
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Practical Query Rewriting for
DL-Lite with Numerical Predicates

(Extended Version)

Christian Alrabbaa, Patrick Koopmann, Anni-Yasmin Turhan

LTCS-Report 19-06

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 3

2 Query Answering in DL-Liteu(R>) and DL-Liteu(R<) 4

2.1 The Concrete Domains R> and R< . 5

2.2 The Description Logics DL-Liteu(R∼) . 5

2.3 Conjunctive Queries for DL-Liteu(R∼) KBs . 6

3 Overview of the Query Rewriting Method 6

4 TBox Saturation 7

4.1 TBox Saturation Calculus . 7

4.2 Properties of the Saturation Calculus . 7

5 Query Rewriting 13

5.1 Completeness of the Rewriting . 21

5.1.1 Abstract interpretations . 22

5.1.2 Canonical models . 22

5.1.3 Completeness of the Rewriting . 28

6 Conclusion 32

1

Abstract

We present a method for answering ontology-mediated queries for DL-Lite extended
with a concrete domain, where we allow concrete domain predicates to be used in the query
as well. Our method is based on query rewriting, a well-known technique for ontology-based
query answering (OBQA), where the knowledge provided by the ontology is compiled into
the query so that the rewritten query can be evaluated directly over a database. This tech-
nique reduces the problem of query answering w.r.t. an ontology to query evaluation over a
database instance. Specifically, we consider members of the DL-Lite family extended with
unary and binary concrete domain predicates over the real numbers. While approaches for
query rewriting DL-Lite with these concrete domain have been investigated theoretically,
these approaches use a combined approach in which also the data is processed, and require
the concrete domain values occurring in the data to be known in advance, which makes
the procedure data-dependent. In contrast, we show how rewritings can be computed in a
data-independent fashion.

2

Practical Query Rewriting for

DL-Lite with Numerical Predicates

(Extended Version)

Christian Alrabbaa, Patrick Koopmann, Anni-Yasmin Turhan

July 8, 2019

1 Introduction

Formal ontologies are useful to augment application data in order to be able to extract more
consequences from the data by use of the background knowledge than from a query over the plain
data alone. In recent years, ontology-based query answering (OBQA) by means of Description
Logics (DLs) has become a prominent example of this setting. In many practical applications
such as medical or stream-reasoning applications, where data is produced by sensors, the data
need not always be symbolic, but can be numerical. Concepts from such applications can be
characterized by relating their instances to numerical values. For example, patients with high
blood pressure can be modelled as patients with a value for blood pressure over 180. Such
statements can be expressed in an ontology by the use of concrete domains [3].

In OBQA applications, the expressiveness of the underlying DL can lead to high complexity
of query answering, which limits a fast execution of ontology-based queries [?, ?, ?]. This
has lead to the development of the DL-Lite family of DLs that are designed such that their
expressiveness admits to perform query answering by the well-known rewriting approach for
answering conjunctive queries [4, ?]. In the classical rewriting approach, the query is rewritten
such that the resulting query incorporates the relevant knowledge from the ontology. Then,
the rewritten query is answered over the plain (or possibly enriched) data by a database engine
directly. DLs that admit this approach are called first-order rewritable. The rewriting approach
has strong benefits. Since answering conjunctive queries has a complexity of AC0 measured
in the size of the data, rewritability means that query answering is of the same complexity.
Furthermore, the rewriting is data-independent, and thus only has to be performed once, after
which the rewritten query can be executed on different databases without further adaptations
or further reasoning steps. This is especially useful for querying big data or frequently changing
data. Another approach to solve OBQA by means of standard database query answering is the
combined rewriting approach, in which the data is enriched based on the ontology before the
rewritten query is executed [?, ?, ?].

Combinations of DL-Lite and concrete domains have been investigated in regard of query an-
swering early on [7, 8, 1]. In these combinations either the concrete domain predicates are only
unary [7, 8, 1] or the query language does not admit the use of concrete domain predicates [7].
Both restrictions are severe limitations on the expressiveness.

Recently, Baader et al. identified in [2] a criterion for concrete domains with n-ary predicates
that admits combined rewritability when used in combination with DL-Lite. This so-called cr-
admissibility consists of several properties that the concrete domain must fulfill. Among others,

3

the concrete domain must be convex and admit polynomial reasoning, it must contain equality
in its set of predicates, and it must be functional, i.e. for any predicate (of non-zero arity)
applied to a tuple of variables, where one of these variables has a fixed value, there is at most
one solution. See [2] for a discussion of all the properties required by cr-admissibility.

Two concrete domains that are identified as cr-admissible in [2], are those over the rational
numbers with predicates including equality and one comparison ∼d ∈ {<d, >d} to arbitrary
values d and a predicate to state a distance +d(v, w) from one value to another. This concrete
domain may seem inexpressive, but it has infinitely many different unary and also binary
predicates. The latter gives more expressiveness as the concrete domains considered in earlier
approaches. This concrete domain also admits to express the example from above:

HighBloodPressurePatient v Patient u ∃hasBloodPressure. >180 .

Furthermore it can express that high risk patients are patients whose systolic blood pressure is
above their diastolic blood pressure by 90 (mmHg):

HighRiskPatient v Patient u ∃hasDiastolicBloodPressure, hasSystolicBloodPressure.+90 .

Despite being a polynomial method for evaluating queries, the technique proposed in [2] is a
combined rewriting approach, which means that the data has to be processed before the rewrit-
ten query can be executed. Furthermore, the query rewriting procedure requires full knowledge
of the concrete domain values that occur in the data. This limits the practical applicability of
the technique for large or frequently changing data sets—one of the main advantages of DLs ad-
mitting full first-order rewritability. To solve this issue, we present a data-independent rewriting
procedure for DL-Lite extended with the aforementioned cr-admissible concrete domains.

Our rewriting procedure proceeds in two phases. The first phase, is to saturate the terminolog-
ical part of the ontology, and the second is to rewrite the input query based on the saturated
ontology. When answering conjunctive queries by a data-independent rewriting approach, the
rewritten query must cater for all possibilities how concept membership or satisfaction of a con-
crete domain predicate can be derived based on the information in the ontology. For instance,
if a concept implies a positive distance between a pair of values, and the ontology also states
a bound for the first value, then a bound on the second value can be inferred. Such informa-
tion does only depend on the ontology and not on the data. In the first phase, our rewriting
approach makes such information explicit and adds it to the TBox in the form of new axioms.
This TBox saturation can be done even independently of the query. In the second phase, our
algorithm computes a rewriting of a given query in regard to the saturated TBox. In contrast
to the classical rewriting for DL-Lite without concrete domains, here the challenge is that our
rewriting procedure needs to cope with a potentially infinite set of predicates.

This paper is structured as follows. In the next section we introduce the two concrete domains
R> and R<, the resulting logic DL-Liteu(R∼) and answering of conjunctive queries. In Section 3,
we give an overview of the rewriting method and in Section 4, we describe the TBox saturation
and its properties. In Section 5, we introduce the algorithm to compute the query rewriting and
we show that it is complete and terminating. Finally, we provide our conclusion in Section 6.

2 Query Answering in DL-Liteu(R>) and DL-Liteu(R<)

We recall syntax and semantics of DL-Liteu(D) and the main task conjunctive query answering.

4

2.1 The Concrete Domains R> and R<

We first define two concrete domains over the real numbers, R> and R<, that are used in
our DL. In general, a concrete domain [3] is a tuple D = 〈∆D,PD, arD, ·D〉 of a set ∆D of
concrete domain elements, a set of PD of concrete domain predicates, where to each Π ∈ P an
arity ar(Π) ∈ N is associated, and an interpretation function ·D which assigns to each Π ∈ P
with ar(Π) = n a set ΠD ⊆ (∆D)n. We focus on two concrete domains, R> and R<, defined
by R∼ = 〈R,PR∼ , arR∼ , ·R∼〉, for one comparison predicate ∼ ∈ {<,>} per concrete domain,
with the set PR∼ of predicates defined as PR∼ = {>1

R∼ ,>
2
R∼ ,⊥

1
R∼ ,⊥

2
R∼} ∪ {=d,∼d,+d | d ∈ R},

arities arR∼(=d) = arR∼(∼d) = arR∼(>1
R∼) = arR∼(⊥1

R∼) = 1 and arR∼(+d) = arR∼(>2
R∼) =

arR∼(⊥2
R∼) = 2, and an interpretation function defined as

(>1
R∼)R∼ = R (⊥1

R∼)
R∼

= (⊥2
R∼)

R∼
= ∅ (∼d)R∼ = {d′ | d′ ∈ R, d′ ∼ d}

(>2
R∼)

R∼
= R× R (=d)

R∼ = {d} (+d)
R∼ = {〈d1, d2〉 | d1, d2 ∈ R, d1 + d = d2}.

Given two predicates Πa and Πb of the same arity, we write Πa |= Πb iff (Πa)R∼ ⊆ (Πb)
R∼ .

2.2 The Description Logics DL-Liteu(R∼)

We recall DL-Liteu(R∼) with the two concrete domains just introduced. Let NC, NR, NA and NI

be pairwise disjoint, countably infinite sets of respectively concept names, role names, attribute
names and individual names. A role R is an expression of the form r or r−, where r ∈ NR.
DL-Liteu(D) concepts C, D and axioms a are defined according to the following syntax rule,
where A ∈ NC, R, S are roles, U1, . . . , Un ∈ NA, and Πn ∈ PR∼ s.t. arR∼(Πn) = n:

C ::= > | A | C u C | ∃R | ∃U1, . . . , Un.Πn D :: = ⊥ | C | ∀U1, . . . , Un.Πn

a ::= C v D | R v S .

We assume (nested) conjunctions to be represented as sets, that is, they never contain dupli-
cates, and the order of conjuncts is not important.

A TBox is a finite set of axioms. Let A ∈ NC, a, b ∈ NI, r ∈ NR, U ∈ NA, and d ∈ R. An ABox
is a set of assertions, which are of the forms A(a), r(a, b), and U(a, d). A knowledge base (KB)
is a tuple 〈T ,A〉, where T is a TBox and A an ABox.

Example 1. Assume that A,B1, B2 ∈ NC, r ∈ NR, U,U1, U2 ∈ NA, and b ∈ NI. Then, T
is a TBox s.t. T = {B1 v ∃r−, A v ∃U.>3.5, B2 v ∀U1, U2.+10}; A is an ABox s.t.
A = {A(b), B2(b), U1(b, 11), U2(b, 21)}; and K = 〈T ,A〉 is a knowledge base.

The semantics of KBs is defined in terms of interpretations. An interpretation is a tuple
I = 〈∆I , ·I ,R∼〉, where ∆I is a set called the domain, ·I is a function, and R∼ is a concrete
domain. The function ·I maps every a ∈ NI to an element aI ∈ ∆I , every concept name
A to a set AI ⊆ ∆I , every role name r to a relation rI ⊆ ∆I × ∆I , and every attribute
U ∈ NA to a relation UI ⊆ ∆I ×R. We require the domain ∆I to be disjoint with the concrete
domain: ∆I ∩R = ∅. The interpretation function is extended to roles by setting (r−)I = (rI)−,
and to concepts by (>)I = ∆I , (⊥)I = ∅,

(C1 u C2)I = CI1 ∩ CI2 , (∃R)I = {e ∈ ∆I | ∃e′ ∈ ∆I : 〈e, e′〉 ∈ RI},
(∃U1, . . . , Un.Π)I = {e ∈ ∆I | ∃〈e, d1〉 ∈ UI1 , . . . , ∃〈e, dn〉 ∈ UIn : 〈d1, . . . , dn〉 ∈ ΠR∼},
(∀U1, . . . , Un.Π)I = {e ∈ ∆I | ∀〈e, d1〉 ∈ UI1 , . . . , ∀〈e, dn〉 ∈ UIn : 〈d1, . . . , dn〉 ∈ ΠR∼}.

Let X, Y be concepts or roles. An interpretation I satisfies an axiom X v Y (in symbols
I |= X v Y) iff XI ⊆ Y I . I satisfies an assertion A(a) iff aI ∈ AI , r(a, b) iff 〈aI , bI〉 ∈ rI ,

5

and U(a, d) iff 〈aI , d〉 ∈ UI . I is a model of a KB (TBox) if it satisfies all axioms and assertions
in it. Two TBoxes T , T ′ are equivalent (in symbols T ≡ T ′) if they have the same set of models.
An axiom/assertion b is entailed by a KB K (in symbols K |= b) if I |= b for all models I of K.

2.3 Conjunctive Queries for DL-Liteu(R∼) KBs

Let NV be a countably infinite set of variables pairwise disjoint with NC, NR, NA, and NI.
Elements from NI ∪ NV are abstract terms and elements from R ∪ NV are concrete terms. The
union of abstract and concrete terms is called terms. Let A ∈ NC, r ∈ NR, U ∈ NA, Π ∈ PR∼

with arity n, ta, t
′
a be abstract terms and tc1 , . . . , tcn be concrete terms. An atom is an expression

of the forms A(ta), r(ta, t
′
a), =(ta, t

′
a), U(ta, tc) or Π(tc1 , . . . , tcn). A conjunctive query (CQ) is

an expression of the form φ = ∃x1, . . . , xn.α1 ∧ . . .∧αm, where x1, . . . , xn ∈ NV, and α1, . . . , αn
are atoms. We denote terms in α (/φ) by terms(α) (/terms(φ)), and variables in α (/φ) by
var(α) (/var(φ)). Variables in φ that are not bound by an existential quantifier are called
answer variables. A union of CQs (UCQ) is a non-empty set of CQs, where each CQ has the
same set of answer variables. We denote the set of answer variables of a UCQ Ψ by varans(Ψ).
A UCQ Ψ is called Boolean if varans(Ψ) = ∅. Given a UCQ Ψ, an answer to Ψ is a mapping
a : varans(Ψ)→ NI ∪ R, and we denote by a(Ψ) the Boolean UCQ obtained by replacing every
answer variable x by a(x). Answer variables and answers are defined accordingly for CQs.

Given an interpretation I, a Boolean CQ φ is satisfied by I (in symbols I |= φ) if there exists
a homomorphism h : terms(φ) → ∆I ∪ R s.t. for every =(ta, t

′
a) ∈ φ we have h(ta) = h(t′a),

for every d ∈ terms(φ) ∩ R we have h(d) = d, for every a ∈ terms(φ) ∩ NI we have h(a) = aI ,
for every A(t) ∈ φ we have h(t) ∈ AI , for every r(t1, t2) ∈ φ we have 〈h(t1), h(t2)〉 ∈ rI ,
for every U(t1, t2) ∈ φ we have 〈h(t1), h(t2)〉 ∈ UI , and for every Π(t1, . . . , tn), we have
〈h(t1), . . . , h(tn)〉 ∈ ΠR∼ . We might then also write I |= h(φ). A Boolean UCQ Φ is satis-
fied by I iff I |= φ for some φ ∈ Φ. A Boolean UCQ is entailed by a KB K if it is satisfied in
every model of K. A Boolean CQ/UCQ Φ is unsatisfiable in a TBox T if for every model I of
T , we have I 6|= Φ. An answer a to a UCQ Ψ is a certain answer to Ψ if K |= a(Ψ).

Example 2. Let K be a KB as shown in Example 1. Let φ1 and φ2 be CQs s.t. φ1 =
∃x, v.U(x, v), and φ2 = ∃v1, v2.(U1(x, v1) ∧ U2(x, v2) ∧ +10(v1, v2)). We have varans(φ1) = ∅,
and varans(φ2) = {x}. Furthermore, φ1 is Boolean and K |= φ1. The answer a for φ2 with
a(x) = b is a certain answer to φ2 in K, since K |= a(φ2).

3 Overview of the Query Rewriting Method

Our aim is to develop a practical rewriting method for answering UCQs with concrete domain
predicates over R∼ w.r.t. DL-Liteu(R∼) ontologies. While in principle, a single rewriting step can
be sufficient to enable query answering, it does not yield a practical algorithm that lends itself to
implementation. This is mainly due to consequences that follow from the concrete domain alone,
or from their combination with the TBox. For example, axioms of the form C v ∀U1, U2.+d

make both attributes U1 and U2 functional for instances of concept C. Consequences of this sort
hold independently of the query and the data, and thus would need to be re-discovered for each
answered UCQ. A more efficient way is to compute these consequences once and reuse them.
To this end, we present an approach that consists of two steps. The first one is a preprocessing
step of the TBox T , which is called TBox saturation, and the second is the rewriting of the
query w.r.t. the saturated version of T .

In the TBox saturation step, a set of saturation rules augments the TBox with additional
axioms. The rewriting step is then similar to the classical one for DL-Lite [4], and employs a set
of rewriting rules. Starting from some CQ φ in the input UCQ Φ, and for every rewriting rule

6

R, if φ satisfies the premise of R, and the side condition of R is also met, then the conclusion
of R, as a new CQ φ, is added to Φ. This process is repeated for every CQ in Φ until a fixed-
point is reached. As we present later on, the side conditions of the rewriting rules check for
the existence of certain axioms that follow from T , but are not necessarily present in T . But
since the query rewriting step is based on the saturated version of T , a syntactic check suffices
to inspect the satisfaction of these side conditions. This method yields a sound and complete
procedure for query rewriting for DL-Liteu(R∼).

4 TBox Saturation

We introduce the calculus for generating the saturated version of a given TBox T , which is
then used by the query rewriting procedure. Afterwards, we discuss properties of this calculus.

4.1 TBox Saturation Calculus

Our calculus consists of the rules shown in Figure 1. In these rules, Π1,Π2 ∈ PR∼ are some
predicates from R∼, $ ∈ {<,=, >} is a comparison operator from PR∼ , that together with a
value d gives rise to the unary predicate $d, and Q ∈ {∀, ∃} is a quantor. The preconditions
are to be checked syntactically and the derived statements are added as axioms to the TBox.

The rules in the calculus are grouped according to the kind of inference they yield. The rules in
Rinit infer the straightforward properties of attributes. For example, rule Rinit-6 states that if
an element has two attribute values with distance d, and both of these are (locally) functional,
then all pairs of values of these attributes must have a distance d. The rules in R+ infer
implicit distances between attribute values, since the binary predicate +d behaves additive
for the real numbers, and distances can simply be propagated down (/up) the number line.
Rules in R$ lead to the inference of an attribute value based on the following: if the distance
between two attribute successors and the value of one of them are known, then the value of the
other attribute successor can be inferred. Lastly, the rules in R⊥ lead to axioms stating which
concepts cannot have certain attribute successors or which concepts are unsatisfiable. Observe
that the saturation rules can refer to (the presence of) data while staying data-independent.
This is achieved by the use of ∃U.>R∼ in the left-hand side of the inferred statements.

4.2 Properties of the Saturation Calculus

In Algorithm 1, the saturation rules are used to infer all axioms from the TBox which are
relevant to our rewriting procedure. The relevance of these axioms is determined mainly
by two criteria, namely rewritability and termination. To illustrate relevance of axioms for
rewritablity, let us take the following case as an example. Assume we are given the TBox
T = {C2 v ∃U1.=3, > v ∃U2.>R∼ , C1 v ∀U1, U2.+2}, the ABox A = {C1(b), C2(b)}, and the
CQ φ = ∃v.(U2(x, v) ∧=v(5)). It is easy to see that 〈T ,A〉 |= φ, but 〈∅,A〉 6|= φ. In order to be
able to rewrite φ into Φ s.t. 〈∅,A〉 |= Φ, we need some axiom a in T of the form C1uC2 v ∃U2.=5.
Thus, a is a relevant axiom from the rewritability aspect, and therefore, a rule to generate such
an axiom, from such a TBox, is needed. In this example, this rule is R$-1. Let us consider
another case where φ′ = ∃v.(U2(x, v)). Then, a1 = (C1 u C2 v ∃U2.>R∼) is needed to get the
rewriting of φ, but actually a1 is not a relevant axiom because its effect is already covered, since
(C1 u C2 v ∃U2.=5) |= (C1 u C2 v ∃U2.>R∼). This type of entailments are handled by the
rewriting rules from Section 5.

The other criterion for relevance is termination. The interaction between the rules, or even

7

Rinit-rules:

C v QU1, U2.Π

C v QU1.>R∼ , C v QU2.>R∼
(1)

C1 v ∃U.Π C2 v ∀U,U.+0

C1 u C2 v ∀U.Π
(2)

C1 v ∀U.Π1 C2 v ∃U.Π2

C1 u C2 v ∃U.Π1
(3)

C1 v ∀U1, U2.+d

∃U1.>R∼ u ∃U2.>R∼ u C1 v ∃U1, U2.+d
(4)

C v QU1, U2.+d

C v QU2, U1.+−d
(5)

C1 v ∃U1, U2.+d C2 v ∀U1, U1.+0 C3 v ∀U2, U2.+0

C1 u C2 u C3 v ∀U1, U2.+d
(6)

R+-rules:
C1 v ∃U1, U2.+d1 C2 v ∃U2, U3.+d2 C3 v ∀U2, U2.+0

C1 u C2 u C3 v ∃U1, U3.+(d1+d2)
(1)

C1 v ∀U1, U2.+d1 C2 v ∀U2, U3.+d2

∃U2.>R∼ u C1 u C2 v ∀U1, U3.+(d1+d2)
(2)

C1 v ∀U1, U2.+d1 C2 v ∃U2, U3.+d2

∃U1.>R∼ u C1 u C2 v ∃U1, U3.+(d1+d2)
(3)

R$-rules:
C1 v ∀U1, U2.+d1 C2 v ∃U1.$d2 C3 v ∃U2.Π

C1 u C2 u C3 v ∃U2.$(d1+d2)
(1)

C1 v ∀U1, U2.+d1 C2 v ∃U1.$d2

C1 u C2 v ∀U2.$(d1+d2)
(2)

C1 v ∃U1, U2.+d1 C2 v ∀U1.$d2

C1 u C2 v ∃U2.$(d1+d2)
(3)

R⊥-rules:

C1 v D1 C2 v D2

C1 u C2 v ⊥
provided |= D1 uD2 v ⊥ (1)

C1 v D1 C2 v D2

C1 u C2 v ∀U.⊥R∼ / ∀U1, U2.⊥R∼
provided |= D1 uD2 v ∀U.⊥R∼ / ∀U1, U2.⊥R∼ (2)

C1 u ∃U.>R∼ v D
C1 u C2 v D

provided C2 v ∃U.Π (3)

Figure 1: TBox saturation rules.

8

between the conclusion and the premise of the same rule, enables infinitely many rule appli-
cations. Axioms inferred using the R⊥ can be utilised to prevent such behaviour: note that
an axiom of the form C v ∀U.⊥R∼ makes all other axioms of the form C v ∀U.Π superfluous,
which can be used to limit the number of inferred axioms to be kept.

Let T be a TBox, R a saturation rule from Figure 1, and a an axiom. The axiom a is derivable
by R from T (in symbols T `R a) iff the premise(s) of R occur in T and a is of the form of
the conclusion of R. T ` a denotes that a is derivable from T using any saturation rule in the
calculus.

Lemma 4.1 (Soundness). Let T be a TBox and a be an axiom. Then, T ` a only if T |= a.

Proof. The soundness of Rules Rinit-1, Rinit-3, Rinit-4, Rinit-5 follows directly from the se-
mantics of DL-Liteu(R∼). Regarding Rinit-2 and Rinit-6, we note that the concept ∀U,U.+0

expresses local partial functionality of U : therefore, if some U -successor satisfies a predicate
Π, then every U -successor does (there is only one). Similary, if two attributes U1 and U2 are
partially functional, then ∃U1, U2.+d implies ∀U1, U2.+d. The same fact is used in R+-1: if a
domain element satisfies ∃U1, U2.+d1 and ∃U2, U3.+d2 , and it has maximally one U2-successor,
the difference between the U1 and the U3 successor must be d1+d2. Note that the rule would not
be sound without requiring C3 v ∃∀U2, U2.+0, since then there could be several U2-successors.
The other R+-rules propagate information from universal quantifications on the predicate +d.
Note that the concepts ∀U1, U2.+d1 and ∀U2, U3.+d2 do not directly entail ∀U1, U3.+d1+d2 , since
it is possible that there is no U2-successor, in which case ∀U1, U2.+d1 and ∀U2, U3.+d2 are triv-
ially satisfied, regardless of any U1 or U3-successor. That is why the conclusion of Rule R+-2
needs to have the concept ∃U2.>R∼ on the left hand side. The argument for R+-3 is similar.
The soundness of the R⊥-rules follows directly from the semantics of DL-Liteu(R∼) (recall that
$d stands for one of =d, >d and <d).

In order to be able to ensure termination of the TBox saturation process, we need to refer to
certain kinds of “superfluous axioms”.

Definition 4.1 (Redundant axiom). Let T be a TBox and a1, a2 ∈ T . Then, a2 is redundant
to a1 w.r.t. T if at least one of the following conditions is satisfied:

1. a1 is of the form C v D, and a2 is of the form C u C ′ v D;

2. a1 is of the form C v ∀U.⊥R∼ , and a2 is of the form C u C ′ v ∀U.Π; or

3. a1 is of the form C v ∀U1, U2.⊥R∼ , and a2 is of the form C u C ′ v ∀U1, U2.+d.

The axiom a2 ∈ T is a redundant axiom in T iff there exists some a1 ∈ T such that a2 is
redundant to a1 w.r.t. T .

From this definition, it follows that for any TBox T , we have T ≡ T \ {a2} where a1, a2 ∈ T ,
and a1 makes a2 redundant in T . Therefore, a refinement function of T can be defined as
refine(T) = {a ∈ T | a is not redundant in T \ {a}}. Algorithm 1 specifies the computation of
the saturated TBox (in symbols: saturate(T)). In Lemma 4.1, we prove that for any TBox T ,
and due to redundancy elimination, Algorithm 1 terminates on any input.

Theorem 4.1 (Termination of saturation). Algorithm 1 always terminates.

Proof. We prove the lemma by a sequence of claims. In the following, let T be fixed.

9

Claim 1. The number of concepts occurring on the left hand side of any axiom added by the
algorithm is bounded.

Proof of claim. Let C be the set of concepts that appear on the left hand side of an axiom
in T , as well as of all concepts of the form ∃U.>R∼ , where U is an attribute name occurring
in T . Since T is finite, so is C. By inspection of the rules, we see that every left hand side of
a derived axiom is a conjunction of concepts from C. Recall that we represent conjunctions as
sets, that is, no conjunct can appear twice in a conjunction. As a result, we obtain that there
are at most 2|C| different concepts that can occur on the left hand side of an axiom added by
the algorithm. �

Claim 2. For a fixed concept C and fixed attribute names U , U1, U2 ∈ NA, the number of
axioms of the forms C v ∀U.=d and C v ∀U1, U2.Π that are added by the algorithm is bounded.

Proof of claim. First note that all binary predicates in our concrete domain are of the form
+d for some d ∈ R, and therefore only predicates of the form =d and +d are relevant for this
claim. Suppose that at some point during the computation of saturate(T), the current TBox
T ′ contains two axioms a1, a2 such that a1 = C v ∀U.=d1 and a2 = C v ∀U.=d2 , where
d1 6= d2. Because we always apply the R⊥-rules before any other rule, and R⊥-2 applies on a1
and a2, then a3 = C v ∀U.⊥ is added in the next iteration. By Definition 4.1, a3 makes any
further axioms of the form C v ∀U.=d′ redundant, so that they are not added by the algorithm
anymore. We can apply the same argument for axioms of the form C v ∀U1, U2.+d. �

Claim 3. The calculus generates only finitely many axioms of the form C v ∃U1, U2.+d.

Proof of claim. Axioms of this shape are only generated by R+-1 and R+-3, as well as Rinit-4
and Rinit-5. Rinit-4 only generates one per axiom of form C v ∀U1, U2.+d, of which we already
established there can be only finitely many. It therefore suffices to focus on R+-1, R+-3 and
Rinit-5. Note that these rules take an axiom of our shape also as premise.

Assume for a proof by contradiction that the calculus infers infinitely many axioms of this form.
It follows that there must be a sequence a1, . . ., an of inferred axioms, where for i ∈ {2, . . . , n},
ai was inferred using ai−1, a1 = C v ∃U1, U2.+d1 , an = C v ∃U1, U2.+dn , d1 6= dn, and each
axiom has C on the left-hand side. (Since the number of left-hand sides is bounded, it would
eventually converge to C, which is why we can assume the left-hand side to be the same.) These
inferences are only possible using one of the rules R+-1, R+-3 and Rinit-5, . While Rinit-5
only switches the order of the attribute names, R+-1 and R+-3 exchange one of the attribute
names. We can thus reorder the inference so that it first step-wise changes the first attribute
name U1 into U2 or back into U1, and then proceeds to change the second attribute name, until

Algorithm 1: Computation of saturate(T)

Input: TBox T .
while T ` a for some a and a not redundant in T do

while T `R⊥ a′ for some a′ and a′ not redundant in T do
set T := refine(T ∪ {a′}).

set T := refine(T ∪ {a}).
return T ;

10

we get the required axiom C v ∃U1, U2.+dn . Thus, saturate(T) contains the following axioms:

a1 = C v ∃U ′1, U2.+d1

a2 = C v ∃U ′2, U2.+d2

...

am = C v ∃U ′m, U2.+dm ,

where U ′1 = U1, U ′m ∈ {U1, U2} and for i ∈ {2,m}, ai is obtained from ai−1 using one of R+-1
and R+-3, and possibly inferences using Rinit-5 to get the order of the attribute names right.
Note that if U ′m = U1, then m = n. Otherwise, U ′m = U2 and the sequence of inferences
continues and we have axioms

am+1 = C v ∃U2, U
′
m+1.+dm+1

...

am = C v ∃U2, U
′
n.+d′n

,

where U ′n = U1 and d′n = −dn.

We first show that for every i ∈ {1, . . . ,m − 1}, there exists bi = C ′i v ∀U ′i , U ′i .+0, where
C ′i ⊆ C. If ai+1 was inferred using R+-1, this is bi was one of the premises. Otherwise,
ai+1 was inferred using R+-3, then we have as other premise b′i = C ′′i ∀U ′i+1, U

′
i .+di+1−di , and

∃Ui+1.>R∼ ∈ C. We can thus use Rinit-5 and R+-2 on b′i to derive the required axiom of the
form bi = C ′i v ∀U ′i , U ′i .+d.

Using this, we can now show that for every i ∈ {1,m− 1}, we have an axiom of the form ci =
Di v ∀U ′i , U ′i+1.+di+1−di . If ai+1 was inferred using R+ − 3, this is directly the other premise.
Otherwise, the other premise is D′i v ∃U ′i , U ′i+1.+di+1−di . First, we already showed, we have
the axiom bi = C ′i v ∀U ′i , U ′i .+d, and if i < m − 1, the axiom bi+1 = C ′i+1 v ∀U ′i+1, U

′
i+1.+0.

If i = m− 1, we distinguish the cases based on whether U ′m = U1 or U ′m = U1, and show that
in each case, there also exists such an axiom. If U ′m = U1, this axiom is b1 = C ′1 v ∀U1, U1.+d.
If U ′m = U2, recall that then the sequence continues with am+1 = C v ∃U2, U

′
m+1.+dm+1

, and
we can argue as above that there exists the axiom βm+1 = C v ∀U2, U2.+0. We obtain that, if
ai+1 was inferred using R+-1, we have the following three axioms:

D′i v ∃U ′i , U ′i+1.di+1 − di
C ′i v ∀U ′i , U ′i .+0

C ′i+1 v ∀U ′i+1, U
′
i+1.+0,

on which we can apply Rinit-6 to infer ci = Di v ∀U ′i , U ′i+1.di+1 − d, the same as if ai was
inferred using R+-3.

If we now step-wise combine all ci for i ∈ {0, . . . ,m − 1} using R+-2, we obtain the axiom
c = D v ∀U ′m, U2.+dm , where D ⊆ C. If U ′m = U1, m = n, and by initial assumption, dm 6= dn.
We can thus apply R⊥-1 on c and a1 = C v ∃U1, U2.+d1 and obtain C v ⊥, which makes all
remaining axioms redundant. Otherwise, U ′m = U2, and we can apply the same argument on
the remaining sequence to obtain D v ∀U1, U2.+dn , and again we infer C v ⊥. In all cases, we
contradict the initial assumption that saturate(T) contains two axiom C v ∃U1, U2.+d1 and
C v ∃U1, U2.+dn where d1 6= dn.

As a consequence, there cannot be an unbounded number of axioms of the form C v ∃U1, U2.+d

in saturate(T). �

Claim 4. The calculus generates only finitely many axioms of the form C v QU.$d.

11

Proof of claim. The only rules that generate axioms of the form C v QU.Π are Rinit-1, Rinit-2,
Rinit-3, R$-1, R$-2 and R$-3. The Rinit-rules do not introduce any new predicates, so the
only interested inferences are by the R$-rules. Assume these rules generate an unbounded
number of axioms of the form C v QU1.$d. Since the number of attribute names, as well as
the number of concepts on the left hand side of any derived axiom, is finite, it follows that for a
fixed C and a fixed U1, we infer more than two axioms of the form C v QU1.$d ∈ saturate(T)
using the R$-rules.

Each of the R$ has a premise of the form C v QU1, U2.+d, and we already showed that we only
infer a bounded number of those axioms. These inferences would be witnessed by the following
sequence of pairs of axioms in saturate(T), each serving as the premises for the next inference,

a1 = C v Q1U1.$d1 a′1 = C1 v Q′1U1, U2.+d′1

a2 = C v Q2U2.$d2 a′2 = C1 v Q′1U2, U3.+d′2

...

an = C v QnUn.$dn a′n = Cn v Q′nUn, U1.+d′n
,

together with the final axiom

C v Q1U1.$d,

where
∑

1≤i≤n d
′
i = d − d1 and d 6= d1. As the sequence of inferences can then be continued

indefinitely, we assume in the following that all indices are for i ∈ {1, . . . , n} are used modulo
n, that is, an index of 0 corresponds to n, and an index of n+ 1 corresponds to 1.

We first show that we can assume without loss of generality that for all i ∈ {1, . . . , n}, Qi = ∀.

Fix i so that Qi = ∃. Note that the only R$-rule that takes an axiom of the form a′i = Ci v
∃Ui, Ui+1.+d′i

as a premise is R$-3, in which case we must have Qi = ∀ and Qi+1 = ∃ (where we
set i+ 1 = 1 in case i = n). The only rule that produces an axiom of the form C v ∀Ui.$d′i

is
R$-2, which means that there exists an axiom a′i−1 = Ci−1 v ∀Ui−1, Ui.+di−1

∈ saturate(T).
Using Rinit-5 and R+-2, we derive Ci−1 u ∃Ui−1.>R∼ v ∀Ui, Ui.+0. Note that we have ai−1 =
C v ∃Ui−1.$i−1, so that we can use R⊥-3 to infer C v ∀Ui, Ui.+0. The only rules that
take an axiom of the form ai+1 = C v ∃Ui+1.$d+1 as a premise are R$-1 and R$-2, which
means that a′i+1 = Ci+1 v ∀Ui+1, Ui+2.+di+1 . Again, we can use Rinit-5 and R+-2 to infer
Ci+1 u ∃Ui+2.>R∼ v ∀Ui+1, Ui+1.+0, and R⊥-3 to infer C v ∀Ui+1, Ui+1.+0.Now we can use
Rinit-6 with the three axioms

ai = Ci v ∃Ui, Ui+1.+di

C v ∀Ui, Ui.+0

C v ∀Ui+1, Ui+1.+0

to obtain a′′i = C v ∀Ui, Ui+1.+di . Based on this argument, we assume in the following, that
for all i ∈ {1, n}, we have a′i = Ci v ∀Ui, Ui+1.+di .

We can now use R+-2 stepwise on all axioms a′1, . . . a′n to obtain an axiom of the form

D v ∀U1, U1.+d−d1 ,

where every conjunct in D either occurs in C, or is of the form ∃Ui.>R∼ , where C v ∃Ui.$di+1
.

Thus, in case we do not have D′ ⊆ C, we can use R⊥-3 to infer C v ∀U1, U1.+d−d1 . Since by
assumption, d− d1 6= 0, we can now use R⊥-1 on C v ∃U1.$d to infer C v ⊥, which makes all
preceding axioms redundant. We have derived a contradiction, since all the previous inferences
are not included in saturate(T) �

12

It follows from these bounds that both the number of left-hand sides and the number of right-
hand sides occuring in any axiom generated by Algorithm 1 is bounded. It follows that only
finitely many axioms are added to the set, and that the algorithm terminates.

In the following, we show an example of the saturation process of a given TBox T .

Example 3. Consider the TBox T = {A v ∃U1.=2.6, B v ∀U2, U1.+0.4}. We show the
computation of some axioms in saturate(T), by applying the rules from Figure 1 as follows:

T ∪ { Rinit−5−−−−−→ B v ∀U1, U2.+−0.4 ,
Rinit−4−−−−−→ ∃U1.>R∼ u ∃U2.>R∼ uB v ∃U2, U1.+0.4 ,

Rinit−5−−−−−→ ∃U1.>R∼ u ∃U2.>R∼ uB v ∃U1, U2.+−0.4 ,

R+−2−−−−→ ∃U2.>R∼ uB v ∀U1, U1.+0 , ∃U1.>R∼ uB v ∀U2, U2.+0 ,

Rinit−2−−−−−→ ∃U2.>R∼ uA uB v ∀U1.=2.6 ,
R$−1−−−−→ ∃U2.>R∼ uA uB v ∀U2.=2.2 , . . .}.

5 Query Rewriting

This section presents the computation procedure for rewriting a given UCQ Φ w.r.t. a saturated
TBox. The idea is to apply a set of rules on Φ, so that the union over the resulting set of CQs Φ′

has exactly those certain answers over 〈∅,A〉 as Φ has over 〈T ,A〉. We make the following sim-
plifying assumptions on CQs φ in Φ: i) for every atom of the form =(ta, t

′
a) ∈ φ, ta ∈ varans(φ),

and ii) terms(φ) ∩ R = ∅. These assumptions are w.l.o.g. since for i), if =(ta, t
′
a) ∈ φ and

ta 6∈ varans(φ), we can replace ta by t′a exhaustively in the query, and equality between different
constants that would make the query unsatisfiable can be easily detected; and for ii), since we
can replace every real number d ∈ terms(φ) by a variable vd, for which we add the atom =d(vd).
To keep queries in that form, we use a slightly non-standard notion of substitutions.

Definition 5.1 (Substitution). Let φ be a CQ, α an atom s.t. α ∈ φ. A substitution on φ is a
function σ : terms(φ)→ NV ∪ NI, with the additional requirement that σ(t) = t if t ∈ NI. The
result of applying σ on atom α (in symbols: ασ) is an atom obtained by replacing every term
t ∈ terms(α) by σ(t). The result of applying σ on CQ φ (in symbols: φσ) is obtained from φ
by replacing every atom α ∈ φ of the form =(t1, t2) by =(t1, σ(t2)) and every other atom α by
ασ, and adding an atom =(x, t) for every answer variable x s.t. σ(x) = t 6= x.

Note the special treatment of atoms of the form =(t1, t2): by assumption i), these are only used
to express equality of answer variables with other terms. Definition 5.1 ensures that we can
substitute answer variables in the remaining query without affecting the answers of the query.

Before we discuss the rewriting rules, we need to address the syntactic mismatch between queries
and axioms. Specifically, the rewriting rules may operate on roles or complex concepts as they
can refer to axioms. Since the syntax of CQs does not admit these, we employ equivalences
that “bridge” this gap between query and rules. The idea is that the syntactic matching of
rules to a CQ is done modulo these equivalences. Let φ be a CQ, {x, y} ⊆ NV, and X be a
role or a concept allowed on the left-hand side of an axiom. If X is a role and X = r−, then
(φ∧ r−(x, y)) ≡ (φ∧ r(y, x)). Let v, w ∈ NV \ var(φ). If X is a concept, then, depending on the

structure of X, the CQ φ̂ = (φ ∧X(x)) is equivalent to:

• φ ∧ C1(x) ∧ C2(x), if X = C1 u C2;

• φ ∧ U(x, v) ∧Π(v), if X = ∃U.Π; but it is
φ ∧ U(x,w), if C = ∃U.>R∼ ;

• φ∧U1(x, v)∧U2(x,w)∧Π(v, w), if X = ∃U1, U2.Π;

• φ ∧A(x), if X = A ∈ NC;

• φ, if X = >;

• φ ∧R(x,w), if X = ∃R;

13

RR1
φ ∧X(~t)

φ ∧ Y (~t)

Y v X ′,
|= X ′ v X RR2

φ ∧Π1(v)

φ ∧ C(x) ∧ U(x, v)

C v ∀U.Π2,
Π2 |= Π1

RR3
φ ∧+d(v1, v2)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v2)
C v ∀U1, U2.+d

RR4
φ ∧ U(x, v)

φ ∧ C(x) ∧=d(v)
C v ∃U.=d

RR5
φ ∧ U1(x, v1) ∧ U2(y, v2) ∧+d(v1, v2)

φ[y 7→ x] ∧ C(x) ∧ U1(x, v1)

C v ∃U1, U2.+d,
v2 6∈ var(φ)

RR6
φ ∧ U1(x, v1) ∧$d1(v1)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧$d1+d2(v2)
C v ∀U1, U2.+d2

RR7
φ ∧ U1(x, v1) ∧$d1(v1)

φ ∧ (C1 u C2)(x) ∧ U2(x, v2) ∧+d2(v1, v2) ∧$d1+d2(v2)

C1 v ∀U2, U2.+0,
C2 v ∃U1, U2.+d2

RR8
φ ∧ U1(x, v1) ∧+d1(v2, v1)

φ ∧ C(x) ∧ U1(x, v1) ∧ U2(x, v3) ∧+d1+d2(v2, v3)
C v ∀U1, U2.+d2

RR9
φ ∧ U1(x, v2) ∧+d1(v1, v2)

φ ∧ (C1 u C2)(x) ∧ U2(x, v3) ∧+d1+d2(v1, v3) ∧+d2(v2, v3)

C1 v ∀U2, U2.+0,
C2 v ∃U1, U2.+d2

Figure 2: Query rewriting rules dependant on the TBox. (If a variable x occurs only in the
conclusion of a rule, we assume φ contains an atom of the form U ′(x, v′).)

RC1
φ ∧+d1(v1, v2) ∧+d2(v2, v3)

φ ∧+d1(v1, v2) ∧+(d1+d2)(v1, v3)
RC2

φ ∧+d(v1, v2)

φ ∧+(−d)(v2, v1)

RC3
φ ∧=d1(v1) ∧=d2(v2)

φ ∧=d1(v1) ∧+(d2−d1)(v1, v2)
RC4

φ ∧=d1(v1) ∧+d2(v1, v2)

φ ∧=d1(v1) ∧=(d1+d2)(v2)

RC5
φ ∧+d2(v1, v2) ∧$d1(v1)

φ ∧+d2(v1, v2) ∧$(d1+d2)(v2)
RC6

φ ∧Π1(v) ∧Π2(v)

φ ∧Π1(v)
, Π1 |= Π2

RC7
φ ∧ U1(x1, v1) ∧ U2(x2, v1)

φ ∧ U1(x1, v1) ∧ U2(x2, v2) ∧+0(v1, v2)
RC8

φ ∧$d(w)

φ

RC9
φ ∧ U(x, v) ∧ U(x,w) ∧+0(v1, w)

φ ∧ U(x, v)
RC10

φ ∧+d(v, w)

φ

Figure 3: Query rewriting rules dependant on the TBox. (Here, w denotes a unique non-
distinguished variable.)

14

We are now prepared to discuss the rewriting rules. The rewriting rules are grouped into TBox-
dependent rules (see Figure 2) and TBox-independent rules (see Figure 3). RR1 is the standard
rewriting rule as used in most rewriting procedures for DL-Lite, and RR2 and RR3 are the
variant dealing with universal restrictions, already used in [2]. RR5 corresponds to a special
case of RR1 in which an additional substitution step is required. The main function of most
rules in Figure 3 is to reformulate the concrete domain expressions in the query in an equivalence
preserving way. While the TBox saturation already computes some inferences between concrete
domain predicates, not every possible combination of concrete domain predicates that may occur
in a query can be treated without knowing the query. It is thus possible that the query contains
concrete domain predicates saturation has not considered yet, but which can be transformed
into the required form. This is done by Rules RC1 to RC5 and RC7. The purpose of other
rules is to reduce the number of occurrences of a variable, to make other rules applicable. This
is the main motivation behind RR4, RC6, RC9 and RC10, and is also achieved by RR6 to
RR9. Note that we have to be careful here not to lose the “link” of any variable occurring
in the rest of the query: if we would drop a variable occurring elsewhere, we would allow for
additional matches not covered by the original query. In [2], shared variables in the query
are eliminated using a special splitting-rule, which splits shared occurrences of a variable by
assigning a fixed value to them, where the set of values is determined based on the TBox and
the ABox. Since we want to obtain a data-independent and goal-oriented procedure, we cannot
follow this route in our rewriting procedure.

However, in order to achieve full data-independence, a bit more has to be done. Note that
the fillers of concrete domain attributes can be determined by both: numbers occurring in the
data and axioms in the TBox. If a predicate in the query refers to an attribute filler implicit
in the data, we may need to “push” the concrete domain predicates in the query towards those
attribute fillers explicit in the data. This is the purpose of rules RR6 to RR9. Note that these
rules, similar to some of the TBox saturation rules, may make use of local functionalities of an
attribute expressed by an axiom of the form C v ∀U,U.+0.

To obtain a rewriting procedure that is both complete and terminating, two problems have to
be addressed. First, the rules need not be applicable to a query, as some rules require certain
variables to occur only once or twice in the query. If a CQ contains a variable multiple times,
it is often possible to reduce the number of occurrences by applying appropriate substitutions.
Second, termination of the rewriting has to be ensured. Note that rules RR6 to RR9 rely on
predicate atoms of the form $d(v) (or +d(v, v

′)) in their precondition and generate predicate
atoms with same kind of predicate, but with a new value for d and thus with a new predicate and
with different variables. This generation process can continue, but it generates only redundant
queries. We adress the two problems in the following.

Achieving applicability of rules can require to unify some variables which is usually
achieved by applying substitutions. From a single CQ, a set of many CQs can be derived
from the same CQ by such substitutions. One can easily see that not all possible substitutions
are relevant here, but only those that unify different atoms. We make this intuition formal. Let
A = {α1, . . . , αn} be a set of atoms. Set A unifies (to a singleton) if there exists a substitution
σ s.t. α1σ = . . . = αnσ. We then call σ a unifier of A. For each such set, we select a most
general unifier mgu(A), which is defined as a unifier σ of A s.t. for every other unifier σ′ of A,
there exists some substitution σ′′ s.t. σ ◦ σ′′ = σ′. We define the set of all CQs that can be
obtained by unifying any set of atoms in φ as reduce(φ) = {φσ | σ = mgu(A), A ⊆ φ,A unifies}.

Let Φ be a UCQ. For every φ ∈ Φ, due to our notion of redundancy that is to be defined next,
every φ′ ∈ reduce(φ) is redundant. This is why reduce(φ) is not defined as a rewriting rule, but
as a separate procedure.

15

Achieving termination of rule application depends on limiting the number of new predi-
cates introduced by rules, and on limiting the number of variables introduced. The latter effect
can be remedied by avoiding redundant queries in the query set.

Definition 5.2 (Redundant query). Given two CQs φ1 and φ2, φ2 is redundant to φ1, iff there
exists a substitution σ s.t. φ1σ ⊆ φ2. CQ φ2 is redundant in a UCQ Φ if there exists φ1 ∈ Φ to
which φ2 is redundant.

By Lemma 5.1, removing redundant CQs from Φ does not affect the entailment of Φ.

Lemma 5.1 (Query redundancy elimination). Let Φ be a Boolean UCQ, and φ1, φ2 ∈ Φ s.t.
φ2 is redundant to φ1. It holds for every interpretation I, that I |= Φ iff I |= Φ \ {φ2}.

Proof. Let I be an arbitrary interpretation s.t. I |= Φ\{φ2}. By the definition of entailment of
UCQs, and since Φ \ {φ2} (Φ, we have I |= Φ. For the reverse direction, let I be an arbitrary
interpretation, and assume I |= Φ and I 6|= Φ \ {φ2}. This means two things. First, I |= φ2,
and therefore there exists a homomorphism h : terms(φ2)→ ∆I ∪ R. Second, I 6|= φ1. But
since φ2 is redundant to φ1, there exists a substitution σ s.t. φ1σ ⊆ φ2. We know that σ is a
mapping from terms in φ1 to terms in φ2, and h is a mapping from terms in φ2 to elements
in ∆I ∪ R. Therefore, we can construct a mapping h′ = σ ◦ h s.t. h′ : terms(φ1) → ∆I ∪ R.
The function h′ is indeed a homomorphism from terms of φ1 into I. Hence I |= φ1, and
consequently, I |= Φ \ {φ2}, which contradicts the original assumption.

The algorithm to compute the rewriting of a UCQ Φ, written as rew(Φ), uses the
rewriting rules shown in Figures 2 and 3, where X and Y are both either roles or concepts.
The complete UCQ rewriting is depicted in Algorithm 2.

Example 4. Let T = {a1 = A v ∃U3, U1.+3, a2 = A v ∀U1, U2.+1, a3 = B v ∃U2.>R∼} be a
TBox, A = {A(c), B(c), U1(c, 10)} an ABox, and φ = ∃v3.(U3(x, v3) ∧ >5(v3)) a CQ. Then, a
with a(x) = c is a certain answer to φ in 〈T ,A〉. In the following, we show how it is obtained.
First, we compute saturate(T), which contains a4 = ∃U2.>R∼ uA v ∀U1, U1.+0, among other
axioms. This axiom is derived by applying Rinit-5 on a2, and then R+-2 on the result and a2.
To obtain the CQ for which a is a certain answer in 〈∅,A〉, we compute rew(φ), which consists
of φ and the following queries:

RR7(a1,a4)
// A(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧ +3(v3, v1) ∧ >8(v1)

RC10 // A(x) ∧ U1(x, v1) ∧ U2(x, v2) ∧ >8(v1)
RR1(a3)

// A(x) ∧ U1(x, v1) ∧ B(x) ∧ >8(v1) = φ′.

In 〈∅,A〉, φ′ has a match, and therefore a is a certain answer to rew(φ).

Let T be a saturated TBox, φ a CQ, and RR some rewriting rule. In Algorithm 2, we denote

by φ RR,T
// φ′ a rewriting step w.r.t. T s.t. some atom(s) in φ satisfy the premise(s) of RR,

and the resulting query φ′ is in the form of the conclusion of RR.

Soundness of the rewriting procedure. We first show that our rewriting procedure is
indeed sound. Soundness of the first rewriting Rule, Rule RR1, is a consequence of the following
lemma, which will later also become convenient in the completeness proof.

Lemma 5.2. Let φ be a CQ and I an (abstract) interpretation s.t. there exists a homomorphism
h from φ into I and x ∈ terms(φ). Then, there exists a homomorphism from φ∧X1(x) into I
iff h(x) ∈ XI1 , where X1 is a concept that can occur on the left-hand side of a GCI.

16

Algorithm 2: Computation of rew(Φ)

Input: UCQ Φ, saturated TBox T .
for φ ∈ Φ do

for φr ∈ reduce(φ) and ψ such that φr
RR,T

// ψ do

if ψ is satisfiable w.r.t. T and not redundant in Φ then
set Φ := {ψ′ ∈ Φ | ψ′ is not redundant to ψ} ∪ {ψ};

return Φ;

Proof. We distinguish the cases based on X1.

• If X1 ∈ NC,we have I |= X1(h(x)) iff h(x) ∈ XI1 , and consequently iff h is also a
homomorphism from φ ∧X1(x) into I.

• The case where X1 = > is trivial.

• If X1 is of the form ∃R, then h(x) ∈ (∃R)I iff 〈h(x), e〉 ∈ RI for some e ∈ ∆I . Provided
that h(x) ∈ (∃R)I , we can thus extend h to a homomorphism h′ from φ ∧ R(x, y) into
I by setting h′(y) = e. On the other hand, if h can be extended to a homomorphism h′

from φ ∧R(x, y) into I, we must have h(x) ∈ (∃R)I .

• Assume X1 = ∃U1, . . . , Un.Π. If h(x) ∈ XI1 , then 〈h(x), d1〉 ∈ UI1 , . . ., 〈h(x), dn〉 ∈ UIn
s.t. 〈d1, . . . , dn〉 ∈ ΠR∼ , and consequently we can extend h to a homomorphism h′ from
φ ∧ U1(x, y1) ∧ . . . ∧ Un(x, yn) ∧ Π(v1, . . . , vn) into I by setting h′(yi) = di for all i,
1 ≤ i ≤ n. For the other direction, assume such a homomorphism h′ exists. Clearly, then
also h(x) ∈ XI1 .

• If X1 = Y1 u . . . u Yn, by induction we obtain that for every i ∈ J1, nK, there is a
homomorphism hi from φ ∧ Yi(x) into I. Note that by definition of Yi(x), the only
variable shared by Yi(x) and φ is x, and by the constructions above, for all y ∈ terms(φ),
hi(y) = h(y). Hence, we can define the homomorphism h′ by setting h′(y) = h(y) for
y ∈ terms(φ) and h′(y) = hi(y) for y ∈ terms(Yi(x)) \ {x}. h′ is a homomorphism from
φ ∧ Y1(x) ∧ . . . ∧ Yn(x) into I.

Lemma 5.3. Let K be a KB, Φ a Boolean UCQ and φ ∈ rew(Φ). Then, if K |= φ, also K |= Φ.

Proof. Let K be a KB. The queries in rew(Φ) are obtained by the application of the rewrit-
ing rules, as well as by the function reduce. It is not hard to see that for every CQ φ and
ψ ∈ reduce(φ), since ψ is obtained from φ by applying a substitution, if K |= φ, then also K |= ψ.
To complete the proof, we need to show that for every CQ φ and ψ s.t. ψ is obtained from φ
by applying a rewriting rule, we have that K |= ψ implies K |= φ, the theorem then follows by
induction on the rule applications. Let φ ∈ rew(Φ) and ψ be obtained from φ using a rewriting
rule. To show that K |= ψ implies K |= φ, we show that for every model I of K, I |= ψ
implies I |= φ.

Let I be a model of K, and let φ and ψ be two queries such that ψ is obtained from φ by
applying a rewriting rule, and that I |= ψ. There then exists a homomorphism h from ψ
into I.

We distinguish the cases based on which rewriting rule has been applied. It is not hard to see
that the rules in Figure 3 in each case produce a logically equivalent query. We thus focus on
the rules in Figure 2.

RR1 If ψ = ψ′ ∧ Y (~t), by Lemma 5.2, then h(~t) ∈ Y I . Since Y v X ′ ∈ saturate(T) and
I |= saturate(T), Y I ⊆ (X ′)I , and consequently, h(~t) ∈ (X ′)I . Furthermore, we have

17

|= X ′ v X, and thus, h(~t) ∈ XI . By Lemma 5.2, there then exists a homomorphism
from X(~t) into I, and since X(~t) shares only the terms in ~t with the remaining query in
ψ, this homomorphism is also a homomorphism from φ to I.

RR2 If ψ = ψ′ ∧C(x)∧U(x, y), then h(x) ∈ CI and 〈h(x), h(y)〉 ∈ UI . Since I |= C v ∀U.Π2

and Π2 |= Π1, we must have h(y) ∈ ΠR∼
1 , so that h is a homomorphism from φ to I.

RR3 This case is similar to the previous case.

RR4 Assume ψ = ψ′ ∧ C(x) ∧ =d(y) and C v ∃U.=d ∈ saturate(T). Then, h(x) ∈ CI

and h(y) = d . By the GCI, h(y) = d is a U -successor of h(x), and consequently,
〈h(x), h(y)〉 ∈ UI .

RR5 This case corresponds to a special case of RR1, where we first apply the substitution
[y 7→ x] on φ. Note that I |= φ[y 7→ x] implies I |= φ, via a homomorphism h′ obtained
from h by mapping x to h(y).

RR6 This case follows from the semantics of +d2 .

RR7 Assume I |= ψ via the homomorphism h, C1 v ∀U2, U2.+0 ∈ saturate(T) and
C2 v ∃U1, U2.+d2 ∈ saturate(T). Since h(x) ∈ (C1 u C2)I , and I |= C1 v ∀U2, U2.+0,
h(x) has at most one U2 successor, whose value is h(v2). Since furthermore I |= C2 v
∃U1, U2.+d2 , h(x) has a U1-successor whose value is d2 less than h(v2), that is, h(v2)−d2.
Since I |= ψ′ via h, we also have 〈h(v1), h(v2)〉 ∈ (+d2)R∼ , which means that h(v1) =
h(v2) − d2. It follows that h(v1) is the before-mentioned U1-successor of h(x), and
〈h(x), h(v1)〉 ∈ UI1 . It remains to show that h(v1) ∈ $R∼

d1
. Since $d1+d2(v2) ∈ ψ′, we

have h(v2) ∈ ($d1+d2)R∼ . Note that $ is one of =, < or >, and that h(v1) = h(v2)− d2.
Consequently, h(v1) ∈ ($d1)R∼ , and I |= φ.

RR8 This case is similar to RR6.

RR9 This case is similar to RR7.

We showed that for every model I of K, I |= ψ implies I |= φ, provided that ψ is obtained
from φ using one of our rewriting rules. It follows that K |= ψ implies K |= φ. Using our earlier
observation regarding the function reduce it follows by induction on the rule applications that
for every φ ∈ rew(Φ), K |= φ implies K |= Φ.

Theorem 5.1 (Soundness of Rewriting). For every KB K, UCQ Φ, φ ∈ rew(Φ) and and answer
a to Φ, if a is a certain answer to φ in K, then it is a certain answer to Φ in K.

Proof. Note that i) no rewriting step changes the number of answer variables and ii) otherwise,
answer variables are treated just as constants. As a consequence, for every CQ φ ∈ rew(Φ)
and every certain answer a to φ in K, a(φ) ∈ a(rew(Φ), where a(φ) and a(rew(Φ)) are obtained
from φ and Φ by replacing each answer variable x by a(x). This implies by Lemma 5.3 that
K |= a(φ) implies K |= a(Φ), and thus that, if a is a certain answer to φ in K, then a is a certain
answer to Φ in K.

In order to prove termination of the algorithm, we need to show that the number of generated
rewritings (CQs) is bounded. Actually, whether a rewriting rule depends on some axiom a ∈ T
or not, it is in theory possible to generate an infinite number of CQs using our rewriting rules,
unless we restrict the addition of new CQs appropriately. The reason behind this is that some
of these rules may introduce an unbounded number of variables and atoms with new concrete
domain predicates. We show, in Theorem 5.2, that queries which would trigger an unbounded
application of rewriting rules are indeed either redundant or unsatisfiable. Thus, eliminating
such queries prevents the generation of an unbounded number of CQs.

18

Theorem 5.2 (Termination of rewriting). Algorithm 2 always terminates.

Proof. We show that for any given input Φ, the set of queries that are generated by Algorithm 2
is bounded.

For convenience, we may sometimes assume that Rule Rinit-5 is applied silently, and identify
concepts QU1, U2.+d with QU2, U1.+−d.

In the following, we call a variable x occurring in a query ψ an atom of the form A(x), A ∈ NC,
r(x, y), r ∈ NR or in the first place in an atom of the form U(x, v), U ∈ NA, object variable in
ψ, and every other variable concrete domain variable. We show termination of the rewriting
procedure by means of the following claims.

Claim 1. The number of object variables in a query ψ ∈ rew(Φ) is bounded.

Proof of claim. The only rule that may introduce a new object variable is RR1, where Y = ∃R
or Y = ∃R−, in which case some sub-query X(x) is replaced by R(x,w)/R(w, x), where w does
not occur anywhere else. The only rule applicable on this atom is again RR1, which then
however would eliminate the occurrence either of the fresh variable w, or the occurrence of
x, in the case where x is neither shared nor an answer variable. We obtain that any query
ψ ∈ rew(Φ) may have at most one additional object variable compared to φ for each axiom of
the forms ∃R v X, ∃R− v Y ∈ saturate(T), and each object variable occurring in φ. �

Claim 2. The overall number of concrete domain predicates introduced by the rewriting
procedure is bounded.

Proof of claim. We show that every sequence of rewriting rule applications that would lead to
the introduction of an unbounded number of concrete domain predicates involves an unsatisfi-
able query. This query is removed by our rewriting procedure before further steps are applied,
which contradicts that the sequence of rule applications is applied indefinitely.

The rules that introduce new concrete domain predicates to a query are RC1, RC2, RC3, RC4
and RC5, as well as RR6, RR7, RR8 and RR9. For rules RC1, RC2, RC3, RC4 and RC5,
we notice that they all produce logically equivalent queries with the same amount of concrete
domain variables. If applying only these rules on some query ψ leads to the introduction of
two atoms +d(v1, v2) and +d′(v1, v2), where d 6= d′, ψ must be unsatisfiable, as those atoms
contradict each other and the resulting query is logically equivalent. The same holds for atoms
of the forms =d(v) and =d′(v). Regarding atoms of the form $d(v), we notice that those atoms
are only introduced by Rule RC5, and one easily sees that, as a consequence of the previous
observation, this rule can only introduce a finite number of such atoms for each concrete domain
variable, provided that the original query is satisfiable. We can thus assign to every satisfiable
query ψ ∈ rew(Φ) a finite set of queries produced using only the rules in Figure 3, as well as
Rules RR1, RR2, RR3, RR4 and RR5. For a given CQ ψ ∈ rew(Φ), denote this set by
rew1(ψ).

We now focus on those rules that may introduce new concrete domain predicates but depend on
the TBox, that is, rules RR6, RR7, RR8 and RR9. If these rules may create an unbounded
number of concrete domain predicates, then there is some axiom a ∈ saturate(T) that is used
an unbounded number of times. We distinguish the two different cases based on the syntactical
shape of that axiom a.

• Assume a is of the form C1 v ∃U1, U2.+d1 . This means the introduction of an unbounded
number of concrete domain predicates is due to Rules RR7 and RR9. Both rules require

19

an atom U1(x, y1) in query, which is replaced by an atom U2(x, y2). If a is applied twice,
we must thus have the following sequence of axioms in saturate(T) that are used to
produce the unbounded number of concrete domain predicates:

C1 v ∃U1, U2.+d1 D1 v ∀U2, U2.+0

C2 v ∃U2, U3.+d2 D2 v ∀U3, U3.+0

...

Cn−1 v ∃Un−1, Un.+dn−1 Dn−1 v ∀Un, Un.+0

Cn v ∃Un, U1.+dn Dn v ∀U1, U1.+0,

where d =
∑

1≤i≤n dn 6= 0. (If d = 0, this sequence does not lead to the introduction of
an unbounded number of concrete domain predicates, and we just get back the predicate
with which we have started).

If we apply RR7 or RR9 with those axioms in order on a query ψ1 containing U1(x, y),
with y occurring in a unary atom (RR7) or a binary axiom (RR9), where in each step
we add a new concrete domain variable bounded to x, we obtain a query ψn that contains
C1(x), . . ., Cn(x), D1(x), . . ., Dn(x), as well as U1(x, vn+1).

Specifically, in any interpretation that allows for a homomorphism mapping x to some
domain element e. e satisfies D1, . . ., Dn, which means it has at most one successor for
each attribute U1, . . .Un. Furthermore, e satisfies C1, . . ., Cn. By looking at the axioms
above having those concepts on the left-hand side, and taking into consideration that
there is at most one successor for each attribute, we obtain that e also satisfies ∃U1, U1.+d.
But since d 6= 0, this would imply that e has two U1-successors, which contradicts the
earlier observation that there can be only one such successor. We obtain that that ψn
is unsatisfiable with T , and would thus not be added to the current set of CQs. Now
consider any sequence of rewriting rule applications that uses all these axioms in the same
way, but in between might use additional rewriting steps. The resulting queries can all
be obtained from ψn by just applying the rules in a different order. Since ψn is already
unsatisfiable, by Theorem 5.1, these queries are unsatisfiable as well. As our rewriting
procedure removes unsatisfiable queries, an unbounded sequence of rewriting steps as
considered here will not happen with our algorithm.

• Assume a is of the form C1 v ∀U1, U2.+d1 . We can exclude Rules RR7 and RR9 in
the application of the rewriting, since we already showed that they cannot lead to an
unbounded sequence of inferences. We therefore only need to consider RR6 and RR8.
Each application of these rules shifts the occurrence of a concrete domain predicate to a
new variable, for which it adds a new attribute atom. If RR6 or RR8 becomes applicable
again, this must be on the new concrete domain predicate with the new attribute atom.
We thus must have the following axioms in saturate(T)

C1 v ∀U1, U2.+d1

C2 v ∀U2, U3.+d2

...

Cn v ∀Un, U1.+dn

Denote the result of applying RR7 or RR9 on some query ψ1 with those axioms one after
the other, each time on a concrete domain variable bound to the same object variable x,
by ψn. Note that ψn contains Ci(x) and Ui(x, yi) for each i ∈ {1, . . . , n}.
If d =

∑
1≤i≤n dn = 0, then using these axioms in this order with RR6 or RR8 is

harmless, as we end up with the same concrete domain predicate that we began with.
Otherwise, we argue that ψn must be unsatisfiable with respect to T .

20

We can combine all the above axioms step-wise using R+-2, obtaining the axiom

l

1≤i≤n

Cn u
l

1≤i≤n

∃Ui.>R∼ v ∀U1, U1.+d1+d,

and since d 6= 0, using R⊥-2 on this last axiom gives and a1 gives us

a⊥ =
l

1≤i≤n

(Ci u ∃Ui).>R∼ v ∀U1, U2.⊥

We note that the result of rewriting with the above axioms one after the other results
in a query that contains Ci(x) for each i ∈ {1, . . . , n}, as well as Ui(x, vi) for each i ∈
{1, . . . , n}. Thus, a⊥ shows that ψn must be unsatisfiable. We can argue as before that any
other sequence of rewriting rule applications on ψn that involves using RR6 or RR8 in
the same way will also lead to an unsatisfiable query. We also obtain that this unbounded
sequence of rule applications will not happen with our algorithm. �

Claim 3. The number of domain predicate variables in a query ψ ∈ rew(Φ) bound to the
same object variable is bounded

Proof of claim. The only rules that introduce new concrete domain predicaes are RR1 and
RR6 to RR9. Rule RR1 introduce at most one concrete domain variable per object variable
and axiom, before the resulting axiom becomes redundant with respect to an earlier inferred
CQ. Similarly, since rules RR6 to RR9 can only introduce a bounded number of concrete
domain predicates, eventually a CQ will be inferred that is redundant to an earlier CQ. �

As a result of Claim 1, Claim 2 and Claim 3, we establish that Algorithm 2 always generates
a bounded set rew(Φ) of queries: the number of object variables in each query ψ ∈ rew(Φ)
is bounded, each introduced concrete domain predicate is bound to some object variable, and
the number of concrete domain predicate introduced per object variable is bounded. Our
redundancy elimination further makes sure that we have no two queries in rew(Φ) that are
the same modulo variable renaming. As a consequence, rew(Φ) is finite, and Algorithm 2
terminates.

Furthermore, we can show that the obtained rewritings also yield a complete query answering
procedure, which we show in the following subsection. It will be convenient to first focus on
Boolean queries for these results.

5.1 Completeness of the Rewriting

We next show that our rewriting procedure is complete for Boolean queries Φ, that is, whenever
K = 〈T ,A〉 |= Φ, then 〈∅,A〉 |= rew(Φ). Since rew(Φ) is contained in the union of all rew(φ)
for which φ ∈ Φ, it suffices to focus on CQs φ. In the following of this subsection, we thus
assume φ to be a fixed CQ.

The general idea is to define a kind of canonical model I of K such that for every CQ ψ,
whenever K |= ψ then also I |= ψ. This canonical model I is obtained based on a model
of the ABox by extending it step-wise based on the TBox axioms. As a result, the canonical
model construction yields a sequence I0, . . . of interpretations. We then show completeness
of the rewriting by showing that for every element Ii in the sequence, Ii |= rew(φ) implies
Ii−1 |= rew(φ).

21

A challenge with this approach is that we cannot really construct this sequence of models
as classical interpretations. The reason is that the TBox may not fully specify the value of
attribute-successors, which may only be restricted by predicates such as >d or +d. Since
classical interpretations need to assign a specific value to every attribute successor, we cannot
always construct a classical interpretations that captures all query entailments. The solution
to this problem is to use abstract interpretations instead of classical interpretations, in which
concrete domain values are represented using variables, which are restricted using a set of
constraints. These are introduced in the next subsection.

For convenience, we may assume in the following that Rules Rinit-5 and RC2 are applied
silently, and identify concepts of the form QU1, U2.+d with QU2, U1.+−d, and atoms of the
form +d(v1, v2) with +−d(v2, v1).

5.1.1 Abstract interpretations

Let Ndv be a countably infinite set of domain variables disjoint with NC, NR, NA, NI and NV. A
concrete domain atom is an expression of the form Π(~v), where Π ∈ PR∼ is an n-ary concrete
domain predicate and ~v ∈ (Ndv)

n. Given a set Γ of concrete domain atoms, a solution is a
mapping π : Ndv → R such that for every Π(~v) ∈ Γ, π(~v) ∈ ΠR∼ . A concrete domain atom α is
entailed by a set Γ of concrete domain atoms, in symbols Γ |= α, if every solution of Γ is also
a solution of α

An abstract interpretation is now a triple I = 〈∆I , ·I ,ΓI〉, where ∆I and ·I are defined
the same as for interpretations, only that now ·I maps attribute names U ∈ NA to relations
UI ⊆ ∆I ∪ Ndv. The set ΓI contains domain predicate atoms over the variables used in ·I .
Given a solution π for ΓI , we obtain as instance of I the classical interpretation π(I) in which
every value v ∈ Ndv is replaced by π(v). An abstract interpretation I is now an abstract model
of a KB K if ΓI has a solution and every instance of I is a model of K. We then write I |= K.
Similarly, for e ∈ ∆I and a concept C, we write e ∈ CI if e ∈ Cπ(I) for every solution π
of ΓI . A Boolean query φ is entailed by an abstract interpretation I, in symbols I |= φ, if
there exists a homomorphism h : terms(φ) → ∆I ∪ Ndv s.t. for every solution π of I and
corresponding instantiation π(I) of I, and for every atom X(~x) ∈ φ, we have π(I) |= X(~y),
where ~y is obtained from ~x by replacing every constant by itself, every variable x s.t. h(x) ∈ ∆I

by h(x), and every variable x s.t. h(x) ∈ Ndv by π(h(x)). Given a concrete domain atom α, we
further write I |= α iff ΓI |= α.

5.1.2 Canonical models

Given a KB K = 〈T ,A〉, we construct the abstract model IK = 〈∆K, ·IK ,ΓK〉, which may
be infinite, as the limit of the sequence (Ii)i≥0, where Ii = 〈∆Ii , ·Ii ,Γi〉 for i ≥ 0, which
inductively defined in the following.

I0 is defined as a model of A by setting

• ∆I0 = {aI0 | A(a) ∈ A} ∪ {aI0 , bI0 | r(a, b) ∈ A} ∪ {aI0 | U(a, d) ∈ A},

• for all A ∈ NC, AI0 = {aI0 | A(a) ∈ A},

• for all r ∈ NR, rI0 = {〈aI0 , bI0〉 | r(a, b) ∈ A}

• for all U ∈ NA, UI0 = {〈aI0 , va,U 〉 | U(a, d) ∈ A},

• Γ0 = {=d(va,U) | (U(a, d) ∈ A}

22

For i > 0, Ii is obtained from Ii−1 don’t-care non-deterministically, by picking a domain
element or pair of domain elements e ∈ ∆Ii−1 ∪ (∆Ii− ×∆Ii−1) ∪ (∆Ii−1 × Ndv) and an axiom

X1 v X2 ∈ saturate(T) s.t. e ∈ (X
Ii−1

1 \ XIi−1

2). Intuitively, this means that e is a counter
example for Ii−1 |= X1 v X2.

If X2 = ⊥, K is unsatisfiable, and we stop the model construction. Otherwise, based on e and
X1 v X2, Ii is constructed as follows, where in each case, everything in Ii is as in Ii−1 except
for the changes mentioned.

CM1 If X2 ∈ NC ∪ NR, then XIi2 = X
Ii−1

2 ∪ {e}.

CM2 if X2 = r−, r ∈ NR, and e = 〈e1, e2〉 then rIi = rIi−1 ∪ {〈e2, e1〉}.

CM3 If X2 = ∃r, r ∈ NR, then ∆Ii = ∆Ii−1 ∪ {e′} and rIi = rIi−1 ∪ {〈e, e′〉}, where e′ is fresh.

CM4 If X2 = ∃r−, r ∈ NR, then ∆Ii = ∆Ii−1 ∪ {e′} and rIi = rIi−1 ∪ {〈e′, e〉}, where e′ is
fresh.

CM5 If X2 = ∃U1, . . . , Un.Π, then UIi1 = U
Ii−1

1 ∪ {〈e, v1〉}, . . ., UIin = U
Ii−1
n ∪ {〈e, vn〉}, and

Γi = Γi−1 ∪ {Π(v1, . . . , vn)}, where v1, . . ., vn ∈ Ndv are fresh.

CM6 If X2 = ∀U1, . . . , Un.Π, there exist 〈e, v1〉 ∈ U
Ii−1

1 , . . ., 〈e, vn〉 ∈ U
Ii−1
n s.t. Γi−1 6|=

Π(v1, . . . , vn), for which we set Γi = Γi−1 ∪ {Π(v1, . . . , vn)}.

We further require that the above application is fair, in the sense that every applicable rule is
eventually applied. IK is then defined as the limit of the constructed sequence.

We first show that, provided that K is satisfiable, then the construction succeeds and IK is
indeed a canonical model of K, in the sense that for every CQ φ, IK |= φ iff K |= φ. This result
is established in the following lemmas. If K is not satisfiable, then either the construction fails
or Γi |= ⊥R∼(v) for some v ∈ Ndv.

First, we show that, if the model construction is successful, then IK is a model of K.

Lemma 5.4. Provided the model construction is successful, for every solution π of ΓK, π(IK)
is a model of K.

Proof. We show that IK |= K, that is, every solution π of ΓK is a model of K. Clearly, we have
I0 |= A. The construction explicitly takes care of axioms α ∈ T and the application of rules is
fair, so also IK |= α for every α ∈ T . We obtain that IK |= K.

Next, we show that IK is canonical in the sense that it covers all relevant common entailments
of other models.

Lemma 5.5. If K is satisfiable, then the model construction is successful and for every model
I of K, there is a solution π of ΓK s.t. there is a homomorphism from π(IK) to I.

Proof. Let I be a model of K. We construct a homomorphism from IK into I, and then
construct a corresponding solution π of ΓK.

The idea is to just follow the construction steps for IK, and map the domain elements and
variables from IK to domain elements and constants in I. Specifically, we show that for every
i ≥ 0, there is a homomorphism hi from Ii into I. We start with I0, for which we define
h0(aI0) = aI for every individual name a occuring in K, and h0(v) = d for every variable v s.t.
=d(v) ∈ Γ0. For i > 0, we distinguish the cases based on which rule has been used to construct
Ii from Ii−1. For the steps that do neither add a fresh domain element nor refer to a fresh
domain variable, we set hi = hi−1. For the remaining steps, we distinguish the cases.

23

• For CM3, we note that hi−1(e) must have an r-successor e′′, and we just set hi(e
′) = e′′.

• For CM4, we note that hi−1(e) must have an r-predecessor e′′, and we just set hi(e
′) = e′′.

• For CM5, we note that for every U -attribute successor d of hi−1(e), there must exist
some 〈hi−1(e), d〉 ∈ UI , and we set hi(ve,U) = d.

Note that the case where X2 = ⊥, which would terminate the canonical model construction,
can never happen, since I is a model of T . Thus, we already obtain that the canonical model
construction must be successful. The mapping h′ is now defined as the limit of the sequence
h0, h1,

We define the solution π of ΓK by setting π(v) = h′(v) for all variables v occurring in IK. For
every Π(v1, . . . , vn) ∈ ΓK, we must have 〈h′(v1), . . . , h′(vn)〉 ∈ ΠR∼ , and consequently, π is a
solution of ΓK. The homomorphism h from π(IK) to I is now obtained from h′ by setting
h(e) = h′(e) for all e ∈ ∆IK , an h(v) = π(v) for all v ∈ NV. It is standard to verify that for
every X ∈ NC ∪NR ∪NA and every e ∈ Xπ(IK), we also have h(e) ∈ XI , which means that h is
a homomorphism from π(IK) into I.

Note that as a corollary of the previous lemmas, we observe that if K is unsatisfiable, the
construction must fail or result in an abstract interpretation without a solution.

Corollary 5.1. The construction fails or results in an abstract interpretation without a solution
iff K is unsatisfiable.

We can use this corollary to establish the following theorem, using a slight modification of the
canonical model construction.

Theorem 5.3. Satisfiability of DL-Liteu(R∼) KBs is decidable.

Proof. By Corollary 5.1, satisfiability of a DL-Liteu(R∼) KB K can be decided by establishing
whether a canonical model for K with a solution can be constructed. While our construction
of a canonical model may not terminate, for satisfiability the following adaptation is sufficient:
whenever we apply CM3 or CM4, we check whether it was used before to add a domain
element e∃R satisfying the concept ∃R. If we did, we reuse that domain element. This way, we
limit the number of added domain elements polynomially. Furthermore, the resulting abstract
interpretation can always be unravelled to an unbounded one as it would be generated by the
original construction. For CM5 and CM6, we need to test the entailment of an atom α from
the current Γi. For this, we build a system of inequalities of the predicates in Γi, together
with an inequality representing the negation of α. We then only need to determine whether
this system of inequalities has a solution, which is decidable. The same technique is used to
determine whether the resulting abstract interpretation has a solution.

Corollary 5.2. Satisfiability of CQs w.r.t. to a TBox T is decidable.

Proof. Given a CQ φ, we build a minimal ABox Aφ satisfying all atoms in φ, and test the
satisfiability of K = 〈T ,Aφ〉 using Theorem 5.3.

The technique used in the preceding proofs to test for satisfiability of a KB cannot be used to test
for entailment of queries, since the resulting abstract interpretation cannot be homomorphically
embedded into every model of the KB. This is why for the following results, we need to make
use of the canonical models as we defined them in the beginning of this subsection.

Lemma 5.6. For every query φ, K |= φ iff IK |= φ.

24

Proof. Assume that for some solution π of ΓK, we have π(IK) 6|= q. By Lemma 5.4, π(IK) is
a model of K, so that also K 6|= q. For the other direction, Assume IK |= φ. Then, for every
solution π of ΓK, we have π(IK) |= φ, that is, there exists a homomorphism gπ from φ into
π(IK). By Lemma 5.5, for every model I of K there is a homomorphism h from one such
π(IK) to I, which means gπ ◦ h is a homomorphism from φ into I, and I |= φ. It follows that
K |= φ

Before we finish this subsection, we give some auxiliary lemmas about canonical models that
will be helpful when we show the completeness of the rewriting procedure.

We start with some general observations

Lemma 5.7. The following properties hold true for every i ≥ 0:

1. For every variable v occurring in Γi but not in Γ0, there exists a unique attribute U ∈ NA

and domain element e ∈ ∆Ii s.t. 〈e, v〉 ∈ UI and C v ∃U.Π ∈ saturate(T), where
e ∈ CIi−1 .

2. If a variable v occurs in multiple atoms in Γi, exactly one of those atoms was added due
to CM5, while the others were added due to CM6.

3. If Γi contains a chain of atoms of the following form:

+d1(v0, v1),+d2(v1, v2), . . . ,+dn(vn−1, vn),

then there exists a domain element e ∈ ∆Ii attributes U0, Un ∈ NA s.t.t 〈e, v0〉 ∈ U0,
〈e, vn〉 ∈ Un and saturate(T) contains an axiom of the form C v ∃U0, Un.+d, where
d =

∑
1≤i≤n di and e ∈ CIi−1 .

Proof. We prove the observations one after the other.

1. New variables are only added due to Step CM5, which never reuses an existing variable,
and no step associates an existing variable to another attribute. If v was added due to
an axiom of the form C v ∃U1, U2.Π, due Rule Rinit-1, we also have C v ∃.>R∼ ,C v
U2.>R∼ ∈ saturate(T).

2. New variables are added to Γi due to Step CM5, and the only Step that reuses variables
is Step CM6.

3. By the first observation, there exists a domain element e s.t. we can associate to every
variable vi an attribute Ui s.t. 〈e, vi〉 ∈ UIi1 . Every binary atom +di(vi−1, vi) in the
sequence must have been added due to Step CM5 or due to Step CM6. It follows that
for every j, 0 ≤ j ≤ n, one of the following holds:

(a) T contains an axiom of the form Cj v ∃Uj , Uj+1.+dj , where e ∈ CIi−1 , or

(b) T contains an axiom of the form Cj v ∀Uj , Uj+1.+dj , where e ∈ CIi−1 , 〈e, vj〉 ∈
(U ′j)

Ii−1 and 〈e, vj+1〉 ∈ (Uj+1)Ii−1 .

First assume that for all j, Case 2 applies. By applying Rule R+-2 iteratively, to obtain

l

C′∈C
C ′ v ∀U1, Un.+d ∈ saturate(T),

where Cj ∈ C for all j, 0 ≤ j ≤ n, ∃Uj .>R∼ ∈ C for all j, 1 ≤ j ≤ n − 1, and
C contains no further concepts. By Observation 1, there exist axioms C ′0 v ∃U0.Π,

25

C ′n v ∃Un.Π′ ∈ saturate(T), where e ∈ (C ′0 uC ′n)Ii−1 . We can thus use Rinit-4 to obtain
the axiom C v ∃U1, Un.+d ∈ saturate(T) as required.

Now assume that for some j, Case 1 is responsible for +dj (v′j , v
′
j+1). By Observation 2, if

j > 0, Case 2 must hold for j − 1, and if j < n, Case 2 must hold for j + 1. By applying
Rules R+-1 – R+-3 iteratively, where R+-2 is used to get the required premise for R+-1,
we obtain l

C∈C
C v ∃U1, Un.+d ∈ saturate(T),

where for all j, 0 ≤ j ≤ n, Cj , ∃Uj .>R∼ ∈ C, and C contains no further concepts. To show
that indeed e ∈ CIi− , we note that, if successors v1 and vn where added in the current
step, there must be an axiom C v ∃U1, Un.+d s.t. e ∈ CIi−1 . Otherwise, they must have
been added in previous steps, together with the other successors v2, . . ., vn−1, so that we
obtain e ∈ (

d
C∈C C)Ii−1 .

Lemma 5.8. If for some i > 0, v1, v2 ∈ Ndv and d ∈ R, Γi |= +d(v1, v2) and for all d′ ∈ R, Γi 6|=
=d′(v1) and Γi 6|= =d′(v2), then saturate(T) contains an axiom of the form C v ∃U1, U2.+d

s.t. for some domain element e ∈ ∆Ii , we have e ∈ CIi−1 , 〈e, v1〉 ∈ UIi1 , and 〈e, v2〉 ∈ UIi2 .

Proof. Assume that for some i > 0 and v1, v2 ∈ Ndv, i) Γi |= +d(v1, v2), and ii) Γi 6|=
=d1(v1),=d2(v2) for all d1, d2 ∈ R. By ii), Γi |= +d(v1, v2) can only hold due to atoms of
the form +d′(v

′
1, v
′
2) ∈ Γi. Specifically, there must be a sequence (possibly of length 1), of such

atoms:
+d′0

(v′0, v
′
1),+d′1

(v′1, v
′
2), . . . ,+dn(v′n, v

′
n+1),

s.t.
∑

0≤i≤n di = d. From here, the lemma is a direct consequence of Lemma 5.7.3.

Lemma 5.9. Assume for some i > 0, Γi |= $d(v). Then, one of the following holds for some
e ∈ ∆:

1. U(a, d′) ∈ A, and aI0 = e, where =d′ |= $d,

2. C v ∃U.Π ∈ saturate(T), e ∈ CIi−1 and 〈e, v〉 ∈ UIi , where Π |= $d,

3. U0(a, d1) ∈ A, aI0 = e, C1 v ∀U0, U1.+d2 , C2 v ∃U1.Π ∈ saturate(T), 〈e, v〉 ∈ UIi1 and
e ∈ (C1 u C2)Ii−1 , where =d1+d2 |= $d, or

4. U0(a, d1) ∈ A, aI0 = e, C1 v ∀U0, U1.+d2 , C2 v ∃U1, U2.+d3 ∈ saturate(T), 〈e, v〉 ∈ UIi2

and e ∈ (C1 u C2)Ii−1 , where =d1+d2+d3 |= $d.

Proof. Assume Case 1 does not hold. We have to show that then, one of the remaining cases
holds. Since Γi |= $d(v), there must exist some $′d0(v0) ∈ Γi, together with a (possibly empty)
sequence of atoms

+d1(v0, v1),+d2(v1, v2), . . . ,+dn(vn−1, vn) ∈ Γi,

s.t.
∑

0≤j≤n dj ∈ ($d)
R∼ , 〈e, vj〉 ∈ UIij for all j, 0 ≤ j ≤ n, vn = v and Un = U . Furthermore,

unless the sequence is empty, we have 〈e, vj〉 ∈ UIi−1

j for all j, 0 ≤ j ≤ n, since the succes-
sors must have been added in a previous step. In case where the sequence is empty, Case 2

immediately follows, which is why we assume in the following that 〈e, vj〉 ∈ U
Ii−1

j for all j,
0 ≤ j ≤ n.

Each atom in the above sequence of atoms was added due to Step CM5 or Step CM6, and
furthermore, by Lemma 5.7.2, if for some j, +dj (vj−1, vj) was added due to CM5, then if j > 1,
+dj−1

(vj−2, vj−1) was added due to CM6, and if j < n, +dj+1
(vj , vj+1) was also added due

to CM6.

26

We show the case for $′d0 = (=d0). The case for the other unary predicates is analogous. For
=d0(v0) ∈ Γi, there are two possible reasons.

1. =d0(v0) 6∈ Γ0. We can assume w.l.o.g. that all other variables were added by CM5,
(otherwise, we can simpy pick a shorter sequence of binary atoms in Γi. This means
that by Lemma 5.7.1 that for every j, 1 ≤ j ≤ n, we have an axiom C ′j v ∃Uj .Πj ∈
saturate(T). In particular, this also implies that e ∈ (C ′j)

Ii−1 for all j, 1 ≤ j ≤ n.

=d0(v0) must have been added due to Step CM5, or Step CM6. We argue that in
both cases, we have some axiom C0 v ∃U0.=d0 ∈ saturate(T), e ∈ C0

Ii−1 . In case
=d0(v0) was added due to CM5, this immediately follows. Otherwise, there exists some
axiom a1 = C ′0 v ∀U0.=d0 ∈ saturate(T) and 〈e, v0〉 ∈ UI0 . By Lemma 5.7.1, there
also exists an axiom C ′′0 v ∃U0.Π ∈ saturate(T). Due to Rule Rinit-1, in both cases
we have a2 = C ′′0 v ∃U0.Π ∈ saturate(T). Applying Rule Rinit-3 on a1 and a2 gives
C0 v ∃U0.=d0 ∈ saturate(T), where in this case, C0 = C ′0 uC ′′0 . Note that in both cases,

e ∈ CIi−1

0 .

We illustrate the sequence of rule applications that leads to an axiom as in Case 2 in the
lemma. Since v0 is shared and =d0(v0) ∈ Γi, by Lemma 5.7.2, +d1(v0, v1) was added by
Step CM6, which means we have C1 v ∀U0, U1.+d1 ∈ saturate(T) and e ∈ (C1)Ii−1 . Ap-
plying Rule R$-1 on this axiom and C ′1 v ∃U1.Π1, we obtain C0uC1uC ′1 v ∃U1.=d0+d1 .

For +d2(v1, v2) ∈ Γi, we have two possibilities. a) The atom was added due Step CM6.

We then have C2 v ∀U1, U2.+d2 and e ∈ C
Ii−1

2 . By Lemma 5.7.1, we also have C ′2 v
∃U2.Π ∈ saturate(T). Applying Rule R$-1 then gives C0 u C1 u C ′1 u C2 u C ′2 v
∃U2.=d0+d1+d2 . b) The atom was added due Step CM5. We then have a1 = C2 v
∃U1, U2.+d2 and e ∈ CIi2 . Applying R+-2 on C1 v ∀U0, U1.+d0 gives a2 = C1u∃U0.>R∼ v
∀U1, U1.+0. By Lemma 5.7.2, we have C3 v ∀U2, U3.+d3 ∈ saturate(T), and applying
R+-2 on this axiom gives us a3 = C3 u ∃U3.>R∼ v ∀U2, U2.+0. We apply Rinit-6 on
a1, a2 and a3 to obtain an axiom of the form C ′′3 v ∀U1, U2.+d2 , which means we can
continue as in a) to obtain an axiom of the form C ′′′3 v ∃U2.=d0+d1+d2 .

We can repeat this procedure incrementally to establish C v ∃Un.=d s.t. e ∈ CIi−1 .
Recall that Un = U , so that this axiom is in the form as in Case 2 in the lemma.

2. =d0(v0) ∈ Γ0. Then, U(a, d0) ∈ A. We can then use the same construction as in the
previous case to get a situation as in Case 3 or 4 in the Lemma.

Lemma 5.10. Assume that for some i > 0, and v1, v2 ∈ Ndv and d1, d2 ∈ R, we have Γi |=
$d1(v1),+d2(v1, v2), where v1 6= v2, and for no d3 ∈ R, Γi |= =d3(v1). Then, 〈e, v1〉 ∈ UIi1 ,
〈e, v2〉 ∈ UIi2 and e ∈ CIi , s.t. either C v ∀U1.$d′1

∈ saturate(T) or C v ∀U2.$d′1+d2
, where

$d′1
|= $d1 .

Proof. Assume the premise of the lemma holds. Since Γi |= $d1(v1) but Γi 6|= =d3(v1) for any
d3 ∈ R, there must exist a sequence of the following form in Γi:

+d′1
(v′1, v

′
2), . . .+d′n−1

(v′n−1, v
′
n), $d′n

(v′n) ∈ Γi,

where n may be 2, v1 = v1 and v2 = v′k for some k ∈ {2, . . . , n},
∑

1≤j≤k d
′
i = d2 and

$dn−
∑

1≤k<n dk
|= $d1 , and for some e ∈ ∆Ii and Uj , j ∈ {1, . . . , n}, 〈e, vj〉 ∈ U ′j . All atoms

in this sequence must have been added due to Step CM5 and CM6. CM5 always adds new
variables, and these expressions share a variable. Therefore, if for some j ∈ {1, . . . , n}, the jth
element in the sequence was added due to CM5, the (j−1)th element—if it exists—must have
been added due to CM6, and the same holds for the (j + 1)th element.

Before we continue, we make one further observation regarding all variables v′1, . . . , v
′
n occurring

in this sequence. For all j, 1 ≤ j ≤ n, we have Γi |= $d(v
′
j) for some d ∈ R, so that Lemma 5.9

27

applies. Moreover, for no j we have Γi |= =d(v
′
j) for any d ∈ R, since otherwise the premise of

the lemma would be contradicted. Inspection of the cases in Lemma 5.9 thus reveals that only
one of those cases applies, namely Case 2. Thus, in the following, when we refer to Lemma 5.9,
we always refer to this case.

• If +d′1
(v′1, v

′
2) was added due to CM6, we have C1 v ∀U ′1, U ′2.+d′1

∈ saturate(T). Ap-
plying R+-2 on this axiom gives C1 u ∃U ′2.>R∼ v ∀U ′1, U ′1.+0 ∈ saturate(T). By
Lemma 5.9, we further have an axiom C2 v ∃U ′1.$d′′1

, where $d′′1
> |= $d1 . Applying

Rinit-2 on the last two mentioned axioms gives C1 uC2 u ∃U ′2.>R∼ v ∀U ′1.$d′1
. We have

e ∈ (C1 u C2 u ∃U ′2)Ii , and thus this axiom is of the form as postulated by the lemma.

• Assume v2 = vn. If $d′n
(v′n) was added due CM6, we are done. Otherwise, it was

added due CM5, and by Lemma 5.7.2, +d′n−1
(v′n−1, v

′
n) was added due CM6, and C1 v

∀U ′n−1, U ′n.+d′n−1
∈ saturate(T). We apply R+-2 to obtain a1 = C1 u ∃U ′n−1.>R∼ v

∀U ′n, U ′n.+0 ∈ saturate(T). Since $d′n
(v′m) was added due CM5, we have a2 = C2 v

∃U ′n.$d′n
∈ saturate(T). Applying Rinit-2 on a1 and a2 gives a3 = C1 u ∃U ′n−1.>R∼ u

C2 v ∀$d′n
(v′n) ∈ saturate(T). We have e ∈ (C1 u ∃U ′n−1.>R∼ u C2)Ii . Furthermore,

$d′n |= $d1+d2 . Thus, a3 is of the form as postulated by the lemma.

• Assume v2 = vk for some k < n, and +d′k
(v′k, v

′
k+1) was added due CM6. We then have

C1 v ∀U ′k, U ′k+1.+d′k
∈ saturate(T). Applying Rinit-2 gives a1 = C1 u ∃U ′k+1.>R∼ v

∀U ′k, U ′k.+0 ∈ saturate(T). Since Γi |= $d1+d2(v′k), by Lemma 5.9, we have a2 =
C2 v ∃U ′k.$d3 , where $d3 |= $d1+d2 . We apply Rinit-2 on a1 and a2, and obtain
C1 u ∃U ′k+1.>R∼ u C2 v ∀U ′k.$d3 , which is of the form as postulated by the lemma.

• Assume v2 = vk for some k < n, and +d′k
(v′k, v

′
k+1) was added due CM5. We then have

that +d′k−1
(v′k−1, v

′
k) was added due CM6, which means that C1 v ∀U ′k−1, U ′k.+d′k−1

∈
saturate(T). Applying R+-2 gives C1 u ∃U ′k−1.>R∼ v ∀U ′k, U ′k.+0 ∈ saturate(T). From
here, we can continue as in the previous point.

Lemma 5.11. Assume that for some i > 0, distinct v1, v2, v3 ∈ NV and d1, d2 ∈ R, Γi |=
+d1(v1, v2),+d2(v2, v3), while for no d ∈ R, Γi |= =d(v1). Then, for some e ∈ ∆Ii , concept C
and U ∈ NA, we have e ∈ CIi , 〈e, v2〉 ∈ UIi and C v ∀U,U.+0.

Proof. Assume the premises hold. Then, Γi must contain two atoms +d′1
(v′1, v2) and +d′2

(v2, v
′
3).

By Lemma 5.7.2, at least one of them was added by Step CM6. By Lemma 5.7.1, there exists
an attribute name U ∈ NA and a domain element d ∈ ∆Ii s.t. 〈e, v2〉 ∈ UIi . We may thus
assume that either C1 v ∀U1, U.+d′1

∈ saturate(T) or C1 v ∀U,U1.+d′2
∈ saturate(T). In both

cases, we can apply R+-2 to infer C1 u∃U1.>R∼ v ∀U,U.+0, which is of the form as desired by
the lemma.

5.1.3 Completeness of the Rewriting

Before we prove completeness of the rewriting procedure, we need some auxiliary lemmas re-
garding the set of rewritten queries.

Lemma 5.12. If for some (abstract) interpretation I and query ψ, I |= ψ, then there exists a
query ψ′ ∈ rew(ψ) with I |= ψ′ and terms(ψ′) ⊆ terms(ψ) s.t. every variable v occurring in ψ′

in a concrete domain predicate also occurs in an atom of the form U(x, v).

Proof. Assume I |= ψ. We first show that we can transform ψ into a query in which every vari-
able occurs in maximally one unary predicate, and every pair of variables occurs in maximally
one binary domain predicate. For the latter, it suffices to observe that ψ cannot contain two

28

atoms +d1(v1, v2) and +d2(v1, v2) such that d1 6= d2, since then the query would be unsatisfiable
and we would not have I |= ψ. If a variable v1 occurs in two unary atoms Π1(v1) and Π2(v2),
we note that Π1 and Π2 cannot contradict each other either, since otherwise we again would not
have I |= ψ. But if Π1 and Π2 do not contradict each other, for our choice of unary predicates
it holds that either Π1 |= Π2 or Π2 |= Π1, so that we may employ Rewriting Rule RC6 to
eliminate either Π1(v1) or Π2(v). We thus assume from here on that every variable occurs in
at most one unary atom, and every pair of variables occurs in at most one binary atom.

Assume now that ψ contains a variable v for which it contains no atom of the form U(x, v). We
show that then, there exists a query ψ′ ∈ rew(ψ) with terms(ψ′) ⊆ terms(ψ) and v 6∈ terms(ψ′),
and s.t. for every interpretation I, I |= ψ iff I |= ψ′. By applying the argument repeatedly, we
obtain the result stated in the lemma.

If v occurs only in a unary atom of the form Π(v), this directly follows from Rewriting Rule RC8,
which simply removes Π(v). Since v occurs nowhere else, I |= ψ iff I |= ψ′.

Assume v occurs in a binary atom of the form +d1(v, v1). (By Rewriting Rule RC2, we do
not have to consider the case where it is of the form +d(v1, v).) Furthermore, v must have at
least one more occurrence in ψ, since otherwise, by Rule RC10, we obtain a query in which
+d1(v, v1) is removed. We distinguish the cases based on this other occurrence.

• If v also occurs in an atom of the form =d2(v), we can apply Rule RC4 and obtain a
query in which +d1(v, v1) is replaced by =d2−d1(v1).

• If v also occurs in an atom of the form +d2(v2, v), we can apply Rule RC1 and obtain a
query in which +d2(v2, v) is replaced by +d1+d2(v2, v1).

• If v also occurs in an atom of the form +d2(v, v2), we first apply Rule RC2, and are then
in the same situation as in the previous item.

By considering these cases, we can step-wise reduce the number of occurrences of v in binary
atoms, until it either occurs only in unary atoms, or only in a single binary atom and no unary
atom. In both cases, the remaining occurrence of v can be removed using respectively Rule RC8
and RC10.

We can thus eliminate any occurrence of a variable that does not occur in an atom of the form
U(x, v). By applying this method iteratively, we obtain a query as required in the lemma.

We are now ready to prove completeness of the rewriting.

Theorem 5.4. Let K = 〈T ,A〉 be a consistent KB and φ be a Boolean query. If K |= q, then
〈∅,A〉 |= rew(φ).

Proof. Assume K is consistent and K |= φ. We show that then, A |= rew(φ). By Lemma 5.6,
K |= φ implies IK |= φ, which means there exists some homomorphism h from φ into IK. Since
h can only refer to finitely many domain elements and variables in IK, there must exist some
j > 0 s.t. Ij |= φ. Since φ ∈ rew(φ), this implies Ij |= rew(φ) for this j > 0. We show
that this also implies I0 |= rew(φ), and thus 〈∅,A〉 |= rew(φ) by showing that for every i > 0,
Ii |= rew(φ) implies Ii−1 |= rew(φ).

Assume i > 0 and Ii |= rew(φ). There then exists some ψ ∈ rew(φ) s.t. Ii |= ψ. If Ii−1 |= ψ, we
are done. Otherwise, let h be the homomorphism from ψ into Ii. We distinguish the cases based

on the operation performed to obtain Ii from Ii−1. Note that in each case, e ∈ XIi−1

1 \XIi−1

2 ,
where X1 v X2 ∈ T and e ∈ ∆Ii−1 ∪ (∆Ii− ×∆Ii−1) ∪ (∆Ii−1 × Ndv)

29

CM1 X2 ∈ NC∪NR. We then have XIi2 = X
Ii−1

2 ∪{e}. Since Ii−1 6|= ψ, ψ must contain an atom
of the form X2(x), and h(x) = e. By Rewriting Rule RR1, there exists a CQ ψ′ ∈ rew(q)
that is obtained by replacing X2(x) by X1(x). By Lemma 5.2, we obtain that ψ ∧X1(x)
is entailed by Ii−1, and consequently, that ψ′ is entailed by Ii−1.

CM2 X2 = R−, R ∈ NR, and e = 〈d1, d2〉. We then have RIi = RIi−1 ∪ {〈d2, d1〉}, and
furthermore X1 ∈ NR or X1 = S−. Since Ii−1 6|= ψ, we must have R(x, y) ∈ ψ. If
X1 ∈ NR, due to Rewriting Rule RR1 there exists a rewriting ψ′ ∈ rew(q) where R(x, y)
is replaced by X1(y, x). If X1 = S−, there exists a rewriting ψ′ ∈ rew(q) where R(x, y) is
replaced by S(x, y) (using RR1). In both cases, the homomorphism h from ψ into Ii is
also a homomorphism from ψ′ into Ii−1.

CM3 X2 = ∃R, R ∈ NR. We then have ∆Ii = ∆Ii−1 ∪ {e′} and RIi = RIi−1 ∪ {〈e, e′〉}, where
e′ is fresh. Since Ii−1 6|= ψ, we must have R(x, y) ∈ ψ, where h(x) = e and h(y) = e′.
Since e′ occurs nowhere else in Ii, the only possible occurrence of y in ψ is in the atom
R(x, y), which means Rewriting Rule RR1 can be applied to replace R(x, y) based on
X1 v ∃R. That means that there exists a query ψ′ ∈ rew(q) in which R(x, y) has been
replaced by X1(x). It follows now similar as for CM1 from Lemma 5.2 that Ii−1 |= ψ′.

CM4 X2 = ∃R−, r ∈ NR. We then have ∆Ii = ∆Ii−1 ∪ {e′} and RIi = RIi−1 ∪ {〈e′, e〉}, where
e′ is fresh. This case is similar as CM3.

CM5+CM6 X2 = QU1, . . . , Un.Π. This is the more challenging case. We first show that we can make
some further assumptions on ψ and the homomorphism h. First, by Lemma 5.12, we can
assume that every variable occurring in a concrete domain predicate also occurs in an
atom of the form U(x, y) ∈ ψ. Second, we can assume that for every such variable y s.t.
for no d ∈ R, Γi 6|= =d(h(y)), there is exactly one such atom U(x, y): if there are two, we
apply Rewriting Rule RC7 to make them different. Clearly, the resulting query is still
entailed by Ii. Specifically, we have the following assumption.

* For every y occurring in a concrete domain predicate, there exists U(x, y) ∈ ψ. If
Γi 6|= =d(h(y)) for all d ∈ R, then there exists exactly one such atom in ψ.

We show that for some ψ′ ∈ rew(ψ), Ii−1 |= ψ′. Since Ii−1 6|= ψ, there must exist some
atom α ∈ ψ s.t. Ii−1 6|= h(α). We distinguish the cases based on the syntactical shape
of α, and show that each of these atoms can be replaced using our rewriting rules, so that
the resulting query is entailed by Ii−1.

(a) α is of the form U(x, y). If y occurs in an atom with a concrete domain predicate, we
first apply one of the following cases to eliminate this occurrence. We may further
assume that U(x, y) is the only occurrence of y in ψ′, due to a similar argument as
for Condition (*). Since Ii |= U(h(x), h(y)), we have 〈h(x), h(y)〉 ∈ UIi−1 , and by
Lemma 5.7.1, there must exist some axiom C v ∃U.Π ∈ saturate(T) s.t. h(x) ∈
CIi−1 . Notice that ψ ∧ U(x, y) = ψ ∧ (∃U.>R∼)(x) and Π |= >R∼ . Therefore,
Rewriting Rule RR1 applies, resulting in a query ψ′ in which U(x, y) is replaced by
C(x). Since h(x) ∈ CIi−1 , it follows from Lemma 5.2 that Ii−1 |= C(h(x)).

(b) α is of the form $d(y). We then have Γi |= $d(h(y)), which means that Lemma 5.9
applies.

We distinguish between the different cases in that lemma.

i. U(a, d′) ∈ A, and aI0 = e, where =d′ |= $d. Then Γ0 |= $d(h(y)), which
contradicts Ii−1 6|= $d(h(y)).

ii. C v ∃U.Π ∈ saturate(T), e ∈ CIi−1 and 〈e, v〉 ∈ UIi , where Π(v) |= $d(v)
Note that we must have e = h(x), where x occurs in ψ in the atom U(x, y). If y
is not shared, we can apply Rewriting Rule RR1 to replace U(x, y), $d(y) with
C(x), and we are done. Otherwise, assume y is shared.

30

Otherwise, first assume Π = (=d). Applying Rewriting Rule RR4 on ψ re-
sults in a query ψ1 ∈ rew(φ) in which U(x, y) is replaced by C(x). We repeat
this rewriting step until there are no atoms of the form U ′(x′, y) left in the
current query, so that y only occurs in concrete domain predicate atoms. By
Lemma 5.12, we can eliminate these, and obtain a query in which y does not
occur.
Now assume saturate(T) contains no axiom of the form C v ∃U.=d1 . Lemma 5.9
thus implies that Γi 6|= =d1(h(y)) for all d1 ∈ R. Since we can always ap-
ply Rule RC6, we may assume that y is only shared by a binary predicate
+d2(y, y2) ∈ ψ. Since thus Γi |= +d1(h(y), h(y2)), Lemma 5.10 applies, which
means 〈e, h(y))〉 ∈ UIi2 and e ∈ CIi1 , where either i) C1 v ∀U.$d′′ ∈ saturate(T),
or ii) C1 v ∀U2.$d′′+d2 , where in both cases, $d′′ |= $d. If i) applies, we can
apply Rewriting Rule RR2 to replace $d(y) by C1(x), U(x), and we note that
Ii |= C1(h(x)), U(h(x)). If ii) applies, we first apply Rewriting Rule RC5 to
replace $d(y) by $d+d2(y), and then Rewriting Rule RR2 to replace $d+d2(y)
by C1(x), U2(x, y2). In all cases, we obtain a query still entailed in which the
respective concrete domain predicate has been removed.

iii. U0(a, d1) ∈ A, aI0 = e, C1 v ∀U0, U1.+d2 , C2 v ∃U1.Π ∈ saturate(T) and
e ∈ (C1 u C2)Ii−1 , where =d1+d2 |= $d. Note that in our case, U1 = U and
h(x) = e. We can apply Rewriting Rule RR6 on ψ to replace $d(y) by U0(x, y′),
$′d−d2(y′). We note that these atoms are entailed by Ii−1 with a homomorphism
obtained from h by mapping y′ to d1.

iv. U0(a, d1) ∈ A, aI0 = e, a1 = C1 v ∀U0, U1.+d2 , a2 = C2 v ∃U1, U2.+d3 ∈
saturate(T) and e ∈ (C1 u C2)Ii , where $d1+d2+d3 |= $d. Note that again
h(x) = e and U2 = U .
We first apply Rule R+-2 on a1 and obtain

a3 = C1 u ∃U0.>R∼ v ∀U1, U1.+0.

Using Rewriting Rule RR7 on ψ with a2 and a3, we obtain a query in which
U2(x, y) and $d(y) are replaced by (C1 uC2)(x), U0(x, y1), U1(x, y2) +d3(y2, y)
and $d−d3(y1).
We can furthermore apply Rewriting Rule RR6 with a1 to replace $d−d3(y′)
by C1(x), U0(x, y1) and $d−d3−d2(y1). Note that =d1 |= $d−d3−d2 , and that
in complete, we replaced $d(y2) with C1(x), C2(x), U0(x, y1), $d−d3−d2(y1),
U1(x, y2), +d3(y2, y). All but the last of these atoms are entailed in Ii−1 by a
homomorphism that is appropriately extended from h. The atom +d3(y2, y) can
be eliminated using Lemma 5.12, or using the next case.

(c) α is of the form +d(y1, y2). We then have Γi |= +d(h(y1), h(y2)).

First assume Γi 6|= =d1(h(y1)), =d2(h(y2)) for any values d1 and d2. By Condi-
tion (*), we then have that ψ contains exactly one atom U1(x, y1) and exactly one
atom U2(x, y2). Furthermore, Lemma 5.8 applies, which means that a1 = C v
∃U1, U2.+d ∈ saturate(T) s.t. for some domain element e ∈ ∆Ii , we have e ∈ CIi−1 ,
〈e, v1〉 ∈ UIi1 , and 〈e, v2〉 ∈ UIi2 . If neither y1 nor y2 occur in any other concrete
domain predicate, we can apply Rewriting Rule RR5 to replace U1(x, y1), U2(x, y2)
and +d1(y1, y2) by C(x), and we note that Ii−1 |= C(h(x)). Otherwise, assume y1
does occur in another concrete domain predicate. We can eliminate all unary con-
crete domain predicates as in the previous cases, and thus only need to consider the
case where y1 or y2 is shared by a binary concrete domain predicate. For y1, this
means +d2(y0, y1) ∈ φ. By Lemma 5.11, we then have a2 = C1 v ∀U1, U1.+0, where
h(x) ∈ CIi1 . We can apply Rewriting Rule RR9 with a1 and a2 to replace U2(x, y1),
+d2(y0, y1) by (C u C1)(x), U1(x, y3), +d2+d(y0, y3), +d(y1, y3). U2(x, y1) was the
only attribute atom containing y1, we can apply Lemma 5.12 to eliminate all occur-

31

rences of y1. In the same way, we can proceed to remove any shared occurrences of
y2.

Now assume that Γi |= =d1(h(y1)) for some d1 ∈ R. Because Γi |= +d(h(y1), h(y2)),
this also implies Γi |= =d2(h(y2)), where d2 = d1 + d. Since by assumption, Γi−1 6|=
+d(h(y1), h(y2)), we must have one of Γi−1 6|= =d1(h(y1)) or Γi−1 6|= =d2(h(y2)).
Without loss of generality, we assume Γi−1 6|= =d1(h(y1)). Since Γi |= =d1(h(y1)),
Lemma 5.9 applies, which in our case means we are in one of the following cases:

i. U1(a, d1) ∈ A, and aI0 = e. This case is impossible since Γi−1 6|= =d1(h(y1)).

ii. C v ∃U1.=d1 ∈ saturate(T), e ∈ CIi and 〈e, v〉 ∈ UIi1 . We first apply RR4
to replace U1(x, y1) with C(x), =d1(y1), and then RC4 to replace +d(y1, y2) by
=d2(y2). Since y1 occurs only in =d1(y1), we can drop this atom using RC8,
and obtain a query ψ′ ∈ rew(φ) that is obtained from ψ by replacing +d(y1, y2)
with C(x), =d2(y2). If Ii−1 6|= =d2(h(y2)) we continue with this atom as above.

iii. U0(a, d3) ∈ A, aI0 = e, C1 v ∀U0, U1.+d4 , C2 v ∃U1.Π ∈ saturate(T), e ∈ (C1u
C2)Ii and 〈e, v〉 ∈ UI11 , where d1 = d3 + d4. We can apply Rewriting Rule RR8
to replace U1(x, y1), +d(y1, y2) with U1(x, y1), C1(x), U0(x, y3), +d−d3(y3, y2).
Extend h to the homomorphism h′ by setting h′(y3) = d3. We have Ii−1 |=
C1(h′(x)), U0(h′(x), h(y′3)), +d−d3(y3, y2). If U(x, y1) was added in the current
step of the model construction, we can eliminate it as in the previous case, after
we eliminated remaining occurrences of y1.

iv. U ′0(a, d2) ∈ A, aI0 = e, a1 = C1 v ∀U ′0, U ′1.+d3 , a2 = C2 v ∃U ′1, U1.+d4 ∈
saturate(T), e ∈ (C1 u C2)Ii and 〈e, v〉 ∈ UI11 , where d1 = d2 + d3 + d4. We
apply Rule R+-2 on a1 to obtain

a3 = C1 u ∃U ′0.>R∼ v ∀U ′1, U ′1.+0.

We can now use Rewriting Rule RR9 with a3 and a2 to obtain a query in which
U1(x, y1) and +d(y1, y2) are replaced by

U ′0(x, y′) ∧ U ′1(x, y3) ∧+d+d4(y3, y2) ∧+d4(y3, y1).

Extend h to a homomorphism for h′ by mapping h′(y′) = d2 and h′(y3) = v.
Again, the new atoms in ψ′ are entailed by Ii−1.

Applying these cases exhaustively for each atom α ∈ ψ s.t. Ii−1 6|= h(α), we obtain
the desired query ψ′ ∈ rew(φ) s.t. Ii−1 |= ψ′.

We showed that for all ψ ∈ rew(φ) and i > 0, Ii |= ψ implies Ii−1 |= ψ′ for some ψ′ ∈ rew(φ).
As a consequence, IK |= φ implies I0 |= rew(φ), which in turn implies 〈,A〉 |= rew(φ).

Theorem 5.5 (Soundness and completeness of rewriting). Let T be a saturated TBox and A
be an ABox s.t. K = 〈T ,A〉 is satisfiable. Then, for any UCQ Φ, and any answer a to Φ, a is
a certain answer to Φ in K iff a is a certain answer to rew(Φ) in 〈∅,A〉.

Proof. Let K = 〈T ,A〉 be a consistent KB. It follows from Theorems 5.1 and 5.4, that, if Φ is
a Boolean UCQ, we have K |= Φ iff 〈∅,A〉 |= rew(Φ). Now assume Φ is not Boolean, and let
ans(b) e an answer for Φ. Inspection of the rewriting procedure reveals that rew(ans(()φ)) =
ans(rew(φ)): we note that rules treat answer variables in the same way as constants, and no
rule removes an answer variable from any CQ.

6 Conclusion

In this report, we have considered extensions of DL-Lite with concrete domains over R. In this
setting, we have presented a query rewriting approach that handles not only unary concrete

32

domain predicates, but also binary ones. The key idea is that entailments that are caused
by the TBox and the functionality of the cr-rewritable concrete domains employed here, are
computed beforehand and are added to the TBox during saturation. Although this step can be
costly, it only needs to be performed once (for all queries) and can be done “off-line”, before
query execution. Furthermore, we have shown that our approach yields a sound, complete, and
terminating query rewriting procedure. This procedure is, in contrast to earlier approaches [2],
data-independent. The latter is crucial for gaining practicality on larger data sets, and our
method allows for a more goal-oriented computation of rewritings than the other approaches.
In order to support this claim, we are currently working on an implementation of our approach,
where the resulting UCQ is translated into a union of SQL queries which then can be answered
using any RDBMS. We plan to use the rewritings not only on classical data sets, but also on
probabilistic data in which concrete domain values are characterised by continuous probability
distributions. OBQA for this setting has been theoretically investigated in [?].

As for future work, there are various directions we are considering. First, we would like to
investigate the possibility of extending the concrete domains with more binary predicates, e.g.
multiplication, while preserving first order rewritability of CQs. On the other hand, we would
like to study query rewriting w.r.t. with other concrete domains, for instance those over strings.
We believe that the rules we have introduced in this paper could serve as a basis for a more
generalised procedure supporting those domains.

References

[1] Alessandro Artale, Vladislav Ryzhikov, and Roman Kontchakov. DL-Lite with Attributes
and Datatypes. In ECAI 2012: 20th European Conference on Artificial Intelligence
(ECAI’12), 2012.

[2] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Query rewriting for DL-Lite with
n-ary concrete domains. In Proc. of the 26th International Joint Conference on AI (IJ-
CAI’17), 2017.

[3] Franz Baader and Philipp Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In Proc. of the 12th International Joint Conference on AI (IJCAI’91),
1991.

[4] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable Reasoning and Efficient Query Answering in Description Logics:
The DL-Lite Family. Journal of Automated Reasoning, 2007.

[5] André Hernich, Julio Lemos, and Frank Wolter. Query Answering in DL-Lite with
Datatypes: A Non-Uniform Approach. In Proc. of the 31st AAAI Conference on AI
(AAAI’17), 2017.

[6] Magdalena Ortiz. Ontology Based Query Answering: The Story So Far. In Proc. of
the 7th Alberto Mendelzon International Workshop on Foundations of Data Management
(AMW’13), 2013.

[7] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. Journal on Data Semantics, 2008.

[8] Ognjen Savkovic and Diego Calvanese. Introducing Datatypes in DL-Lite. In ECAI 2012 -
20th European Conference on Artificial Intelligence (ECAI’12), 2012.

33

	Introduction
	Query Answering in DL-Lite(R>) and DL-Lite(R<)
	The Concrete Domains R> and R<
	The Description Logics DL-Lite(R)
	Conjunctive Queries for DL-Lite(R) KBs

	Overview of the Query Rewriting Method
	TBox Saturation
	TBox Saturation Calculus
	Properties of the Saturation Calculus

	Query Rewriting
	Completeness of the Rewriting
	Abstract interpretations
	Canonical models
	Completeness of the Rewriting

	Conclusion

