
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Maybe Eventually?
Towards Combining Temporal and Probabilistic

Description Logics and Queries
(Extended Version)

Patrick Koopmann

LTCS-Report 19-03

This is an extended version of an article accepted at Description

Logics 2019.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 2

2 Temporal Probabilistic Description Logic Formulae 4

2.1 Preliminaries . 4

2.2 Syntax . 4

2.3 Semantics . 5

3 Only Temporal Operators 6

4 Only Probability Operators 8

5 Temporal and Probability Operators 9

6 Conclusion 11

A Temporal Probabilistic Description Logics 15

A.1 Preliminaries . 15

A.2 Semantics . 15

B Only Temporal Operators 17

C Only Probability Operators 23

D Temporal and Probabilistic Operators 29

1

Maybe Eventually?

Towards Combining Temporal and Probabilistic

Description Logics and Queries

(Extended Version)∗

Patrick Koopmann

May 21, 2019

Abstract

We present some initial results on ontology-based query answering with description
logic ontologies that may employ temporal and probabilistic operators on concepts and
axioms. Speci�cally, we consider description logics extended with operators from linear
temporal logic (LTL), as well as subjective probability operators, and an extended query
language in which conjunctive queries can be combined using these operators. We �rst
show some complexity results for the setting in which either only temporal operators or
only probabilistic operators may be used, both in the ontology and in the query, and then
show a 2ExpSpace lower bound for the setting in which both types of operators can be
used together.

1 Introduction

Ontology-Based Query Answering (OBQA) received considerable attention in the past, as it
allows to query incomplete data in the presence of an ontology providing background knowledge
about the data domain. While classically, OBQA considers a setting where the data is both
static and certain, there are many applications where this assumption does not hold, which
lead to the development of temporal query languages for OBQA [10, 34, 11, 5], and research on
OBQA for probabilistic data [22, 8, 9, 7]. Temporal OBQA has been proposed as a technique
for querying historical data and to detect situations in streams of data. To describe temporal
patterns in a query, temporal queries as in [10, 11, 5] extend conjunctive queries (CQs) with
operators from linear temporal logic (LTL). Probabilistic OBQA is motivated by data sets
obtained using uncertain methods such as language and image recognition, or uncertain sensor
measurements. In this setting, query answers hold true with a certain probability, which may
be part of the query result. As historical data can be obtained using language recognition,
and situation recognition is often applied in applications that involve temporal data based on
uncertain sensor measurements, there exist applications in which we want to query data that is
both temporal and probabilistic in nature. Motivated by this, recently, temporal probabilistic
OBQA has been investigated [24], where the temporal query language from [11] is extended
with probability operators, and data are considered sequences of probabilistic ABoxes as in [22].
As an example for a probabilistic temporal query, consider a health supervision app on a

∗Supported by the DFG within the collaborative research center CRC 912 (HAEC) and the TRR 248 (CPEC).

2

smartphone which operates on a sequence of data obtained using motion and blood pressure
sensors. The following query then detects situations in which the patient was, during the last
10 time units, with a low probability exercising, until with a high probability he had a high
blood pressure, in which case the app might issue a warning:

q(x)←©−10
(
P<0.2Excercising(x)UP>0.7HighBloodPressure(x)

)
.

While the mentioned works allow for an extended expressivity in the query language, they
only consider ontologies that are formulated using a classical (atemporal and non-probabilistic)
DL. Since the role of the ontology in OBQA is to provide additional background knowledge,
temporal and/or probabilistic OBQA would bene�t from ontology languages that provide both
temporal and probabilistic language constructs. To stay with the current example, this could
for instance be used to express that if a patient starts exercising, his blood pressure is likely to
remain increased until the patient takes a break:

StartsExcercising v (P>0.7IncreasedBloodPressure)U StopsExcercising,

where StartsExcercising and StopsExcercising are de�ned in further axioms using temporal con-
cept operators.

Temporal DLs have been well investigated in the literature, and may extend classical DLs
with LTL-operators on axioms and concepts [30, 6], with MTL-operators [3, 37, 21], Halpern
and Shoham's interval logic [1, 35], or temporal attributes [33]. Similarly, several probabilis-
tic extensions to DLs have been suggested, such as the non-monotonic DL P-SHIF(D)/P-
SHOIN (D) [27], the DLs Prob-ALC/Prob-EL for expressing subjective probabilities [20], DLs
using log-linear probabilities [32] and the Bayesian DLs BEL and BALC [15, 12]. There is also
research on ontology languages that combine temporal and probabilistic aspects: these con-
sider temporal probabilistic Datalog programs [16], dynamic Bayesian DL networks [14], and
temporal extensions of DL-Lite [26], but do not consider expressive query languages, or the
full expressivity of temporal DLs such as LTL-ALC and Prob-ALC. There is some research
on answering unions of conjunctive queries in temporal DL-Lite [2], and instance retrieval in
temporal extensions of EL [19], but not on answering temporal queries, and to the best of our
knowledge, there is no research on OBQA with ontology languages that employ probabilistic
concept operators.

The aim of this paper is to theoretically investigate a setting where temporal operators, as
well as operators expressing subjective probability, can be used both as part of the ontology
language and as part of the query language. While some complexity bounds are still open at
this point, we present initial results towards understanding the complexity in such a setting.
Speci�cally, our contributions are the following.

1. In Section 2, we combine the languages studied in [11, 30, 20] to de�ne the syntax and
semantics of temporal probabilistic DL formulae (TPDFs), which generalise temporal prob-
abilistic knowledge bases and queries.

2. In Section 3, we give tight complexity bounds for TPDFs with only temporal operators.

3. In Section 4, we give upper bounds for TPDFs with only probability operators.

4. In Section 5, we show that for TPDFs that use both temporal and probability operators,
satis�ability is 2ExpSpace-hard.

Details of proofs and de�nitions can be found in the appendix.

3

2 Temporal Probabilistic Description Logic Formulae

2.1 Preliminaries

We assume basic knowledge about expressive DLs. Our results concern DLs ranging from ALC
to ALCOQ and ALCOI. Details about the DLs relevant for this paper, as well as on query
answering, can be found in the appendix. We assume DL concepts to be composed using the
operators of the respective DL based on the pair-wise disjoint, countably in�nite sets NC, NR

and NI of respectively concept names, role names and individual names. We assume DL axioms
to be either general class inclusions (GCIs) of the form C v D, or assertions of the forms C(a),
r(a, b) with C and D being concepts in the respective DL, r, s role names, and a, b individual
names. We use C ≡ D as abbreviation for the two GCIs C v D and D v C. Satis�ability
of sets K of axioms is de�ned in terms of interpretations I = 〈∆I , ·I〉, where ∆I is a set of
domain elements and ·I is a function mapping individual names to domain elements, concepts
to subsets of ∆I and roles to subsets of ∆I ×∆I . Conjunctive queries (CQs) and entailment
of Boolean CQs are de�ned as usual (eg., see [29]): speci�cally, CQs can contain free variables
called answer variables, and a Boolean CQ is a CQ without free variables. A query answer to
a CQ φ in a DL KB K is an assignment of individual names to the free variables in φ such that
the resulting Boolean CQ is entailed by K.

To distinguish between di�erent intervals relevant in this paper, we use the notation [i, j] to
denote closed intervals over the reals, and the notation Ji, jK to denote closed intervals over the
integers. A probability measure over a (possibly in�nite) set W is a function P : W → [0, 1],
where W ⊆ 2W is a σ-algebra (it contains W is is closed under complement and countable
union), s.t. P (∅) = 0, P (W) = 1, and for any countable set W ′ ⊆ W of pairwise disjoint sets
W ′ ⊆W , we have P (

⋃
W ′∈WW ′) =

∑
W ′∈W P (W ′).

2.2 Syntax

We consider extensions of classical DLs which additionally allow temporal concepts of the form
©C (next) and CUD (until), and probabilistic concepts of the form P~pC, where~ ∈ {<,=, >},
p ∈ [0, 1] and C, D are concepts. These concepts may be used at any place within a concept, and
we call the resulting concepts temporal probabilistic concepts. Here, we do not �x a particular
DL as basis, but may refer to the underlying DL which is extended by these operators. While
classically, a DL knowledge base is build using DL axioms, against which queries are evaluated,
it will be convenient to study queries and DL axioms not in separation, but to allow for an
integrated language in which DL axioms and CQs can be arbitrarily mixed within a formula.
This further expressivity can for instance be used to specify that a certain DL axiom holds
until a Boolean CQ becomes satis�ed. For this reason, we collectively call DL axioms and CQs
generalised axioms. Temporal probabilistic DL formulae (TPDFs) α are then built according to
the following syntax rule, where X is a generalised axiom that may use temporal probabilistic
concepts, ~ ∈ {<,=, >} and p ∈ [0, 1]:

α ::= X | ¬α | α ∧ α | ©α | αUα | P~pα.

The operators ¬, ∧,© and U are called temporal operators, while the operators P~p are called
probability operators. We de�ne further operators as the usual abbreviations, that is, for TPDFs
φ and ψ, we denote true := ψ ∨ ¬φ (for some φ), φ ∨ ψ := ¬(¬φ ∧ ¬ψ), ♦φ := trueUφ and
�φ := ¬♦¬φ, φ→ ψ := ¬φ ∨ ψ and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ), and similar for concepts. A
TPDF is called Boolean if every CQ in it is Boolean.

As typical for temporal reasoning with DLs, we assume a set Nrig ⊆ NC ∪ NR of rigid names,
composed of a set NCrig = Nrig ∩ NC of rigid concepts and a set NRrig = Nrig ∩ NR of rigid

4

roles, which denote concept and role names whose interpretation does not change over time.

2.3 Semantics

To de�ne the semantics of TPDFs, we have to take into consideration two dimensions: the
temporal dimension and the probabilistic dimension. A temporal interpretation is a sequence
(Ii)i≥0 of interpretations Ii = 〈∆, ·Ii〉 sharing the same domain ∆J , such that for any rigid
name X ∈ Nrig and i, j ≥ 0, XIi = XIj . A probabilistic temporal interpretation is then a
probability measure ι : J→ [0, 1], over a set J of temporal interpretations (Ii)i≥0 sharing the
same set ∆ι of domain elements (J ⊆ 2J is then a sigma algebra). We call J the possible worlds
of ι.

To de�ne the semantics of temporal and probabilistic operators, we de�ne the function ·Ii,ι on
concepts, where (Ij)j≥0 ∈ J and i ≥ 0. ·Ii,ι is de�ned as ·Ii for the concept operators of the
underlying DL, and for the remaining operators by

(©C)Ii,ι = CIi+1,ι

(CUD)Ii,ι = {d ∈ ∆ι | ∃j ≥ i : d ∈ DIi,ι, ∀k ∈ Ji, j − 1K : d ∈ CIk,ι}

(P~pC)Ii,ι = {d ∈ ∆ι | ι({(I ′j)j≥0 ∈ J | d ∈ CI
′
i,ι})~ p}.

Satisfaction of Boolean TPDFs is de�ned by:

1. Ii, ι |= α i� Ii |= α, where α is a Boolean CQ or a role assertion,

2. Ii, ι |= C v D i� CIi,ι ⊆ DIi,ι,

3. Ii, ι |= C(a) i� aIi ∈ CIi,ι,

4. Ii, ι |=©φ i� Ii+1, ι |= ψ,

5. Ii, ι |= φUψ i� there exists j ≥ i s.t. Ij , ι |= ψ and for all k ∈ Jj, i− 1K, Ik, ι |= φ, and

6. Ii, ι |= P~pφ i� ι({(I ′j)j≥0 ∈ J | I ′i, ι |= φ})~ p.1

We say that ι satis�es a Boolean TPDF φ, in symbols ι |= φ, if for all (Ii)i≥0 ∈ J , I0, ι |= φ,
in which case ι is a model of φ. A Boolean TPDF is satis�able i� it has a model.

The paper focusses on showing complexity bounds for Boolean TPDF satis�ability. Note that
other reasoning tasks that are more related to classical OBQA can be easily reduced to TPDF
satis�ability. For instance, for the problem of temporal probabilistic query answering, we are
given a Boolean TPDF φ, and a non-Boolean TPDF ψ that contains only CQs and no DL axioms
(a temporal probabilistic query), and we want to �nd an assignment of individual names to the
answer variables in ψ so that the resulting TPDF is logically entailed by φ. This problem can
be reduced to deciding the unsatis�ability of Boolean TPDFs of the form φ ∧ ¬ψ′, where ψ′ is
obtained from ψ by replacing answer variables by individual names. As from now on, we focus
on Boolean TPDFs only, we will omit the �Boolean� and just call them TPDFs in the following.

Remark. There is a subtle di�erence between our semantics and that of Prob-ALC/Prob-EL
as introduced in [20], in that we do not require the set of possible worlds to be countable.
We believe that, especially if we add a temporal dimension, considering only countable sets
of possible worlds is too restrictive. For instance, if we allow a domain element to arbitrarily

1Note that we implicitly require that J contains all subsets of 2J relevant to these de�nitions.

5

switch betweeing satisfying a concept A and not satisfying it there are uncountably many
possible sequences for this, each corresponding to a real number in between 0 and 1. There is
no real reason why some of these sequences should be excluded. As we show in the appendix,
there are TPDFs even without temporal operators that are only satis�able in interpretations
with an uncountable set of possible worlds, which means that our results do not directly transfer
to the setting considered in [20].

3 Only Temporal Operators

We �rst consider the purely temporal case of TPDFs without probability operators. This
problem has so far only been studied for temporal queries and temporal DLs, but not for
the combination of both. Our �rst result concerns TPDFs without temporal concepts, that
is, temporal operators can be used on CQs and on axioms, but not within concepts. Here,
complexity upper bounds directly follow from the complexity of temporal query entailment
with classical ontologies, as studied in [11, 5, 4] . Let φ be a TPDF of which we want to
determine satis�ability. We de�ne a set Tφ of classical DL axioms that contains the following
axiom for every GCI C v D occurring in φ:

A¬(CvD) ≡ C u ¬D.

Instances of A¬(CvD) witness the non-entailment of C v D, so that we can use the CQ
∃x.A¬(CvD)(x) to express that the GCI does not hold. We then de�ne a TPDF φ′ that is
obtained from φ by replacing every GCI C v D with ¬∃x.A¬(CvD)(x). φ′ contains no GCIs,
and we have �

∧
α∈Tφ α |= ¬φ

′ i� φ is unsatis�able. We thus get the following theorem directly
from results on satis�ability of temporal CQs in [11, 5, 4].

Theorem 1. Satis�ability of TPDFs without probability operators and temporal concepts, and
with underlying DL L, is

• PSpace-complete for L = EL and NCrig = NRrig = ∅,

• ExpTime-complete for L ∈ {ALC,ALCQ} and NCrig = NRrig = ∅,

• NExpTime-complete for L ∈ {EL,ALC,ALCQ} and NRrig = ∅,

• NExpTime-complete L = EL and NRrig 6= ∅,

• 2ExpTime-complete for L ∈ {ALCI,ALCIQ,ALCOQ,ALCOI}, and

• decidable for ALCOIQ.

If we also allow for temporal concept operators, we have to do a bit more. We �rst note that with
rigid roles, using temporal operators on the level of concepts leads to undecidability already
if the underlying DL is EL [30]. We thus only have to consider the case where NRrig = ∅.
To show upper bounds for this case, we extend the method from [39] for temporal DLs based
on quasimodels to also incorporate CQs. Namely, we abstract temporal interpretations using
sequences of quasistates, which each contain a set of CQs and GCIs that hold or do not hold at
the corresponding time point, together with a set of concept types, which represent the current
states of domain elements.

Given a TPDF φ, let con(φ) denote the set of (sub-)concepts occurring in φ, form(φ) denote
the set of sub-formulae of φ, and ind(φ) denote the set of individual names occurring in φ.
Furthermore, de�ne tc(φ) = {C,¬C | C ∈ con(φ)} ∪ {{a} | a ∈ ind(φ)} and tf(φ) = {ψ,¬ψ |
ψ ∈ form(φ)}. A concept type is then a subset t ⊆ tc(φ) s.t.

6

C1 for every ¬C ∈ tc(φ), ¬C ∈ t i� C 6∈ t, and

C2 for every C uD ∈ tc(φ), C uD ∈ t i� C,D ∈ t.

If a concept type t contains a concept of the form {a}, we call t a nominal type. A formula type
is a subset t ⊆ tf(φ) s.t.

F1 for every ¬ψ ∈ tc(φ), ¬ψ ∈ t i� ψ 6∈ t, and

F2 for every ψ1 ∧ ψ2 ∈ tc(φ), ψ1 ∧ ψ2 ∈ t i� ψ1, ψ2 ∈ t.

A quasistate is a set S of formula and concept types s.t. S contains exactly one formula type
tS .

If the formula type only contains GCIs and their negation, there are easy syntactic conditions
for when a quasistate can correspond to an element of a temporal interpretation. This becomes
however more di�cult when it can also contain CQs, which is why we instead formulate a
semantic admissibility condition for quasistates. We �rst introduce the notion of a conceptual
abstraction. Since quasistates will also be used in Section 4, we de�ne them here more general
for quasistates that may also contain probability operators. Given a concept or TPDF X, its
conceptual abstraction Xca is obtained by replacing every outermost concept C of the forms
©D, D1UD2, and P~pD by the fresh concept name AC , and every outermost TPDF ψ of the
forms ©ψ1, ψ1Uψ2 and P~pψ1 by Aψ(a), where Aψ is fresh. A quasistate S is then admissible
i� there exists a (classical) interpretation I s.t.

S1 for every TPDF α ∈ form(φ), I |= αca i� α ∈ tS , and

S2 for every concept type t ⊆ tc(φ),
⋂
C∈t(C

ca)I 6= ∅ i� t ∈ S.

While a quasistate can contain up to exponentially many concept types, we show in the appendix
that for ALCOQ and ALCOI, it can still be decided in 2ExpTime wrt. to the input formula
whether a given quasistate is admissible, while this can be done in ExpTime for ALCQ.

It remains to represent the temporal dimension, which we do in terms of runs and temporal
quasimodels.

A concept/formula run is a sequence σ : N → tc(φ)/tf(φ) of concept/formula types s.t. for all
i ≥ 0,

R1 for every ©α ∈ tc(φ)/tf(φ), ©α ∈ σ(i) i� α ∈ σ(i+ 1),

R2 for every αUβ ∈ tc(φ)/tf(φ), αUβ ∈ σ(i) i� there exists j ≥ i s.t. β ∈ σ(i) and for all
k ∈ Ji, j − 1K, α ∈ σ(i),

R3 for every j ∈ N, σ(i) ∩ NCrig = σ(j) ∩ NCrig, and

R4 for every j ∈ N and a ∈ NI, {a} ∈ σ(i) i� {a} ∈ σ(j).

A temporal quasimodel for φ is a tuple 〈Q,R〉, where Q is a sequence mapping each natural
number to an admissible quasistate Q(i), and R is a set of runs s.t.

Q1 φ ∈ tQ(0),

Q2 for each i ≥ 0 and t ∈ Q(i) , there exists a run σ ∈ R s.t. σ(i) = t, and

Q3 for each run σ ∈ R, and i ≥ 0, σ(i) ∈ Q(i).

7

Temporal quasimodels witness the satis�ability of TPDFs without probability operators. Fur-
thermore, we can use a regularity argument as in [36] to limit the shape of these quasimodels.
This is summarized in the following lemma.

Lemma 1. If the underlying DL is ALCOQ or ALCOI, then φ is satis�able i� there exists a
quasimodel 〈Q,R〉 for φ where Q is of the form

Q(0) . . . Q(n)
(
Q(n+ 1) . . . Q(n+m)

)ω
,

with n and m double exponentially bounded in the size of φ.

The proof of the lemma makes use of the fact that, in a classical DL interpretation, if the
underlying DL is ALCOQ or ALCOI, we can arbitrarily extend the set of domain elements
that belong to a given concept type without a�ecting entailment of CQs or the extension of
other types. This is not so easily possible for DLs that support both inverse roles and counting
quanti�ers, which is why we do not have results for ALCIQ. Using lower bounds for CQ
entailment in ALCI [28] and ALCO [31], and for TPDFs with temporal operators only on
concepts and GCIs [39], we obtain the following completeness results.

Theorem 2. Satis�ability of TPDFs without probability operators is undecidable if NRrig 6= ∅.
Otherwise, it is 2ExpTime-complete if the underlying DL is ALCO, ALCI or ALCOI, and
ExpSpace-complete if the underlying DL is ALC or ALCQ.

4 Only Probability Operators

We next consider the purely probabilistic case, that is, we allow probability operators on the
level of concepts, axioms and queries, but no temporal operators. While [20] consider extensions
of ALC and EL with probability operators on concepts and assertions, they do not consider
these operators on GCIs. We extend this setting by allowing probability operators also on
GCIs, and additionally allowing CQs.

Our method for deciding entailment of those TPDFs is again based on quasistates and types,
over which we this time de�ne probability measures.

A probabilistic quasistate is a probability measure PS : 2S → [0, 1] over a set S of quasistates.
It is admissible i� for every quasistate S ∈ S:

PS1 S is admissible, and

PS2 for every P~pψ ∈ tf(φ), P~ψ ∈ tS i� PS({S ∈ S | ψ ∈ tS})~ p.

While every quasistate contains a set of concept types, we might need a more �ne-grained
probability measure for each concept type to verify the probabilistic concepts in them. For
this, we de�ne probabilistic concept types. A probabilistic concept type pt : 2T → [0, 1] is a
probability measure over a set T of concept types s.t

PT for every P~pC ∈ tc(φ) and t ∈ T , P~pC ∈ t i� pt({t ∈ T | C ∈ t})~ p.

It is compatible to a probabilistic quasistate PS : 2S → [0, 1] i� there exists a probability
measure PPS,pt : 2WPS,pt → [0, 1] over some set WPS,pt ⊆ S× T s.t.

PC1 〈S, t〉 ∈WPS,pt implies t ∈ S,

8

PC2 for every S ∈ S, PPS,pt({〈S′, t〉 ∈WPS,pt | S′ = S}) = PS({S}), and

PC3 for every t ∈ T , PPS,pt({〈S, t′〉 ∈WPS,pt | t′ = t}) = pt({t}).

We call PPS,pt a joined probability measure for PS and pt. A probabilistic quasimodel for φ is
now a tuple 〈PS,PT〉 of a probabilistic quasistate PS : 2S → [0, 1] and a set PT of probabilistic
concept types s.t.

PQ1 for every S ∈ S, φ ∈ tS ,

PQ2 every probabilistic concept type pt ∈ PT is compatible to PS, and

PQ3 for every quasistate S ∈ S and concept type t ∈ S, there exists a joined probability
measure for PS and some pt ∈ PT s.t. 〈S, t〉 ∈WPS,pt.

Note that in Condition PQ3, we only require 〈S, t〉 ∈ WPS,pt, but not PPS,pt({〈S, t〉}) > 0.
This is still su�cient to ensure that the type t can be instantiated in every possible world corre-
sponding to S, and in fact necessary to ensure completeness, because we allow for uncountable
sets of possible worlds in our semantics.

Lemma 2. A TPDF φ without temporal operators, with underlying DL ALCOQ or ALCOI,
is satis�able i� there exists a probabilistic quasimodel 〈PT,PT〉 for φ.

Probabilistic quasimodels are similar to temporal quasimodels, where instead of sequences, we
use probability measures. For some DLs, this di�erence in structure can be exploited to gain
better complexity bounds. While there can be in general double exponentially many quasistates
and probabilistic concept types, if the underlying DL is ALCQ, only exponentially many of each
are needed. In contrast to the temporal quasimodels in Section 3, which indeed may always
require a double exponential number of quasistates, probabilistic quasimodels bene�t from a
lack of order : this allows us to merge quasistates that agree on their formula type and nominal
types, which is the reason why we can bound the size of probabilistic quasimodels for ALCQ.

Our decision procedure for TPDF satis�ability consists of guessing and verifying a probabilistic
quasimodel of the appropriate size. Here, we make use of a result from [17], which is also used
in [20] to provide the complexity bounds of Prob-ALC, to limit the required precision used in
the probability measures.

Theorem 3. Satis�ability of TPDFs without temporal operators is in NExpTime if the un-
derlying DL is ALCQ, and in N2ExpTime if the underlying DL is ALCOQ or ALCOI.

Since satis�ability of Prob-ALC is still in ExpTime [20], the only known complexity lower
bounds stem from the complexity of Boolean query entailment. We leave it as future work to
investigate whether our complexity bounds can be optimised.

5 Temporal and Probability Operators

If we allow both temporal and probability operators, satis�ability of TPDFs becomes 2Exp-
Space-hard, even if we disallow rigid names. We show this by a reduction of the double-
exponential corridor tiling problem. This problem is formalised as follows. We are given a
set T of tiles containing an initial tile type t0 ∈ T and a �nal tile type tf ∈ T , two sets
H ⊆ T × T and V ⊆ T × T of respectively horizontal and vertical tiling conditions, and a
natural number n. The problem is then to decide whether there exists a natural number m
and a tiling t : J1, 22

n

K × J1,mK → T s.t. t(1, 1) = t0, t(1,m) = tf , for every i ∈ J1, 22
n − 1K

9

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

time

w
o
rl
d
s

(b
it
po
si
ti
o
n
s)

Figure 1: Illustration of how counters are used to identify neighbouring possible worlds.

and j ∈ J1,mK, we have 〈t(i, j), t(i + 1, j)〉 ∈ H, and for every i ∈ J1, 22
n

K and j ∈ J1,m − 1K,
we have 〈t(i, j), t(i, j + 1)〉 ∈ V . It follows from the relationship between corridor-tilings and
space-bounded Turing machines shown in [38] that the double-exponential tiling problem is
2ExpSpace-complete.

While the full reduction is shown in the appendix, we sketch the main ideas here. We use
22
n

domain elements to represent the vertical dimension of the tiling, and the time line to
represent the horizontal dimension. The probabilistic dimension is used to implement a double
exponential counter on each domain element, which is used to identify which row of the tiling it
represents. Here, we use temporal and probabilistic concepts to force the existence of exponen-
tially many possible worlds per domain element, which at each time point store the di�erent
bit values of the double exponential counter using a concept Bit. Speci�cally, the individual
satis�es Bit in the ith possible world i� the ith bit of the double exponential counter has the
value 1.

A main challenge in the construction is the lack of order in temporal probabilistic models.
The set of possible worlds in an interpretation is unordered, which means we cannot directly
refer to the �ith� or �next� possible world. This is however neccessary to implement a double
exponential counter, since we have to transfer information about carrier bits from one possible
world to another. Furthermore, since we do not allow rigid roles, we cannot keep the relationship
between the di�erent domain elements stable throughout the time line. As a result, we cannot
directly refer to the domain element that refers to the next row in order to test the vertical
tiling conditions. For both challenges, we use a similar trick.

For the double-exponential counter, we need to be able to identify possible worlds for the respec-
tive domain element that correspond to neighbouring bit positions. To do this, we implement
a single-exponential counter in each possible world, which is incremented along the time line,
so that in each world, the counter has a di�erent value. This is visualised in Figure 1. To
implement these counters, we use concept names A1, . . ., An representing the bit value at the
positions 1 to n of this counter. At each time point, two neighbouring possible worlds can be
identi�ed easily: the one with a counter value of 2n − 1 satis�es

d
i∈J1,nKAi, and unless it cor-

responds to the last bit position, the next bit position corresponds to the world with a counter
value of 0, which satis�es

d
i∈J1,nK ¬Ai. Using this mechanism, we can for instance transfer the

information on whether the current bit has to be �ipped using the following GCIs:
l

i∈J1,nK

Ai u Flip u Bit v P=1((
l

i∈J1,nK

¬Ai)→ Flip)

(
l

i∈J1,nK

Ai) u (¬Flip t ¬Bit) v P=1((
l

i∈J1,nK

¬Ai)→ (FirstBit t ¬Flip)).

Using further axioms, this allows us to implement a double exponential counter on each domain
element, which is incremented every 2n time points.

The same technique is used on a di�erent level to identify which domain elements correspond
to neighbouring rows in the ceiling. We make sure that eventually, we have at each time point a

10

di�erent double exponential counter value represented by some domain element. At each time
point, we can then identify two neighbouring domain elements easily: the one with a counter
value of 0 satis�es P=1¬Bit, and the one with a counter value of 22

n − 1 satis�es P=1Bit. We
can thus test the vertical tiling conditions with the following axiom:

�
∧
t∈T

(
¬(t u P=1Bit v ⊥)→

∨
〈t,t′〉∈V

(P=1¬Bit v t′)
)
.

The reduction allows us to establish the following theorem.

Theorem 4. Satis�ability of TPDFs is 2ExpSpace-hard. This already holds if

• no CQs are used,

• the underlying DL is ALC,

• probabilistic operators are only used on the level of concepts,

• NCrig = NRrig = ∅, and

• on the axiom level, we only use Boolean connectives and the operator �, which does not
occur under a negation operator.

6 Conclusion

In the context of description logics, temporal and probabilistic extensions have mostly been
investigated in isolation, and similarly, such extensions on DL languages and query languages
have not been investigated in combination. In this paper, we presented several results towards
�lling these gaps. First, we showed tight complexity bounds for a setting where temporal
operators are used on the level of axioms and queries, as well as on queries, axioms and concepts
in combination, showing that the overall complexity does not increase by such a combination
for any DL between ALC and ALCOQ or ALCOI. Second, we considered the setting where
probability operators may be used on the level of concepts, axioms and queries, obtaining an
NExpTime upper bound if the underlying DL is ALCQ, and an N2ExpTime upper bound if
the underlying DL is ALCOQ or ALCOI. Finally, we showed that the combination of both
temporal and probabilistic operators on concepts and axioms results in 2ExpSpace-hardness.
We believe that it might be possible to obtain matching upper bounds by a combination of the
structures we used in this paper to show our upper bound.

While temporal ABoxes can be easily encoded into TPDFs, our results do not generalise the
settings with probabilistic ABoxes studied in [22], or in the work in [24] on temporal probabilistic
query answering, since these works assume the probability measure on the possible worlds to
be �xed, which is not the case with our semantics. We believe however that extending to such
settings does not have an impact on the complexity, as our languages are all already ExpTime-
hard. Another possible direction is investigating special operators that are both temporal and
probabilistic in nature, such as the probabilistic diamond-operator introduced in [25, 26].

References

[1] Alessando Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
Tractable interval temporal propositional and description logics. In Blai Bonet and Sven
Koenig, editors, Proc. of the 29th AAAI Conf. on Arti�cial Intelligence (AAAI'15), pages
1417�1423. AAAI Press, 2015.

11

[2] Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Tem-
poral description logic for ontology-based data access. In Francesca Rossi, editor, IJCAI
2013, Proceedings of the 23rd International Joint Conference on Arti�cial Intelligence,
Beijing, China, August 3-9, 2013, pages 711�717. IJCAI/AAAI, 2013.

[3] Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost.
Metric temporal description logics with interval-rigid names. In Proc. FroCoS 2017, pages
60�76. Springer International, 2017.

[4] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal conjunctive queries in
expressive description logics with transitive roles. In Proceedings of the 28th Australasian
Joint Conference on Arti�cial Intelligence (AI'15), volume 9457 of LNAI, pages 21�33.
Springer-Verlag, 2015.

[5] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal query entailment in
the description logic SHQ. J. Web Sem., 33:71�93, 2015.

[6] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms. ACM
Trans. Comput. Log., 13(3):21:1�21:32, 2012.

[7] Franz Baader, Patrick Koopmann, and Anni-Yasmin Turhan. Using ontologies to query
probabilistic numerical data. In Proc. FroCoS 2017, pages 77�94. Springer International,
2017.

[8] Stefan Borgwardt, Ismail Ilkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated
queries for probabilistic databases. In Satinder Singh and Shaul Markovitch, editors, Pro-
ceedings of the 31st AAAI Conf. on Arti�cial Intelligence (AAAI'17), pages 1063�1069,
San Francisco, USA, 2017. AAAI Press.

[9] Stefan Borgwardt, Ismail Ilkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated query
answering over log-linear probabilistic data. In Pascal Van Hentenryck and Zhi-Hua Zhou,
editors, Proceedings of the 33rd AAAI Conference on Arti�cial Intelligence (AAAI'19),
Honolulu, USA, 2019. AAAI Press. To appear.

[10] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in
the description logic DL-Lite. In Pascal Fontaine, Christophe Ringeissen, and Renate A.
Schmidt, editors, Frontiers of Combining Systems - 9th International Symposium, FroCoS
2013, Nancy, France, September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes
in Computer Science, pages 165�180. Springer, 2013.

[11] Stefan Borgwardt and Veronika Thost. Temporal query answering in the description logic
EL. In Proc. IJCAI 2015, pages 2819�2825. AAAI Press, 2015.

[12] Leonard Botha, Thomas Meyer, and Rafael Peñaloza. The Bayesian description logic
BALC. In Magdalena Ortiz and Thomas Schneider, editors, Proceedings of the 31st In-
ternational Workshop on Description Logics co-located with 16th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe, Arizona,
US, October 27th - to - 29th, 2018., volume 2211 of CEUR Workshop Proceedings. CEUR-
WS.org, 2018.

[13] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in expressive
description logics with nominals. In Proc. IJCAI 2009, pages 714�720. AAAI Press, 2009.

[14] �smail �lkan Ceylan and Rafael Peñaloza. Dynamic Bayesian description logics. In Proc.
DL 2015. CEUR-WS, 2015.

[15] �smail �lkan Ceylan and Rafael Peñaloza. The Bayesian ontology language BEL. J. Autom.
Reasoning, 58(1):67�95, 2017.

12

[16] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic database
model for information extraction. Proceedings of the VLDB Endowment, 6(14):1810�1821,
2013.

[17] Ronald Fagin, Joseph Y Halpern, and Nimrod Megiddo. A logic for reasoning about
probabilities. Information and computation, 87(1-2):78�128, 1990.

[18] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries in SHOQ.
In Proc. KR 2008, pages 252�262, 2008.

[19] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Roman Kontchakov. Temporalized
EL ontologies for accessing temporal data: Complexity of atomic queries. In Subbarao
Kambhampati, editor, Proceedings of the Twenty-Fifth International Joint Conference on
Arti�cial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1102�1108.
IJCAI/AAAI Press, 2016.

[20] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, and Lutz Schröder. Proba-
bilistic description logics for subjective uncertainty. J. Artif. Intell. Res., 58:1�66, 2017.

[21] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Ana Ozaki. On metric temporal
description logics. In Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier,
Virginia Dignum, Frank Dignum, and Frank van Harmelen, editors, ECAI 2016 - 22nd
European Conference on Arti�cial Intelligence, 29 August-2 September 2016, The Hague,
The Netherlands - Including Prestigious Applications of Arti�cial Intelligence (PAIS 2016),
volume 285 of Frontiers in Arti�cial Intelligence and Applications, pages 837�845. IOS
Press, 2016.

[22] Jean Christoph Jung and Carsten Lutz. Ontology-based access to probabilistic data with
OWL QL. In Philippe Cudré-Mauroux, Je� He�in, Evren Sirin, Tania Tudorache, Jérôme
Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abra-
ham Bernstein, and Eva Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th Inter-
national Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceed-
ings, Part I, volume 7649 of Lecture Notes in Computer Science, pages 182�197. Springer,
2012.

[23] Patrick Koopmann. Ontology-based query answering for probabilistic temporal data (ex-
tended version). LTCS-Report 18-13, Chair for Automata Theory, Institute for Theo-
retical Computer Science, Technische Universität Dresden, Dresden, Germany, 2018. see
https://lat.inf.tu-dresden.de/research/reports.html.

[24] Patrick Koopmann. Ontology-based query answering for probabilistic temporal data. In
Pascal Van Hentenryck and Zhi-Hua Zhou, editors, Proceedings of the 33rd AAAI Confer-
ence on Arti�cial Intelligence (AAAI'19), Honolulu, USA, 2019. AAAI Press. To appear.

[25] Alisa Kovtunova and Rafael Peñaloza. Cutting diamonds: A temporal logic with proba-
bilistic distributions. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth In-
ternational Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018., pages
561�570. AAAI Press, 2018.

[26] Alisa Kovtunova and Rafael Peñaloza. Cutting diamonds: Temporal DLs with probabilistic
distributions over data. In Magdalena Ortiz and Thomas Schneider, editors, Proceedings of
the 31st International Workshop on Description Logics co-located with 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27th - to - 29th, 2018., volume 2211 of CEUR Workshop Proceedings.
CEUR-WS.org, 2018.

13

https://lat.inf.tu-dresden.de/research/reports.html

[27] Thomas Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-
7):852�883, 2008.

[28] Carsten Lutz. Inverse roles make conjunctive queries hard. In Proc. DL 2007, volume 250
of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[29] Carsten Lutz. Two upper bounds for conjunctive query answering in SHIQ. In Franz
Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st International
Workshop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008, volume
353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[30] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A
survey. In Stéphane Demri and Christian S. Jensen, editors, 15th International Symposium
on Temporal Representation and Reasoning, TIME 2008, Université du Québec à Montréal,
Canada, 16-18 June 2008, pages 3�14. IEEE Computer Society, 2008.

[31] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed predicates in description logics:
Results on combined complexity. In Proc. KR 2016, pages 237�246. AAAI Press, 2016.

[32] Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt. Log-linear description logics.
In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Arti�cial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2153�2158.
IJCAI/AAAI, 2011.

[33] Ana Ozaki, Markus Krötzsch, and Sebastian Rudolph. Happy ever after: Temporally at-
tributed description logics. In Magdalena Ortiz and Thomas Schneider, editors, Proceedings
of the 31st International Workshop on Description Logics co-located with 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27th - to - 29th, 2018., volume 2211 of CEUR Workshop Proceedings.
CEUR-WS.org, 2018.

[34] Özgür Lütfü Özçep, Ralf Möller, and Christian Neuenstadt. A stream-temporal query
language for ontology based data access. In Carsten Lutz and Michael Thielscher, editors,
KI 2014: Advances in Arti�cial Intelligence - 37th Annual German Conference on AI,
Stuttgart, Germany, September 22-26, 2014. Proceedings, volume 8736 of Lecture Notes in
Computer Science, pages 183�194. Springer, 2014.

[35] Morteza Yousef Sanati. A Metric Interval-Based Temporal Description Logic. PhD thesis,
McMaster University, Hamilton, Canada, 2015.

[36] A Prasad Sistla and Edmund M Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM (JACM), 32(3):733�749, 1985.

[37] Veronika Thost. Metric temporal extensions of DL-Lite and interval-rigid names. In Frank
Wolter, Michael Thielscher, and Francesca Toni, editors, Proc. of the 16th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR'18), pages 665�666. AAAI
Press, 2018. Extended abstract.

[38] Peter van Emde Boas. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331�363, 1997.

[39] Frank Wolter and Michael Zakharyaschev. Temporalizing description logics. In Frontiers
of Combining Systems II, volume 1794 of LNCS, pages 379�402. Springer, 1999.

14

A Temporal Probabilistic Description Logics

A.1 Preliminaries

We recall the DLs studied in the paper, as well as conjunctive query answering, in detail.

Description Logics. Let NC, NR and NI be pair-wise countably in�nite sets of respectively
concept names, role names and individual names. A role is an expression of the forms r, r−,
where r ∈ NR. Concepts are of the following forms, where A ∈ NC, R is a role, C, D are
concepts, n ∈ N and a ∈ NI:

A | C uD | ∃R.C | ∀R.C | ≥nR.C | {a}.

A knowledge base (KB) is a set of DL axioms, which are either GCIs of the form C v D, where
C, D are concepts, or assertions of the forms A(a) and r(a, b), A ∈ NC, r ∈ NR, a, b ∈ NI.

Di�erent DLs are di�erentiated based on the operators allowed: EL only supports concepts of
the form A, C u D and ∃R.C and axioms of the form C v D, and no roles of the form r−.
ALC extends EL with concepts of the form ¬C. More expressive DLs are denoted by attaching
a letter to the DL, where we use I for support of roles r−, O for concepts of the form {a}, Q
for concepts of the form ≥nR.C. For example, ALCI extends ALC with inverse roles, whereas
ALCOQ extends ALC with concepts of the form {a} and ≥nR.C.

The semantics of KBs is de�ned in terms of interpretations I = 〈∆I , ·I〉, where ∆I is a set of
domain elements and ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I , each role name
r ∈ NR to a relation rI ⊆ ∆I ×∆I , each individual name a ∈ NI to a domain element aI ∈ ∆I ,
and each role r− to (r−)I = (rI)−. It is extended to concepts as follows.

(C uD)I = CI ∩DI , (¬C)I = ∆I \ CI , {a}I = {aI},
(∃R.C)I = {d ∈ I | ∃e ∈ ∆I : 〈d, e〉 ∈ RI , e ∈ CI},

(≥ nR.C)I = {d ∈ I | #{e ∈ ∆I | 〈d, e〉 ∈ RI , e ∈ CI} ≥ n}

We say that an interpretation I satis�es an axiom/assertion α, in symbols I |= α, if α = C v D
and CI ⊆ DI ; α = A(a) and aI ∈ AI ; and α = r(a, b) and 〈aI , bI〉 ∈ rI . I is a model of a KB
i� it satis�es all axioms in it. Finally, a KB K entails an DL axiom α i� α is satis�ed by every
model of K.

Conjunctive Queries. A conjunctive query (CQ) takes the form q = ∃~y.φ(~x, ~y), where ~x, ~y
are vectors of variables and φ(~x, ~y) is a conjunction over atoms of the forms A(t1) and r(t1, t2),
where A ∈ NC, r ∈ NR, and t1 and t2 are terms taken from NI, ~x and ~y. ~x are the answer
variables of q. Given an interpretation I and a CQ q with answer variables x1, . . . , xn, the vector
a1 . . . an ⊆ NI

n is an answer of q in I if there exists a mapping π : term(q)→ ∆I s.t. π(xi) = ai
for i ∈ J1, nK, π(b) = bI for b ∈ NI, π(t) ∈ AI for every A(t) in q, and 〈π(t1), π(t2)〉 ∈ rI for
every r(t1, t2) in q. A vector a1 . . . an is a certain answer of q in a KB K if it is an answer in
every model of K. If a query does not contain any answer variables, it is a Boolean CQ, and we
say it is entailed by a KB K (interpretation I) if it has the empty vector as answer.

A.2 Semantics

We prove the claim made in the remark after the de�nition of the semantics of TPDFs.

15

Theorem 5. There is a TPDF of the form C v D without temporal operators which is satis�-
able only in interpretations that have an uncountable set of possible worlds and an uncountable
domain.

Proof. The TPDF in question is

φ = > v P=0A u ∃r.A.

We �rst show that it is satis�able with an interpretation that has an uncountable domain
and an uncountable set of possible worlds. We then show that it cannot be satis�ed by an
interpretation in which both are countable.

We �rst de�ne the model ι : J → [0, 1] of φ, where J ⊆ 2J . The domain ∆ is de�ned as
∆ = [0, 1], that is, we have a domain element for every real number between 0 and 1. Note that
this set is uncountable. Next, we de�ne the possible worlds in J . Since φ contains no temporal
operators, it is su�cient to focus on the �rst interpretation I0 in each sequence (Ii)i≥0 ∈ J .
We use one such interpretation Iq for each q ∈ [0, 1], on which the interpretation function ·Iq
is then de�ned by:

AIq = {q}
rIq = {〈q′, q〉 | q′ ∈ [0, 1]}.

Clearly, every interpretation satis�es > v ∃r.A.

ι is now de�ned based on the Lebesgue measure on [0, 1], and intuitively corresponds to a
uniform probability distribution over [0, 1]. Speci�cally, J ⊆ 2J is the smallest set containing
the set {Iq | q ∈ [i, j]} for every interval [i, j] ⊆ [0, 1], and that is closed under complement and
countable union. ι is de�ned such that it satis�es

ι({Iq | q ∈ [i, j]}) = j − i,

and is extended to J so that is satis�es the properties of a probability measure. It is not hard
to see that for every domain element d ∈ ∆,

ι({Iq ∈ J | d ∈ AIq}) = 0,

and therefore d ∈ (P=0A)Iq,ι for every Iq ∈ J . It follows that ι is a model of φ.

It remains to show that φ is not satis�able by interpretations ι : J → [0, 1] in which J or the
common domain ∆ are countable. Let ι : J → [0, 1] be a probabilistic temporal model of φ,
where J ⊆ 2J . In every interpretation (Ii)i≥0 ∈ J , there must exist some domain element
d ∈ ∆ s.t. d ∈ AI0 . Since each d ∈ ∆ satis�es P=0(A), we have ι({(Ii)i≥0}) = 0 for every
interpretation (Ii)i≥0 ∈ J . By the de�nition of probability measure spaces, we have for every
countable set J′ ⊆ J of pairwise disjoint subsets of J that

ι
(⋃
J ′∈J′

J ′
)

=
∑
J ′∈J′

ι(J ′).

Set
J′ = {{(Ii)i≥0} | (Ii)i≥0 ∈ J }.

If J is countable, then so is J′, and we obtain ι(J) = 0, which contradicts ι(J) = 1. As a
consequence, ι cannot be a probability measure if J is countable.

We obtain that φ is only satis�able in models with an uncountable set of possible worlds. This
further implies that φ is only satis�able in models with an uncountable domain: otherwise,
since the number of concept and role names occurring in φ is �nite, we could always �nd a
model that also has a countable set of possible worlds.

16

B Only Temporal Operators

Theorem 1. Satis�ability of TPDFs without probability operators and temporal concepts, and
with underlying DL L, is

• PSpace-complete for L = EL and NCrig = NRrig = ∅,

• ExpTime-complete for L ∈ {ALC,ALCQ} and NCrig = NRrig = ∅,

• NExpTime-complete for L ∈ {EL,ALC,ALCQ} and NRrig = ∅,

• NExpTime-complete L = EL and NRrig 6= ∅,

• 2ExpTime-complete for L ∈ {ALCI,ALCIQ,ALCOQ,ALCOI}, and

• decidable for ALCOIQ.

Proof. Let φ be a TPDF of which we want to determine satis�ability. We de�ne a set Tφ of
classical DL axioms that contains the following axiom for every GCI C v D occurring in φ:

A¬(CvD) ≡ C u ¬D.

Instances of A¬(CvD) witness the non-entailment of C v D, so that we can use the CQ
∃x.A¬(CvD)(x) to express that the GCI does not hold. We then de�ne a TPDF φ′ that is
obtained from φ by replacing every GCI C v D with ¬∃x.A¬(CvD)(x). φ′ contains no GCIs,
and we have �

∧
α∈Tφ α |= ¬φ

′ i� φ is unsatis�able. The theorem thus directly follows from
results on satis�ability of temporal CQs in [11, 5, 4].

Before we prove Lemma 1, we show that a TPDF φ without probability operators is satis�able
i� there exists a quasimodel verifying it. We prove both directions of this statement in separate
lemmas. In the following, we assume the underlying DL is included in ALCOQ or ALCOI.

Lemma 3. If a TPDF φ without probability operators is satis�able, then there exists a quasi-
model 〈Q,R〉 for it.

Proof. Assume that φ is satis�able. There then exists a model model ι : J→ [0, 1] of φ, where
J ⊆ 2J . Since φ does not contain any probability operators, we can assume wlog. that J
contains exactly one sequence (Ii)i>0 of classical interpretations. We construct a quasimodel
〈Q,R〉 based on this sequence. For a classical interpretation Ii and a domain element d,
we denote by type(Ii, d) = {C ∈ tc(φ) | d ∈ CIi,ι} the concept type of d in Ii, and by
type(Ii) = {ψ ∈ tf(φ) | Ii, ι |= ψ} the formula type of Ii.

We de�ne the sequence Q of quasistates by setting for all i ∈ N:

Q(i) = {type(Ii)} ∪ {type(Ii, d) | d ∈ ∆}.

It follows directly from construction that every Q(i) is admissible, and that φ ∈ tQ(0) (the
witnessing interpretation I ′ is obtained from Ii by setting AI

′

C = CIi,ι, where C is a temporal
concept and AC is the conceptual abstraction of C).

We associate to every d ∈ ∆ a run σd de�ned by σd(i) = {type(Ii, d)}. By checking the
Conditions R1�R4 and comparing to the de�nition of the semantics of the temporal operators,
one sees that σd(i) is indeed a run for every d ∈ ∆. The set R of runs is then de�ned as
R = {σd | d ∈ ∆}.

It follows directly from the construction that 〈Q,R〉 satis�es Conditions Q1 � Q3, and is thus
a quasimodel.

17

Before we show how to construct an interpretation based on a quasimodel, we need a small
auxiliary lemma concerning the DLs ALCOQ and ALCOI, which will also be used in the
proofs for Section 4.

For a concept type t ⊆ tc(φ), a probabilistic temporal interpretation ι : 2J → [0, 1] with
domain ∆, a possible world (Ii)i≥0 ∈ J and i ≥ 0, de�ne

tIi,ι =
⋂
C∈t

CIi,ι

as the extension of t in Ii, ι.

Furthermore, we de�ne the extension of t in a classical DL interpretation I as

tI =
⋂
C∈t

(Cca)I .

Lemma 4. Let t be a concept type with t∩NI = ∅, and I an interpretation with tI 6= ∅. Then,
there exists an interpretation I ′ s.t. tI′ = tI ∪ {d} for some fresh domain element d, for every
type t2 6= t, tI

′

2 = tI2 , and for every CQ q, I |= q i� I ′ |= q.

Proof. ForALCOI, we can duplicate some domain element d ∈ tI to a new fresh element d2 that
satis�es the same concept names and has the same role successors and role predecessors. For
ALCOQ, we duplicate d ∈ tI to a new domain element d2 that satis�es the same concept names
and has the same role successors. It is then not hard to see that the resulting interpretation
satis�es the same CQs as the initial one, that d2 ∈ tI , and that the extensions of the other
types remain unchanged.

Lemma 5. If there exists a quasimodel 〈Q,R〉 for φ, then φ is satis�able.

Proof. Given a quasimodel 〈Q,R〉 that veri�es a temporal formula φ, we construct a temporal
interpretation (Ii)i>0 such that for the probabilistic temporal interpretation ι : {∅, {(Ii)i≥0}} →
[0, 1] with ι({(Ii)i}) = 1, we have I0, ι |= φ.

Since every quasistate Q(i) is admissible, there is a sequence I1, I2 . . . of interpretations that
witness the admissibility of the quasistates Q(1), Q(2), Since ALCOQ and ALCOI have
the �nite model property, we can assume wlog. that every such interpretation has �nitely many
elements.

Note that for every named individual a ∈ NI and i > 0, Ii contains exactly one domain element
d = aI , which as a consequence implies that each quasistate Q(i) contains at most one type t
s.t. {a} ∈ t. Furthermore, by Condition R4, if there exists some type t ∈ Q(i) s.t. {a} ∈ t,
then there is such a type in every Q(j), j > 0.

We extend these interpretation Ii such that the resulting sequence is a model of φ. We �rst
de�ne the domain ∆. For every individual name a occuring in φ, ∆ contains a domain element
da. Let n be the maximal number of domain elements that occur in the extension tIi of ant
type t in any interpretation Ii in our sequence. For every run σ ∈ R that is neither a formula
run nor contains any nominal runs, ∆ contains n domain elements dσ,i, where i ∈ J1, nK. This
concludes the de�nition of ∆.

For each interpretation Ii, by successive application of Lemma 4 and renaming of domain
elements, we can transform Ii into an interpretation such that for every domain element dσ,j ,
j ∈ J1, nK, dσ,j ∈ σ(i)I

′
i , and that furthermore, for the each run σ s.t. {a} ∈ σ(i), aI

′
=

da. The �nal temporal interpretation is then the sequence J = 〈I ′i〉i>0 of all so obtained
interpretations. It can now be shown by structucal induction on the concept operators, by

18

comparing Conditions R1�R4 with the semantics of temporal operators, that for every domain
element d ∈ ∆, every interpretation I ′i, every temporal concept C, d ∈ AIiC i� d ∈ CIi,ι, and for
every concept, d ∈ (Cca)Ii i� d ∈ CIi,ι. Similarly, we can show by induction over the structure
of φ and using φ ∈ tQ(0), that ι |= φ. Hence, φ is satis�able.

Lemma 1. If the underlying DL is ALCOQ or ALCOI, then φ is satis�able i� there exists a
quasimodel 〈Q,R〉 for φ where Q is of the form

Q(0) . . . Q(n)
(
Q(n+ 1) . . . Q(n+m)

)ω
,

with n and m double exponentially bounded in the size of φ.

Proof. Since the other direction directly follows from Lemma 5, we only need to prove that,
if a TPDF φ without probability operators is satis�able, then there exists a quasimodel as
required by the lemma. Assume therefore that φ is satis�able. By Lemma 3, there then exists
a quasimodel 〈Q0,R0〉 for φ, which we step-wise transform into the required form.

Central for our construction is the following claim.

Claim 1. Let 〈Q,R〉 be a quasimodel for φ and i, j ≥ 0 be such that Q(i) = Q(j). Then,
there exists a quasimodel 〈Q′,R′〉 for φ in which Q′ is of the following form:

Q(0), . . . Q(i), Q(j + 1), . . .

Proof of claim. By Condition Q3, for every t ∈ Q(i), there exists a run σ ∈ R with σ(i) = t,
and a run σ′ ∈ R with σ′(j) = t. We can thus de�ne R′ by setting:

R′ = {σ(0), . . . , σ(i), σ′(j + 1), . . . | σ, σ′ ∈ R, σ(i) = σ(j)}.

every sequence in R′ satis�es Conditions R1�R4, and 〈Q′,R′〉 satis�es Conditions Q1�Q3.
This �nishes the proof of the claim.

There can be at most double exponentially many di�erent quasistates, since each quasistate is
a set of types, and there are only exponentially many di�erent types. It follows that for some
i ≥ 0, for every j > i there are in�nitely many k > j s.t. Q0(i) = Q0(k). Based on this, we can
�nd two values 0 ≤ n ≤ m s.t. Q0(n) = Q0(m) and for every run σ ∈ R0,

1. σ(n) = σ(m), and

2. for every run αUβ ∈ σ(n), β ∈ σ(k) for some k ∈ Jn,mK.

Such indices n and m can be found as follows: starting from some quasistate Q0(n) that occurs
in�nitely often, initialisem = n; then iterate over all runs σ ∈ R and check whether Condition 2
is satis�ed for σ and the current value m, and otherwise replace m by the next value m′ > m
s.t. Q0(m′) = Q0(m). Note that once Condition 2 is satis�ed for some run σ and j > i, it is
satis�ed for all runs σ′ with σ(k) = σ′(k) for all k ∈ [i, j], and for all larger indices m′ > m, so
that this procedure �nally gives us the required indices.

To keep track of the satisfaction of the until formulae between n and m, we mark the runs with
fresh concept, obtaining the set R1 of new runs. For every run σ and αUβ ∈ σ(n), there is a
smallest number k ∈ Jn,mK with β ∈ σ(k). If σ is a concept run in R0, we add to R1 the run
σ′ obtained from σ by adding the fresh concept name BCUD to every element σ(l) where l ≤ k,
and ¬BCUD to every element σ(l), where l > k. We do the same for every formula run σ and
ψ1Uψ2 ∈ σ(n), where we use the formula Bψ1Uψ2(a) instead. The sequence Q1 of quasistates

19

is obtained from Q0 by extending the types accordingly, so that Condition Q3 is still satis�ed.
Note that in the resulting quasimodel, for every type t ∈ Q1(m) contains the fresh concept
names only in negated form, and Q1(n) contains the type obtained from t by adding for every
αUβ ∈ t the corresponding marker.

We now apply Claim 1 to �merge� any repeated quasistates between Q1(0) and Q1(n), and
between Q1(n) and Q1(m), resulting in a new quasistate 〈Q2,R2〉 and two new indices n′ and
m′ s.t. Q2(n′) = Q1(n) and Q2(m′) = Q1(m). Note that our fresh concept names make
sure that each merging step preserves Conditions 1 (modulo the fresh symbols) and 2, so that
〈Q2,R2〉 satis�es these conditions as well, albeit for the indices n′ and m′. Furthermore, since
Q2 still contains at most double exponentially many quasistates, and no quasistate occurs twice
between Q(0) and Q(n), or twice between Q(n) and Q(m), n′ and m′ are double exponentially
bounded. To obtain a quasimodel for our input formula φ, we remove all occurences of the fresh
concept names again and result in a quasimodel 〈Q3,R3〉 which satis�es Conditions 1 and 2
for the indices n′ and m′. We can now use a similar argument as we used to prove Claim 1 to
show that there exists a quasimodel 〈Q,R〉 in which Q is of the form

Q3(0), . . . , Q3(n′)
(
Q3(n′ + 1), . . . , Q3(m′)

)ω
,

which is now of the form as required.

Next, we establish the complexity of deciding admissibility of quasistates.

Lemma 6. If the underlying DL is ALCOI or ALCOQ, whether a given quasistate S is
admissible can be decided in time double-exponential in the size of the input formula φ. If the
underlying DL is ALCQ, it can be decided in time single-exponential in the size of the input
formula φ.

Proof. Note hat S contains at most exponentially many elements, as there can be at most
exponentially many types. We reduce our problem to a query entailment problem of the form
K 6|= Q, where K is a set of DL axioms and Q is a disjunction of CQs. K is the union of two
KBs, K1 and K2. K1 is de�ned based on the formula type tS , and contains the following axioms:

1. for every DL axiom α ∈ tS , it contains αca,

2. for every ∃~x.q(~x) ∈ tS , the set of assertions q(~a) obtained from q(~x) by replacing each
variable by a fresh individual name, and

3. for every ¬(C v D) ∈ tS , it contains the assertion (Cca u ¬Dca)(a), where a is fresh.

In models of K1, the conceptual abstractions of every GCI, negated GCI and CQ in tT are
satis�ed. K1 contains polynomially many elements, since the formula type tS contains one
element per generalised axiom occurring in φ.

K2 is de�ned based on the concept types in S, and contains

1. for every concept type t ∈ S that is not a nominal type, the assertion (
d
C∈t C

ca)(a),
where a is a fresh individual name,

2. for every nominal type t ∈ S, where {a} ∈ t, the assertion (
d
C∈t\{a} C

ca)(a), and

3. for every concept type t ⊆ tc(φ) s.t. t 6∈ S and t is not a nominal type, the GCId
C∈t C

ca v ⊥.

20

In models I of K2, there is an a domain element for every type t ∈ S that satis�es the conceptual
abstractions of the concepts in t. Furthermore, for every concept type t not in S, there is no
domain element in I that satis�es all of the conceptual abstractions of the concepts in t. K2

contains exponentially many elements, since there are exponentially many di�erent concept
types.

K is the union K1 ∪ K2 of both KBs, and thus also of exponential size. The UCQ Q is a
disjunction over all CQs q ∈ form(φ) for which ¬q ∈ tS , and all assertions α ∈ form(φ) for which
¬α ∈ tS . If K 6|= Q, then there is a model I of K that does not satisfy any of the disjuncts
in Q. From the above observations, it follows that this model witnesses the admissibility of S.
It us further not hard to see that any interpretation that witnesses the admissibility of S can
be transformed into a model I of K s.t. I 6|= Q. As a result, we have that S is admissible i�
K 6|= Q.

While K is exponential in the size φ, Q is polynomial in the size of φ. As shown in [23,
Lemma 16,17] based on results in [18, 13] (and, separately, within proofs for results in [4]),
query entailment from ALCOQ and ALCOI-KBs can be decided in time double exponential
in the size of the query and single exponential in the size of the KB. We obtain that, if the
underlying DL is ALCOQ or ALCOI, the required entailment test can be performed in time
double exponential in the size of φ.

For ALCQ, we need to decide this entailment in single exponential time, for which we use the
technique for query entailment from SHQ-KBs presented in [29]. The author shows that, in
order to decide entailment of a UCQ Q, one can construct, based on Q, a series K′1, . . ., K′n of
exponentially many, polynomially sized ALCQ∩ KBs (so called spoilers), so that K 6|= Q i� for
some i ∈ J1, nK, K ∪ K′i is satis�able [29, Lemma 3]. ALCQ∩ extends ALCQ by conjunctions
over role names, and satis�ability of ALCQ∩ KBs can be decided in time exponential wrt. of
the size of the KB. However, in our case, K is already of exponential size, so that this result
alone would only give us a double exponential upper bound. We therefore have show that for
each i ∈ J1, nK, the satis�ability of K∪K′i = K1∪K2∪K′i can still be decided in time exponential
in the size of φ.

We show how to decide satis�ability of each KBs K1 ∪ K2 ∪ K′i in time exponential in the size
of φ, using classical type elimination. In type elimination, the aim is to compute a set of concept
types that corresponds to a model of the KB, where each concept type is represented by some
domain element. Speci�cally, we apply this technique for the KB K1 ∪ K2, and additionally
ensure that only the types encoded in K′i are represented. Because there are only exponentially
many types to consider, this allows us to establish the required bound.

We describe this in detail. We consider the set T0 ⊆ 2tc(K1∪K′
i) of concept types for K1 ∪ K′i.

Since K1 and K′i are both polynomial in φ, there are at most exponentially many such types.
Note furthermore that tc(φ) ⊆ tc(K1 ∪ K′i), and that K2 simply states which types from 2tc(φ)

need to occur in a model, which are exactly those in our quasistate S. We thus remove from
T0 all types t for which there is no type t′ ∈ S s.t. t′ ⊆ t. Next, we have to choose one type
in ta ∈ T0 for each individual name a occurring in K1 ∪ K′i, since each concept type represents
a distinct domain element. As there are exponentially many choices for this, this accounts to
iterating the type elimination algorithm at most exponentially many times, each time with a
di�erent choice, until it is successful.

The type elimination algorithm now proceeds by eliminating concept types that cannot be
represented by any domain element in models of the KB, which may depend on role restrictions
in that type and other concept types in the current set that can be picked to satisfy these role
restrictions. In the following, denote by tr the set of all subsets of role names that occur in φ. A
successor-mapping for a concept type t wrt. to a set Ti of types is a mapping m : tr × Ti → N.
We call m valid if

21

1. for every ≥i(r1 u . . . u rm).C ∈ t, we have
∑
〈R,t〉∈M m(R, t) ≥ i, where M = {〈R, t〉 |

r1, . . . , rm ∈ R, C ∈ t},

2. for every ¬≥i(r1 u . . . u rm).C ∈ t, we have
∑
〈R,t〉∈M m(R, t) < i, where M = {〈R, t〉 |

r1, . . . , rm ∈ R, C ∈ t},

3. for every ∃(r1 u . . . u rm).C ∈ t, we have
∑
〈R,t〉∈M m(R, t) ≥ 1, where M = {〈R, t〉 |

r1, . . . , rm ∈ R, C ∈ t},

4. for every ¬∃(r1 u . . . u rm).C ∈ t, we have
∑
〈R,t〉∈M m(R, t) = 0, where M = {〈R, t〉 |

r1, . . . , rm ∈ R, C ∈ t}.

In order to decide whether a concept type t has a valid successor-mapping wrt. to a set Ti of
types, we can see these conditions as a set of k linear inequations, with the values of the function
m variables, so that we obtain at most one inequation per concept in t. By Carathéodory's
theorem, if such an inequation system has a positive solution, then it has a solution in which at
most k+ 1 variables have a value di�erent from 0, which is polynomial in the size of t. We can
thus decide whether there exists a valid successor-mapping in exponential time by iterating over
all subsets M ′ ⊆ tr × Ti of size k + 1, and then checking in polynomial time whether assigning
a positive number to each element in M ′ gives us a solution to the inequation system.

The type elimination now proceeds by successively eliminating from the current set Ti of concept
types each concept type t ∈ Ti that does have a valid successor mapping in the current set of
types. Since in each step, exponentially many types have to be checked, each check can be
performed in exponential time, and we can eliminate at most exponentially many types, this
process takes at most exponential time.

We then check whether the resulting set T∗ of types satis�es the following conditions:

• for every individual name a occurring in K1 ∪ K′i, T∗ contains a type t with {a} ∈ s, and

• for every type t ∈ S, T∗ contains a type t′ with t ⊆ t′.

It is standard to show that, if the procedure is successful, we can build a model of K∪K′i based
on the types in T∗. On the other hand, the procedure is successful if there exists a model of
K ∪ K′, since we can build the set T∗ based on the types that occur in this model. We obtain
that satis�ability of K∪K′i can be decided in exponential time, which means that we can decide
K |= Q in exponential time, which means that, if the underlying DL is ALCQ, the admissibility
of a quasistate can be decided in time single-exponential in φ.

Theorem 2. Satis�ability of TPDFs without probability operators is undecidable if NRrig 6= ∅.
Otherwise, it is 2ExpTime-complete if the underlying DL is ALCO, ALCI or ALCOI, and
ExpSpace-complete if the underlying DL is ALC or ALCQ.

Proof. By Lemma 1, we can reduce the satis�ability of a TPDF without probability operators to
the existence of a regular quasimodel. We describe a non-deterministic procedure that guesses
and veri�es such a structure, and then argue that it is in the targeted complexity classes. In the
procedure, we �rst guess the numbers n and m form Lemma 1, which are double exponentially
bounded by φ and can thus be stored in binary using only exponentially many bits. We then
guess the quasistates Q(0), . . . , Q(n), Q(n+ 1), . . . , Q(n+m) one after the other, keeping only
the current quasistate as well as Q(n + 1) in memory. For each quasistate, by Lemma 6 we
can verify its admissibility in ExpTime (ALCQ) respectively 2ExpTime (for ALCOQ and
ALCOI). In addition, we keep a set of �unresolved� concepts and formulae of the form αUβ for
each run until they have been veri�ed. Clearly, apart from the admissibility test, all of these

22

operations only take exponential space. Finally, we verify that Q(n+m) = Q(n+ 1), and that
every expression of the form αUβ in Q(n+1) has been satis�ed before Q(n+m). This procedure
runs in ExpSpace if the underlying DL is ALCQ, and in ExpSpace

2ExpTime = 2ExpTime if
the underlying DL is ALCOQ or ALCOI.

C Only Probability Operators

We prove both directions of Lemma 2 in separate lemmas.

Lemma 7. If a TPDF φ without temporal operators is satis�able, then there exists a proba-
bilistic quasimodel 〈PS,PT〉 for φ.

Proof. Let ι : J→ [0, 1], where J ⊆ 2J , be a probabilistic model of φ with domain ∆. Since φ
contains no temporal operators, only the �rst interpretation I0 in each sequence (Ii)i≥0 ∈ J is
relevant, which is why, in the following, we leave out the subscripts of the interpretations and
treat J as a set of classical interpretations (each time referring to the �rst interpretation of the
sequence).

Based on ι, we build a full quasistate. First, we associate to every interpretation I ∈ J an
admissible quasistate SI by setting:

1. tSI = {ψ ∈ tf(φ) | I, ι |= ψ}, and

2. SI = {tSI} ∪ {t ⊆ tc(φ) | tI,ι 6= ∅}.

It follows from the de�nition of admissible quasistates that TI is admissible: we just have to
replace every probabilistic concept C in every I by its conceptual abstraction Cca to obtain
a witnessing interpretation. Note that several interpretations may have the same admissible
quasistate. We set S = {SI | I ∈ J }, and de�ne PS : 2S → [0, 1] by setting, for every S ∈ S,

PS({S}) = P ({I ∈ J | S = SI}).

PS is a probabilistic quasistate. Furthermore, we have φ ∈ tT for every S ∈ S, since by
assumption, ι |= φ, and therefore, for every I ∈ J , I, ι |= φ. Consequently, S satis�es
Condition PQ1.

We continue by constructing the probabilistic concept types. For every domain element d ∈ ∆
and interpretation I ∈ J , we de�ne the concept type type(d, I) = {C ∈ tc(φ) | d ∈ CI,ι}. To
every domain element d ∈ ∆, we assign the probabilistic concept type ptd : 2Td → [0, 1], where

Td = {type(d, I) | I ∈ J }

and for every t ∈ Td,
ptd({t}) = ι({I ∈ J | t = td,I}).

Our set of probabilistic concept types is then PT = {ptd | d ∈ ∆}. We show that 〈PS,PT〉 is
a probabilistic quasimodel. We have already shown that Condition PQ1 holds. It remains to
show that the remaining two conditions of probabilistic quasimodels are also satis�ed.

We �rst show that Condition PQ2 is satis�ed, that is, every pt ∈ PT is compatible to PS.
Let pt : 2T → [0, 1] ∈ PT be some probabilistic type in PT. Note that there is some domain
element d ∈ ∆ s.t. pt = ptd : 2Td → [0, 1]. We de�ne the domain of the joined probability
measure PPS,pt : 2WPS,pt → [0, 1] for PS and pt by setting WPS,pt = {〈SI , td,I〉 | I ∈ J }. By
construction, WPS,pt ⊆ S × Td. Furthermore, 〈SI , td,I〉 ∈ WPS,pt implies td,I ∈ SI , since by
construction, SI contains type(e, I) for every e ∈ ∆. Therefore,WPS,pt satis�es ConditionPC1.

23

The measure PPS,pt is now de�ned for every 〈S, t〉 ∈WP,pt by

PPS,pt({〈S, t〉}) = ι({I ∈ J | SI = S, td,I = t}).

To see that PPS,pt is indeed a probability measure, note that for every interpretation I ∈ J ,
there exists some tuple 〈S, t〉 ∈ WPS,pt s.t. SI = T and tI = t (by construction), and that for
any two distinct tuples 〈S1, t1〉, 〈S2, t2〉 ∈ WP,pt, the corresponding sets of interpretations are
disjoint. (Otherwise, there would be some interpretation I ∈ J s.t. both S1 = SI = S2 and
t1 = td,I = t2, which means the tuples would not be distinct.) Regarding Condition PC2, we
have for every S ∈ S

PPS,pt({〈S, t〉 | (S, t) ∈WPS,pt})
=PPS,pt({〈SI , td,I〉 | I ∈ J , S = SI})
=ι({I ∈ J | S = SI})
=PS({S}),

and regarding Condition PC3, we have for every t ∈ T

PPS,pt({〈S, t〉 | (S, t) ∈WPS,pt})
=PPS,pt({〈SI , td,I〉 | I ∈ J , td,I = t})
=ι({I ∈ J | t = td,I})
=pt({t}).

Consequently, Ppt,PS satis�es Conditions PC1�PC3, and thus witnesses the compatibility of
pt with PS, which means that Condition PQ2 is satis�ed for 〈PS,PT〉.

Regarding Condition PQ3, we have to show that for every quasistate S ∈ S and every concept
type t ∈ S, there exists a probabilistic concept type pt : 2T → [0, 1] ∈ PT s.t. 〈S, t〉 ∈ WPS,pt.
For every such S and t, there exists an interpretation I ∈ J and a domain element d ∈ ∆ s.t.
S = SI and td,I , so that this condition directly follows. We obtain that 〈PS,PT〉 satis�es all
Conditions PQ1�PQ3, and thus that it is a probabilistic quasimodel for φ.

Lemma 8. Given a probabilistic formula φ, if there exists a probabilistic quasimodel 〈PS,PT〉
for φ, then φ is satis�able.

Proof. Let 〈PS,PT〉 be a probabilistic quasimodel, where PS : S→ [0, 1]. Note that 〈PS,PT〉
remains a quasimodel if we remove every quasistate S ∈ S for which PS(S) = 0, so that we
can assume wlog. that S does not contain such quasistates.

We show how to construct, based on the probabilistic quasimodel, a probabilistic temporal in-
terpretation that is a model of φ. Note for every quasistate S ∈ S, there exists an interpretation
IS witnessing its admissibility. Based on these interpretations, we build a probabilistic model of
φ. Recall also that by the example given at the beginning of the appendix, the model of φ might
have an uncountable set of possible worlds. To keep the following simple, our construction does
not treat this as a special case, but always yields such a model. Speci�cally, it will contain a
possible world Iq for every real number q ∈ [0, 1]:

J = {Iq | q ∈ [0, 1]},

on which we de�ne a probability measure based on the Lebesgue measure over [0, 1]. Speci�cally,
ι is generated based on all intervals [l, u] ⊆ [0, 1], for which it satis�es:

ι({Iq ∈ J | q ∈ [l, u]}) = u− l.

We use the real numbers q to assign possible worlds to quasistates, and later to also assign types
to domain elements. Assume the sets of possible worlds to be enumerated: S = {S1, . . . , Sn},
and assign to each quasistate Si, i ∈ J1, nK, an interval I(Si) = [l, u) for i < n and [l, u] for
i = n, where

24

• l =
∑
i∈J1,iK PS({Si}), and

• u = l + PS({Sn}).

For each q ∈ [0, 1], Iq will be a model corresponding to the quasistate Si for which q ∈ I(Si).
Note that this ensures that for each Si ∈ S, the probability PS({Si}) will be respected by ι.

Additionally, we have to make sure that for every S ∈ S, q ∈ I(Si) and t ∈ Si, Iq has at
least one domain element corresponding to t, and which satis�es all probabilistic concepts in t.
We do so based on the joined probability measures PS,t : 2WS,t → [0, 1], which exist due to
Condition PQ3 for every S ∈ S and t ∈ S. As for the probabilistic quasistate, we may
assume wlog. that for every such measure, the only tuple 〈S′, t′〉 ∈WS,t for which we can have
PS,t(〈S′, t′〉) = 0 is 〈S, t〉.

For every pair 〈S, t〉 with S ∈ S and t ∈ S, the domain ∆ contains domain elements which
again correspond to an interval over the real numbers:

∆ = {dS,t,q | S ∈ S, t ∈ S, q ∈ [0, u), u = PS,t({〈S, t〉})}
∪ {dS,t,0 | S ∈ S, t ∈ S, PS,t = 0}

For each joined probability measure PS,t : WS,t → [0, 1], we de�ne a set of intervals that re�ect
the probabilities in PS,t. For this, we assume a total order <t on the elements in WS,t, which
satis�es 〈Si, t′〉 <t 〈Sj , t′′〉 if i < j. Based on this order, we assign to each tuple 〈S′, t′〉 ∈ WS,t

an interval IS,t(S′, t′) based on the bounds

• l =
∑
〈S′′,t′′〉∈WS,t,〈S′′,t′′〉<t〈S′,t′〉 PS,t({〈S′′, t′′〉}), and

• u = l + PS,t({〈S′, t′〉}).

We assign to IS,t = [l, l] if PS,t({〈S′, t′〉}) = 0. Otherwise, we assign one of the intervals [l, u],
[l, u), (l, u] or (l, u), where

• the interval is open on the left if PS,t({〈S′′, t′′〉}) = 0 for the largest tuple 〈S′′, t′′〉 lower
than 〈S′, t′〉, according to <t, and otherwise, it is closed on the left, and

• the interval is open on the right unless u = 1, in which case it is closed on the right.

These conditions make sure that the intervals �ll the complete range of real numbers in [0, 1]
without gaps, while taking special care of intervals of size 0.

Based on these intervals, we assign a type to each domain element in each interpretation.
Sepci�cally, the function type(Iq, dS,t,q′) assigns to each interpretation Iq and domain element
dS,t,q′ ∈ ∆ a type t′ ∈ S as follows.

• If q 6∈ IS,t(〈S, t〉), then type(Iq, dS,t,q′) = t′, where t′ is the unique type for which q ∈
IS,t(〈S′, t′〉). Note that in this case, q ∈ I(S′), which means that Iq corresponds to the
quasistate S′.

• If q ∈ IS,t(〈S, t〉) and q + q′ ∈ I(S), then type(Iq, dS,t,q′) = t′, where t′ is the unique type
for which (q + q′) ∈ IS,t ∈ IS,t(S, t′). Again we have q ∈ I(S), so that Iq corresponds to
the quasistate S.

• If q ∈ IS,t(〈S, t〉) and q + q′ 6∈ I(S), then q + q′ − PS,t({〈S, t〉}) ∈ I(S), and we set
type(Iq, dS,t,q′) = t′, where t′ is the unique type for which

(q + q′ − PS,t({〈S, t′〉})) ∈ IS,t(〈S, t′〉).

25

It is again not hard to see that the function type() re�ects the joined probability measures PS,t,
in the sense that for each dS,t,q ∈ ∆ and 〈S′, t′〉 ∈WS,t, we have

ι({Iq | type(Iq, dS,t,q) = t′}) = PS,t({〈S′, t′〉}).

This further ensures that the probabilities in the probabilistic concept type pt : 2T → [0, 1]
corresponding to PS,t are taken into account, so hat for every t′ ∈ T and dS,t,q ∈ ∆,

ι({Iq | type(Iq, dS,t,q) = t′}) = pt({t′}),

which in turn ensures that all probabilistic concepts in t′ are taken into consideration.

We now specify how the interpretations Iq are constructed. For each Iq, there exists a quasis-
tate S s.t. q ∈ I(S). Since S is admissible, there exists an interpretation IS which witnesses
the admissibility of S. Furthermore, the above construction ensures that for every concept type
t ∈ S, there exists at least one domain element dS,t,q′ ∈ ∆ s.t. type(Iq, dS,t,q′) = t. We collect
those domain elements in the set d(Iq, t):

d(Iq, t) = {dS,t,q′ ∈ ∆ | type(Iq, dS,t,q′) = t}.

We now extend IS to the interpretation Iq by replacing, for each type t ∈ S, the domain
elements in tIS by d(Iq, t), which we can do in a way that preserves the set of entailed CQs and
GCIs according to Lemma 4. Based on the previous observations, it is now standard to show
by structural induction on the concepts that tIq = tIq,ι for all q ∈ [0, 1] and t ⊆ tc(φ), and that
Iq |= ψ for every ψ ∈ S, where S is such that q ∈ IS . We obtain that ι |= φ, and therefore that
φ is satis�able.

Lemma 2 is now a direct consequence of Lemma 8 and 7

We next show that, if the underlying DL is ALCQ, then it su�ces to consider quasimodels that
only have an exponential number of quasistates and probabilistic concept types. We �rst show
the following auxiliary lemma.

Lemma 9. Assume the underlying DL is ALCQ, and let S1 and S2 be two admissible quasistates
s.t every formula type and every nominal type in S1 ∪ S2 is also contained in S1 ∩ S2. Then,
their union S1 ∪ S2 is also an admissible quasistate.

Proof. Let I1 and I2 be the interpretations witnessing the admissibility of S1 and S2. Without
loss of generality, we may assume that ∆I1∩∆I2 = ∅. We de�ne the interpretation I witnessing
S1 ∪ S2 as follows:

• ∆I1 ∪∆I2 \ {aI2 | a occurs in φ},

• for every a ∈ NI occurring in φ, aI = aI1 ,

• for every A ∈ NC: AI = (AI1 ∪ aI2) ∩∆I , and

• for every r ∈ NR; rI = (rI1 ∪ rI2) ∩ (∆I ×∆I).

Every CQ entailed by I1 is still entailed by I, and every GCI not entailed by I1 is still not
entailed by I. Furthermore, note that no domain elements from ∆I1 are connected to any
domain elements from ∆I2 . It follows that every CQ not entailed by I1 nor I2 is still not
entailed by I, and that every GCI entailed by I1 and by I2 is also entailed by I. From here it
follows that I witnesses the admissibility of S1 ∪ S2.

26

Lemma 10. Assume the underlying DL is ALCQ. Then, if there exists a probabilistic quasi-
model for φ, then there exists a probabilistic quasimodel 〈PS,PT〉 with PS : 2S → [0, 1] in
which S contains at most exponentially many elements.

Proof. We show that every probabilistic quasimodel can be transformed into one such that for
every formula type t ⊆ tf(φ) and set T ⊆ 2tc(φ) of nominal types, S contains at most one
quasistate S s.t. T ⊆ S and t ∈ T . As there are at most exponentially many possible types, φ
contains at most polynomially many individual names and every admissible quasistate contains
at most one nominal type per individual name in φ, this implies the lemma.

Let 〈PS1,PT1〉 with PS1 : 2S1 → [0, 1] be a probabilistic quasimodel s.t. for some formula
type t ⊆ tf(φ), there exists two distinct quasistates S1, S2 ∈ S1 with tS1

= tS2
= t, and every

nominal type in S1 is also contained in S2 and vice versa. We construct a new probabilistic
quasimodel 〈PS,PT〉 in which S1 and S2 are replaced by their union. By doing so exhaustively,
we obtain a probabilistic quasimodel as in the lemma.

By Lemma 9, S1 ∪ S2 is also an admissible quasistate. We can therefore de�ne PS : S→ [0, 1]
by setting S = (S1 \ {S1, S2}) ∪ {S1 ∪ S2}. Note that it is possible that (S1 ∪ S2) ∈ S1, in
which case S has two quasistates less than S1, while otherwise, it has only one quasistate less.
We de�ne PS by setting

• for all S ∈ S with S 6= S1 ∪ S2: PS(S) = PS1({S}),

• if S1 ∪ S2 6∈ S1: PS({S1 ∪ S2}) = PS1({S1}) + PS1({S2}), and

• if S1 ∪ S2 ∈ S1: PS({S1 ∪ S2}) = PS1({S1}) + PS1({S2}) + PS1({S1 ∪ S2}).

PS is an admissible probabilistic quasistate, and we set PT = PT1 to obtain the set of proba-
bilistic concept types. To show that 〈PS,PT〉 is a probabilistic quasimodel, it remains to show
that every probabilistic concept type pt : 2T → [0, 1] ∈ PT is compatible to PS. We do so
by de�ning a the joined probability measure PPS,pt : WPS,pt → [0, 1] of PS and pt based on
the joined measure PPS1,pt : WPT1,pt → [0, 1] of PS1 and pt. WPS,pt is obtained from WPS,pt

by replacing every 〈S1, t〉 and 〈S2, t〉 by 〈S1 ∪ S2, t〉. Clearly, WPS,pt satis�es Condition PC1.
PPS,pt is de�ned by setting for all t ∈ T :

• for all S′ ∈ S s.t. S′ 6= S1 ∪ S2:

PPS,pt({〈S, t〉}) = PPS2,pt({〈S, t〉}),

• if S1 ∪ S2 6∈ S1:

PPS,pt({〈S1 ∪ S2, t〉}) = PPS1,pt({〈S1, t〉}) + PPS1,pt({〈S2, t〉}),

• if S1 ∪ S2 ∈ S1:

PPS,pt({〈S1 ∪ S2, t〉}) = PPS1,pt({〈S1, t〉}) + PPS1,pt({〈S2, t〉})
+ PPS1,pt({〈S1 ∪ S2, t〉}).

PPS,pt satis�es both Condition PC2 and Condition PC3, which means that pt is compatible
to PS. It follows that every pt ∈ PT is compatible to PS, and that 〈PS,PT〉 satis�es Condi-
tion PQ2. It is not hard to see that it also satis�es Conditions PQ1 and PQ3, and therefore
is a quasistate for φ.

27

Lemma 11. If the underlying DL is ALCQ, then φ is satis�able i� it has a probabilistic
quasimodel 〈PS,PT〉 with PS : S→ [0, 1], where both S and PT contain at most exponentially
many elements.

Proof. Assume the underlying DL is ALCQ. By Lemma 10, if φ is satis�able, then it is satis-
�able in a probabilistic quasimodel 〈PS,PT〉 with PS : S → [0, 1] where S contains at most
exponentially many elements. For PT, we only require one probabilistic concept type per pair
S, t, where S ∈ S and t ∈ S (Condition PQ3). Since S and each S ∈ S contain at most expo-
nentially many elements, we obtain that we can �nd a PT that contains at most exponentially
many elements.

We have now all that is needed to prove our complexity upper bounds.

Theorem 3. Satis�ability of TPDFs without temporal operators is in NExpTime if the un-
derlying DL is ALCQ, and in N2ExpTime if the underlying DL is ALCOQ or ALCOI.

Proof. By Lemma 2, it su�ces to show that we can decide the existence of a probabilistic
quasimodel for φ in N2ExpTime, respectively in NExpTime if the underlying DL is ALCQ.
The �rst step is to guess and verify the domains of all probability measures involved.

• We guess the set S of quasistates to be used in the probability measure PS : 2S → [0, 1].
There are at most double exponentially many possible, and by Lemma 6, admissibility
of each of them can be decided in 2ExpTime. In case of ALCQ, by Lemma 11 we only
need to guess exponentially many, the admissibility of each of which can be guessed in
ExpTime.

• For each pair 〈S, t〉 of a quasisate S ∈ S and a type t ∈ S, we guess a set T of types with
t ∈ T , to be used in the probability measure pt : T → [0, 1], and the set WPS,pt ⊆ S× T
satisfying 〈S, t〉 ∈WPS,pt, to be used in the joined probability measure PPS,pt : 2WPS,pt →
[0, 1].

To determine the probability measures, we construct a set of inequations.

We �rst point out some criteria of probabilistic quasimodels 〈PS,PT〉, where PS : S→ [0, 1].

• For every formula of the form P~pψ ∈ tf(φ), we either have P~pψ ∈ tS for all S ∈ S, or
P~pψ 6∈ tS for all S ∈ S. We can thus collect the set of all common formulae of this form
into a set PF .

• The same holds for every probabilistic type pt : T → [0, 1], and concepts of the form
P~pC ∈ tc(φ), so that we can collect the set of all common probabilistic concepts in pt
into the set PC(pt).

The Condition PS2 can thus be captured by the set of inequations that, for every P~pψ ∈ PF ,
contains ∑

S∈S,ψ∈tS

PS({S})~ p. (1)

This gives us a polynomial number of inequations of double exponential length each (since there
are at most double exponentially many quasistates in S). If the underlying DL is ALCQ, each
inequation is of single exponential length.

28

Similarly, the condition of all pt : T → [0, 1] ∈ PT being a probabilistic concept type, can be
captured by the following inequation for every P~pC ∈ PC(pt):∑

t∈T,C∈t
pt({t})~ p, (2)

which gives us, per probabilistic concept type, a polynomial number of inequations of expo-
nential length each, and, as there are at most double exponentially many probabilistic con-
cept types, a double exponential number of such inequations (single exponential in the case of
ALCQ).

Finally, the compatibility conditions PC2 and PC3 for each probabilistic concept type pt :
T → [0, 1] ∈ PT correspond to the following inequations:

1. for every S ∈ S:
(∑

〈S,t〉∈WPS,pt
PPS,pt({t})

)
− PS({S}) = 0, and

2. for every t ∈ T :
(∑

〈S,t〉∈WPS,pt
PPS,pt({t})

)
− pt({t}) = 0.

Finally, we need inequations stating that the probabilities in each probability measure add up
to 1, which is established by the following inequations:

1.
∑
S∈S PS({S}) = 1,

2. for every pt : T → [0, 1]:
∑
t∈T pt({t}) = 1, and

3. for every pt : T → [0, 1]:
∑
〈S,t〉∈WPS,pt

PPS,pt({〈S, t〉}) = 1.

We end up with a set of double exponentially many inequations with up to double exponentially
many elements each. In the case of ALCQ, these are only exponentially many inequations with
up to exponentially many elements each.

We now make use of a result from [17], which was also used to prove upper bounds for Prob-ALC
in [20]. This result states that, if we are given a system E of r linear inequations, each having
integer coe�cients that can be represented using ` bits, then E has a non-negative solution i� it
has a solution in which each member can be represented using at most O(r` ·r log(r)) bits. Our
system of inequations can be transformed into one with integer coe�cients by multiplying each
coe�cient by a common divisor, so that we obtain such a system E in which r and ` are double
exponentially bounded, or exponentially bounded in the case of ALCQ. Consequently, we can
guess a solution in N2ExpTime, and in NExpTime in the case of ALCQ. We obtain that the
complete procedure can be implemented by a non-deterministic Turing machine that runs in
double exponential time for ALCOQ and ALCOI, while it runs in exponential time for ALCQ,
and that satis�ability of TPDFs without temporal operators is in N2ExpTime, respectively
NExpTime if the underlying DL is ALCQ.

D Temporal and Probabilistic Operators

Theorem 4. Satis�ability of TPDFs is 2ExpSpace-hard. This already holds if

• no CQs are used,

• the underlying DL is ALC,

• probabilistic operators are only used on the level of concepts,

29

• NCrig = NRrig = ∅, and

• on the axiom level, we only use Boolean connectives and the operator �, which does not
occur under a negation operator.

Proof. We detail out the construction sketched in the main text.

Step 1: Create ordered bit positions. We de�ne a concept Init that will later initialise a
double-exponential counter on a domain element. This counter is implemented using 2n �time
lines� in di�erent possible worlds, each of which will store a bit value of this counter. As a �rst
step, we make sure that these time lines are enforced for instances of this concept, and that
they are �ordered� in a way that allows us to refer to the �next� possible world. This ordering
is crucial for implementing the double exponential counter.

The di�erent time lines are identi�ed using a single-exponential counter represented using con-
cept names Ai, i ∈ J1, nK, which we in the following call the A-counter. The following axiom
ensures that there exists a time line with an A-counter value of 0, which corresponds to the
�rst bit position:

�
(
Init v P>0

(l

i∈J1,nK

¬Ai
))

�
(
Init v P=1

(l

i∈J1,nK

¬Ai → FirstBit
))

�
(
FirstBit v ©FirstBit

)
.

The following axioms for every i ∈ J1, nK ensure that the A-counter is incremented at each
following time point.

�
(l

j∈J1,i−1K

Aj ≡ Ai ↔©¬Ai
)
.

The axiom states that we �ip the ith bit if all lower bit values are 1, and otherwise we do not
�ip it. We follow here the common convention that an empty conjunction corresponds to >.

For each time line with a counter value of 0, we force the existence of another time line with a
counter value of 2n − 1:

�
(l

i∈J1,nK

¬Ai v P>0

l

i∈J1,nK

Ai

)
.

Since the counters are incremented, this ensures that eventually, at each time point, every
possibe A-counter value is present in some possible world, so that we have indeed 2n possible
�time lines� for the domain element. At each time point, there are now two neighbouring
time lines that are easy to identify: in the one where the A-counter value is 0, the conceptd
i∈J1,nK ¬Ai is satis�ed, and in the one where the A-counter value is 2n − 1, the conceptd
i∈J1,nKAi is satis�ed.

Step 2: Implement double exponential counter. We implement a double-exponential
counter, which we call B-counter, that starts counting on individuals satisfying Init.

We use a concept name Bit to represent bit values within the possible worlds. Initially, the
counter stores the value 0:

�
(
Init v P=1¬Bit

)
.

We have to �ip a bit at position i exactly if bit with a lower position has a value of 1. We use a
concept Flip to represent whether this is the case. We keep the current Flip and Bit value until

30

the A-counter reaches 2n − 1, and then �ip the bit value if required.

�
(⊔
i∈J1,nK

¬Ai v Bit↔©Bit�
)

�
(⊔
i∈J1,nK

¬Ai v Flip↔©Flip
)

�
(l

i∈J1,nK

Ai u Flip v Bit↔©¬Bit
)

�
(l

i∈J1,nK

Ai u ¬Flip v Bit↔©Bit
)

It remains to implement the behaviour of the concept Flip. The �rst bit always �ips:

�
(
FirstBit v Flip

)
.

If the bit at position i has to be �ipped, and its value is 1, then the bit at position i + 1 also
has to be �ipped. In order to identify the time line that corresponds to the next bit position,
we wait until the current A-counter reaches 2n − 1, so that we can identify the next world in
which the A-counter now has a value of 0. This behaviour is captured by the following axioms:

�
(l

i∈J1,nK

Ai u Flip u Bit v P=1((
l

i∈J1,nK

¬Ai)→ Flip)
)

�
(

(
l

i∈J1,nK

Ai) u (¬Flip t ¬Bit) v P=1((
l

i∈J1,nK

¬Ai)→ (FirstBit t ¬Flip))
)
.

The disjunction with FirstBit in the last axiom ensures we do not con�ict with the �rst bit,
which always has to be �ipped.

This completes the speci�cation of the double exponential counter. Now every individual satis-
fying Init will initialise its B-counter value with 0, which is increased every 2n time points, and
goes down back to 0 after it reached its maximal value of 22

n − 1.

Step 3: Enforce Tiling Conditions. The double exponential corridor tiling is now imple-
mented using 22

n

individuals, each carrying a double exponential B-counter, which represent
the rows of the tiling, while the columns are represented along the time line. Note that, since
we do not have rigid roles, it is not possible to keep the connection between these individuals
stable using roles. Instead, we use GCIs to transfer tile information from one individual to
the next. For this, we use a similar trick as for the double exponential counter. We enforce
the existence of 22

n

di�erent individuals which, at each time point, carry a di�erent B-counter
value. At each time point, we can identify two individuals easily: the individual with counter
value 0 satis�es P=1¬Bit, and the individual whose counter value is 22

n − 1 satis�es P=1Bit.
We keep the current tile type on an individual until its counter value reaches 22

n − 1, and then
enforce the tiling conditions using this fact.

First, we make sure that at each time point, each domain element represents exacly one tiling
type t ∈ T , represented using the concept name t:

�
(
> v

⊔
t∈T

t)

�
∧

t,t′∈T,ti 6=j

(t u t′ v ⊥).

31

Next, we initialise the �rst row, which represents the inital tile type t0, and is marked with the
special concept FirstRow:

¬(Init v ⊥)

Init v FirstRow u t0.

Note that these axioms are not under a �-operator, and thus only have to be satis�ed at the
�rst time point of the interpretation.

We use role-successors to step-wise enforce the existence of the remaining rows:

�(P=1Bit v ∃r.P=1Init).

We use a special concept Success to mark the success of the tiling, which is step-wise transferred
along all other rows.

�(FirstRow v tf ↔ Success)

�(Success v ©Success)

�
(
¬(Success u P=1Bit v ⊥)↔ (P=1¬Bit v ©Success)

)
The negated GCI in the last formulae expresses the existence of some individual satisfying
Success u P=1Bit. Note that these axioms also ensure that individuals can only satisfy Success

after a successful tiling has been completed, since otherwise, the concept would be back-
propagated to the �rst row, which then has to satisfy tf .

Each individual keeps its tile type until its B-counter reaches 22
n − 1, and then enforces the

horizontal and the vertical tiling conditions. For the horizontal condition, we just compare
with the next time point. In each case, tiling conditions have only to be checked if we have not
already compeleted the tiling.

�
∧
t∈T

(t u P<1Bit v ©t)

�
∧
t∈T

∨
〈t,t′〉∈H

(
t u P=1Bit v Success t©t′

)

For the vertical condition, we identify the next row via its B-counter value.

�
∧
t∈T

(
¬(t u P=1Bit v Success)→

∨
〈t,t′〉∈V

(P=1¬Bit v t′)
)

Again, the negated GCI is used to express the existence of some individual that satisfying
t u P=1Bit, that does not also satisfy Success.

To complete the construction, we use the following axiom to express that existence of a successful
tiling:

Init v ♦Success.

The �nal TPDF φ is now a conjunction of all TPDFs. It is standard to verify that φ is of the
required form, and is satis�able i� the tiling problem has a solution. We obtain that satis�ability
of TPDFs is 2ExpSpace-hard.

32

	Introduction
	Temporal Probabilistic Description Logic Formulae
	Preliminaries
	Syntax
	Semantics

	Only Temporal Operators
	Only Probability Operators
	Temporal and Probability Operators
	Conclusion
	Temporal Probabilistic Description Logics
	Preliminaries
	Semantics

	Only Temporal Operators
	Only Probability Operators
	Temporal and Probabilistic Operators

