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Ontology-Mediated Query Answering for Probabilistic
Temporal Data with EL Ontologies (Extended Version)∗

Patrick Koopmann

January 9, 2019

Abstract

Especially in the field of stream reasoning, there is an increased interest in reasoning
about temporal data in order to detect situations of interest or complex events. Ontologies
have been proved a useful way to infer missing information from incomplete data, or simply
to allow for a higher order vocabulary to be used in the event descriptions. Motivated
by this, ontology-based temporal query answering has been proposed as a means for the
recognition of situations and complex events. But often, the data to be processed do not
only contain temporal information, but also probabilistic information, for example because
of uncertain sensor measurements. While there has been a plethora of research on ontology-
based temporal query answering, only little is known so far about querying temporal
probabilistic data using ontologies. This work addresses this problem by introducing a
temporal query language that extends a well-investigated temporal query language with
probability operators, and investigating the complexity of answering queries using this
query language together with ontologies formulated in the description logic EL.

1 Introduction

Ontology-mediated query answering (OMQA) recently attracted considerable attention as a
technique to query incomplete data. In OMQA, queries are evaluated with respect to an ontology,
which specifies background knowledge about the current domain using a formal language such
as a description logic (DL), so that, using reasoning procedures, also implicit information can
be queried from the data. In the standard OMQA setting, the data to be queried is assumed
to be both static and precise. However, a lot of applications encounter situations where this
assumption fails, yet using ontologies could prove useful. The internet has become highly
dynamic, with information being frequently added and changed, and new data being generated
from a variety of sources. In addition, new technologies such as smart phones and the internet
of things (IoT) frequently encounter a data environment that is constantly changing. To make
use of these data, there has been an increasing interest in investigating semantic and reasoning
techniques that process not only static data, but streams of data, such as in the semantic stream
reasoning paradigm [27]. As [27] illustrate, frequently, the data encountered in stream reasoning
applications is not only temporal, but also probabilistic in nature.

As an example, consider a health or fitness monitoring application, for which one may want
to use concepts from a medical ontology such as SNOMED CT [17] or Galen [28] to describe
information about the health status of a patient. Specifically, such an application could be used
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on a smartphone in combination with a sensor that measures the diastolic blood pressure of
the patient while he is exercising [24]. As the sensor might be imprecise in its measurements,
it might report information about whether the blood pressure of the patient is high with an
associated probability, and provide this information to the application in regular time intervals.
If a too high blood pressure was observed for several times during a short period, the app should
give a warning to the patient, and advise him to take a break from his exercise.

In order to properly take both the temporal and the probabilistic aspects into account when
querying streams of data, we propose a query language for OMQA that comes with both
temporal and probabilistic operators. For this, we assume a representation of the data in form of
a sequence of probabilistic data sets, which may have been obtained using further preprocessing
and windowing operations. An ontology expressed in a description logic (DL) gives additional
background information about the domain to be queried, so that implicit information can be
queried from incomplete data through reasoning. In the above scenario, the following query
could for example be used to detect whether the patients blood pressure was at least twice
recorded as high during the last 10 minutes.

P>.8(#−10♦(HighBloodPressure(x) ∧#♦HighBloodPressure(x)))

While there has been a lot of research on querying temporal data [1] and probabilistic data [7, 23]
using ontologies, we are not aware of any research were both aspects are combined in the specific
setting we described. In this work, we focus on the setting where the ontology is formulated in
EL, a DL that is known for its good computational properties, such as polynomial decidability
for most common reasoning problems. This DL, which underlies the OWL EL profile of the
web ontology language standard OWL, is used for many large scale ontologies, especially in the
bio-medical domain and for the semantic web, such as for the ontologies SNOMED CT and
Galen mentioned above. However, our hardness results already apply for simpler description
logics such as DL-Lite, as well as for the case where no ontology is used.

Related Work Our language is an extension of the temporal query language investigated
in [3, 8], which extends conjunctive queries with LTL operators. Other authors considered
using these operators also as part of the DL, either to describe temporal concepts [20], or to
make the axioms of the ontology itself temporal [4]. Recently, this work has been extended
also to metric temporal logics, in which temporal operators are annotated with numerical time
intervals [2, 12, 22]. Temporal reasoning for streams of data has recently also been considered in
the context of datalog [29]. Surveys on temporal reasoning and query answering with ontologies
can be found in [1, 26].

Our probabilistic query-answering framework is based on the OMQA framework for probabilistic
data presented in [23]. Since this publication, several authors investigated OMQA in similar
settings [7, 6, 15]. To our knowledge, the only work that combines both temporal and probabilistic
query answering in the presence of description logic ontologies is [14]. Albeit, the authors consider
a different setting, in which the flow of time is modelled by a Markov-process. In contrast, we
we consider temporal data that are provided as a sequence of probabilistic ABoxes. In addition
to settings based on probabilistic databases, there is also research on extending DLs with
probability operators, such as in P-SHIF(D)/P-SHOIN (D) [25] or Prob-ALC/Prob-EL [21].
While our DL does not support probability operators, the probability operator used in our query
language syntactically and semantically corresponds to the probability operator in Prob-ALC
and Prob-EL.

Formal details and proofs can be found in the appendix.
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2 Preliminaries

We recall the DL EL [5] studied in this paper. Let NC,NR and NI be countably infinite and
pair-wise disjoint sets of respectively concept names, role names and individual names. An EL
concept is of one of the forms

> | A | C1 u C2 | ∃r.C

where A ∈ NC, r ∈ NR, and C1, C2 and C are EL concepts. An EL axiom is of the form C1 v C2,
where C1 and C2 are EL concepts. An EL TBox is a set of EL axioms. An ABox A is a set of
assertions of the form A(a) and r(a, b), where A ∈ NC, r ∈ NR and a, b ∈ NI. An EL knowledge
base (KB) is a tuple K = 〈T ,A〉, where A is an ABox and T an EL TBox.

The semantics of KBs is defined in terms of interpretations, which are tuples I = 〈∆I , ·I〉, ∆I
being a set of domain elements, and ·I an interpretation function that maps each a ∈ NI to an
element aI ∈ ∆I s.t. for a 6= b ∈ NI, aI 6= bI (unique name assumption, UNA), each A ∈ NC to
a subset AI ⊆ ∆I , each r ∈ NR to a subset rI ⊆ ∆I ×∆I . The interpretation function ·I is
extended to concepts and roles as follows:

>I = ∆I (C1 u C2)I = CI1 ∩ CI2
(∃r.C1)I = {d ∈ ∆I | ∃(d, e) ∈ rI , e ∈ CI1 },

where C1, C2 are concepts and r ∈ NR . An interpretation is a model of a KB 〈T ,A〉 (of
an TBox) if for every C v D ∈ T , CI ⊆ DI , for every A(a) ∈ A, aI ∈ AI , and for every
r(a, b) ∈ A, (aI , bI) ∈ rI .

A conjunctive query (CQ) takes the form q = ∃~y.φ(~x, ~y), where ~x, ~y are vectors of variables
and φ(~x, ~y) is a conjunction over atoms of the forms A(t1) and r(t1, t2), where A ∈ NC, r ∈ NR,
and t1 and t2 are terms taken from NI, ~x or ~y. ~y are the answer variables of q. Given an
interpretation I and a CQ q with answer variables x1, . . . , xn, the vector a1 . . . an ⊆ NI

n is
an answer of q in I if there exists a mapping π : term(q) → ∆I s.t. π(xi) = ai for i ∈ J1, nK
π(b) = bI for b ∈ NI, π(t) ∈ AI for every A(t) in q, and 〈π(t1), π(t2)〉 ∈ rI for every r(t1, t2) in
q. a1 . . . an is a certain answer of q in a KB K if it is an answer in every model of K. If a query
does not contain any answer variables, it is a Boolean CQ, and we say it is entailed by a KB K
(interpretation I) if it has the empty vector as answer.

3 Temporal Probabilistic Knowledge Bases and Queries

We introduce temporal probabilistic knowledge bases (TPKBs) and temporal probabilistic
queries (TPQs).

Temporal Probabilistic Knowledge Bases. Probabilistic information about a single time
point is represented using a probabilistic ABox as introduced in [23]. For simplicity, we focus on
assertion-independent probabilistic ABoxes (ipAboxes), though all results should easily extend
to the more general case. ipABoxes are the ABox equivalent of tuple-independent probabilistic
databases [16]. An ipABox is a set of probabilistic ABox assertions of the form α : p, where
α is an ABox assertion and p ∈ [0, 1]. Intuitively, α : p describes that the assertion α holds
with a probability of at least p. Instead of α : 1, we may just write α if the meaning is clear
from the context. ipABoxes only specify a lower bound on the probability, to conform with the
open-world semantics common in ontology-based representations.1

1 Note that this is different to the open-world semantics for probabilistic databases suggested in [13], which
assumes a fixed upper probability for facts absent in the data.
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ΩK A′1 A′2 A′3 A′4 A′5 µK
w1 {hasBP(p, b),HighBP(b)} ∅ {HighBP(b)} {HighBP(b)} ∅ 0.378
w2 {hasBP(p, b)} ∅ {HighBP(b)} {HighBP(b)} ∅ 0.162
w3 {hasBP(p, b),HighBP(b)} ∅ ∅ {HighBP(b)} ∅ 0.042
w4 {hasBP(p, b)} ∅ ∅ {HighBP(b)} ∅ 0.018
w5 {hasBP(p, b),HighBP(b)} ∅ {HighBP(b)} ∅ ∅ 0.252
w6 {hasBP(p, b)} ∅ {HighBP(b)} ∅ ∅ 0.108
w7 {hasBP(p, b),HighBP(b)} ∅ ∅ ∅ ∅ 0.028
w8 {hasBP(p, b)} ∅ ∅ ∅ ∅ 0.012

Table 1: Probability space of example TPKB.

An EL TPKB is now a tuple 〈T , (Ai)i∈J1,nK〉, where T is an EL TBox and (Ai)i∈J1,nK is a
sequence of n ipABoxes. Given a TPKB K = 〈T , (Ai)i∈J1,nK〉, the set ΩK of possible worlds of
K contains all sequences w = (A′i)i∈J1,nK of classical ABoxes such that for every i ∈ J1, nK and
α ∈ A′i, Ai contains an axiom of the form α : p. Each TPKB uniquely defines a probability
space 〈ΩK, µK〉, where µK : 2ΩK → [0, 1] satisfies

µK({(A′i)i∈J1,nK}) =
∏

i∈J1,nK
α:p∈Ai

α∈A′
i

p ·
∏

i∈J1,nK
α:p∈Ai

α 6∈A′
i

(1− p)

and for W ⊆ ΩK, µK(W ) =
∑
w∈W µ({w}). Intuitively, µK(W ) gives the probability of being in

one of the possible worlds in W , by summing up the probabilities of each possible world. The
definition of µK(W ) reflects the assumption that all probabilities in the TPKB are statistically
independent.

Example 1. We define the TPKB K = 〈T , (Ai)i∈J1,5K〉 where T contains the GCI

HighBloodPressurePatient ≡ ∃hasBloodPressure.HighBloodPressure

and the ABoxes A1 = {hasBP(p, b), HighBP(b) : 0.7}, A2 = ∅, A3 = {HighBP(b) : 0.9},
A4 = {HighBP(b) : 0.6} and A5 = ∅, where BP is short for BloodPressure. Every possible world
w = (A′i)i∈J1,5K with hasBP(p, b) 6∈ A′1 has probability µK(w) = 0. The remaining possible
worlds are shown in Figure 1, with the probability measure µK shown in the last column.

A model of a TPKB K = 〈T , (Ai)i∈J1,nK〉 is a mapping ι from possible worlds w = (A′i)i∈J1,nK ∈
ΩK to sequences (ι(w)i)i>0 of (classical) models of T s.t. for all i ∈ J1, nK, ι(w)i is a model of
the classical knowledge base 〈T ,A′i〉, and all ι(w)i have the same set ∆ι of domain elements
(constant domain assumption).

Rigid Names. As typical for temporal knowledge bases, we may assume in addition a set
Nrig of rigid names, containing the set NCrig ⊆ NC of rigid concept names and the set NRrig ⊆ NR
of rigid role names. Rigid names denote names whose interpretation is independent of the flow
of time. We say that a model ι of a TPKB K = 〈T , (Ai)i∈J1,nK〉 respects rigid names iff for all
w ∈ ΩK, i, j ∈ J1, nK and X ∈ Nrig, Xι(w)i = Xι(w)j . Allowing for rigid names often has a direct
impact on complexity and decidability of common reasoning problems, which is why typically
different cases based on whether NCrig = ∅ or NRrig = ∅ are studied for complexity.

Example 2. In the above example, the relation hasBP is rigid, as its interpretation should be
independent of time, while the concept HighBP is not rigid, as the blood pressure of a patient
can change from high to not high. As a consequence, the individual p will be related to the
blood pressure b at all time points, even though the assertion hasBP(p, b) is only placed in the
ipABox A1.
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φ ι, w, i |= φ iff φ ι, w, i |= φ iff
∃~y.ψ(~y) ι(w), i |= ∃~y.ψ(~y) ¬φ ι, w, i 6|= φ

φ1 ∧ φ2 ι, w, i |= φ1 and ι, w, i |= φ2 φ1 ∨ φ2 ι, w, i |= φ1 or ι, w, i |= φ2

#φ1 ι, w, i+ 1 |= φ1 ♦φ1 ι, w, j |= φ1 for some j ≥ i
2φ1 ι, w, j |= φ1 for all j ≥ i φ1 Uφ2 ι, w, j |= φ2 for some j ≥ i and

ι, w, k |= φ1 for all k ∈ Ji, j − 1K

#−φ1 ι, w, i− 1 |= φ1 and i > 0 ♦−φ1 ι, w, j |= φ1 for some j ≤ i
2−φ1 ι, w, j |= φ1 for all j ≤ i φ1Sφ2 ι, w, j |= φ2 for some j ≤ i and

ι, w, k |= φ1 for all k ∈ Jj + 1, iK

P∼pφ µK({w ∈ ΩK | ι, w, i |= φ}) ∼ p,
where ∼ ∈ {<,=, >}

Table 2: Entailment of Boolean TPQs in the possible world w at time point i under interpreta-
tion ι.

Temporal Probabilistic Queries. A temporal probabilistic query (TPQ) is of one of the
following forms, where q is a CQ, φ1 and φ2 are a TPQs and p ∈ [0, 1].

q | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ1 | ♦φ1 | 2φ1 | φ1 Uφ2

#−φ1 | ♦−φ1 | 2−φ1 | φ1Sφ2 | P>pφ1 | P=pφ1 | P<pφ1

The operators # (next), ♦ (eventually), U (until) and their inverses are temporal operators of
LTL, while P>, P= and P< are the probability operators that we add to this language. TPQs
without probability operators corresponds to temporal queries (TQs) investigated in [8]. Note
that due the disjunction operator, we can also express unions of conjunctive queries (UCQs),
which are simply disjunctions of CQs. The answer variables of a TPQ φ are the answer variables
of the CQs occurring in φ. A TPQ φ is Boolean if every variable in φ is bound by an existential
quantifier.

We define the semantics of TPQs. Note that each possible world w ∈ ΩK has its own time line,
while a model of K contains a sequence of models for every possible world. For a given model,
we define the semantics of temporal operators with respect to a single time line, that is, with
respect to a current possible world. Probabilistic expressions P∼pφ are the only expressions that
are interpreted with respect to other possible worlds.

Let ι be a model of K, and φ a Boolean TPQ. For a single possible world w ∈ ΩK and a time
point i, we say that φ is satisfied at w, i under ι, in symbols ι, w, i |= φ iff the conditions in
Table 2 are satisfied. Note that the temporal operators refer to the time line of a single possible
world, for which they are defined as in [8]. In contrast, the probabilistic operator refers to the
current time point in multiple possible worlds, and is defined similar to the probabilistic concept
constructor in the DL Prob-ALC [21]. A Boolean TPQ φ is satisfied in an interpretation ι at i,
in symbols ι, i |= φ, iff ι, w, i |= φ for all w ∈ ΩK. It is entailed by the TPKB K at i iff ι, i |= φ
for all models ι of K. φ is satisfiable in K at i iff there exists a model ι of K s.t. ι, i |= φ.

Now given a TPKB K, a TPQ φ with answer variables ~x, a time point i > 0, and a mapping
σ : ~x→ NI, σ is a certain answer for φ in K at i iff K, i |= φ′, where φ′ is the result of applying
σ on φ. As common, since computing answers for TPQs can be seen as a search problem that
uses Boolean TPQ entailment, we focus on the decision problem of query entailment, and may
refer to Boolean TPQs simply as TPQs.
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Figure 1: Illustration of the tilings represented by the possible worlds.

Example 3. If we consider a slight variation of the query from the introduction.

P>.8(#−5♦(HighBPPatient(x) ∧#♦HighBPPatient(x)))

For x = p and time point 5, the query below the probability operator is entailed in every
model of the possible worlds w1, w2, w3 and w5, which together have a probability of 0.834.
Consequently, b is an answer to the query at time point 5. Now consider the variation where
the probability operators are moved inside:

#−5♦(P>.8(HighBPPatient(x)) ∧#♦P>.8(HighBPPatient(x)))

This corresponds to the situation where at least twice in the last 5 minutes, the probability of
having a high blood pressure was above 0.8. As this probability is only once above this bound,
this query is not entailed.

4 Lower Complexity Bound

Temporal query answering without probabilities is PSpace-complete in combined complexity
if NRrig = ∅, and otherwise coNExpTime-complete [8]. On the other hand, computing the
probability of a CQ from an ipABox is PPNP-complete (see appendix), and thus also in
PSpace [30]. It turns out that, if both the temporal and the probabilistic dimension are
combined, we obtain an increase to ExpSpace in complexity. This complexity increase already
happens without any rigid symbols, and for TPKBs without TBox and with only one ABox, so
that the DL is in fact irrelevant for this result.

A query φ is entailed by a TPKB K iff ¬φ is not satisfiable in K. As the complexity class
ExpSpace is closed under complement, we can therefore focus on the problem of query
satisfiability. We obtain ExpSpace-hardness by reduction of the exponential variant of the
corridor tiling problem [18]. In this problem, we are given a set T of tile types, two special tile
types ts,te ∈ T , a natural number n, and two functions v and h of compatibility constraints
v : T → 2T (vertical) and h : T → 2T (horizontal). The input is an instance of the exponential
corridor tiling problem if there exists a number m ∈ N and a tiling f : J0,mK× J0, 2n − 1K→ T
such that f(0, 0) = ts, f(m, 0) = te, and for all x ∈ J0,mK and y ∈ J0, 2n − 1K, if x < m,
f(x+ 1, y) ∈ h(f(x, y)) and if y < 2n − 1, f(x, y + 1) ∈ v(f(x, y)).

We only sketch the idea of the construction here, and leave the details to the long version of the
paper. We use n concept names Ai to mark the different possible worlds w ∈ ΩK with a counter,
such that in interpretations ι that satisfy both the TPQ and the TPKB, ι, w, j |= Ai(a) iff the
ith bit of the counter is 1 at time point j, and ι, w, j 6|= Ai(a) iff the ith bit is 0 at time point j.
Furthermore, we make sure that each possible world is at each time point uniquely determined
by its counter value. For this, we use the ipABox A1 = {Ai(a) ∼ 0.5 | i ∈ J1, nK}. The query
then makes sure that the counter values are increased for each time point. Figure 1 illustrates
this idea. Intuitively, each possible world corresponds to a row in the tiling, with its counter
value at time point 1 denoting the row number.
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At each time point, there are two possible worlds that can be most easily recognised by a query:
the one whose counter value is 0 (which satisfies the query

∧
1≤i≤n ¬Ai(a)), and the one whose

counter value is 2n− 1 (which satisfies the query
∧

1≤i≤nAi(a)). Unless the latter one represents
the last row, both these possible worlds correspond to neighbouring rows, which means at each
time point we can recognise the vertical neighbour relation for two rows easily, and thus enforce
tiling conditions in that direction with the following query, where L(a) is an assertion that marks
the last row, and for a tile type t ∈ T , Bt(a) expresses that the current cell has a tile of type t.

2
∧
t1∈T

Bt1(a) ∧
∧

i∈J1,nK

Ai(a) ∧ ¬L(a)


→

∨
t2∈v(t1)

P=1

 ∧
i∈J1,nK

¬Ai(a)

→ Bt2(a)


As we can only check the vertical tiling conditions for one pair of rows at a time, we represent
each cell by up to 2n succeeding time points in each possible worlds, performing a switch only
when the counter reaches 2n − 1. The remaining reduction is described in the appendix.

Lemma 4. Entailment of TPQs is ExpSpace-hard in combined complexity, even for TKBs
〈T , (Ai)i∈J1,nK〉 where T = ∅, n = 1 and NCrig = NRrig = ∅.

5 Upper Complexity Bound

We show that the complexity result presented in the last section are indeed tight, even if
NRrig 6= ∅. We sketch here only the case without rigid symbols. How rigid symbols are integrated
is then discussed in the appendix. Our construction is based on an abstraction of a temporal
probabilistic model, which we call quasimodel, which collects for each time point and possible
world the CQs occurring in the input query that are entailed, as well as the CQs that are not
entailed. We focus on satisfiability of a TPQ φ in a TPKB K = 〈T , (Ai)i∈J1,nK〉, where we say φ
is satisfiable in K iff φ is satisfiable in K at 1. In other words, we ignore the time point to make
things simpler. Since φ is satisfiable in K at i iff #i−1φ is satisfiable, this is sufficient for our
complexity analysis.

We can assume without loss of generality that φ contains only the operators ∧, ¬, U , S and
P∼p, since the remaining operators can be linearly encoded using known equivalences. Denote
by sub(φ) the sub-queries of φ and set T (φ) = {ψ,¬ψ | ψ ∈ sub(φ)}. A quasi-state is a mapping
Q : ΩK → T (φ) that satisfies the following conditions:

S1 ¬ψ ∈ Qi(w) iff ψ 6∈ Qi(w),

S2 for all ψ1 ∧ ψ2 ∈ T (φ): ψ1 ∧ ψ2 ∈ Qi(w) iff ψ1 ∈ Qi(w) and ψ2 ∈ Qi(w), and

S3 for all P∼p(ψ) ∈ T (φ): P∼p(ψ) ∈ Qi(w) iff µK({w | ψ ∈ Qi(w)}) ∼ p.

The quasistate abstracts probabilistic interpretations at a single time point by assigning queries to
each possible world according to the semantics of the atemporal operators in our query language.
To incorporate the temporal dimension, we consider unbounded sequences of quasistates (Qi)i≥1,
which we call quasimodels for φ in K, and which have to satisfy the following conditions for
i ≥ 1 and w = (A′i)i∈J1,nK ∈ ΩK.

Q1 φ ∈ Q1(w),

8



Q2 if i ∈ J1, nK, A′i |=
∧
ψ∈X ψ, where X = {ψ ∈ Qi(w) | ψ is a CQ or a negated CQ}.

Q3 for all #ψ ∈ T (φ), #ψ ∈ Qi(w) iff ψ ∈ Qi+1(w),

Q4 for all #−ψ ∈ T (φ), #−ψ ∈ Qi+1(w) iff ψ ∈ Qi(w),

Q5 for all ψ1 Uψ2 ∈ T (φ), ψ1 Uψ2 ∈ Qi iff there exists j ≥ i s.t. ψ2 ∈ Qj(w) and for all
k ∈ Ji, j − 1K, ψ1 ∈ Qk(w), and

Q6 for all ψ1Sψ2 ∈ T (φ), ψ1Sψ2 ∈ Qi iff there exists j ≤ i s.t. ψ2 ∈ Qj(w) and for all
k ∈ Jj − 1, iK, ψ1 ∈ Qk(w).

Again, the intuition behind these conditions follows directly from the semantics of the temporal
operators. As we show in the appendix, quasimodels are indeed sufficient to witness the
satisfiability of a TPQ in a TPKB. Moreover, it is sufficient to consider quasi-models that are of
a certain regular form, which is the crucial element for our complexity bound.

Lemma 5. φ is satisfiable in K with NCrig = NRrig = ∅ iff there exists a quasi-model for φ in K
wrt. S and a which is of the form

Q1, . . . Qm(Qm+1, . . . Qm+o)ω,

where m and o are both double-exponentially bounded in the size of K and φ.

Exploiting the fact that ExpSpace = NExpSpace, we obtain our space bounds by a non-
deterministic decision procedure that can be roughly sketched as follows. We first guess the
numbers m and o. While m and o are double-exponentially bounded, they can be stored in
exponential space using binary encoding. We now guess the quasistates Q1, . . ., Qm+o one after
the other, where we carefully make sure that all conditions of quasimodels are satisfied. In
particular, we keep track of U - and S-formulae that have to be satisfied, and we keep the state
Qm+1 in memory to test that it is compatible to Qm+o, and that all U-formulae in Qm+1 are
satisfied before we reach Qm+o.

In appendix, we present a refined version of quasimodels, which also have the above regularity
property, but additionally take into consideration rigid predicates. The main idea is to use
for each possible world an additional structure that determines which sets of CQs and their
negations can be entailed at any time point under the rigidity constraints. This structure takes
exponential space per possible world, and can be computed in non-deterministic exponential
time.

Theorem 6. Entailment of TPQs from DL-Lite/EL-TPKBs can be decided in ExpSpace, even
if NRrig 6= ∅ and NCrig 6= ∅.

6 Removing Negation

The complexity increase discussed in the last sections can be avoided if we restrict ourselves to
positive TPQs, which are TPQs that do not use the operators ¬, P<p and P=p. Note that the
probability operators P<pφ and P=pφ can be seen as implicit negation operators, as they express
the non-entailment of φ in some possible worlds, whereas P>pφ only expresses the positive
entailment of φ in possible worlds. The example queries shown in this paper are all positive
queries.

In the absence of negation, it is possible to evaluate the probabilities of sub-queries “inside-
out”, starting from queries of the form P>pφ where φ contains no probabilistic operators. For
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non-probabilistic temporal queries, it can be decided in P data and NP combined complexity
whether they are entailed. This allows to decide the entailment of P>pφ at any time point in PP,
by using a probabilistic Turing machine that guesses all possible worlds of the TPKB. Using
closure properties of the complexity class PP, we can thus obtain tight complexity bounds for
the case where the nesting depth of probability operators is bounded, and otherwise inclusion in
PPP, a complexity class that is still contained in PSpace.

Theorem 7. Entailment of positive TPQs from EL-TPKBs is PP-complete wrt. data complexity.
Regarding combined complexity, it is PPNP-complete if the nesting depth of probability-operators
in the query is bounded, and otherwise in PPP. The results already hold for NRrig 6= ∅.

7 Conclusion

We investigated the complexity of querying temporal probabilistic data using a combination
of LTL and conjunctive queries with probability operators. While pure temporal and pure
probabilistic query answering are both in PSpace for most cases, combining both dimensions
yields completeness for ExpSpace. This increase in complexity already happens without TBoxes
and just with a single ABox, so that the hardness result is in fact independent of DL reasoning.
This increase of complexity can be avoided if we restrict ourselves to positive TPQs, in which case
the temporal dimension comes at no cost or almost no cost compared to pure probabilistic query
answering. While this paper presented a theoretical study of the setting of temporal probabilistic
query answering, the methods presented give no clear idea how a practical implementation
would look like. For description logics that enjoy first-order rewritability such as DL-Lite, a
solution could be to rewrite temporal queries into SQL and use a probabilistic database system
to compute their probabilities. However, this approach would only work for queries that do not
use negation, and it is not clear whether it can be used with rigid symbols [8]. Another open
question is how the data complexity looks like in the case where we allow for negation, and
whether the complexities further change if we admit more expressive DLs, or even DLs that
support temporal and probabilistic operators themselves.
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A Appendix

A.1 Lower Bounds

Lemma 4. Entailment of TPQs is ExpSpace-hard in combined complexity, even for TKBs
〈T , (Ai)i∈J1,nK〉 where T = ∅, n = 1 and NCrig = NRrig = ∅.

Proof. We provide a reduction of the ExpSpace-complete 2n corridor tiling problem as specified
in the main text. We provide an encoding of this problem using a single ipABox A and a TPCQ φ
with negations. A and φ are constructed in such a way that there is a correspondence between
solutions f to the tiling problem and models ι of K = 〈∅, (A)〉 and φ. The (bounded) vertical
dimension of the corridor is represented across the 2n possible worlds, while the (unbounded)
horizontal dimension is represented along the time line. Specifically, the correspondence from ι
to a tiling f is specified via mappings y : J0, 2n − 1K→ ΩK and c : N×ΩK → T s.t. the tiling is
provided by f(i, j) = c(2n · j + i, y(j)).

We use a concept name Bt for every tile type t ∈ T , and use the assertion Bt(a) to denote that
the cell corresponding to a possible world/time point pair has a tile of type t. To make sure that
every pair of a possible world and a time point represents exactly one t ∈ T , we use the query

2
∧

Bt1 (a)∈T

t1 ↔ ∧
t2∈T,t1 6=t2

¬Bt2(a)

 .
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We can already define the first mapping c from pairs of possible worlds and time points to their
tile type: given a model ι of the final query, we define c(i, w) = t, where ι, w, i |= Bt(a).

To provide for the mapping y : [0, 2n − 1]→ ΩK, which assigns row numbers to possible worlds,
we set

A1 = {Ai(a) : 0.5 | i ∈ J1, nK},
where A1, . . . , An are concept names that correspond to bits in a binary counter. Since all
probabilities are statistically independent, each counter value is represented by some possible
world. For i ∈ [0, 2n− 1], the value of y(i) is then simply the possible world in which the counter
has the value i at the first time point. We mark the possible world which represents the last
row with the assertion L(a) and the following queries. ∧

i∈J1,nK

Ai(a)

↔ L(a)

2 (L(a)↔ #L(a))

The previous queries ensure that the mappings y and c are well-defined. The following query
ensures the tiling conditions regarding the special tiles ts and te, which have to occur in the
first row of respectively the first and the last column of the tiling solution.

 ∧
i∈J1,nK

¬Ai(a)

→ (Bts(a) ∧ ♦Bte(a))

It remains to provide queries that enforce the compatibility constraints.

The following queries ensure that the counters in each possible world get incremented across the
time line.

2
∧

i∈J1,nK

¬Ai(a) ∧
∧
j<i

Aj(a)

→ #

Ai(a) ∧
∧
j<i

¬Aj(a)


2

∧
i∈J1,nK

¬Ai(a) ∧
∨
j<i

¬Aj(a)

→ #¬Ai(a)


2

∧
i∈J1,nK

Ai(a) ∧
∨
j<i

¬Aj(a)

→ #Ai(a)


2

 ∧
i∈J1,nK

Ai(a)

→ #
∧

i∈J1,nK

¬Ai(a)


In each possible world, the current tile type is transported to the next time point until until the
counter reaches 2n − 1.

2
∧
t∈T

Bt(a) ∧
∨

i∈J1,nK

¬Ai(a)

→ #Bt(a)


If the counter in a possible world reaches 2n − 1, we can identify the world that corresponds
to the next row easily, as its counter then has the value 0. We can thus enforce the vertical
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compatibility constraints using the following query.

2
∧
t1∈T

Bt1(a) ∧ ¬L(a) ∧
∧

i∈J1,nK

Ai(a)


→

∨
t2∈v(t1)

P=1

 ∧
i∈J1,nK

¬Ai(a)

→ Bt2(a)


To enforce the horizontal constraints, we only have to identify the next time point when the
counter is 2n − 1.

2
∧
t1∈T

Bt1(a) ∧
∧

i∈J1,nK

Ai(a)

→ #
∨

t2∈h(t1)

Bt2(a)


The final query φ is the conjunction of all queries. It is now standard to verify that the tiling
problem has a solution iff φ is satisfiable in A.

A.2 Upper Bound

We first extend the quasi-models introduced in the main text to take into account rigid names.
Specifically, we have to make sure that the quasimodel corresponds to an interpretation ι such
that in every possible world w and for all i, j ≥ 1 and X ∈ Nrig, Xι(w)i = Xι(w)i . Note that our
quasimodels abstract real interpretation by only considering the queries that are entailed at each
time point. Let {q1, . . . , qn} be the CQs that occur in the query φ. To specify which combinations
of queries can be satisfied at any time point in the same temporal model (ι(w)i)i ≥ 1, we use
guess a set S(w) ⊆ 2{q1,...,qn} for each possible world w ∈ ΩK. In addition, we use a mapping
a : ΩK × J1, nK→ 2{q1,...,qn} to assign elements from S(w) to the ABoxes in the possible worlds.
The following definition captures when such a set S and a mapping a correspond to valid models
of K.

Definition 8. Given a possible world w = (A′i)i∈J1,nK ∈ ΩK, a set S(w) = {X1, . . . , Xk} ⊆
2{q1,...,qm} and a mapping a : ΩK × J1, nK→ S, S is called r-satisfiable wrt. w and a iff there
exist (classical) interpretations J1, . . . ,Jk, I1, . . . , In such that

E1 for any two interpretations I ′, I ′′ ∈ {J1, . . . ,Jk, I1, . . . , In}, we have ∆I′ = ∆I′′ and
XI

′ = XI
′′ for all X ∈ Nrig,

E2 the interpretations are models of T ,

E3 for all X ∈ S, Ji |=
∧
q∈Xi

q ∧
∧
q 6∈Xi

¬q, and

E4 and for all i ∈ J1, nK, Ii |=
∧
q∈a(w,i) q ∧

∧
q 6∈a(w,i) ¬q and Ii |= A′i.

r-satisfiability provides for a sufficient abstraction of a model of a possible world, based on
which satisfiability of the query can be decided.

The following is a direct consequence of the proofs for [10, Lemma 4.17] and [9, Theorem 5.1].

Lemma 9. For a given S(w) ⊆ 2{q1,...,qm} and a : ΩK × J1, nK→ S, it can be decided in
exponential time wrt. to K and φ.
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To use r-satisfiability for probabilistic TPKBs K = 〈T , (Ai)i∈J1,nK〉, for each w ∈ ΩK, we guess
a set S(w) ⊆ 2{q1,...,qm} and a mapping a(w) : J1, nK→ S(w) s.t. S(w) is r-satisfiable wrt. a(w)
and 〈T , w〉. Using S and a, we specify the following additional properties on quasimodels, and
speak of quasi-models compatible to S and a.

Q7 Qi(w) ∩ {q1, . . . , qm} ∈ S(w),

Q8 if i ∈ J1, nK, Qi(q) ∩ {q1, . . . , qm} = a(w, i).

We first show that with this extended notion, quasimodels indeed correspond to models of K
that satisfy φ and respect rigidity constraints.

Lemma 10. φ is satisfiable in K iff there exist mappings S : ΩK → 2{q1,...,qm} and a :
ΩK × J1, nK→ 2{q1,...,qm} s.t.

1. for every w ∈ ΩK, S(w) is r-satisfiable wrt. a and w, and

2. there exists a quasi-model for φ in K wrt. S and a.

Proof. (⇒) φ is satisfiable in K. There then exists a temporal probabilistic model ι of K s.t. for
all w ∈ ΩK, ι, w, 1 |= φ. For an interpretation ι(w)i, set Xi(w) = {qi | ι(w)i |= qi}. S and a are
now defined by setting for all w ∈ ΩK and i ∈ J1, nK:

S(w) = {Xj(w) | j > 0}
a(w, i) = Xi(w).

One easily verifies that for all w ∈ ΩK, S(w) is r-satisfiable wrt. a and w. The quasi-model
Q1, . . . is now defined by setting

Qi(w) = {ψ ∈ T (φ) | ι, w, i |= ψ}

for all w ∈ ΩK and i > 1. By checking the semantic definitions in Table 2 against Conditions Q1–
Q6 in the definition of quasi-models, it is now standard to verify that Q1, . . . is a quasi-model
for φ in K wrt. S and a.

(⇐) There exist the mappings S and a, as well as a quasi model Q1, . . ., as in the lemma. We
construct a temporal probabilistic model ι of K s.t. for all w ∈ ΩK, ι, w, 1 |= φ. For all w ∈ ΩK,
assume S(w) = {Xw

1 , . . . X
w
kw
}. By definition of r-satisfiability, for every w ∈ ΩK, there exists

interpretations J w1 , . . . ,J wmw
, Iw1 , . . . , Iwn as in Definition 8. ι is now defined by setting for all

w ∈ ΩK:

• for all i ∈ J1, nK: ι(w)i = Iwi , and

• for all i > n: ι(w)i = J wj , where j is such that Qi(w) ∩ {q1, . . . , qm} = Xw
j (by Condi-

tion Q7).

Clearly, ι respects rigid names. It is now standard, by checking the semantic definitions in
Table 2 against Conditions Q1–Q6, that ι is indeed a model of K and φ as required.

To obtain the ExpSpace upper bound, it therefore suffices to show that the existence of such
a quasi-model can be decided in ExpSpace. The main insight here is that satisfiability of
quasi-models can be reduced to satisfiability of certain periodic quasi-models. Note that, together
with the last lemma, the following lemma is a strengthening of Lemma 5 in the main text.
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Lemma 11. There exists a quasi-model for φ in K wrt. S and a iff there exists a quasi-model
for φ of in K wrt. S and a which is of the form

Q1, . . . Qm(Qm+1, . . . Qm+o)ω,

where m and o are both double-exponentially bounded in the size of K and φ.

Proof. First note that there can be at most double-exponentially many different quasi-states in a
quasi-model: ΩK contains at most 2|K| many elements, and for each w ∈ ΩK, Qi(w) contains at
most |φ| elements. We obtain that there are at most 22|K|·|φ| many different combinations. For
indices i, j s.t. Qi = Qj , we define an operation merging of Qi and Qj in Q1, . . ., which replaces
the quasi-model with Q1, . . . Qi, Qj+1, . . .. One can verify that the result of merging in a quasi
model is again a quasi model: 1) Conditions Q1–Q4 only consider at most two-subsequent
states, and 2) Conditions Q6 and Q5 are still satisfied in the new quasi-model.

Now let Q1, . . . be any quasi-model, and let m,o be two indices s.t. Qm = Qm+o, and the
following condition is satisfied:

(*) for every w ∈ ΩK and ψ1 Uψ2 ∈ Qm(w), there exists k < m+ o s.t. ψ2 ∈ Qk(w).

From (*), it already follows that Q1, . . . Qm(Qm+1, . . . Qm+o)ω is also a quasi-model. However,
m and o might not be double-exponentially bounded in the size of K and φ. By the above
observation, we may assume that no quasi-state occurs twice before Qm, since we can always
merge any quasi-states that occur more than once, so that m ≤ 22|K|·|φ|. To reduce the index of
Qm+o, we exhaustively merge any two quasi-states that occur between Qm and Qm+o for which
merging does not break Condition (*). The resulting quasi-state can now be represented as

Q′1, . . . Q
′
m(Q′m+1, . . . Q

′
m+o′)ω.

We give a bound on o′. For every i, j ∈ Jn+ 1, n+ o′K s.t. Q′i = Q′j , there must be some w ∈ ΩK,
ψ1 Uψ2 ∈ Q′n(w), and k ∈ Ji, jK s.t. ψ2 ∈ Q′k(w) and ψ2 6∈ Q′l(w) for all l ∈ Jn, k − 1K, since
otherwise Q′i and Q′j would have been merged. It follows that every quasi-state is repeated at
most 2|K| · |φ| times, because there are at most 2|K| possible worlds in ΩK and for each w ∈ ΩK,
at most |φ| queries of the form ψ1 Uψ2 in Q′n(w). Because the number of distinct quasistates is
bounded by 22|K|·|φ|, we obtain o′ ≤ 2|K| · |φ| ·22|K|·|φ|, that is, o′ is double-exponentially bounded
in the size of K and φ. It follows that we can transform any quasi-model into a quasi-model
of the required form, and thus that a quasi-model exists iff there exists a regular quasi-model
which is of the form as in the lemma.

We are now ready to prove the complexity upper bound.

Lemma 12. Given the mappings S : ΩK → 2{q1,...,qm} and a : ΩK × J1, nK→ 2{q1,...,qm}, it can
be decided in ExpSpace whether there exists a quasi-model for φ in K wrt. S and a.

Proof. By Lemma 11, there exists a quasi-model Q1, . . . iff there exists a periodic quasi-model
of the form

Q1, . . . Qm(Qm+1, . . . Qm+o)ω,

where both m and o are double-exponentially bounded.

To verify the existence of such a quasi-model in (non-deterministic) exponential space, we proceed
as follows. We first guess the numbers m and o, which both require at most exponentially many
bits in binary representation. We then guess the quasi-states Qi one after the other, keeping
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always two proceeding quasi-states in memory, and verify that they satisfy the Conditions Q1–
Q4, and additionally that ψ1 Uψ2 ∈ Qi(w) iff ψ2 ∈ Qi(w) or ψ1 Uψ2 ∈ Qi+1(w), and similarly
for queries of the form ψ1Sψ2. To verify that each S/U -formula is eventually satisfied, we keep
a set of those queries for each possible world that have not been satisfied yet, which we update
at each time point. In the same manner, we check whether the negation of a S/U-formula is
satisfied. After we guessed the quasi-state Qm+1, we store this quasi-state in memory, as well
as all S/U -queries that still have to be satisfied at this point. We then proceed until Qm+o+1,
and verify that all S/U-queries from Qm+1 have been satisfied in the meanwhile, and that
Qm+o+1 = Qm+1. Since NExpSpace = ExpSpace, the above procedure decides existence of a
quasi-model in exponential space.

Theorem 6. Entailment of TPQs from DL-Lite/EL-TPKBs can be decided in ExpSpace, even
if NRrig 6= ∅ and NCrig 6= ∅.

Proof. Entailment of a query φ corresponds to non-satisfiability of the query ¬φ, and ExpSpace
is closed under complement. To decide satisfiability of a TPQ φ with negations in a TPKB K,
we guess for each w ∈ ΩK S(w) ∈ 2{q1,...,qm} and a(w) : J1, nK→ S(w) and verify that S(w) is
r-satisfiable wrt a(w) and 〈T , w〉. By Lemma 9, this can be done in exponential non-deterministic
time. We then verify in ExpSpace that there exists a quasi-model for φ in K under S and a.
Since NExpSpace = ExpSpace, this method runs in ExpSpace.

A.3 Removing Negation

We first establish the complexity bounds for the non-probabilistic case, that is, entailment of
temporal queries (TQs), which are TPQs without probability operators, from temporal knowledge
bases (TKBs), which are TPKBs without probabilities different from 1.

For the entailment of TPQs without probability operators, i.e., positive TQs, complexity bounds
are known from [8], or can be shown using standard techniques.

Lemma 13. Entailment of positive TQs is in P wrt. data complexity and NP complete wrt.
combined complexity, even if NCrig 6= ∅ and NRrig 6= ∅.

Proof. [8] show that query entailment is in P data complexity, even if NRrig 6= ∅. The only
remaining case is the combined complexity for EL TKBs.

We describe an NP procedure for a given positive TQ φ and EL TKB 〈T , (Ai)i∈J1,nK〉. For
X ∈ NC ∪ NR, denote by X(i) the name X if X ∈ Nrig, and a fresh name Xi if X 6∈ Nrig, and
for a given axiom/assertion/query α, denote by α(i) the result of replacing every name X in
α by X(i). Define an atemporal KB K′ = {T ′,A′} based on the TKB K = 〈T , (Ai)i∈J1,nK〉 by
T ′ = {α(i) | α ∈ T , i ∈ J1, n+ 1K} and A′ = {α(i) | α ∈ Ai, i ∈ J1, n+ 1K}. K′ is polynomial in
K, and one can show that for any axiom/assertion/CQ α and i ∈ J1, n+ 1K, we have K, i |= α iff
K′ |= α(i) [10].

In order to decide entailment of a TQ φ, we guess a certificate that assigns to each pair (i, ψ)
of a time point i ∈ J1, n + ntK and a CQ ψ occurring in φ a truth value, and, in case true
is assigned to such a pair (i, ψ), a certificate for the entailment of ψ at i (such a certificate
exists since entailment of CQs is in NP wrt. combined complexity). For any time point after n,
the entailment of a CQ solely depends on the rigid names. Therefore, for every CQ q in φ, if
K, n+ 1 |= q, then K, n+ i |= q for all i > 1. Based on the guessed truth-assignment of CQs,
we can now evaluate the entailment of φ as in the propositional case, which for LTL-formulae
without negation symbols can be done in P [11]. As this certificate can be guessed and verified
in non-deterministic polynomial time, we obtain an NP-upper bound.
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The proof of Theorem 7 further depends on the following lemma, which limits the time points
we have to consider explicitly.

Lemma 14. Let φ be a TPQ, K = 〈T , (Ai)i∈J1,nK〉 a TKB and nt be the maximal nesting depth
of temporal operators in φ. Then, for every i > n+ nt, K, i |= φ iff K, n+ nt + 1 |= φ.

Proof. We do the proof by structural induction on φ, and distinguish the cases based on the
structure of φ.

1. If φ is a CQ, note that the only way in which K restricts its models for time points after n
is via its rigid names. Therefore, we have for all i > n, K, i |= φ iff K, n+ 1 |= φ.

2. If φ is of one of the forms ψ1 ∧ψ2 and ψ1 ∨ψ2, the hypothesis follows by direct application
of the inductive hypothesis.

3. If φ is of the form #−ψ, we have by inductive hypothesis that for all i > n + nt − 1,
K, n+ nt + 1 |= ψ iff K, i |= ψ iff K, i+ 1 |= #−ψ iff K, j |= φ for all j > n+ nt.

4. If φ is of one of the forms #ψ, ♦ψ, ♦−ψ, 2ψ, 2−ψ, ψ1 Uψ2 or ψ1Sψ2, we note that by
inductive hypothesis, for all i > n+ nt − 1 K, i |= ψ (ψ1, ψ2) iff K, n+ nt |= ψ (ψ1, ψ2),
which implies K, i |= φ iff K, n+ nt + 1 |= ψ for all i > n+ nt − 1, and consequently also
K, i |= φ iff K, n+ nt + 1 |= φ for all i > n+ n1.

We can now provide the upper bounds stated in Theorem 7. A central technique used for this
is to flatten TPQs using an abstraction of the probability expressions P≥p(ψ) occurring in the
query. We identify each such expression with the assertion Ap,ψ(a), where Ap,ψ is fresh, which
we add to the ipABox Ai once we established that P≥p(ψ) is entailed at i. To capture this
abstraction in a given TPQ ψ, we denote by ψf the result of replacing every outermost sub-query
in ψ of the form P≥p(ψ) with ∃x.Ap,ψ(x).

Lemma 15. Entailment of TPQs from EL- and DL-Lite-TPKBs is in PP wrt. data complexity,
even if NRrig 6= ∅. It is in PPNP wrt. combined complexity if the nesting depth of probability-
operators in the query is bounded, and otherwise in PPP.

Proof. Before we consider nested probability operators, we consider the basic case of simple
TPQs of the form P≥p(φ), where φ does not contain any probability operators. Entailment
of such a TPQ can be decided by checking for which possible world w ∈ ΩK, w, i |= φ, and
then summing the probabilities of these worlds. This can be implemented by a probabilistic
Turing machine (which uses an NP-oracle in the case of the combined complexities), which
constructs a single possible world w = (A′i)i∈J1,nK on each branch, while taking care that the
probabilities of the possible worlds are reflected by the probabilities in the Turing machine. For
each i ∈ J1, nK and α : p ∈ Ai, the machine adds α to A′i on b1 succeeding branches, and does
not add α to A′i on b2 succeeding branches, where b1

b1+b2
= p. After all axioms are processed,

accept if 〈T , (A′i)i∈J1,nK〉, i |= φ, which can be decided in P data complexity and NP combined
complexity. By adding further dummy states to the Turing machine, we can ensure that the
machine accepts at least half of its computation paths iff K |= P≥p(φ), so that entailment of the
simple TPQ φ is decided in PP data complexity and PPNP combined complexity.

To decide entailment of TPQS that contain several probability operators, we proceed in k rounds,
where k is the maximal nesting depth of probability operators in φ, and test in each round for
the entailment of probabilistic sub-queries at different time points. Let nt denote the maximal
nesting depth of temporal operators in φ. It can be shown that we have to consider only the
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first n+nt time points. In each round r ∈ J1, kK, we iterate over all subformulae in φ that are of
the form P≥p(ψ), where ψ contains at most r − 1 nestings of probability operators, and over all
timepoints i ∈ J1, n+ nt + 1K, and decide whether K, i |= P≥p(ψf ). If K, i |= P≥p(ψf ), we add
Ap,ψ(a) to Ai. In the last round, we processed all probability operators, and decide whether
K |= P≥1(φk). Provided the nesting depth of probability operators is bounded, (as is always
the case for data complexity), we can now use the fact that PP (and therefore also PPNP) is
closed under k-round polynomial truth table reductions [19]. These are defined as a sequence
of k sets of polynomially many polynomial truth-table reductions, where k is a constant, and
each truth-table reduction only depends on the input and the results of previous rounds. If the
nesting-depth of probability operators is bounded, the above procedure can be described by
such a reduction, and we obtain the PP and PPNP upper bounds. Regarding the combined
complexity with unbounded nesting of probability operators, we note that the above procedure
can be implemented by a polynomial Turing machine that decides entailment of simple TPQs
using a PPNP oracle, so that we obtain a PPPNP

upper bound. Now, using Toda’s result that
PPPH ⊆ PPP [30], we can internalise all calls to the PPNPoracle in a PPP machine, so that we
obtain a PPP upper bound for the combined complexity without bound on the nesting-depth of
probability operators.

For the data complexity, our upper bound is matched by PP-hardness of the atemporal case [23].
We could not find a lower bound for the combined complexity in the literature for our precise
setting (ipABoxes or tuple-independent databases). We therefore provide a proof for it here.

Lemma 16. Entailment of TPQs from TPKBs is PPNP-hard.

Proof. We only need to provide a lower bound for the combined complexity. We do the proof
by reduction of the PPNP complete problem M∃CNF3: given a QBF-formula of the form
φ = ∃x1, . . . , xn.φ

′, where φ is a CNF3-formula over the variables {x1, . . . , xn, y1, . . . , ym} with
clauses {c1, . . . , co} , decide whether at least half of assignments of truth values to the variables
y1, . . . , ym make φ true [31]. As it turns out, we only need a single ipABox for this. The ipABox
contains for every variable xi, i ∈ J1, nK the assertions B(x+

i ) and B(x−i ), and for every variable
yi, i ∈ J1,mK the assertions B+

i (y+
i ) : 0.5 and B−i (y−i ) : 0.5. Intuitively, B+

i (y+
i ) is entailed in

a possible world that corresponds to an assignment of true to the variable yi, while B−i (y−i )
is entailed in a possible world that corresponds to an assignment of false to the variable yi.
Since all probabilities are independent, we will have worlds that correspond to “invalid variable
assignments”, in the sense that they either do not assign a truth value to every variable, or
multiple truth values. We will take care of this later. We use the TBox axioms B+

i v Bi,
B−i v Bi, B+

i v B+, B−i v B−, B+ v B and B− v B to abstract away from the specific
assignment if needed.

For every literal l, denote by v(l) the variable in l. For every clause cj = l1 ∨ l2 ∨ l3, c ∈ J1, oK,
and truth valuation π that makes cj true, add the assertions

M(cj , π),M(π, l′1),M(π, l′2),M(π, l′3),

where for i ∈ J1, 3K, l′i = v(li) if π(li) = true, and l′1 = ¬v(li) if π(li) = false. As last assertion,
we add H(a) : 0.5, which only serves the purpose of being satisfied in at least half of the possible
worlds.

Our CQ is now composed of three queries q1, q2 and q3 defined next. The query

q1 = ∃y1, . . . , ym : B1(y1) . . . Bn(ym)

is entailed in every possible world which assigns a truth value to each variable yi, i ∈ J1,mK.
The query

q2 = ∃y : B+(y) ∧B−(y)
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is entailed in the possible worlds that assign two truth values to some variable y. Finally, the
query

q3 = ∃x1, . . . xn, y1, . . . ym, z1, . . . , zo :
∧

i∈J1,oK

τ(ci),

where for ci = l1 ∨ l2 ∨ l3,

τ(ci) =M(ci, zi),M(zi, v(l1)),M(zi, v(l2)),M(zi, v(l3))

∧
∧

i∈J1,3K

B(v(li),

is satisfied in all possible worlds that correspond to an assignment that make φ true. q3 can
only be entailed in a possible world in which q1 is also entailed (otherwise, we lack variables for
some of the clauses). The query (q1 ∧ q2) ∨ (H(c) ∧ q2) is entailed in (1) all possible worlds that
correspond to an assignment that is complete but assigns to at least one variable two values
and (2) half of the possible worlds that correspond to assignments that are both incomplete and
assign two values to a variable. Due to symmetry, this query is thus entailed in exactly half of
those possible worlds that do not correspond to a valid variable assignment. Consequently, the
query

q = (q1 ∧ q2) ∨ (H(c) ∧ q2) ∨ q3

is entailed in more than half of all possible worlds iff φ is satisfied for more than half of its valid
assignments, so that P≥0.5(q) is entailed iff φ is satisfied by at least half of the assignments.
Note furthermore that both the TPKB and the TPQ are polynomial in the input, so that we
obtain the PPNP lower bound.
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