
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Actions with Conjunctive Queries:

Projection, Conflict Detection and Verification

Patrick Koopmann

LTCS-Report 18-08

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 2

2 Ontology-Mediated Query Answering 4

3 Actions with Conjunctive Queries 5

3.1 Conflicting and interacting actions . 7

3.2 Golog programs over DL actions with conjunctive queries 8

3.3 DL-CTL* formulae with conjunctive queries . 9

4 Verification of Golog programs With CQs 10

4.1 Abstract transition systems . 11

4.2 Deciding validity of abstract transition systems 12

5 Conflicts and Interactions 18

5.1 Detecting conflicting actions . 18

5.2 Detecting interacting actions . 20

6 Conclusion 21

1

Abstract

Description Logic actions specify adaptations of description logic interpretations based

on some preconditions defined using a description logic. We consider DL actions in which

preconditions can be specified using DL axioms as well as using conjunctive queries, and

combinatiosn thereof. We investigate complexity bounds for the executability and the

projection problem for these actions, which respectively ask whether an action can be

executed on models of an interpretation, and which entailments are satisfied after an action

has been executed on this model. In addition, we consider a set of new reasoning tasks

concerned with conflicts and interactions that may arise if two action are executed at the

same time. Since these problems have not been investigated before for Description Logic

actions, we investigate the complexity of these tasks both for actions with conjunctive

queries and without those. Finally, we consider the verification problem for Golog programs

formulated over our famility of actions. Our complexity analysis considers several expressive

DLs, and we provide tight complexity bounds for those for which the exact complexity of

conjunctive query entailment is known.

1 Introduction

Ontology-Mediated Data Access (OBDA) is a well-investigated technique to query data with the
help of an ontology [3]. Usually, here one considers a database that is seen as a set of facts, the
ABox, together with an ontology defining higher-order terms, usually defined using a description
logic (DL). The ABox and the ontology together form the knowledge base (KB) over which
SQL-like queries are executed. Importantly, the queries may use terms that do not explicitly
occur in the data, but which are defined in the ontology, and thus query information that is
implicit in the data. One application of OBDA is in situation recognition for self-adaptive
systems [8]: here, a continuously changing data set describes the current state of the system,
and queries are continuously evaluated to detect a situation where the process has to adapt.
As an example, consider a process management system on a multi-server cluster, which assigns
processes to different servers. To reduce the overall energy consumption, servers that are not
running any processes are turned to hibernation. A relevant situation on such a system would be
that an overloaded server is running a time critical process, while another server has computation
resources available. The corresponding adaptation would then move the time critical situation to
another server. The domain knowledge could be (simplified) modeled as follows by an ontology.

Server ⊑ ∀runsProcess.Provess

Server ⊓ ≥7.Process ⊑ OverloadedServer

Server ⊓ ≤4.Process ⊓ ¬Hibernated ⊑ AvailableResourceServer

The ontology states that servers run processes, that a server is overloaded when it runs 7 or
more processes, and that a server has available resources when it runs 4 or less processes. Using
this ontology, the described situation can be captured by the following query qov:

q(x, y) ← ∃z.OverloadedServer(z) ∧ runsProcess(z, x) ∧ TimeCriticalProcess(x)

∧ AvailableResourceServer(y).

The query has two answer variables, x and y, and results to the query would match these
respectively to a time critical process running on an overloaded server and a server with available
resources. The self-adaptive system would receive a trigger whenever the query has an answer,
and may then decide the move the process to the respective server.

In addition, an aim of the system is to reduce the overall energy consumption. If a server is not
running any processes, it should be put into hibernate modus to safe energy. We model the

2

additional domain knowledge using the following axioms in the ontology.

VacantServer ≡ Server ⊓ ¬HibernatedServer ⊓ =0runsProcess.Process

HibernatedServer ⊑ =0runsProcess.Process

Here, a vacant server is defined as one that does not run any processes, and which is not
hibernated yet. In addition, the ontology specifies that a hibernated server cannot run any
processes.

To query the situation when a server should be hibernated using this ontology, we would use
the following query qh

q(x) ← Vacant(x)

If applied just like this, these two adaptations strategies can lead to a conflicting behvaiour:
namely, it is possible that the first situation triggers the migration of a time critical process to
an vacant server (which is also a server with available resources), while the second situation
will trigger the system to put this server into hibernate mode. While both situations can be
triggered at the same time, they cannot both be executed at the same time. Alternatively, we
may assume a situation described by a query qh2, which detects servers that are almost vacant,
in order to migrate the remaining processes to other servers so that the server can be put into
hibernate mode. While this adaptation does not conflict with the other migration strategy in
the same way, it might also trigger an undesired behaviour, where the same process is migrated
back and forth between two servers.

While in these examples, these conflicts can be easily recognised, in realistic, more complex
systems they might be hard to detect without appropriate tool support. The main motivation
for the research presented in this paper is to investigate the off-line detection of these conflicts,
to guide the users of an ontology-based self-adaptive system in making sure that such conflicts
can never arise.

To model the adaptation adequately, we follow the idea of DL actions as introduced in [1]. DL
actions describe adaptations on models of a DL knowledge base based on some preconditions,
which are defined as DL axioms. Actions can be aggregated into complex actions, which in
this context are simply sequences of actions. performed. The authors of [1] consider two main
reasoning problems: the executability problem is concerned with whether a sequence of actions
can be executed on models of a given KB. The projection problem is to decide which entailments
hold after a sequence of actions has been executed. We extend this setting in two ways: first, we
consider actions in which preconditions can be formulated using unions of conjunctive queries
(UCQs), to adhere to the setting described above. In addition, we consider additional reasoning
problems that are concerned with the parallel execution of actions. 1) The conflict problem
analyses whether, if two actions can always be executed in parallel if they can be executed on
their own. 2) The conditionalised conflict problem attaches actions with a desired post-condition,
which may also be described using queries, it analyses whether the parallel execution of two
actions always ensures that these post-conditions remain satisfied. 3) Finally, we consider the
action interaction problem, which analyses whether two actions can be triggered independent
without causing non-deterministic behaviour, that is, whether exetuting two actions in parallel
on the same model always results in the same result.

A more expressive framework for reasoning about DL actions is to embed them into Golog
programs [2]. Golog is a simple programming language providing for common constructs such as
loops and conditional execution, which can be used to describe the behaviour of more complex
systems. For Golog programs, one is usually concerned with the verification problem, which is
to verify whether executions of the program satisfy certain properties formulated in a temporal
logic. Tasks 1) and 2) can be easily encoded into Golog programs with DL actions, provided

3

they are expressive enough to use UCQs. Moreover, they allow to model the behaviour of
self-adaptive problems more adequately due to their additional expressive power. However,
usually, the verification problem is one exponential harder than the executability or the projection
problem [14, Theorem, 4.24]. We show that this is not necessarily the case if actions can be
equipped with UCQs: in fact, then all problems are not harder than query answering itself,
at least for the DLs we consider in this paper, and for which the precise complexity of query
answering is known. In contrast, if DL actions may only use DL axioms as preconditions, then
the problems are not computationally harder than the executability and the projection problem.

2 Ontology-Mediated Query Answering

We recall the DLs discussed in the paper and ontology-mediated query answering for knowledge
bases expressed in these.

Let NC, NR and NI be three pair-wise disjoint sets of respectively concept names, role names and
individual names. A role R is either a role name r ∈ NR or an inverse role r−, r ∈ NR. Concepts
are expressions of the following forms, where A ∈ NC, R is a role, a ∈ NI an individual name,
n ∈ N \ {0} and C, C1 and C2 are concepts:

• top: ⊤,

• conjunction: C1 ⊓ C2,

• complement: ¬C,

• existential role restriction: ∃R.C,

• nominal: {a}, and

• at-least restriction: ≥nR.C.

Further concepts are introduced as abbreviations: bottom ⊥ = ¬⊤, disjunction C1 ⊔ C2 =
¬(¬C1 ⊓ C2), universal role restriction ∀R.C = ¬(∃R.¬C), at-least restriction ≤nR.C =
¬(≥ (n + 1)R.C) and equals restriction =nR.C = (≥iR.C ⊓ ≤nR.C).

A concept is in the DL ALC iff it only uses top, conjunctions, complements and existential role
restrictions and no inverse roles. More expressive DLs are denoted by appending ALC with
one or more of the letters I, O and Q, which respectively denote that we can additionally use
inverse roles, nominals and at-least restrictions. For example, ALCIO concepts may use top,
conjunctions, complements, existential role restrictions, inverse roles and nominals, while ALCQ
may use top, conjunctions, complements, existential role restrictions and at-least restrictions.

A knowledge base (KB) K is a tuple 〈T , A〉, where the TBox T contains axioms of the forms
C1 ⊑ C2 (general concept inclusions, GCIs) and R1 ⊑ R2 (role inclusions), and the ABox A
contains assertions of the forms C1(a) and r(a, b), where C1, C2 are concepts, R1, R2 roles,
a, b ∈ NI and r ∈ NR. In the DLs introduced above, role inclusions are not permitted, and we
use the letter H to denote that role inclusions are permitted: for example, a KB in ALCIO
does not have role inclusions, while a KB in ALCHIO may additionally have role inclusions.

The semantics of KBs is defined in terms of interpretations, which are tuples I = 〈∆I , ·I〉 with
the domain ∆I a set of domain elements and the interpretation ·I a function mapping each
individual name a ∈ NI to a domain element aI ∈ ∆I , each concept name A ∈ NC to a set
AI ⊆ ∆I of domain elements, and each role name r ∈ NR to a relation rI = ∆I × ∆I over

4

the domain. The interpretation function is extended to inverse roles by (r−)I = (rI)−, and to
concepts by

⊤I = ∆I (C1 ⊓ C2)I = CI
1 ∩ CI

2 (¬C1)I = ∆I \ CI
1

(∃R.C)I = {d ∈ ∆I | ∃〈d, e〉 ∈ RI : e ∈ CI} {a}I = {aI}

(≥nR.C)I = {d ∈ ∆I | #{〈d, e〉 ∈ RI : e ∈ CI} ≥ n}.

An axiom C1 ⊑ C2 (R1 ⊑ R2) is satisfied in an interpretation I, in symbols I |= C1 ⊑ C2

(I |= R1 ⊑ R2), iff CI
1 ⊆ CI

2 (RI
1 ⊆ RI

2). An assertion C1(a) (r(a, b)) is satisfied in an
interpretation I, in symbols I |= C1(a) (I |= r(a, b)), iff aI ∈ CI (〈a, b〉 ∈ rI . An interpretation
I is a model of a KB K, in symbols I |= K, if every axiom and assertion in K is satisfied
in I. K is satisfiable iff it has a model, and otherwise unsatisfiable. Finally, a KB K entails an
axiom/assertion α, iff I |= α for all models I of K.

Note that we do not enforce the uniquer name assumption (UNA), since inequality of individuals
a,b can be easily expressed by adding the axiom {a} ⊑ ¬{b} to the KB. The UNA can thus be
enforced for any KB using only a polynomial number of axioms.

We define satisfaction of first-order formulae from interpretations in the usual way, and say
a first-order formula is entailed by a KB iff it is entailed by every model of it. A Boolean
conjunctive query (CQ) is a first-order formula of the form ∃þx.φ, where φ is a conjunction over
atoms of the forms A(t1), r(t1, t2), with A ∈ NC, r ∈ NR and t1, t2 ∈ NI ∪ þx. A Boolean union
of conjunctive queries (UCQ) is a disjunction over Boolean conjunctive queries.

We have the following complexities for deciding whether a KB K is satisfiable, depending on the
DL L in which the K is formulated:

1. it is ExpTime-hard for L = ALC [12],

2. it is in ExpTime for L ∈ {ALCHIO, ALCHIQ, ALCHOQ} [13], and

3. it is NExpTime-complete for L = ALCHIOQ [13].

Deciding entailment of CQs and UCQs is

1. ExpTime-complete for L = ALCHQ [9],

2. 2-ExpTime-hard for L ∈ {ALCI, ALCO} [9, 10],

3. in 2-ExpTime for L ∈ {ALCHOQ, ALCHIQ, ALCHIO} [4, 6, 7], and

4. decidable for L =∈ {ALCIOQ, ALCHIOQ} [11].

3 Actions with Conjunctive Queries

We introduce our extended action framework, by defining DL actions with CQs. We distinguish
between atomic actions and composite actions. A basic action consists of a precondition,
which states when an action can be executed (in our context, this corresponds to a situation
description), and a post-condition that descibes the effects of the action. Composite actions are
then formed by combining atomic actions.

Preconditions are formulated using DL formulae, which in our case may involve conjunctive
queries. The set of DL formulae is the smallest set of formulae satisfying the following conditions:

5

1. every axiom, assertion and CQ is a DL formula,

2. if φ is a DL formula, then so is ¬φ, and

3. if φ1 and φ2 are DL formulae, then so is φ1 ∧ φ2.

We introduce disjunction as abbreviation: φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2). For convenience, we identify
KBs K = {T , A} with the corresponding DL formula

∧

α∈T α ∧
∧

α∈A α. Note that, even though
we did not use UCQs directly, they can be expressed in a DL formula using disjunction.

The semantics of DL formulae is defined intuitively, that is, given an interpretation I and a
DL formula φ that is not an axiom, assertion or CQ, we say that φ is satisfied in I, in symbols
I |= φ, if

1. If φ is an axiom or a CQ, satisfaction is defined as in Section 2

2. φ = ¬ψ and I Ó|= ψ or

3. φ = ψ1 ∧ ψ2, I |= ψ1 and I |= ψ2.

We define actions as operations on interpretations. Specifically, an atomic action is of the form
a = φ � E, with the precondition φ a DL formula, and the post-condition e, which is a set of
conditionalised effects and unconditionalised effects. Here, unconditionalised effects are of the
forms ⊕α and ⊖α, with α an assertion of one of the forms A(a), r(a, b) with A ∈ NC, r ∈ NR

and a, b ∈ NI, and conditionalised effects are of the forms β/e, where β is an assertion and e an
unconditionalised effect. Intuitively, the precondition specifies when an action can be executed.
The exection that applies all post-conditions at the same time, where each conditionalised effect
β/ ⊕ α (β/ ⊖ α) is applied whenever β is satisfied.

A composite action is an expression of the form a1; a2; . . . an, with a1, . . . , an atomic actions. We
also allow the empty composite action ǫ, which corresponds to an empty sequence of actions.
Note that an atomic action can also be seen as a composite action with only one element. For
this reason, we may for simplicity treat it as a composite action if this is convenient.

We define the semantics of actions. For this, we first collect the changes on each concept and
role name for a set of effects. Specifically, for a set E of effects and an interpretation I, we first
define for all A ∈ NC and r ∈ NR:

A+E = {aI | ⊕(A(a)) ∈ E} ∪ {aI | β/ ⊕ (A(a)), I |= β}

A−E = {aI | ⊖(A(a)) ∈ E} ∪ {aI | β/Drop(A(a)), I |= β}

r+E = {〈aI , bI〉 | ⊕(r(a, b)) ∈ E} ∪ {〈aI , bI〉 | β/ ⊕ (r(a, b)), I |= β}

r−E = {〈aI , bI〉 | ⊖(r(a, b)) ∈ E} ∪ {〈aI , bI〉 | β/ ⊖ (r(a, b)), I |= β}.

We say that an atomic action a = φ � E is executable on an interpretation I if I |= φ.

The execution of an atomic action a on I is defined as Ia = 〈∆I , ·I
a

〉, where for every a ∈ NI,
aIa

= aI , and for every X ∈ NC ∪ NR, XIa

= (XI ∪ X+E) \ X−E. Note that we for convenience
define executions independent on executability.

Executability and execution of composite actions is now defined as expected. Specifically, for
a composite action a = a1; . . . , an, the execution Ia of a on I is defined recursively as Iǫ = I
and Ian = (Ia1;...′an−1)an. a is executable if a = ǫ or a = a1; . . . ; an and an is executable on
Ia1;...;an−1 .

In addition to an action, one usually considers a KB that restricts the space of interpretations,
or alternatively, specifies the (incomplete knowledge) about the initial situation on which the

6

action is executed. The obvious questions in this setting are 1) is the given action executable on
the models of the KB, and 2) what is entailed after the action has been executed. These are the
first two reasoning problems we consider.

Definition 1. Given a KB K and an action a, the executability problem is to decide whether φ
is executable on every interpretation of K. The projection problem is to decide whether, given a
projection problem is to decide whether, given a DL formula, for every model I of K, we have
Ia |= φ. We then say that φ is an answer to the projection problem on K and a.

The executability problem is easily reducable to the projection problem, as for a composite
action a1; . . . ; an, we just need to check whether for each i ∈ J1, nK, where ai = φi � Ei, whether
φi is an answer to the projection problem for K and a1; . . . ; ai−1.

3.1 Conflicting and interacting actions

To define when two actions are conflicting, we need to specify formally what it means for two
actions to be applied concurrently. Let a1 and a2 be two actions. The set Seq(a1‖a2) is defined
by induction over a1 and a2:

• if a1 = ǫ, then Seq(a1‖a2) = {a2},

• if a2 = ǫ, then Seq(a1‖a2) = {a1},

• if a1 = ah
1 ; at

1 and a2 = ah
2 ; at

2, with ah
1 and ah

2 atomic actions, and at
1 and at

2 possibly
empty composite actions, then

Seq(a1‖a2) = {ah
1 ; a | a ∈ Seq(at

1‖a2)} ∪ {ah
2 ; a | a ∈ Seq(a1‖at

2)}.

Intuitively, Seq(a1‖a2) contains all possible execution sequences that can be obtained by in-
terleaving a1 and a2. We note that we here take into account the intuition that all effects of
an action are executed instantly and simultaneously. To obtain a more fine-grained analysis,
one might want to split the atomic actions into several smaller actions. For example, for an
atomic action φ � E and a (possibly conditionalised) effect e ∈ E, the action can be split into a
composite action φ � (E \ e); ⊤ � {e}.

As motivated in the introduction, our first interest is in deciding whether two actions are
conflicting. This reasoning problem is defined as follows.

Definition 2. Let K be a KB, a1 and a2 be two actions and φ a DL formula. We say a1 and a2

are conflicting in K if there exists a model I of K on which a and a2 are executable, but also
some action a ∈ Seq(a1‖a2) that is not executable on I. We say a1 and a2 are conflicting in
K with respect to φ if there exists a model I of K on which Ia

1 |= φ, Ia
2 |= φ, but for some

a ∈ Seq(a1‖a2), Ia Ó|= φ. The conflict problem is two decide whether two actions are conflicting in
a given KB. The conditionalised conflict problem is to decide whether two actions are conflicting
in a given KB with respect to a given DL formula.

Sometimes, we are interested not only in knowing whether to actions conflict with respect to
some given invariant, but in whether they lead to some non-deterministic behavior. That is, we
want to be sure that their outcome is irrelevant of the specific sequence picked from Seq(a1‖a2).
This is captured in the following definition.

Definition 3. Given a KB K and two actions a1 and a2, we say that a1 and a2 are interacting
in K if there exist a model I of K and two actions a, a′ ∈ Seq(a1, a2) s.t. Ia Ó= Ia′

. The action
interaction problem is to decide whether two actions are interacting.

7

3.2 Golog programs over DL actions with conjunctive queries

As it turns out, most reasoning problems discussed in the previous subsections are instances
of the verification problem of Golog programs. Moreover, Golog allows for a more detailed
modelling of complex self-adaptive systems. However, Golog programs with DL actions with CQs
has not been investigated before. As we later show, for these Golog programs, the verification
problem is often not harder than the standard query entailment problem.

The set of Golog programs over DL actions with CQs is the smallest set satisfying the following:

1. every atomic action is a Golog program,

2. every empty composite action is a Golog program,

3. if p1, p2 are Golog program and φ a DL formula, then the following expressions are Golog
programs:

(a) p1; p2 (sequence),

(b) (p1|p2) (non-deterministic choice),

(c) (p1‖p2) (concurrent execution),

(d) φ? (test),

(e) p∗ (non-deterministic iteration).

Note that, even though we do not use composite actions in this definition, they can still be
expressed using the sequence-operator, which has the same syntax, but is also used with the
same semantics, which we will see shortly. To express deliberate failing, we use the expression
Fail as an abbreviation for a failing test: Fail = ¬∃x.⊤(x). We can express common programming
constructs easily in Golog: if-then-else using (φ?; p1)|(¬φ?; p2), and while loops using p∗; φ?.

The semantics of Golog programs is defined using transition systems. Every Golog program
induces an transition system over interpretations, which represents all possible executions of the
program from an interpretation.

To identify the states of the program, we denote by sub(p) the set of sub-programs of p, which is
defined as the smallest set satisfying

• p ∈ sub(p),

• if p′∗ ∈ sub(p), then also p′; p′∗ ∈ sub(p),

• if (p1; p2) ∈ sub(p), (p1|p2) ∈ sub(p) or (p1‖p2) ∈ sub(p), then p1, p2 ∈ sub(p), and

• if (p1; p2)/(p1|p2)/(p1‖p2) ∈ sub(p), then (p′
1; p′

2)/(p′
1|p′

2)/(p′
1‖p′

2) ∈ sub(p) for every p′
1 ∈

sub(p1) and p′
2 ∈ sub(p2).

It is not hard to see that sub(p) is exponentially bounded in the size of p.

Let p a Golog program. Then the transition system induced by p is the tuple T = 〈Q, I, →֒, Qfinal, λ〉,
where

1. the set Q of states contains every tuple 〈I, p′〉, where I is an interpretation and p′ ∈ sub(p),

2. the set I ⊆ Q of initial states contains all states of the form 〈I, p〉,

3. the labeling function λ maps each state 〈I, p〉 to the set of DL formulae φ s.t. I |= φ,

8

4. the transition relation →֒ and the set Qfinal of accepting states are defined next.

Before we define the transition relation →֒, it is convenient to define the set of states where a
program may terminate. Specifically, Qfinal is the smallest set of states that contains every state
〈I, p′〉 ∈ Q s.t.

1. p′ = ǫ,

2. p′ = φ? and I |= φ,

3. p′ = (p1)∗,

4. p′ = (p1; p2), p1 ∈ Qfinal and p2 ∈ Qfinal,

5. p′ = (p1|p2) and p1 ∈ Qfinal or p2 ∈ Qfinal, and

6. p′ = (p1‖p2) and p1 ∈ Qfinal and p2 ∈ Qfinal.

Now the relation →֒ in the transition system T = 〈Q, I, →֒, Qfinal〉 is defined as the smallest
relation s.t. for every q ∈ Q:

1. if q = 〈I, a〉, where a is an atomic action that is executable on I, then q →֒ 〈Ia, ǫ〉,

2. if q = 〈I, p1; p2〉 and 〈I, p1〉 →֒ 〈I ′, p′
1〉, then q →֒ 〈I ′, p′

1; p2〉,

3. if q = 〈I, p1; p2〉, 〈p1, I〉 ∈ Qfinal and 〈I, p2〉 →֒ 〈I ′, p′
2〉, then q →֒ 〈I ′, p′

2〉,

4. if q = 〈I, (p1|p2)〉, and 〈I, p1〉 →֒ 〈I ′, p3〉 or 〈I, p2〉 →֒ 〈I ′, p3〉, then q →֒ 〈I ′, p3〉,

5. if q = 〈I, (p1‖p2)〉 and 〈I, p1〉 →֒ 〈I ′, p′
1〉, then q →֒ 〈I ′, (p′

1‖p2)〉

6. if q = 〈I, (p1‖p2)〉 and 〈I, p2〉 →֒ 〈I ′, p′
2〉, then q →֒ 〈I ′, (p1‖p′

2)〉

7. if q = 〈I, p1∗〉 and 〈I, p1〉 →֒ 〈I ′, p2〉, then q →֒ 〈I ′, p2; p1∗〉,

The definition, which might seem a bit cumbersome at first sight, ensures that in every step in
the transition system consumes an action, while treating all operators as expected. The last
condition makes sure that accepting paths in the transition system can always be followed, with
the intuitive behavior that the state remains the same if the program finished its execution.

3.3 DL-CTL* formulae with conjunctive queries

Properties of Golog progams are specified using CTL*-formulae over DL axioms, assertions and
CQs, similarly to how we defined DL formulae. While there are popular fragments of CTL, such
as CTLand LTL, in which properties could be expressed, we only consider the most expressive
logic here. As our complexity bounds later show, the complexity is not reduced if we restrict
the logic. DL-CTL* state formulae Φ and DL-CTL* path formulae Ψ are built according to the
following syntax rules, where φ is an axiom, assertion or CQ:

Φ ::=φ | ¬Φ | Φ ∧ Φ | EΨ

Ψ ::=Φ | Ψ ∧ Ψ | XΨ | ΨUΨ.

As usual, further operators are defined as abbreviations. For state formulae, we abbreviate
⊤ = ∃x.⊤(x), Φ1 ∨Φ2 = ¬(¬Φ1 ∧¬Φ2) and AΨ = ¬(E¬Ψ), and for path formulae, we abbreviate
Ψ1 ∨ Ψ2 = ¬(¬Ψ1 ∧ ¬Ψ2), ♦Ψ = ⊤UΨ and 2Ψ = ¬♦¬Ψ.

9

Entailment of CTL*-formulae from Golog programs is then defined based on the induced
transition systems. An path in a transition system T = 〈Q, I, →֒, Qfinal, λ〉 is a possibly
unbounded sequence q1, . . . of states s.t. for i ≥ 1, qi →֒ qi+1 or qi is the last state in the path.
For a path π = q1, . . ., we denote by π[i] = qi the ith state in π, and by π[i..] = qi, . . . the prefix
of π beginning from the ith state. We first define entailment of CTL* formulae with respect
to a state/path in the transition system. Let T = 〈Q, I, →֒, Qfinal, λ〉 be a labelled transition
system. A path is accepting iff it is unbounded or we have π[n] ∈ Qfinal for n the length of π.
Entailment of a CTL* state formula Φ in T a state q ∈ Q, in symbols T, q |= Φ, is then defined
as follows based on the syntactical shape of Φ:

1. if Φ ∈ λ(q), then T, q |= Φ,

2. if Φ = ¬Ψ, then T, q |= Φ iff T, q Ó|= ¬Φ,

3. if Φ = Φ1 ∧ Φ2, then T, q |= Φ iff T, q |= Φ1 and T, q |= Φ2, and

4. if Φ = EΨ, then T, q |= Φ iff there exists an accepting path π in T s.t. π[1] = q and
T, π |= Ψ,

where entailment of a path formula Ψ from a path π in T , in symbols T, π |= Ψ, is defined as
follows:

1. if Ψ is a state formula, then T, π |= Ψ iff T, π[1] |= Ψ,

2. if Ψ = ¬Ψ′, then T, π |= Ψ iff T, π Ó|= Ψ′,

3. if Ψ = Ψ1 ∧ Ψ2, then T, π |= Ψ iff T, π |= Ψ1 and T, π |= Ψ2,

4. if Ψ = XΨ′, then T, π |= Ψ iff T, π[2..] |= Ψ′, and

5. if Ψ = Ψ1UΨ2, then T, π |= Ψ iff there exists some i ≥ 1 s.t. T, π[i..] |= Ψ2 and for all
j ∈ J1, iK, T, π[j..] |= Ψ1.

Finally, we say that a transition system T entails a CTL* state formula Φ, in symbols T |= Φ,
iff T, q |= Φ for all q ∈ I. For a Golog program p and a CTL* state formula, we say p entails
Φ iff for the transition system T induced by p, we have that T |= Φ. The Golog verification
problem is to decide, given a Golog program p and a CTL* state formula Φ, whether p |= Φ.

4 Verification of Golog programs With CQs

We show that, for the DLs ALCHIO and ALCHOQ, verification of Golog programs is not
harder as conjunctive query entailment. For convenience, we focus on the complementary
problem of satisfiability of CTL*-formulae defined as follows. Given a program p and a CTL*
state formula Φ, we say that p is satisfiable in p if there exists an initial state q ∈ I in the
induced transition system T = 〈Q, I, →֒, Qfinal, λ〉 s.t. p, q |= Φ. It is not hard to see that Φ is
satisfiable in p iff p Ó|= ¬Φ, so that the problems are indeed complementary.

In order to decide whether a CTL* state formula is satisfiable by a Golog program, we make
use of a technique from [14] for Golog programs over DL actions without conjunctive queries.
The idea is to guess a finite representation of the transition system, restricted to the states
reachable from one selected initial state. While the CTL* formula can be directly verified on this
abstract transition system, in order to decide whether it has a correspondence in the transition
system of the program, they construct an exponentially sized reduction KB, which is tested

10

for satisfiability. As a result, they obtain complexity bounds that are one exponential higher
than those for satisfiability. We use a similar reduction. However, since our Golog program
contains CQs, the reduction results in an exponentially sized reduction KB together with an
exponentially sized UCQ, which have to be checked for query entailment. While satisfiability
checking is 2-ExpTime-complete already for ALCO, we show by inspection of the algorithms
presented in [6] and [4] showing inclusion of UCQ entailment in 2-ExpTime for respectively
SHOQ and ZOI, that for these logics, this particular UCQ entailment problem can be decided
in double exponential time with respect to the size of the program and the CTL* formula.

4.1 Abstract transition systems

For a given program p, we denote by T(p, I) the transition system induced by p restricted to
the states reachable from the state 〈I, p〉. Formally, for 〈Q, I, →֒, Qfinal, λ〉 the transition system
induced by p, we define

T(p, I) = 〈QI , II , →֒I , Qfinal,I , λI〉,

where

• II = {〈I, p〉},

• QI = {q ∈ Q | 〈I, p〉 →֒∗ q}, where →֒∗ denotes the transitive-reflexive closure of →֒,

• →֒I = (→֒) ∩ QI × QI ,

• QfinalI = Qfinal ∩ QI ,

• λI is obtained from λ by restricting the domain to QI .

The satisfiability problem can then be formulated as follows: a CTL* state formula Φ is satisfiable
by a program p iff there exists an interpretation I s.t. T(p, I) |= Φ.

We first characterize the interpretations that occur in T(p, I). In the following, let p be a fixed
program. Denote by L the set of relevant literals l of the forms A(a), r(a, b), where A ∈ NC,
r ∈ NR, a, b ∈ NI, and A, r, a and b occur in some effect in some action in p. Note that, since
the number of effects occuring in p is linear, L is at most cubic in size. For every subset L ⊆ L

and interpretation I, define the interpretation IL = 〈∆I , ·I
L

〉 by setting

• aIL

= aI for all a ∈ NI,

• AIL

= (AI ∪ {aI | A(a) ∈ L}) \ {aI | A(a) ∈ L \ L}, and

• rIL

= (rI ∪ {〈aI , bI〉 | r(a, b) ∈ L}) \ {〈aI , bI〉 | r(a, b) ∈ L \ L}.

Intuitively, IL is the smallest modification of I such that every literal in L is satisfied, and none
of the literals in L \ L is satisfied.

In the restricted transition system T(p, I), every interpretation occurring in QI is obtained
from I by applications of actions in p. As a consequence, for every state 〈I ′, p′〉 ∈ QI , there
exists some subset L ⊆ L s.t. I ′ = IL. For this reason, every state in T(p, I) can be identified
by a sub-program p′ ∈ sub(p) and a subset L ⊆ L. As a second observation, we notice that for
the verification of the transitions in T(p, I), as well as for the verification of a CTL* formula,
the only information relevant about an interpretation I ′ in a state 〈I ′, p′〉 ∈ QI is which axioms,
assertions and CQs they entail. To capture this, we collect all relevant entailments in the
set E(p, Φ), which contains for every axiom, assertion and CQ α occurring in p or Φ the two
elements α and ¬α.

11

An abstract transition systems for p and Φ is now a labeled transition system

〈Qa, Ia, Qfinal,a, →֒a, λa〉,

where every state q ∈ Qa is of the form 〈L, p′〉, where L ⊆ L and p′ ∈ sub(p),and the labeling
function λ : Qa → 2E(p,Φ) is such that for every two states q1 = 〈L1, p1〉, q2 = 〈L2, p2〉 ∈ Qa ,
λ(q1) = λ(q2) if L1 = L2. The intuition is that for q = 〈L, p′〉 ∈ Qa, λ(q) contains all relevant
entailments of IL. The transition function →֒a is then defined correspondingly to how it is done
for transition systems induced by p (see Section 3.2), and entailment of DL-CTL* formulae is
defined as usual for labeled transition systems.

To make sure that abstract transition systems correspond to transition systems induced by
Golog programs, we make use of the notion of validity.

Definition 4. An abstract transition system 〈Qa, Ia, Qfinal,a →֒a, λa〉 is valid if there exists an
interpretation I s.t. for every state q = 〈L, p′〉 ∈ Qa and α ∈ E(p, Φ), α ∈ λa(q) iff IL |= α.

The following is an easy consequence of the definition of valid abstract transition systems (see
also [14]).

Lemma 5. Given a program p and a DL-CTL* state formula Φ, Φ is satisfiable by p iff there
exists a valid abstract transition system T for p and Φ s.t. T |= Φ.

Lemma 5 motivates the following procedure for deciding satisfiability of DL-CTL* state formulae:
i) guess an abstract transition system T for p and Φ, ii) check whether T |= Φ, and iii)
check whether T is valid. Since for an abstract transition system 〈Qa, Ia, →֒a, λa〉, we have
Qa ⊆ 2L ×sub(p), the number of states in an abstract transition system is exponentially bounded
in the size of p, while each label in λa is linearly bounded in the size of p and Φ, each abstract
transition system is exponentially bounded in size. Entailment of propositional CTL* formulae
from labeled transition systems can be performed in time polynomial in the size of the transition
system, which means that it can be done in time exponential in the size of p and Φ for abstract
transition systems for p and Φ. It follows that Step i) can be performed in non-deterministic
exponential time, while Step ii) can be performed in exponential time. It thus only remains to
establish the complexity of Step iii), which we do in the next subsection.

4.2 Deciding validity of abstract transition systems

To decide whether an abstract transition system T is valid, we construct a KB KT and a positive
FO-formula φT s.t. KT |= φT iff T is not valid.

Let T = 〈Qa, Ia, →֒a, λa〉 be an abstract transaction system. Since we require by definition,
that for two states q1 = 〈L1, p1〉, q2 = 〈L2, p2〉 ∈ Qa, λa(q1) = λa(q2) if L1 = L2, we can
abuse notation and treat λa as a function over subsets of L ⊆ L s.t. λa(L) = λa(〈L, p′〉) for
〈L, p′〉 ∈ Qa.

Since actions only affect the named part of an interpretation, that is, the assignment of named
individuals to concepts and roles, our reduction KB needs to make sure that the interpretation of
the unnamed part remains fixed. We use two concepts N and M to distinguish between named
and unnamed individuals. Let ind(p) be the individual names occurring in p. KT contains the
following axioms to define N and M :

N ≡
⊔

a∈ind(p)

{a}

M ≡ ¬N.

12

For every subset L ⊆ L, and for every name X ∈ NC ∪ NR occurring in p and Φ, we use a fresh
name XL which represents the interpretation of X in IL for the individuals occurring in p. For
every r ∈ NR, we further define (r−)L = (rL)−.

We use concept names T L
C to represent the interpretation of concepts C in IL. Denote by

subc(p, Φ) the (sub-)concepts occurring in p and Φ. We fix some subset L∗ ⊆ L which serves as
a reference point to the interpretation of the unnamed individuals.

For each C ∈ sub(p, Φ), we add the following axioms to KT based on the syntactical shape of C:

1. T L
A ≡ (N ⊓ AL) ⊔ (M ⊓ AL∗

) if C = A for A ∈ NC,

2. T L
C ≡ C if C is of one of the forms {a}, ⊤ or ⊥, where a ∈ NI.

3. T L
¬D ≡ ¬T L

D if C = ¬D,

4. T L
C1⊓C2

≡ T L
C1

⊓ T L
C2

if C = C1 ⊓ C2,

5. T L
∃R.D ≡

(

N ⊓
(

∃RL∗

.(M ⊓ T L
D) ⊔ ∃RL.(N ⊓ T L

D)
))

⊔ (M ⊓ ∃RL∗

.T L
D) if C = ∃R.D, and

6. if C = ≥nR.D:

T≥nR.D ≡

N ⊓
⊔

0≤i≤m

(

≥iRL.(N ⊓ T L
D) ⊓ ≥(n − i)RL.(M ⊓ T L

D)
)

⊔(M⊓ ≥ mRL∗

.T L
C),

where m = min(n, |ind(p)|).

Note that, different to the reduction defined in [14], we make sure that the size of the axioms
generated by 6 is polynomially bounded by the size of the program, even if we use binary
encoding for number restrictions. This will be relevant in Section 5, where we also make use of
this reduction.

To encode the actual effects described by L ⊆ L, we add the following assertions for every L ⊆ L

for which there exists a state 〈L, p′〉 ∈ Qa:

• AL(a) for every A(a) ∈ L,

• ¬AL(a) for every A(a) Ó∈ L,

• rL(a, b) for every r(a, b) ∈ L, and

• (∀rL.¬{b})(a) for every r(a, b) Ó∈ L.

It remains to encode the assertions, axioms and CQs assigned to the effect sets. For the assertions
and axioms in λa(L), this is straightforwardly done by adding

• T L
C (a) for each C(a) ∈ λa(L),

• ¬T L
C (a) for each C(a) ∈ sub(p, Φ) \ λa(L),

• rL(a, b) for each r(a, b) ∈ λa(L),

• (∀rL.¬{b})(a) for each r(a, b) ∈ sub(p, Φ) \ λa(L),

• T L
C ⊑ T L

D for each C ⊑ D ∈ λa(L),

• T L
C (a∗), ¬T L

D(a∗), where a∗ is fresh, for every C ⊑ D ∈ sub(p, Φ) \ λa(L),

13

• RL ⊑ SL for each R ⊑ S ∈ λa(L), and

• for each R ⊑ S ∈ sub(p, Φ) \ λa(L):

{a∗} ⊓ M ⊑ ∃RL∗

.{b∗}

{a∗} ⊓ N ⊑ ∃RL.({b∗} ⊓ N) ⊔ ∃RL∗

.({b∗} ⊓ M)

{a∗} ⊓ M ⊑ ∀SL∗

.¬{b∗}

{a∗} ⊓ N ⊑ ∀SL.¬({b∗} ⊓ N) ⊓ ∀SL∗

.¬({b∗} ⊓ M),

where a∗ and b∗ are fresh.

Up to here, the reduction is mostly as in [14] for DLs without CQs. It remains to deal with the
CQs in E(p, Φ). We first introduce a transformation on CQs. For a CQ q and L ⊆ L, denote by
qL the result of replacing every atom of the form A(t) by

(

(

AL(t) ∧ N(t)
)

∨
(

AL∗

(t) ∧ M(t)
))

,

and every atom of the form r(t1, t2) by
(

(

N(t1) ∧ rL(t1, t2) ∧ N(t2)
)

∨
(

M(t1) ∧ rL∗

(t1, t2)
)

∨
(

rL∗

(t1, t2) ∧ M(t2)
))

.

Furthermore, we define a set AL
q of assertions and axioms representing positive entailments of q

in IL. Without loss of generality , we assume that different CQs use different variables. We
assign to every variable x occurring in q a fresh individual name aL

x , and define a function ·L on
terms by aL = a for a ∈ NI and xL = aL

x for x a variable. AL
q now contains the assertion T L

A (tL)
for every atom of the form A(t) in q, and the axioms

{tL
1 } ⊓ N ⊑ ∃RL.({tL

2 } ⊓ N) ⊔ ∃RL∗

.({tL
2 } ⊓ M)

{tL
1 } ⊓ M ⊑ ∃RL∗

.{tL
2 }

for every atom of the form r(t1, t2) in q. The reduction KB KT now contains for every L ⊆ L for
which there exists a state 〈L, p〉 ∈ Qa, and for every CQ q ∈ λa(L), all assertions in AL

q . This
completes the construction of the reduction KB KT. The negated CQs in λa(L) are represented
in the reduction query φT, which is defined by

φT =
∨

〈L,p′〉∈Qa

q∈E(p,Φ)\L

qL.

Note that the construction is polynomial in the number of states in T , which limits the number
of literal sets L ⊆ L that we have to consider. We keep this result in the following corollary,
which will be relevant later on.

Corollary 6. The reducton KB KT and the reduction query φT are both polynomial in the size
of T.

It is now standard to verify that the abstract transition system T is valid if KT Ó|= φT.

Lemma 7. T is valid iff KT Ó|= φT.

Proof (Sketch). If T is valid, we take the corresponding interpretation I, which we extend to
an interpretation IT by setting for the fresh names in KT:

14

1. NIT = {aI | a ∈ ind(p)},

2. MIT = ∆I \ MIT ,

3. (AL)IT = {d | d ∈ AIL

},

4. (rL)IT = {〈d, e〉 | 〈d, e〉 ∈ AIL

}

5. (T L
C)IT = {d | d ∈ CIL

}.

It is standard to verify that IT is a model of KT. Furthermore, IT Ó|= φT, since otherwise, there
exists a state 〈L, p′〉 ∈ Qa and a CQ q ∈ sub(p, Φ) \ λa(〈L, p′〉) s.t. IL |= q. We obtain that
KT Ó|= φT.

For the other direction, assume KT Ó|= φT. Then, there exists a model IT of KT s.t. IT Ó|= φT.
We construct an interpretation I based on IT and the initial state 〈L, p〉 as follows:

• for every A ∈ NC: AI = (AL)IT ,

• for every r ∈ NR: rI = (rL)IT .

It is now standard to verify that for every state 〈L, p〉 ∈ Qa, and every assertion, axiom and
CQ α ∈ sub(p, Φ), IL |= α iff α ∈ λa(〈L, p〉). It follows that the abstract transition system T is
valid.

Note that both the reduction KB KT and the reduction query φT are in size polynomial in
the size of the abstract transition system T, and thus exponential with respect to the size of p
and Φ. For Golog Programs and DL-CTL* formulae without conjunctive queries, the test in
Lemma 7 actually corresponds to a pure satisfiability test. KB-satisfiability can be decided
in ExpTime for ALCHOQ and ALCHOIQ, and in NExpTime for ALCHOIQ, which is the
reason why validity of abstract transaction systems without conjunctive queries can be decided
in 2-ExpTime for ALCHOQ and ALCHOI, and in N2-ExpTime for ALCHOIQ [14, Lemma
4.17].

A straight-forward application of the known complexities of query entailment however does
not lead to the desired complexity bounds: query entailment is 2-ExpTime-hard already for
ALCO, so that this would give us only a 3-ExpTime-bound. However, a close inspection of the
decidability procedures for UCQ entailment in ALCHOQ from [6], and for UCQ entailment in
ALCHOI in [4] shows that the entailment in Lemma 7 can actually be performed in 2-ExpTime

for these logics. For ALCHOIQ, so far only decidability of query entailment is known, but no
tight complexity bounds nor even elementary upper bounds. We therefore leave the precise
bound for this logic open, and only note that Lemma 7 implies decidability of the validity
problem.

Lemma 8. For L ∈ {ALCHOQ, ALCHOI} and a natural number n, entailment of UCQs from
L-KBs can be decided in time double exponential in n provided that

• the size of the KB is at most exponential in n,

• the number of disjuncts in the CQ is at most exponential in n, and

• the size of each CQ is polynomial in n.

Proof. We first show the case for L = ALCHOQ. The result follows from a close analysis of
the 2-ExpTime decision procedure for entailment of UCQs from SHOQ KBs presented in [6].

15

The decision procedure also applies to the extension SHOQ⊓ of SHOQ with role conjunctions.
Specifically, to decide entailment of a CQ, a set conK(q) of CQs of the form C1(x1)∨ . . .∨Cn(xn)
is defined, where each Ci, i ∈ J1, nK is a SHOQ⊓-concept and xi Ó= xj for i Ó= j ∈ J1, nK. For
UCQs q, conK(q) is defined as the union of all sets conK(q′) where q′ ∈ q. Intuitively, each
∈ conK(q) corresponds to a forest-shaped match in some model of K, and every such match
is represented by some CQ in conK(q). A consequence of this is that K |=

∨

qi∈conK(q) qi iff

K |= q [6, Theorem 6]. The size bounds on conK(q) are given in [6, Lemma 7]: its size is at most
i) polynomial in the size of K and ii) exponential in the size of q. For a UCQ whose number of
CQs is exponentially bounded in n and the size of each CQ is polynomially bounded in n, from
the fact that conK(q) corresponds to the union of all sets conK(q′) where q′ ∈ q, it follows that
conK(q) is exponential in both n and the size of K.

Now to decide K |=
∨

qi∈conK(q) qi, we use the fact that the atoms in each query in conK(q) are
variable-disjoint, and built a sequence of reduction KBs. Each reduction KB is obtained from
selecting from each CQ in qiconK(q) one atom Ci(xi), and adding ⊤ ⊑ ¬Ci to K. If one of them
is unsatifiable, K Ó|=

∨

qi∈conK(q) qi and K Ó|= q.

The size of each KB is linear in conK(q), and there are exponentially many possible choices wrt.
the size of conK(q). If q is shaped as in the lemma, this amounts to a number of satisfiability
tests that is double exponential in n, where each KB is exponential in the size of n. As shown
in the remainder of [6], each such satisfiabiltiy test can be performed in time exponential to
the size of the KB, so that we obtain that the overall decision procedure runs in time double
exponential in n.

We now consider the case where L = ALCHOI, where we inspect the procedure presented
in [4] deciding entailment of regular path queries (RPQs) in ZOI-KBs. Regular path queries
are a generalisation and UCQs, and ZOI is an extension of ALCHOI, so that this procedure
can also be used to decide UCQ entailment for ALCHOI-KBs. The authors in [4] reduce
UCQ-entailment to the emptiness problem for one-way non-deterministic parity tree automata
(1NPAs). Specifically, given a ZOI KB K and a RPQ q, they construct a 1NPA AKÓ|=q which
accepts the empty language iff K |= q. We first give an overview over the main ideas, before
we argue why this approach can decide bounded CQs as in the Lemma in double-exponential
time. Specifically, the authors exploit the fact that ZOI has the forest model property for
query-entailment, that is, query entailment from ZOI-KBs K can be completely characterized
by restricting to models of K that can be mapped to a labeled forest where every node represents
a domain element, edges correspond to role-connections and the roots of the forest to the
named individuals, and every role-connection that does not go to a named individual has a
corresponding edge in the forest. To characterise these forest models by means of automata, they
represent forest-interpretations directly in labeled trees of fixed branching degree, where the
branching degree is bounded by the KB and nodes are labeled with sets of individual, concept
and role names. Here, the role names refer to the incoming edge, and individual names only
occur on the direct successors of the root [4, Definition 3.7 and beginning of Section 4]. They
then construct a fully enriched automaton (FEA) with a polynomial number of states and a
constant index, which they step-wise translate into an 1NPA of AK accepting exactly those
labeled trees that correspond to a forest-shaped model of K. AK has a double-exponential
number of states and a constant index1.

To capture query entailment, they define another 1NPA A¬q which accepts exactly those labelled
trees that correspond to a forest-shaped interpretation in which the query q is not entailed, and

1The authors only explicitly spell out the size of the two-way alternating parity tree (2APA) which they
construct in the second-last step of their transformation and then translate to the 1NPA. The number of
states of the 2APA is polynomially bounded in the size of K and has a constant index. However, according
to [5, Proposition 2.12], the transformation comes with an exponential blow-up in the number of states, while it
keeps the index. Therefore, the final 1NPA AK constructed here has a double-exponential number of states and
a constant index.

16

build the intersection of the automata AK and A¬q, which is the final 1NPA AKÓ|=q. If AKÓ|=q is
empty, that is, the language of accepted trees is empty, there cannot be a forest-shaped model
of K in which q is not entailed, and correspondingly, K |= q.

While [4] only briefly sketch the automaton A¬q, a construction of an automaton accepting the
same language is described in detail in [5]: this automaton has an exponential number of states
while its index is exponential. The relevant construction in [5, Section 5] can be easily adapted
so that number of states and index depend only on the size of the query, as the only relevant
factors are the variables, concept and role names occurring in it.

It is not hard to see that for a UCQ q = q1 ∨ . . . ∨ qm the automaton A¬q is equivalent to the
intersection of the automata A¬q1

, . . ., A¬qm
, as the disjuncts can be tested independently on a

given interpretation. Now the number of states and the index of the intersection of two 1NPAs
is determined as follows [5, Proposition 2.15]: Let Q(A) denote the states of A and ind(A) its
index, then

ind(A1 ∩ A2) = O(f(A1, A2))

and
|Q(A1 ∩ A2)| ≤ 2O(f(A1,A2)2) · f(A1, A2) · |Q(A1)| · |Q(A2)|,

where f(A1, A2) = A1 + A2 + 1. Let A
′
¬q ≡ A¬q denote the intersection of Aq1

, . . ., Aqn
. We

obtain that

ind(A′
¬q) = O

∑

1≤i≤m

ind(A¬qi
) + 1

 ,

and

|Q(A′
¬q)| ≤ 2

O

(

(
∑

1≤i≤n
ind(A¬qi

)+1
)

2m
)

·

∑

1≤i≤n

ind(A¬qi
) + 1

 · Π1≤i≤n|Q(A¬qi
)|

Since for each A¬qi
, the ind(A¬qi

) is single exponential in the size of qi, and |Q(A¬qi
)| is double

exponential in the size of qi, we obtain that, provided that q is shaped as in the lemma, ind(A′
¬q)

is single exponential in n and |Q(A′
¬q)| is double exponential in n, and the same holds for

A
′
KÓ|=q

= AK ∩ A
′
¬q. Emptiness of 1NDAs A can be decided in time O(|Q(A)|ind(A)), which is

double exponential in n for A
′
KÓ|=q

. We obtain that for ALCHOI-KBs K, entailment of UCQs q
can be decided in time double exponential in n, provided that the size of K and the number
of CQs in q is exponentially bounded in n and the size of each CQ is polynomially bounded
in n.

Lemma 9. Validity of abstract transition systems for L-programs p and L-CTL* state formulae Φ
with CQs

• is decidable for Golog programs and CTL* formulae for L = ALCHOIQ concepts,

• is decidable in time double exponential in the size of p and Φ for L ∈ {ALCHOQ, ALCHOI}.

Proof. For ALCHOIQ, it suffices to consider Lemma 7 observe that query entailment for
ALCHOIQ KBs is decidable. For ALCHOQ and ALCHOI, we observe that the reduction
query φT can be transformed into an equivalent UCQ φ′

T by distributing in each disjunct over
conjunction. In φ′

T, each CQ is polynomially bounded in the size of the largest CQ occurring in p

and Φ, and φT has an exponential number of these CQs. The size of KT is exponential in the size
of p and Φ. By Lemma 8, we obtain that KT |= φ′

T can be decided in time double exponential
in the size of p and Φ, and by Lemma 7, that validity of abstract transition systems with CQs
can be decided in 2-ExpTime in the size of p and Φ for L ∈ {ALCHOQ, ALCHOI}.

17

Theorem 10. The projection and the program verification problem for DL actions with CQs is
decidable for actions and properties formulated over ALCHOIQ, and 2-ExpTime-complete for
actions and properties formulated over ALCHOQ or ALCHOI.

Proof. We note that a 2-ExpTime-hardness follows from the corresponding complexity of CQ
entailment for ALCO-KBs [10]. We also note that the projection problem can be straightforwardly
encoded into a verification problem, by defining a program that just executes a sequence of
actions and then marks the end of the execution by making some fresh assertion true, and a
CTL*-property that checks whether the property to be checked is always true at the end of this
execution.

To get the upper bounds for the verification problem, we describe an algorithm that proceeds
as follows. Since we aim for a deterministic complexity class, it suffices to focus on the
complementary problem of CTL* state formulae satisfiability by Golog programs. Let p be the
Golog program and Φ the CTL* state formula. By Lemma 5, to show that Φ is satisfiable by p,
we need to find a valid abstract transition system T for p and Φ s.t. T |= Φ. The number of
possible states in an abstract transition system is exponentially bounded, so that there are at
most double exponentially many abstract transition systems to consider. We construct these
one by one, and check for each whether they are valid and whether they entail Φ. Both tasks
are decidable, so that be obtain decidability for ALCHOIQ. For ALCHOQ and ALCHOI,
we observe that we require at most double exponentially many iterations, in each of which we
perform validity in 2-ExpTime, and check for entailment of CTL* in time polynomial in the
number of states, and thus in ExpTime. Thus, the resulting procedure runs in 2-ExpTime, so
that we obtain the desired upper bound.

5 Conflicts and Interactions

5.1 Detecting conflicting actions

As the the conflict problem, the conditionalised conflict problem, as well as the action interaction
problem are new, we investigate their complexity in our setting, but also their respective variants
for DL actions and DL formulae without CQs.

Since query entailment is already 2-ExpTime-hard for ALCO, it suffices to show that the
conflict problem and the conditionalised conflict problem can be decided in 2-ExpTime. For
this, we encode the conflict problem into a Golog verification problem, which by Theorem 10, is 2-

ExpTime-complete for L ∈ {ALCHOQ, ALCHOI}. For the case without CQs, we will need to
be a bit more careful, since here we can obtain complexity bounds that are lower than the respect-
ive verification problem, which is still 2-ExpTime-complete for L ∈ {ALCHOQ, ALCHOI},
and coN2ExpTime-complete for L = ALCHOIQ.

Note that every composite can also be seen as a Golog program that uses the sequence-
operator to connect atomic actions. In the following, it will be convenient to enforce that
every branch in the transition system ends in an accepting state, and to mark paths that
correspond to non-accepting states in a different manner. Let Fail be a fresh concept name.
We inductively define the program acc(a) on composite actions a by setting acc(ǫ) = ǫ and
acc(φ � E; a) =

((

¬φ?; ⊤ � Fail(a)
)

|⊤ � E; acc(a)
)

, where a is any individual name. If a is
executable on an interpretation I, then acc(a) will perform the same adaptations on I than a.
If a is not executable on I, then acc(a) will have an accepting path then terminates in a state
satisfying Fail(a).

Let K be a KB, a1 and a2 two actions and φ a DL formula. We define the program p as follows,

18

where A1, A2 and A3 are fresh concept names and a is just any individual name.

⊤ � {⊖A1(a), ⊖A2(a), ⊖A3(a)}; (

(a1; ⊤ � ⊕A1(a))

| (a2; ⊤ � ⊕A2(a))

| ((acc(a1)‖acc(a2)); (⊤ � ⊕A3(a))

).

The program non-deterministically picks one of three options 1) execute a1, 2) execute a2,
and 3) execute both in parallel (which corresponds to: non-deterministically execute some
action a ∈ Seq(acc(a1)‖acc(a2))). The assertions A1(a), A2(a) and A3(a) are used to mark the
respective choices. Note that every action a ∈ Seq(acc(a1)‖acc(a2)) corresponds to an action in
Seq(a1‖a2), but so that it has an accepting path in the transition system induced by p. However,
if a is not executable, then the corresponding path in the transition system will not lead to
A3(a) to be added to the interpretation. For an interpretation in which a1 and a2 are exetable,
we can thus check whether in this interpretation also every action a ∈ Seq(a1‖a2) is executable,
by checking whether every path in p at some point makes one of A1(a), A2(a) or A3(a) true.

For the conflict problem, we thus have to verify the following CTL* formula, which is entailed
by the program iff a1 and a2 are not conflicting.

Φ1 =
((

(K ∧ E♦A1(a) ∧ E♦A2(a)
)

→ A

(

♦A1(a) ∨ ♦A2(a) ∨ ♦A3(a)
))

The left hand side of the formula restricts to those initial interpretations of the transition system
which are models of K on which both a1 and a2 are executable. The right-hand side then checks
whether on these interpretations, also every element a ∈ (a1‖a2) is executable.

Similarly, the conditionalised conflict problem for a given invariant φ is captured by the following
CTL* formula, which is entailed iff a1 and a2 are not conflicting with respect to the DL formula φ.

Φ2 =
((

(K ∧ E♦(A1(a) ∧ φ) ∧ E♦(A2(a) ∧ φ)
)

→ A

(

♦(A1(a) ∧ φ) ∨ ♦(A2(a) ∧ φ) ∨ ♦(A3(a) ∧ φ)
))

It follows that both problems are not harder than the verification problem, which indeed already
corresponds to the complexity of query entailment (Theorem 10).

Theorem 11. For DL actions with CQs over L, both the conflict problem and the conditionalised
conflict problem are

• 2-ExpTime-complete for L ∈ {ALCHIO, ALCHOQ}, and

• decidable for L = ALCHIOQ.

For DL actions and DL formulae without CQs, they are

• ExpTime-complete for L ∈ {ALCHIO, ALCHOQ}, and

• NExpTime-complete for L = ALCHIOQ.

Proof. All hardness results follow from classical entailment problems, which can be straightfor-
wardly reduced to action executability, which is a necessary condition for both conflict problems
(if one of the actions is not executable, then the actions are trivially not conflicting). For

19

DL actions with CQs, the upper bound follows directly from the above construction and the
complexity of Golog program verification (Theorem 10). For DL actions without CQs, we have a
closer look on how to decide the problems more clever. In order for two formulae are conflicting
(with respect to the DL-formulae φ), we have to show the non-entailment of Φ1 (Φ2), which
corresponds to the satisfiability of the following formulae.

Φ′
1 = K ∧ E♦A1(a) ∧ E♦A2(a) ∧ E

(

¬♦A1(a) ∧ ♦A2(a) ∧ ¬♦A3(a)
)

Φ′
2 = K ∧ E♦(A1(a) ∧ φ) ∧ E♦(A2(a) ∧ φ)

∧ E

(

¬♦
(

A1(a) ∧ φ
)

∧ ¬♦
(

A2(a) ∧ φ
)

∧ ¬♦
(

A3(a) ∧ φ
)

)

Note that both formulae only rely on the existance of three paths, namely one corresponding to
a1 and satisfying A1(a) at the end, one corresponding to a2 and satisfying A2(a) at the end, and
one corresponding to some interleaved action a ∈ Seq(a1‖a2), which necessarily has to satisfy
A3(a) at the end, and thus has to satisfy ¬φ at this point. Intuitively, that last path corresponds
to the action that witnesses the conflict between a1 and a2. As Seq(a1‖a2) contains at most
exponentially elements, we can guess this witness a ∈ Seq(a1‖a2), and then test for satisfiability
in the following program pa.

⊤ � {⊖A1(a), ⊖A2(a), ⊖A3(a)}; (

(a1; ⊤ � ⊕A1(a))

| (a2; ⊤ � ⊕A2(a))

| (a; (⊤ � ⊕A3(a))

).

If there exists some a ∈ Seq(a1‖a2) s.t. Φ′
1 (respectively Φ′

2) is satisfiable in pa, then p Ó|= Φ1

(p Ó|= Φ2), and consequently, a1 and a2 are conflicting in K (with respect to φ). As there are
only three paths in each pa, it is not hard to see that every abstract transition system T for
pa has a number of states that is linear in pa, and thus linear in K, a1 and a2. By Corollary 6,
satisfiability of Φ′

1 and Φ′
2 in pa can be decided using a polynomially sized reduction KB. Note

that a reduction CQ is not required, since we assume our input does not contain any CQs.
We thus obtain an NExpTime-procedure for L = ALCHOIQ that works as follows: 1) guess
an action a ∈ Seq(a1‖a2) in polynomial time, 2) guess an abstract transition system for pa in
polynomial time, 3) verify that T |= Φ′

1 (T |= Φ′
2) in polynomial time, and 4) verify validity

of T by checking satisfiability of the reduction KB, which can be done in non-deterministic
exponential time [13]. We obtain that for both conflict problems are NExpTime-complete for
the case without CQs and with L = ALCHOIQ. For L ∈ {ALCHOQ, ALCHOI}, Step 1)
and 2) can be performed by deterministically iterating over all possible choices, and Step 4) can
be performed in exponential time [13]. We obtain that for L ∈ {ALCHOQ, ALCHOI}, both
conflicy problems can be decided in ExpTime.

5.2 Detecting interacting actions

We investigate the complexity of determining whether two actions are interacting in a given KB.
For this, we focus on a simpler problem stated as follows.

Definition 12. Given a KB K and two actions a1 and a2, a1 and a2 are equivalent in K, in
symbols a1 ≡K a2, iff for every model I of K, Ia1 = Ia2 .

Two actions a1 and a2 are interacting in a KB K iff there exists two actions a′
1, a′

2 ∈ Seq(a1‖a2)
s.t. a′

1 Ó≡K a′
2. As the number of elements in Seq(a1‖a2) is exponential in the size of a1 and a2,

20

and reasoning is already at least ExpTime-hard for all the DLs considered here, it thus suffices
to focus on the problem of action non-equivalence.

Theorem 13. Deciding whether two actions over L are not equivalent, as well as whether they
are interacting, in an L KB is

1. decidable for L = ALCHOIQ, and

2. 2-ExpTime-complete for L ∈ {ALCHOQ, ALCHOI}.

For actions without CQs, it is

1. NExpTime-complete for L = ALCHOIQ provided that the actions do not contain CQs,
and

2. ExpTime-complete for L ∈ {ALCHOQ, ALCHOI} provided that the actions do not
contain CQs.

Proof. We start with the non-equivalence problem. Let a1 = a1
1; . . . ; an

1 and a2 = a1
2; . . . ; am

2 ,
and let K be a KB. a1 and a2 are not equivalent if there exists a model I of K s.t. Ia1 Ó= Ia2 .

We first proceed similar as for the conflicts, that is, by specifying a program p that generates
the two interpretations Ia1 and Ia1 from an initial interpretation I. This program is simply the
following.

p = K?(a1|a2); Fail

We guess an abstract transition system T for p and construct the corresponding reduction KB
KT and reduction query φT . Similar as in the proof for Theorem 11, we can argue that T , KT

and φT are polynomial in size with respect to to K, a1 and a2.

If for every KT Ó|= φT , we know that T is valid, that is, it witnesses a model of I on which a1

and a2 are executable, and we only have to verify that furthermore, Ia1 Ó= Ia2 . T has two states
〈L1, ǫ〉, 〈L1, ǫ〉 which describe the situation after respectively a1 and a2 have been executed, that
is, for which Ia1 Ó= IL1 and Ia2 Ó= IL2 . Clearly, Ia1 Ó= Ia2 iff L1 Ó= L2, which can be trivially
decided in polynomial time.

By guessing T or iterating over the possible choices, we obtain that non-equivalence is not
harder than query non-entailment for the logics considered, and not harder than satisfiability
if the actions do not contain CQs. We thus obtain the complexities in the Theorem for this
reasoning problem. To decide whether two actions a1 and a2 are interacting, we guess two
actions a′

1, a′
2 ∈ Seq(a1‖a2), and decide whether they are not equivalent, which can be performed

by an exponential number of iterations if we target a deterministic complexity class. Thus, also
for the action interaction problem, we obtain the complexities stated in the theorem.

6 Conclusion

We presented a variant of DL actions and Golog programs over these actions, where in addition
to earlier work, also conjunctive queries can be used as tests. This was motivated by our use
case in self-adaptive systems, where CQs are used to detect system adaptations. For the DLs we
considered in our study, our results show that executability and projection for these actions, as
well as verification of temporal properties in the extended Golog programs, is not harder than
checking whether a conjunctive query is entailed by a DL knowledge base, provided that this

21

complexity is known. For executability and the projection, this corresponds to the situation as
for DL actions without CQs, for which executability and projection is not harder than axiom
entailment. On the other hand, for the verification problem, the result comes at a surprise, since
in the absense of CQs, verification is an exponential harder than the projection problem [14].

In addition to the traditional problems executability, projection and verification of Golog
programs, we also considered new reasoning tasks that are concerned with the interactions
between actions executed in parallel. In particular, we considered the conflict problem, which
determines whether for any model of the KB, parallel execution of two actions always preserves
executability, the conditionalised conflict problem, which determines whether parallel execution
of two actions always preserves a given post-condition, and the action interaction problem, which
asks whether the outcome of two actions executed in parallel always yields the same result,
provided that an interleaving semantics of parallel execution is used. Our results show that
these reasoning problems are not harder than the projection problem, even for actions without
conjunctive queries.

References

[1] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. Integrating
description logics and action formalisms: First results. In Manuela M. Veloso and Subbarao
Kambhampati, editors, Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference,
July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 572–577. AAAI Press / The MIT
Press, 2005.

[2] Franz Baader and Benjamin Zarrieß. Verification of golog programs over description
logic actions. In Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors,
Frontiers of Combining Systems - 9th International Symposium, FroCoS 2013, Nancy,
France, September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes in Computer
Science, pages 181–196. Springer, 2013.

[3] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, and Riccardo Rosati. Ontology-based database access. In Michelangelo Ceci, Donato
Malerba, and Letizia Tanca, editors, Proceedings of the Fifteenth Italian Symposium on
Advanced Database Systems, SEBD 2007, 17-20 June 2007, Torre Canne, Fasano, BR,
Italy, pages 324–331, 2007.

[4] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in expressive
description logics with nominals. In Proceedings of IJCAI, pages 714–720, 2009.

[5] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries in
expressive description logics via alternating tree-automata. Inf. Comput., 237:12–55, 2014.

[6] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries in SHOQ.
In Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh
International Conference, KR 2008, pages 252–262, 2008.

[7] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering
for the description logic SHIQ. J. Artif. Intell. Res., 31:157–204, 2008.

[8] Marcus Hähnel, Julian Mendez, Veronika Thost, and Anni-Yasmin Turhan. Bridging the
application knowledge gap: using ontology-based situation recognition to support energy-
aware resource scheduling. In Fábio M. Costa and Anders Andersen, editors, Proceedings
of the 13th Workshop on Adaptive and Reflective Middleware, ARM@Middleware 2014,
Bordeaux, France, December 8-12, 2014, pages 3:1–3:6. ACM, 2014.

22

[9] Carsten Lutz. The complexity of conjunctive query answering in expressive description
logics. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August
12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2008.

[10] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed predicates in description logics:
Results on combined complexity. In Chitta Baral, James P. Delgrande, and Frank Wolter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016., pages
237–246. AAAI Press, 2016.

[11] Sebastian Rudolph and Birte Glimm. Nominals, inverses, counting, and conjunctive queries
or: Why infinity is your friend! CoRR, abs/1401.3849, 2014.

[12] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In
John Mylopoulos and Raymond Reiter, editors, Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI 1991), pages 466–471. Morgan Kaufmann, 1991.

[13] Stephan Tobies. Complexity results and practical algorithms for logics in knowledge repres-
entation. PhD thesis, RWTH Aachen University, Germany, 2001.

[14] Benjamin Zarrieß. Verification of Golog programs over description logic actions. PhD thesis,
Dresden University of Technology, Germany, 2018.

23

