proceed with the next
step.

2. For all inequations of the form (5) such that Cj v ⊥ belongs to T for all k+1 6 j 6 k+`,
add Ci v ⊥ to T for all i, 1 6 i 6 k. If no new CI has been added to T , then terminate
with success. Otherwise, continue with the previous step.

Lemma 12. The algorithm terminates after a polynomial number of iterations and it succeeds
iff the RCBox R is consistent.

Proof. Termination after a polynomial number of iterations is an immediate consequence of the
fact that only polynomially many CIs of the form C v ⊥ can be added to T since the concepts
C for which such a CI can be added must occur in an inequation in R.

Now, assume that R is consistent, and let I be a model of R. By an induction on the number
of iterations, it is easy to show that we must have CI = ∅ for all CIs added to T during the
run of the algorithm. Consequently, in Step 1 the algorithm can never fail since I is a model
of T . Since the algorithm always terminates, it must thus succeed.

Next, assume that the algorithm succeeds with the final TBox T . Then T is consistent, and
for every concept C occurring in an inequation of R such that C v ⊥ does not belong to T ,
there is a model IC of T such that CIC 6= ∅. By using closure under disjoint union of models
of ALCSCC∞ TBoxes, this implies that there is an interpretation I∞ such that the following
holds for all concepts C occurring in an inequation of R:

• if C v ⊥ belongs to T , then CI∞ = ∅;

11
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Consistency of TBox RCBox CBox ECBox
ALCQ ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCQt ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCCQU ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCSCC∞ ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.

Table 1: Complexity results for consistency assuming binary coding of numbers

• if C v ⊥ does not belong to T , then the cardinality of CI∞ is infinite.

It remains to shows that I∞ is a model of R. Thus, consider an inequation of the form (5) in
R. If there is a j with k+1 6 j 6 k+ ` such that CI∞j is infinite, then clearly this inequation is
satisfied by I∞. Otherwise, Cj v ⊥ belongs to T for all k+1 6 j 6 k+`, and thus also Ci v ⊥
belongs to T for all i with 1 6 i 6 k. This shows that, again, the inequation is solved.

Since consistency of ALCSCC∞ TBoxes can be tested in exponential time [4], the overall com-
plexity of our algorithm is ExpTime.

Proposition 13. Consistency of ALCSCC∞ RCBoxes is in ExpTime.

Combining this result with the known lower bounds for TBox consistency, we thus obtain the
following:

Theorem 14. If L ∈ {ALCQ,ALCQt,ALCCQU ,ALCSCC∞}, then consistency of L (Boolean)
TBoxes and RCBoxes is ExpTime-complete independently of whether numbers are encoded in
unary or binary.

To explain the ExpTime upper bound for Boolean TBoxes, note that one can reduce consistency
of a Boolean TBox to exponentially many consistency tests for TBoxes. In fact, one can bring
the Boolean TBox into disjunctive normal form and then test every disjunct for consistency. At
first sight, such a disjunct is not a TBox since it may contain negated CIs, but one can replace
negated CIs ¬(C v D) with CIs > v (> 1 r.(C u ¬D)) for new roles r (see Proposition A.1 for
a justification).

The complexity results for “box consistency” in ALCSCC∞ and its sub-logics are summarized
in Table 1.

3 Expressivity of concept descriptions

The purpose of this section is to compare the expressive power of the concept description
languages of the DLs ALCQ, ALCQt, and ALCSCC∞. Since we already know that ALCQt and
ALCCQU have the same expressiveness, we will not consider ALCCQU explicitly here. Our
results, which have been presented first in [4], make use of appropriate bisimulation relations
for the first-order expressible logics ALCQ and ALCQt.

Bisimulation relations for ALCQ and ALCQt

Let τ be a safe role type, r1, . . . , rk the role names occurring positively in τ , and s1, . . . , s` the
role names occurring negatively, i.e., τ = r1 ∩ . . .∩ rk ∩ sc1 ∩ . . .∩ sc`. For a given interpretation
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Figure 1: Two interpretations I1 and I2 and an ALCQ bisimulation ρ, which is not an ALCQt
bisimulation.

I and an element d ∈ ∆I , we define

τI(d) := (rI1 (d) ∩ . . . ∩ rIk (d)) \ (sI1 (d) ∪ . . . ∪ sI` (d)).

Since τ is safe, we must have k > 1, and thus τI(d) ⊆ rI1 (d) ⊆ arsI(d).

Definition 15 (ALCQt bisimulation). Let I1 and I2 be interpretations of NC and NR. The
relation ρ ⊆ ∆I1 ×∆I2 is an ALCQt bisimulation between I1 and I2 if for all A ∈ NC and all
safe role types τ over NR the following three properties are satisfied:

1. d1 ρ d2 implies d1 ∈ AI1 iff d2 ∈ AI2 ;

2. if d1 ρ d2 and D1 ⊆ τI1(d1) is finite, then there is a set D2 ⊆ τI2(d2) such that ρ contains
a bijection between D1 and D2;

3. if d1 ρ d2 and D2 ⊆ τI2(d2) is finite, then there is a set D1 ⊆ τI1(d1) such that ρ contains
a bijection between D1 and D2.

Two individuals d1 ∈ ∆I1 and d2 ∈ ∆I2 are called ALCQt bisimilar (written (I1, d1) ∼ALCQt
(I2, d2)) if there is an ALCQt bisimulation ρ between I1 and I2 such that d1 ρ d2. These
individuals are called ALCQt equivalent (written (I1, d1) ≡ALCQt (I2, d2)) if for all ALCQt
concept descriptions C we have d1 ∈ CI1 iff d2 ∈ CI2 .

The notion of an ALCQ bisimulation (called counting bisimulation in [24]) is obtained from the
above definition by replacing safe role types τ overNR with role names r ∈ NR. ALCQ bisimilar-
ity (written (I1, d1) ∼ALCQ (I2, d2)) and ALCQ equivalence (written (I1, d1) ≡ALCQ (I2, d2))
are obtained by replacing ALCQt in the above definition with ALCQ. The next proposition
states that concepts of ALCQ and ALCQt are invariant under the respective notion of bisim-
ulation. For ALCQ, this was first shown in [24] and for ALCQt in [4]. A detailed proof for
L = ALCQt is provided in Appendix A.2.

Proposition 16 ([24, 4]). If L ∈ {ALCQ,ALCQt}, then (I1, d1) ∼L (I2, d2) implies (I1, d1) ≡L
(I2, d2).

This result is already sufficient for showing that ALCQt is not expressible in ALCQ.

Corollary 17 ([4]). Let NR = {r, s} and NC = {A}. There is no ALCQ concept description
C such that C is equivalent to the ALCQt concept description succ(|A ∩ r ∩ s| > 1).

In fact, if succ(|A ∩ r ∩ s| > 1) was equivalent to an ALCQ concept description, then it would
need to be invariant under ALCQ bisimulation as stated in the above proposition. However,
Fig. 1 shows two interpretations in which the individuals d1 and d2 are ALCQ bisimilar, but
whereas d1 belongs to succ(|A ∩ r ∩ s| > 1), the individual d2 does not.
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The following theorem states that ALCQ and ALCQt are exactly the fragments of first-order
logic that are invariant under the respective notion of bisimulation. We say that a first-
order formula φ(x) with one free variable x is invariant under ∼L for L ∈ {ALCQ,ALCQt}
if (I1, d1) ∼L (I2, d2) implies that I1 |= φ(d1) iff I2 |= φ(d2). For ALCQ this was first shown
in [24] and the proof for ALCQt can be obtained by adapting this proof. A detailed proof that
closes some small gaps of the one in [24] can be found in Appendix A.2.

Theorem 18 ([24, 4]). Let L ∈ {ALCQ,ALCQt} and φ(x) be a first-order formula with one
free variable x. Then the following are equivalent:

1. there is an L concept description C such that C is equivalent to φ(x);

2. φ(x) is invariant under ∼L.

Comparison with ALCSCC∞

One might think that invariance of ALCQt concept descriptions under ALCQt bisimulation could
be used to show that ALCSCC∞ concepts cannot be expressed in ALCQt. This is, however, not
the case since ALCSCC∞ concepts are also invariant under ALCQt bisimulation.

Proposition 19 ([4]). If (I1, d1) ∼ALCQt (I2, d2) then (I1, d1) ≡ALCSCC∞ (I2, d2).

Here ALCSCC∞ equivalence is defined in the obvious way, by considering all ALCSCC∞ concept
descriptions over the given signature. The main idea underlying the proof of this proposition is
that all the PA expressions occurring in successor constraints can be transformed into the form

k =
∑̀
i=1

Ni · |τi ∩ Ci|,

where the Ni are natural numbers, the τi are safe role types, and the Ci are ALCSCC∞ concept
descriptions. Then, one can show that, for individuals that are ALCQt bisimilar, expressions of
the form |τi ∩ Ci| evaluate to the same number or to ∞ on their role successors.

Combining Proposition 19 and Theorem 18 for L = ALCQt, we can now conclude that ALCQt
is exactly the first order fragment of ALCSCC∞.

Theorem 20 ([4]). For an ALCSCC∞ concept description C, the following are equivalent:

1. C is equivalent to an FOL formula with one free variable;

2. C is equivalent to an ALCQt concept description.

The direction (2 ⇒ 1) is an immediate consequence of Proposition 3. For the other direc-
tion, assume that C is equivalent to the FOL formula φ(x). Then φ(x) is invariant under
ALCQt bisimulation by Proposition 19, and thus equivalent to an ALCQt concept description
by Theorem 18.

It remains to show that ALCSCC∞ is more expressive than ALCQt. Note that, by Theorem 20,
any ALCSCC∞ concept that is not expressible in ALCQt is also not expressible in FOL. The
following proposition, which was first stated in [4], is an easy consequence of Proposition 30 in
Section 4.1.

Proposition 21 ([4]). The ALCSCC∞ concept description succ(|r ∩ A| = |r ∩ ¬A|) cannot be
expressed in first-order logic.

Fig. 2 summarizes the results obtained in this section.
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Figure 2: The relative expressivity of the DLs ALCQ, ALCQt, ALCCQU , and ALCSCC∞.

4 Expressivity of boxes

Here we extend the bisimulation characterizations of the previous section to the box formalisms
introduced in Section 2.3. For (Boolean) TBoxes and the DL ALCQ, this was already done
in [24]. First, we recall these results and extend them to ALCQt. As a consequence, we also
obtain characterizations of the first-order fragments of ALCSCC∞ TBoxes and Boolean TBoxes.
Second, we show similar results for CBoxes and ECBoxes.

4.1 TBoxes and Boolean TBoxes in ALCQ, ALCQt, and ALCSCC∞

In order to deal with CIs, which make global statements about all individuals of an interpreta-
tion, we need to “globalize” the notion of a bisimulation [24].

Definition 22. Let L ∈ {ALCQ,ALCQt} and I1, I2 be interpretations.

• The L bisimulation ρ between I1 and I2 is global if for every d ∈ ∆I1 there exists e ∈ ∆I2

such that (d, e) ∈ ρ (and vice versa).

• The interpretations I1 and I2 are globally L bisimilar (written I1 ∼gL I2) if there is a
global L bisimulation ρ between I1 and I2.

• The interpretations I1 and I2 are globally L equivalent (written I1 ≡gL I2) if for every CI
C v D with C and D L concept descriptions we have that I1 |= C v D iff I2 |= C v D.

• The first-order sentence φ is invariant under global L bisimulation if I1 |= φ and I1 ∼gL I2

imply I2 |= φ.

The following proposition is an easy consequence of the above definition and Proposition 16.

Proposition 23. If L ∈ {ALCQ,ALCQt}, then I1 ∼gL I2 implies I1 ≡gL I2.

As an immediate consequence, we obtain invariance of (Boolean) L TBoxes (viewed as first-
order sentences) under global L bisimulation.

Corollary 24. Every (Boolean) L TBox (for L ∈ {ALCQ,ALCQt}) is invariant under global
L bisimulation.

This result can be used to show that Boolean ALCQ TBoxes cannot express ALCQt TBoxes.

Corollary 25. Let NR = {r, s} and NC = {A,B}. There is no Boolean ALCQ TBox that is
equivalent to the ALCQt TBox T = {B v succ(|A ∩ r ∩ s| > 1)}.

To prove this corollary, we can basically reuse the interpretations I1, I2 and the ALCQ bisim-
ulation ρ shown in Fig. 1, but where now additionally d1, d2 belong to the concept B, whereas
the other elements do not belong to B. Then ρ is a global ALCQ bisimulation between I1 and
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I2. However, I1 is a model of T , whereas I2 is not, which shows that T cannot be equivalent
to a Boolean ALCQ TBox by Corollary 24.

Global L bisimulations can also be used to characterize the first-order sentences that are equiv-
alent to Boolean L TBoxes. For L = ALCQ, this was already shown in [24]. A detailed proof
for L = ALCQt can be found in Appendix A.3.

Theorem 26 ([24]). Let L ∈ {ALCQ,ALCQt} and φ be a first-order sentence. Then the
following are equivalent:

1. There exists a Boolean L TBox T such that T is equivalent to φ.

2. The sentence φ is invariant under global L bisimulation.

To distinguish TBoxes from Boolean TBoxes, one needs to use the fact that TBoxes are invariant
under disjoint union, whereas Boolean TBoxes are not (see Proposition 8).

Theorem 27. Let L ∈ {ALCQ,ALCQt} and φ be a first-order sentence. Then the following
are equivalent:

1. There exists an L TBox T such that T ≡ φ.

2. The sentence φ is invariant under global L bisimulation and under disjoint unions.

For L = ALCQ, this theorem was shown in [24] (see proof of Theorem 7 in [24]), and the
adaptation of this proof to the case L = ALCQt is simple.

Using the fact that ALCSCC∞ concept descriptions are invariant under ALCQt bisimulation
(see Proposition 19 above), it is easy to see that Proposition 23 can be extended to ALCSCC∞
as follows.

Corollary 28. I1 ∼gALCQt I2 implies I1 ≡gALCSCC∞ I2.

Combining this result with Theorems 26 and 27 for the case L = ALCQt, we thus obtain the
following characterizations of the first order fragments of (Boolean) ALCSCC∞ TBoxes.

Theorem 29. Let T be a (Boolean) ALCSCC∞ TBox. Then the following are equivalent:

1. T is equivalent to a first-order sentence.

2. T is equivalent to a (Boolean) ALCQt TBox.

It remains to show that there are indeed ALCSCC∞ TBoxes that cannot be expressed by a
Boolean ALCQt TBox, and thus are not expressible in FOL.

Proposition 30. The ALCSCC∞ TBox T? := {> v succ(|r ∩ A| = |r ∩ ¬A|)} cannot be
expressed in first-order logic.

Proof. It is sufficient to show that T? cannot be expressed as an equivalent ALCQt TBox T .
Together with Theorem 29, this yields our statement. We fix (NC , NR) := ({A}, {r}) and
assume by contradiction that such T exists over this signature. Note that, in this restricted
signature, the only safe role type is the role r itself, and thus successor constraints are in fact
qualified number restrictions for the role r.

Due to the semantic equivalence (6K r.D) ≡ ¬(> (K + 1) r.D), we can assume that every
qualified number restriction occurring in T is of the form (>K r.D) with K a natural number
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and D an ALCQt concept description. Let N ′ be the largest natural number appearing in a
qualified number restriction in T . Then, we define N := N ′ + 1 and the sets S1 := {1, . . . , N}
and S2 := {N + 1, . . . , 2N}.

The interpretation I over ({A}, {r}) of domain ∆I = {0, 1, . . . , 2N} is defined by setting all
elements of S1 and S2 as r-successors of 0 and AI := S1. Then I is clearly a model of T?, and
hence of T . We extend I to I ′ by adding 2N + 1 to the domain and to the interpretation of A,
and connecting 0 with 2N + 1 via the role r. We show that I ′ is a model of T , by proving the
following facts:

1. For all i ∈ {1, . . . , N}, j ∈ {1, . . . , N, 2N + 1}, and ALCQt concepts D we have i ∈ DI iff
j ∈ DI′ .

2. For all i, j ∈ {N + 1, . . . , 2N}, and ALCQt concepts D we have i ∈ DI iff j ∈ DI′ .

3. For all ALCQt concepts D containing only numbers < N we have 0 ∈ DI iff 0 ∈ DI′ .

Before showing these facts, first note that they indeed imply that I ′ is a model of T . In fact,
assume that this is not the case. Then there is a CI C1 v C2 in T such that D := C1 u ¬C2

is non-empty in I ′. Assume that j ∈ DI
′
. If j ∈ {1, . . . , N, 2N + 1}, then (1) implies that

1 ∈ DI , contradicting the fact that I is a model of T . Similarly, we can show that the case
where j ∈ {N + 1, . . . , 2N} leads to a contradiction. Finally, if j = 0, then we have 0 ∈ DI
since D satisfies the restriction stated in (3). Again, this leads to a contradiction.

To show the three facts, first note that every element of {1, . . . , N} in I is ALCQt bisimilar to
every element of {1, . . . , N, 2N + 1} in I ′. Similarly, every element of {N + 1, . . . , 2N} in I is
ALCQt bisimilar to every element of {N + 1, . . . , 2N} in I ′. By Proposition 16, this yields the
facts (1) and (2).

We show (3) by induction on the structure of D. The only interesting case is the one where D
is of the form D = (>K r.E) for an ALCQt concept E and a number K < N . We observe that
all the elements of S1 are pairwise ALCQt bisimilar in I, and the same is true for the elements
of S2. Combining this observation with Proposition 16, we obtain that, for the ALCQt concept
E, at least one of the following holds: (a) S1 ⊆ EI , (b) S2 ⊆ EI , (c) S1 ∪ S2 ⊆ (¬E)I .

If (a) holds, then |S1| = N > K yields 0 ∈ (>K r.E)I . Due to the ALCQt bisimilarity
relationships between elements of I and I ′ mentioned above, Proposition 16 yields S1 ⊆ EI

′
,

and thus 0 ∈ (>K r.E)I
′
holds as well. The case (b) can be treated similarly. Finally, assume

that (c) holds. The case K = 0 is trivial since then (> 0 r.E) ≡ >. If K > 1, then 0 /∈
(>K r.E)I since none of the r-successors of 0 in I belong to E. From (1) and (2) we obtain
that {1, . . . , 2N + 1} ⊆ (¬E)I

′
, and can conclude that 0 /∈ (>K r.E)I

′
. This concludes the

proof of (3).

Summing up, we have seen that both I and I ′ are models of T . However, this contradicts our
assumption that T is equivalent to T? since actually I is a model of T?, but I ′ is not.

Note that this proposition also implies Proposition 21. In fact, if succ(|r ∩ A| = |r ∩ ¬A|) was
expressible in FOL, then there would exist an ALCQt concept C such that C ≡ succ(|r ∩A| =
|r ∩ ¬A|). But then the TBox T? would be equivalent to the ALCQt TBox {> v C}, which is
expressible in FOL by Corollary 6.

4.2 Boolean CBoxes and ECBoxes in ALCQ, ALCQt, and ALCSCC∞

In order to deal with CRs rather than CIs, we need to extend our notion of a global bisimulation
to one that can also compare cardinalities of sets on the global level. The following definition is
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inspired by the first-order counting games used in [15] to analyze extensions of first-order logic
by certain counting quantifiers.

Definition 31. Let L ∈ {ALCQ,ALCQt} and I1, I2 be interpretations.

• The L bisimulation ρ ⊆ ∆I1 ×∆I2 is a comparative L bisimulation between I1 and I2 if
ρ satisfies the following two properties:

1. if D1 ⊆ ∆I1 is finite, then there is a set D2 ⊆ ∆I2 such that ρ contains a bijection
between D1 and D2;

2. if D2 ⊆ ∆I2 is finite, then there is a set D1 ⊆ ∆I1 such that ρ contains a bijection
between D1 and D2.

• The interpretations I1 and I2 are comparatively L bisimilar (written I1 ∼./L I2) if there
is a comparative L bisimulation ρ between I1 and I2.

• The interpretations I1 and I2 are comparatively L equivalent (written I1 ≡./L I2) if for
all CRs |C| >< N (with C an L concept, N a natural number, and >< ∈ {6,>}) we have
I1 |= |C|><N iff I2 |= |C|><N .

• The first-order sentence φ is invariant under comparative L bisimulation if I1 |= φ and
I1 ∼./L I2 imply I2 |= φ.

The following proposition states that CRs are indeed invariant under comparative bisimulation.

Proposition 32. If L ∈ {ALCQ,ALCQt}, then I1 ∼./L I2 implies I1 ≡./L I2.

Proof. Assume that ρ is a comparative L bisimulation between the interpretations I1 and I2.
Let |C| > N be a CR with C an L concept and N a natural number such that |CI1 | > N . Then
CI1 contains distinct elements d1, . . . , dN , and the fact that ρ is a comparative bisimulation
implies that there exist distinct elements e1, . . . , eN ∈ ∆I2 such that (di, ei) ∈ ρ for 1 6 i 6 N .
Thanks to Proposition 16, it follows that e1, . . . , eN ∈ CI2 , and thus |CI2 | > N . We can prove
that |CI2 | > N implies |CI1 | > N using an analogous argument. The case for CRs of the form
|C| 6 N follows from the semantic equivalence of |C| 6 N and ¬(|C| > N + 1).

This proposition obviously implies that (Boolean) CBoxes are invariant under comparative
bisimulation. We show next that this is true even for ECBoxes (which subsumes the case of
(Boolean) CBoxes).

Corollary 33. If E is an L ECBox with L ∈ {ALCQ,ALCQt} and I1 ∼./L I2 then I1 |= E iff
I2 |= E.

Proof. First, we show that I1 ∼./L I2 implies that |CI1 | = |CI2 | holds for all L concepts C. In
fact, if |CI1 | = N is finite, then I1 satisfies the CRs |C| 6 N and |C| > N . By Proposition 32,
I2 must then satisfy these CRs as well, which shows that |CI1 | = N = |CI2 |. If |CI1 | is infinite,
then I1 satisfies the CRs |C| > N for all N > 0, and by Proposition 32, I2 must satisfy all
these CRs as well, which shows that |CI2 | is also infinite.

Every extended cardinality constraint occurring in E is of the form

N0 +N1|C1|+ · · ·+Nk|Ck| 6M0 +M1|D1|+ · · ·+M`|D`|

with Ni,Mj natural numbers and Ci, Dj L concepts. Since I1 ∼./L I2 implies that |CI1i | = |C
I2
i |

and |DI1j | = |D
I2
j | hold for 1 6 i 6 k and 1 6 j 6 ` (as just shown), every cardinality constraint

occurring in E is evaluated in the same way in I1 and I2.
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Next, we want to show that Boolean L CBoxes are exactly the first-order sentences that are
invariant under comparative L bisimulation. In contrast to the Sections 3 and 4.1, where we
have stated the corresponding results for concept descriptions and TBoxes (see Theorems 18
and 27) without proofs, here we will give a detailed proof. In fact, while the results for concept
descriptions and TBoxes have been published before (in [24] for ALCQ and in [4] for ALCQt),
the results for CBoxes are published for the first time in the present paper. Note that the proofs
of Theorems 18 and 27 have a structure that is very similar to the proof given below.

The first step is to show that the converse of Proposition 32 holds as well if we restrict the
statement to so-called ω-saturated interpretations [24, 10]. When defining ω-saturated interpre-
tations, one assumes that every domain element of an interpretation I can be used as a constant
symbol in formulae, where d ∈ ∆I interprets itself, i.e., dI := d. Let I be an interpretation of
NC and NR. A (possibly infinite) set of first-order formulae Γ with free variables from a finite
set {x1, . . . , xn}, predicate symbols from NC ∪NR, and constant symbols from a finite subset
of ∆I is called

• realizable in I if there is a variable assignment a : {x1, . . . , xn} → ∆I such that I |=
φ(a(xi1), . . . , a(xik)) for every formula φ(xi1 , . . . , xik) ∈ Γ;

• finitely realizable in I if every finite subset Γ′ of Γ is realizable in I.

The interpretation I is ω-saturated if, for every such set Γ, finite realizability in I implies
realizability in I.

The following result from [10] implies that, though not every interpretations I is ω-saturated,
one may without loss of generality assume that one has such an interpretation if one is only
interested in the FOL sentences that the interpretation satisfies.

Theorem 34. For every interpretation I there exists an ω-saturated interpretation I? that
satisfies the same first-order sentences as I.

A further result that we will need in our proof of the converse of Proposition 32 is Hall’s
theorem [16]. Given a finite family F = (S1, . . . , SN ) of sets, we say that F has a system of
distinct representatives (SDR) if there are N distinct elements s1, . . . , sN such that si ∈ Si for
i = 1, . . . , N .

Theorem 35 (Hall). The family F = (S1, . . . , SN ) has a system of distinct representatives iff
for all index sets I ⊆ {1, . . . , N} we have

∣∣⋃
i∈I Si

∣∣ > |I|.
The following lemma is an immediate consequence of Hall’s theorem. It shows that the existence
of an SDR can be characterized using a CBox.

Lemma 36. Let L ∈ {ALCQ,ALCQt}, I an interpretation, and C1, . . . , CN L concepts. Then
the family (CI1 , . . . , C

I
N ) has an SDR iff I |= C? where C? is the CBox that is defined to be the

conjunction of the following CRs:

|Ci1 t · · · t Cik | > k

where {i1, . . . , ik} ⊆ {1, . . . , N} and |{i1, . . . , ik}| = k.

Proposition 37. Let L ∈ {ALCQ,ALCQt} and I1, I2 be ω-saturated interpretations. Then
I1 ≡./L I2 implies I1 ∼./L I2.

Proof. Let I1, I2 be ω-saturated interpretations such that I1 ≡./L I2. To demonstrate that
these two interpretations are also comparatively L bisimilar, it is sufficient to prove that the
binary relation

EqL := {(d, e) ∈ ∆I1 ×∆I2 | (I1, d) ≡L (I2, e)}
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is a comparative L bisimulation between I1 and I2.

The fact that EqL is an L bisimulation between I1 and I2 is actually also needed in the proofs
of Theorems 18 and 27. For the proofs of this fact, we thus refer the reader to [24] for the case
L = ALCQ and to [4] and Appendix A.2 the case L = ALCQt. Here, we concentrate on showing
that condition (1) in Definition 31 is satisfied since condition (2) can be shown analogously.

Thus, let d1, . . . , dN be distinct individuals in ∆I1 . To find distinct individuals e1, . . . , eN in
∆I2 such that (di, ei) ∈ EqL for 1 6 i 6 N , we resort to the fact that I2 is ω-saturated. In
particular, we define the set Γ := Γ 6= ∪

⋃N
i=1Θi of first-order formulae, where

Γ 6= := {
∧

16i<j6Nxi 6= xj},

Θi := {C](xi) | C is an L concept and di ∈ CI1}.

Clearly, the variable assignment a(xi) := di for 1 6 i 6 N shows that Γ is realizable in I1. If
we could show that Γ is also realizable in I2 with variable assignment b, then setting ei := b(xi)
would clearly yield the distinct individuals e1, . . . , eN we are looking for.

Since I2 is ω-saturated, it is sufficient to show that each finite subset Γ′ of Γ is realizable in
I2. Without loss of generality, we can assume that Γ′ contains Γ6= since this set is finite. For
i = 1, . . . , N , we introduce the L concept descriptions

Ci :=
l
{C | C](xi) ∈ Γ′ ∩Θi},

which are well-defined since Γ′ is finite. Note that the first-order formula
N∧
i=1

C]i (xi) ∧
∧

16i<j6N

xi 6= xj

is satisfied in I1 under the variable assignment a(xi) := di. This shows that d1,. . . , dN is an
SDR for the the family of sets (CI11 . . . , CI1N ). Then, by Lemma 36, we obtain that I1 is a
model of C?, where C? is the CBox defined in this lemma. Since I1 and I2 are comparatively
L equivalent, I2 is also a model of C?. By Lemma 36, this implies that the family of sets
(CI21 . . . , CI2N ) also has an SDR, say e1, . . . , eN . Clearly, setting b(xi) := ei then shows that Γ′

is realizable in I2.

We are now ready to prove the main theorem of this subsection.

Theorem 38. Let L ∈ {ALCQ,ALCQt} and φ be a first-order sentence. Then the following
are equivalent:

1. There exists a Boolean L CBox C such that C ≡ φ.

2. The sentence φ is invariant under comparative L bisimulation.

Proof. The direction (1 ⇒ 2) is a direct consequence of Corollary 33 since Boolean L CBoxes
are a special case of L ECBoxes.

Let Cons(φ) denote the set of Boolean L CBoxes entailed by the first-order sentence φ. We
prove (2 ⇒ 1) by showing that (2) implies Cons(φ) |= φ. In fact, if this is the case, then
compactness of first-order logic yields a finite set of Boolean L CBoxes Γ ⊆ Cons(φ) entailing
φ. But then the conjunction C :=

∧
Γ of the elements of Γ also belongs to Cons(φ), and thus

we have that C is a Boolean L CBox that is equivalent to φ.

We prove Cons(φ) |= φ by contradiction. Thus, assume that Cons(φ) 6|= φ. Then Cons(φ)∪{¬φ}
has a model I−, of which we can assume without loss of generality that it is ω-saturated (thanks
to Theorem 34).
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Now, let G denote the set of L CRs that are satisfied by I−. We claim that G∪{φ} has a model.
In fact, otherwise first-order compactness would yield a finite subset G′ of G such that G′ ∪ {φ}
also does not have a model. However, this would imply that φ → ¬

∧
G′ is a tautology, which

would yield ¬
∧
G′ ∈ Cons(φ). This lead to a contradiction since now both

∧
G′ and ¬

∧
G′

would need to be satisfied by I−. Thus, we have shown that G ∪ {φ} has a model I+, of which
can again assume that it is ω-saturated.

We observe that I− and I+ both satisfy exactly the CRs occurring in G, which implies that
they are comparatively L equivalent. Since these two interpretations are also ω-saturated,
Proposition 37 yields I− ∼./L I+. This contradicts our assumption that (2) holds since we have
I+ |= φ, but I− 6|= φ Thus, we have shown that (2) implies Cons(φ) |= φ, which concludes our
proof.

Since ECBoxes are invariant under comparative L bisimulation by Corollary 33, Theorem 38
yields the following characterization of the first-order fragment of ECBoxes for the DLs ALCQ
and ALCQt.

Theorem 39. Let L ∈ {ALCQ,ALCQt} and E be an L ECBox. Then the following are
equivalent:

1. There exists a first-order sentence φ such that E ≡ φ.

2. E is equivalent to a Boolean L CBox C.

It remains to show that there are ALCQ ECBoxes that are not equivalent to a first-order
sentence. Since it uses a technique different from the ones employed until now in this paper,
we defer the proof of this result to the next section.

We close the current section by giving a characterization of the first-order fragment of ALCSCC∞
ECBoxes.

Theorem 40. Let E be an ALCSCC∞ ECBox. Then the following are equivalent:

1. There exists a first-order sentence φ such that E ≡ φ.

2. E is equivalent to a Boolean ALCQt CBox C.

Proof. To prove (1 ⇒ 2), assume that φ is a first-order sentence equivalent to E . It is easy to
show that ALCSCC∞ ECBoxes are invariant under comparative ALCQt bisimulation. There-
fore, φ is also invariant under comparative ALCQt bisimulation. By Theorem 38, this implies
that φ, and hence E , is equivalent to a Boolean ALCQt CBox C.

(2⇒ 1) is an immediate consequence of the fact that Boolean ALCQt CBoxes have a first-order
translation (see Corollary 6).

Fig. 3 summarizes the results obtained in this section and the next section.

5 ECBoxes and the 0-1 law for FOL

Let φ be a first-order sentence over a finite relational signature δ. We denote by Ln(δ) the set
of interpretations over the signature δ with domain {1, . . . , n}, and with Ln(φ) the number of
these interpretations that are models of φ. We then set

`(φ) := lim
n→∞

Ln(φ)

Ln(δ)
. (6)
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(

Figure 3: The relative expressivity of boxes.

Theorem 41 (0-1 law of FOL [12]). For every first-order sentence φ, the limit `(φ) always
exists and is equal to 0 or 1.

One can use this theorem to prove that a sentence of a certain logic cannot be equivalent to a
first-order sentence by showing that the corresponding limit either does not exist or is a number
different from 0 or 1. An example for the former case would be a formula whose models are
exactly the interpretations whose domain has even cardinality. We show now that ECBoxes
can yield examples for the latter case.

Proposition 42. The ECBox E := |A| 6 |¬A| is not expressible as a first-order sentence.

Proof. By contradiction, assume that E is equivalent to some first-order sentence φ. We restrict
our attention to the relational signature δ := {A} since the only relation symbol contained in
E is the concept name A. If we consider interpretations I with domain ∆I = {1, . . . , n}, then
there are 2n possible ways of interpreting AI , which shows that Ln(δ) = 2n. Among these
interpretations, the ones where |AI | = j for 0 6 j 6 n are exactly

(
n
j

)
. Therefore, the number

of interpretations with domain {1, . . . , n} over δ satisfying E , and hence φ, is

Ln(φ) =
∑bn/2c
j=0

(
n
j

)
. (7)

Let `n(φ) := Ln(φ)/Ln(δ). We show that the sequence L := (`n(φ))n>1 is convergent and
`(φ) := limn→∞ `n(φ) = 1/2.8 This yields a contradiction: by Theorem 41, it should hold that
`(φ) = 0 or `(φ) = 1.

We split the sequence L into two subsequences L1 := (`2n(φ))n>1 and L2 := (`2n+1(φ))n>1. To
show that L converges to 1/2, it is sufficient to prove that both L1 and L2 have this limit. First,
note that for n > 1 the following identities hold (which can, e.g., be shown by an application
of Newton’s binomial theorem):

22n+1 = 2 ·
∑n
j=0

(
2n+1
j

)
(8)

∑n
j=0

(
2n
j

)
= 1

2 · (2
2n +

(
2n
n

)
) (9)

By (8), our claim clearly holds for L2. Indeed, for n > 1 we have

`2n+1(φ) =

∑n
j=0

(
2n+1
j

)
22n+1

(8)
=

∑n
j=0

(
2n+1
j

)
2 ·
∑n
j=0

(
2n+1
j

) =
1

2
.

8This was already stated in [15], but without proof.
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Regarding the other subsequence, note that the n-th term of L1 corresponds to

`2n(φ) =

∑n
j=0

(
2n
j

)
22n

(9)
=

1

2
+

1

2
·
(

2n
n

)
4n

.

We know that the following asymptotic equivalence holds [23]:(
2n

n

)
∼ 4n√

πn
. (10)

Hence, we deduce that

lim
n→∞

`2n(φ) =
1

2
+

1

2
lim
n→∞

(
2n
n

)
4n

=
1

2
+

1

2
lim
n→∞

1√
πn

=
1

2
.

This yields the convergence of L1 to 1/2 as desired.

6 Conclusion

In this paper, we have provided an almost complete picture of the complexity and expressivity
of the DLs with extended counting facilities introduced in our previous work. Regarding expres-
sivity, it would be interesting to see whether the results presented here for the “arbitrary model”
setting also hold for the “finite model” case. We conjecture that this is the case, but it should be
noted that the proofs of the bisimulation characterizations given here (Theorems 18, 20, 26, 27,
29, 38, 39, and 40) crucially depend on the application of compactness of FOL, which does not
hold in the finite case. One idea for overcoming this problem could be to consider extensions of
the model comparison games introduced in [20] instead of bisimulations. Regarding reasoning,
the next step will be to design variants of our decision procedures that are more appropriate
for implementation than the ones used to show the complexity results. The main idea for this
is to combine SAT solvers with numerical methods, such as simplex, branch-and-bound, and
column generation, similar to the decision procedure for CQU sketched in [13].
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A Appendix

A.1 Proofs for Section 2

Proposition A.1. Let C and D be concept descriptions over the signature (NC , NR). Then,
the negated CI ¬(C v D) is satisfiable if and only if the CI > v (> 1 r.(C u¬D)) is satisfiable,
where r is a role name not occurring in NR.

Proof. If I is a model of ¬(C v D), we can find an individual d ∈ (C u ¬D)I . Then, the
interpretation I ′ obtained by adding d as r-successor of every individual in ∆I satisfies the CI
> v (> 1 r.(C u ¬D)). Vice versa, it is clear that every model of > v (> 1 r.(C u ¬D)) is also
a model of ¬(C v D).

A.2 Proofs for Section 3

Proposition 16 ([24, 4]). If L ∈ {ALCQ,ALCQt}, then (I1, d1) ∼L (I2, d2) implies (I1, d1) ≡L
(I2, d2).

Proof. The proof for L = ALCQ can be found in [24]. We prove by structural induction the
following: for every ALCQt concept C, (I1, x) ∼L (I2, y) implies

x ∈ CI1 iff y ∈ CI2 . (11)

For C = > and C = ⊥ (11) trivially holds. If C = A with A ∈ NC , then (11) is guaranteed by
Definition 15. If C = ¬D and D satisfies (11), we obtain that x ∈ CI1 iff x /∈ DI1 iff y /∈ DI2
iff y ∈ CI2 . If C = D u E with D, E satisfying (11), it holds that x ∈ CI1 iff x ∈ DI1 and
x ∈ EI1 iff y ∈ DI2 and y ∈ EI2 iff y ∈ CI2 . The fact that (11) holds for disjunction follows
from the equivalence D t E ≡ ¬(¬D u ¬E).

Finally, let C = ((>N τ.D)) and assume that D satisfies (11). If we assume that x ∈ CI1 ,
then there exist N distinct τ -successors x1, . . . , xN of x belonging to DI . Definition 15 yields
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the existence of distinct τ -successors y1,. . . ,yN of y such that xi and yi are L bisimilar for
1 6 i 6 N . Using our inductive hypothesis, this implies that y1, . . . , yN ∈ DI2 , thus y ∈ CI2 .
We can prove that y ∈ CI2 implies x ∈ CI1 in a similar way. The proof that (11) holds for
C = ((6N τ.D)) follows from the fact that ((6N τ.D)) ≡ ¬((>N + 1 τ.D)).

In order to prove that Theorem 18 holds, we first show that the converse of Proposition 16
holds when we restrict our statement to the class of ω-saturated interpretations mentioned in
Section 4. As explained there, this restriction is justified by the fact that for every interpreta-
tion I one can find an ω-saturated interpretation I? satisfying the same first-order sentences
(Theorem 34).

Furthermore, we make use of Hall’s theorem to show that the existence of an SDR for the set of
τ -successors of a certain individual can be characterized using an ALCQt concept description.

Proposition A.2. Given d ∈ ∆I , a safe role type τ and ALCQt concepts C1, . . . , CN , the set
F := (τI(d) ∩ CI1 , . . . , τI(d) ∩ CIN ) has an SDR iff d ∈ CI? where C is the ALCQt concept
defined by

C? :=
l
{((> k τ.

⊔
i∈S

Ci)) | S ⊆ {1, . . . , N} and |S| = k}. (12)

Proof. It is clear that if d1, . . . , dN is an SDR for F then d ∈ CI? . The fact that d ∈ CI? implies
that d1, . . . , dN is an SDR for F is a consequence of Theorem 35.

We extend the result proved in [24] for ALCQ and show that ALCQt equivalence implies ALCQt
bisimilarity between individuals in ω-saturated interpretations.

Theorem A.1. For L ∈ {ALCQ,ALCQt} and ω-saturated interpretations I1 and I2,

if (I1, d1) ≡L (I2, d2) then (I1, d1) ∼L (I2, d2).

Proof. If (I1, d1) and (I2, d2) are L equivalent, we are able to show that the relation

EqL := {(d, e) ∈ ∆I1 ×∆I2 | (I1, d) ≡L (I2, e)} (13)

is an L bisimulation between I1 and I2 relating d1 and d2. The proof for L = ALCQ can be
found in [24]. We are left with proving the case L = ALCQt.

Condition 1 in Definition 15 is trivially satisfied by the definition of (13). To show that (13)
fulfills condition 2 in Definition 15, let (e1, e2) ∈ Eq and consider a finite set of τ -successors
d1,. . . , dN of e1, with τ a safe role type. In order to find distinct τ -successors d′1,. . . , d′N of e2

such that (di, d
′
i) ∈ Eq for every 1 6 i 6 N , we resort to the fact that I2 is ω-saturated. In

particular, if Γj := Γj,τ ∪
⋃N
i=1Θi is the set of first-order formulae defined by

Γj,τ := {
∧N
i=1τ(ej , xi) ∧

∧N
j=i+1 xi 6= xj}

Θi := {C](xi) | C is an ALCQt concept and di ∈ CI1}

we want to show that if Γ1 is realizable in I1 then so is Γ2 in I2. Then, the variable assignments
realizing the two sets can be used to define a bijection f such that f(di) is a τ -successor of e2

and (di, f(di)) ∈ Eq.

Under the variable assignment a(xi) := di we clearly obtain realizability of Γ1 and each of its
finite subsets in I1. Since I2 is ω-saturated we only need to show that each finite subset Γ′2 of
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Γ2 are realizable in I2. Without loss of generality, Γ′2 always includes Γ2,τ since it is finite. We
introduce the well-defined concept descriptions

Ci :=
l
{C | C](xi) ∈ Γ′2 ∩Θi} (14)

and notice that the first-order formula

N∧
i=1

(τ(e1, xi) ∧ C]i (xi)) ∧
∧

16i<j6N

xi 6= xj (15)

is satisfied in I1 under the variable assignment a(xi) := di. By definition of (15) it follows that
d1,. . . , dN form an SDR for the sets τI1(e1) ∩ CI1i with 1 6 i 6 N . Then, by Proposition A.2
we obtain e1 ∈ CI1? , where C? is defined in (12). We assumed that e1 and e2 are ALCQt
equivalent, thus e2 ∈ CI2? . By Proposition A.2, the sets τI2(e2) ∩ CI2i with 1 6 i 6 N have
an SDR d′1,. . . ,d′N . Finally, we obtain that Γ′2 is realized in I2 under the variable assignment
b(xi) := d′i. Thanks to the fact that I2 is ω-saturated, we deduce that Γ2 is realizable in I2

and conclude.

We can prove with a similar argument that condition 3 in Definition 15 holds for (13) and obtain
that Eq fulfills all the conditions stated in Definition 15, hence it is an ALCQt bisimulation.
Since we assumed that (I1, d1) ≡ALCQt (I2, d2), this is sufficient to conclude.

Using Theorem A.1 we are finally able to show that Theorem 18 holds.

Theorem 18 ([24, 4]). Let L ∈ {ALCQ,ALCQt} and φ(x) be a first-order formula with one
free variable x. Then the following are equivalent:

1. there is an L concept description C such that C is equivalent to φ(x);

2. φ(x) is invariant under ∼L.

Proof. The direction (1 =⇒ 2) is a direct consequence of Proposition 16.

We prove that (2 =⇒ 1), showing that if we assume (2) and no L concept C is equivalent to
φ(x) we are able to derive a contradiction. By using first-order compactness, we show that the
set Cons(φ(x)) ∪ {¬φ(x)} where

Cons(φ(x)) := {C](x) | C is an L concept and φ(x) |= C](x)} (16)

is satisfiable in an interpretation I− (w.l.o.g. ω-saturated, thanks to Theorem 34) under a vari-
able assignment a(x) := d. Since φ(x) is not equivalent to any L concept C, every finite subset
of Cons(φ) has a model satisfying ¬φ(x). Otherwise, Cons(φ(x)) would contain a finite subset
S entailing φ(x) and S ≡ φ(x) would follow. The set Cons(φ(x)) is closed under Boolean combi-
nations (consequence of the closure of L under Boolean constructors), hence

∧
S ∈ Cons(φ(x))

would hold and
∧
S = C](x) for some L concept C. This would lead to a contradiction because

φ(x) would be equivalent to C, against our initial assumption.

We notice that Cons(φ(x)) is a subset of

Γ := {C](x) | C is an L concept and d ∈ CI
−
}. (17)

It is clear that Γ is closed under conjunction, due to the semantics of L. Moreover, we deduce
that Γ ∪ {φ(x)} is satisfiable in an interpretation I+ under the variable assignment b(x) := e.
Otherwise, first-order compactness would yield a finite subset Γ′ of Γ such that {φ(x)} ∪ Γ′

was also unsatisfiable. This would imply that φ(x) → ¬
∧

Γ′(x) is a tautology. Accordingly,
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¬
∧

Γ′(x) ∈ Cons(φ(x)) would follow. However, this would lead to a contradiction, since both∧
Γ′(x) and ¬

∧
Γ′(x) now belong to Γ.

The equivalence (I+, e) ≡L (I−, d) follows from the definition of Γ. Consequently, (I+, e) ∼L
(I−, d) by Theorem A.1. Finally, we contradict (2.) since I+ |= φ(e) but I− 6|= φ(d).

A.3 Proofs for Section 4

In Theorem A.1 we showed that if two individuals are ALCQt equivalent in ω-saturated inter-
pretations, then they are ALCQt bisimilar. The next result shows a necessary condition for two
ω-saturated interpretations to be globally ALCQt bisimilar.

Theorem A.2. For L ∈ {ALCQ,ALCQt} and ω-saturated interpretations I1, I2,

if I1 ≡gL I2 then I1 ∼gL I2.

Proof. The proof for L = ALCQ can be found in [24]. We show the case for L = ALCQt. If
I1 ≡gALCQt I2, we are able to show that the relation Eq defined in (13) is a global ALCQt bisim-
ulation between I1 and I2. According to Definition 22, what is left to prove from Theorem A.1
is that for d ∈ ∆I1 there exists e ∈ ∆I2 such that (I1, d) ≡ALCQt (I2, e) (and vice versa). Here,
we show only the direction from I1 to I2.

Let d ∈ ∆I1 and Γ be defined by

Γ := {C](x) | C is an ALCQt concept and d ∈ CI1}. (18)

Then, Γ is realizable in I1 by the assignment a(x) := d. We show that this implies that Γ is
realizable in I2 by using the assumption that I2 is ω-saturated. Let Γ′ be a finite subset of Γ.
If CΓ is the ALCQt concept description defined by

CΓ :=
l
{C | C](x) ∈ Γ′}. (19)

we obtain that d ∈ CI1Γ and consequently I1 6|= > v ¬CΓ. Since we assumed that I1 and I2

are globally ALCQt equivalent, it follows that I2 6|= > v ¬CΓ. Let e ∈ CI2Γ . The variable
assignment b(x) := e realizes Γ′ in I2. Using ω-saturation of I2 we obtain that Γ is realizable
in I2 and are able to conclude.

The other direction can be proved using a similar argument. Therefore, we conclude that Eq
is a global ALCQt bisimulation between I1 and I2.

We proceed by stating a characterization result for Boolean TBoxes in terms of global bisimu-
lation. The following theorem extends the results shown in [24] for Boolean ALCQ TBoxes to
the setting of ALCQt.

Theorem 26 ([24]). Let L ∈ {ALCQ,ALCQt} and φ be a first-order sentence. Then the
following are equivalent:

1. There exists a Boolean L TBox T such that T is equivalent to φ.

2. The sentence φ is invariant under global L bisimulation.

Proof. Direction (1 =⇒ 2) is a direct consequence of Corollary 24. Let Cons(φ) be the set
of Boolean L TBoxes entailed by a first-order sentence φ. We prove that (2 =⇒ 1), showing
that if we assume (2) and Cons(φ) 6|= φ we are able to derive a contradiction. By first-order
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compactness, if Cons(φ) |= φ there is a finite set of Boolean TBoxes Γ in Cons(φ) entailing φ.
Since Cons(φ) is closed under conjunction, the Boolean L TBox T :=

∧
Γ belongs to Cons(φ)

and T |= φ, hence the conclusion T ≡ φ.

If we assume that Cons(φ) 6|= φ, then Cons(φ) ∪ {¬φ} is satisfied by an interpretation I− that
is w.l.o.g. ω-saturated (thanks to Theorem 34). Moreover, we are able to show that if G is the
set of L CIs C v D or their negation ¬(C v D) satisfied by I−, then G ∪ {φ} has a model I+

that is w.l.o.g. ω-saturated. Otherwise, first-order compactness would yield a finite subset G′
of G such that G′∪{φ} was also unsatisfiable. This would imply that φ→ ¬

∧
G′ is a tautology

and ¬
∧
G′ ∈ Cons(φ) would follow accordingly. However, this would lead to a contradiction,

since both
∧
G′ and ¬

∧
G′ are now satisfied by I−.

We observe that I− and I+ are globally L equivalent, since they both satisfy exactly the CIs
that occur without negation in G. Consequently, I− ∼gL I+ by Theorem A.2. Finally, we
contradict (2.) since I+ |= φ but I− 6|= φ. Therefore, we conclude that Cons(φ) |= φ.
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