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Abstract

We investigate the impact that general concept inclusions and role-value
maps have on the complexity and decidability of reasoning in the Descrip-
tion Logic FL0. On the one hand, we give a more direct proof for ExpTime-
hardness of subsumption w.r.t. general concept inclusions in FL0. On the
other hand, we determine restrictions on role-value maps that ensure decid-
ability of subsumption, but we also show undecidability for the cases where
these restrictions are not satisfied.

1 Introduction

Description Logics (DLs) [5] are a well-investigated family of logic-based knowl-
edge representation formalisms, which are descended from the knowledge repre-
sentation system KL-ONE [13]. The design goal of KL-ONE was, on the one
hand, to provide its users with a knowledge representation (KR) language that is
equipped with a well-defined syntax and a formal, unambiguous semantics, which
was not always true for early KR approaches such as semantic networks [20] and
frames [18]. On the other hand, reasoning over knowledge bases written in this
language was supposed to be tractable (i.e., realizable by polynomial-time infer-
ence procedures) [11]. Thus, it came as a considerable shock to the community
when it was shown that the second requirement is not satisfied by the language
employed by KL-ONE for two independent reasons.

On the one hand, KL-ONE provided its users with the concept constructor role-
value maps (RVMs), which can be employed to link role successor sets. For
example, the concept described by the RVM

(child ◦ friend v knows)
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collects all individuals that know all the friends of their children. The general
form of such an RVM is (r1 ◦ . . . ◦ rm v s1 ◦ . . . ◦ sn), where r1, . . . , sn are
roles (i.e., binary predicates). It was shown in [21] that the presence of RVMs
actually makes reasoning in KL-ONE undecidable. As a consequence, general
RVMs were removed from KL-ONE-based KR languages, and are not available
in any of the DLs employed by today’s DL systems. One possibility for avoiding
the undecidability caused by RVMs is to restrict the roles occurring in them to
being functional. This approach was employed by the CLASSIC system [10],
where the corresponding constructor is called the same-as constructor. However,
using same-as in place of RVMs only overcomes the undecidability problem if no
general concept inclusions (GCIs) are available in the terminological formalism
[4]. An alternative approach for restricting RVMs with the goal of achieving
decidability is to disallow role composition on the right-hand side, i.e., consider
only RVMs of the form (r1 ◦ . . . ◦ rm v s). For the inexpressive DL EL, adding
such restricted RVMs leaves reasoning not only decidable, but also tractable even
in the presence of GCIs [2, 3]. For more expressive DLs, additional restrictions
on such RVMs need to be imposed to keep reasoning decidable [14, 16].

On the other hand, KL-ONE provided its users with the concept constructors con-
junction (u) and value restriction (∀r.C). For example, using these constructors
one can build the concept

Person u ∀child.∀friend.Nice,

which describes the persons all of whose children have only nice friends. It was
shown in [19] that the subsumption problem in the DL FL0, which has only
these two constructors, is coNP-hard in the presence of the simplest terminological
formalism, which are so-called acyclic TBoxes. For cyclic TBoxes, the complexity
increases to PSpace [1, 17], and for general TBoxes consisting of GCIs even to
ExpTime [3]. Thus, w.r.t. general TBoxes, subsumption reasoning in FL0 is as
hard as in ALC, its closure under negation.

In the present paper, we first reconsider this ExpTime-hardness result. The
original proof in [3] leads to a rather long chain of reductions, which makes it
hard to understand the reasons for ExpTime-hardness and to reuse the proof ideas
for other DLs. In Section 3, we provide a reduction from the problem of deciding
the winner in countdown games, which was shown in [15] to be ExpTime-hard
by a direct reduction from the problem of the acceptance of a word by a linearly-
bounded alternating Turing machine. Then, we investigate the effect that adding
RVMs has on the decidability of subsumption in FL0. On the one hand, we
introduce two classes of RVMs that leave subsumption without GCIs decidable.
On the other hand, we show that the restrictions made to achieve decidability are
really needed: (i) in the presence of GCIs, even adding a single length-preserving
RVM can cause undecidability; (ii) for unrestricted RVMs, undecidability even
holds without GCIs. The two latter results are independent of whether global
RVMs (which must hold for every element of a model) or local RVMs (which are
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concept constructors, as introduced above) are used.

2 The Description Logic FL0

In Description Logic, concept constructors are used to build complex concepts
out of concept names (unary predicates) and role names (binary predicates). A
particular DL is determined by the available constructors. Starting with count-
ably infinite sets NC and NR of concept and role names, respectively, the set of
FL0 concepts is inductively defined as follows:

• > (top concept) and every concept name A ∈ NC is an FL0 concept,

• if C, D are FL0 concepts and r ∈ NR is a role name, then C uD (conjunc-
tion) and ∀r.C (value restriction) are FL0 concepts.

The semantics of FL0 concepts is defined using first-order interpretations I =
(∆I , ·I) consisting of a non-empty domain ∆I and an interpretation function
·I that assigns a set AI ⊆ ∆I to each concept name A, and a binary relation
rI ⊆ ∆I ×∆I to each role name r. This function is extended to FL0 concepts
as follows:

>I = ∆I and (C uD)I = CI ∩DI ,
(∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI}.

A (general) FL0 TBox T is a finite set of general concept inclusions (GCIs), which
are expressions of the form C v D for FL0 concepts C,D. The interpretation I
is a model of T if it satisfies all the GCIs in T , i.e. CI ⊆ DI holds for all GCIs
C v D in T . Given an FL0 TBox T and two FL0 concepts C,D, we say that C
is subsumed by D (denoted as C vT D) if CI ⊆ DI for all models I of T . These
two concepts are equivalent (denoted as C ≡T D) if C vT D and D vT C. If
the TBox is empty, we write C v D and C ≡ D instead of C v∅ D and C ≡∅ D.

For FL0, the subsumption problem w.r.t. general TBoxes is ExpTime-complete:
the upper bound follows from the well-known ExpTime upper bound for ALC [7],
which contains FL0 as a sublogic. A previous proof of the lower bound was given
in [3]. In the next section, we will provide a more direct proof of this hardness
result.

Without TBox, subsumption and equivalence in FL0 can be characterized using
inclusion of formal languages. This characterization relies on transforming FL0

concepts into an appropriate normal form as follows. First, the semantics given
to the concept constructors in FL0 implies that value restrictions distribute over
conjunction, i.e., for all FL0 concepts C,D and roles r it holds that ∀r.(CuD) ≡
∀r.C u ∀r.D. Using this equivalence as a rewrite rule from left to right, every
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FL0 concept can be transformed into an equivalent one that is either > or a
conjunction of concepts of the form ∀r1. · · · ∀rn.A, where r1, . . . , rn are role names
and A is a concept name. Such a concept can be abbreviated as ∀w.A, where
w = r1 . . . rn is a word over the alphabet NR. Note that n = 0 means that w is the
empty word ε, and thus ∀ε.A corresponds to A. Furthermore, a conjunction of
the form ∀w1.Au . . .u∀wm.A can be written as ∀L.A where L ⊆ N∗R is the finite
language {w1, . . . , wm}. We use the convention that ∀∅.A corresponds to the top
concept >. Thus, any two FL0 concepts C,D containing only the concept names
A1, . . . , A` can be represented as

C ≡ ∀K1.A1 u . . . u ∀K`.A`,
D ≡ ∀L1.A1 u . . . u ∀L`.A`, (1)

where K1, L1, . . . , K`, L` are finite languages over the alphabet of role names NR.
We call this representation the language normal form (LNF) of C,D.

If C,D have the LNFs shown above, then C v D holds iff L1 ⊆ K1, . . . , L` ⊆ K`

[8]. A similar characterization of subsumption can actually also be given in the
presence of a TBox, but then K1, . . . , L` are regular languages represented by
automata of size exponential in the size of T [6].

3 ExpTime-hardness of FL0 with GCIs

We give a new proof of the fact that subsumption in FL0 w.r.t. a general TBox
is ExpTime-hard. This proof is by reduction from the problem of deciding the
winner in countdown games, which are two-player games for which deciding which
player has a winning strategy is known to be ExpTime-complete [15].

As defined in [15], a countdown game is given by a weighted graph (S, T ), where
S is the finite set of states and T ⊆ S×N\{0}×S is the finite transition relation.
If t = (s, d, s′) ∈ T , then we say that the duration of the transition t is d. A
configuration of a countdown game is a pair (s, c), where s ∈ S is a state and
c ∈ N. A move of a countdown game from a configuration (s, c) is performed in
the following way: first Player 1 chooses a number d such that 0 < d ≤ c and
there is s′ ∈ S with (s, d, s′) ∈ T ; then Player 2 chooses a transition (s, d, s′) ∈ T
of duration d; the new configuration resulting from this move is then (s′, c − d).
There are two types of terminal configurations, i.e., configurations (s, c) in which
no more moves are available. If c = 0 then the configuration (s, c) is terminal
and is a winning configuration for Player 1. If for all transitions (s, d, s′) ∈ T
from the state s we have that d > c, then the configuration (s, c) is terminal and
it is a winning configuration for Player 2. The algorithmic problem of deciding
the winner in countdown games is the following problem: given a weighted graph
(S, T ) and a configuration (s0, c), where all the durations of transitions and the
number c are assumed to be represented in binary, to determine whether Player 1
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has a winning strategy from the configuration (s0, c). Theorem 2 in Section 4.2 of
[15] shows that this problem is ExpTime-complete by a reduction from the word
problem for linearly-bounded alternating Turing machine.

Proposition 1. Deciding whether Player 1 has a winning strategy in a countdown
game (S, T ) with initial configuration (s0, c) can be reduced in polynomial time to
non-subsumption in FL0 w.r.t. a general TBox

Proof. Let ` be the maximal number of bits needed to represent c and any of the
numbers occurring in T in binary. We set

NC = S ] {F} ] ⋃̀
i=0

{bi=0, bi=1},
NR = {s̄ | s ∈ S} ] {i | 0 ≤ i ≤ `}.

The idea is that each element of an interpretation I is labeled by one (or several)
number(s) written in binary: bi=0 means that the ith bit of this number is equal
to 0, and bi=1 that it is equal to 1. In addition, if (x, y) ∈ iI , the number
labeling y should be the same as the one labeling x minus 2i. Note that the size
of NC and NR is polynomial in the size of the input since ` is bounded by the size
of the binary representation of the largest number occurring in the input. The
subsumption relationship we want to test is

s0 u ĉ vT F,

where ĉ stands for the conjunction of all bi=ci, where ci is the value of the ith
bit in the binary representation of c. The concept F stands for “fail,” i.e., a
configuration where Player 1 has no winning strategy.

The goal is to define the TBox T such that any model of T that does not satisfy
the subsumption corresponds to a winning strategy for Player 1. To do this, we
use the fact that, if Player 1 has a winning strategy in configuration (s0, c) whose
first step chooses duration d, then for all (s0, d, s

′) ∈ T , Player 1 must also has a
winning strategy in configuration (s′, c− d). Thus, if s1, ..., sp are the states such
that (s0, d, si) ∈ T , then we can construct inductively the structures correspond-
ing to the winning strategies on (si, c− d), as shown in Figure 1 (where Ii is the
interpretation corresponding to a winning strategy in configuration (si, c− d)).

Given a duration d occurring in T , we write ∀d̃ as an abbreviation for ∀i1i2...ik,
where i1, i2, ..., ik are the bits equal to 1 in the binary representation of d, written
in decreasing order.1

The TBox T consists of the following GCIs:

1. s v ∀d̃s̄.s′ for all t = (s, d, s′) ∈ T ,
1The only condition needed is that the same number must always be represented in the same

order, and using decreasing order is an easy way to achieve this.
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s0 u ĉ

z0

ĉ− 2i1

z1

c− 2i1 − 2i2
∧

z2

ĉ− d

zk

y

s1 u ĉ− d

m(I1)

sp u ĉ− d

m(Ip)

. . .
.
.
.

i1 i2 i3 ik s̄0

. . .

. . .

d̃1s̄1

d̃ps̄p

I1

Ip

Figure 1: The interpretation corresponding to a winning strategy of Player 1.

2. s u bi=1 u d

d∈Es
∀d̃s̄.F v F for all s ∈ S and all i, 1 ≤ i ≤ `,

where Es = {d | ∃s′ s.t. (s, d, s′) ∈ T},

3. bi=x v ∀k.bi=x for all 0 ≤ i < k ≤ ` and x ∈ {0, 1},

4. bi=1 u bj=x v ∀k.bj=x for all k ≤ i < j and x ∈ {0, 1},

5.
i−1d

j=k

bj=0 u bi=1 v ∀k.(
i−1d

j=k

bj=1 u bi=0) for all k ≤ i,

6. bi=x v ∀s̄.bi=x for all s ∈ S, 1 ≤ i ≤ `, and x ∈ {0, 1},

7.
d̀

j=i

bj=0 v ∀i.F for all i, 1 ≤ i ≤ `,

8. F v ∀i.F for all i, 1 ≤ i ≤ `,

9. F v ∀s̄.F for all s ∈ S.

The intuition underlying these GCIs is the following:

• The GCIs in 1. say that, if we choose the duration d, then we must consider
every state accessible this way. The GCIs in 2. reflect the fact that, if at
least one of the configurations in which we could end up this way does not
have a winning strategy, then choosing d does not yield a winning strategy
either, unless the number of the configuration is already 0.

• The GCIs in 3., 4., 5., and 6. are there to ensure that subtraction is per-
formed properly.
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• The GCIs in 7. say that, if we choose a duration greater than the number
in the current configuration (which is checked by verifying that the sub-
traction would return a negative number), then this leads to a failure for
Player 1. The GCIs in 8. and 9. propagate this information forward to
the next element corresponding to a configuration (so that it can then be
propagated backwards using the GCIs in 2.).

Let us now prove the correctness of the reduction in a formal way, i.e., we show
that s0 u ĉ 6vT F iff Player 1 has a winning strategy.

“⇒” We show by induction on c that, for all states s ∈ S, if there exists a model
I of T that contains an element x such that x ∈ (s u ĉ)I\F I , then Player 1 has
a winning strategy for the configuration (s, c).

If c = 0, then doing nothing is already a winning strategy, and we are done.

Otherwise, x belongs to at least one of the concepts bi=1 in I. Since x also
belongs to s, but does not belong to F , it necessarily does not belong to one of
the concepts ∀d̃s̄.F for d ∈ Es, due to the GCIs in 2. Let us fix a duration d for
which this is the case. We show that c−d ≥ 0 and that the element y ∈ (d̃s̄)I(x)

that does not belong to F indeed belongs to s′ u (̂c− d), for all s′ such that
(s, d, s′) ∈ T . Once this is shown, we can apply the induction hypothesis to y
to get a winning strategy for each (s′, c − d) accessible from (s, c) by choosing
d. Consequently, choosing d and then applying these winning strategies yields a
winning strategy for (s, c).

The fact that y belongs to s′ directly follows from the GCIs in 1.

Let us now show that (z1, z2) ∈ iI and z1 ∈ n̂I imply that z2 ∈ ̂(n− 2i)
I
if n ≥ 2i,

and z2 ∈ F I otherwise.

• Case n ≥ 2i. First note that the i− 1 lowest bits of n− 2i are the same as
the ones of n. This is ensured by the GCIs in 3. Then, the other bits are
changed according to the rules of binary subtraction, which are reflected by
the GCIs in 4. and 5. The idea is that, if the jth bit is the lowest bit equal
to 1 and such that j ≥ i, then the GCIs in 5. take care of the bits between
the ith one and the jth one, and the GCIs in 4. take care of the bits above
the jth one.

• Case n < 2i. Then we have that all bits above the ith one (included) have

value 0, and thus z1 belongs to
d̀

j=i

bj=0. Consequently, the GCIs in 7. yield

that z2 ∈ F I .

Let d̃ = i1 . . . ik. Let us suppose that c < d. Then there exists j such that

c − (
j∑

µ=1

2iµ) ≥ 0 and c − (
j+1∑
µ=1

2iµ) < 0. By what we have just shown in the first
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item above, we know that any element of (i1 . . . ij)
I(x) belongs to

̂
(c− (

j∑
µ=1

2iµ)).

By the second item, we can then deduce that any element of (i1 . . . ij+1)I(x) is
in F I . By the GCIs in 8. and 9., the concept F is then propagated to y, which
contradicts the fact that y does not belong to F . Thus, we have c ≥ d. Knowing
this, and using again the first item shown above as well as the GCIs in 6, we can

also deduce that y ∈ (̂c− d)
I
. The finishes the proof of the only-if-direction.

“⇐” Assume that Player 1 has a winning strategy. First note that winning
strategies can be represented as trees as follows. The tree Ts,c of the winning
strategy in configuration (s, c) is defined inductively: if c > 0 and d is the number
chosen by Player 1 in this configuration, we set Ts,c = (d, {Ts′,c−d | (s, d, s′) ∈ T});
for c = 0 we set Ts,0 = (0, ∅).
We construct a counterexample Is,c that satisfies the TBox but not the subsump-
tion s0u ĉ v F by induction on c. During the construction, we will mark a certain
element m(Is,c) of the interpretation Is,c, which is the one violating the subsump-
tion relation. There will be three important invariants during the construction,
which will obviously be verified by construction:

1. m(Is,c) belongs only to the concept names required by s u ĉ, and no other
concept names;

2. F Is,c = ∅;

3. If there exists x ∈ (d̃s̄′)Is,c(m(Is,c)) for some duration d and some state s′,
then s′ = s.

First, we consider the base case where c = 0:

• Construction : We just take the interpretation consisting of a single element,
which belongs to the concept names s and bi=0 for all i, and to no other
concept names. Then m(Is,0) is this one element.

• Correctness of the construction : We only have one element, which indeed
satisfy the GCIs in 1.–9. In fact, the value restrictions on the right-hand
sides are trivially satisfied since this element does not have role successors.
Moreover, there is no i such that this element belongs to bi=1, so the left-
hand sides of the GCIs in 2. are not satisfied. Finally, the element m(Is,0)
does not satisfy the subsumption s0 u 0̂ v F since it obviously belongs to
the left-hand side, but not to the right-hand side.

In the step case, we have c > 0:
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• Construction : We know that the tree Ts,c of the winning strategy is of the
form Ts,c = (d,E), where E contains the trees for the winning strategies
for the configurations (s′, c − d) where s′ ranges over the states satisfy-
ing (s, d, s′) ∈ T . The induction hypothesis applied to the configurations
(s′, c − d) (where c − d < c since d > 0) yields interpretations I1, ..., Ip
corresponding to the elements of E. Let i1, . . . , ik be the digits of d equal
to 1. We create a new interpretation I that looks like the one depicted
in Figure 1 as follows. i The idea is that we will take the union of all Ip,
merge their marked elements into a new element y, and add new elements
z0, . . . , zk (where z0 is the marked element of the new interpretation) such
that y ∈ (d̃s̄)I(z0). More formally: set Γν = ∆Iν\{m(Iν)} and define

– ∆I =
p⊎

ν=1

Γν ] {z0, z1, ...zk, y},

– m(I) = z0,
– for 0 ≤ j ≤ k − 1, add (zj, zj+1) to (ij+1)I ,
– add (zk, y) to s̄I ,

– for all elements γ in
p⊎

ν=1

Γν , for all roles r, add (y, γ) to rI iff there

exists ν such that (m(Iν), γ) ∈ rIν ,

– for all pairs (α, β) in
( p⊎
ν=1

Γν
)2, for all roles r, add (α, β) to rI iff

(α, β) ∈
n⊎
ν=1

rIν ,

– add z0 to sI ,
– for all 0 ≤ j ≤ k, add zj to the concept names corresponding occurring

in the conjunction
̂

c− (
i∑

j=1

2ij),

– for all concept names A, add y to AI if there exists ν such thatm(Iν) ∈
AIν ,

– for all elements γ in
p⊎

ν=1

Γν , for all concept names A, add γ to AI iff

γ ∈
n⊎
ν=1

AIp .

• Correctness of the construction :

– First, note that, by the induction hypothesis, the GCIs in the TBox

are satisfied by all elements of I belonging to
p⊎

ν=1

Γν . This is the case

since they belong to the same concept names and are linked (going
forward using a role) to the same other elements as they are in their
respective interpretations Iν .
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– Next, consider the element y obtained by “merging” the elementsm(Iν):
∗ The GCIs in 1. Let z ∈ (d̃′s̄′)I(y) for some d′ and s′. Then there

exists ν such that z ∈ (d̃′s̄′)Iν (m(Iν)). By Invariant 3, we know
that this yields m(Iν) ∈ (s′)Iν . By the induction hypothesis,
we thus obtain z ∈ (s′′)I , for all s′′ such that (s′, d, s′′) ∈ T .
Consequently, the right-hand side of the GCI is verified.
∗ The GCIs in 2. By Invariant 1, two cases are possible. The first

one is that each m(Iν) does not belong to any of the concepts
bi=1 (in the case where d = c). But then y does not belong to
them either, and thus y does not satisfy the left-hand side of the
GCI.
The second case is that there is an i such that each m(Iν) belongs
to the concept bi=1. Since these elements must satisfy the GCIs
from 2. in Iν , but do not belong to the right hand-side F in Iν , this
means that, for all ν, if m(Iν) ∈ (s′)Iν , then there exists d′, s′′ such
that (s′, d′, s′′) ∈ T and (d̃′s̄′)Ip(m(Ip)) \ F Ip 6= ∅. Consequently,
for all s′ such that y ∈ (s′)I , we have (d̃′s̄′)I(y)\F I 6= ∅. This
shows that y does not belong to the left-hand side of the GCI.
∗ The GCIs in 3., 4., 5., 6. and 7. We know that the elements
m(Iν) only satisfy concept names corresponding to their states sν
and to c− d, by Invariant 1. The value c− d is the same for all of
them, so if one of them satisfies one of the left-hand side of these
GCIs, all of them satisfy it. By the induction hypothesis, all of
them thus also satisfy the right-hand side. Consequently, y also
satisfy it.
∗ The GCIs in 8. and 9. The element y cannot satisfy the left-hand

side of any of them, due to Invariant 2.
– The elements z1, ..., zk do not belong to F and any of the state-concepts
s, which implies that they trivially satisfy the GCIs in 1., 2., 8., and
9. The GCIs in 3., 4., 5., and 7. only reflect the way subtraction of a
power of 2 works, and are thus also satisfied. The GCIs in 6. are also
obviously satisfied since zk is the only zj such that the right-hand side
does not quantify over an empty set, and the only element of this set
is y, which is indeed “labeled” by c−d, the same number as the “label”
of zk.

– The element z0 satisfies the GCIs in 1. by the definition of Es and
Invariant 1. The GCIs in 2. have their left-hand side falsified by z0

since y is in (d̃s̄)I and does not satisfy F . The GCIs in 3., 4., 5., 6.,
and 7. are satisfied for the same reason as for the other zj. Finally,
the GCIs in 8. and 6. are satisfied because their left-hand side is not
verified due to Invariant 2.

This finishes our proof of the correctness of the reduction, and thus of the propo-
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sition.

Given the ExpTime-hardness result for deciding the winner in countdown games
shown in [15], this proposition yields the following hardness result for FL0.

Theorem 1. Subsumption in FL0 w.r.t. general TBoxes is ExpTime-hard.

4 Decidable role-value maps in FL0

Role-value maps actually come in two variants [7]: local RVMs are concept con-
structors whereas global RVMs are axioms that constrain the interpretation of
roles. To be more precise,

• a local role-value map is a concept constructor with the syntax (r1◦. . .◦rm v
s1 ◦ . . . ◦ sn) where r1, . . . , sn are role names. To define its semantics, let

(t1 ◦ . . . ◦ tk)I(d) = {e | (d, e) ∈ tI1 ◦ . . . ◦ tIk},

for role names t1, . . . , tk, where “◦” on the right-hand side is composition
of binary relations. Then, (r1 ◦ . . . ◦ rm v s1 ◦ . . . ◦ sn)I = {d ∈ ∆I |
(r1 ◦ . . . ◦ rm)I(d) ⊆ (s1 ◦ . . . ◦ sn)I(d)}.

• a global role-value maps has the same syntax as a local one, but is viewed
to be an axiom. An interpretation I is a model of this axiom if (r1 ◦ . . . ◦
rm)I(d) ⊆ (s1 ◦ . . . ◦ sn)I(d) holds for all d ∈ ∆I .

In the presence of GCIs, local RVMs can express global ones since the global RVM
(r1 ◦ . . . ◦ rm v s1 ◦ . . . ◦ sn) has the same models as the GCI > v (r1 ◦ . . . ◦ rm v
s1 ◦ . . . ◦ sn). However, in the present section we consider only global RVMs
without GCIs.

To simplify notation, we write t1 . . . tk in place of t1 ◦ . . . ◦ tk, and again view this
expression as a word over the alphabet of role names. Thus, a set T of global
RVMs can be written as T = {u1 v v1, ..., uk v vk} where u1, . . . , vk ∈ N∗R. Such
a set induces the following string-rewriting relation [9] between words over NR:

v →T u iff there are x, y ∈ N∗R and 1 ≤ i ≤ n
such that v = xviy and u = xuiy.

As usual, we denote the reflexive, transitive closure of→T as ∗→T . More formally,
we define

∗→T =
⋃

n≥0

n−→T ,

where 0−→T = {v, v) | v ∈ N∗R} and
n+1−−→T =

n−→T ◦→T .
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Given a formal language L over NR, i.e., a subset of N∗R, we now define the
languages

L↓T = {x ∈ N∗R | ∃y ∈ L with y ∗→T x},
L↑T = {x ∈ N∗R | ∃y ∈ L with x ∗→T y},

which can be used to characterize subsumption w.r.t. T as follows.

Theorem 2. Let T be a finite set of global RVMs, and C,D be FL0 concepts
with LNFs as in (1). Then the following are equivalent:

1. C vT D, i.e., CI ⊆ DI for all models of T ;

2. Li ⊆ K↓Ti for all i, 1 ≤ i ≤ `;

3. {w}↑T ∩Ki 6= ∅ for all i, 1 ≤ i ≤ ` and w ∈ Li.

Regarding the proof of this theorem, first note that 2. and 3. are easily seen to be
equivalent. In fact, given a word w ∈ Li, we have w ∈ K↓Ti iff ∃y ∈ Ki with y

∗→T
w iff ∃y ∈ Ki with y ∈ {w}↑T iff {w}↑T ∩Ki 6= ∅.
Our proof of 2.⇒ 1. uses the following proposition, which is an easy consequence
of the semantics of global RVMs and value restrictions, and our definition of →T .
Proposition 2. If x ∗→T y, then ∀x.A vT ∀y.A holds for all A ∈ NC.

Proof. We show by induction on n that x n−→T y implies ∀x.A vT ∀y.A for all
A ∈ NC .

• The case n = 0 is trivial since then x = y, and we obviously have ∀x.A vT
∀x.A.

• Let n ≥ 0 and assume that x n+1−−→T y. Then there exists z such that
x

n−→T z and z →T y. By the induction hypothesis, ∀x.A vT ∀z.A holds for
all A ∈ NC .

Since z →T y, there exist words u, v and an index i such that z = uviv and
y = uuiv. Let I a model of T and A ∈ NC , and assume that I does not
satisfy the subsumption ∀z.A v ∀y.A, i.e., that there is an element d such
that d ∈ (∀z.A)I , but d /∈ (∀y.A)I . Then there are elements e, f, g such
that (d, e) ∈ uI , (e, f) ∈ uIi , (f, g) ∈ vI , and g /∈ AI . Since I must verify
the role-value map ui v vi, we obtain (e, f) ∈ vIi , and thus. (d, g) ∈ zI .
This contradicts our assumption that d ∈ (∀z.A)I .

Consequently, we have shown ∀z.A vT ∀y.A, which together with ∀x.A vT
∀z.A yields ∀x.A vT ∀y.A.

Since x ∗→T y implies that there is an n such that x n−→T y, this completes the
proof of the proposition.
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This proposition yields that C vT ∀w.Ai holds for all w ∈ K↓Ti and all i, 1 ≤ i ≤
`. If Li ⊆ K↓Ti , then this implies that C vT ∀Li.Ai for all i, 1 ≤ i ≤ `, and thus
we have C vT D. This completes the proof of 2.⇒ 1. of Theorem 2.

We show 1.⇒ 2. by contraposition. Thus, assume that there is an i and a word
w = t1 . . . tp such that w ∈ Li \K↓Ti . We use w and i to build a counterexample
to the subsumption C vT D, i.e., a model Iw,i of T in which CI 6⊆ DI . To build
Iw,i, we construct an increasing sequence of models Iq for q ≥ 0 by induction on
q, and then define Iw,i as the union of all the Iq.

• For I0, we start with a sequence of individuals d0, . . . , dp and connect them
with the roles in w, i.e., we set (d0, d1) ∈ tI01 , . . . , (dp−1, dp) ∈ tI0p . Addition-
ally, we set ∆I0 = {d0, . . . , dp} and define AI0i = ∆I0 \ {dp}, and BI0 = ∆I0
for all B ∈ NC \ {Ai}.

• For q ≥ 0, assume that Iq is already defined. We construct Iq+1 by extend-
ing Iq with additional individuals in order to add the role paths required by
the RVMs in T . We say that a pair of individuals (d, e) violates the RVM
r1 . . . rm v s1 . . . sn in Iq if e ∈ (r1 ◦ . . .◦rm)Iq(d), but e 6∈ (s1 ◦ . . .◦sn)Iq(d).
Then, to get Iq+1, we consider all RVMs r1 . . . rm v s1 . . . sn ∈ T and all
pairs (d, e) that violate this RVM in Iq, and for each of them add new indi-
viduals f1, . . . , fn−1 to the domain, and connect them via the roles s1, . . . , sn
as follows: (d, f1) ∈ s

Iq+1

1 , (f1, f2) ∈ s
Iq+1

2 , . . . , (fn−1, e) ∈ s
Iq+1
n . The new

individuals introduced this way are made to belong to all concepts B ∈ NC .

It is easy to see that the interpretations Iq for q ≥ 0 are finite. This is clearly the
case for q = 0. In addition, if we already know that Iq is finite, then there can only
be finitely many pairs violating a GCI from T in Iq, and to remove a violation
only finitely many new individuals are introduced. Since T is also finite, this
implies that Iq+1 is finite. However, in general this process of removing violations
needs to be iterated infinitely, and the resulting interpretation Iw,i is the limit of
this infinite process obtained as the infinite union of the interpretations Iq. The
interpretation Iw,i may thus be infinite, but it satisfies the following important
properties.

Proposition 3. The interpretation Iw,i satisfies all the RVMs in T , and for all
words u we have that (d0, dp) ∈ uIw,i implies u ∗→T w.

Proof. Let r1 . . . rm v s1 . . . sn be a role-value map in T and assume that e ∈
(r1 ◦ . . . ◦ rm)Iw,i(d). Since Iw,i is the union of the interpretations Iq, there is
a q ≥ 0 such that e ∈ (r1 ◦ . . . ◦ rm)Iq(d). If the pair (d, e) does not violate
the above RVM in Iq, then we have e ∈ (s1 ◦ . . . ◦ sn)Iq(d). Otherwise we have
e ∈ (s1 ◦ . . . ◦ sn)Iq+1(d). In both cases we obtain e ∈ (s1 ◦ . . . ◦ sn)Iw,i(d), which
shows that Iw,i satisfies the RVM r1 . . . rm v s1 . . . sn.
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Regarding the second property stated in the proposition, first note that (d0, dp) ∈
uIw,i implies that there is a q ≥ 0 such that (d0, dp) ∈ uIq . Thus, it is sufficient
to show that the property holds for all interpretations Iq, which we can show by
induction. It is clearly satisfied for q = 0 since the only path from d0 to dp in I0

is labeled with w.

When going from Iq to Iq+1, we make several steps, where each one removes a
violation of an RVM in Iq. Clearly, it is sufficient to show that each such step
preserves the property. Thus, assume that I is an interpretation containing the
individuals d0 and dp satisfying that (d0, dp) ∈ uI implies u ∗→T w. We can assume
that I does not have cyclic paths since the interpretations Iq satisfy this property.
Now, assume that there are an RVM r1 . . . rm v s1 . . . sn in T and individuals
d, e in ∆I such that e ∈ (r1 ◦ . . . ◦ rm)I(d). Let I ′ be the interpretation obtained
from I by adding the new individuals f1, . . . , fn−1 and the role relationships
(d, f1) ∈ sI′1 , (f1, f2) ∈ sI′2 , . . . , (fn−1, e) ∈ sI′n . Now, let (d0, dp) ∈ uI′ . If this path
does not use any of the new individuals, then (d0, dp) ∈ uI , and thus u ∗→T w.
Otherwise, there are x, y such that u = xs1 . . . sny, (d0, d) ∈ xI , and (e, dp) ∈ yI .
Then e ∈ (r1 ◦ . . . ◦ rm)I(d) yields (d0, dp) ∈ (xr1 . . . rmy)I , and thus we know
that xr1 . . . rmy

∗→T w. Since in addition u = xs1 . . . sny →T xr1 . . . rmy holds,
we have u ∗→T w as required.

Since Iw,i is a model of T , it is sufficient to show that d0 ∈ CIw,i \DIw,i . First,
suppose that d0 ∈ CIw,i does not hold. By our definition of the interpretation of
concept names in Iw,i, this can only be the case if there is a word u ∈ Ki such
that (d0, dp) ∈ uIw,i . The above proposition yields u ∗→T w, and thus w ∈ K↓Ti ,
contradicting our choice of w. Consequently, we must have d0 ∈ CIw,i . Finally,
we have d0 /∈ DIw,i since w ∈ Li, (d0, dp) ∈ wIw,i , and dp /∈ AIw,ii . This completes
the proof of Theorem 2.

In order to derive decidability results for subsumption w.r.t. RVMs in FL0 from
this theorem, we need to find restrictions under which the condition 2. or 3. is
decidable. We say that the finite set of RVMs T is downward (upward) admissible
if for every finite language L we can effectively compute a representation of L↓T
(L↑T ) for which the word problem is decidable. For example, if all RVMS ui v vi
in T satisfy |ui| ≤ |vi|, then L↓T is also finite (and thus trivially has a decidable
word problem) and can effectively be computed. Thus, such a set of RVMs is
downward admissible. Symmetrically |ui| ≥ |vi| for all RVMS ui v vi in T im-
plies that T is upward admissible. More generally, one can also have downward
(upward) admissible sets of RVMs where the languages L↓T (L↑T ) are not neces-
sarily finite, but one can compute a finite automaton or a pushdown automaton
accepting them. We say that T is admissible if it is downward admissible or
upward admissible.

Corollary 1. If T is a finite, admissible set of RVMs, then the subsumption
relation vT is decidable.
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Proof. If T is downward admissible, then we can use condition 2 to decide sub-
sumption: to test whether Li ⊆ K↓Ti , we must decide for each of the finitely many
words u ∈ Li whether u ∈ K↓Ti , which is possible since the word problem for K↓Ti
is decidable.

If T is upward admissible, then we can use condition 3: to check whether{w}↑T ∩
Ki 6= ∅ it is sufficient to decide, for the finitely many words u ∈ Ki whether
u ∈ {w}↑T .

5 Undecidable role-value maps in FL0

The decidability results proved in the previous section depend, on the one hand,
on the absence of GCIs. On the other hand, they require the string-rewriting
system induced by the role-value maps to be well-behaved (see the definition of
admissible above).

First, we show that, even without GCIs, RVMs can cause undecidability in FL0.

Theorem 3. There exists a fixed finite set of global role-value maps T such that
subsumption of FL0 concepts w.r.t. T is undecidable.

Proof. We prove this theorem by reduction from the word problem for string-
rewriting systems. As shown in [9] (Theorem 2.5.9), there is a fixed finite string-
rewriting system R such that its word problem (i.e., given two words u, v, decide
whether u ∗↔R v holds or not) is undecidable. Here ∗↔R denotes the reflexive,
transitive, and symmetric closure of the rewrite relation

→R = {(xuiy, xviy) | (ui, vi) ∈ R and x, y ∈ Σ∗},

where Σ is the finite alphabet over which the strings in R are built.

Let R = {(ui, vi) | 1 ≤ i ≤ n} be such a string-rewriting system over the alphabet
Σ. We set NR = Σ and define the set of RVMs corresponding to R as

TR = {u1 v v1, ..., un v vn, v1 v u1, ..., vn v un}.

It is easy to see that the relations ∗↔R and ∗→TR coincide. Now, assume that,
given words u, v over Σ, we want to test whether u ∗↔R v holds. We claim that
this is the case iff ∀u.A vTR ∀v.A holds. In fact, by Theorem 2 we know that
∀u.A vTR ∀v.A holds iff {v} ⊆ {u}↓TR . The latter is obviously equivalent to
u
∗→TR v, which in turn is equivalent to u ∗↔R v.

Using a trick originally introduced in [21], we can easily transfer this undecid-
ability result from global RVMs to local ones.
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Lemma 1. Let T be a set of role-value maps, U an FL0 TBox, and C,D two
FL0 concepts. In addition, let Σ be the set of all role names occurring in C,D,
U , and T , and let s be a new role name not contained in Σ. We define the concept
E as follows:

E =
d
uvv∈T (u v v) u ∀s.

(d
uvv∈T (u v v)

)
ud

r∈Σ(r v s) ud
r∈Σ(sr v s).

Then, we have C vT ∪U D iff C u E vU D.

Proof. “⇒” Let us suppose that we have a counterexample to C u E vU D,
i.e. an interpretation I that satisfies U and an element x ∈ ∆I such that x ∈
(C uE)I\DI . We show for all elements y of ∆I that the following holds: if there
exists a non-empty word w such that y ∈ wI(x), then y ∈ sI(x). The proof is by
induction on |w|.

• If |w| = 1, then w = r for a role name r. Since x belongs to E, it satisfies
r v s for all r ∈ NR. Thus y ∈ wI(x) implies y ∈ sI(x) as required.

• If |w| > 1, then w = w′r with r a role name and w′ a non-empty word.
Then, there exists z such that z ∈ w′I(x) and y ∈ rI(z). By induction
hypothesis, we have z ∈ sI(x), and thus thus y ∈ (sr)I(x). Since x ∈ EI ,
we also have that x ∈ (sr v s)I , which yields y ∈ sI(x).

As an immediate consequence of this property and the definition of E, we know
that x and all elements reachable from x satisfy the global RVMs in T .
Now, consider the interpretation I ′ obtained from I by removing all elements not
reachable from x. It is easy to see that I ′ still satisfies U , and in which x still
belongs to C uE, but not to D. Since I ′ contains only x and elements reachable
from x, it satisfies the RVMs in T . Consequently, it is a counterexample to the
subsumption C vT ∪U D.

“⇐” Let us suppose that we have a counterexample to C vT ∪U D, i.e., an
interpretation I that satisfies T ∪ U and an element x ∈ ∆I such that x ∈ CI\DI .
We consider the interpretation I ′ that is the same as I, except that it interprets s
as ∆I×∆I . Since s was chosen to be a new role, it does not appear in U or C,D.
Thus, I ′ is still a model of U and x still belongs to C, but not to D. In addition,
x belongs to the concepts in the first line of our definition of E since I, and thus
also I ′, satisfies the RVMs in T globally. The second line of our definition of E
is satisfied by x since sI′ connects every pair of individuals. Consequently, I ′ is
a counterexample to the subsumption C u E vU D.

The following corollary then follows directly from this lemma (for the case U = ∅)
and Theorem 3.
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Corollary 2. Subsumption in FL0 extended with local role-value maps is unde-
cidable even without a TBox.

Next, we show that, in the presence of GCIs, undecidability can also be caused by
RVMs that satisfy the admissibility condition introduced in the previous section.
In fact, we will see that a single global RVM of the form tr v rt is sufficient to
obtain undecidability. Since this RVM is length-preserving, it is both downward
and upward admissible.

Theorem 4. Subsumption C vT D of FL0 concepts C,D w.r.t. TBoxes T con-
sisting of FL0 GCIs and global role-value maps is undecidable. This is the case
even if T contains only GCIs and a single RVM of the form tr v rt.

Readers that are familiar with the undecidability proof for subsumption in ALC
with global RVMs given in [7], which is by reduction from the tiling problem, may
think that the proof of the above theorem should be an easy adaptation of the
proof in [7]. A closer look at that proof reveals, however, that it makes extensive
use of concept constructors not available in FL0 (such as negation, disjunction,
and existential restrictions). In addition, it requires not only the RVM tr v rt,
but also its backward direction rt v tr. The main new contribution of the proof
sketched below is thus to show that one can obtain the undecidability results also
with the seriously restricted expressive power of FL0.

We prove Theorem 4 by a reduction from the halting problem for deterministic
Turing machines (DTMs). Without loss of generality, we consider DTMs that
have a one-side infinite tape, where the left-most tape cell is marked using the
special symbol $. Whenever the machine moves to the left onto this cell, in the
next step it immediately goes to the right again and leaves the symbol $ and the
state unchanged. We also assume that the machine can only go left or right (i.e.,
it cannot stay in place). The machine starts with an “empty” tape, i.e., a tape
where the left-most cell contains $ and all other cells contain the blank symbol
B. The blank symbol and $ cannot be written by the machine. It halts when
a special halting state halt is reached. For all other states, there is a transition
for every possible tape symbol. Clearly, the question whether such a DTM halts
when started with the initial state q0 on the empty tape is undecidable.

Let M = (Q,Σ, δ, q0) be such a DTM. In order to encode the halting problem for
M into a subsumption problem, we set NR = {r, t} (for “right” and “then”) and
NC = Q ∪ Σ ∪ {H,N} (the latter two for “halt” and “not-head”). The idea is to
construct a set of GCIs that encodes the transition function δ of M such that a
model should be a structure like the one shown in Figure 2, which corresponds
to the unique run of the machine started with the initial state q0 on the empty
tape (where xi,j is the letter at position j at step i of the run, and qi,j is either
N , if the head is not at position j at step i, or the state of the machine at step i
otherwise).
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x1,0 u q1,0 x1,1 u q1,1 x1,2 u q1,2

Figure 2: A model of TM corresponding to the unique run of M .

More formally, the TBox TM consists of the global RVM tr v rt together with
the following GCIs, whose rôle will be explained later:

(1) ∀t.H v H

(2) ∀r.H v H

(3) B v ∀r.(B uN)

(4) N u a v ∀t.a for all a ∈ Σ

(5) N u ∀rr.N v ∀tr.N
(6) $ u ∀r.N v ∀t.N
(7) ∀r.(q u a) v ∀t.(N u ∀r.(b u ∀r.q′))

if δ(q, a) = (q′, b,→)

(8) ∀r.(q u a) v ∀t.(q′ u ∀r.(b u ∀r.N))

if δ(q, a) = (q′, b,←)

(9) (q u a) v H if δ(q, a) = halt
(10) (q u $) v ∀t.($ u ∀r.q)

Intuitively, these GCIs have the following meaning:

• The first two GCIs propagate the information that the machine has reached
the halting state backwards through time and space.

• The third GCI reflects the fact that, if there is a B on a cell, then the
machine never went in a position further than the one of this cell (since the
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machine never writes B). Thus, the letter of any cell to the right of a B
should be B too, and the head of the machine cannot be there.

• The fourth GCI reflects the fact that, if the head is not on a cell at step n,
then the letter on this cell should be the same at step n+ 1.

• The fifth GCI reflects the fact that the head of the tape can only move one
cell at a time, so if the head is not directly to the left or to the right of a
cell at step n, it cannot be on this cell at step n+ 1.

• The sixth GCI reflects the same kind of idea: if the head is not directly to
the right of the leftmost cell at step n, then it cannot be on this cell at step
n+ 1.

• The seventh and eighth GCIs describe the behavior of the machine when it
makes a transition (where the head is and is not, what letter changes, etc.).

• The ninth GCI recognizes the fact that the machine halts. This information
is then propagate backwards by the first two GCIs.

• The tenth GCI describes the fact that, when the head is on the $ symbol,
the machine has to go right and stay in the same state.

The following lemma shows the correctness of the reduction, and thus yields the
undecidability result stated in Theorem 4.

Lemma 2. The DTM M halts when started with the initial state q0 on the empty
tape iff

$ u ∀r.(B u q0) vTM H.

Proof. “⇐” If M does not halt then one can use its run to create a model of TM
that looks like the structure depicted in Figure 2, and where the element in the
upper left corner belongs to the left-hand side $u∀r.(B u q0) of the subsumption
statement. Formally, it is defined as follows:

• ∆I = N2,

• rI = {
(
(i, j), (i+ 1, j)

)
| (i, j) ∈ N2},

• tI = {
(
(i, j), (i, j + 1)

)
| (i, j) ∈ N2},

• HI = ∅,

• (i, j) ∈ NI iff the head is not on position i at step j,

• (i, j) ∈ qI iff the head is on position i and the state is q at step j,

• (i, j) ∈ aI iff the letter on position i at step j is a.



5 UNDECIDABLE ROLE-VALUE MAPS IN FL0 20

Since the machine does not halt, one can interpret H as the empty set without
violating GCI (9). Since all elements have an r-successor and a t-successor, this
also ensures that GCIs (1) and (2) are verified. All the others GCIs are also veri-
fied because they only encode the properties of a run of a Turing machine, which
are obviously satisfied here. Thus, we have a counterexample to the subsumption,
since (0,0) does not satisfy it in this interpretation.

“⇒” Proving the converse direction is a bit more tricky. Basically, we show that
a counterexample (x, I) to the subsumption contains the structure induced by
the run of M and depicted in Figure 2 as a kind of substructure. To be more
precise, we can show by induction on n that, for all i, if (x, y) ∈ (tnri)I , then

• y ∈ aI where a is the letter on the i-th cell at the n-th step of the run,

• y ∈ NI if the head of the machine is not on the i-th cell at the n-th step,
and

• y ∈ qI if the head is on the i-th cell and the state of the machine is q at the
n-th step.

Note that the implications in the other direction need not hold, i.e., it can well
be that y also belongs to other states q′ or letters a′ in I, and that y may also
belong to N if the head is actually there.

The base case (n = 0) can be easily deduced from GCI (3) and the hypothesis
that x satisfies the left-hand side of the subsumption $ u ∀r.(B u q0).

For the induction step, let n ∈ N and i ∈ N.

The three bullet points below show that, for all z ∈ (tn+1ri)I(x), we have z ∈ aI
where a is the letter on the i-th cell at the n-th step. This is achieved by a case
distinction regarding the position of the head.

• Head is on position i ≥ 1 at step n. Let a the letter on cell i at step n, q
the state of the machine at step n, and b the letter on cell i at step n + 1.
By the induction hypothesis, we have y ∈ (q u a)I for all y ∈ (tnri)I(x).
Moreover, the transition taken at step n is of the form δ(q, a) = (q′, b, d),
for some state q′ and direction d. Hence, by GCI (7) or GCI (8), we know
that z ∈ bI holds for all z ∈ (tnri−1tr)I(x) (and thus for all z ∈ (tn+1ri)I(x)
since t ◦ r v r ◦ t holds in I).

• Head is on position i = 0 at step n. By the induction hypothesis, if q is the
state of the machine at step n, then y ∈ (q u $)I for all y ∈ (tn)I(x). By
GCI (10), we then also have z ∈ $I for all z ∈ (tn+1)I(x).

• Head is not on position i at step n. Let a be the letter on cell i at step
n. Then, by the induction hypothesis, we have y ∈ (N u a)I for all y ∈
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(tnri)I(x). Since the head is not on cell i at step n, we know that the letter
on cell i at step n + 1 is still a. By GCI (4), we have z ∈ aI that for all
z ∈ (tnrit)I(x) ⊇ (tn+1ri)I(x).

The following three bullet points show that, for all z ∈ (tn+1ri)I(x), we have
z ∈ NI if the head of the machine is not on the i-th cell at the n-th step; and
z ∈ qI if the head is on the i-th cell and the state of the machine is q at the n-th
step.

• Head is not on position i − 1 or i + 1 at step n for i ≥ 1. Then the head
cannot be on position i at step n+1. Moreover, by the induction hypothesis,
we have that y ∈ (N u ∀rr.N)I for all y ∈ (tnri−1)I(x). Then, by GCI (5),
we have z ∈ NI for all z ∈ (tn+1ri)I(x).

• Head is not on position i+ 1 = 1 at step n. Then, it cannot be on position
i = 0 at step n + 1. Moreover, by the induction hypothesis, we have
y ∈ ($ u ∀r.N)I for all y ∈ (tn)I(x). Then, by GCI (6), we obtain z ∈ NI
for all z ∈ (tn+1)I(x).

• Head is on position i− 1 or i+ 1 at step n. There are a number of subcases
to be considered here, which we will not do in detail since they are rather
tedious and can be treated similarly to the previous cases. The main idea
is that GCIs (7), (8) and (10) will ensure that all z ∈ (tn+1ri)I(x) will be
in N or in some q ∈ Q when necessary.

Let us now suppose that the machine halts at some point. Then, there is a
step n0, a position i0, a state q, and a letter a such that at step n0 the head is
at position i0, the state of the machine is q, the letter on position i0 is a, and
δ(q, a) = halt. By what we have just shown, we know that y ∈ (q u a)I holds
for all y ∈ (tn0ri0)I(x). Thus, GCI (9) yields y ∈ HI for all y ∈ (tn0ri0)I(x).
Using the GCIs (1) and (2) it is easy to show that this implies x ∈ HI , which is a
contradiction to our assumption that x is a counterexample to the subsumption.
Thus, we have shown that the machine does not halt.

This completes the proof of Theorem 4. Using the fact that GCIs and local RVMs
can express global RVMs, or Lemma 1, we can transfer the undecidability result
stated in Theorem 4 also to local RVMs and TBoxes of a restricted form.

Corollary 3. Subsumption C vT D in FL0 extended with local role-value maps
is undecidable even if

1. C,D are FL0 concepts and T contains GCIs between FL0 concepts and a
single GCI of the form > v (tr v rt) involving a local RVM, or

2. D is an FL0 concept, T contains only GCIs between FL0 concepts, and
C = C ′ uE for an FL0 concept C ′ and a fixed concept E of FL0 extended
with local role-value maps.
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6 Conclusion

In this paper we have, on the one hand, given a more direct proof of the known
fact that subsumption in FL0 w.r.t. GCIs is ExpTime-hard. We believe that
the ideas underlying the reduction employed in this proof may turn out to be
helpful for showing ExpTime-hardness for other inexpressive DLs. On the other
hand, we have determined decidable and undecidable cases for FL0 extended with
role-value maps. For the case without a TBox, we have shown that admissible
global RVMs leave the subsumption problem decidable. What remains open
is the question whether the same is true for admissible local RVMs. For the
decidable cases, it would also be interesting to investigate the complexity of the
subsumption problem, depending on the form of the available RVMs.
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