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Abstract

Probabilistic model checking (PMC) is a well-established method for the quantitative
analysis of dynamic systems. On the other hand, description logics (DLs) provide a well-
suited formalism to describe and reason about static knowledge, used in many areas to
specify domain knowledge in an ontology. We investigate how such knowledge can be inte-
grated into the PMC process, introducing ontology-mediated PMC. Speci�cally, we propose
a formalism that links ontologies to dynamic behaviors speci�ed by guarded commands, the
de-facto standard input formalism for PMC tools such as Prism. Further, we present and
implement a technique for their analysis relying on existing DL-reasoning and PMC tools.
This way, we enable the application of standard PMC techniques to analyze knowledge-
intensive systems. Our approach is implemented and evaluated on a multi-server system
case study, where di�erent DL-ontologies are used to provide speci�cations of di�erent
server platforms and situations the system is executed in.

1 Introduction

Probabilistic model checking (PMC, see, e.g., [6, 15] for surveys) is an automated technique
for the quantitative analysis of dynamic systems. PMC has been successfully applied in many
areas, e.g., to ensure the system to meet quality requirements such as low error probabilities
or an energy consumption within a given bound. The de-facto standard speci�cation for the
dynamic (probabilistic) system under consideration is given by stochastic programs, a proba-
bilistic variant of Dijkstra's guarded command language [13, 19] used within many PMC tools
such as Prism [22]. Usually, the behavior described by a stochastic program is part of a bigger
system, or might be even used within the context of a collection of systems that have an im-
pact on the operational behavior as well. There are di�erent ways in which this can be taken
into consideration by using stochastic programs: one could 1) integrate additional knowledge
about the surrounding system directly into the stochastic program, or 2) use the concept of
nondeterminism that models all possible behaviors of the surrounding system. The second ap-
proach might lead to analysis results that are too coarse with respect to desired properties and
increase the well known state-space explosion problem. Also the �rst approach has its draw-
backs: although guarded command languages are well-suited for describing dynamic behavior,

∗The authors are supported by the DFG through the Collaborative Research Centers CRC 912 (HAEC)
and TRR 248 (see https://perspicuous-computing.science, project ID 389792660), the Cluster of Excellence
EXC 2050/1 (CeTI, project ID 390696704, as part of Germany's Excellence Strategy), and the Research Training
Groups QuantLA (GRK 1763) and RoSI (GRK 1907).

2

https://perspicuous-computing.science


they are not specialized for describing static knowledge, which makes it cumbersome to de-
scribe knowledge-intensive contexts. We therefore propose a third approach, where we separate
the speci�cation of the dynamic behavior of a system from the speci�cation of the additional
knowledge that in�uences the behaviors. This allows to use di�erent, specialized formalisms
for describing the complex properties of the system analyzed. Further, such an approach adds
�exibility, as we can exchange both behavioral and knowledge descriptions, e.g., to analyze the
same behavior in di�erent contexts, or to analyze di�erent behaviors in the same context.

A well-established family of formalisms for describing domain knowledge are description logics
(DLs), fragments of �rst-order logic balancing expressivity and decidability [1, 3]. While the
worst-case complexity for reasoning in DLs can be very high, modern optimized DL reasoning
systems often allow reasoning even for very large knowledge bases in short times [28]. Logical
theories formulated in a DL are called ontologies, and may contain both assertional axioms
about speci�c individuals, and universal statements de�ning and relating sets of individuals.

In this paper, we propose ontology-mediated probabilistic model checking as an approach to
include knowledge described in a DL ontology into the PMC process. The center of this approach
are ontologized (stochastic) programs which can be subject of probabilistic model checking.
Following the concept of separation of concerns described above, ontologized programs use
di�erent formalisms for specifying the operational behavior and the ontology, loosely coupled
through an interface. Speci�cally, ontologized programs are stochastic programs that use hooks
to refer to the ontology within the behavior description, which are linked to DL expressions
via the interface. The semantics of ontologized programs follows a product construction of the
operational semantics for the stochastic program, combined with annotations in which states
are additionally associated with DL knowledge bases. To analyze ontologized programs, we
present a technique to rewrite ontologized programs into (plain) stochastic programs without
explicit references to the ontology, preserving those properties of the program that are relevant
for the analysis. A similar transformation is done to those analysis properties that depend
on the ontology, i.e., include hooks. This translational approach enables the full potential of
standard PMC tools such as Prism [22] including advanced analysis properties [5, 21] also for
the analysis of ontologized programs with properties that refer to ontology knowledge.

We implemented the technique in a tool-chain in which the operational behavior is speci�ed in
the input language of Prism, and where the ontology is given as OWL knowledge base [25].
Technically, we use axiom pinpointing during the translation to minimize the use of external
DL reasoning, and to enable a practical implementation. Since our approach is independent
of any particular DL, the implementation supports any OWL-fragment that is supported by
modern DL reasoners. We evaluated the implementation based on a heterogeneous multi-server
scenario and show that our approach facilitates the analysis of knowledge-intensive systems
when varying behavior and ontology.

2 Preliminaries

We recall well-known concepts and formalisms from probabilistic model checking and descrip-
tion logics required to ensure a self-contained presentation throughout the paper. By Q, Z,
and N we denote the set of rationals, integers, and nonnegative integers, respectively. Let S
be a countable set. We denote by ℘(S) the powerset of S. A probability distribution over S is
a function µ : S → [0, 1] ∩ Q with

∑
s∈S µ(s) = 1. The set of distributions over S is denoted

by Distr(S).
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2.1 Markov Decision Processes

The operational model used in this paper is given in terms ofMarkov decision processes (MDPs)
(see, e.g., [30]). MDPs are tuplesM = 〈Q,Act , P, q0,Λ, λ〉 where Q and Act are countable sets
of states and actions, respectively, P : Q× Act ⇀ Distr(Q) is a partial probabilistic transition
function, q0 ∈ Q an initial state, and Λ a set of labels assigned to states via the labeling
function λ : Q → ℘(Λ). Intuitively, in a state q ∈ Q, we nondeterministically select an action
α ∈ Act for which P (q, α) is de�ned, and then move to a successor state q′ with probability
P (q, α, q′). Formally, a path in M is a sequence π = q0 α0 q1 α1 . . . where P (qi, αi, qi+1) >
0 for all i for which qi+1 is de�ned. The probability of a �nite path is the product of its
transition probabilities. Resolving nondeterministic choices gives then rise to a probability
measure over maximal paths, i.e., paths that cannot be extended. AmendingM with a weight
function wgt : Q → N turns M into a weighted MDP 〈M,wgt〉. The weight of a �nite path
π = q0 α0 q1 . . . qn is de�ned as wgt(π) =

∑
i<n wgt(qi).

MDPs are suitable for a quantitative analysis using probabilistic model checking (PMC, cf.
[6]). A property to be analyzed is usually de�ned using temporal logics over the set of labels,
constituting a set of maximal paths for which the property is ful�lled after the resolution
of nondeterministic choices. By ranging over all possible resolutions of nondeterminism, this
enables a best- and worst-case analysis on the property. Standard analysis tasks ask, e.g., for
the minimal and maximal probability of a given property, or the expected weight reaching a
given set of states. An energy-utility quantile [5] is an advanced property that is used to reason
about trade-o�s: given a probability bound p ∈ [0, 1] and a set of goal states, we ask for the
minimal (resp. maximal) weight required to reach the goal with probability at least p when
ranging over some (resp. all) resolutions of nondeterminism.

2.2 Stochastic Programs

A concise representation of MDPs is provided by a probabilistic variant of Dijkstra's guarded-
command language [13, 19], compatible with the input language of the PMC tool Prism [22].
Throughout this section, we �x a countable set Var of variables, on which we de�ne evaluations
as functions η : Var → Z. We denote the set of evaluations over Var by Eval(Var).

2.2.1 Arithmetic Constraints and Boolean Expressions.

Let z range over Z and v range over Var . The set of arithmetic expressions E(Var) is de�ned
by the grammar

α ::= z | v | (α+ α) | (α · α) .

Variable evaluations are extended to arithmetic expressions in the natural way, i.e., η(z) = z,
η(α1 +α2) = η(α1)+η(α2), and η(α1 ·α2) = η(α1) ·η(α2). C(Var) denotes the set of arithmetic
constraints over Var , i.e., terms of the form (α ./ z) with α ∈ E(Var), ./ ∈ {>,≥,=,≤, <, 6=},
and z ∈ Z. For a given evaluation η ∈ Eval(Var) and constraint (α ./ z) ∈ C(Var), we write
η |= (α ./ z) i� η(α) ./ z and say that (α ./ θ) is entailed by η. Furthermore, we denote by
C(η) the constraints entailed by η, i.e., C(η) = {c ∈ C(Var) | η |= c}.

For a countable set X and x ranging over X, we de�ne Boolean expressions B(X) over X by
the grammar φ ::= x | ¬φ | φ ∧ φ . Furthermore, we de�ne the satisfaction relation |= ⊆
℘(X)×B(X) in the usual way by Y |= x if x ∈ Y , Y |= ¬ψ i� Y 6|= ψ, and Y |= ψ1∧ψ2 i� Y |=
ψ1 and Y |= ψ2, where Y ⊆ X. For an evaluation η ∈ Eval(Var) and φ ∈ B(C(Var)), we
write η |= φ i� C(η) |= φ. Well-known Boolean connectives such as disjunction ∨, implication
→, etc. and their satisfaction relation can be deduced in the standard way using syntactic
transformations, e.g., through de Morgan's rule.
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2.2.2 Stochastic Programs.

We call a function u : Var → E(Var) update, and a distribution σ ∈ Distr(Upd) over a given
�nite set Upd of updates stochastic update. The e�ect of an update u : Var → E(Var) on an
evaluation η ∈ Eval(Var) is their composition η ◦ u ∈ Eval(Var), i.e., (η ◦ u)(v) = η(u(v))
for all v ∈ Var . This notion naturally extends to stochastic updates σ ∈ Distr(Upd) by
η ◦ σ ∈ Distr(Eval(Var)), where for any η′ ∈ Eval(Var) we have

(η ◦ σ)(η′) =
∑

u∈Upd,η◦u=η′
σ(u) .

A stochastic guarded command over a �nite set of updates Upd , brie�y called command, is a pair
〈g, σ〉 where g ∈ B(C(Var)) is a guard and σ ∈ Distr(Upd) is a stochastic update. Similarly,
a weight assignment is a pair 〈g, w〉 where g ∈ B(C(Var)) is a guard and w ∈ N a weight. A
stochastic program over Var is a tuple P = 〈Var , C,W, η0〉 where C is a �nite set of commands,
W a �nite set of weight assignments, and η0 ∈ Eval(Var) is an initial variable evaluation. For
simplicity, we write Upd(P) for the set of all updates in C.

The semantics of P is now de�ned as the weighted MDP

M[P] = 〈S,Act , P, η0,Λ, λ,wgt〉

where

• S = Eval(Var),

• Act = Distr(Upd(P)),

• Λ = C(Var),

• λ(η) = C(η) for all η ∈ S,

• P (η, σ, η′) = (η ◦ σ)(η′) for any η, η′ ∈ S and 〈g, σ〉 ∈ C with λ(η) |= g, and

• wgt(η) =
∑
〈g,w〉∈W,λ(η)|=g w for any η ∈ S.

Note thatM[P] is indeed a weighted MDP and that P (η, σ) is a probability distribution with
�nite support for all η ∈ Eval(Var) and σ ∈ Distr(Upd(P)).

2.3 Description Logics

We recall basic notions of description logics (DLs) (see, e.g., [1, 3] for more details). Our
approach presented in this paper is general enough to be used with any expressive DL, and our
implementation supports the expressive DL SROIQ underlying the web ontology standard
OWL-DL [18]. For illustrative purposes, we present here a small yet expressive fragment of this
DL called ALCQ. Let Nc, Nr and Ni be pairwise disjoint countable sets of concept names, role
names, and individual names, respectively. For A ∈ Nc, r ∈ Nr, and n ∈ N, ALCQ concepts are
then de�ned through the grammar

C ::= A | ¬C | C u C | ∃r.C | ≥nr.C .

Further concept constructors are de�ned as abbreviations: C t D = ¬(¬C u ¬D), ∀r.C =
¬∃r.¬C, ≤nr.C = ¬≥(n + 1)r.C, ⊥ = A u ¬A (for any A), and > = ¬⊥. Concept inclusions
(CIs) are statements of the form C v D, where C and D are concepts. A common abbreviation
is C ≡ D for C v D and D v C. Assertions are of the form A(a) or r(a, b), where A is a
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concept, r ∈ Nr, and a, b ∈ Ni. CIs and assertions are commonly referred to as DL axioms, and
we use A to denote the set of all DL axioms. A knowledge base K is a �nite set of DL axioms.

Assertions are used to describe the facts that hold for particular objects from the application
domain. CIs model background knowledge on notions and categories from the application
domain.

Example 1. We can de�ne the state of a multi-server platform, in which di�erent servers run
processes with di�erent priorities, using the following assertions:

hasServer(platform, server1) hasServer(platform, server2) (1)

runsProcess(server2, process1) runsProcess(server2, process2) (2)

hasPriority(process1, highP) hasPriority(process2, highP) High(highP), (3)

and specify further domain knowledge using the following CIs:

≥4runsProcess.> v Overloaded (4)

≥2runsProcess.∃hasPriority.High v Overloaded (5)

PlatformWithOverload ≡ ∃hasServer.Overloaded . (6)

These CIs express that a server that runs more than 4 processes is overloaded (4), that it is al-
ready overloaded when it runs 2 processes with a high priority (5), and that PlatformWithOverload

is a platform that has an overloaded server (6).

The semantics of DLs is de�ned in terms of interpretations, which are tuples 〈∆I , ·I〉 of a
set ∆I of domain elements, and an interpretation function ·I that maps every A ∈ Nc to
some AI ⊆ ∆I , every r ∈ Nr to some rI ⊆ ∆I × ∆I , and every a ∈ Ni to some aI ∈ ∆I .
Interpretation functions are extended to complex concepts in the following way:

(¬C)I = ∆I \ CI (C uD)I = CI ∩DI

(∃r.C)I = {d ∈ ∆I | ∃e : 〈d, e〉 ∈ rI ∧ e ∈ CI}
(≥nr.C)I = {d ∈ ∆I | #{〈d, e〉 ∈ rI | e ∈ CI} ≥ n}

Satisfaction of a DL axiom α in an interpretation I, in symbols I |= α, is de�ned as I |= C v D
i� CI ⊆ DI , I |= A(a) i� aI ∈ AI , and I |= r(a, b) i� 〈aI , bI〉 ∈ rI . An interpretation I is a
model of a DL knowledge base K i� I |= α for all α ∈ K. K is inconsistent if it does not have
a model, and it entails an axiom or assertion α, in symbols K |= α, i� I |= α for all models I
of K.

In the above example, we have K |= Overloaded(server2) because the server server2 runs two
prioritized processes, and K |= PlatformWithOverload(platform) as platform has server2 as an
overloaded server.

3 Ontologized Programs

We introduce our notion of ontologized programs. In general, an ontologized program comprises
the following three components:

The Program is a speci�cation of the operational behavior given as an abstract stochastic
program, which may use hooks to refer to knowledge that depend on the ontology the
program is executed in.
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The Ontology is a DL knowledge base representing additional knowledge that may in�uence
the behaviors of the program.

The Interface links program and ontology by providing mappings between the language used
in the program and the DL of the knowledge base.

We provide a formal de�nition of ontologized programs (Section 3.1) and de�ne their semantics
in terms of weighted MDPs (Section 3.2). To illustrate these de�nitions, we extend Example 1
towards a probabilistic model-checking scenario: we consider a generic multi-server platform on
which processes can be assigned to servers, scheduled to complete a given number of jobs. The
program speci�es the dynamics of this scenario, i.e., how jobs are executed, how processes are
assigned to servers or moved, and when processes terminate and when they are spawned. The
ontology gives details and additional constraints for a speci�c multi-server platform. In this
setting, probabilistic model checking can then be used to analyze di�erent aspects of the system,
depending on the operational behavior and the di�erent hardware and software con�gurations
speci�ed by the ontology.

3.1 Ontologizing Stochastic Programs

We introduce ontologized programs formally and illustrate their concepts by our running ex-
ample. In preparation of the de�nition, we �x a set H of labels called hooks. We de�ne abstract
stochastic programs as an extension of stochastic programs where the guards used in guarded
commands and in weights can be picked from the set B(C(Var)∪H). For instance, with a hook
migrate ∈ H, the following guarded command may appear in an abstract stochastic program:

(migrate ∧ server_proc1 = 2) 7→

{
1/2 : server_proc1 := 1

1/2 : server_proc1 := 3

This command states that, if the hook migrate is active and Process 1 runs on Server 2, then
we move Process 1 to Server 1 or to Server 3 with a 50% probability each. For a given abstract
program P, we refer to its hooks in P by H(P).

De�nition 2. An ontologized program is a tuple O = 〈P,K, I〉 where

• P = 〈VarP, C,W, η0〉 is an abstract stochastic program,

• K is a DL knowledge base describing the ontology,

• I = 〈VarO, HO,FO, pD,Dp〉 is a tuple describing the interface, where VarO is a set of
variables, HO is a set of hooks, F is a set of DL axioms called �uent axioms, and two
mappings pD : HO → ℘(A) and Dp : FO → B(C(VarO)),

and for which we require that I is compatible with P in the sense that H(P) ⊆ HO and
VarO ⊆ VarP. Given an ontologized program O, we refer to its abstract stochastic program
by PO, to its ontology by KO, and to its interface by IO.

We illustrate the above de�nition and its components by our multi-server system example, for
which we consider instances running n processes on m servers.

3.1.1 Program.

The stochastic program PO speci�es the protocol how processes are scheduled to complete their
jobs when running on the same server, and when ontology-dependent migration of processes
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to other servers should be performed. Job scheduling could be performed, e.g., by selecting
processes uniformly via tossing a fair coin or in a round-robin fashion. Here, the hook migrate ∈
H is used to determine when a server should migrate processes to other servers. The program
further speci�es guarded weights, e.g., amending states marked with migrate by the costs to
migrate processes.

3.1.2 Ontology.

The knowledge base KO models background knowledge about a particular server platform. For
instance, it could use the example axioms from Section 2.3 to specify hardware characteristics of
the servers using the CIs (4)�(6), architecture speci�cs using the assertions in (1), and distribute
di�erent priorities among a set of prede�ned processes using the assertions in (3). To establish a
link with the hook migrate in the interface, we use an additional CI to describe the conditions
that necessitate a migration in the platform:

NeedsToMigrate ≡ PlatformWithOverload .

In more complex scenarios, migration can depend on a server and can be speci�ed by more
complex CIs. This modeling makes it easy to de�ne di�erent migration strategies within the
di�erent ontologies. Each of them can be used by simply referring to the migrate hook in the
program.

Note that the guarded command language uses variables (over integers) to refer to servers and
processes, while the knowledge base uses individual names for them. The program and the
ontology thus have di�erent views on the system, mapped to each other via the interface.

3.1.3 Interface.

To interpret the states of the program PO in DL, the interface speci�es a set FO of ��uent� DL
axioms that describe the dynamics of the system. The function Dp maps each element α ∈ F
to an expression Dp(α) ∈ B(C(Var)), identifying states in the program language in which α
holds. It is thus a mapping from the DL to the abstract program language. In our example, F
would contain assertions of the form runsProcess(serveri, processj), which are mapped using
Dp(runsProcess(serveri, processj)) = (server_procj = i) to constraints over the states of the
abstract program. This allows to represent each program state in the ontology KO as a DL
knowledge base with axioms from F . Note that the mapping Dp can only refer to variables
that are used by the program, as we require Var I ⊆ Var(PO) to ensure that for every axiom
α ∈ F . Hence, Dp(α) has well-de�ned meaning within the abstract program. However, the
program may use additional variables that are only relevant for the operational behavior.

To interpret the hooks in the DL, we additionally need a mapping pD from the program
language into the DL. Speci�cally, pD assigns to each hook ` ∈ HO a set pD(`) of DL ax-
ioms. In our running example, the hook migrate would, e.g., be mapped as pD(migrate) =
{NeedsToMigrate(platform)}. All hooks in the program are mapped by the interface due to the
condition H(PO) ⊆ H. However, further hooks can be de�ned that are only relevant for the
analysis tasks to be performed. For instance, we might use a hook critical to mark critical
situations in our system, and analyze the probability of the ontologized program to enter a
state in which this hook is activated.

To illustrate the idea of the mappings, consider a virtual communication �ow between the
program and the ontology. If the ontology wants to know which axioms in α ∈ F hold in the
current state, it �asks� the abstract program whether the expression Dp(α) is satis�ed. For the
program to know which hooks ` ∈ HO are active in the current state, it �asks� the ontology
whether an axiom in pD(`) is entailed. In the next section, we formalize this intuition and
de�ne the semantics of ontologized programs via induced MDPs.

8



3.2 Semantics of Ontologized Programs

The semantics is formally de�ned using ontologized MDPs. In order to account for both the
program PO and the ontology KO, the ontologized MDP induced by PO has to provide two
views on its states. The �rst view is from the perspective of PO: for a stochastic programs,
a system state is characterized by an evaluation over VarP. For instance, a state q might be
associated with the following evaluation ηq:

server_proc1 = 2 server_proc2 = 2 server_proc3 = 0 ,

stating that Process 1 and Process 2 run on Server 3, while Process 3 is currently not running.
The second view is from the perspective of the ontology: state q is characterized by a knowledge
base Kq that contains all axioms in KO and

runsProcess(server2, process1) runsProcess(server2, process2) .

Kq entails ShouldMigrate(platform), and therefore the state q should be labeled with the hook
migrate. We make this intuition formal in the following de�nition.

De�nition 3. An ontologized state is a tuple of the form q = 〈ηq,Kq〉, where ηq is an evaluation
and Kq a DL knowledge base. Let O be an ontologized program as in De�nition 2. An
ontologized state q conforms to O i�

1. Kq ⊆ KO ∪ F ,

2. KO ⊆ Kq, and

3. for every α ∈ FO, we have α ∈ Kq i� ηq |= Dp(α).

Intuitively, an ontologized state conforms to O if it conforms to the mapping Dp provided by the
interface, as well as to the axioms speci�ed by the ontology KO. It follows from the de�nition
that for every evaluation η and ontologized program O, there is a unique ontologized state q
conforming to O such that ηq = η. We refer to this ontologized state as q = e(O, η), which is
de�ned by ηq = η and Kq = KO ∪ {α ∈ FO | η |= Dp(α)}. This observation allows us to de�ne
updates on ontologized states in a convenient manner. Speci�cally, the result of applying an
update u on an ontologized state q is de�ned as u(q) = e(O, u(ηq)). Intuitively, we �rst apply
the update on the evaluation ηq of q, and then compute its unique extension to an ontologized
state. Our de�nition naturally extends to stochastic updates, leading to distributions over
ontologized states.

Let q denote the ontologized state from above and consider the update u = {server_proc1 7→
2}. Then denote q′ = u(q) and obtain u(ηq) = ηq′ as

server_proc1 = 1 server_proc2 = 2 server_proc3 = 0 ,

and Kq = KO ∪ F ′, where F ′ contains

runsProcess(server1, process1) runsProcess(server2, process2) .

While Kq |= ShouldMigrate(platform), there is no such entailment in Kq′ , so that the hook
migrate should become inactive in state q′.

In the ontologized MDP, states are labeled with constraints C(Var) and with hooks H. The
hooks h ∈ HO included in the label of a state q are determined by whether Kq |= pD(h) is
satis�ed. This is captured using the labeling function of the MDP, since the labels determine
relevant properties of a state for both model checking and update selection.
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De�nition 4. Let O = 〈P,K, I〉 be an ontologized program as in De�nition 2. The weighted
MDP induced by O isM[O] = 〈Q,Act , P, q0,Λ, λ,wgt〉 where

• Q = {e(O, η) | η ∈ Eval(VarP)},

• Act = Distr(Upd(P)),

• q0 = e(O, η0),

• Λ = H ∪ C(VarP),

• λ(q) = C(ηq) ∪ {` ∈ HO | Kq |= pD(`)} for every q ∈ Q,

• P (q1, σ, q2)=(ηq2 ◦ σ)(ηq2) for any q1, q2∈Q and 〈g, σ〉∈C with λ(q1)|=g, and

• wgt(q) =
∑
〈g,w〉∈W,λ(q)|=g w for all q ∈ Q.

The above de�nition closely follows the standard semantics for stochastic programs (see Sec-
tion 2.2), while amending knowledge information to each state in such a way that hooks are
assigned to states as speci�ed by the interface I. It thus can be shown similarly that the
weighted MDP induced by a ontologized program is always well de�ned.

3.2.1 Remark on inconsistent states.

Note that our formalism allows for states of the induced MDP to have logically inconsistent
knowledge bases assigned. We call those states inconsistent. We can identify and mark incon-
sistent states easily using a hook `⊥ ∈ H for which we set pD(`⊥) = {> v ⊥}. Depending
on the application, inconsistent states might or might not be desirable. In general, there are
di�erent ways in which such states can be handled within our framework: 1) Inconsistent states
could stem from errors in speci�cation of the operational behavior or in the ontology. We would
then want to provide users with tool support for detecting whether the program can enter an
inconsistent state. Existing model-checking tools can directly be used for this, as they just have
to check whether a state labeled with `⊥ is reachable. 2) The stochastic program can detect in-
consistent states using the hook `⊥, and act upon them accordingly to resolve the inconsistency.
This could be useful, e.g., for modeling exception handling or interrupts within the program to
deal with unexpected situations. 3) Both the nondeterministic and probabilistic choices in the
MDP can be restricted to only enter consistent states. The ontology then has a direct impact
on the state space of the MDP. This can be seen as a desirable feature of ontologized programs,
as di�erent ontologies may pose di�erent constraints on possible states a system may enter,
which can be quite naturally expressed using DL axioms.

4 Analysis of Ontologized Programs

For the quantitative analysis of ontologized programs, we make use of a probabilistic model
checking tool in combination with a DL reasoner. Speci�cally, the DL reasoner is used to
decide which hooks are assigned to each state in the MDP. This in turn depends on the axioms
entailed by the knowledge base assigned to the state. Constructing the ontologized states
explicitly is not feasible in practice, as there can be exponentially many. PMC tools as Prism
use advanced techniques to represent the set of MDP states concisely, e.g., through symbolic
representations via MTBDDs [26], which is vital to their performance. However, although such
representation can also be useful for exponentially many ontologized states, this representation
does not provide a method how to assign the hooks. Furthermore, DL reasoning itself can be
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costly: for the DL SROIQ underlying the OWL-DL standard, it is N2ExpTime-complete [20],
and already for its fragmentALCQ introduced in Section 2.3, it is ExpTime-complete [33]. Even
though there exist e�cient reasoners that can deal with large OWL-DL ontologies [28], if we
want to perform model checking practically, we have to avoid calling the reasoner exponentially
many times.

In settings where ontologies are used to enrich queries over databases [8], a common technique
is to rewrite queries by integrating all relevant information from the ontology. This allows for
a direct evaluation of the rewritten query using standard database systems [9]. We propose
a similar technique here, where we rewrite the ontologized program into a stochastic program
that can be directly evaluated using a probabilistic model checker. To do this e�ciently, our
technique aims at reducing the amount of reasoning required, as well as to reduce the size of
the resulting program.

To formalize this idea, we de�ne a translation t from ontologized programs O into stochastic
programs t(O) that do not contain any hooks in guards. The translation is based on an
assignment hf : H → B(C(Var)) of hooks ` ∈ HO to corresponding hook formulas hf(`), such
that the MDPs induced by O and by t(O) correspond to each other except for the hooks. This
correspondence is captured in the following de�nition.

De�nition 5. Given two weighted MDPs,

M = 〈S,Act , P, s0,Λ, λ,wgt〉

and
M′ = 〈S′,Act ′, P ′, s′0,Λ′, λ′,wgt ′〉,

such that Act = Act ′, and a partial function hf : Λ ⇀ B(Λ′) mapping labels in Λ to formulas
over Λ′, the weighted MDPs M and M′ are equivalent modulo hf i� there exists a bijection
b : S ↔ S′ such that

1. b(s0) = s′0,

2. for every s1, s2 ∈ S and α ∈ Act , P (s1, α, s2) is de�ned i� P ′(b(s1), α, b(s2)) is de�ned,
and P (s1, α, s2) = P ′(b(s1), α, b(s2)),

3. for every s ∈ S, wgt(s) = wgt ′(b(s)), and

4. for every ` ∈ Λ and s ∈ S holds that ` ∈ λ(s) i� λ(b(s)) |= hf(`).

This notion extends to stochastic programs and ontologized programs via their induced MDPs:
an ontologized program O and a stochastic program P are equivalent modulo hf i�M[O] and
M[P] are equivalent modulo hf.

If an ontologized program O and a stochastic program P are equivalent modulo hf, all analysis
tasks on O can be reduced to analysis on P, as we just have to replace any label ` relevant
for the analysis by hf(`). This leads for instance to a straight-forward translation of properties
expressed using temporal logics. As a result, we can perform any PMC task that is supported
by a PMC tool like Prism on ontologized programs, provided that the translation function hf

and the corresponding stochastic program can be computed practically.

Based on O we de�ne a function hf that can be e�ciently computed using DL reasoning and
which can be used to compute a corresponding stochastic program equivalent to the ontologized
program modulo hf. Speci�cally, for every constraint c ∈ C(VarP) we set hf(c) := c, and for
every hook ` ∈ H, we provide a hook-formula hf(`). In other words, we only provide for
a translation of the hook formula, and keep the evaluations in the program the same. The
stochastic program t(O) is then obtained from O by replacing every hook ` ∈ H by hf(`).
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This is su�cient, since the labels assigned to an ontologized state are fully determined by the
evaluation of the state: the axioms that are part of the state are determined by the mapping
Dp : FO → B(C(Var)), and the labels that are part of the state are determined by using the
mapping pD : H → ℘(A), based on which axioms are entailed by the ontology assigned to the
state.

To compute hf in a goal-oriented manner, we make use of so-called justi�cations. These are
de�ned independently of the DL in question, and there exist tools for computing justi�cations
in various DLs.

De�nition 6. Given a knowledge base K and an axiom α s.t. K |= α, a subset J ⊆ K is a
justi�cation of K |= α i� J |= α, and for every J ′ ( J , J ′ 6|= α. We denote by J(O, α) the set
of all justi�cations of J |= α.

Intuitively, a justi�cation for K |= α is a minimal su�cient axiom set witnessing the entailment
of α from K. For the hook formula hf(`), we consider the justi�cations J of KO ∪ F |= pD(`),
as these characterize exactly those subsets F ′ ⊆ FO for which KO ∪F ′ |= pD(`). Note that for
each such justi�cation J , only the subset J \KO is relevant. We thus de�ne the hook formula
hf(`) for ` ∈ H as

hf(`) =
∨

J∈J(KO∪F,pD(`))

∧
α∈(J∩FO)

Dp(α) . (7)

Here, we follow the convention that the empty disjunction corresponds to a contradiction ⊥,
while the empty conjunction corresponds to a tautology >.

The �nal translation t(O) of the ontologized program O = 〈P,K, I〉 is then obtained from P
by replacing every hook ` ∈ H by hf(`).

Theorem 7. The ontologized program O and the stochastic program t(O) are equivalent modulo
hf.

Proof. We take the MDP M = M[t(O)] induced by the translated program t(O) and extend
it to the MDP M′ = M[O] induced by the ontologized program O, such that there exists a
bijection as in De�nition 5. Speci�cally, based on the MDP

M =M[t(O)] = 〈Eval(Var),Distr(Upd), P, η0,C(Var), λ,wgt〉

induced by t(O), we de�ne the MDP

M′ = 〈Q′,Distr(Upd), P ′, e(O, η0),C(Var) ∪H,λ′,wgt ′〉,

where

• Q′ = {e(O, η) | η ∈ Eval(Var)},

• for every η1, η2 ∈ Eval(Var) and d ∈ Distr(Upd) for which P (η1, d, η2) is de�ned, we set
P ′(e(O, η1), d, e(O, η2)) = P (η1, d, η2),

• for every q ∈ Q′, wgt ′(q) = wgt(ηq), and

• for every q ∈ Q′, λ′(q) = λ(ηq) ∪ {` ∈ H | Kq |= pD(`)}.

The bijection b : Q′ ↔ Eval(Var) is then de�ned by setting b(q) = ηq for all q ∈ Q′. Clearly
b is a bijection that satis�es Conditions 1�4 in De�nition 5, so thatM andM′ are equivalent
modulo hf. It remains to show thatM′ is the MDP induced by O. We start with the following
claim.
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Claim. For every ` ∈ H and q ∈ Q′, λ′(q) |= ` i� λ′(q) |= hf(`).

Proof of claim. (⇒) Assume λ′(q) |= `. By construction of M′ and the fact that λ maps
to C(Var), we have Oq |= pD(`). Then, there is a justi�cation J for Oq |= pD(`). Since
Oq ⊆ KO ∪ F , J is also a justi�cation for KO ∪ F |= pD(`). Furthermore, since every state in
Q′ conforms to O, by De�nition 3, ηq |= Dp(α) for all α ∈ (J \ KO) ⊆ (Oq \ KO). It follows
that ηq |=

∧
α∈J\KO

Dp(α), and consequently ηq |= hf(`), λ(ηq) |= hf(`) and λ′(q) |= hf(`).

(⇐) Conversely, assume λ′(q) |= hf(`). Then, by construction of hf, there is a justi�cation J
for KO∪F |= pD(`) s.t. ηq |=

∧
α∈J\KO

Dp(α). Since q is an ontologized state that conforms to

O, De�nition 3 yields that for every α ∈ J \KO, ηq |= Dp(α) i� Oq |= α. Since also KO ⊆ Oq,
we obtain that J ⊆ Oq, and since J |= pD(`), that Oq |= pD(`). Now, by construction ofM′,
we obtain that ` ∈ λ′(q), and consequently that λ′(q) |= `. �

As a consequence of this claim, for every Boolean formula φ ∈ B(Eval(Var) ∪H) and q ∈ Q′,
λ′(q) |= φ i� λ(b(q)) |= hf(φ), where hf(φ) denotes the result of replacing in φ every hook ` ∈ H
by hf(`). We obtain that for every guarded command 〈g, s〉 ∈ C, where C is the set of guarded
commands of the ontologized program O, and for every q ∈ Q′, λ′(q) |= g i� λ′(ηq) |= hf(g),
which means that P ′ satis�es the condition in De�nition 4. Similarly, for W the set of weight
assignments in t(O), and W ′ the set of weight assignments in O, we obtain that for every
q ∈ Q′,

wgt ′(q) = wgt(ηq) =
∑

〈hf(g),z〉∈W
λ(ηq)|=hf(g)

z =
∑

〈g,z〉∈W ′

λ′(q)|=g

z ,

which means that also wgt ′ satis�es the conditions in De�nition 4. Hence, M′ is indeed the
MDP induced by O. We obtain that the MDP induced by t(O) and the MDP induced by O
are equivalent modulo hf, and consequently, that t(O) and O are equivalent modulo hf.

5 Evaluation

We implemented the method described in Section 4, where we use the input language of
Prism [22] to specify the abstract program, and the standard web ontology language OWL-
DL [25] to specify the context. Speci�cally, our tool-chain computes a stochastic program based
on the ontologized program, on which we can directly perform ontology-dependent PMC us-
ing Prism. Since the Prism supports macro de�nitions, the hook assignments provided by
the computed function hf could be conveniently used within the program, which we used to
generate the translated stochastic program that was �nally used by Prism, and on which we
performed several stochastic analysis tasks.

For computing hf, we implemented the method described in Section 4 in Java using the OWL-
API [17], where we used the reasoner Pellet [32] for computing the justi�cations. Pellet supports
most of the OWL DL pro�le, and furthermore comes with an integrated implementation for the
computation of justi�cations using a glass box approach. To further improve the performance,
we adapted the main class for computing justi�cations for our speci�c needs. Note that in
Equation 7 specifying the hook formula, we only interested in the intersection of the full justi-
�cation with the set F of the axioms the program can actually change. Usually, the algorithm
computing all justi�cations would consider all subsets of KO ⊆ F , ignoring the separation into
KO and F . We therefore modi�ed the algorithm so that it ignores axioms in KO when com-
paring with earlier solution, which reduces the search space a lot of the set of axioms in KO is
large. Apart from this optimization, we computed the situation formulas exactly as described
in Section 4.
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5.1 Multi-Server System Setting

Using the optimizations presented, we are able to analyze the multi-server system that served
as running example in the last sections. We embedded our implementation into a generic tool
chain that can be parametrized by providing the number of servers, their operating system,
the number of processes and prioritized processes, as well as the durations of the tasks. In
this evaluation, we focus on two particular scenarios. The �rst comprises one -server and
two -server on which six processes are running, while the second comprises one -server and
one -servers running eight processes. For each scenario we assumed that at any time step
there is a 50% probability of a new job arriving for some process. To show-case the impact of
changing the program and the ontology, we implemented two di�erent program speci�cations
and four di�erent ontologies. The program speci�cations are provided in Prism code, where
one implements a randomized strategy for to select the next job to be executed, and the other
implements a round-robin strategy for this. As we want to evaluate the programs based on
energy-consumption and utility, we furthermore used weights to model energy consumption,
and variables to store achieved utility. Here, a server consumes energy when one or more
processes are assigned to it, and we obtain utility for each successfully executed process.

We implemented four di�erent ontologies that mostly follow the general idea as in our running
example, and di�er in the speci�cation of the hooks, which are

• a critical system state hook to mark states the system should avoid, which we call in the
following critical states,

• a migrate hook describing when the system should schedule the migration of a process,
and

• consistency hooks specifying when it is allowed for a given process to be moved to a
particular server, taking into account both capacity and compatibility limitations.

Table 1 gives an overview of the four ontologies in terms of concepts to be ful�lled to enable
the critical system state hook (C), the migrate hook (M), and the inconsistency hooks (I). For
instance, for Ontology 2, the system is in a critical system state when a prioritized process runs
on an overloaded server; the migrate hook becomes active when either a prioritized process runs
on an almost overloaded server or some server is overloaded; and a system state is inconsistent
when the maximal number of processes on a server is surpassed or a process runs on a server
that does not have the operating system the process is compiled for.

Table 1: Varying di�erent situations for di�erent contexts

prioritized runs prioritized runs on two prioritized some server max. number of incompatible

context on overloaded almost overloaded on same server overloaded procs on server operating system

1 C M M I

2 C M M I I

3 C M I I

4 C C M I I

Note how these ontologies provide for a convenient way of not only specifying the speci�cs of
a given multi-server platform in terms of software con�guration and quality constraints, but
also of specifying di�erent migration strategies, without the designer having to hamper with
the speci�cation of the program.
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Within all these combinations, we obtained 2 · 4 · 2 = 16 ontologized programs in total, which
we translated into stochastic programs expressed in the input language of Prism. Note that
we only had to employ two di�erent interfaces for contextualized programs: one for each server
con�guration (3 and 2 servers, respectively).

5.2 Energy-aware Analysis

For the analysis of the ontologized programs described in the last section, we �rst considered
the following standard reachability properties.

(1) What is the probability for reaching a critical system state within 15 time steps?

(2) What is the expected energy consumption for gaining at least 20 utility?

(3) What is the expected number of critical system states before reaching 20 utility?

For each of these properties, we computed the minimal and maximal probabilities determined
by resolving the non-deterministic choices in the MDP in a best/worse-case manner.

Note that the weight annotations above give rise to trade-o�s between costs and utility, where
energy consumption or entering a critical system state can be seen as costs. For instance, it
might be favorable to migrate a priority process to a di�erent server, which on the one hand
might require additional energy, but on the other hand, depending on the ontology, reduces
the chances of entering a critical system state, and increases the chance of completing the
process and obtaining utility for it. To investigate this trade-o�, we considered the following
energy-utility quantiles [5].

(egy) What is the minimal energy consumption required for gaining at least 20 utility with
probability at least 95%?

(crit) What is the minimal number of occurrences of a critical system state within which at
least 20 utility is gained with probability at least 95%?

In following Table 2, the analysis results of the Reachability Properties (1)�(3) and quantiles
are shown. The results for the properties that directly depend on critical system state hooks
are also depicted in the second graph in Figure 1. Bars span the range of minimal and maximal
expected number of critical system states and the critical situation quantile value is depicted
by dots. The four di�erent ontologies considered in both hardware/software settings are listed
in the x-axis, using the notation �c-s�,where �c� stands for the context and �s� for the number of
servers. The blue and red bars show the values for random and round-robin scheduling behavior
modeled in the stochastic program. In the case of the two-server setup, only in the �rst context
there is some freedom in performing migrations as in this context all software instances are
placed on both servers while in the other contexts each server has a di�erent software setup.

First, we considered the system con�guration with two -servers and one -server running
six processes. One can observe that the di�erent ontologies have great impact on the results.
As two -servers are at hand, -processes can be migrated without reaching an inconsistent
state, leading to a wide range of best/worst-case results for properties (1)-(3). This is not the
case in the scenario with one -server and one -server running eight processes, where (except
for the �rst context disregarding operating systems) no migration can occur. Here, min- and
max-values agree for Contexts 2, 3, and 4. Furthermore, the probability of entering a critical
system state is much higher than in the �rst scenario, which also yields a much higher amount
of critical situations that are entered until achieving utility (see values for the crit-quantile).
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Table 2: Analysis results

server/ prob. crit (1) exp. egy (2) exp. crit (3) quantile

proc context program min max min max min max egy crit

/6 1 random 0.6604 0.9983 29.09 58.57 1.73 28.38 31 4

roundr 0.6392 0.9983 27.92 62.25 1.53 28.72 30 4

2 random 0.4558 0.9866 29.17 47.63 0.91 14.05 32 3

roundr 0.4256 0.9854 27.96 48.17 0.78 13.62 30 2

3 random 0.4558 0.9866 29.17 47.63 0.91 14.05 32 3

roundr 0.4256 0.9855 28.73 49.09 0.79 13.66 31 2

4 random 0.7776 0.7776 29.26 32.04 3.37 7.97 32 8

roundr 0.7612 0.7612 28.99 31.61 3.06 6.50 32 7

/8 1 random 0.9988 0.9999 32.16 45.80 18.26 30.53 35 23

roundr 0.9985 0.9999 29.41 48.11 15.56 32.67 32 20

2 random 0.9991 0.9991 34.06 34.06 27.87 27.87 37 34

roundr 0.9998 0.9998 32.57 32.57 25.66 25.66 35 30

3 random 0.9991 0.9991 34.06 34.06 27.87 27.87 37 34

roundr 0.9998 0.9997 32.76 32.76 25.66 25.66 35 30

4 random 0.9819 0.9819 28.22 28.22 20.05 20.05 31 28

roundr 0.9845 0.9845 26.77 26.77 16.57 16.57 29 24

In the latter scenario, the de�nition of a critical situation might be inappropriate as running
four processes on each server is a standard con�guration rather than critical. These results
thus suggest the developers to adapt ontology de�nitions in a further re�nement step. In all
scenarios we see that a round-robin job-selection strategy is superior to the randomized one
when the objective concerns minimizing energy consumption, critical system states and their
trade-o� properties.

All the experiments were carried out1 using the symbolic MTBDD engine of Prism in the
version presented in [21]. The run-time statistics are shown in Table 3, showing a great im-
pact of scenarios, contexts, and program variants on the model characteristics. Noticeable,
when di�erent operating systems are not modeled within the ontology, the arising state-space
explosion problem leads to tremendous increase of the analysis times, ranging up to 5 days
computation time. This shows the capability of ontology-mediated PMC to reduce the state
space and making analysis feasible. The generation of all 16 models considered, including time
for DL reasoning and generating Prism code took only 130 seconds in total. To showcase the
analysis times for the computation of minimal and maximal expected number of critical system
states and for the critical system state quantile, see the top graph in Figure 1.

6 Related Work

6.1 Model checking context-dependent systems

The idea of using di�erent formalisms for behaviors and contexts to facilitate model checking
goes back to [12], where a scenario-based context description language (CDL) based on message

1Hardware setup: Intel Xeon E5-2680@2.70GHz, 128 GB RAM; Turbo Boost and HT enabled; Debian
GNU/Linux 9.1
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Figure 1: Visualisation of elected analysis results. In order from top to bottom: running times of
the experiments (left, logarithmic scale), number of critical system states, energy consumption
and probability of entering a critical system state (bars visualise respective min. and max.
values for reaching 20 utility, dots the corresponding quantiles).
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Table 3: Statistics of the analysis

server/ analysis time [s]

proc context program states nodes reach quantiles

/6 1 random 23'072'910 173'841 2'011.52 2'308.40

roundr 37'231'023 3'718'247 18'759.57 47'598.00

2 random 800'814 16'782 164.18 236.93

roundr 967'250 106'897 314.88 404.51

3 random 800'814 15'666 141.45 208.63

roundr 975'526 96'030 325.56 412.91

4 random 773'598 15'769 117.88 161.77

roundr 425'306 44'724 126.69 156.91

/8 1 random 90'027'882 134'648 4'662.57 18'268.61

roundr 66'116'970 2'933'937 56'935.82 384'886.94

2 random 934'122 6'518 79.03 191.39

roundr 158'368 7'507 49.81 271.52

3 random 934'122 6'518 69.14 159.78

roundr 158'432 7'372 46.52 325.56

4 random 934'122 6'830 35.68 51.79

roundr 157'472 7'455 45.28 124.75

sequence charts is used to describe environmental behaviors. Their aim is to mitigate the state-
space explosion problem by resolving nondeterminism in the system to model the environment
by parallel composition with CDL ontologies. Modeling and model checking role-based systems
with exploiting exogenous coordination has been detailed in [11, 7]. Here, components may
play di�erent roles in speci�c contexts (modeled through elements called compartments). As
the approach above, the formalism to specify contexts is the same as for components, and a par-
allel composition is used for deployment. Feature-oriented systems describe systems comprising
features that can be active or inactive (see, e.g., [14]). We can employ similar principles within
our framework to combine ontological elements, as show-cased in our evaluation in Section 5.
A recon�guration framework for context-aware feature-oriented systems has been considered
in [24]. All the above formalisms use an operational description of contexts, while we intention-
ally focused on a knowledge-based representation through ontologies that allows for reasoning
about complex information and enables the reuse of established knowledge bases.

6.2 Description logics in Golog programs

There is a relation between our work and work on integrating DLs and ConGolog programs [4,
34]. The focus there is on verifying properties formulated in computation tree logic for ConGolog
programs, where also DL axioms specify tests within the program and within the properties to
be checked. In contrast, we provide a generic approach that allows to employ various PMC tasks
using existing tools, and allow for probabilistic programs. Furthermore, ontologies and program
statements are not separated as in our approach. However, the main di�erence is that in the
semantics of [4, 34], states are identi�ed with interpretations rather than knowledge bases,
which are directly modi�ed by the program. This makes reasoning much more challenging,
and easily leads to undecidability if syntactic restrictions are not carefully put. Closer to our
semantics are the DL-based programs presented in [16, 10], where actions consist of additions
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and removals of assertions in the knowledge base. Again, there is no separation of concerns
in terms of program and ontology, and they only support a Golog-like program language that
cannot describe probabilistic behavior.

6.3 Ontology-mediated query answering

There is a resemblance between the our concept of ontology-mediated PMC and ontology-
mediated query answering (OMQA) [29, 8], which also inspired the title of this paper. OMQA
is concerned with the problem of querying a possibly incomplete database, where an ontol-
ogy is used to provide for additional background knowledge about the domain of the data, so
that also information that is only implicit in the database can be queried. Sometimes, ad-
ditionally a mapping from concept and role names in the ontology to tables in the database
is provided, which plays a comparable role to our interface [29]. Similar to our approach, a
common technique for OMQA is to rewrite ontology-mediated queries into queries that can
be directly evaluated on the data using standard database systems. However, di�erent to our
approach, this is in general only possible for very restricted DLs, while for expressive DLs, the
complexity of OMQA is often very high [31, 27, 23].

7 Discussion and Future Work

We introduced ontologized programs, in which stochastic programs specify operational behav-
iors, and DLs are used to describe additional knowledge, with the aim of facilitating quantitative
analysis of knowledge-intensive systems. From an abstract point of view, the general idea is
to use di�erent, domain-speci�c formalisms for specifying the program and knowledge, which
are linked through hooks by an interface. We believe that the general idea of specifying op-
erational behaviour and static system properties separately, each using a dedicated formalism,
would indeed be useful for many other applications. To this end, behaviors could be speci�ed,
e.g., by program code of any programming language, UML state charts, control-�ow diagrams,
etc., amended with hooks referring to additional knowledge, e.g., described by databases where
hooks are resolved through database queries. Depending on the chosen formalisms, our method
for rewriting ontologized programs could still be applicable in such settings.

Regarding the speci�c ontologized programs introduced in this paper, several improvements are
possible. First, as discussed in Section 3.2, we are currently not addressing inconsistent states
in the ontologized programs directly, but o�er various ways to deal with them in the program or
analysis. In future work, we want to investigate integrated mechanisms for handling inconsistent
states in an automatized way. Second, one could look at closer integrations between the ontology
and the abstract program by means of a richer interface. For example, we could map numerical
values directly into the DL by use of concrete domains [2], which would allow to express more
numerical constraints in the ontology. Furthermore, we want to investigate dynamic switching
of ontologies during program execution, to model complex interaction between ontologies as
in [14], exploiting the close connection to feature-oriented systems discussed in Section 6.
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