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Abstract

The notion of a most specific consequence with respect to some terminological box is
introduced, conditions for its existence in the description logic EL and its variants are
provided, and means for its computation are developed. Algebraic properties of most
specific consequences are explored. Furthermore, several applications that make use of
this new notion are proposed and, in particular, it is shown how given terminological
knowledge can be incorporated in existing approaches for the axiomatization of ob-
servations. For instance, a procedure for an incremental learning of concept inclusions
from sequences of interpretations is developed.
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1. Introduction

Description logics (abbrv. DLs) (Baader, 1999; Baader, Horrocks, Lutz and Sattler,
2017; Baader, Horrocks and Sattler, 2004, 2009; Baader and Lutz, 2006) are frequently
used knowledge representation and reasoning formalisms with a strong logical foundation.
In particular, these provide their users with automated inference services that can
derive implicit knowledge from the explicitly represented knowledge. Decidability and
computational complexity of common reasoning tasks have been widely explored for
most DLs. Besides being used in various application domains, their most notable
success is the fact that DLs constitute the logical underpinning of the Web Ontology
Language (abbrv. OWL) (Hitzler, Krötzsch and Rudolph, 2010) and many of its profiles.

Ontologies function as a means for expressing knowledge in terms of description
logics. In particular, these are finite set of axioms that can either express assertional
knowledge, that is, statements about certain individuals, or terminological knowledge,
that is, statements that simultaneously hold true for all individuals. For instance, an
ontology could contain the terminological axiom

Elephant v

E

= 2.hasParent.Elephant u

A

hasParent.Elephant,
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which states that each elephant has exactly two parents that are elephants as well and
further that each of its parents is an elephant. Now further assume that our ontology
contains the assertional axiom

dumbo @− Elephant,

which expresses that the individual dumbo is an Elephant. It then follows that dumbo
has two parents that are elephants, i.e., there must exist individuals mrsJumbo and
dumbosFather which are elephants and the parents of dumbo. Continuing the induction
of implicit knowledge, we would now infer that also dumbo’s parents must have two
parents each that are elephants, and so on and so forth.
On the one hand, such ontologies can be constructed manually by experts in the

domain of interest and, on the other hand, these can be generated (semi-)automatically
from given data and observations. For the latter case, there exist several approaches
that can axiomatize observations and yield terminological axioms. Bühmann, Lehmann
and Westphal (2016); Lehmann (2009) have developed a framework DL-Learner that
constructs concept definitions from positive and negative examples. In particular, it is
assumed that a concept description is to be learned that has all positive examples as in-
stances, but none of the negative examples. Furthermore, there exist approaches that can
axiomatize concept inclusions from observations, that is, given some input data on indi-
viduals, all valid concept inclusions can be characterized by a so-called concept inclusion
base in a sound and complete manner. For instance, Rudolph (2004, 2006) has considered
this task for the description logic FLE, and later Baader and Distel (2008, 2009); Borch-
mann (2014); Borchmann, Distel and Kriegel (2016); Distel (2011) provided refined and
adjusted solutions for the description logic EL. However, all of the aforementioned works
on the axiomatization of concept inclusions have in common that they have restricted
settings for the input, that is, in particular, it is not possible to incorporate existing
terminological knowledge that has been learned earlier or hand-crafted by some experts.

Within this document, we shall introduce the notion of most specific consequences
with respect to sets of terminological axioms, so-called TBoxes, in Section 5. After
characterizing existence of most specific consequences and showing how these can be
computed in Section 6, we explore algebraic properties of this new notion in Section 7.
Then, we provide a number of different applications in Section 8. More specifically, we
devise an incremental procedure that can axiomatize concept inclusions from sequences
of observations in Section 8.4. For instance, if data is collected on a regular basis,
then this approach can be utilized to generate subsequent ontologies that represent the
terminological knowledge that has been observed so far in a sound and complete manner.
We also propose an abstract, but not yet fully developed idea for merging knowledge
from two sets of terminological axioms in Section 8.3. Similarly, a proposal for an
error-tolerant axiomatization of concept inclusions that is guided by some manually
verified TBox is presented in Section 8.5 and, eventually, in Section 8.6 we recommend
a procedure for axiomatization of observations under Open World Assumption, Unique
Name Assumption, and Domain Closure Assumption. Beforehand, Section 2 introduces
the description logic EL and some of its extensions with greatest fixed-point semantics,
Section 3 quotes notions from lattice theory, e.g., that of a closure operator, and
Section 4 gives an overview on related work that has been briefly mentioned above.
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2. The Description Logic EL⊥

In this section we shall introduce the light-weight description logic EL⊥.

2.1. Syntax
Throughout the whole document assume that Σ is a signature, that is, a disjoint

union of a set ΣC of concept names, a set ΣR of role names, and a set ΣI of individual
names. An EL⊥ concept descriptions C over Σ is a term that is constructed by means
of the following inductive rule, where A ∈ ΣC and r ∈ ΣR.

C ::= ⊥ | > | A | C uC |

E

r.C

We call ⊥ the bottom concept description, > is the top concept description, CuD is the
conjunction of C andD, and

E

r.C is the existential restriction of C w.r.t. r. We further
introduce some syntactic sugar. Firstly, we allow using words of role names within
existential restrictions: if w ∈ Σ∗R and C is some concept description, then

E

w.C is a
well-formed concept description; it is defined by

E

ε.C := C and

E

rw.C :=

E

r.

E

w.C.
Secondly, we allow conjunctions of any finite number of concept descriptions: if C
is a finite set of concept descriptions, then

d
C is a well-formed concept description as

well; it is defined by
d
∅ := > and

d
C := C u

d
(C \ {C}) where C is an arbitrary

element of C. The set of all EL⊥ concept descriptions over Σ is denoted as EL⊥(Σ).
A concept inclusion (abbrv. CI) is an expression C v D where both the premise C
as well as the conclusion D are concept descriptions. A concept equivalence is an
expression C ≡ D such that C and D are concept descriptions, and furthermore a
concept definition is a term A ≡ C where A is a concept name and C is a concept
description. A terminological box (abbrv. TBox) is a finite set of concept inclusions,
concept equivalences, and concept definitions. A concept assertion is a term a @− C
where a ∈ ΣI is an individual name and C is a concept description, and a role assertion
is a term (a, b) @− r where a, b ∈ ΣI are individual names and r ∈ ΣR is a role name.
An assertional box (abbrv. ABox) is a finite set of concept assertions and role assertions;
an ABox is called simple if all concept descriptions occurring in concept assertions
are concept names. Furthermore, an ontology O is a union of an assertional box and
a terminological box, and elements that can occur in ontologies are also called axioms.
The role depth rd(C) of a concept description C is recursively defined as follows.

rd(A) := 0 if A ∈ ΣC ∪ {⊥,>}
rd(C uD) := rd(C)∨ rd(D)

rd(

E

r.C) := 1 + rd(C)

For a role-depth bound d ∈ N, we define EL⊥d(Σ) as the set of all EL⊥ concept
descriptions with a role depth not exceeding d.

The set Sub(C) of all subconcepts of a concept description C is recursively defined
as follows.

Sub(A) := {A} if A ∈ ΣC ∪ {⊥,>}
Sub(C uD) := {C uD} ∪ Sub(C)∪ Sub(D)

Sub(

E

r.C) := {

E

r.C} ∪ Sub(C)
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For an axiom α, we define its set Sub(α) of subconcepts as follows.

Sub(C v D) := Sub(C)∪ Sub(D)

Sub(C ≡ D) := Sub(C)∪ Sub(D)

Sub(a @− C) := Sub(C)

Furthermore, the set Sub(O) of subconcepts of an ontology is defined as

Sub(O) :=
⋃
{Sub(α) | α ∈ O}.

The size |C| of a concept description C is the number of nodes in its syntax tree
and, more specifically, we recursively define it as follows.

|A| := 1 if A ∈ ΣC ∪ {⊥,>}
|C uD| := |C|+ 1 + |D|
|

E

r.C| := 1 + |C|

Then, the size |α| of an axiom α is given by the following definitions.

|C v D| := |C|+ |D|
|C ≡ D| := |C|+ |D|
|a @− C| := 1 + |C|

|(a, b) @− r| := 3

Furthermore, the size |O| of an ontology is defined by

|O| :=
∑

( |α| | α ∈ O ).

2.2. Semantics
An interpretation I := (∆I, ·I) over Σ consists of a non-empty set ∆I of objects,

called the domain, and an extension function ·I that maps concept names A ∈ ΣC to
subsets AI ⊆ ∆I, and that maps role names r ∈ ΣR to binary relations rI ⊆ ∆I×∆I.
Then, the extension function is canonically extended to all EL⊥ concept descriptions
by the following recursive definitions.

⊥I := ∅
>I := ∆I

(C uD)I := CI ∩DI

(

E

r.C)I := { δ | δ ∈ ∆I, (δ, ε) ∈ rI, and ε ∈ CI for some ε ∈ ∆I }

A concept inclusion C v D is valid in I, written I |= C v D, if CI ⊆ DI. A concept
equivalence C ≡ D is valid in I, denoted by I |= C ≡ D, if CI = DI. A concept
assertion a @− C is valid in I, symbolized by I |= a @− C, if aI ∈ CI. A role assertion
(a, b) @− r is valid in I, written I |= (a, b) @− r, if (aI, bI) ∈ rI. We also refer to I as a
model of the axiom α if I |= α holds true. Furthermore, I is a model of an ontology O,
symbolized as I |= O, if each axiom in O is valid in I. The entailment relation is lifted
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to ontologies as follows: an axiom α is entailed by an ontology O, denoted as O |= α,
if each model of O is a model of α too. An ontology O1 entails an ontology O2,
symbolized as O1 |= O2, if O1 entails each axiom in O2 or, equivalently, if each model
of O1 is also a model of O2. In case O |= C v D, we then also say that C is subsumed
by D with respect to O. Two concept descriptions C and D are equivalent with respect
to some ontology O ifO |= C ≡ D. For an individual name a and a concept description
C, we say that a is an instance of C with respect to some ontology O if O |= a @− C.

Example. Consider the following ontology O.

O :=



Researcher ≡

E

has.UniversityDegree u

E

publishes.ScientificArticle,

UniversityProfessor ≡

E

has.DoctoralDegree u

E

publishes.ScientificArticle

u

E

teaches.UniversityLecture u

E

publishes.TextBook,
DoctoralDegree v UniversityDegree,

somebody @− UniversityProfessor


As one quickly verifies, O entails the axioms UniversityProfessor v Researcher and
somebody @− Researcher.

If Y is either an interpretation or an ontology and ≤ is a suitable relation symbol,
e.g., one of v, ≡, w, @−, then we may also use the denotation C ≤Y D instead of
Y |= C ≤ D and, analogously, we may write C 6≤Y D for Y 6|= C ≤ D.
The active signature of an interpretation I is defined as the set ΣI that contains

all concept and role names from Σ with a non-empty extension in I, that is, we define
ΣI := { σ | σ ∈ Σ and σI 6= ∅ }. Furthermore, we call an interpretation I finitely
representable if its domain ∆I and its active signature ΣI are both finite.

2.3. Complexity
Reasoning in the description logic EL⊥ is tractable. More specifically, the subsumption

problem, which is defined as follows, is decidable in deterministic polynomial time, cf.
(Baader, Brandt and Lutz, 2005; Baader, Lutz and Brandt, 2008).

Instance: Let T ∪ {C v D} be an EL⊥ TBox.
Question: Is C subsumed by D w.r.t. T ?

Since the satisfiability problem in propositional Horn logic is P-complete and can be
reduced to the subsumption problem for EL⊥, we conclude that the latter is P-complete
as well.

2.4. Reduced Forms
It is not hard to find EL⊥ concept descriptions which are equivalent w.r.t. ∅, i.e.,

have the same extension in all interpretations, but are not equal. For instance, consider
C := A u⊥ and D :=

E

r.⊥; both concepts must always have an empty extension,
and hence both are equivalent to ⊥. It is therefore helpful for technical details to
have a unique reduced form for EL⊥ concept descriptions. Let C be an EL⊥ concept
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description, then its reduced form is obtained by exhaustive application of the following
reduction rules to the subconcepts of C.

E

r.⊥ 7→ ⊥
D uE 7→ D if D v∅ E

From the definition of EL⊥ concept descriptions it is immediately clear that each
normalized EL⊥ concept description C is either the bottom concept description ⊥,
or it is an EL concept description and as such essentially a conjunction of other EL
concept descriptions which are no conjunctions, i.e., C has the form

C =
l

Conj(C)

where Conj(C) is defined as the set of all top-level conjuncts in C.

Example. The concept description Au

E

r.Au

E

s. (B uC)u

E

r. (AuC)uA has
the reduced form Au

E

s. (B uC)u

E

r. (AuC).

2.5. The Lattice of Concept Descriptions
It is readily verified that, for each TBox T , the subsumption relation vT constitutes

a quasi-order—a reflexive, transitive binary relation—on the set EL⊥(Σ) of all EL⊥
concept descriptions over the signature Σ. Hence, the quotient of EL⊥(Σ) with respect
to the induced equivalence relation ≡T is a partially ordered set (abbrv. poset). In the
following we will not distinguish between the equivalence classes and their representatives,
and we consider only the case T = ∅. Furthermore, ⊥ is the smallest element, > is the
greatest element, and the quotient set EL⊥(Σ)/≡∅ is also a lattice. It is easy to verify
that the conjunction u corresponds to the finitary infimum operation. In a description
logic allowing for disjunction t, it dually holds true that the disjunction t corresponds
to the finitary supremum operation. Unfortunately, our considered description logic
EL⊥ does not possess the constructor t. As an obvious solution, we can simply define
the lattice-theoretic notion of a supremum specifically tailored to the case of EL⊥
concept descriptions as follows. The supremum or least common subsumer (abbrv.
LCS) of two EL⊥ concept descriptions C and D is a concept description E such that

1. C v∅ E as well as D v∅ E, and

2. for each EL⊥ concept description F , if C v∅ F and D v∅ F , then E v∅ F .

Since all least common subsumers of C and D are unique up to equivalence, we may
denote a representative of the corresponding equivalence class by C ∨D. It can also
be proven that least common subsumers always exist in EL⊥; in particular, the least
common subsumer C ∨D can be computed, modulo equivalence, by means of the
following recursive formula.

C ∨D =
l

(ΣC ∩ Conj(C)∩ Conj(D))

u
l
{

E

r. (E ∨ F) | r ∈ ΣR,

E

r.E ∈ Conj(C), and

E

r.F ∈ Conj(D)}

Example. For the concept descriptions AuB u

E

r. (AuB)u

E

s.C and B uC uE

r.Au

E

r. (B uC), the least common subsumer evaluates to B u

E

r.Au

E

r.B.
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Of course, the definition of a least common subsumer can be extended to an arbitrary
number of arguments in the obvious way, and we shall then denote the least common
subsumer of a set C of concept descriptions by

∨
C.

It is easy to see that the equivalence≡∅ is compatible with both u and ∨. In the sequel
of this document, we shall denote this bounded lattice by EL⊥(Σ) := (EL⊥(Σ),v∅)/≡∅,
and accordingly EL⊥

d(Σ) := (EL⊥d(Σ),v∅)/≡∅ symbolizes the corresponding bounded
lattice of (equivalence classes of) EL⊥ concept descriptions. Note that EL⊥

d(Σ) is
complete if the underlying signature Σ is finite.

2.6. Simulations and Canonical Models
The semantics of EL and of its fixed-point extensions, some of which are described

in the next section, can be characterized by means of so called simulations. A short
overview is given as follows.
A pointed interpretation is a pair (I, δ) consisting of an interpretation I and an

element δ ∈ ∆I. Now let (I, δ) and (J , ε) be two pointed interpretations, and assume
that Γ ⊆ Σ. A Γ-simulation from (I, δ) to (J , ε) is a relation S ⊆ ∆I ×∆J that
satisfies (δ, ε) ∈ S as well as the following conditions for all pairs (ζ, η) ∈ S.

1. For all concept names A ∈ ΓC, if ζ ∈ AI, then η ∈ AJ .

2. For all role names r ∈ ΓR, if there is an element θ ∈ ∆I such that (ζ, θ) ∈ rI,
then there is an element ι ∈ ∆J such that (η, ι) ∈ rJ and (θ, ι) ∈ S.

We then also write S : (I, δ) ⇀∼Γ (J , ε), and to express the mere existence of a Γ-
simulation from (I, δ) to (J , ε) we may write (I, δ) ⇀∼Γ (J , ε). Furthermore, if Γ = Σ,
then we speak of simulations instead of Γ-simulations, and we leave out the subscript
Γ, i.e., we use the symbol ⇀∼ instead of ⇀∼Γ. Two pointed simulations (I, δ) and (J , ε)
are equi-similar if there is a simulation in each direction.

Assume that (I, δ) ⇀∼ (J , ε). It is easily verified that for all EL⊥ concept description
C, it holds true that δ ∈ CI only if ε ∈ CJ . Further important notions and statements
related to simulations are cited from Lutz and Wolter (2010) in the following.

(Lutz and Wolter, 2010, Definition 11). Let T be an EL⊥ TBox, and C be
an EL⊥ concept description. The canonical model IC,T of T and C consists of the
following components.

∆IC,T := {C} ∪ {D |

E

r ∈ ΣR :

E

r.D ∈ Sub(T )∪ Sub(C)}

·IC,T :


A 7→ {D | D vT A} for any A ∈ ΣC

r 7→

{
(D,E)

∣∣∣∣∣ D vT

E

r.E and

E

r.E ∈ Sub(T ),

or

E

r.E ∈ Conj(D)

}
for any r ∈ ΣR

(Lutz and Wolter, 2010, Lemma 12). Let T be an EL⊥ TBox, and C be an EL⊥
concept description. Then, the following statements hold true.

1. D ∈ DIC,T for all D ∈ ∆IC,T

2. IC,T |= T

3. (IC,T ,E) ⇀∼ (ID,T ,E) for all D ∈ EL⊥(Σ) and all E ∈ ∆IC,T ∩∆ID,T
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(Lutz and Wolter, 2010, Lemma 13). Let T be an EL⊥ TBox, and C be an EL⊥
concept description.

1. For all models I of T and all objects δ ∈ ∆I, the following statements are
equivalent.

(a) δ ∈ CI

(b) (IC,T ,C) ⇀∼ (I, δ)

2. For all EL⊥ concept descriptions D, the following statements are equivalent.

(a) T |= C v D
(b) C ∈ DIC,T

(c) (ID,T ,D) ⇀∼ (IC,T ,C)

Example. As an example, consider the concept descriptions IntegerList and ElementList
as well as the following terminological box T over the signature Σ

ΣC := {ElementList, IntegerList,Element, Integer}
ΣR := {head, tail}

T :=


ElementList ≡

E

head.Elementu

E

tail.ElementList,

IntegerList ≡

E

head. Integer u

E

tail. IntegerList,
Integer v Element


It is easy to see that IntegerList vT ElementList holds true. Depicted below is an
according simulation S from the canonical model IElementList,T to the canonical model
IIntegerList,T that contains (ElementList, IntegerList).

tail

tail

head
head

tail

head

tail

tail

head
head

tail

head

IntegerList ElementList

Integer Element

IntegerList ElementList

Integer Element

S

S

S

S

Note that, in order to ease readability, we have not included node labels; to be complete,
we list these as follows. Each node C is labeled with C itself, and further IntegerList
has label ElementList and Integer has label Element.
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It is easy to see that ⇀∼ is a partial ordering relation. Furthermore, infima w.r.t. ⇀∼
always exist and can be characterized by products. The product of interpretations
I and J over the same signature Σ is defined as the interpretation I ×J consisting
of the following components.

∆I×J := ∆I ×∆J

·I×J :

{
A 7→ { (δ, ζ) | δ ∈ AI and ζ ∈ AJ } for each A ∈ ΣC

r 7→ { ((δ, ζ), (ε, η)) | (δ, ε) ∈ rI and (ζ, η) ∈ rJ } for each r ∈ ΣR

Given two pointed interpretations (I, δ) and (J , ε), their product (I, δ)× (J , ε) is
defined as the pointed interpretation (I×J , (δ, ε)). Now, Lutz, Piro and Wolter (2010a,
Observation 3) have found that the product operation × is the infimum operation in the
set of (equivalence classes of) pointed interpretations ordered by ⇀∼. It is immediate to
extend the notion of a product to an arbitrary number of (pointed) interpretations used
as factors, and we shall denote the product of a set I of (pointed) interpretations as×I.

2.7. Greatest Fixed-Point Semantics
We cite two description logics introduced by Lutz, Piro and Wolter (2010a) that

are extensions of EL with greatest fixed-point semantics. According to (Lutz, Piro
and Wolter, 2010a, Theorem 10) there are polynomial time translations between both,
and furthermore reasoning in these extensions remains P-complete, cf. (Lutz, Piro and
Wolter, 2010a, Theorem 12).

The description logic ELsi extends EL by the concept constructor

Esim (I, δ) where
(I, δ) is a pointed interpretation such that I is finitely representable. The semantics
of the additional concept constructor is defined as follows: for each interpretation J
and any object ε ∈ ∆J , it holds true that ε ∈ (

Esim (I, δ))J if (I, δ) ⇀∼ (J , ε). As
shown in (Lutz, Piro and Wolter, 2010a, Lemma 7), every ELsi concept description
is equivalent to a concept description of the form

Esim (I, δ), and furthermore, such an
equivalent concept description can be constructed in linear time. Adding the bottom
concept description ⊥ yields the description logic EL⊥si.
Furthermore, Lutz, Piro and Wolter (2010b, Definition 28) define the nth charac-

teristic concept description Xn(I, δ) of a pointed interpretation (I, δ) that has a finite
active signature recursively as follows.

X0(I, δ) :=
l
{A | A ∈ ΣC and δ ∈ AI }

Xn+1(I, δ) := X0(I, δ)u
l
{

E

r.Xn(I, ε) | r ∈ ΣR and (δ, ε) ∈ rI }

For any finitely representable pointed interpretation (I, δ), the sequence (Xn(I, δ) | n ∈
N ) converges to

Esim (I, δ), that is, it holds true that

(

Esim (I, δ))J =
⋂
{ (Xn(I, δ))J | n ∈N}

for every interpretation J , and so we also call Xn(I, δ) the nth approximation ofEsim (I, δ). In general, we shall denote the nth approximation of an EL⊥si concept
description C as C�n where we additionally need to define that ⊥�n := ⊥ for each
n ∈N. Clearly, if C is an EL⊥ concept description with role depth d, then C ≡∅ C�n
holds true for each n ≥ d. Alternatively, we may call an nth approximation C�n also
a restriction of C to a role depth of n.
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Example. Consider the interpretation I depicted below.

r

δ

The approximations of the concept description

Esim (I, δ) are then the concept descrip-
tions Xn(I, δ) =

E

rn.>.

Example. As another example, consider the interpretation IList shown below.

tail

head

tail

head

tail

head

δ0

ε0

Float

δ1

ε1

Float

δ2

ε2

Float

. . .

. . .

The finite approximations of

Esim (IList, δ0) are the following concept descriptions.

X0(IList, δ0) = >
X1(IList, δ0) =

E

head.Floatu

E

tail.>
X2(IList, δ0) =

E
head.Floatu

E
tail. (

E
head.Floatu

E
tail.>)

X3(IList, δ0) =

E

head.Floatu

E

tail. (

E

head.Floatu

E

tail. (

E

head.Floatu

E

tail.>))

...

Xn+1(IList, δk) =

E

head.Floatu

E

tail.Xn(IList, δk+1)

The description logic ELst extends EL by the concept constructor

Esim Γ. (T ,C),
where Γ ⊆ Σ is a finite signature, T is a TBox, and C is a concept description. More
specifically, ELst concept descriptions, ELst concept inclusions, and ELst TBoxes are
defined by simultaneous induction as follows.

1. Every EL concept description, EL concept inclusion, and EL TBox, is an ELst
concept description, ELst concept inclusion, and ELst TBox, respectively;

2. if T is an ELst TBox, C an ELst concept description, and Γ ⊆ Σ a finite signature,
then

Esim Γ. (T ,C) is an ELst concept description;

3. if C and D are ELst concept descriptions, then C v D is an ELst concept
inclusion;

4. an ELst TBox is a finite set of ELst concept inclusions.

The semantics of the additional concept constructor is defined as follows: let I be an
interpretation, then δ ∈ (

Esim Γ. (T ,C))I if there exists a pointed interpretation (J , ε)
such that J is a model of T , ε ∈ CJ , and (J , ε) ⇀∼Σ\Γ (I, δ). In case Γ = ∅ we may
abbreviate

Esim Γ. (T ,C) as

Esim (T ,C). Adding the bottom concept description ⊥
yields the description logic EL⊥st.
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3. Closure Operators in Lattices

In the following text we assume that M := (M,≤,
∧
,
∨
,⊥,>) is a complete lattice,

i.e., ≤ is a partial order relation on M such that, for any subset X ⊆M , the infimum∧
X as well as the supremum

∨
X exists, and further it holds true that⊥ is the smallest

element and > is the greatest element, cf. (Birkhoff, 1940; Davey and Priestley, 2002;
Ganter andWille, 1999a; Grätzer, 2002). At first we define some basic terms and notions
that are used in later sections. We start with the definition of closure operators in M,
give some equivalent characterizations, and present the lattice of closure operators in M.
A closure operator in M is a mapping φ : M → M that satisfies the following

properties for all elements x, y ∈M . Instead of φ(x) we shall write xφ.

1. x ≤ xφ (extensive)

2. x ≤ y implies xφ ≤ yφ (monotonic)

3. xφφ = xφ (idempotent)

An element x ∈M that satisfies x = xφ is called closed with respect to φ or, equiv-
alently, a closure of φ, and Clo(φ) denotes the set of all closures of φ. The set of
all closure operators in M is denoted by ClOp(M). Further information on closure
operators can be found in (Caspard and Monjardet, 2003; Davey and Priestley, 2002;
Higuchi, 1998), and we shall cite some important results in the sequel of this section.
For any mapping φ : M →M , the following statements are equivalent.

1. φ is a closure operator on M, i.e., φ ∈ ClOp(M)

2. x ≤ yφ if, and only if, xφ ≤ yφ for all x, y ∈M

3. x∨ yφφ ≤ (x∨ y)φ for all x, y ∈M

4. x ≤ xφ and (x∨ y)φ = (xφ ∨ yφ)φ for all x, y ∈M

For every closure operator φ in M, the following statements hold true.

1. (x∧ y)φ ≤ xφ ∧ yφ for all x, y ∈M

2. (xφ ∧ yφ)φ = xφ ∧ yφ for all x, y ∈M

A closure system in M is a
∧
-closed subset P ⊆M , i.e., it holds true that

∧
X ∈ P

for each subset X ⊆ P . Note that the empty infimum
∧
∅ in M equals >, i.e., each

closure system in M contains >. A subset P ⊆M is a closure system in M if, and
only if, { p ∈ P | x ≤ p } has a smallest element for all x ∈ M . There exists a
one-to-one-correspondence between closure operators and closure systems as follows.
For every closure operator φ in M, the set Clo(φ) is a closure system in M. For every
closure system P in M, the mapping

φP : x 7→
∧
{p | p ∈ P and x ≤ p}

is a closure operator in M. Both operations are mutually inverse, i.e., φClo(φ) = φ for
all closure operators φ, and Clo(φP ) = P for all closure systems P .
Indeed, closure operators can be ordered, cf. (Higuchi, 1998; Rudolph, 2014). For

closure operators φ and ψ in M, we call φ finer than ψ and, dually, we call ψ coarser
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than φ, denoted as φEψ, if all ψ-closures are also φ-closed, that is, if Clo(ψ) ⊆ Clo(φ)
holds true. It can be shown that the statements φ E ψ, φ ◦ ψ = ψ, and φ ≤ ψ
(pointwise order) are equivalent. As it turns out, the set of all closure operators in
M ordered by E constitutes a complete lattice

ClOp(M) := (ClOp(M),E,
a
,
`
,⊥,>).

In particular, every set Φ of closure operators in M has an infimum
a

Φ as well as
a supremum

`
Φ and these are given as follows.
i

Φ: x 7→
∧
{xφ | φ ∈ Φ}

h
Φ: x 7→

∧
{y | x ≤ y and y = yφ for each φ ∈ Φ}

The finest closure operator is the identity mapping ⊥ : x 7→ x, and the coarsest closure
operator is the constant mapping > : x 7→ >.

An implication in M is an expression p→ c where both the premise p as well as the
conclusion c are elements of M . A model of p→ c is an element m ∈M such that
p ≤ m implies c ≤ m. Then, p→ c is valid for a closure operator φ in M, written
φ |= p→ c or p→φ c, if each closure of φ is a model of p→ c. It is a finger exercise
to show that p→ c is valid in φ if, and only if, c ≤ pφ holds true, cf. Kriegel (2016b,
Section 3). An implication set L entails an implication p→ c, denoted as L |= p→ c
or p→L c, if every model of all implications in L is also a model of p→ c.

Example. Consider the lattice M with base set M := R3 and pointwise ordering ≤.
Of course, the implication (5,−9,37)→ (2,−100,−54) is a tautology, since it is valid
in any closure operator in M. We now define the closure operator

φ : (x, y, z) 7→ (x∨ y ∨ z, x+ y + z, x · y · z)

on M. For instance, the implication (1,2,3) → (e,3,−π) is valid for φ, since
(e,3,−π) ≤ (3,6,6) holds true. Further consider the implication set L that is defined
as follows.

L :=


(1,2,3)→ (1 · π,2 · π,3 · π),

(3,6,8)→ (42,0,23),

(10,0,20)→ (100,200,400)


It is easy to see that the models of L are the following.

(x, y, z) where x < 1 or y < 2 or z < 3

(x, y, z) where x ≥ 100 and y ≥ 200 and z ≥ 400

Thus, L entails the implication (2,2,3)→ (99,199,299).

An implication base for a closure operator φ is an implication set L that is sound
for φ, that is, each implication in L is valid for φ, and further is complete for φ, that is,
any implication that is valid for φ is also entailed by L. A pseudo-closure of a closure
operator φ is an element p ∈M that is no closure of φ, but satisfies that qφ ≤ p holds
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true for each pseudo-closure q of φ with q � p. Then, the following implication set
Can(φ), called the canonical base of φ, is an implication base for φ.

Can(φ) := {p→ pφ | p is a pseudo-closure of φ}

It can be shown that Can(φ) is a minimal implication base for φ, that is, there does
not exist any implication base with fewer implications, cf. Kriegel (2016b, Section 3).

Furthermore, an implication is simultaneously valid for two closure operators if, and
only if, it is valid for their infimum, cf. (Kriegel, 2016b, Section 3.1). Later in this
document, we are going to consider closure operators in EL⊥

st(Σ) and in EL⊥(Σ). Of
course, the concept inclusions are exactly the implications in these two lattices, and so
it makes sense to also allow for the denotations φ |= C v D and C vφ D to express
that C v D is valid in φ, where φ is a closure operator in (the dual of) EL⊥

st(Σ) or in
EL⊥(Σ), and where C v D is an EL⊥st concept inclusion or an EL⊥ concept inclusion.

4. Related Work

So far, several approaches for axiomatizing concept inclusions in different description
logics have been developed, and many of these utilize sophisticated techniques from
Formal Concept Analysis (Ganter and Obiedkov, 2016; Ganter and Wille, 1999b): on
the one hand, there is the so-called canonical base, cf. Guigues and Duquenne (1986),
that provides a concise representation of the implicative theory of a formal context in a
sound and complete manner and, on the other hand, the interactive algorithm attribute
exploration exists, which guides an expert through the process of axiomatizing the theory
of implications that are valid in a domain of interest, cf. Ganter (1984). In particular,
attribute exploration is an interactive variant of an algorithm for computing canonical
bases (Ganter, 1984), and it works as follows: the input is a formal context that only
partially describes the domain of interest (that is, there may be implications that are
not valid, but for which this partial description does not provide a counterexample), and
during the run of the exploration process a minimal number of questions is enumerated
and posed to the expert (such a question is an implication for which no counterexample
has been explored, and the expert can either confirm its validity or provide a suitable
counterexample). On termination, a minimal sound and complete representation of
the theory of implications that are valid in the considered domain has been generated.

A first pioneering work on axiomatizing concept inclusions in the description logic
FLE has been developed by Rudolph (2006), which allows for the exploration of a con-
cept inclusion base for a given interpretation in a multistep approach such that each step
increases the role depth of concept descriptions occurring in the concept inclusions. Later,
a refined approach has been developed by Baader and Distel (2008); Distel (2011) for ax-
iomatizing concept inclusion bases in the description logic EL⊥. They found techniques
for computing and for exploring such bases that contain a minimal number of concept in-
clusions and that are both sound and complete not only for those valid concept inclusions
up to certain role depth but instead for all valid ones. However, due to possible presence
of cycles in the input interpretation they need to apply greatest fixed-point semantics;
luckily, there is a finite closure ordinal for any finitely representable interpretation, that
is, there is a certain role depth up to which the concept descriptions in the base can be
unraveled to obtain a base for all valid concept inclusions with respect to the standard se-
mantics. Borchmann, Distel and Kriegel (2016) devised a variant of these techniques that
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circumvents the use of greatest fixed-point semantics, but which can only compute mini-
mal concept inclusion bases that are sound and complete for all concept inclusions up to
a set role depth—of course, if one chooses the closure ordinal as role-depth bound, then
also these bases are sound and complete for all valid concept inclusions w.r.t. standard
semantics. Further variants that allow for the incorporation of background knowledge or
allow for a more expressive description logic can be found in (Kriegel, 2015, 2016a, 2017).
Since we shall later expand on the aforementioned results for axiomatizing EL⊥

concept inclusions valid in an interpretation, we briefly introduce these as follows. A
concept inclusion base for an interpretation I is a TBox T such that, for each concept
inclusion C v D, it holds true that I |= C v D if, and only if, T |= C v D. For each
finite interpretation I with finite active signature, there is a canonical base Can(I) with
respect to greatest fixed-point semantics, which contains a minimal number of concept
inclusions among all concept inclusion bases for I, cf. Distel (2011, Corollary 5.13 and
Theorem 5.18), and similarly there is a minimal canonical base Can(I, d) with respect
to an upper bound d ∈N on the role depths, cf. Borchmann, Distel and Kriegel (2016,
Theorem 4.32). The construction of both canonical bases is built upon the notion
of a model-based most specific concept description (abbrv. MMSC), which, for an
interpretation I and some subset Ξ ⊆ ∆I, is a concept description C such that Ξ ⊆ CI
and, for each concept description D, it holds true that Ξ ⊆ DI implies ∅ |= C v D.
These exist either if greatest fixed-point semantics is applied (in order to be able to
express cycles present in I) or if the role depth of C is bounded by some d ∈N, and
these are then denoted as ΞI or ΞId, respectively. These mappings ·I : ℘(∆I) →
EL⊥(Σ) and ·Id : ℘(∆I) → EL⊥d(Σ) are the adjoints of the extension functions
·I : EL⊥(Σ)→ ℘(∆I) and ·I : EL⊥d(Σ)→ ℘(∆I), respectively, and the respective pair
of both constitutes a Galois connection, cf. Distel (2011, Lemma 4.1) and Borchmann,
Distel and Kriegel (2016, Lemmas 4.3 and 4.4), respectively. As a consequence, we
obtain that the mappings φI : C 7→ CII and φI,d : C 7→ CIId are closure operators.
It is straight-forward to verify that, in the description logic EL⊥si,

Esim (I, δ) is the most
specific concept description of {δ} in I, and that

Esim (×{ (I, ξ) | ξ ∈ Ξ}) is the most
specific concept description of Ξ in I. Analogously in the description logic EL⊥d , it holds
true that Xd(×{ (I, ξ) | ξ ∈ Ξ}) is the most specific concept description of Ξ in I.

Example. Fix the following interpretation ILionKing that contains the objects simba
and timon as well as corresponding ancestors.

hasMother hasFather

hasMother hasFather hasMother hasFather

simbaLion,Mammal

sarabiLion,Mammal mufasa Lion,Mammal

. . . . . . . . . . . .
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hasMother hasFather

hasMother hasFather hasMother hasFather

timonMeerkat,Mammal

maMeerkat,Mammal timonsFather Meerkat,Mammal

. . . . . . . . . . . .

We now want to construct the model-based most specific concept description of
{simba, timon} in ILionKing, which is equivalent to

Esim ((ILionKing, simba)× (ILionKing, timon)).

The product ILionKing ×ILionKing is as follows where we only construct objects that are
reachable from (simba, timon).

hasMother hasFather

hasMother hasFather hasMother hasFather

(simba, timon)Mammal

(sarabi,ma)Mammal (mufasa, timonsFather) Mammal

. . . . . . . . . . . .

It is not hard to verify that (ILionKing ×ILionKing, (simba, timon)) is equi-similar to the
following pointed interpretation (I, δ).

hasMotherhasFather δ

Mammal

We conclude that {simba, timon}ILionKing is equivalent to

Esim (I, δ).

Since the EL⊥gfp concept inclusion base from Distel (2011, Corollary 5.13 and
Theorem 5.18) can be unraveled up to a depth of dI := |∆I||∆I|+1 such that adding
some further concept inclusions with a role depth dI+1 yields an EL⊥ concept inclusion
base for I, cf. Distel (2011, Section 5.3), we conclude that, in order to get a TBox which
is sound and complete for all valid concept inclusions of I, we may also directly compute
an EL⊥dI+1 concept inclusion base for I by means of the techniques from Borchmann,
Distel and Kriegel (2016). This is formulated in the next lemma in more detail.

Proposition 1. Let I be a finitely representable interpretation, and define dI :=

|∆I||∆I|+1. Then, each EL⊥dI+1 concept inclusion base for I is also an EL⊥ concept
inclusion base for I.
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Proof. Let B be a base for the valid concept inclusions of I for which the role depth
is at most dI + 1. By assumption, then B is sound for I. For proving completeness,
it suffices to show that B entails the base B4 of Distel (2011, Section 5.3). Since
B4 only contains concept inclusions with a role depth not exceeding dI + 1, we may
immediately conclude that B |= B4 is indeed satisfied.

As a variant of these two approaches, Kriegel (2015) presented a method for construct-
ing canonical bases relative to an existing terminological box. If I is an interpretation
and B is a terminological box such that I |= B, then a concept inclusion base for I
relative to B is a terminological box T such that, for each concept inclusion C v D,
it holds true that I |= C v D if, and only if, T ∪ B |= C v D. The corresponding
canonical base is denoted as Can(I,B), cf. Kriegel (2015, Theorem 1).

So far, the complexity of computing concept inclusion bases in the description logic
EL⊥ has not been determined. Using simple arguments, one could only infer that the
canonical base Can(I) can be computed in double exponential time with respect to
the cardinality of the domain ∆I. However, we give an answer to this open question in
the following proposition. As it turns out, Can(I) can always be computed in (single)
exponential time w.r.t. |∆I|, and further there exist interpretations I for which all
concept inclusion bases must have sizes that are at least exponential w.r.t. |∆I|, that
is, for which a concept inclusion base cannot be encoded in polynomial space.

Proposition 2. For each finitely representable interpretation I, its canonical base
Can(I) can be computed in deterministic exponential time with respect to the cardinality
of the domain ∆I. Furthermore, there are finitely representable interpretations I for
which a concept inclusion base cannot be encoded in polynomial space with respect to
the cardinality of ∆I.

Proof. We start the proof with introducing a few notions from Formal Concept Analysis
that are needed to understand this proof. A formal context K is a triple (G,M,I)
where both G and M are sets and where I ⊆ G ×M is a binary relation. The
relation I induces mappings ·I : ℘(G)→ ℘(M) and ·I : ℘(M)→ ℘(G) by setting
AI := {m ∈ M | (g,m) ∈ I for each g ∈ A } and dually BI := { g ∈ G | (g,m) ∈
I for each m ∈ B }. The composition φK : ℘(M)→ ℘(M) where φK(B) := BII is
a closure operator in M . Now an intent of K is a closure of φK and a pseudo-intent
of K is a pseudo-closure of φK. Furthermore, Int(K) denotes the set of all intents of
K, and Can(K) is the canonical base of φK.
We continue with citing an important result on sizes of canonical bases of for-

mal contexts: Albano (2017, Theorem 3.2.1) has shown that, for any formal context
K := (G,M,I), it holds true that |Can(K)| ≤ |M |·|Int(K)|. Furthermore, Distel (2011,
Theorem 5.18) has shown that, for each finitely representable interpretation I, the canon-
ical base Can(I) from Distel (2011, Corollary 5.13) contains a minimal number of concept
inclusions among all concept inclusion bases for I. The premises of the concept inclusions
in Can(I) correspond to the pseudo-intents of the induced context KI := (∆I,MI, I),
cf. Distel (2011, Definitions 4.2 and 5.3), and, more specifically, for every pseudo-intent P
ofKI, its conjunction

d
P is such a premise of a concept inclusion in Can(I). It follows

that the number of concept inclusions in Can(I) is bounded by the number of implica-
tions in Can(KI). Applying Albano’s result yields that the number of concept inclusions
in Can(I) cannot be greater than |MI| · |Int(KI)|. Analyzing the definition of the at-
tribute setMI shows that its number of elements is bounded by 1+|ΣC|+|ΣR|·(2|∆

I|−1),
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that is, the cardinality ofMI is at most exponential in the cardinality of the domain ∆I.
Furthermore, for every formal context K := (G,M,I), the number of intents of K is
bounded by the minimum of 2|G| and 2|M|. Consequently, the cardinality of Int(KI) can-
not exceed 2|∆

I|. Summing up, the cardinality of Can(I) is at most exponential in |∆I|.
According to Distel (2011, Section 4.1), the model-based most specific concept

descriptions for I always have a representative the size of an (efficient) encoding of
which is exponential in the size of the domain ∆I. More specifically, Distel has shown
that model-based most specific concept descriptions of singletons can be constructed by
a traversal of the graph induced by the considered interpretation, and that these always
have a linear size, while model-based most specific concept descriptions of arbitrary
subsets of the interpretation’s domain can be constructed as least common subsumers
of such singleton model-based most specific concept descriptions. Condensing these
two computation steps into one yields that the model-based most specific concept
description ΞI can always be obtained as the EL⊥gfp concept description (Ξ,TI) where
the TBox TI consists of the concept definitions

Υ ≡
l
{A | A ∈ ΣC and Υ ⊆ AI }

u
l
{

E

r.Φ | r ∈ ΣR and, for each υ ∈ Υ, there is a φ ∈ Φ with (υ,φ) ∈ rI }

for all subsets Υ ⊆ ∆I, that is, we treat all subsets of the domain also as defined
concept names in TI.
Consequently, there is always an encoding of the attribute set MI with at most

exponential size w.r.t. |∆I|. Furthermore, the canonical base of I consists of at most
exponentially many concept inclusions the premises and conclusions of which have
at most exponentially many top-level conjuncts, and each of these top-level conjuncts
has an exponential size. Thus, Can(I) has a size that is at most exponential in ∆I.
We proceed with demonstrating that we can compute the canonical base Can(I)

in exponential time w.r.t. |∆I|. We divide this computation task into three steps.

Computing the attribute set MI. We have already argued that each model-based most
specific concept description can be computed in exponential time, and since there
are at most exponentially many model-based most specific concept descriptions,
we conclude that MI can be computed in exponential time too.

Computing the induced context KI. It remains to compute the incidence relation of
KI. For that purpose, we consider each object δ ∈ ∆I and each attribute
C ∈MI, and check if δ ∈ CI holds true. Since each such check requires time
polynomial in |∆I|+|C|, that is, time exponential in |∆I|, and exponentially many
such checks are necessary, we conclude that the incidence relation of the induced
context can be computed in exponential time. Including the aforementioned
result shows that the induced context can be computed in exponential time.

Computing the canonical base Can(I). We consider the algorithm NextClosures from
Kriegel and Borchmann (2015). Since KI has at most 2|∆

I| intents, there are
at most 2|∆

I| · |MI| fresh candidates during the algorithm’s run on KI as input.
We have already argued that the cardinality of MI is exponential in |∆I|, and
it follows that each fresh candidate will at most exponentially many times be
closed against L∗ (where L denotes the approximation of Can(KI) during the
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algorithm’s run, which will satisfy L = Can(KI) after termination, cf. Kriegel
and Borchmann (2015)). Computing the closure of a subset C ⊆MI against L∗
takes time bounded by |L|2 · (|MI|2 + |MI|), since for computing this closure
we need to loop at most |L| times and within each loop iteration it is necessary
to check, for each implication X → Y ∈ L, whether X ( C holds true and if
so, we add all elements of Y to C. Consequently, closing a subset of MI against
L∗ requires exponential time with respect to |∆I|.
Summing up, during a run of NextClosures on an induced context KI at most
exponentially many fresh candidates will be computed, each of these candidates
will at most exponentially many times be closed against L∗ for the current
L ⊆ Can(KI), and each of these closures can be computed in exponential
time. Consequently, NextClosures runs in exponential time on the input KI.
Eventually, the transformation from Can(KI) to Can(I) is trivial, cf. Distel
(2011, Corollary 5.13), does not notably increase the size of an encoding, and
needs only one traversal through Can(KI), that is, Can(I) can be computed
from Can(KI) in exponential time as well.

We conclude that, using NextClosures, the canonical base of an interpretation can
always be computed in deterministic exponential time.
Kuznetsov and Obiedkov (2008, Theorem 4.1) have shown that the number of

implications in the canonical base Can(K) of a formal context K := (G,M,I) can
be exponential in |G| · |M |. Their proof shows that we can even ignore the size of
the attribute set M , since the considered formal contexts (G,M,I) are such that the
size of M is linear in the size of G and the corresponding canonical bases contain
exponentially many implications also with respect to the size of the object set G.
As a consequence, we obtain that there exist formal contexts (G,M,I) for which an
implication base cannot be encoded in space polynomial in |G|, as the canonical base
of a formal context K has a minimal number of implications among all implication
bases for K. Since each formal context can be treated as an interpretation over a
signature without role names, this important result immediately transfers from the
Formal Concept Analysis setting to the Description Logic setting, and we conclude
that there exist interpretations I for which a concept inclusion base cannot be encoded
in polynomial space with respect to the cardinality of the domain ∆I.

5. Most Specific Consequences

The notion of a most specific consequence was introduced by the author in (Kriegel,
2016a). However, no conditions for their existence have been known, and it has been
unclear how and whether these could be computed—problems that will be solved in
Section 6. For describing the origin of that notion, we first take a short detour to the
field of Formal Concept Analysis (abbrv. FCA). In what follows we will introduce only
necessary details; the interest reader can find thorough overviews published by Ganter
and Wille (1999a), and by Ganter and Obiedkov (2016).

The basic data structure is that of a formal context K := (G,M,I) consisting of a set
G of objects, a setM of attributes, and an incidence relation I ⊆ G×M . If (g,m) ∈ I,
then we say that the object g has the attribute m. An implication is an expression
X → Y where X and Y are subsets of M , and it is valid in K if each object that has
all attributes in X also has all attributes in Y . Let L be a set of implications. Then, L
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entails an implicationX → Y if it is valid in all formal contexts in which all implications
of L are valid. Furthermore, we can define a mapping φL : X 7→ XL as follows.

XL :=
⋃
{XLn | n ∈N}

XL0 := X

XLn+1 := XLn ∪
⋃
{Z |

E

Y : Y → Z ∈ L and Y ⊆ XLn }

This mapping φL is a closure operator in the power-set℘(M), and an implicationX →
Y follows fromL if, and only if, Y ⊆ XL is satisfied, that is, ifX → Y is valid in φL. We
conclude that, for each attribute set X ⊆M , the implication X → XL follows from L,
and furthermore, for each superset Z ) XL, the implicationX → Z is not entailed by L.
Hence, we may also refer to XL as the most specific consequence ofX with respect to L.

Example. Fix the following implication set L over the attribute setM := {m,n, o, p, q}.

L :=


{m} → {n},
{n, p} → {q},
{p, q} → {o}


The smallest model of L that is a superset of {m,p} is {m,n, o, p, q}. Furthermore,
the most specific consequence of {m} w.r.t. L is {m,n}.

As it turns out, there is no such notion in the field of Description Logic. Anyways,
it is readily verified that sets of implications correspond to TBoxes, and consequently
we can simply define the following.

Definition 3. Let L1 and L2 denote description logics, and fix some L1 TBox T as
well as an L1 concept description C. Then, an L2 concept description D is called a
most specific consequence or most specific subsumer (abbrv. MSS) in L2 of C with
respect to T if it satisfies the following conditions.

1. The concept inclusion C v D follows from T , i.e., C vT D.

2. D is most specific with respect to the property of subsuming C w.r.t. T , that
is, for each L2 concept description E, if C vT E, then D v∅ E.

Within this document, we only consider the description logics EL and EL⊥ or its
extensions with greatest fixed-point semantics, e.g., ELst and EL⊥st, as possible choices
for L1, and for L2 we investigate the cases EL, EL⊥, ELst, EL⊥st, and ELd as well as
EL⊥d for some d ∈N.
As one quickly verifies, all most specific consequences of C with respect to T are

unique up to equivalence, and hence we shall denote the most specific consequence of
C with respect to T by CT—provided that it exists. Another immediate consequence
of Definition 3 is that C and its most specific consequence CT are equivalent with
respect to T , since, on the one hand, C vT CT , and, on the other hand, C clearly
is a consequence of itself w.r.t. T , that is, CT v∅ C. Please note, that writing CT
can cause an abuse of notation, since the target DL L2 is not specified; however, in
this document this will not cause any issues.
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Remark that Distel (2011, Chapter 7) has investigated a dual notion, namely that of a
minimal possible consequence, which he utilized to constitute an algorithm for the explo-
ration of ontologies, called ABox Exploration. To emphasize this duality, it is also reason-
able to use the name of a minimal certain consequence for a most specific consequence.

As an exemplary TBox, consider T := {> v

E

r.>}. It can be readily verified that,
for each n ∈ N, the concept description

E

rn.> is a consequence (i.e., a subsumer)
of > with respect to T . However,

E

rn+1.> is more specific than

E

rn.>, and thus a
most specific consequence of > w.r.t. T does not exist in the description logic EL⊥ with
descriptive semantics (the standard semantics as introduced in Section 2). There are two
solutions to tackle this problem of existence of most specific consequences. The first one
is to use an extension of EL⊥ with greatest fixed-point semantics. Such extensions have
been extensively studied (Baader, 2003a,b; Distel, 2011; Lutz, Piro and Wolter, 2010a,b),
and in particular it has been shown that these extensions can handle terminological
cycles (as present in the given TBox T above) also within concept descriptions. Put
simply, one can think of concept descriptions in standard semantics as finite trees,
while concept descriptions in greatest fixed-point semantics can be seen as finite graphs
that could possibly contain cycles. It is, thus, straight-forward to claim that most
specific consequences always exist in variants of EL⊥ that are equipped with greatest
fixed-point semantics, and we are going to prove this fact in the upcoming Sections 6.1
and 6.2. Another solution for ensuring the existence of most specific consequences is to
restrict the role depth of the concept descriptions under consideration, as this has been
done by Borchmann, Distel and Kriegel (2015) to ensure the existence of model-based
most specific concept descriptions in EL⊥ with descriptive semantics. This approach
shall be considered in Section 6.3. Returning to our above example, we can readily
verify that, for each role-depth bound d ∈N, the EL⊥d concept description

E

rd.> is
the most specific consequence of > w.r.t. T in EL⊥d (for the standard semantics).

6. Existence and Computation of Most Specific Consequences

Within this section, we shall investigate whether most specific consequences exist in EL
and some of its variants. In particular, we also consider the extension EL⊥ with the bot-
tom concept description, which can be used to express unsatisfiability, and we consider
the variant EL⊥st that is equipped with greatest fixed-point semantics. As we will demon-
strate, most specific consequences always exist in EL⊥st, most specific consequences always
exist in EL⊥ for so-called cycle-restricted TBoxes, and further most specific consequences
always exist in EL⊥d for any d ∈N. Additionally, we shall provide means for the com-
putation of most specific consequences, and analyze the complexity of computing these.

6.1. The Unrestricted Case
We start our investigations with the unrestricted case, that is, we do not impose any

bound on the role depths. More specifically, we will show that in ELst most specific
consequences always exist and can be computed in polynomial time. Furthermore,
it holds true that most specific consequences need not exist in EL, but we can decide
in polynomial time whether these exist in EL. The only reason that prevents the
existence of CT in EL is that T induces a cycle for some subconcept of C or, more
generally, for some concept description that is entailed by some subconcept of C w.r.t.
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T . By such a cycle we mean a concept description D together with a non-empty word
r1r2 . . . rn of role names such that

D vT

E

r1r2 . . . rn.D.

It turns out that CT can be constructed from the canonical model IC,T , and that
CT is equivalent to the model-based most specific concept description of {C} in IC,T ,
which is an ELst concept description in general due to the possible presence of cycles in
the canonical model. Of course, if IC,T does not contain cycles, then CT is equivalent
to an EL concept description. Thus, in order to check existence of CT in EL, it
suffices to construct the canonical model, which can be done in polynomial time, then
compute its reachability relation, i.e., the transitive closure of its set of edges, and
finally test if there is some vertex reachable from itself on a path of length at least 1.
The task of computing the reachability relation can be solved with the Floyd-Warshall
algorithm, which is well-known to run in polynomial time. Furthermore, we shall prove
that, for cycle-restricted TBoxes T , all canonical models IC,T for arbitrary concept
descriptions C are acyclic, which means that most specific consequences with respect
to cycle-restricted TBoxes always exist in EL.

The next proposition demonstrates that most specific consequences of ELst concept
descriptions with respect to ELst TBoxes always exist in ELst.

Proposition 4. For each ELst TBox and each ELst concept description C, the most
specific consequence CT exists in ELst. More specifically, it holds true that

CT ≡∅
Esim (T ,C).

Proof. Firstly, we show that

Esim (T ,C) is a consequence of C with respect to T . Let
I be a model of T such that δ ∈ CI. It is trivial that (I, δ) ⇀∼ (I, δ), and hence we
immediately conclude that δ ∈ (

Esim (T ,C))I.
Secondly, we prove that

Esim (T ,C) is indeed most specific. For this purpose,
consider an ELst concept description E such that C vT E, and let I be an arbitrary
interpretation such that δ ∈ (

Esim (T ,C))I. Of course, then there is a pointed interpre-
tation (J , ε) such that (J , ε) ⇀∼ (I, δ), ε ∈ CJ , and J |= T . We proceed with a case
distinction on E. If E is an EL concept description, then we immediately conclude
that ε ∈ EJ , and so δ ∈ EI. Otherwise, let E =

Esim Γ. (U,D) be an ELst concept
description. It then follows that ε ∈ (

Esim Γ. (U,D))J , and so there is another pointed
interpretation (K, ζ) with K |= U, ζ ∈ DK, and (K, ζ) ⇀∼Σ\Γ (J , ε). We may conclude
that (K, ζ) ⇀∼Σ\Γ (I, δ), and consequently δ ∈ (

Esim Σ. (U,D))I.

Since EL is a sublogic of ELst, we can immediately draw the following conclusion.

Corollary 5. For each EL TBox and each EL concept description C, the most specific
consequence CT exists in ELst.

Furthermore, we can interconnect the notions of most specific consequences and
of model-based most specific concept descriptions. In particular, according to the
following proposition it holds true that the most specific consequence CT is equivalent
to the model-based most specific concept description {C}IC,T . This important result
will later be used to analyze the complexity of computing CT as well as for deciding
existence of CT in EL.
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Proposition 6. Let T be an EL TBox, and C be an EL concept description. Then the
most specific consequence of C with respect to T is equivalent to the model-based most
specific concept description of {C} with respect to the canonical model of T and C, i.e.,

CT ≡∅ {C}IC,T .

Proof. Remark that the model-based most specific concept description of {C} with
respect to IC,T is described by the EL⊥si concept description

Esim(IC,T ,C). Hence,
it suffices to show that the concept descriptions

Esim(T ,C) and

Esim(IC,T ,C) are
equivalent. For this purpose consider an arbitrary interpretation I and an element
δ ∈ ∆I. By definition of the semantics, δ ∈ (

Esim(T ,C))I if, and only if, there
is a pointed interpretation (J , ε) such that (J , ε) ⇀∼ (I, δ), J |= T , and ε ∈ CJ .
Furthermore, δ ∈ (

Esim(IC,T ,C))I if, and only if, (IC,T ,C) ⇀∼ (I, δ), i.e., if there is
a simulation from (IC,T ,C) to (I, δ).

Firstly, assume that δ ∈ (

Esim(T ,C))I. Then (Lutz and Wolter, 2010, Lemma 13)
yields that there is a simulation from (IC,T ,C) to (I, δ), since simulations are closed
under composition, and thus δ ∈ (

Esim(IC,T ,C))I.
Vice versa, let δ ∈ (

Esim(IC,T ,C))I, i.e., (IC,T ,C) ⇀∼ (I, δ). By (Lutz and Wolter,
2010, Lemma 12) we have that IC,T is a model of T , and that C ∈ CIC,T . Conse-
quently, δ ∈ (

Esim(T ,C))I.

As already mentioned, the existence of cycles induced by the TBox T can require
that also a description of the most specific consequence CT must contain a cycle, which
can be expressed in ELst, but not in EL. This observation yields a sufficient condition
for the existence of CT in EL, namely that most specific consequences always exist
w.r.t. cycle-restricted TBoxes—a notion that is cited below.

(Baader, Borgwardt and Morawska, 2012a, Definition 2). An EL TBox T
is cycle-restricted if there does not exist an EL concept description C and a non-empty
role word w ∈ Σ+

R such that C vT

E

w.C.

Example. The TBox T defined below is not cycle-restricted, since it entails the cyclic
concept inclusion A v

E

r3.A.

T :=


A v

E

rs. (B u

E

r.B),

E

s.

E

r.> v B,

E

r.B v

E

rrr.A


In the following, we shall consider the directed graphs (∆I,

⋃
{ rI | r ∈ ΣR }) for

interpretations I over Σ. That way, we can utilize graph-theoretic notions when
speaking about interpretations.

Proposition 7. For each EL TBox T , the following statements are equivalent.

1. T is cycle-restricted.

2. For each EL concept description C, the canonical model IC,T is acyclic.

3. For each EL concept description C, the most specific consequence CT exists in EL.
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Proof. We start with demonstrating that Statement 1 implies Statement 2. Consider
a TBox T and a concept description C, and assume that the canonical model IC,T
is not acyclic. Then, IC,T contains some cycle

D
r1→ D1

r2→ D2
r3→ . . .

rn→ D.

It immediately follows that D vT

E

w.D where w := r1r2r3 . . . rn ∈ Σ+
R , which yields

that T is not cycle-restricted.
We proceed with proving that Statement 2 implies Statement 1. Let w ∈ Σ+

R

and consider some concept description C such that C vT

E

w.C. Firstly, assume
that the word w has length 1, i.e., w = r for some role name r ∈ ΣR. By the very
definition of a canonical model, it is then apparent that (C,C) ∈ rIC,T is a loop in
the canonical model IC,T , that is, IC,T is not acyclic. Secondly, assume that w has
a length of at least 2, i.e., there are role names r, s ∈ ΣR and a role word v ∈ Σ∗R
such that w = rvs. Our assumption implies that C vT

E

r.

E

v.

E

s.C, and so (Lutz
and Wolter, 2010, Lemma 13) shows that C ∈ (

E

r.

E

v.

E

s.C)IC,T , i.e., there is a
path C r→ D

v→ E
s→ F in IC,T such that F ∈ CIC,T . In particular, we infer that

E vT

E

s.F and F vT C, and thus E vT

E

s.C. Consequently, we have found a
path C r→ D

v→ E
s→ C in the canonical model IC,T , which is hence not acyclic.

Of course, an ELsi concept description

Esim (I, δ) is equivalent to an EL concept
description if, and only if, the connected component of I that contains δ is acyclic.
Since we have shown in Proposition 6 that CT ≡∅

Esim (IC,T ,C) holds true, we
immediately conclude that Statement 2 implies Statement 3. For the converse direction,
assume that Statement 3 is satisfied and consider some EL concept description C. We
then know that, for each concept description D ∈ ∆IC,T , the most specific consequence
DT exists, i.e., in ID,T the connected component containing D is acyclic. Apparently,
the union of all these ID,T for D ∈ ∆IC,T equals the IC,T , and it follows that all
connected components of IC,T must be acyclic, i.e., the whole canonical model IC,T
is acyclic, which yields Statement 2.

Corollary 8. The problem whether all most specific consequences with respect to some
EL TBox T exist in EL can be decided in deterministic polynomial time.

Proof. The problem whether an EL TBox is cycle-restricted can be decided in deter-
ministic polynomial time, cf. (Baader, Borgwardt and Morawska, 2012b, Lemma 21).
Thus, the statement follows from Proposition 7.

However, the condition that T is cycle-restricted is not necessary for the existence of
CT in EL. To see this, consider the TBox T := {A v

E

r.A}. It is apparent that T
is not cycle-restricted, although the most specific consequence of B w.r.t. T exists in
EL, and is (equivalent to) B. We see that T induces a cycle which does not affect the
concept description B or, more specifically, B does not contain any subconcept that
entails A, and so the cycle in T does not induce a cycle in a description of BT . This
idea is utilized in the proof of the upcoming proposition, which shows that existence
of CT in EL can always be decided in polynomial time.

Proposition 9. The problem whether the most specific consequence CT of an EL
concept description C with respect to an EL TBox T exists in EL can be decided in
deterministic polynomial time.
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Proof. We have shown in Proposition 6 that the most specific consequence CT is
equivalent to the model-based most specific concept description {C}IC,T , which is
equivalent to

Esim (IC,T ,C). Furthermore, an ELsi concept description

Esim (I, δ) is
equivalent to an EL concept description if, and only if, the connected component of
I that contains δ is acyclic. According to Lutz and Wolter (2010), the canonical model
IC,T can be constructed in time polynomial in the size of C and T . By means of the
Floyd-Warshall algorithm, the transitive closure E+ for a given directed graph (V,E)
can be computed in deterministic time O(|V |3) and in deterministic space O(|V |2). It
follows that reachability in the canonical model IC,T can be decided in time polynomial
in the size of C and T . We now only need to check whether in IC,T there is some object
in the connected component containing C that is reachable from itself on a path of length
at least 1. Clearly, such an object exists if, and only if, CT does not exist in EL.

Eventually, we analyze the complexity of computing CT . This is an easy task,
since we have already shown that CT can be computed as a model-based concept
description for the canonical model IC,T , and since canonical models can be constructed
in polynomial time.

Proposition 10. The most specific consequence CT of an EL concept description
C with respect to an EL TBox T can be computed in deterministic polynomial time,
and its size is polynomial in |C|+ |T |.

Proof. The statements are obtained as immediate corollaries from Proposition 6 and
the fact that the canonical model IC,T can be computed in polynomial time, cf. Lutz
and Wolter (2010).

6.2. The Bottom Concept Description
As next step, we investigate the problems of existence and computation of most

specific consequences as well as their complexities when we further incorporate the
bottom concept description ⊥ in our considered description logics EL and ELst. Since
there has not been published any notion of canonical models for EL⊥ and EL⊥st, and
extending the existing results from EL and ELst, respectively, would take plenty of
space herein, we are taking the lazy way and rather reduce the mentioned problems
to the solved cases in Section 6.1.
We begin with showing an unsurprising result, namely that, for any EL⊥st concept

description C which is not satisfiable with respect to some EL⊥st TBox T , the most
specific consequence CT always exists in EL⊥ and is (equivalent to) the bottom concept
description ⊥. For the remaining cases, we argue that it suffices to consider only
the satisfiable part Tsat of T , i.e., the subset of T that contains only those concept
inclusions the premises of which are satisfiable with respect to T . More specifically, the
most specific consequence CT is then equivalent to CTsat if C is satisfiable w.r.t. T .

Lemma 11. Fix some EL⊥st TBox T and an EL⊥st concept description C. Then, C
is unsatisfiable with respect to T if, and only if, ⊥ is the most specific consequence
of C with respect to T .

Proof. If C is not T -satisfiable, then C vT ⊥, i.e., ⊥ is a consequence of C w.r.t. T .
Obviously, there does not exist any more specific consequence, and so ⊥ is the most
specific consequence. Vice versa, let ⊥ be the most specific consequence of C. It then
immediately follows that C vT ⊥, which is equivalent to T -unsatisfiability of C.
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Fix some EL⊥st TBox T and define the following TBox Tsat, which we call the
satisfiable part of T .

Tsat := {C v D | C v D ∈ T and C is satisfiable w.r.t. T }

It then follows that, for each concept inclusion C v D ∈ Tsat, both concept descriptions
C andD are satisfiable with respect to T and are, thus, also satisfiable w.r.t. ∅. In partic-
ular, we infer that Tsat must be an ELst TBox. We continue with demonstrating that, for
each EL⊥st concept description which is satisfiable w.r.t. T , its most specific consequences
w.r.t. T and w.r.t. Tsat are equivalent. That way, we infer that most specific conse-
quences of EL⊥st concept descriptions with respect to EL⊥st TBoxes always exist in EL⊥st,
and that these can be constructed from the canonical model IC,Tsat if C is T -satisfiable.

Piro (2012, Proposition 5.1.13) has shown that EL is invariant under direct products,
that is, CI×J = CI ×CJ holds true for each EL concept description C. This result
immediately extends to EL⊥, since ⊥I×J = ⊥I ×⊥J . Furthermore, since the product
operation × is the infimum operation in the set of (equivalence classes of) pointed
interpretations ordered by ⇀∼, we can immediately conclude that also ELsi is invariant
under products, that is,

(

Esim (I, δ))J×K = (

Esim (I, δ))J × (

Esim (I, δ))K

holds true for all finitely representable pointed interpretations (I, δ) and for all
interpretations J and K. Consequently, each EL⊥si concept inclusion C v D that is
valid in both I and J is also valid in the direct product I ×J .

Now we are ready to show that, for each concept description C that is satisfiable
w.r.t. T , its most specific consequence CT exists and can furthermore be constructed
from the satisfiable part Tsat, which is an ELst TBox. Thus, for the construction of
CT we can utilize our previous results on most specific consequences in ELst from
Section 6.1. Beforehand, we need the following lemma.

Lemma 12. Let T be an EL⊥st TBox, and consider EL⊥st concept descriptions C and
D such that C is satisfiable with respect to T . Then, the concept inclusion C v D
is entailed by T if, and only if, it is entailed by Tsat.

Proof. Since Tsat ⊆ T , the if direction is trivial. We shall show the contraposition
of the only if direction; consider a model Isat of Tsat that contains a counterexample
against C v D, that is, Isat is such that CIsat \DIsat 6= ∅. Since C is satisfiable with
respect to T , there exists some model IC of T such that CIC 6= ∅. By definition, each
premise E of a concept inclusion E v F in T \ Tsat is not satisfiable with respect to
T and, thus, we have that EIC = ∅.
Of course, the direct product Isat × IC is a model of Tsat. It also follows that
Isat × IC is a model of T , since EIsat×IC = EIsat × EIC = ∅ holds true for each
premise E of a concept inclusion E v F ∈ T \ Tsat. Additionally, CIsat \DIsat 6= ∅
in conjunction with CIC 6= ∅ yields that

CIsat×IC \DIsat×IC = (CIsat ×CIC) \ (DIsat ×DIC) 6= ∅,

that is, Isat × IC contains a counterexample against C v D too. Eventually, we
conclude that C 6vT D.
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Proposition 13. If C is satisfiable with respect to T , then the most specific conse-
quence CT exists in ELst and is equivalent to CTsat.

Proof. Since C is satisfiable w.r.t. T , it is satisfiable w.r.t. ∅, and it follows that
C does not contain ⊥ as a subconcept, that is, C is an ELst concept description.
Furthermore, Lemma 11 yields that the most specific concept description CT—if
it exists—is satisfiable w.r.t. ∅. In order to prove that CTsat is the most specific
consequence of C with respect to T , we need to show the following two statements.

• C vT CTsat

• C vT D implies CTsat v∅ D or, equivalently, C vTsat D for each ELst concept
description D.

As Tsat is a subset of T , the first statement is apparently true. The second statement
has been proven in Lemma 12.

The following statements are immediate consequences of combining the results
from Section 6.1 with Lemma 11 and Proposition 13, and provide answers concerning
the complexity of deciding existence of CT in EL⊥ as well as of computing CT .
Remark that deciding subsumption w.r.t. a TBox in EL⊥ and EL⊥st has polynomial time
complexity, and so the satisfiable part Tsat can be computed in polynomial time as well.

Corollary 14. 1. For each EL⊥ TBox and each EL⊥ concept description C, the
most specific consequence CT exists in EL⊥st.

2. The problem whether all most specific consequences with respect to some EL⊥
TBox T exist in EL⊥ can be decided in deterministic polynomial time.

3. The problem whether the most specific consequence CT of an EL⊥ concept
description C with respect to an EL⊥ TBox T exists in EL⊥ can be decided in
deterministic polynomial time.

4. The most specific consequence CT of an EL⊥ concept description C with respect
to an EL⊥ TBox T can be computed in deterministic polynomial time, and its
size is polynomial in |C|+ |T |.

6.3. The Role-Depth Bounded Case
We close this section with an investigation of the role-depth bounded case, that

is, for any role-depth bound d ∈ N, we consider the problem whether most specific
consequences of EL⊥ concept descriptions with respect to EL⊥ TBoxes exist in EL⊥d and,
if so, how these can be computed. We shall find that existence is always guaranteed,
simply because there are only finitely many appropriate candidates and this set of
candidates is closed under conjunction. Furthermore, it holds true that role-depth
bounded most specific consequences correspond to role-depth bounded most specific
concept descriptions with respect to canonical models.
Let C be an EL⊥ concept description, let T be an EL⊥ TBox, and consider any

role-depth bound d ∈N. To avoid confusion with the unrestricted case in Sections 6.1
and 6.2, we shall denote the most specific consequence of C w.r.t. T in EL⊥d as CTd—
under the assumption of existence. Apparently, it holds true that C vT CTd and,
furthermore if rd(C) ≤ d, from C vT C we conclude that CTd v∅ C. In summary,
C ≡T CTd for any C ∈ EL⊥d(Σ).

26



Lemma 15. Let T be an EL⊥ TBox, let C be an EL⊥ concept description, and assume
that d ∈N is a role-depth bound. Then, the most specific consequence of C with respect
to T exists in EL⊥d .

Proof. Consider an EL⊥ TBox T , an EL⊥ concept description C, as well as a role-depth
bound d ∈N. Of course, both T andC can only contain finitely many symbols from the
signature; let ΣC,T be the set of all these symbols from Σ that occur in C or in T . Since
every subsumer of C w.r.t. T can be constructed using only the finitely many symbols in
ΣC,T ∪{⊥,>}, there are only finitely many such subsumers of a role-depth not exceeding
d. Since the restriction of C to a role-depth of d is a consequence of C with respect to T ,
at least one such consequence exists. Furthermore, if C1 and C2 are consequences of C
with respect to T , then also their conjunction C1uC2 is a consequence of C with respect
to T . Consequently, the conjunction of the (finitely many) consequences of C w.r.t. T is
itself a consequence of C w.r.t. T . We denote this concept description by D, and prove
that it is indeed a most specific consequence. If there were a smaller consequence E that
satisfies the role-depth bound, i.e., if we had E vp ∅ D and C vT E, then E would be
contained as a top-level conjunct inD, i.e., we could infer the contradictionD v∅ E.

Now that we have demonstrated that most specific consequences always exist in
EL⊥d for each role-depth bound d ∈N, we continue with providing a means for their
computation in the following lemma.

Lemma 16. Let T be an EL⊥ TBox, C be an EL⊥ concept description, and let d ∈N
be a role-depth bound. If C is not satisfiable with respect to T , then it holds true that
CTd ≡∅ ⊥. Otherwise, the following equivalence is satisfied.

CTd ≡∅ {C}(IC,Tsat)d

Proof. The unsatisfiable case can be handled similarly as in Lemma 11. Otherwise,
it suffices to consider only the satisfiable part Tsat, cf. Lemma 12.
We prove the claim by induction on the role-depth bound d. For the base case

d = 0, the following equivalences hold true.

{C}(IC,Tsat)0 ≡∅
l
{A | A ∈ ΣC and C ∈ AIC,Tsat }

≡∅
l
{A | A ∈ ΣC and Tsat |= C v A}

It is easy to verify that {C}(IC,Tsat)0 is indeed a consequence of C with respect to Tsat,
and furthermore has a role depth of 0.
For the inductive case, the special case of a result of Kriegel (2017, Theorem 8.3)
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for EL⊥ together with the induction hypothesis yields the following.

{C}(IC,Tsat)d+1 ≡∅
l
{A | A ∈ ΣC and C ∈ AIC,Tsat }

u
l
{

E

r.{D}(IC,Tsat)d | r ∈ ΣR and (C,D) ∈ rIC,Tsat }
(∗)
≡∅

l
{A | A ∈ ΣC and C ∈ AIC,Tsat }

u
l
{

E

r.{D}(ID,Tsat)d | r ∈ ΣR and (C,D) ∈ rIC,Tsat }
I.H.≡∅

l
{A | A ∈ ΣC and Tsat |= C v A}

u
l
{

E

r.DTd

∣∣∣∣∣ Tsat |= C v

E

r.D and

E

r.D ∈ Sub(Tsat),
or

E

r.D ∈ Conj(C)

}
The equivalence (∗) is valid, since (Lutz and Wolter, 2010, Lemma 12) states that the
pointed interpretations (IC,T ,D) and (ID,T ,D) are equi-similar due to the fact that
D ∈ ∆IC,T ∩∆ID,T . Obviously, {C}(IC,Tsat)d+1 has a role depth not exceeding d+ 1,
and it is easy to verify that it is a consequence of C with respect to Tsat.

For both the base case and the inductive case, it remains to prove that {C}(IC,Tsat)d

is subsumed (w.r.t. ∅) by every other Tsat-consequence of C with a role depth of at
most d. Hence, consider such a consequence E, i.e., it holds true that C vTsat E as
well as rd(E) ≤ d. Then, (Lutz and Wolter, 2010, Lemma 13) yields that C ∈ EIC,Tsat ,
and so we may immediately conclude that {C}(IC,Tsat)d v∅ E, cf. (Borchmann, Distel
and Kriegel, 2016, Lemma 4.3).

As a last result in this section, we shall prove that each most specific consequence
CTd can also be constructed as the dth approximation of the most specific consequence
CT . This especially shows that we can approximate CT with arbitrary precision, and
that the sequence (CTd | d ∈N ) converges to CT .

Corollary 17. Let T be an EL⊥ TBox, let C be an EL⊥ concept description, and
assume that d ∈ N is a role-depth bound. Then, the dth approximation of the most
specific consequence of C with respect to T in EL⊥st is the most specific consequence
of C with respect to T in EL⊥d , that is, the following holds true.

CTd ≡∅ CT �d
Proof. If C is not satisfiable with respect to T , then we immediately conclude that
both CTd and CT are equivalent to ⊥, cf. Lemmas 11 and 16. The equivalence
⊥ ≡∅ ⊥�d is trivial, and so it follows that CTd ≡∅ CT �d is indeed satisfied.

Otherwise, according to Proposition 6, Lemma 16, (Distel, 2011, Lemma 4.5), and
(Borchmann, Distel and Kriegel, 2016, Theorem 4.17) the following equivalences hold
true.

CTd ≡∅ {C}(IC,Tsat)d ≡∅ {C}(IC,Tsat)�d ≡∅ CT �d
Example. For illustrating the computation of most specific consequences, we consider
the exemplary TBox

T :=

{
A v

E

rr.>

E

r.> v

E

s.A

}
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and the concept description C := AuB. The canonical model IC,T is shown below.

r, s r, s
s

s

r, s

s

r, s
r, s

s

AuB

A,B

E

r.>

>

A

A

Now the most specific consequence CT can be read off the canonical model IC,T as the
model-based most specific concept description of {C}. As there is a cycle reachable from
C, the most specific consequence does not exist in EL, but only in ELsi or in ELd for
each role-depth bound d ∈N. Of course, CT is equivalent to the ELsi concept descriptionEsim (IC,T ,C), and we further list the first three approximations in the following, which
are the most specific consequences in EL0, in EL1, and in EL2, respectively.

CT0 ≡∅ AuB
CT1 ≡∅ AuB u

E

r.>u

E

s.A

CT2 ≡∅ AuB u

E

r. (

E

r.>u

E

s.A)u

E

s. (Au

E

r.>u

E

s.A)

7. Algebraic Properties of Most Specific Consequences

This section’s aim is to explore algebraic properties of most specific consequences. In
particular, we shall connect Sections 3, 5 and 6. For instance, the mappings C 7→ CT

and C 7→ CTd for each d ∈ N constitute closure operators in the lattice of concept
descriptions, which immediately implies a series of mathematical laws and properties.
Recursion formulae that are satisfied by most specific consequences are also provided
within this section. We split our exploration in two cases: firstly, we consider the
unrestricted case, and secondly, we investigate the role-depth bounded case.

7.1. The Unrestricted Case
As announced, we shall start with the unrestricted case. The next lemma formulates

that, for any TBox T , the function which maps concept descriptions to their most
specific consequence with respect to T constitutes a closure operator. Then, the
following corollary shows some statements that immediately follow from the fact that
the most specific consequence mapping is a closure operator.

Lemma 18. For any EL⊥st TBox T , the mapping φT : C 7→ CT is a closure operator
in the dual of EL⊥

st(Σ), i.e., for all EL⊥st concept descriptions C and D, the following
conditions are satisfied.
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1. CT v∅ C (extensive)

2. C v∅ D implies CT v∅ DT (monotonic)

3. CT ≡∅ CT T (idempotent)

Proof. Since C is a consequence of itself with respect to T , it follows by Definition 3
that CT v∅ C.
Of course, CT vT CT is trivially valid, and so it follows that CT T v∅ CT . Fur-

thermore, it holds true that C vT CT vT CT T , that is, CT T is a consequence of
C with respect to T . Since CT is most specific, we conclude that CT v∅ CT T .
Eventually, assume that C v∅ D. Since D vT DT , it follows that C vT DT ,

i.e., DT is a consequence of C w.r.t. T . Since CT is most specific, we infer that
CT v∅ DT .

Corollary 19. Let T be an EL⊥st TBox, and assume that C as well as D are EL⊥st
concept descriptions. Then, the following statements hold true.

1. (C uD)T v∅ C uDT T

2. (C uD)T ≡∅ (CT uDT )T

3. CT ∨DT v∅ (C ∨D)T

4. CT ∨DT ≡∅ (CT ∨DT )T

Proof. The statements are obtained as corollaries of Lemma 18 and Section 3.

Each TBox T can be normalized by means of the closure operator φT in the sense
that there is a TBox which is equivalent to T and only contains concept inclusions
of the form C v CT . On the one hand, this holds true for the TBox that contains
all these concept inclusions for all concept descriptions C and, on the other hand, it
suffices to only take those concept descriptions C that occur as a premise in T . A
more sophisticated characterization is provided in the following lemma.

Lemma 20. Let T be an EL⊥st TBox. We define Prem(T ) as the set of all premises
of concept inclusions in T , i.e., we set Prem(T ) := {C |

E

D : C v D ∈ T }. Then,
the following sets of concept inclusions are both equivalent to T .1

T ◦ := {C v CT | C ∈ EL⊥st(Σ)}
T ∗ := {C v CT | C ∈ Prem(T )}

Proof. Since C vT CT for all EL⊥st concept descriptions C, it immediately follows
that T entails both T ◦ and T ∗. Furthermore, since T ◦ ⊇ T ∗ and hence T ◦ |= T ∗,
it suffices to show that T ∗ |= T . Consider a concept inclusion C v D ∈ T , then
C v CT ∈ T ∗. Since D is a consequence of C with respect to T , we infer that
CT v∅ D, and as a consequence it then follows that C vT ∗ D. Since C v D is an
arbitrary concept inclusion from T , we have just proven that T ∗ |= T .

1Note that since T is a TBox and hence finite, also T ∗ is a finite set of concept inclusions, i.e., a
TBox.
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As a further important result, we shall show that entailment with respect to some
TBox T and validity for the associated closure operator φT is equivalent for any concept
inclusion. It also holds true that subsumption w.r.t. a TBox is equivalent to subsumption
of the corresponding most specific consequences w.r.t. ∅. In particular, subsumption
reasoning in EL⊥ with respect to cycle-restricted TBoxes can, thus, be reduced to the
simpler task of subsumption reasoning in EL⊥ with respect to the empty TBox where
in the reduction the most specific consequence of the premise needs to be computed.

Lemma 21. For each EL⊥st TBox T ∪{C v D}, the following statements are equivalent.

1. C vT D

2. C vT ◦ D

3. C vT ∗ D

4. CT v∅ D

5. CT v∅ DT

6. ET v∅ C implies ET v∅ D for each EL⊥st concept description E.

Proof. The equivalence of the Statements 1 to 3 follows from Lemma 20.
Statements 1 and 4 are equivalent by the following observations. If C vT D, then D

is a consequence of C with respect to T , and consequently CT v∅ D by Definition 3.
Vice versa, if CT v∅ D, then since C vT CT , we infer that C vT D.

Lemma 18 and Section 3 yield the equivalence of Statements 4 and 5.
Eventually, we demonstrate that Statement 6 is equivalent to the other statements.

If C vT D and the empty TBox ∅ entails ET v C, then it follows that T entails
E v C, and hence E vT D. Consequently, ET v∅ D as claimed.

Vice versa, assume that ET v∅ C implies ET v∅ D for all EL⊥st concept descriptions
E. Of course, then E vT C only if E vT D. Since it trivially holds true that C vT C,
we immediately conclude that C vT D.

The following two corollaries collect previous results and further connect these to
notions from the theory of closure operators.

Corollary 22. Let T be an EL⊥st TBox and assume that C v D is an EL⊥st concept
inclusion. Then, the following statements are equivalent.

1. T |= C v D

2. φT |= C v D

3. I |= T implies I |= C v D for any interpretation I.

4. I |= T implies φI |= C v D for each interpretation I.

5.
a
{φI | I |= T } |= C v D

6. ∅ |=
∨
{CII | I |= T } v D

7. ∅ |= CT v D
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Proof. The equivalence of Statements 1, 2, and 7 has just been shown in Lemma 21.
By the very definition of the semantics, also Statements 1 and 3 are equivalent. Since
Distel (2011, Lemma 4.1) has shown that X ⊆ CI is equivalent to XI v∅ C, we
conclude that C vI D is equivalent to CII v∅ D, which is equivalent to the validity
of C v D for the closure operator φI. Consequently, Statements 3 and 4 are equivalent
too. Eventually, Section 3 provides the equivalence of Statements 4 to 6.

Corollary 23. Consider an EL⊥st TBox T as well as an EL⊥st concept description C.
If C is satisfiable w.r.t. T , then the following equivalences hold true.

CT ≡∅ CTsat ≡∅ {C}IC,Tsat ≡∅ CIC,TsatIC,Tsat

≡∅
∨
{CII | I |= Tsat } ≡∅

∨
{CII | I |= T }

Otherwise, if C is not satisfiable w.r.t. T , then CT ≡∅ ⊥ ≡∅
∨
{CII | I |= T }.

Proof. Let C be T -satisfiable. The first equivalence is proven in Proposition 13
and the second equivalence has been shown in Proposition 6. The equivalence of
CTsat and

∨
{ CII | I |= Tsat } as well as of CT and

∨
{ CII | I |= T } with

respect to the empty TBox follows from the equivalence of Statements 6 and 7 in
Corollary 22. Since the canonical model IC,Tsat is a model of Tsat, we can infer that∨
{ CII | I |= Tsat } w∅ CIC,TsatIC,Tsat . Furthermore, C ∈ CIC,Tsat implies that
{C}IC,Tsat v∅ CIC,TsatIC,Tsat . The case where C is unsatisfiable is obvious.

Eventually, we formulate a recursive characterization of most specific consequences.
It is readily verified that it follows from Proposition 6 and the fact that, in ELsi, the
concept description

Esim (I, δ) is, on the one hand, the model-based most specific
concept description of {δ} in I and, on the other hand, satisfies the following recursion.

Esim (I, δ) ≡∅
l
{A | A ∈ ΣC and δ ∈ AI }

u
l
{

E

r.

Esim (I, ε) | r ∈ ΣR and (δ, ε) ∈ rI }

Corollary 24. Let T be an EL⊥st TBox, and C be an EL⊥st concept description. If C is
satisfiable with respect to T , then the following recursion formula for the most specific
consequence of C with respect to T in EL⊥st holds true. Otherwise, we have CT ≡∅ ⊥.

CT ≡∅
l
{A | A ∈ ΣC and C vT A}

u
l
{

E

r.DT | C vT

E

r.D and

E

r.D ∈ Sub(Tsat), or

E

r.D ∈ Conj(C)}

7.2. The Role-Depth Bounded Case
In this section, we shall continue with our investigations on algebraic properties of

most specific consequences for the role-depth bounded case. It is no surprise that we
find similar results as in the unrestricted case. We again get a closure operator, and
can immediately conclude that general properties of closure operators from Section 3
can be specifically tailored for it.

Lemma 25. Let T be an EL⊥ TBox and consider some role-depth bound d ∈ N.
Then, the mapping φT,d : C 7→ CTd is a closure operator in the dual of EL⊥

d(Σ), i.e.,
for all EL⊥d concept descriptions C and D, the following conditions are satisfied.
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1. CTd v∅ C (extensive)

2. C v∅ D implies CTd v∅ DTd (monotonic)

3. CTd ≡∅ CTdTd (idempotent)

Proof. Since subsumption is reflexive, C is always a consequence of itself, and so C
subsumes its most specific consequence.

If C v∅ D, then in particular C vT D, i.e., D is a consequence of C with respect to
T . Now Definition 3 yields D vT DTd, and it follows that C vT DTd or, equivalently,
CTd v∅ DTd. This proves the monotonicity.
Finally, it remains to prove that the mapping is idempotent. From CTd vT CTd

we infer that CTdTd v∅ CTd. It further holds true that C vT CTd vT CTdTd, and
so we can conclude that CTd v∅ CTdTd.

Please note that, if C has a role depth exceeding d, then it may not follow that
CTd v∅ C. It is readily verified that, for any EL⊥ concept description C, the most
specific consequence C∅d and the dth approximation C�d coincide—thus, we have
that (

E

r.A)∅0 ≡∅ > 6v∅

E

r.A. However, the above proof shows that monotonicity
is ensured even if C and D are EL⊥ concept descriptions such that the role depth of
D does not exceed d, whereas idempotency is satisfied for all EL⊥ concept descriptions
C. More generally, C v∅ D implies CT v∅ DT , cf. Lemma 18, which yields that
CT �d v∅ DT �d, and finally an application of Corollary 17 shows CTd v∅ DTd. In
summary, we obtain that the extension of φT,d to the domain EL⊥(Σ), or to EL⊥st(Σ),
is a monotonic, idempotent mapping, but it is not extensive.

Corollary 26. Let T be an EL⊥ TBox, fix some role-depth bound d ∈N, and assume
that C as well as D are EL⊥d concept descriptions. Then, the following statements hold
true.

1. (C uD)Td v∅ C uDTdTd

2. (C uD)Td ≡∅ (CTd uDTd)Td

3. CTd ∨DTd v∅ (C ∨D)Td

4. CTd ∨DTd ≡∅ (CTd ∨DTd)Td

Proof. The statements are obtained as corollaries of Lemma 25 and Section 3.

Analogously to the unrestricted case, there exist normalizations of a TBox T that
are equivalent to T and in which all conclusions are most specific consequences. We
further show that, for all EL⊥d concept inclusions, entailment w.r.t. some TBox can be
reduced to entailment w.r.t. ∅ by simply replacing the premise of the concept inclusion
in question by its most specific consequence, and we demonstrate that entailment w.r.t.
a TBox T is equivalent to validity in the induced closure operator φT,d.

Lemma 27. Let T ∪ {C v D} be an EL⊥ TBox such that D has a role depth of at
most d. Then the following statements are equivalent.

1. C vT D

2. CTd v∅ D
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3. C vT ◦d D where T ◦d := {E v ETd | E ∈ EL⊥d(Σ)}

If all conclusions of concept inclusions in T have role depths not exceeding d, then
furthermore the following statement is equivalent to Statements 1 to 3.

4. C vT ∗d D where T ∗d := {E v ETd | E ∈ Prem(T )}

If the concept description C has a role depth not exceeding d, then the following
statement is equivalent to Statements 1 to 3, too.

5. ETd v∅ C implies ETd v∅ D for each EL⊥d concept description E.

Proof. Firstly, we prove the equivalence of Statement 1 and Statement 2. If C vT D,
i.e., if D is a consequence of C with respect to T , then the very definition of a most
specific consequence yields that D must subsume the most specific consequence CTd
with respect to the empty TBox ∅. Vice versa, CTd v∅ D and C vT CTd immediately
implies that C vT D.
According to Definition 3, we have that T |= T ◦d . Consequently, Statement 3

implies Statement 1. Furthermore, Statement 2 implies Statement 3 as follows. Clearly,
C vT ◦d CTd, and since CTd v∅ D, we conclude that C vT ◦d D.
Eventually, consider the d-normalization T ∗d of T . It is easy to verify that Defini-

tion 3 yields T |= T ∗d , and hence Statement 4 implies Statement 1. Vice versa, we
assume that each conclusion in T has a role depth of at most d, and we shall prove
that T ∗d |= T . Let E v F ∈ T be a concept inclusion. By construction of T ∗d , then
E v ETd ∈ T ∗d holds true. We further conclude that ETd v∅ F , and thus E vT ∗d F .
Eventually, the TBoxes T and T ∗d are equivalent.

We proceed with demonstrating that Statement 1 implies Statement 5. If the empty
TBox ∅ entails ETd v C, then it follows that T entails E v C, and hence E vT D.
This now yields that ETd v∅ D, as claimed. Vice versa, assume that ETd v∅ C
implies ETd v∅ D for all EL⊥d concept descriptions E, that is, E vT C holds true only
if E vT D. Of course, it is trivial that C vT C, and so we immediately conclude
that C vT D.

In order to collect previous results and connect these to the notions from Section 3,
we formulate the following two corollaries.

Corollary 28. Let T ∪ {C v D} be an EL⊥ TBox such that the role depths of C
and of D do not exceed d. Then, the following statements are equivalent.

1. T |= C v D

2. φT,d |= C v D.

3. I |= T implies I |= C v D for every interpretation I.

4. I |= T implies φI,d |= C v D for any interpretation I.

5.
a
{φI,d | I |= T } |= C v D

6. ∅ |=
∨
{CIId | I |= T } v D

7. ∅ |= CTd v D.
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Proof. The equivalence of Statements 1, 2, and 7 has just been shown in Lemma 27.
By the very definition of the semantics, also Statements 1 and 3 are equivalent. Since
Borchmann, Distel and Kriegel (2016, Lemma 4.3) have shown that X ⊆ CI is
equivalent to XId v∅ C, we conclude that C vI D is equivalent to CIId v∅ D, which
is equivalent to the validity of C v D for the closure operator φI,d. Consequently,
Statements 3 and 4 are equivalent too. Eventually, Section 3 provides the equivalence
of Statements 4 to 6.

Corollary 29. Consider an EL⊥ TBox T , an EL⊥ concept description C, and some
role-depth bound d ∈ N. If C is satisfiable w.r.t. T , then the following equivalences
hold true.

CTd ≡∅ C(Tsat)d ≡∅ {C}(IC,Tsat)d ≡∅ CIC,Tsat(IC,Tsat)d

≡∅
∨
{CIId | I |= Tsat } ≡∅

∨
{CIId | I |= T }

Otherwise, if C is not satisfiable w.r.t. T , then CTd ≡∅ ⊥ ≡∅
∨
{CII | I |= T }.

Proof. Let C be T -satisfiable. The first equivalence follows from Proposition 13
and Corollary 17 and the second equivalence is proven in Lemma 16. The equivalence
of CTd and

∨
{CIId | I |= T } as well as of C(Tsat)d and

∨
{CIId | I |= Tsat } with

respect to the empty TBox follows from the equivalence of Statements 6 and 7 in
Corollary 28. Since the canonical model IC,Tsat is a model of Tsat, we can infer that∨
{CIId | I |= Tsat } w∅ CIC,Tsat(IC,Tsat)d. Furthermore, C ∈ CIC,Tsat implies that
{C}(IC,Tsat)d v∅ CIC,Tsat(IC,Tsat)d. The case where C is unsatisfiable is obvious.

We close this section with a recursive characterization of most specific consequences
in the role-depth bounded case. These are obtained as consequences of Lemma 16 in
conjunction with the special case of a result from Kriegel (2017, Theorem 8.3) for EL⊥.

Lemma 30. Let T be an EL⊥ TBox, and C be an EL⊥ concept description. If C is
satisfiable with respect to T , then the following recursion formulae for the most specific
consequence of C with respect to T in EL⊥d hold true. Otherwise, we have CTd ≡∅ ⊥
for any d ∈N.

CT0 ≡∅
l
{A | A ∈ ΣC and C vT A}

CTd+1 ≡∅
l
{A | A ∈ ΣC and C vT A}

u
l
{

E

r.DTd | C vT

E

r.D and

E

r.D ∈ Sub(Tsat), or

E

r.D ∈ Conj(C)}

8. Applications

Now, we shall present some applications in the field of Description Logic that use
the notion of most specific consequences, the corresponding closure operators, as
well as the operations in the lattice of closure operators. We start with providing a
characterization of entailment between TBoxes in Section 8.1 and a characterization
of soundness and completeness of TBoxes for interpretations in Section 8.2. Then, we
suggest four techniques for the axiomatization of concept inclusions under different
assumptions. In particular, we show in Section 8.3 how a merging of two TBoxes
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can be constructed, that is, how we can axiomatize all concept inclusions that are
simultaneously entailed by two TBoxes. Furthermore, a technique for the axiomati-
zation of concept inclusions from streams of interpretations is given in Section 8.4, we
introduce in Section 8.5 some method for an error-tolerant axiomatization of concept
inclusions from interpretations where some TBox is used for detecting and filtering
out errors in the input interpretation, and in Section 8.6 we present a technique for
the axiomatization of concept inclusions from ABoxes in a restricted setting.

8.1. A Characterization of Entailment
We have seen in Section 7.1 that each TBox T induces a closure operator φT in a

way such that any concept inclusion is entailed by T if, and only if, it is valid for φT . In
the following lemma, we shall use these closure operators to provide a characterization
of entailment between two TBoxes. A similar result can, of course, be found for the
role-depth bounded case too using our results from Section 7.2.

Lemma 31. Let T1 ∪ T2 be an EL⊥st TBox. Then, the following statements are
equivalent.

1. T1 |= T2.

2. C vT2 D implies C vT1 D for all EL⊥st concept inclusions C v D.

3. CT1 v∅ CT2 for all EL⊥st concept descriptions C.

4. CT1T2 ≡∅ CT1 for all EL⊥st concept descriptions C.

5. Each most specific consequence of T1 is a most specific consequence of T2, modulo
equivalence with respect to the empty TBox ∅.

6. φT1 D φT2
Proof. We start with demonstrating the equivalence of Statements 1 and 3. Assume that
T1 |= T2 and consider an arbitrary EL⊥st concept description C. By Definition 3 it holds
true that C vT2 CT2 , and consequently C vT1 CT2 . An application of Lemma 21 then
yields CT1 v∅ CT2 . Conversely, let CT1 v∅ CT2 for all EL⊥st concept descriptions C. Of
course, Lemma 21 impliesC vT1 CT2 for allC ∈ EL⊥st(Σ). Now consider a concept inclu-
sionC v D ∈ T2. It is immediately clear that thenD is a consequence of C with respect
to T2, and hence CT2 v∅ D. It follows that CT1 v∅ D, and thus C vT1 D. Since C v
D is an arbitrary concept inclusion from T2, we have just demonstrated that T1 |= T2.

Furthermore, it is readily verified that Statements 1 and 2 are equivalent. Eventually,
Section 3 implies the equivalence of Statements 3 to 6.

8.2. A Characterization of Soundness and Completeness
As we have already mentioned, there are several works on the axiomatization of

concept inclusions from interpretations, e.g., Distel (2011); Borchmann, Distel and
Kriegel (2016); and Kriegel (2017). In particular, these approaches can be used to
compute so-called concept inclusion bases for interpretations, and a TBox T is such
a concept inclusion base for some interpretation I if T is sound for I, that is, I |= T ,
and is complete for I, that is, C vI D implies C vT D for every concept inclusion
C v D. The aim of this section is to characterize these two notions of soundness and
completeness using the notions of most specific consequences and of model-based most
specific concept inclusions as well as their induced closure operators.
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Lemma 32. Let I be an interpretation, and assume that T is an EL⊥st TBox. Then,
the following statements are equivalent.

1. T is sound for I.

2. I |= T

3. C vT D implies C vI D for all EL⊥st concept inclusions C v D.

4. CII v∅ CT for all EL⊥st concept descriptions C.

5. Each model-based most specific concept description of I is a most specific
consequence of T , modulo equivalence with respect to the empty TBox ∅.

6. φI D φT

Proof. The equivalence of Statements 1 to 3 is either true by definition or trivial.
By Lemma 21 we have that C vT D is equivalent to CT v∅ D. Furthermore, we

know that C vI D if, and only if, CII v∅ D.
We are now going to show that Statement 4 implies Statement 3. Therefore assume

that T entails C v D, i.e., the concept inclusion CT v D is valid in all interpretations.
Of course, then CII v∅ CT yields that also the concept inclusion CII v D is valid in
all interpretations, and consequently C v D is valid in I. Vice versa, if C vT D implies
C vI D, then CT v∅ D implies CII v∅ D. It readily verified that then CII v∅ CT .

Eventually, the equivalence of Statements 4 and 5 is an immediate consequence of
Section 3.

Lemma 33. Let I be an interpretation, and assume that T is an EL⊥st TBox. Then,
the following statements are equivalent.

1. T is complete for I.

2. C vI D implies C vT D for all EL⊥st concept inclusions C v D.

3. CT v∅ CII for all EL⊥st concept descriptions C.

4. Each most specific consequence of T is a model-based most specific concept
description of I, modulo equivalence with respect to the empty TBox ∅.

5. φT D φI

Proof. Statements 1 and 2 are equivalent just by definition, and the equivalence of
Statements 3 and 4 follows from Section 3. It remains to prove, e.g., that Statements 2
and 3 are equivalent. Hence, assume that CII v∅ D implies CT v∅ D for all EL⊥st
concept inclusions C v D. Of course, it easily follows that CT v∅ CII. For the
converse direction, let CII v∅ D. Then CT v∅ CII implies CT v∅ D.

Summing up Lemmas 32 and 33 yields the following corollary.

Corollary 34. Let I be an interpretation, and assume that T is an EL⊥st TBox. Then,
the following statements are equivalent.

1. T is a base of concept inclusions for I.

37



2. T is sound as well as complete for I.

3. C vT D if, and only if, C vI D for all EL⊥st concept inclusions C v D.

4. CT ≡∅ CII for all EL⊥st concept descriptions C.

5. The most specific consequences of T are exactly the model-based most specific
concept descriptions of I, modulo equivalence with respect to the empty TBox ∅.

6. φT = φI

8.3. Merging Terminological Boxes
This rather short section provides a characterization of simultaneous entailment of

a concept inclusion by two TBoxes. In particular, we shall demonstrate that a concept
inclusion is simultaneously entailed by two TBoxes T1 and T2 if, and only if, it is valid
for the infimum φT1 φT2 of the corresponding closure operators. We leave it open
for future research how an effective procedure for computing such a concept inclusion
base for φT1 φT2 can be constructed.

Lemma 35. Let T1∪T2∪{C v D} be an EL⊥st TBox. Then, the following statements
are equivalent.

1. C vT1 D and C vT2 D

2. CT1 v∅ D and CT2 v∅ D

3. CT1 ∨CT2 v∅ D

4. φT1 |= C v D and φT2 |= C v D

5. φT1 φT2 |= C v D

Proof. Statements 1 and 2 are equivalent by Lemma 21. The very definition of least com-
mon subsumers yields that Statements 2 and 3 are equivalent. Furthermore, Corollary 22
implies the equivalence of Statements 1 and 4. Eventually, Section 3, or alternatively
(Kriegel, 2016b, Section 3.1), shows the equivalence of Statements 4 and 5.

8.4. Axiomatization of Concept Inclusions from Sequences of Interpretations
Consider a setting where a sequence (In | n ∈N ) of interpretations can be observed

and, for each time point n ∈N, a terminological box Tn shall be constructed that entails
exactly those concept inclusions which are simultaneously valid in all previously observed
interpretations I0,I1, . . . ,In, that is, such that for each concept inclusion C v D, it
holds true that Tn |= C v D if, and only if, Ik |= C v D for all previous time points
k ≤ n. For the initial moment n = 0, we can simply compute T0 as a concept inclusion
base for I0 utilizing the approaches from Distel (2011); or from Borchmann, Distel and
Kriegel (2016). Of course, for the following moments n ≥ 1, we could construct a concept
inclusion base for the disjoint union of the interpretations I0,I1, . . . ,In. However, since
the aforementioned methods require the construction of so-called induced contexts the
size of which may be exponential in the cardinality of the interpretation’s domain, this
technique could possibly be infeasible for late time points. Furthermore, it would require
the storing of all interpretations observed so far. We shall present another technique for
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solving the above mentioned task. Please note that this problem has has already been
addressed by Kriegel (2015) for the case where In+1 |= Tn for all time points n ∈N.
Herein, we propose a solution that circumvents this rather restrictive precondition.
The following lemma states that the concept inclusions that are both valid in an

interpretation I and entailed by some TBox T are exactly those which are valid for
the infimum φI φT of the induced closure operators. In what follows, we shall also
develop an effective procedure for computing concept inclusion bases of such infima.
Unfortunately, it holds true that, as one quickly verifies, the infimum φI φT has
infinitely many closures, which makes it hard at first sight to work out a terminating
procedure. In contrast, during the axiomatization of finite interpretations there are only
finitely many closures of φI, namely all those of the form XI for some X ⊆ ∆I—so
it is not immediately clear whether and how the procedure from Distel (2011) can be
suitably generalized. As a practical solution to this, we restrict the role depths of the
concept inclusions to be axiomatized as done by Borchmann, Distel and Kriegel (2016)
for the non-incremental case without any TBoxes, that is, we consider the closure
operators φI,d φT,d instead. It is then ensured that only finitely many closures exist.
Thus, the next lemma is formulated for the role-depth bounded case.

Lemma 36. Let I be an interpretation, T an EL⊥ TBox, and C v D a concept
inclusion such that both its premise and its conclusion have role depths not exceeding
d. Then, the following statements are equivalent:

1. C vI D and C vT D

2. CIId v∅ D and CTd v∅ D

3. CIId ∨CTd v∅ D

4. φI,d |= C v D and φT,d |= C v D

5. φI,d φT,d |= C v D

Proof. The proof is similar to the proof of Lemma 35.

Consequently, we can outline the following incremental procedure for computing
concept inclusion bases from sequences of interpretations. For that purpose, fix some
role-depth bound d ∈N.

1. Upon availability of the first observed interpretation I0, compute its canonical
base T0 := Can(I0, d) using the results of Borchmann, Distel and Kriegel (2016,
Theorem 4.32).

2. For each newly observed interpretation In+1, compute the canonical base
Tn+1 := Can(In+1,Tn, d) as described later in Corollary 42.

It is readily verified that—by construction—for each time point n ∈ N, the TBox
Tn entails an EL⊥d concept inclusion C v D if, and only if, C v D is valid in all
interpretations I0, . . . ,In.

In the sequel of this subsection, we devise a suitable generalization of the procedure
from Borchmann, Distel and Kriegel (2016). In particular, we show how the problem
of constructing a concept inclusion base for φI,d φT,d can be reduced to the problem
of constructing an implication base for φK φL where K is a suitable formal context
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and L is a suitable implication set. Using the parallel algorithm NextClosures (Kriegel,
2016b) a canonical base for φK φL can be computed.

We start with proving that, in a concept inclusion base for the infimum φI,d φT,d,
it suffices that all conclusions are closures of this infimum.

Lemma 37. For any finitely representable interpretation I and for any TBox T , the
following TBox is sound and complete for the concept inclusions that are both valid
in I as well as entailed by T and further have a role depth not exceeding d.

B1 := {C v CIId Td | C ∈ EL⊥d(Σ)}

Proof. Consider a concept inclusion C v D such that rd(C) ≤ d, rd(D) ≤ d, C vI D,
andC vT D. We infer that CIId v∅ D as well as CTd v∅ D, and thus CIId Td v∅ D.
Consequently, C v D is entailed by the considered TBox B1, which hence is complete.
Soundness is obvious.

As we want to emulate the problem of computing a concept inclusion base for φI,d
φT,d in Formal Concept Analysis, we now define the following set of FCA attributes.

MI,T ,d := {⊥} ∪ΣC ∪ {

E

r.CIId−1 Td−1 | r ∈ ΣR and C ∈ EL(Σ)�d−1 }

If I, T , and d are clear from the context, then we may also write M instead ofMI,T ,d
in the following.

As we will infer from the next lemma, all closures of φI,d φT,d are expressible in
terms of M , that is, for each concept description C ∈ EL⊥(Σ), there is some subset
U ⊆M such that CIId Td ≡∅

d
U holds true. Before we start with proving this fact,

we define the approximation bCcI,T ,d of a concept description C ∈ EL(Σ)�d as follows.

bCcI,T ,d :=
l

(Conj(C)∩ΣC)u
l
{

E

r. (DIId−1 Td−1) |

E

r.D ∈ Conj(C)}

If I, T , and d are clear from the context, then we may also write bCc instead of
bCcI,T ,d in the following.

Lemma 38. For any EL⊥d concept description C, the following subsumptions are valid.

CIId Td v∅ bCcI,T ,d v∅ C

Proof. Since φI,d φT,d is a closure operator, the second subsumption is obvious.
We proceed with demonstrating the validity of the first subsumption. We do this by
proving that C vI bCc and C vT bCc. Fix some existential restriction

E

r.D on
the top level conjunction of C. On the one hand, it holds true that D vI DIId−1

and DIId−1 v∅ DIId−1 Td−1, and thus

E

r.D vI

E

r.DIId−1 Td−1. On the other
hand, it holds true that D vT DTd−1 and DTd−1 v∅ DIId−1 Td−1, and consequentlyE

r.D vT

E

r.DIId−1 Td−1. Summing up, we have that

CIId Td v∅ (

E

r.D)IId Td v∅

E

r.DIId−1 Td−1

for each existential restriction

E

r.D ∈ Conj(C), and so CIId Td v∅ bCc.

As a side note, we make clear how the set MI,T ,d can be enumerated.
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1. Initially, output ⊥ and output each concept name A ∈ ΣC.

2. Set C := >.

3. If the role depth of C does not exceed d − 1, compute the closure C :=
CIId−1 Td−1, and then output

E

r.C for each role name r ∈ ΣR.

4. Compute the set of lower neighbors of C, e.g., by means of (Kriegel, 2018a,
Proposition 5) or (Kriegel, 2018b, Corollarium 3.1.3.6), and for each such lower
neighbor L, set C := L and go to Statement 3.

As a next step we show that, in a concept inclusion base for φI,d φT,d, it suffices
that all premises are conjunctions of subsets of MI,T ,d.

Proposition 39. Let I be a finitely representable interpretation and assume that T is
a TBox. Then, the following TBox is sound and complete for the concept inclusions that
are both valid in I as well as entailed by T and further have a role depth not exceeding d.

B2 := {
l
U v (

l
U)IId Td | U ⊆MI,T ,d }

Proof. Soundness is easy. Completeness is demonstrated using structural induction by
showing that the defined TBox B2 entails the TBox B1 from Lemma 37. Thus, fix some
interpretation J that is a model of B2. We show that, for each concept description
C ∈ EL⊥d(Σ), it holds true that J is a model of the concept inclusion C v CIId Td.
The base case where C = ⊥ is trivial. The base case where C = > follows from
> ≡∅

d
∅ and

d
∅ v (

d
∅)IId Td ∈ B2. The base case where C = A for some concept

name A ∈ ΣC is also obvious since A ∈M and, thus, A v AIId Td ∈ B2.
The inductive case where C = DuE can be proven as follows. By induction hypoth-

esis it holds true that D vJ DIId Td and E vJ EIId Td. Furthermore, both closures
DIId Td and EIId Td are expressible in terms ofM , that is, there exist subsets U,V ⊆
M such that DIId Td ≡∅

d
U and EIId Td ≡∅

d
V . Consequently, it holds true that

D uE vJ
l

(U ∪ V ).

Of course, B2 contains the concept inclusion
d

(U ∪ V ) v (
d

(U ∪ V ))IId Td, and
since J |= B2 we conclude that

D uE vJ (DIId Td uEIId Td)IId Td ≡∅ (D uE)IId Td.

Eventually, we consider the remaining inductive case where C =

E

r.D. The
induction hypothesis yields that D vJ DIId Td. It is further trivial that DIId Td v∅
DIId−1 Td−1. We conclude that

E

r.D vJ

E

r.DIId−1 Td−1.

As

E

r. (DIId−1 Td−1) is an element of M , we infer that the concept inclusionE

r.DIId−1 Td−1 v (

E

r.DIId−1 Td−1)IId Td is valid in J , and sinceDIId−1 Td−1 v∅
D we conclude that

E

r.D vJ (

E

r.D)IId Td.
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Fix some finitely representable interpretation I, an EL⊥ TBox T , and some role-
depth bound d ∈ N. For translating our problem setting into notions of FCA, we
further define the induced context

KI,T ,d := (∆I,MI,T ,d, II,T ,d) where II,T ,d := { (δ,C) | δ ∈ CI },

and we define the induced implication set

LI,T ,d := {U → V | U,V ⊆MI,T ,d and
l
U vT

l
V }.

If I, T , and d are clear from the context, then we may also write K instead of KI,T ,d,
I instead of II,T ,d, and L instead of LI,T ,d in the following.

The next lemma shows that the closure operators φI,d φT,d and φKI,T ,d
φLI,T ,d

are closely related—a fact that will later be used to translate implication bases of the
latter to concept inclusion bases of the former.

Lemma 40. For any subset U ⊆M, the following holds true.

(
l
U)IId Td ≡∅

l
UII L

Proof. Firstly, we define the projection onto M as the mapping π : EL⊥(Σ)→ ℘(M)
where π(C) := {D ∈M | C v∅ D }. Then, we observe that the following equations
are valid.

π((
l
U)IId Td)

= {C | C ∈M and (
l
U)IId Td v∅ C }

= {C | C ∈M, (
l
U)IId v∅ C, and (

l
U)Td v∅ C }

= {C | C ∈M, (
l
U)I ⊆ CI, and

l
U vT C }

= {C | C ∈M, UI ⊆ {C}I, and U →L {C}}
= {C | C ∈M, C ∈ UII, and C ∈ UL }
= {C | C ∈M and C ∈ UII L }
= UII L

As a consequence, we obtain that
d
π((

d
U)IId Td) ≡∅

d
UII L. Secondly, we have

that the pair (
d
, π) is a Galois connection between (℘(M),⊆) and (EL(Σ),v∅), cf.

the EL⊥ case of (Kriegel, 2017, Lemma 10.1), and consequently it holds true that
C ≡∅

d
π(C) for each concept description C that is expressible in terms of M . We

conclude that
d
π((

d
U)IId Td) ≡∅ (

d
U)IId Td.

As a final step we show in the next proposition that, in a concept inclusion base for
φI,d φT,d, it is enough that all premises are conjunctions of premises of an implication
base for φK φL.

Proposition 41. Let B be an implication base for φKI,T ,d
φLI,T ,d

with respect to
the background knowledge {U → V |

d
U v∅

d
V }. Then, the TBox

B3 := {
l
U v (

l
U)IId Td |

E

V : U → V ∈ B}
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is sound and complete for those concept inclusions that are both valid in I and entailed
by T and that furthermore have a role depth not exceeding d.

Proof. Soundness is obvious. We proceed with proving completeness; for this pur-
pose consider a model J of B3. We show that J is a model of the TBox B2 from
Proposition 39.
We define the formal context KJ := (∆J ,MI,T ,d, J) where (δ,C) ∈ J if δ ∈ CJ .

We begin with proving that KJ |= B. Fix some implication U → V ∈ B. Without
loss of generality we assume that V = UII L. Then, B3 contains the concept inclusiond
U v (

d
U)IId Td, which is, hence, valid in J . We proceed with demonstrating that

the implication U → V is valid in KJ . Note that according to Lemma 40 it holds
true that (

d
U)IId Td and

d
UII L are equivalent with respect to the empty TBox.

Thus, we have the following equivalences.
l
U vJ (

l
U)IId Td

if, and only if, δ ∈ (
l
U)J implies δ ∈ (

l
U)(IId Td)J for each δ ∈ ∆J

if, and only if, δ ∈ (
l
U)J implies δ ∈ (

l
UII L)J for each δ ∈ ∆J

if, and only if, δ ∈ UJ implies δ ∈ U(II L)J for each δ ∈ ∆J

if, and only if, KJ |= U → UII L

Let now V ⊆M be an arbitrary subset. Of course, then φK φL |= V → V II L,
and so B |= V → V II L, since B is complete for φK φL. As a consequence we
obtain that KJ |= V → V II L, and thus

l
V vJ

l
V II L ≡∅ (

l
V )IId Td.

Summing up, it holds true that J is a model of the complete TBox B2 from Propo-
sition 39, which implies completeness of B3.

As an immediate consequence of our previous results we find that there exists always
a canonical finite concept inclusion base for φI,d φT,d.

Corollary 42. For each finitely representable interpretation I, for each TBox T , and
for any role-depth bound d ∈N, the following TBox, called canonical base, is sound
and complete for the concept inclusions that are both valid in I as well as entailed by
T and further have a role depth not exceeding d.

Can(I,T , d) := {
l
P v

l
P II L | P is a pseudo-closure of φK φL }

8.5. Error-Tolerant Axiomatization of Concept Inclusions from Interpretations
Assume that an interpretation I as well as a TBox T are given such that I contains

observations that could possibly be faulty due to inaccurate generation methods, and
that T is certainly valid in the domain of interest, e.g., as it has been hand-crafted by ex-
perts. In particular, we assume that I is not a model of T , i.e., that at least one domain
element in I exists which serves as a counterexample against at least one concept inclu-
sion from T . However, we are expected to axiomatize terminological knowledge from I
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which is valid in the domain of interest. As a solution, we suggest to construct the con-
cept inclusion base of the supremum of the closure operators that are induced by I, and
by T , respectively. It is then ensured that only those concept inclusions are axiomatized
which are valid for all those domain elements of I that respect the concept inclusions in
T , i.e., that we axiomatize concept inclusions from I that are compatible with the ax-
ioms contained in T . In a certain sense this yields a method for an error correction in I
when learning concept inclusions. We will define a short motivating example as follows.

ΣC := {Person,Car,Wheel}
ΣR := {child}
T := {

E

child.> v Person, Person u Car v ⊥}

I : δ

Car
ε

Wheel
ζ

Person
η

Person
child child

Consider the concept inclusion Car v

E

child.Wheel. Of course, it is valid in I and,
thus, it is entailed by the canonical base for I when applying the construction from
Distel (2011) or from Borchmann, Distel and Kriegel (2016). We can show that this
concept inclusion is also valid for the supremum φI,d φT,d for any d ≥ 1. The closure
of Car with respect to φI,d φT,d is the least common subsumer of all those concept
descriptions that are closures of both φI,d and φT,d, and that are subsumed by Car. It
is easy to see that this closure can be computed by an exhaustive repeated application
of both closure operators until a fixed point is reached. As we shall see below, the
fixed point ⊥ is reached after the first iteration, and hence ⊥ is the closure.

CarIId ≡ Caru

E

child.Wheel

(Caru

E

child.Wheel)Td ≡ Caru

E

child.Wheelu Person u⊥ ≡ ⊥

However, the considered concept inclusion Car v

E

child.Wheel is also a consequence
of the stronger concept inclusion Car v ⊥, and hence it would not have been axiom-
atized in a construction of the canonical base. In particular, it is readily verified that
the object δ is not compatible with T—in contrast to the other objects ε, ζ, and η.
Eventually, Car is a pseudo-closure of the supremum, and hence the canonical base
contains the axiom expressing the non-existence of cars.
So far, no effective procedure for axiomatizing concept inclusions from such a

supremum φI φT for the unrestricted case or from φI,d φT,d for the role-depth
bounded case has been developed. It is straight-forward to claim that one could
suitably generalize the techniques of Distel (2011) or of Borchmann, Distel and Kriegel
(2016), much like this has been achieved in Section 8.4 for the infimum. This will be
subject of a future publication of the author. Some first results in that direction have
already been found, and shall be presented in the following. The next lemma shows
how closures in such a supremum can be computed.

Lemma 43. Let I be an interpretation and consider an EL⊥st TBox T . Then, for
each EL⊥st concept description C, the following statement holds true.

CII T ≡∅ (
⋃
{X | X ⊆ CI and X ⊆ XIT I })I
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Proof. We have the following which shall be justified below.

CII T ≡∅
∨
{D | D ∈ EL⊥(Σ) and D ≡∅ DII ≡∅ DT v∅ C } (1)

≡∅
∨
{XI | X ⊆ ∆I and XI ≡∅ XIT v∅ C } (2)

≡∅
∨
{XI | X ⊆ CI and X ⊆ XIT I } (3)

≡∅ (
⋃
{X | X ⊆ CI and X ⊆ XIT I })I (4)

We begin with observing that the equivalence in Equation (1) is satisfied; it follows
from the characterization of suprema of closure operators in Section 3. As all concept
descriptions D over which the least common subsumer is constructed are model-based
most specific concept descriptions for I, we infer that Equation (2) holds true. Now we
find that XI v∅ C is equivalent to X ⊆ CI, cf. the Galois properties as described by
Distel (2011, Lemma 4.1) and by Borchmann, Distel and Kriegel (2016, Lemmas 4.3
and 4.4), and further that XI ≡∅ XIT is satisfied if, and only if, XI v∅ XIT as
well as XI w∅ XIT , where the former is equivalent to X ⊆ XIT I and the latter is
trivially true, cf. Lemma 18. We conclude the validity of Equation (3). Eventually,
Equation (4) is well known.

As an immediate corollary, we obtain that the supremum φI φT has only finitely
many closures if I is finitely representable—a fact that does not analogously hold true
for the infimum φI φT .
In the following lemma, we show that lifting a concept inclusion by existentially

quantifying both premise and conclusion preserves validity in the supremum φI φT .

Lemma 44. Fix some interpretation I as well as an EL⊥st terminological box T . Then,
for each EL⊥st concept inclusion C v D and for each role name r ∈ ΣR, the following
statement is satisfied.

φI φT |= C v D implies φI φT |=

E

r.C v

E

r.D

Proof. Assume that φI φT |= C v D, that is, for every concept description E such
that E v∅ C and E ≡∅ EII ≡∅ ET , it holds true that E v∅ D. Now consider some
concept description F satisfying F v∅

E

r.C as well as F ≡∅ FII ≡∅ FT ; we shall
show that F v∅

E

r.D holds true. Without loss of generality, we assume that F is
reduced, which implies that, in particular, all top-level conjuncts are incomparable
with respect to v∅, and further we assume that each filler of an existential restriction
on the top-level of FII and of FT , respectively, is itself closed, that is, X ≡∅ XII
for each

E

r.X ∈ Conj(FII) and Y ≡∅ Y T for each

E

s.Y ∈ Conj(FT ).
From F v∅

E

r.C we infer that there is some

E

r.E ∈ Conj(F) such that
E v∅ C. Furthermore, F ≡∅ FII ≡∅ FT implies the existence of concept de-
scriptions

E

r.EII1 ∈ Conj(FII),

E

r.ET2 ∈ Conj(FT ),

E

r.EII3 ∈ Conj(FII), andE

r.E4 ∈ Conj(F) such that

E w∅ EII1 w∅ ET2 w∅ EII3 w∅ E4,

and so it follows that E = E4, since F is reduced. Furthermore, we conclude that
E ≡∅ EII ≡∅ ET and, thus, that E v∅ D. Eventually, we infer that

E

r.E v∅

E

r.D,
and as

E

r.E is a top-level conjunct in F it follows that F v∅

E

r.D.
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Corollary 45. Let I be some interpretation and T an EL⊥st TBox. Then, for each
EL⊥st concept description C and for each role name r, the following holds true.

(

E

r.C)II T v∅

E

r.CII T

Proof. The statement immediately follows from φI φT |= C v CII T by an
application of Lemma 44.

8.6. Axiomatization of Concept Inclusions from ABoxes
Assume that A is a simple ABox which may not only contain positive assertions,

but also negative assertions, i.e., A may consist of axioms of the forms

a @− A, a 6@− A, (a, b) @− r, (a, b) 6@− r,

where a, b ∈ ΣI are individual names, A ∈ ΣC is a concept name, and r ∈ ΣR is a role
name. We further require A to be consistent, that is, it has a model. Apparently, A
is consistent if, and only if, it does not contain a @− A and a 6@− A at the same time,
and similarly it does not simultaneously contain (a, b) @− r and (a, b) 6@− r.

It is readily verified that ABoxes cannot be axiomatized with respect to default seman-
tics, i.e., when we only adopt the Unique Name Assumption (abbrv. UNA), i.e., different
individual names address different individuals, and the Open World Assumption (abbrv.
OWA), i.e., an axiom may be true in the domain of interest irrespective of it being en-
tailed by the ABox A, or alternatively, there may be axioms the validity of which cannot
be decided with only the information contained in the ABox A. This is due to the fact
that the size of the domain of a model of the considered ABox is not bounded, and hence
for each concept inclusion C v D, we can construct a model of the ABox but which also
contains a counterexample against C v D. Consequently, when we aim at learning ter-
minological boxes from assertional boxes as above, we have to impose further restrictions
on the allowed models. An idea which would probably perform well in practice would
be to further require the Domain Closure Assumption (abbrv. DCA), i.e., all individu-
als/objects of the domain of interest are known. The DCA is also utilized in Database
Theory, where it is assumed that every individual/object which occurs in the domain of
interest also occurs in the data set. Applying the DCA to the Description Logic setting,
we would enforce that there are no individuals except explicitly described in the signa-
ture or used in the ABox, or when applying it to interpretations I, the restriction of the
extension function to ΣI is surjective. Analogously, requiring the UNA to hold true for
interpretations I implies that the restriction of the extension function to ΣI is injective.
It is readily verified that, for interpretations I satisfying both the UNA and DCA, the
mapping ·I�ΣI

is bijective, and w.l.o.g. we shall hence simply assume that ∆I = ΣI.
In particular, we then restrict the semantics as follows. A ΣI-interpretation is an

interpretation I where ∆I := ΣI and where aI := a for all individual names a ∈ ΣI.2
Furthermore, we call a ΣI-interpretation I a ΣI-model of A if I is a model of A, and
we shall then write I |=ΣI A. The ABox A ΣI-entails a concept inclusion C v D
if, for each ΣI-interpretation I, it holds true that I |=ΣI A implies I |= C v D,
and we denote this as A |=ΣI C v D. If ΣI is finite, then reasoning with respect to
ΣI-semantics can be reduced to reasoning with respect to default semantics when we

2Note that this somehow corresponds to the Herbrand universe of a FO-theory.
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further allow for the use of nominals. A nominal is a concept description of the form
{a1, . . . , an} where a1, . . . , an ∈ ΣI are individuals, and its extension is defined by

{a1, . . . , an}I := {aI1 , . . . , aIn}

for each interpretation I. It is easy to verify that, for any concept inclusion C v D, it
holds true that A |=ΣI C v D if, and only if, A∪ TΣI

|= C v D where the TBox TΣI

encodes the ΣI-semantics, i.e., that objects do not have multiple names (UNA) and
that all objects are known, i.e., named (DCA). In particular, TΣI

is defined as follows.

TΣI
:= {{a} u {b} v ⊥ | a, b ∈ ΣI and a 6= b} ∪ {> v {a | a ∈ ΣI }}

Our goal now is to find a technique for the axiomatization of assertional boxes with
respect to ΣI-semantics, that is, to compute a concept inclusion base for a given ABox
A that is sound and complete for all C v D satisfying A |=ΣI C v D. Before we
investigate the technical details, we first demonstrate that using an ABox (with UNA,
DCA, OWA) as input yields indeed different results than using an interpretation (with
UNA, DCA, CWA). Both the ABox and each of its ΣI-model have in common that
the set of individuals/objects is fully known. However, an ABox allows for the presence
of unknown facts, i.e., by leaving out both assertions a @− A and a 6@− A we leave it
open whether a is an instance of A, simply because we do not know it. This degree of
freedom is not possible in an interpretation I: either an object δ ∈ ∆I belongs to an
extension AI or not; there is no means to express that it is not known. Consequently,
utilizing ABoxes as input data to learn from allows for more practical use cases.

For instance, define A := {a @− A, a @− B} over the signature Σ with ΣC := {A,B},
ΣR := ∅, and ΣI := {a, b}. Then, the concept inclusion A v B is no consequence of A,
but it would be if we consider A as an interpretation—more specifically, A v B is valid
in the canonical model IA. This is due to the definition of such a canonical model:

∆IA := ΣI

·IA :

{
A 7→ {a | a @− A ∈ A} for each A ∈ ΣC

r 7→ { (a, b) | (a, b) @− r ∈ A} for each r ∈ ΣR

The dual canonical model I∂A is given as follows.

∆I
∂
A := ΣI

·I
∂
A :

{
A 7→ {a | a 6@− A 6∈ A} for each A ∈ ΣC

r 7→ { (a, b) | (a, b) 6@− r 6∈ A} for each r ∈ ΣR

Clearly, both IA and I∂A are ΣI-models of A. Furthermore, it holds true that any
ΣI-model of A is between these two canonical models and, more specifically, for each
ΣI-model I of A, it holds true that

AIA ⊆ AI ⊆ AI
∂
A for any A ∈ ΣC

and rIA ⊆ rI ⊆ rI
∂
A for each r ∈ ΣR.

As an immediate consequence we obtain that, for each finite signature Σ, there are
only finitely many ΣI-models of a simple ABox.
The following lemma states some equivalent characterizations of ΣI-entailment.
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Lemma 46. Let A be an ABox, and assume that C v D is a concept inclusion.
Then, the following statements are equivalent:

1. A |=ΣI C v D

2. I |=ΣI A implies I |= C v D for each interpretation I.

3. I |=ΣI A implies φI |= C v D for any interpretation I.

4.
a
{φI | I |=ΣI A} |= C v D

5. ∅ |=
∨
{CII | I |=ΣI A} v D.

Proof. Statements 1 and 2 are equivalent by the very definition of ΣI-semantics. Using
a result from Distel (2011, Lemma 4.1) shows that Statements 2 and 3 are equivalent
too. The equivalence of Statements 3 to 5 follows immediately from Section 3.

We define the mapping φA : EL⊥st(Σ)→ EL⊥st(Σ) induced by some simple ABox A
as above by

φA : C 7→ CA :=
∨
{CII | I |=ΣI A}.

It then holds true φA :=
a
{φI | I |=ΣI A}, and so φA is a closure operator in the

dual of EL⊥(Σ). Furthermore, the interpretation IΣI

A , called canonical ΣI-model of
A, is defined as the disjoint union of all ΣI-models of A, that is, we set

IΣI

A :=
⊎
{I | I |=ΣI A}.

Apparently, it follows that, for any concept inclusion C v D,

A |=ΣI C v D if, and only if, IΣI

A |= C v D,

and so the closure operators φA and φIΣI
A

coincide. The canonical ΣI-model IΣI

A is
finite if the signature Σ is finite.

Returning back to our initial goal of axiomatizing concept inclusions from some such
finite simple ABox A, we can now provide a solution for doing so, namely we suggest
to compute some concept inclusion base of this newly introduced closure operator φA
or, equivalently, to compute a concept inclusion base of the canonical ΣI-model IΣI

A .
For the latter, we can immediately apply the existing procedures from Distel (2011);
from Borchmann, Distel and Kriegel (2016); or from Kriegel (2017).

9. Conclusion

We have defined the notion of most specific consequences with respect to TBoxes
in the description logic EL⊥ and some of its extensions with greatest fixed-point
semantics, and characterized conditions for the existence of most specific consequences
as well as devised means for their computation. Furthermore, we have provided
several applications and investigated the interplay of the corresponding closure operator
induced by a given TBox with the previously found closure operator induced by an
interpretation—more specifically, we have shown how their infimum can be utilized for
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learning from sequences of interpretations, and have motivated how their supremum can
be used for an error-tolerant axiomatization of concept inclusions from interpretations
in the presence of a hand-crafted or manually verified TBox that indicates errors in the
observed interpretation. Other applications considered a characterization of entailment,
a characterization of soundness and completeness, a rather abstract proposal for merging
two terminological boxes, and a technique for axiomatizing concept inclusions from
simple ABoxes that may also contain negated axioms under Open World Assumption,
Domain Closure Assumption, and Unique Name Assumption.

Future research could provide concrete procedures for the proposals in Sections 8.3
and 8.5, could optimize some of the results and procedures, and could investigate how
our results can be extended to a more expressive description logic. Please note that the
computation of most specific consequences is closely related to the problem of TBox
elimination. In the description logic ALC(t,∗), which extends ALC with union of roles
and reflexive-transitive closure of roles, it is easy to verify that the most specific conse-
quence of C w.r.t. T is equivalent to the concept description Cu

A

(r1 t . . . t rn)∗.CT
where r1, . . . , rn are the role names occurring in C or in T and where CT is defined asd
{¬C tD | C v D ∈ T }. However, as we are interested in non-Boolean description

logics for inductive learning, this result is not directly helpful for our purposes.
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