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From Horn-SRIQ to Datalog:

A Data-Independent Transformation that Preserves

Assertion Entailment (Extended Version)

David Carral, Larry González, Patrick Koopmann

November 26, 2018

Abstract

Ontology-based access to large data-sets has recently gained a lot of attention. To
access data e�ciently, one approach is to rewrite the ontology into Datalog, and then use
powerful Datalog engines to compute implicit entailments. Existing rewriting techniques
support Description Logics (DLs) from ELH to Horn-SHIQ. We go one step further and
present one such data-independent rewriting technique for Horn-SRIQu, the extension of
Horn-SHIQ that supports role chain axioms, an expressive feature prominently used in
many real-world ontologies. We evaluated our rewriting technique on a large known corpus
of ontologies. Our experiments show that the resulting rewritings are of moderate size,
and that our approach is more e�cient than state-of-the-art DL reasoners when reasoning
with data-intensive ontologies.

1 Introduction

Assertion retrieval (AR)�i.e., the task of inferring implicit assertions from a Description Logics
(DL) knowledge base (KB)�is an important reasoning task with many applications in knowl-
edge representation and data management. For instance, the computation of AR can be used
to solve SPARQL query answering, and to compute statistics on the implicit inferences of data-
intensive ontologies such as in [3, 23]. For these tasks, both the concepts an object satis�es
and the relations between objects are relevant. Typical DL ontologies focus on providing ax-
ioms about concepts, but expressive ontologies also allow to make inferences about roles, e.g.,
through the use of logical constructors such as inverse roles and role chains.

E�cient AR on large datasets requires the use of �one-pass� algorithms that compute the full set
of entailed assertions as part of a saturation procedure. Although many customised algorithms
and implementations of this type have been developed in the past, to the best of our knowledge,
either these procedures do not support role chains, or they are not complete for deriving role
assertions. Indeed, the retrieval of roles in the presence of role chains is a rather challenging
task, as it may require reasoning about paths involving objects not explicit in the data.

Example 1. Let Tex be the TBox with the following axioms modelling con�icts of interests
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between researchers.

ResearchGroup v ∀hasMember.Researcher

Researcher v ∃hasMember−.ResearchGroup

collaborated ◦ hasMember− ◦ hasMember v hasConflict

hasMember ◦ supervises v hasMember

Here, the third axiom uses a role chain to express that, if a researcher collaborated with someone
who is a member of a research group, then he has a con�ict of interest with everyone from that
group. Using Tex, we can infer from the ABox

Aex = {collaborated(gottlob, alonzo), supervises(alonzo, alan),Researcher(alonzo)}

the two assertions Researcher(alan) and hasConflict(gottlob, alan). Both entailments depend on
the existence of a research group which has both alan and alonzo as members, the existence of
which is implied but not explicit. Speci�cally, gottlob has a con�ict of interest with alan because
there is a path via alonzo and this research group connecting gottlob with alan, which corresponds
to the role chain in the third axiom.

We propose a technique for AR from KBs formulated in Horn-SRIQu�a DL fragment that
supports complex roles and role conjunctions [15]�based on data-independent rewritings into
Datalog rule sets. Speci�cally, given a TBox T , we describe how to construct a Datalog rule
set RT s.t., for every ABox A and assertion α only using symbols occurring in T , we have
〈T ,A〉 |= α i� 〈RT ,A〉 |= α.

To show practical feasibility, we implemented and evaluated our transformation, showing that
Datalog rewritings for many real-world Horn-SRIQu TBoxes are of moderate size. Moreover,
we computed our Datalog rewritings for two real-world ontologies, and performed AR over the
resulting Datalog KBs. Our results show that our approach can outperform Konclude [21]�
considered as one of the leading DL reasoners [19]�when solving AR over data-intensive on-
tologies. This is rather noteworthy, since (unlike Konclude) our rewritings are complete for role
retrieval.

In summary, our contributions are as follows.

• We present a worst-case optimal transformation of Horn-SRIQu TBoxes into Datalog
rule sets that preserves satis�ability and assertion entailment.

• We show that the resulting rule sets can be transformed into equivalent DLP ontologies
[7]�the DL fragment underlying the OWL RL standard.

• We empirically show that our rewriting technique produces Datalog rule sets of moderate
size for many real-world Horn-SRIQu TBoxes.

• We empirically show that the resulting Datalog programs can be used to solve AR more
e�ciently than DL reasoners when dealing with data-intensive ontologies.

Formal proofs and arguments for the results in this paper, as well as evaluation details, are in
the appendix.

1.1 Related Work

Even though there are many algorithms and implementations for AR on DL KBs, we �nd that
none of them can satisfactorily handle role retrieval, i.e., the retrieval of role assertions, in the
presence of role chains.
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There are many approaches that can e�ciently perform AR for DLs which do not support role
chains, and which are similar in spirit to our approach. Hustadt et al. [10] reduce standard
reasoning tasks in the DL SHIQ− to reasoning over disjunctive query Datalog programs. Eiter
et al. [6] propose a method that combines materialisation�a step that can be repurposed
to solve role retrieval�and rewriting to solve conjunctive query answering over Horn-SHIQ
ontologies. A similar method tailored for the DL Horn-ALCHOIQ is presented by Carral et
al. [4]. Recently, Ahmetaj et al. [1] proposed Datalog rewritings to perform instance queries
over ALCHIO KBs extended with closed predicates.

State-of-the-art DL reasoners such as Fact++ [22], HermiT [18], Pellet [20] and Konclude [21]
support SROIQ KBs. However, while the former three do not perform that well on data-
intensive ontologies [19], Konclude does not support role retrieval as part of its one-pass algo-
rithm. As our results indicate, Datalog rewritings have the potential to outperform all these
approaches.

Regarding less expressive DLs, despite the fact that there are theoretical algorithms for EL++

that can deal with role chains [13], leading pro�le reasoners such as ELK [12] do not support
this expressive feature yet.

2 Preliminaries

We consider logical theories based on �nite signatures consisting of mutually disjoint sets Nc of
concepts (unary predicates), Nr of roles (binary predicates), Nv of variables, and Ni of individuals
(constants), as well as an unbounded set N0 of nulls disjoint with all of the above. There is a
bijective and irre�exive function ·− : Nr → Nr with R−− = R for all R ∈ Nr, and ⊥,> ∈ Nc.
For a formula or set thereof ϕ, we use sig(ϕ) to denote the set of all concepts and roles in ϕ.
The sets of terms and ground terms are Nt = 2Ni ∪ N0 ∪ Nv and Ngt = 2Ni ∪ N0, respectively.
The use of 2Ni rather than Ni in the de�nition of terms is for convenience of the de�nition of
the chase later in this section. Thus, we henceforth identify every a ∈ Ni with the singleton
set {a}.

2.1 Existential Rules

We write tuples of terms t1, . . . , tn as ~t, and treat such tuples as sets when the order is irrelevant.
An atom is a formula of the form C(t) or R(t, u) with C ∈ Nc, R ∈ Nr, and t, u ∈ Nt. We
identify a binary atom R(t, u) with R−(u, t). A formula or set thereof is ground if it only
contains ground terms. For a formula ϕ, we write ϕ[~x] to indicate that ~x is the set of all free
variables occurring in ϕ.

An (existential) rule is a formula of one of the forms:

∀~x, ~z.
(
B[~x, ~z]→ ∃~y.H[~x, ~y]

)
(→)

∀~x.
(
B[~x]→ x ≈ y

)
(≈)

Where B and H are non-empty, null-free conjunctions of atoms, and x, y ∈ ~x. A Datalog
rule is a rule without existentially quanti�ed variables. A fact is a ground atom. We identify
facts and sets thereof if they are identical up to bijective renaming of nulls. A knowledge
base (KB) is a tuple 〈R,A〉 with R a rule set and A an ABox�a set of facts without nulls,
i.e., assertions. We treat KBs as �rst-order theories and de�ne semantical notions such as
entailment and satis�ability in the usual way. To axiomatise the semantics of >, we assume
that {A(x)→ >(x) | A ∈ Nc} ∪ {R(x, y)→ >(x) ∧ >(y) | R ∈ Nr} ⊆ R for every rule set R.
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∧n

i=1
Ai(x)→B(x)

ln

i=1
Ai vB (u)

A(x) ∧R(x, y)→B(y) Av∀R.B (∀)
A(x)→∃y.R(x, y) ∧B(y) Av∃R.B (∃)
A(x) ∧R(x, y) ∧B(y)

∧R(x, z) ∧B(z)→ y ≈ z Av61R.B (≤)∧n

i=1
Ri(xi−1, xi)→ S(x0, xn) R1 ◦ . . . ◦Rn v S (◦)∧m

i=1
Ri(x, y)→ S(x, y)

lm

i=1
Ri v S (ur)

Figure 1: Horn-SRIQu Axioms, where A(i), B ∈ Nc, R(i), S ∈ Nr, x(i), y, z ∈ Nv, n ≥ 1, and
m > 1

2.2 The DL Horn-SRIQu

Without loss of generality [15], we de�ne Horn-SRIQu using a restricted set of normalised
axioms, which we introduce in the right hand side of Figure 1. We identify each of these axioms
with the corresponding rule in the left hand side of Figure 1, and alternate between these two
syntaxes whenever this is convenient.

For an axiom set R, let ≺+
R be the minimal transitive relation over roles s.t. R ≺+

R S i�
R− ≺+

R S; for every axiom in R of Type (ur), Ri ≺+
R S for all i ∈ J1,mK; and, for every axiom

in R of Type (◦),

• if n = 1 and R1 6= S−, then R1 ≺+
R S, and

• if n > 1 and R1 ◦ . . . ◦Rn 6= S ◦ S, then

� if Rn = S, then Ri ≺+
R S for all i ∈ {1, . . . , n− 1},

� if R1 = S, then Ri ≺+
R S for all i ∈ {2, . . . , n}, and

� if R1 6= S 6= Rn, then Ri ≺+
R S for all i ∈ {1, . . . , n}.

A role V is complex wrt. R if there is an axiom in R of Type (◦) with n > 1 and S ≺∗R V with
≺∗R the re�exive closure of ≺+

R. Otherwise, V is simple.

De�nition 1. An axiom set T is a (Horn-SRIQu) TBox if ≺+
T is irre�exive, and all roles

occurring in an axiom of Type (≤), or in the left hand side of an axiom of Type (ur) in T are
simple. A KB 〈T ,A〉 is Horn-SRIQu if T is a Horn-SRIQu TBox.

2.3 The Chase

A well-known way of characterising entailments from KBs is the chase, which we introduce
next.

A substitution σ is a partial function over Nt. We use [t1/u1, . . . , tn/un] to denote the substi-
tution σ s.t. σ(ti) = ui for all i ∈ J1, nK. For a formula ϕ, we write ϕσ to denote the formula
obtained by replacing all occurrences of a term t in ϕ with σ(t) if t is in the domain of σ. For
a tuple ~t of terms, σ~t ⊆ σ is the restriction of σ to the domain ~t.
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g ao : R

n : RG

aa : R
C

HC HM
HM

S

HC

Figure 2: Chase of Ox = 〈Tex,Aex〉 from Example 1

To handle rules of Type (≈), we represent individuals as sets, which is why we used 2Ni in
the de�nition of terms. For a given substitution σ and two variables x, y, we de�ne σrn

x,y

by σrn
x,y(x) = σrn

x,y(y) = σ(x) if σ(x), σ(y) ∈ N0, and σrn
x,y(x) = σrn

x,y(y) = (σ(x) ∪ σ(y)) ∩ Ni

otherwise. Intuitively, σrn
x,y is the substitution identifying σ(x) and σ(y).

A tuple 〈ρ, σ〉 with ρ = B[~x, ~z] → ∃~y.H[~x, ~y] a rule and σ a substitution is applicable to a set
of facts F if Bσ ⊆ F , and Hσ′ 6⊆ F for all σ′ ⊇ σ~x. The application of 〈ρ, σ〉 on F , written
F〈ρ, σ〉, is the set of facts F ∪Hσ′ with σ′ ⊇ σ~x a substitution mapping every variable in ~y to
a fresh null. If ρ is of the form B[~x] → x ≈ y, then 〈ρ, σ〉 is applicable to F if Bσ ⊆ F and
σ(x) 6= σ(y). In this case, the application of 〈ρ, σ〉 on F , also denoted by F〈ρ, σ〉, is the set
Fσrn

x,y.

We introduce this non-standard approach of rule applications with equality to ensure that the
forest-model property of Horn-SRIQu ontologies is re�ected in the structure of the chase,
which will later be useful to show completeness of our Datalog rewritings

De�nition 2. A chase sequence for a KB K = 〈R,A〉 is a sequence F0 = A,F1, . . . of sets of
facts s.t.

• for all i ≥ 1, F i = F i−1〈ρ, σ〉 for a rule ρ ∈ R and some substitution σ s.t. 〈ρ, σ〉 is
applicable, and

• for all 〈ρ, σ〉 with ρ ∈ R, there is some k ≥ 0 s.t. 〈ρ, σ〉 is not applicable to F i for all
i ≥ k (fairness).

The chase of K, denoted by K∞, is the is the union of all sets in some (arbitrarily chosen)
chase sequence of K.

For the rest of the paper, we �x a Horn-SRIQu KB O = 〈T ,A〉 and some (possibly in�nite)
chase sequence O0,O1, . . . for O. For all i ≥ 1, let ρi ∈ T be an axiom and σi a substitution
s.t. Oi = Oi−1〈ρi, σi〉. By abuse of notation, we write P (a1, . . . , an) ∈ F , with F a set of facts,
P ∈ Nc ∪ Nr, and a1, . . . , an ∈ Ni, if P (b1, . . . , bn) ∈ F for some b1, . . . , bn ∈ 2Ni with ai ∈ bi for
all i ∈ J1, nK.

Theorem 1. A KB K is satis�able i� ⊥(t) /∈ K∞ for all t ∈ Ngt. If K is satis�able, K |= α i�
α ∈ K∞ for every assertion α.

We later show that the every chase step in a chase sequence of a Horn-SRIQu ontology re�ects
the �forest-shaped� when we restrict to facts containing at least one null, which corresponds to
the well-known forest-model property of Horn-SRIQu. In the presence of complex roles, the
forest-model property is not entirely apparent in the chase steps of an ontology. To characterise
this property, we distinguish binary facts in the chase that are not produced via the application
of axioms of the Type (◦) with n ≥ 2, or the propagation of such facts.

All binary facts in O0 are direct. For all i ≥ 1, a binary fact φ ∈ Oi \ Oi−1 is direct i� ρi is of
Type (∃) or (ur); ρi is of Type (◦) with n = 1 and R1(σi(x0), σi(x1)) ∈ Oi−1 is direct; or ρi is
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of Type (≤), and there is a direct fact φ′ ∈ Oi−1 s.t. φ′(σi)
rn
x,y = φ. For i ≥ 0, we write D(Oi)

to denote the set of all direct facts in Oi.

Example 2. Consider the TBox Tex and ABox Aex from Example 1. The chase of Ox =
〈Tex,Aex〉 is depicted in Figure 2, where direct and not direct facts are represented using full
and dashed arrows, respectively. Note that n is a null introduced by the chase.

If we consider only the direct facts that occur in the chase sequence of an ontology, we can
establish the �forest model property� re�ected in every chase step of this sequence. For all
i ≥ 0, let F(Oi) be the graph s.t. every a ∈ 2Ni in Oi is a node in F(Oi), and tn−1 → tn ∈ F(Oi)
if there is a sequence of facts R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi) with t0 ∈ 2Ni and ti 6= tj for
all 0 ≤ i < j ≤ n.

Lemma 1. For all i ≥ 0,

• all nulls in Oi occur as nodes in F(Oi), and

• F(Oi) is a rooted forest where every individual node is a root, and every null node is not.

2.4 Non-Deterministic Automata

In our approach, we need to trace the paths of complex roles in the chase of a Horn-SRIQu
KB that traverse only direct facts. To do so, we make use of well-known automata techniques
from [9, 11]. Here, we use non-deterministic �nite automata (NFAs) in a rather informal way,
and use the notation p →R q ∈ N to denote that, in the NFA N , there is a transition from a
state p to a state q with the letter R, instead of introducing transition relations formally.

De�nition 3. For a TBox T , let T− ⊇ T be the TBox with R−n ◦ . . . ◦R−1 v S− ∈ T− for every
axiom of Type (◦) in T .

For every V ∈ Nr, the NFA NT (V ) is the smallest NFA s.t. iV →V fV ∈ NT (V ) with iV and
fV the only initial and �nal states; and for every transition q →S q̂ ∈ NT (V ) and every axiom
in T− of the form (◦), we have

• if n = 1 and R1 = S−, then q →S− q̂ ∈ NT (V ),

• if n = 2, R1 = S, and R2 = S, then q̂ →ε q ∈ NT (V ),

• Otherwise,

� if R1 6= S = Rn, then q →ε q0 →R1
q1 →R2

q2 →R3
. . .→Rn−1

qn−1 →ε q ∈ NT (V ),

� if R1 = S 6= Rn, then q̂ →ε q1 →R2 q2 →R3 q3 →R4 . . .→Rn qn →ε q̂ ∈ NT (V ), and

� if R1 6= S 6= Rn, then q →ε q0 →R1
q1 →R2

q2 →R3
. . .→Rn

qn →ε q̂ ∈ NT (V ).

In the above, states qi are assumed to be fresh and distinct.

Our de�nition of NFA coincides with that from [9] in the sense that the resulting NFA NT (R)
for any R ∈ Nr does recognise the same language. With analogous arguments to those presented
by Horrocks et al., we can show the following claim.

Lemma 2. For all i ≥ 0, if Oi is closed under the application of axioms of Type (ur), there is a
binary fact R(t, u) ∈ Oi i� there are some S1(t, t1), . . . , Sn(tn−1, u) ∈ D(Oi) with S1 · . . . ·Sn ∈
NT (R).
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iHC

q1

q2
q3

fHC
HC

C
HM− HM

ε

S− S

iHM fHM
HM

S

Figure 3: The NFA NTex(HC) and NTex(HM)

Given a P = R1 · . . . · Rn with R1, . . . , Rn ∈ Nr, we write q →∗P q̂ ∈ NT (R) (resp. P ∈ NT (R))
to indicate that there is a path P from q to q̂ (resp. iR to fR) in NT (R).

Example 3. Consider Ox = 〈Tex,Aex〉 with TBox Tex and ABox Aex from Example 1. The
NFA NTex(HC) and NTex(HM) are depicted in Figure 3 (for the sake of clarity, we have removed
some ε-transitions). As implied by Lemma 2 and since HC(g, aa), we have C(g, ao), HM−(ao, n),
HM(n, ao), S(ao, aa) ∈ D(O∞x ) such that C · HM− · HM · S ∈ NTex(HC) (see Figure 2).

3 Datalog Rewritings in Horn-SRIQu

In this section, we de�ne the Datalog AR-rewriting RT for the TBox T and discuss complexity
results.

De�nition 4. A rule set R is an AR-rewriting for T i�, for every ABox A and assertion α
over sig(T ), 〈T ,A〉 and 〈R,A〉 are equi-satis�able and 〈T ,A〉 |= α i� 〈R,A〉 |= α.

Let O = 〈T ,A〉 and KO = 〈RT ,A〉. By Theorem 1, RT is an AR-rewriting only if the chase of
KO coincides with the chase of O on all assertions over sig(T ). The challenge in constructing
Datalog AR-rewritings is that assertions in the O∞ might be introduced by rule applications
on facts with nulls, whilst no Datalog rule can introduce such terms.

Example 4. Let Ox be the ontology from Example 1. Then, the assertion HC(g, aa) is in O∞x
because HC(g, ao), HM(n, ao),HM(n, aa) ∈ Ox (see Figure 2). Analogously, R(aa) ∈ O∞x because
RG(n),HM(n, aa) ∈ O∞x . Note that the facts HM(n, ao),HM(n, aa), and RG(n) cannot occur in
the case of a Datalog AR-rewriting, since n ∈ N0.

To replicate assertion entailments in K∞O such as the ones highlighted in the previous example,
we encode information in K∞O about the null successors of an individual in O∞ using fresh
concepts and roles. For all R ∈ Nr and states q, q̂ ∈ NT (R), we introduce the fresh concepts Aq
and Rq,q̂, and the fresh role Rq. Intuitively, these are used to encode the following information
about O∞ in K∞O .

1. If Aq(a) ∈ K∞O , then there are some A(t0) ∈ O∞, and some R1(t0, t1), . . . , Rn(tn−1, a)
∈ D(O∞) with q →∗R1·...·Rn

q̂ ∈ NT (R).

2. IfRq,q̂(a) ∈ K∞O , then there are someR1(a, t1), . . ., Rn(tn−1, a) ∈ D(O∞) with t1, . . . , tn−1 ∈
N0 and q →∗R1·...·Rn

q̂ ∈ NT (R).

3. If Rq(a, b) ∈ K∞O , then S1(a, t1), . . ., Sn(tn−1, b) ∈ D(O∞) with iR →∗S1·...·Sn
q ∈ NT (R).

Note that all terms ti may possibly be nulls that do not appear in the chase of KO.
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A v ∃R.(B u C) C v A
A v ∃R.(B u C uA)

(1)

A v ∃(R u S).B S v R
A v ∃(R u S uR).B

(2)

A v ∃R.(B u ⊥)

A v ⊥
(3)

A v ∃(R uR).B A v ∀R.B
A uA v ∃(R uR).(B uB)

(4)

A v ∃(R uR−).(B uA) A v ∀R.B
A v B

(5)

A v ∃(R uR).(B uB) A v 61R.B

C v ∃(S uR).(D uB)

A u C uA v ∃(R u S uR).(B u D uB)
(6)

A v ∃(R uR−).(B u C uA) A v 61R.B

C v ∃(S uR).(D uB u C)

A uB v C
A uB v ∃(R uR− u S−).(B u C uA)

(7)

Figure 4: Derivation Rules where A,B ∈ Nc, R ∈ Nr, and A,B,C,D and R, S are conjunctions
of elements in Nc and Nr, respectively

To ascertain when information about one of these predicates needs to be used in KO, we make
use of a sound saturation calculus from [6], shown in Figure 4, which we also use to infer
further axioms relevant to our Datalog program. Since this calculus was originally designed for
Horn-SHIQ, we �rst need to extend our input TBox T to a TBox T+ in which the behaviour
of axioms of Type (◦) is su�ciently simulated. For instance, if the calculus derives from T+

an axiom of the form A v Aq, then we can conclude that, for every term t s.t. B(t) ∈ O∞
for every B ∈ A, there is a set of direct facts A(t0), R1(t0, t1), . . . , Rn(tn−1, a) ∈ O∞ with a
corresponding path in the automata, irrespectively of the ABox A. We further augment T+ to
a TBox T× that allows us to trace paths in possible chases for T . Using the inferences from
this calculus, we then describe the rewriting RT .

De�nition 5. Let B(T ) be the set of axioms that, for every axiom ρ ∈ T of Type (∀), contains
A v AiR , AfR v B, and Aq v ∀S.Aq̂ ∈ B(T ) for every q →∗S q̂ ∈ NT (R) with S ∈ Nr. Let
T+ = T− ∪ B(T ), and T× = T− ∪ B(T ∪

⋃
R∈Nr
{X v ∀R.Y }), with X and Y fresh concepts.

Then, RT is the Datalog rule set that contains every axiom in T+ that is not of Type (∃), and
every axiom that can be inferred using the implications described in Table 1.

Theorem 2. The rule set RT is an AR-rewriting of T .

This result is a corollary of Lemmas 3, 16, and 11. Lemmas 16, and 11 are proven in the
appendix.

Example 5. Let Ox be the ontology from Example 1. Then, the Datalog rule set RTex contains

9



∧
D∈DD(x) → A(x) ⇐= D v A ∈ Γ(T×) (u)∧
D∈DD(x) → Rq,q̂(x) ⇐= R ∈ Nr, q, q̂ ∈ NR(T ), and D uXq v Xq̂ ∈ Γ(T×) (	)

A(x) ∧
∧

D∈D∪AD(x) ∧ R(x, y) ∧ B(y) → C(y) ⇐= A v 61R.B,D v ∃(R u R).(A u B u C) ∈ Γ(T×) (^ 1)

A(x) ∧
∧

D∈DD(x) ∧ R(x, y) ∧ B(y) → S(x, y) ⇐= A v 61R.B,D v ∃(R u R u S).(A u B) ∈ Γ(T×) (^ 2)

S(x, y) → Rq(x, y) ⇐= R,S ∈ Nr and iR →∗S q ∈ NT (R) (R 1)

RiR,q(x) → Rq(x, x) ⇐= R ∈ Nr and RiR,q ∈ RT (R 2)

Rq(x, y) ∧ S(y, z) → Rq̂(x, z) ⇐= R,S ∈ Nr and q →∗S q̂ ∈ NT (R) (R 3)

Rq(x, y) ∧ Rq,q̂(y) → Rq̂(x, y) ⇐= R ∈ Nr and Rq,q̂ ∈ RT (R 4)

RfR
(x, y) → R(x, y) ⇐= R ∈ Nr (R 5)

Table 1: Rules to construct RT , where Γ(T×) is the saturation of T× by the rules in Figure 4
and all concepts A and B and those in the conjunctions D and A occur T+.

g ao : R, HCq1,q3 ,RfHM aa : R, RfHM
C

HCq1 , HCq3 , HCfHC , HC

S

HCq3 , HCfHC , HC

Figure 5: Representation of K∞O with O from Example 1

(amongst others) all the rules in Tex that are not of Type (∃), as well as the following.

R(x)→ RfHM(x) RfHM(x)→ R(x)

RfHM
(x) ∧ S(x, y)→ RfHM(y)

C(x, y)→ HCq1(x, y) R(x)→ HCq1,q3(x)

HCq1(x, y) ∧ HCq1,q3(x)→ HCq3(x, y)

HCq3(x, y)→ HCfHC(x, y) HCfHC(x, y)→ HC(x, y)

HCfHC
(x, y) ∧ S(y, z)→ HCfHC(x, z)

The chase of KOx
is depicted in Figure 5. Note that K∞Ox

contains every assertion in O∞.

While we provide for full proofs of Theorem 2 in the appendix, we give an overview of some
of the main technical ideas in this section. While showing soundness of our approach is not as
challenging, we focus on the argument showing completeness of the AR-rewriting RT . Before
discussing this proof, we give an intermediate result.

Lemma 3. For a TBox T , an ABox A and a fact set F de�ned over sig(T ), 〈T ,A〉 is satis�able
i� 〈T+,A〉 is, and 〈T ,A〉 |= F i� 〈T+,A〉 |= F .

Since T+ ⊇ T , the �if� direction of this lemma follows trivially from monotonicity of logical
entailment. The �only if� direction is proven in the appendix (cf. Lemma 13).

By Lemma 3, it su�ces to show that our Datalog rewritings entail the same assertions as T+

in order to show completeness of our rewriting, which by Theorem 1 is consequence of the
following lemma.

Lemma 4. For a TBox T , an ABox A and an assertion α over sig(T ),

• if ⊥(t) ∈ 〈T+,A〉∞ with t ∈ Ngt, then ⊥(u) ∈ 〈RT ,A〉∞ for some u ∈ 2Ni , and

• if α ∈ 〈T+,A〉∞, then α ∈ 〈R,A〉∞.

10



Let O0
+,O1

+, . . . be a chase sequence for the ontology O+ = 〈T+,A〉 where axioms of Type (ur)
are applied with the highest priority. For every i ∈ J1, nK, we select an axiom ρi ∈ T+ and a
substitution σi s.t. Oi+ = Oi−1

+ 〈ρi, σi〉.

To prove Lemma 4, we show via induction that for every i ≥ 1 and every assertion α ∈ Oi+,
we have α ∈ K∞O . The base case of this induction is trivial, since O0

+ = A and A ⊆ K∞O by
De�nition 2. For the induction step, we provide a thorough case analysis based on the type
of the axiom ρi, and the type of the elements occurring in the range of σi. Since α ∈ K∞O for
every assertion α ∈ Oi−1 by the induction hypothesis, many cases follow trivially. The more
challenging cases are the following.

1. ρi is of Type (◦), σi(x0), σi(xn) ∈ 2Ni and σi(xj) ∈ N0 for j ∈ {1, . . . , n− 1}.

2. ρi is of Type (∀), σi(x) ∈ N0 and σi(y) ∈ Ni.

3. ρi is of Type (≤), and a) σi(y) ∈ 2Ni and σi(x), σi(z) ∈ N0, or b) σi(x), σi(y) ∈ 2Ni and
σi(z) ∈ N0.

Cases in which ρi is of Type (≤), and either σi(z) ∈ 2Ni and σi(x), σi(y) ∈ N0, or σi(x), σi(z) ∈
2Ni and σi(y) ∈ N0, are also non-trivial, but analogous to Cases 3a) and 3b).

In all of the challenging cases, the occurrence of facts containing nulls in Oi−1
+ results in the

introduction of new assertions in Oi+�a situation previously illustrated in Example 4. To
illustrate our completeness argument, we give a brief proof sketch that shows that induction
step for Case (1). First, we introduce a preliminary lemma, which ensures that an axiom as
used for Rule (	) is derived by the calculus if there is a corresponding cyclic path along nulls
in O∞.

Lemma 5. Let i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi+), and q, q̂ ∈ NT (R) with q 6= q̂. If

• q →∗P q̂ ∈ NT (R) with P = R1 · . . . ·Rn, and

• t0 ∈ 2Ni , and t1, . . . , tn−1 ∈ N0;

then there exists A ⊆ {A | A(t0) ∈ Oi+} s.t. A uXq v Xq̂ ∈ Γ(T×).

This result can be shown via induction on the depth of the sequenceR1(t0, t1), . . . , Rn(tn−1, tn)�
the maximum minus the mimimum depth of a term in t0, . . . , tn in the rooted forest F(Oi+).
We proceed with the proof for case (1).

Proof (Sketch). Let ρi be an axiom of the formR1◦. . .◦Rn v S ∈ T+. Then, R1(σi(x0), σi(x1)), . . .,
Rn(σi(xn−1), σi(xn)) ∈ Oi−1

+ .

By Lemma 2 and the fact that Oi+ is closed under application of rules of Type (ur), there
is a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1

+ ) with σi(xj−1) = t0, σi(xj) = tm, and
V1·. . .·Vm ∈ NT (Rj) for every j ∈ {1, . . . , n} (note that possiblym = 1). By concatenating these
sequences, we can construct a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1

+ ) s.t. σi(x0) = t0,
σi(xn) = tm, and V1 · . . . · Vm ∈ NT (S). Hence, there are states q0, . . . , qm s.t. q0 = iV ,
qm = fV , and q0 →W1

q1 →W2
q2 . . . →Wm

qm ∈ NT (V ). Let k0, . . . , ko be the longest sorted
sequence of natural numbers with tkj ∈ 2Ni for all j ∈ {0, . . . , o}. We show via induction that
Sqkj

(t0, tkj ) ∈ K∞O for all j ∈ {1, . . . , o}. In turn, this implies S(σi(x), σi(y)) ∈ K∞O since
SqfS (x, y)→ S(x, y) ∈ RT as k0 = t0 = σi(x), tko = tm = σi(y), and qkm = fS .

To show the base case, we check that Sqk1
(t0, tk1) ∈ K∞O . We consider two possible cases a)

and b) depending on whether k1 = 1. a) Let k1 = 1. Then, W1(t0, t1) ∈ K∞O by the inductive
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hypothesis. Since W1(x, y) → Sq1(x, y) ∈ RT , Sq1(t0, t1) ∈ K∞O . b) Let k1 > 1. By Lemma 1,
tk1 = t0. By Lemma 9, A u XiS v Xqk1

∈ Γ(T×) with A ⊆ Ni−1
c (t0) and hence, A(x) →

SiS ,qk1
(x) ∈ RT . By the inductive hypothesis, A(t0) ∈ K∞O and hence, SiS ,qk1

(t0) ∈ K∞O . Since
SiS ,qk1

(x)→ Sqk1
(x, x) ∈ R∞T , Sqk1

(t0, tk1) ∈ K∞O .

To show the induction step, we verify that, for all j ∈ {2, . . . , o}, Sqkj
(t0, tkj ) ∈ K∞O provided

that Sqkj−1
(t0, tkj−1

) ∈ K∞O . We consider two possible cases a) and b) depending on whether
k1 = 1. Let kj = kj−1 + 1. Then, Wkj (tkj−1

, tkj ) ∈ K∞O by the inductive hypothesis. Since
Sqkj−1

(x, y) ∧ Wkj (y, z) → Sqkj
(x, z) ∈ RT , Sqkj

(t0, tkj ) ∈ K∞O . Let kj > kj−1 + 1. Then,
tkj = tkj−1

by Lemma 1. This case is analogous to the second case considered in the proof of
the base case.

In addition to showing correctness, we can show that our approach is worst-case optimal for
Horn-SRIQu and even for less expressive DLs such as ELH and Horn-SHIQ.

De�nition 6. An axiom set is a Horn-SHIQ TBox if, for every axiom ρ ∈ T of Type (◦), we
have that a) n = 1 or b) n = 2, and R1 = R2 = S.

A ELH TBox T is a set containing axioms of Type (u), (∃), (◦), and of the form ∃R.A v B
with A,B ∈ Nc and R ∈ Nr s.t. a) n = 1 for every axiom of the form (◦) and b) for every
R ∈ Nr, T uses R or R−, but not both.

Axioms of the form ∃R.A v B are equivalent to A v ∀R−.B, which is why ELH is included in
Horn-SRIQu.

Theorem 3. Let O = 〈T ,A〉 be an ontology. If T is Horn-SRIQu/Horn-SHIQ/ELH, then
we can compute RT and 〈RT ,A〉∞ in 2ExpTime/ExpTime/PTime, respectively.

Finally, we show that our rewritings can be transformed into DLP TBoxes. This feature may
prove useful for users that want to produce KBs that are expressible using the OWL standard.

De�nition 7. A DLP TBox is an axiom set that a) does not contain axioms of Type (∃) and
b) may contain axioms of the form

dn
i=1Ai v ∃R.Self with A ∈ Nc and R ∈ Nr.

De�nition 8. Given a TBox T , the DLP-rewriting Tdlp of T is the TBox containing every
DLP axiom in RT which additionally satis�es all of the following.

1. If
∧
A∈AA(x)∧R(x, y)∧B(y)→ C(y) ∈ RT , then A v XA, XA v ∀R.XR−,A, XR−,AuB v

C ∈ Tdlp.

2. If
∧
A∈AA(x) ∧ R(x, y) ∧ B(y) → S(x, y) ∈ RT , then A v ∃WA.Self, B v ∃WB .Self,

WA ◦R ◦WB v S ∈ Tdlp.

3. If Rq(x, y) ∧Rq,q̂(y)→ Rq̂(x, y) ∈ RT , then Rq,q̂ v ∃Wq,q̂.Self, Rq ◦Wq,q̂ v Rq̂ ∈ Tdlp.

In the above, all XA and R.XR−,A are fresh concepts unique for every A ⊆ Nc and R ∈ Nr, and
all WA and Wq,q̂ are fresh roles unique for every W ∈ Nr and the states q and q̂.

The rules introduced in (1)�(3) in De�nition 8 correspond to consequence-preserving transfor-
mations from rules to axioms described in [14]. From this, it follows that Tdlp is an AR-rewriting
of T .
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Figure 6: Times in seconds for RDFox (dark) and Konclude (bright), each over four ABoxes
with increasing numbers of assertions.

4 Evaluation

We implement our rewriting technique in Java using the OWL-API [8] to handle OWL ontology
�les, and Clipper [6] to apply the calculus from Figure 4. We performed two di�erent experi-
ments to validate the practical usefulness of our approach. All �les used in the evaluation (the
implemented system, the ontologies, and the tools compared to) are available online.1

AR on Data-Intensive Ontologies We compared the performance of performing AR using
our Datalog rewritings versus using the DL reasoner Konclude. We considered two real-world,
data-intensive ontologies from the biological domain, Reactome and Uniprot, which were used
in the evaluation of PAGOdA [24]. We have normalised these ontologies and removed axioms
not expressible in Horn-SRIQu. Also, we enriched Reactome and Uniprot with three and �ve
axioms of Type (◦), respectively, as neither ontology contained axioms of this form. These
axioms are listed in the last section of the appendix. The resulting ontologies contained 485
(Reactome), and 304 (Uniprot) terminological axioms, respectively. For each ontology, we
considered ABoxes of various sizes, generated by sampling the real-world ABoxes using the
method by Zhou et al. [24].

The rewritten Datalog programs for the Reactome and Uniprot TBoxes contained 539 and
367 rules, and were computed in 221 and 182 seconds, respectively. We used RDFox (SVN
version 2776) as Datalog engine for computing the chase of our rewritings [17], and compared
its performance with that of Konclude v0.6.2. We performed all experiments and computed
both rewritings on a MacBook Pro with a 2,4 GHz Intel Core i5 and 8GB of RAM. Figure 6
shows the wall-clock times measured in this experiment, ignoring the time used for parsing
and loading, in logarithmic scale. While Konclude reports detailed times, for RDFox we have
measured the time from within our prototype. For more information, see the logs with the
resulting evaluation can be found online. Konclude timed-out (with a one hour time limit) for
the two largest of the Uniprot samples. Hence no times are reported there. Note that our
implementation is performing full AR, whilst Konclude only performed class retrieval.

Size of Rewritings Computed To get an idea on how our approach would perform on
other data-intensive real-world ontologies, we computed rewritings for a selected set of TBoxes
from MOWLCorp [16]. From each ontology in this corpus of DL ontologies, we removed axioms
that, after normalisation, were not in Horn-SRIQu, and selected from the resulting ontology
set those which contained role chain axioms, and removed TBoxes with more than 1,000 axioms,

1https://lat.inf.tu-dresden.de/horn-sriq-rewriting/aaai-evaluation-files.tar.gz
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since TBoxes with smaller sizes are more likely to be used on large data sets. Furthermore,
we removed all those ontologies which belong to any of the pro�les OWL EL, OWL RL, and
OWL QL, since they admit polynomial reasoning even without a Datalog rewriting. This
resulted in a set of 187 ontologies on which we applied our implemented rewriting procedure.

For 121 ontologies, rewritings could be computed without memory errors. Often, memory errors
were caused by complex role chains in the TBox which lead to an explosion of the resulting
automata. For instance, we found one degenerate ontology in the corpus with only 10 axioms, 4
of which were role chain axioms with 8 roles each. For this TBox, T× contained 86,264 axioms,
which Clipper could not handle. We believe that ontologies of this form are unlikely to be used
in practice to reason about large ABoxes.

The sizes of the successful rewritings are shown in Figure 7, where the red bars correspond to
the number of axioms in the input ontologues, and the blue bars to the number of rules in the
resulting Datalog rewritings. For some ontologies, the rewritings got substantially larger. This
was expected, and in theory unavoidable, due to the double exponential time complexity of
assertion entailment in Horn-SRIQu: for Datalog, this complexity is only polynomial, which
is why our rewritings are in the worst case double exponential in the size of the input. Our
evaluation con�rms that these blow-ups are not only of theoretical nature, but do happen for
the considered ontologies. On the other hand, in a lot of cases, the size of the computed rule
sets was still of similar dimensions: in 59% of cases, the the increase was at most by 100%, and
in 74% of cases, it was at most by 200%.

5 Conclusions and Future Work

To the best of our knowledge, we present the �rst data-independent Datalog transformation
for Horn-SRIQu, an expressive DL that allows for the use of the role chain constructor. Fur-
thermore, we show that our transformation is worst-case optimal for ELH, Horn-SHIQ, and
Horn-SRIQu, and that the resulting Datalog programs can be translated into DLP ontologies.
We empirically show that a) the use of Datalog rewritings can outperform state-of-the-art rea-
soners and that b) we can construct rewritings of moderate sizes for many real-world ontologies.

As for future work, we aim to develop a rewriting technique for expressive DLs language that
allows for the use of non-deterministic role constructors and role chains based on the calculi
from [5, 2]. Also, we intend to further optimise our prototype implementation, in order to
produce even smaller rewritings and show that these can be e�ciently computed.
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A Forest-Model Property

In this section we show a preliminary result and Lemma 1.

Lemma 6. Let O0,O1, . . . be a chase sequence for some ontology O = 〈T ,A〉 and let S be
some simple role with respect to T . For all i ≥ 1 and all binary facts of the form S(t, u) ∈ Oi,
we have that S(t, u) ∈ D(Oi).

Proof. We show the lemma via induction on the chase sequence O0,O1, . . . The base case
trivially holds, since every binary fact in O0 is also contained in D(O0). To prove the inductive
step (IS), we show that the lemma holds for Oi with i ≥ 1 provided that (IH) it holds for Oi−1.
Let ρ ∈ T and σ be some axiom and substitution such that Oi = Oi−1〈ρ, σ〉. If the axiom ρ is
of Type (u), (∀), (∃), or (ur), then all binary facts in Oi are in D(Oi) and the IS holds. We
proceed to show that the IS also holds when the axiom ρ is of Type (≤) or (◦).
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Case (≤) Suppose for a contradiction that there is some S(t, u) ∈ Oi \ Oi−1 such that
S(t, u) /∈ D(Oi) and S is a simple role. Then, there must be some fact S(t′, u′) ∈ Oi−1

such that S(t′, u′)σrn
x,y = S(t, u). Since S(t, u) /∈ D(Oi), S(t′, u′) /∈ D(Oi−1). This implies a

contradiction, as we have that S(t′, u′) ∈ D(Oi−1) by IH.

Case (◦) Then, R1(σ(x0), σ(x1)), . . . , Rn(σ(xn−1), σ(xn)) ∈ Oi−1. Let us suppose for a
contradiction that S(σ(x0), σ(xn)) ∈ Oi, S is a simple role, and S(t, u) /∈ D(Oi). Then,
n = 1, R1 is simple, and R1(σ(x0), σ(x1)) /∈ D(Oi−1). This implies a contradiction, since
R1(σ(x0), σ(x1)) ∈ D(Oi−1) by IH.

Lemma 1. For all i ≥ 0,

• all nulls in Oi occur as nodes in F(Oi), and

• F(Oi) is a rooted forest where every individual node is a root, and every null node is not.

Proof. The lemma can be shown via induction on the sequence O0,O1, . . . It is clear that the
base case holds, as F(O0) does not contain any edges, and O0 does not contain any nulls. To
show the inductive step, we show that the lemma holds for F(Oi) with i ≥ 1 provided that (IH)
it holds for F(Oi−1). If the axiom ρi is of Type (u), (∀), (◦), or (ur), then the set of nulls in Oi
coincides with the set of nulls in Oi−1 and F(Oi) = F(Oi−1). Therefore, the lemma holds by
IH for all of these cases. We proceed to show that the lemma also holds when ρi is of Type (∃)
or (≤).

Case (∃) Then, A(σi(x)) ∈ Oi−1 and Oi = Oi−1 ∪ {R(σi(x), n), B(n)} for some fresh null n.
We consider two possible cases.

• Let σi(x) ∈ 2Ni . By IH, σi(x) is a root in F(Oi−1).

• Let σi(x) ∈ 2N0 . By IH, there is some sequence of nodes t0, . . . , tn ∈ F(Oi−1) such that
t0 ∈ 2Ni is a root, all t1, . . . , tn ∈ N0 are not, and tn = σi(x).

In either case, n only occurs in the edge σi(x) → n ∈ F(Oi) since n only occurs in facts
R(σi(x), n), B(n) ∈ Oi.

Case (≤) In this case, no fresh nulls are introduced in Oi and hence, the �rst part of the
lemma holds. Note that, R is simple by De�nition 1. We consider four possible cases.

• σi(y), σi(z) ∈ 2Ni . Then, F(Oi) results from replacing the roots σi(y) ∈ 2Ni and σi(z) ∈ 2Ni

in F(Oi−1) with the fresh root σi(y) ∪ σi(z) ∈ 2Ni .

• σi(y) ∈ N0 and σi(z) ∈ 2Ni . By Lemma 6, R(σi(x), σi(y)) ∈ D(Oi−1) and hence, σi(x) is
the predecessor of σi(y) in F(Oi−1). We study two possible cases.

� σi(x) ∈ 2Ni is a root. Then, F(Oi) results from replacing all occurrences of σi(y) in
F(Oi−1) with the root σi(z), and then erasing all edges from the root σi(x) to the
root σi(z).

� σi(x) ∈ N0 is not a root. Then, F(Oi) results from replacing all occurrences of the
non-root σi(y) in F(Oi−1) with the predecessor of its predecessor, i.e., σi(z).

• σi(y) ∈ 2Ni and σi(z) ∈ N0. Analogous to the previous case.
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• σi(y), σi(z) ∈ N0. By Lemma 6, R(σi(x), σi(y)), R(σi(x), σi(z)) ∈ D(Oi−1). Since σi(y) 6=
σi(z), three possible cases arise.

� σi(y) is the predecessor of σi(x) and σi(x) is the predecessor of σi(z). Then, F(Oi)
results from replacing all occurrences of the non-root σi(z) in F(Oi−1) with the
predecessor of its predecessor, i.e., σi(y); and then erasing all edges from σi(x) to
σi(z).

� σi(z) is the predecessor of σi(x) which is the predecessor of σi(y). Analogous to the
previous case.

� σi(x) is the predecessor of σi(y) and σi(z). Then, F(Oi) results from replacing all
occurrences of the non-root σi(z) by its sibling σi(y).

In either case, we can verify that F(Oi) is a rooted forest where every individual node is a root,
and every null node is not.

B Completeness

In this section, we show Lemma 11, from which Lemma 4 directly follows. Prior to stating and
proving this lemma, we introduce some preliminary notions and intermediate results.

Consider some ontology O = 〈T ,A〉. Furthermore, consider a chase sequence O0
+,O1

+, . . . for
O+ = 〈T+,A〉, a sequence of axioms ρ1, ρ2, . . . ∈ T+, and a sequence of substitutions such that
all of the following conditions hold for all i ≥ 1.

1. The set Oi+ is the application of 〈ρi, σi〉 on Oi−1
+ .

2. If there is some axiom of Type (u) or (ur) in T+ that is applicable to Oi−1
+ , then ρi is of

Type (u) or (ur).

3. If there are not any axioms of Type (u) or (ur) in T+ applicable to Oi−1
+ , and there

is an axiom ρ ∈ T+ of the form A v ∀R.B and a substitution σ such that A(σ(x)) ∈
Oi−1

+ and R(σ(x), σ(y)) ∈ D(Oi−1
+ ); then the axiom ρi is of the form C v ∀S.D and

S(σi(x), σi(y)) ∈ D(Oi−1
+ ).

Because of conditions (1), (2), and (2), we can show the following.

Lemma 7. For all i ≥ 1, if ρi is of Type (∀), then R(σi(x), σi(y)) ∈ D(Oi−1
+ ).

Proof. Suppose for a contradiction that ρi is of the form A v ∀R.B and R(σi(x), σi(y)) /∈
D(Oi−1

+ ). By (1) above, A(σi(x)), R(σi(x), σi(y)) ∈ Oi−1
+ and hence, by Lemma 2, there are

some R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi−1
+ ) such that t0 = σi(x), tn = σi(y), and R1 · . . . ·Rn ∈

NT+(R). Note that, Lemma 2 is applicable because there are no axioms of Type ur applicable
to Oi−1

+ by 2. Therefore, there must be some states q0, . . . , qn such that q0 = iR, qn = fR,
and qj−1 →∗Rj

qj ∈ NT+(R) for all j ∈ J1, nK. Hence, A v Aq0 , Aq0 v ∀R1.Aq1 , . . . , Aqn−1
v

∀Rn.Aqn , Aqn v B ∈ T+. By conditions (2) and (3) above, Aq0(t0), . . . , Aqn(tn), B(σi(y)) ∈
Oi−1

+ (note that tn = σi(y)). Therefore, Oi+ = Oi−1
+ and 〈ρi, σi〉 is not applicable to Oi−1

+ . This
contradicts De�nition 2.

We introduce some notation used in across this section.

• For all i ≥ 0 and t, u ∈ Ngt, let Nic(t) = {A | A(t) ∈ Oi+} and Nir(t, u) = {R | R(t, u) ∈
D(Oi+)}.
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• Let A = A1 u . . . u An be a conjunction of concepts, x ∈ Nv, and t ∈ Ngt. Then,
we write A(x) as a shortcut for A1(x) ∧ . . . ∧ An(x) and A(t) ∈ F as a shortcut for
A1(t), . . . , An(t) ∈ F .

Lemma 8. Let i ≥ 0 and let t, u ∈ Ngt be some terms in Oi+. If t is the predecessor of u in
F(Oi+), then A v ∃Nir(t, u).Nic(u) ∈ Γ(T×) for some A ⊆ Nic(t).

Proof. We verify this result via induction on the chase sequence O0
+,O1

+, . . . Since F(O0
+) is

empty, the base case trivially holds. To show the induction step, we check that the lemma
holds for any i ≥ 1 irrespectively of the type of axiom ρi. In the following enumeration, we
consider all cases that do not automatically follow IH.

(u) Then, A1(σi(x)), . . . , An(σi(x)) ∈ Oi−1
+ . Let us assume that σi(x) is the successor of some

term t occurring in Oi−1
+ , as otherwise the case holds by IH. By IH, A′ v ∃R.B ∈ Γ(T×)

with A′ ⊆ Ni−1
c (t), R = Ni−1

r (t, σi(x)), and B = Ni−1
c (σi(x)). Since

dn
j=1Aj v B ∈ Γ(T×)

and A1, . . . , An ∈ B, A′ v ∃R.(B uB) ∈ Γ(T×).

(∀) Then, A(σi(x))), R(σi(x), σi(y)) ∈ Oi−1
+ . By Lemma 7, R(σi(x), σi(y)) ∈ D(Oi−1

+ ). We
assume that σi(x) is the predecessor of σi(y), as otherwise this case holds by IH. By IH,
A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1

c (σi(x)), R = Ni−1
r (σi(x), σi(y)), and B = Ni−1

c (σi(y)).
Since A v ∀R.B ∈ T× and R ∈ R, A′ uA v ∃R.(B uB) ∈ Γ(T×).

(∃) Then, A(σi(x)) ∈ Oi−1
+ . Since A v ∃R.B ∈ T×, A v ∃R.B ∈ Γ(T×).

(≤) Then, A(σi(x)), R(σi(x), σi(y)), B(σi(y)), R(σi(x), σi(z)), B(σi(z)) ∈ Oi−1
+ . By De�ni-

tion 1, the role R is simple and hence, R(σi(x), σi(y)), R(σi(x), σi(z)) ∈ D(Oi−1
+ ) by

Lemma 6. We consider three possible cases.

• σi(x) is the predecessor of both σi(y) and σi(z). By Lemma 1, σi(y), σi(z) ∈ N0

and hence, by IH, A′ v ∃R.B,A′′ v ∃S.C ∈ Γ(T×) with A′,A′′ ⊆ Ni−1
c (σi(x)), R =

Ni−1
r (σi(x), σi(y)), B = Ni−1

c (σi(y)), S = Ni−1
r (σi(x), σi(z)), and C = Ni−1

c (σi(z)).
Since A v 61R.B ∈ T×, R ∈ R∩S, and B ∈ B∩C, A′uA′′uA v ∃(RuS).(BuC) ∈
Γ(T×).

• σi(z) is the predecessor of σi(x) and σi(x) is the predecessor of σi(y). By Lemma 1,
σi(x), σi(y) ∈ N0 and hence, by IH, A′ v ∃R.B,B′ v ∃S.C ∈ Γ(T×) with A′ ⊆
Ni−1

c (σi(z)), R = Ni−1
r (σi(z), σi(x)), B′ ⊆ Ni−1

c (σi(x)) = B, S = Ni−1
r (σi(x), σi(y)),

and C = Ni−1
c (σi(y)). Since A v 61R.B ∈ T×, R− ∈ R, A ∈ B ∪ C, and R ∈ S,

A′ uB v ∃(R u S−).B ∈ Γ(T×).

• σi(y) is the predecessor of σi(x) ∈ N0 and σi(x) is the predecessor of σi(z) ∈ N0.
Analogous to the previous case.

(◦) Then, R1(σi(x0), σi(x1)), . . . , Rn−1(σi(xn−1), σi(xn)) ∈ Oi−1
+ . We assume that n = 1 and

R1(σi(x0), σi(x1)) ∈ D(Oi−1
+ ), as otherwise S(σi(x0), σi(xn)) /∈ D(Oi−1

+ ). We consider
two possible cases.

• σi(x0) is the predecessor of σi(x1). By IH, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1
c (σi(x0)),

R = Ni−1
r (σi(x0), σi(x1)), and B = Ni−1

c (σi(x1)). Since R1 v S ∈ T× and R1 ∈ R,
A′ v ∃(R u S).B ∈ Γ(T×).

• σi(x1) is the predecessor of σi(x0). By IH, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1
c (σi(x1)),

R = Ni−1
r (σi(x1), σi(x0)), and B = Ni−1

c (σi(x0)). Since R−1 v S− ∈ T× and R−1 ∈ R,
A′ v ∃(R u S−).B ∈ Γ(T×).

(ur) Analogous to the previous case.
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To structure some of the induction arguments below, we introduce the notion of depth of a
term and a sequence of direct fact. Note that, we consider the roots in a rooted graph to have
depth 0.

De�nition 9. For i ≥ 0 and t ∈ Ngt a term occurring in Oi+, let depi(t) be the depth of
t in the rooted forest F(Oi+). For a sequence F = R1(t0, t1), . . . , Rn(tn−1, tn), depi(F) =
max(depi(t1), . . . , depi(tn))−min(depi(t1), . . . , depi(tn)).

Lemma 9. Consider i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi+), and states q and q̂ in the
NFA NT (R) with q 6= q̂. If q →∗P q̂ ∈ NT (R) with P = R1 · . . . · Rn and all t1, . . . , tn−1 are
descendants of t0 in F(Oi+), then A′ uXq v Xq̂ ∈ Γ(T×) for some A′ ⊆ Nic(t0).

Proof. We prove the lemma via induction on the depth of the sequence F = R1(t0, t1), . . .,
Rn(tn−1, tn). Before proceeding with this inductive argument, we derive some conclusions from
the premise of the lemma. Since q →∗P q̂ ∈ NT (R), there are some states q0, . . . , qn such that
q0 = q, qn = q̂, and qj−1 →∗Rj

qj ∈ NT (R) for all j ∈ J1, nK. Hence, Xqj−1 v ∀Rj .Xqj ∈ T× for
all j ∈ J1, nK.

To show the base case, we check that the lemma holds if depi(F) = 1. In this case, n = 2 by
Lemma 1 and the fact that tj 6= t0 for all j ∈ {1, . . . , n− 1}. By Lemma 8, A′ v ∃R.B ∈ Γ(T×)
with A′ ⊆ Nic(t0), R = Nir(t0, t1), and B = Nic(t1). Since R1, R

−
2 ∈ R, A′ u Xq v ∃R.(B u

Xq1),A′ uXq v Xq̂ ∈ Γ(T×) (note that q = q0 and q̂ = q2).

To show the inductive step, we verify that the lemma holds if depi(F) ≥ 2 assuming that (IH) it
holds for every sequence of facts Rk(tk−1, tk), . . . , R`(t`−1, `) with k > 1 and ` < n. Note that,
since every t1, . . . , tn−1 is a descendant of t0, every such sequence has lesser depth than F . Let
k0, . . . , km ∈ N be the longest sorted sequence of numbers such that tkj = t1 for all j ∈ J0, nK.
By repeated application of the IH, we conclude that, for all j ∈ J1, nK there is some B′j ⊆ Nic(t1)

with B′juAqkj−1
v Aqkj

∈ Γ(T×). By Lemma 8, A′ v ∃R.B with A′ ⊆ Nic(t0), R = Nir(t0, t1), and
B = Nic(t1). Hence, A′ u Aq0 v ∃R.(B u Aq1) ∈ Γ(T×) since R1 ∈ R and Xq0 v ∀R1.Xq1 ∈ T×.
Therefore, A′ uAiR v ∃R.(B uAqk1

uAq2 u . . . uAqkm−1
uAqn−1

),∈ Γ(T×) (note that iR = q0,
qk1 = q1, and qkm = qn−1). Since R−n ∈ R and Aqn−1

v ∀R.AfR , A′ u AqiR v AfR ∈ Γ(T×)
(note that fR = qn).

Lemma 10. Consider i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi) with n ≥ 2, A v 61R.B ∈
T×, S ∈ Nr, and states q and q̂ in the NFA NT (S). If

• R−(t0, t), A(t), R(t, tn), B(tn) ∈ Oi with t the predecessor of tn and successor of t0,

• q →∗P q̂ ∈ NT (S) with P = R1 · . . . ·Rn, and

• t0 ∈ 2Ni and t1, . . . , tn ∈ N0,

then, A′ uB uXq v Xq̂ ∈ Γ(T+) for some A′ ⊆ Nic(t0)

Proof. By the premise of the lemma, there are some states q0, . . . , qn such that q0 = q, qn = q̂,
and qj−1 →∗Rj

qj ∈ NT (S) for all j ∈ J1, nK. By the de�nition of T+ and T×, Xqj−1 v ∀Rj .Xqj ∈
T× for all j ∈ J1, nK.

By Lemma 8, A′ v ∃R.B,B′ v ∃S.C ∈ Γ(T×) with A′ ⊆ Nic(t0), R = Nir(t0, t1), B′ ⊆ Nic(t1) = B,
S = Nir(t1, tn), and C = Nic(tn). Hence, A′ u Xq v ∃R.(B u Xq1) ∈ Γ(T×) since R1 ∈ R and
t1 = t by Lemma 1 (note that q0 = q).

Let k0, . . . , km ∈ N be the longest sorted sequence such that tkj = t1 for all j ∈ J0, nK. By
Lemma 9, there is some B′j ⊆ B such that B′j uXqkj−1

v Xqkj
∈ Γ(×) for all j ∈ J1, nK. Hence,
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A′ u Xq v ∃R.(B u Xqk0
u . . . u Xqkm

) ∈ Γ(×) (note that k0 = 1). By Lemma 1, tkm+1 = tn
(note that possibly km + 1 6= n). Since Rkm+1 ∈ S, B′ uXqkm

v ∃S.(C uXqkm+1
) ∈ Γ(×).

Let `0, . . . , `o ∈ N be the longest sorted sequence where `0 = km+1 and t`j = tn for all j ∈ J1, oK.
By Lemma 9, there is some C′j ⊆ C such that C′j u Xq`j−1

v Xq`j
∈ Γ(×) for all j ∈ J1, oK.

Hence, B′ u Xqkm
v ∃S.(C u Xq`0

u . . . u Xq`o−1
u Xq̂) ∈ Γ(×) (note that qkm+1 = q`1 and

q`o = q̂). Since R− ∈ S, A,B ∈ B, R ∈ R, A′ u Xq v ∃R.(B u A u Xqk0
u . . . u Xqkm

),
B′ uXqkm

v ∃S.(CuB uXq`0
u . . .uXq`o−1

uXq̂), we have that A′ uB uXq v Xq̂ ∈ Γ(×).

Lemma 11. If O+ = 〈T+,A〉 entails some fact over ⊥, then so does KO = 〈RT ,A〉. For every
assertion α de�ned over sig(T ), O+ |= α implies KO |= α.

Proof. We show the lemma via induction on the chase sequence O0
+,O1

+, . . .

• Base Case: We show that α ∈ K∞O for every assertion α ∈ O0.

• Induction step (IS): For every i ≥ 1, we show that the following claims hold provided that
the induction hypothesis also holds.

� If α ∈ K∞O for every assertion α ∈ Oi.
� If ⊥(t) ∈ Oi with t ∈ Ngt, then ⊥(u) ∈ K∞O for some u ∈ 2Ni .

• Induction hypothesis (IH): α ∈ K∞O for every assertion α ∈ Oi−1.

The base case holds since O0
+ = A and A ⊆ K∞O by De�nition 2. We show that the IS does

hold for any i ≥ 1 irrespectively of the type of the axiom ρi and the type of the terms that
occur in the range of σi. Some cases will not be explicitly included in this analysis, because of
the following reasons.

1. We altogether ignore cases in which the set Oi \Oi−1 does not contain any assertions nor
facts over ⊥, as these trivially hold.

2. All cases where ρi = B → H is a Datalog rule with H an equality-free atom, and the
range of σi is a subset of 2Ni can be shown with the following argument.

• By IH, Bσi ⊆ K∞O .
• Since ρi ∈ RT , Hσi ⊆ K∞O .

Therefore, we do not include these cases in the case by case analysis below.

3. To further reduce the number of cases that need to be considered, we assume without loss
of generality that ⊥ may only occur in the right-hand side of axioms of Type (u).

Case (u) Let ρi be an axiom of the form
dn
j=1Aj v B. Then, A1(σi(x)), . . . , An(σi(x)) ∈

Oi−1
+ . By (1)-(3), we only need to consider the case where B = ⊥ and σi(x) ∈ N0. By

Lemma 1, there is a sequence t0, . . . , tm of terms in Oi−1
+ such that t0 = a ∈ 2Ni , t1, . . . , tm ∈ N0,

tm = σi(x), and tj−1 is the predecessor of tj for all j ∈ J1,mK. For all j ∈ J1,mK, A′j−1 v
∃Rj .Aj ∈ Γ(T×) with A′j−1 ⊆ Ni−1

c (tj−1), Rj = Ni−1
r (tj−1, tj), and Aj = Ni−1

c (tj) by Lemma 8.
Since

dn
j=1Aj v ⊥ ∈ T , A′m−1 v ∃Rm.(Am u ⊥) ∈ Γ(T×) and therefore, A′j v ⊥ ∈ Γ(T×) for

all j ∈ J0,m− 1K. Since A′0(x)→ ⊥(x) ∈ RT and A′0(σi(x)) ∈ K∞O by IH, ⊥(σi(x)) ∈ K∞O .
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Case (∀) Let ρi be an axiom of the form A v ∀R.B ∈ T . Then, A(σi(x)), R(σi(x), σi(y)) ∈
Oi−1

+ . By (1)-(3), we only need to consider cases where σi(x) ∈ N0 and σi(y) ∈ 2Ni . By
Lemma (7), R−(σi(y), σi(x)) ∈ D(Oi−1

+ ) and hence, σi(y) is the predecessor of σi(x) by
Lemma 1. By Lemma 8, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1

c (σi(y)), R = Ni−1
r (σi(y), σi(x)),

and B = Ni−1
c (σi(x)). Since R− ∈ R and A v ∀R.B ∈ T×, A′(x) → B(x) ∈ RT . Since

A′(σi(y)) ∈ K∞O by IH, B(σi(y)) ∈ K∞O .

Case (◦) Let ρi be an axiom of the form R1 ◦ . . .◦Rn v S ∈ T+. Then, R1(σi(x0), σi(x1)), . . .,
Rn(σi(xn−1), σi(xn)) ∈ Oi−1

+ . Because of (1)-(3), we only need to consider the case where
σi(x0), σi(xn) ∈ 2Ni .

By Lemma 2, there is a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1
+ ) with σi(xj−1) = t0,

σi(xj) = tm, and V1 · . . . · Vm ∈ NT (Rj) for every j ∈ J1, nK (note that possibly m = 1). Note
that, this lemma is applicable because Oi−1

+ is closed under the application of axioms of the
Type ur by the de�nition of O0

+,O1
+, . . . By concatenating the sequences above, we construct

a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1
+ ) such that σi(x0) = t0, σi(xn) = tm, and

V1 · . . . · Vm ∈ NT (S). Hence, there are some states q0, . . . , qm such that q0 = iS , qm = fS , and
q0 →V1

q1 →V2
q2 . . .→Vm

qm ∈ NT (S). Let k0, . . . , ko be the longest sorted sequence of natural
numbers with tkj ∈ 2Ni for all j ∈ {0, . . . , o}. We show via induction that Sqkj

(t0, tkj ) ∈ K∞O
for all j ∈ J1, oK. In turn, this implies S(σi(x), σi(y)) ∈ K∞O since SqfS (x, y) → S(x, y) ∈ RT
(note that t0 = σi(x), tko = tm = σi(y), and qkm = fS).

To show the base case, we prove that Sqk1
(t0, tk1) ∈ K∞O . We consider two possible cases.

• Let k1 = 1. Then, V1(t0, t1) ∈ K∞O by IH. Since V1(x, y) → Sq1(x, y) ∈ RT , Sq1(t0, t1) ∈
K∞O .

• Let k1 > 1. Then, tk1 = t0 by Lemma 1. By Lemma 9, A u XiS v Xqk1
∈ Γ(T×) for

some A ⊆ Ni−1
c (t0) and hence, A(x) → SiS ,qk1

(x) ∈ RT . By IH, A(t0) ∈ K∞O and hence,
SiS ,qk1

(t0) ∈ K∞O . Since SiS ,qk1
(x)→ Sqk1

(x, x) ∈ R∞T , Sqk1
(t0, tk1) ∈ K∞O .

To show the induction step, we verify that, for all j ∈ {2, . . . , o}, Sqkj
(t0, tkj ) ∈ K∞O provided

that Sqkj−1
(t0, tkj−1) ∈ K∞O . We consider two possible cases.

• Let kj = kj−1 + 1. Then, Vkj (tkj−1
, tkj ) ∈ K∞O by IH. Since Sqkj−1

(x, y) ∧ Vkj (y, z) →
Sqkj

(x, z) ∈ RT , Sqkj
(t0, tkj ) ∈ K∞O .

• Let kj > kj−1 + 1. Then, tkj = tkj−1 by Lemma 1. By Lemma 9, A uXqkj−1
v Xqkj

∈
Γ(T×) for some A ⊆ Ni−1

c (tkj ) and hence, A(x) → Sqkj−1
,qkj

(x) ∈ RT . By IH, A(tkj ) ∈
K∞O and hence, Sqkj−1

,qkj
(tkj ) ∈ K∞O . Since Sqkj−1

(x, y)∧Sqkj−1
,qkj

(y)→ Sqkj
(x, y) ∈ RT ,

Sqkj
(t0, tkj ) ∈ K∞O .

Case (≤) Let ρi be an axiom of the formA v 61R.B. Then, A(σi(x)), R(σi(x), σi(y)), B(σi(y)),
R(σi(x), σi(z)), B(σi(z)) ∈ Oi−1

+ . By De�nition 1, the roleR is simple and hence, R(σi(x), σi(y)),
R(σi(x), σi(z)) ∈ D(Oi−1) by Lemma 6. Depending upon the type of the terms in the range of
σi, we consider six possible cases cases.

1. Let σi(x), σi(y), σi(z) ∈ 2Ni . By IH, every assertion in Oi−1
+ containing σi(y) or σi(z) is

also in K∞O . Hence, every assertion in Oi+ is also in K∞O .
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2. Let σi(x) ∈ N0 and σi(y), σi(z) ∈ 2Ni . By Lemma 1, both σi(y) and σi(z) are the
predecessors of σi(x) and hence, σi(y) = σi(z). This is a contradiction by De�nition 2
and hence, this case may not occur.

3. Let σi(x), σi(y) ∈ N0 and σi(z) ∈ 2Ni . By Lemma 1 and the fact that σi(z) 6= σi(y), σi(z)
is the predecessor of σi(x) which, in turn, is the predecessor of σi(y).

We �rst show that C(σi(z)) ∈ K∞O if C(σi(y)) ∈ Oi−1
+ for some C ∈ Nc. By Lemma 8,

A′ v ∃R.B,B′ v S.C ∈ Γ(T×) with A′ ⊆ Ni−1
c (σi(z)), R = Ni−1

r (σi(z), σi(x)), B′ ⊆
Ni−1

c (σi(x)) = B, S = Ni−1
r (σi(x), σi(y)), and C = Ni−1

c (σi(y)). Since R− ∈ R, A ∈ B,
R ∈ S, B ∈ C, A′ u B v C ∈ Γ(T×) and hence, A′(x) ∧ B(x) → C(x) ∈ RT . Since
A′(σi(z)) ∈ K∞O by IH, C(σi(z)) ∈ K∞O .
Furthermore, we show that S(a, σi(z)) ∈ K∞O if S(a, σi(y)) ∈ Oi−1

+ for some S ∈ Nr and
a ∈ 2Ni . By Lemma 2, there are some R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi−1

+ ) and states
q0, . . . , qn such that a = t0, σi(y) = tn, and q0 →R1 q1 . . .→Rn qn ∈ NT+(R). We consider
two possible cases.

• t1, . . . , tn ∈ N0. By Lemma 1, t0 = a. By Lemma 10, A′ uXqiS
v XfS ∈ Γ(T×) for

some A′ ⊆ Ni−1
c (t0) and therefore, A′(x)→ SiS ,fS (x) ∈ RT . By IH, A′(t0) ∈ K∞O and

hence, SiS ,fS (t0) ∈ K∞O . Since SiS ,fS (σi(z))→ SfS (x, x), SfS (x, y)→ S(x, y) ∈ RT ,
S(t0, t0) ∈ K∞O .

• tj ∈ 2Ni for some j ∈ {1, . . . , n− 1}. With an analogous inductive argument to that
from case (◦), we can show that Sqk(a, σi(z)) ∈ K∞O . By Lemma 10, A′uXqk v Xfn ∈
Γ(T×) for some A′ ⊆ A and hence, A′(x) → Sqk,fS (x) ∈ RT . Since A′(σi(z)) ∈ K∞O
by IH, Sqk,fS (σi(z)) ∈ K∞O . Since Sqk(x, y) ∧ Sqk,fS (y) → SfS (x, y), SfS (x, y) →
S(x, y) ∈ RT , S(a, σi(z)) ∈ K∞O .

4. Let σi(x), σi(z) ∈ N0 and σi(y) ∈ 2Ni . Analogous to the previous case.

5. Let σi(x), σi(z) ∈ 2Ni and σi(y) ∈ N0. By Lemma 1, σi(x) is the predecessor of σi(y).

We �rst show that C(σi(z)) ∈ K∞O if C(σi(y)) ∈ Oi−1
+ for some C ∈ Nc. By Lemma 8, A′ v

∃R.B ∈ Γ(T+) with A′ ⊆ Ni−1
c (σi(x)), R = Ni−1

r (σi(x), σi(y)), B = Ni−1
c (σi(y)). Since R ∈

R, A(x)∧A′(x)∧R(x, y)∧B(y)→ C(y) ∈ RT . Since A(σi(x)),A(σi(z)), R(σi(x), σi(z)),
B(σi(z)) ∈ K∞O by IH, C(σi(z)) ∈ K∞O .
We show that S(a, σi(z)) ∈ K∞O if S(a, σi(y)) ∈ Oi−1

+ for some S ∈ Nr and a ∈ 2Ni . We
consider two possible cases.

• Let S(a, σi(z)) ∈ D(Oi−1
+ ). By Lemma 1, a = σi(x). Since S ∈ R, A(x) ∧ A′(x) ∧

R(x, y) ∧B(y)→ S(x, y) ∈ RT and S(σi(x), σi(z)) ∈ K∞O .
• Let S(a, σi(z)) /∈ D(Oi−1

+ ). By Lemma 2, there are someR1(t0, t1), . . ., Rn(tn−1, tn) ∈
D(Oi−1

+ ) with a = t0, σi(y) = tn, and R1 ·. . .·Rn ∈ NR(S). Let k be the largest num-
ber with tk = σi(x) and tk, . . . , tn ∈ N0 for some k ∈ J0, n−1K (note that such a num-
ber must exist by Lemma 1). Also by Lemma 1, tk+1 = σi(y) and hence, Rk+1 ∈ R,
A(x) ∧ A′(x) ∧ R(x, y) ∧ B(y) → Rk+1(x, y) ∈ RT , and Rk+1(σi(x), σi(z)) ∈ K∞O .
We consider two possible cases.

� Let k > 0. With an analogous argument to that from case (◦), we can show that
Sqk(a, σi(x)) ∈ K∞O . Also, Sqk(x, y) ∧Rk+1(y, z)→ Sqk+1

(x, z) ∈ RT .
� Let k = 0. Then, Rk+1(x, y) → Sqk+1

(x, y) ∈ RT (note that qk+1 = iS in this
case).

In either of these cases, Sqk+1
(a, σi(z)) ∈ K∞O . Let `0, . . . , `m be the longest sorted

sequence with `0 = k + 1 and σi(y) = t`j for all j ∈ J0, nK. By Lemma 9, for all
j ∈ J1, nK there is some B′j ⊆ Ni−1

c (σi(y)) such that B′j u Xq`j−1
v X`j ∈ Γ(T×).

Hence, B′j(x)→ Sq`j−1
,q`j

(x) ∈ RT for all j ∈ J1, nK. Since A(x) ∧ A′(x) ∧R(x, y) ∧
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B(y) → B(y) ∈ RT , B(σi(z)), Sq`j−1
,q`j

(σi(z)) ∈ K∞O for all j ∈ J1, nK. For all
j ∈ J1, nK, Sq`j−1

(x, y)∧Sq`j−1
,q`j

(y)→ Sq`j (x, y) ∈ RT . Hence, SfS (a, σi(z)) ∈ K∞O
(note that fS = q`m). Since SfS (x, y)→ S(x, y) ∈ RT , S(a, σi(z)) ∈ K∞O .

6. Let σi(x), σi(y) ∈ 2Ni , and σi(z) ∈ N0. Analogous to the above case.

C Soundness

To show that our Datalog AR-rewriting is sound, we have to show that for every ABox A s.t.
sig(A) ⊆ sig(A) and assertion α s.t. sig(α) ⊆ sig(T ), we have 〈RT ,A〉 |= α only if 〈T ,A〉 |= α.
Note that the case where 〈T ,A〉 is unsatis�able is trivial, since in that case 〈T ,A〉 |= α holds
for every assertion α. We therefore silently assume that 〈T ,A〉 is satis�able in every of the
following lemmata.

We note that we can generalise soundness and completeness results of the chase to arbitrary
sets of ground facts: For a given set A of ground facts (which may include facts over nulls) and
a TBox T , we call 〈T ,A〉 a generalised KB, and de�ne chase in the same way as for classical
KBs. It is easy to see that Theorem 1 also applies to generalised KBs, as we can simply replace
every null by a fresh individual name to reduce to entailment of normal KBs. We �rst show
that our introduced names indeed ful�l their speci�ed role.

Lemma 12. Let T be any Horn-SRIQu-TBox, ρ = A v ∀R.B ∈ T , and T ′ = B(T , ρ).
Further, let A be any set of ground facts s.t. sig(A) ⊆ sig(T ), q, q̂ two states in NT (R) and
t, u two ground terms. Let A′ = A ∪ {Aq(u)}. Then, 〈T ′,A′〉 |= Aq̂(t) implies that there is a
path P in the chase of 〈T ,A〉 connecting u to t s.t. q →∗P q̂ ∈ NT (R).

Proof. Let T , ρ, T ', q, A, A' and u be as in the lemma. Let A = F0,F1, . . . be the chase
of 〈T ′,A′〉. By Theorem 1, if 〈T ′,A〉 |= Aq̂(t), there exists some i ≥ 0 s.t. Aq̂(t) ∈ F i.
It therefore su�ces to show that for every i ≥ 0, every state q̂ in NT (R) and every ground
term t , if Aq̂(t) ∈ F i, then there is a path P in the chase of 〈T ,A〉 connecting u to t s.t.
q →∗P q̂ ∈ NT (R). We do the proof by induction on i. Consider i = 0. Since sig(A) ⊆ T and
Aq is fresh, we cannot have Aq(t) ∈ A. Consequently, Aq̂(t) ∈ A′ = F0 only if q̂ = q and t = u,
in which case the inductive hypothesis trivally holds.

Let i > 0, and assume the inductive hypothesis holds for i−1. The only interesting case is where
Aq̂(t) is introduced in F i. Let ρi be the axiom applied for computing F i. The only axioms
in T ′ in which Aq occurs positively are of the form Aq′ v ∀S.Aq̂, where q′ →∗S q̂ ∈ NT (R),
which means that ρi must be of this form. This means that there exists some ground term v
s.t. Aq′(v), R(v, t) ∈ F i−1. By the inductive hypothesis, there is a path P connecting u to v in
the chase of 〈T ,A〉 s.t. q →∗P q′ ∈ NT (R). This implies that there is the path P · S connecting
u to t, and that iR →∗P·S q ∈ NT (R).

Lemma 13. Let T be a Horn-SRIQu-TBox, A an ABox s.t. sig(A) ⊆ sig(T ) and α an
assertion s.t. sig(ρ) ⊆ sig(T ). Then, 〈T+,A〉 |= α only if 〈T ,A〉 |= α.

Proof. Let F0 = A,F1, . . . be the chase of 〈T+,A〉. We have to show that for all i ≥ 0 and every
α ∈ F i s.t. sig(ρ) ⊆ sig(T ), 〈T ,A〉 |= α. We do so by induction over i. The case where i = 0
is trivial. For i > 0, the only interesting case is where α is introduced in i by application of an
axiom ρ ∈ T+ \ T . If this is the case, by the de�nition of T+ there is an axiom A v ∀R.B ∈ T
s.t. ρ ∈ B(A v ∀R.B, T ). Note that for every distinct axioms ρ1, ρ2 ∈ T , the sets of fresh
predicates in B(ρ1, T ) and B(ρ2, T ) are disjoint. The only axioms in B(A v ∀R.B, T ) that
share a predicate name with T are A v AiR and AfR v B. We obtain that ρ = AfR v B,
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α = B(b) for some b ∈ Ni, and that AfR(b) ∈ F−1. We thus have to show that 〈T ,A〉 |= B(b).
By induction over the axioms in B(A v ∀R.B) applied to derive B(b), we further obtain that
A(a), AiR(a) ∈ F i−1 for some individual a. Because i) AiR(a), AfR(b) ∈ F−1, ii) the fresh
predicates in B(A v ∀R.B) do not occur in T+ \ B(A v ∀R.B), iii) the inductive hypothesis,
and iv) by Lemma 12, we obtain that there is a path P in the chase of 〈T ,A〉 connecting a
and b s.t. iR →∗P fR ∈ NT (R). By Lemma 2, this implies that 〈T ,A〉 |= R(a, b), and since
A v ∀R.B ∈ T , 〈T ,A〉 |= B(b).

Lemma 3 is a direct consequence of Lemma 13.

Lemma 3. For a TBox T , an ABox A and a fact set F de�ned over sig(T ), 〈T ,A〉 is satis�able
i� 〈T+,A〉 is, and 〈T ,A〉 |= F i� 〈T+,A〉 |= F .

Lemma 14. Let T be a Horn-SRIQu-TBox, A be a set of ground facts s.t. sig(A) ⊆ sig(T ),
R a complex role, q,q′ two states in NT (R) and u, t two ground terms. Let T ′ be the set of
axioms in T plus all axioms generated by the Rule (	).

Assume further that there is a path P connecting u and t in the chase of 〈T ,A〉 s.t. iR →∗P q ∈
NT (R). Then, 〈T ′,A〉 |= Rq,q̂(t) implies the following.

• There is a path P′ from t to t in the chase of 〈T ,A〉, and

• q →∗P′ q̂ ∈ NT (R).

Proof. The only axioms in T ′ in which Rq,q̂ occurs positively are the ones added due to Rule (	)
in Table 1. Therefore, there must exist a set D of concept names s.t. 〈T ′,A〉 |= D(t), and that
T× |= D uXq v Xq̂.

De�ne a new set of ground facts A′ by adding the ground fact X(u) to A. By induction on
the axioms in B(T , X v ∀R.X) ⊆ T× and the path connecting u to t, it is easy to show that
〈T×,A′〉 |= Xq(t). Since furthermore 〈T ,A′〉 |= D(t) and T× |= D uXq v Xq̂, we obtain that
〈T ,A′〉 |= Xq̂(t). Inspection of the rules in T× further shows that the chase of 〈T ,A′〉 does
not contain additional edges compared to 〈T ,A〉, since we only added the ground fact X(u).
Consequently, by Lemma 12, there is a path in the chase of 〈T ,A〉 connecting t to itself s.t.
q →∗P′ q̂ ∈ NT (R).

Lemma 15. Let T be a Horn-SRIQu-TBox, A be an ABox s.t. sig(A) ⊆ sig(T ), R a complex
role, q a state in NT (R) and a, b ∈ Ni. Let T ′ ⊆ RT be the set of Datalog rules that either
occur in T, or that are generated by Rules (u), (	) and (R1)�(R4).

Then, 〈T ′,A〉 |= Rq(a, b) only if in the chase of 〈T ,A〉, there exists a path P from a to b s.t.
iR →∗P q ∈ NT (R).

Proof. Let T , A, R and a be as in the lemma. Let A = F0,F1, . . . be the chase of 〈T ′,A〉. We
show that for every i ≥ 0, state q in NT (R) and b ∈ Ni, Rq(a, b) ∈ F i only if in the chase of
〈T ,A〉, there exists a path P from a to b s.t. iR →∗P q ∈ NT (R). Since sig(A) ⊆ sig(T ) and
Rq is fresh, the base case holds trivially. For i > 0, the only interesting case is where Rq(a, b)
is introduced in F i. Let ρi be the axiom applied on F i−1 to generate F i. The only axioms in
which Rq occurs positively are those introduced by (R1)�(R4). We distinguish the cases.

1. ρi was introduced by (R1). Then a and b are connected by S already in the chase of
〈T ′′,A〉, where T ′′ contains all the Datalog rules in T+, since no other rule in T ′ contains
S positively. By soundness of T+ (Lemma 13), this implies that a and b are connected by
S in the chase of 〈T ,A〉, and we have iR →∗S q by the side condition of (R1).
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2. ρi was introduced by (R2). Then, b = a, and the inductive hypothesis follows from
Lemma 14.

3. ρi was introduced by (R3). Then, there is a state q̂ in NT (R) and an individual c s.t.
Rq̂(a, c), S(c, b) ∈ F−1 and q̂ →∗S q ∈ NT (R). By inductive hypothesis, there is then a
path P from a to c in the chase of 〈T ,A〉 s.t. iR →∗P q̂ ∈ NT (R). We obtain that there is
the path P · S connecting a to b s.t. iR →∗P·S q̂ ∈ NT (R).

4. ρi was introduced by (R4). Then, there is a state q̂ in NT (R) s.t. Rq̂(a, b), (b,)∈ F−1.
By inductive hypothesis, there is then a path P from a to b in the chase of 〈T ,A〉 s.t.
iR →∗P q̂ ∈ NT (R). By Lemma 14, there is a path P′ in the chase of 〈T ,A〉 from b to b
s.t. q̂ →∗P′ q ∈ NT (R). We obtain that the path P · P′ connects a and b in the chase of
〈T ,A〉, and that iR →∗P·P′ q ∈ NT (R).

Lemma 16 (Soundness). Let T be a Horn-SRIQu-TBox and A be an ABox s.t. sig(A) ⊆
sig(T ). Then, for every assertion α s.t. sig(α) ⊆ sig(T ), 〈RT ,A〉 |= α only if 〈T ,A〉 |= α.

Proof. Let F0 = A,F1, . . . be the chase of 〈RT ,A〉. We show that for every i ≥ 0 and every
assertion α ∈ F i s.t. sig(α) ⊆ sig(T ), 〈T ,A〉 |= α. Note that, since RT is a Datalog rule set,
no axiom in RT introduces nulls, so that for all i ≥ 0, F i is an ABox.

We do the proof by induction on i. The base case is trivial. Assume the inductive hypothesis
holds for i − 1. The only interesting case is where α is introduced in F i by an axiom ρi. We
distinguish the cases based on the origin of ρi.

1. If ρi ∈ T+, then 〈T ,A〉 |= α directly follows from the inductive hypothesis and from
Lemma 13.

2. If ρi is introduced by (u), by soundness of the Datalog calculus, T+ |= ρi. Therefore,
〈T ,A〉 |= α follows from the inductive hypothesis and from Lemma 13.

3. ρi cannot have been introduced by any of the Rules (	) or (R1)�(R4) since sig(α) ⊆ sig(T ).

4. If ρi is introduced by Rule (R5), then RfR(a, b) ∈ F i−1 for some a, b ∈ Ni, and α = R(a, b).
It then follows from Lemma 15 that there is a path P in the chase of 〈T ,A〉 connecting a
to b s.t. iR →∗P fR ∈ NT (R). Consequently, by Lemma 2, we have 〈T ,A〉 |= R(a, b).

5. If ρi is introduced by Rule (^1), we have α = C(b) for some b ∈ Ni, A(a),D(a), R(a, b), B(b) ∈
F i−1 for some a ∈ Ni, and

T× |= A v 61R.B,D v ∃(R uR).(A uB u C).

Note that, since sig(A) ⊆ sig(T ), A cannot have any occurrences of the fresh concept name
X. Inspection of the axioms in T× \ T+ reveals that therefore that the above entailment
in fact holds already for T+. Furthermore, the latter entailment can be weakened to
T+ |= D v ∃R.(B u C). Since D(a) ∈ F i−1, 〈T+,F i−1〉 |= ∃y.(R(a, y) ∧ B(y) ∧ C(y)),
that is, there is some R-successor t of a in the chase of 〈T+,F i−1〉 that satis�es B and
C. Since T+ |= A v ≤1R.B, a can only have one R-successor satisfying B, so that in fact
t = a, and 〈T+,F i−1〉 |= C(b). By the inductive hypothesis and Lemma 13, we obtain
that 〈T ,A〉 |= C(b).

6. If ρi is introduced by Rule (^2), we have α = S(a, b) for some a, b ∈ Ni, A(a),D(a), R(a, b),
B(b) ∈ F i−1 for some a ∈ Ni, and

T× |= A v 61R.B,D v ∃(R uR u S).(A uB).
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Similar as in the last case, we obtain that T+ |= D v ∃(R u S).B. Consequently, a has
an R-successor in the chase of 〈T+,F i−1〉 that satis�es B and is also an S-successor of a.
Since A(a), R(a, b), B(b) ∈ F i−1 and T+ |= A v ≤1R.B, this successor has to be b. We
obtain that 〈T+,F−1〉 |= S(a, b). By the inductive hypothesis and Lemma 13, we obtain
that 〈T ,A〉 |= S(a, b).

D Complexity Results

Theorem 3. Let O = 〈T ,A〉 be an ontology. If T is Horn-SRIQu/Horn-SHIQ/ELH, then
we can compute RT and 〈RT ,A〉∞ in 2ExpTime/ExpTime/PTime, respectively.

Proof. We note that the number of states in each automaton NT (R) is exponentially bounded
in the size of T , so that the sizes of T+ and T× are also at most exponential in the input if T is
in Horn-SRIQu, and at polynomial if T is in Horn-SHIQ or ELH. The calculus in Figure 4
adds one axiom to Γ(T×) in each step, the number of which is exponentially bounded in the
size of T×. This is so because every derived axiom contains at most one role conjunction and
at most two concept conjunctions (one on the left-hand side, one on the right-hand side), and
the number of concept and role names used for this is bounded by the size of T×. It is also easy
to see that each role application can be performed in polynomial time.

For ELH, we note that from the calculus in Figure 4, only the Rules (1), (2), (4) and (5) apply.
We recall that for every R ∈ Nr, T contains one of R and R− but not both. Since axioms of
the form ∃R.A v B correspond to axioms A v ∀R−.B, we obtain that in fact Rule (4) also is
never applied, so that we are left with (1), (2) and (5). We obtain that no rule derives an axiom
whose left-hand-side does not occur already as left-hand-side in the input axiom set. Rule (5)
does not derive axioms that are larger than its premises, and is the only rule that infers axioms
without role restrictions, and the number of axioms it derives is polynomially bounded in the
input. Rules (1) and (2) only infer axioms that are logically stronger than its premise, so that
the premise can be removed from the axiom set after applying this rule. We therefore obtain
that we can compute an axiom set equivalent to Γ(T×), contains all relevant axioms, and whose
size is polynomially bounded in the size of T×, and therefore in the size of T , if and can be
computed in polynomial time

Finally, RT can be generated by traversing Γ(T×) and each automata at most once, and its size
is bounded by the size of RT× and the number of states occurring in all automata. We obtain
that

• for Horn-SRIQu,RT can be computed in 2ExpTime and is of at most double exponential
size,

• for Horn-SHIQ, RT can be computed in ExpTime and is of at most exponential size,
and

• for ELH, RT can be computed in PTime and is of at most polynomial size.

Now let m be the size of RT . The complexity results now follow from the fact that the chase
of 〈RT ,A〉 can always be computed in time polynomial in m.

We �rst note that the number of elements in R∞T is polynomially bounded: since Datalog rules
do not introduce nulls and the arity of each predicate is at most 2, the number of assertions
in R∞T is bounded by the number of individual names and predicate names in T and A. Since
every step in the chase either introduces a new assertion or merges a pair of individuals, we
obtain that the chase sequence is polynomially bounded as well. We therefore only have to
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show that each rule application can be performed in polynomial time. Inspection of the axioms
allowed in Horn-SRIQu and the Datalog rules included based on Table (1), we obtain that
except for axioms of Type (◦), every rule has at most three variables on the left-hand-side.
Applicability of these rules can therefore be decided in polynomial time by simply iterating
over all pairs of individuals. For rules of Type (◦), we iterate over all pairs of individuals a, b
and determine whether S(a, b) can be inferred using graph-reachability. For this, we construct
a directional graph G incrementally as follows: the initial graph contains a as a node, and for
every i in J1, nK starting from i = 1, we add an edge labelled Ri connecting two nodes c and d
if c is a node in the current graph and R(c, d) occurs in the current fact base. Whether there
is a path along R1, . . . , Rn connecting a and b can then be decided by determining whether b is
reachable from a in G, in which case the rule is applicable. Since this can be done in polynomial
time, we obtain that each rule application can be performed in polynomial time, and as there
are at most polynomially many necessary to compute 〈RT ,A〉∞, we obtain that 〈RT ,A〉∞ can
be computed in time polynomial in m.

E Added Role Chains in the Evaluation

In this section, we list the axioms of Type (◦) that were added to the ontologies Reactome
(8-12) and to Uniprot (13-15) for the experiments presented on the �rst part in the evaluation
section.

controlled ◦ controlled− v coControlled (8)

interactionScore ◦ scoreSource v interactionScoreProvenance (9)

organism ◦ CellVocabulary− v organismCellVocabulary (10)

participant ◦ dataSource v participantDataSource (11)

controlled ◦ controller v controlledBy (12)

cellularComponent
− ◦ orientation v cellularOrientation (13)

database
− ◦ transcribedFrom v transcriptionStoredIn (14)

database
− ◦ translatedTo v translationStoredIn (15)
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