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On the Complexity of Verifying Timed Golog Programs
over Description Logic Actions (Extended Version)∗

Patrick Koopmann Benjamin Zarrieß

Abstract

Golog programs allow to model complex behaviour of agents by combining primitive
actions defined in a Situation Calculus theory using imperative and non-deterministic pro-
gramming language constructs. In general, verifying temporal properties of Golog programs
is undecidable. One way to establish decidability is to restrict the logic used by the pro-
gram to a Description Logic (DL), for which recently some complexity upper bounds for
verification problem have been established. However, so far it was open whether these re-
sults are tight, and lightweight DLs such as EL have not been studied at all. Furthermore,
these results only apply to a setting where actions do not consume time, and the properties
to be verified only refer to the timeline in a qualitative way. In a lot of applications, this is
an unrealistic assumption. In this work, we study the verification problem for timed Golog
programs, in which actions can be assigned differing durations, and temporal properties
are specified in a metric branching time logic. This allows to annotate temporal properties
with time intervals over which they are evaluated, to specify for example that some prop-
erty should hold for at least n time units, or should become specified within some specified
time window. We establish tight complexity bounds of the verification problem for both
expressive and lightweight DLs. Our lower bounds already apply to a very limited frag-
ment of the verification problem, and close open complexity bounds for the non-metrical
cases studied before.
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1 Introduction

Golog [12, 7] is a family of high-level programming languages to describe the behaviour of
autonomous agents. For example, one can use the following Golog program to describe the
behaviour of an author that can non-deterministically choose a venue for paper or continue
writing it as long as paper has not been submitted.

while ¬∃x. (Venue(x) ∧ submitted -to(paper, x)) do
write(paper) | submit(paper, lpar) | submit(paper, ijcar)

end
(1)

The primitives of the language are user-defined actions like write(paper) or submit(paper, lpar)
whose preconditions and effects are defined in an action theory of the Situation Calculus [14, 16]
by abstracting away the details of how they are actually realised. The action theory also
provides a first-order logic knowledge base that incompletely represents the initial situation.
Timed Golog programs allow to attach durations and effects to each action. A basic reasoning
task for Golog programs is formal verification, where the aim is to verify whether a given
program satisfies a set of given temporal constraints, which in the domain of the example given
could regard submission deadlines, and in more advanced scenarios would describe temporal
constraints of a complex multi-agent environment.

Due to the non-deterministic nature, the use of imperative constructs and the expressive power
of the underlying action formalism, Golog is a Turing-complete language and formal verification
is undecidable. Instead of studying sound but incomplete verification methods for Golog as in
[6, 13], one recently followed approach is to obtain decidable fragments of the problem by
using action formalisms based on Description Logics (DLs) [4, 1, 9]. The work in [3, 5, 19]
provides decidability results for verifying qualitative temporal properties of Golog programs
over DL actions where the tests (like the loop condition in (1)) and the propositions in the
temporal properties are restricted to be DL axioms. For instance, for our example program,
one would like to verify whether an execution exists that eventually submits the paper and that
respects global constraints on the names Venue and submitted -to, formalised in a DL ontology.
While decision procedures have recently been developed [3, 5, 19], the results do not yield
tight complexity bounds for the verification problem. Furthermore, only qualitative temporal
properties are considered, while quantitative temporal properties that can address specific time
windows, as well as programs in which actions are connected with temporal information such
as their durations, have not been investigated in this context yet.

In this paper, we show that the abstraction techniques from [5, 19] are worst-case optimal.
The hardness result for the verification problem that we obtain already holds for a surprisingly
small fragment of the language, in which only an comparatively inexpressive Ptime-decidable
DL is used, and only programs without iteration are considered. Second, as a more positive
result, we show that, without increasing the worst-case complexity of the verification problem,
the abstraction technique can be extended to a setting where actions have durations (given as
natural numbers), and the temporal properties to be verified use metric (numerical) constraints.
For example, for specifying correctly timed executions of the example program above, it would
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be useful to take into account that write(paper) is a time consuming action and that conferences
accept submissions only within a certain time frame.

The remainder of the paper is structured as follows. In the next section, we recap basic notions
of expressive DLs from the ALC-family and the lightweight DL ELO⊥. In the subsequent
section, we introduce our underlying action formalisms with durative actions and define the
syntax and semantics of the Golog-like programming language, which is based on ConGolog.
In Section 4, the verification problem is defined for a DL-based extension of the quantitative
temporal logic TCTL∗ [11]. In Section 5, the hardness results for the verification problem are
presented and in Section 6 we report on matching upper bounds for the verification of TCTL∗

specifications.

2 Description Logics

We recall the DLs ELO⊥, ALCO, ALCIO, ALCQO and ALCQIO. Let NC, NR and NI be three
pairwise disjoint sets of respectively concept names, role names and individual names. A role R
is an expression of the form r or r− (inverse role), where r ∈ NR. An ALCQIO-concept C is
an expression built according to the following syntax rule:

C ::= ⊥ | > | A | {a} | C u C | ¬C | ∃R.C | ≥nR.C

where A ∈ NC, a ∈ NI, R is a role and n ∈ N.

If a concept only uses the constructs >, ⊥, A, {a} and CuC and no inverse roles, it is an ELO⊥-
concept. If it additionally uses the construct ¬C, it is an ALCO-concept. From ALCO-concepts,
we get to concepts in the more expressive DLs ALCIO, ALCQO and ALCQIO by addition-
ally allowing inverse roles (ALCIO, ALCQIO) and concepts of the form ≥nR.C (ALCQO,
ALCQIO). We define further concept expressions as abbreviations: C tD = ¬(¬C u ¬D),
∀R.C = ¬(∃R.¬C) and ≤nR.C = ¬≥(n− 1)R.C.

Let L ∈ {ELO⊥,ALCO,ALCIO,ALCQO,ALCQIO}. An L-KB is a set K of L-axioms, which
are expressions of the forms C v D, C(a) and r(a, b), with C and D being L-concepts, a, b ∈ NI

and r ∈ NR. A Boolean L-KB is a Boolean combination of axioms. KBs are a special case of
Boolean KBs, which we interpret as conjunctions of axioms.

The semantics of DLs is defined in terms of interpretations. An interpretation is a tuple I =
(∆I , ·I), where ∆I is a set of domain elements and ·I is the interpretation function that maps
individual names a ∈ NI to elements aI ∈ ∆I , concept names A ∈ NC to sets AI ⊆ ∆I and role
names r ∈ NR to relations rI ∈ ∆I ×∆I . The interpretation function is extended to roles by
setting (r−)I := (rI)−, and to concepts by setting

⊥I := ∅ >I := ∆I {a}I := {aI} (C uD)I := CI ∩DI (¬C)I := ∆I \ CI

(∃R.C)I :=
{
d ∈ ∆I | ∃e : (d, e) ∈ RI ∧ e ∈ CI

}
(≥nR.C)I :=

{
d ∈ ∆I | #{(d, e) ∈ RI | e ∈ C} ≥ n

}
.

Satisfaction of a Boolean KB ϕ in an interpretation I, denoted by I |= ϕ, is defined by induction
on the structure of ϕ:

I |= C v D iff CI ⊆ DI I |= C(a) iff aI ∈ CI

I |= r(a, b) iff
(
aI , bI

)
∈ rI I |= ¬ϕ1 iff I 6|= ϕ1

I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and I |= ϕ2 I |= ϕ1 ∨ ϕ2 iff I |= ϕ1 or I |= ϕ2.

If I |= ϕ, we also say that I is a model of ϕ. A (Boolean) KB is satisfiable iff it has a
model. A (Boolean) KB ψ is entailed by another (Boolean) KB ϕ, in symbols ϕ |= ψ, iff
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I |= ψ for all models I of ϕ. Satisfiability of and entailment from L KBs is P-complete
for L = ELO⊥ [2], ExpTime-complete for L ∈ {ALCO,ALCIO,ALCQO}, and NExpTime-
complete for ALCQIO [17, 18], even if numbers are encoded in binary.

Example 1. For the example domain considered in the introduction, we would model papers
and conferences using the concept names Paper and Conf , respectively. Conferences currently
accepting paper submissions are described by the concept name Open. The role name sub-to
relates papers to conferences and the concept name Writing describes papers that are in the
writing process. As a general domain constraint, we formulate that papers can be submitted
to at most one conference and only papers can be submitted to conferences:

Paper v ≤1 sub-to.Conf ∃sub-to.Conf v Paper .

Using a Boolean KB, we can describe a situation where lpar is a conference that is currently not
open for submissions, and where p (individual name) is a paper that has not been submitted
yet to lpar:

(Conf u ¬Open)(lpar) ∧ Paper(p) ∧ ¬ (sub-to(p, lpar)) . N

Remark. The letter O in ELO⊥, ALCO, ALCIO, etc. denotes that a DL supports nominal
expressions of the form {a}. As nominals can be straight-forwardly simulated using actions (see
also Section 5.2) they do not form a special case in our setting, and complexity results directly
transfer.

3 Timed Actions and Programs

Before we introduce programs, we introduce action theories as our underlying representation of
primitive actions and the changes obtained by them. In this section, we first introduce action
theories as our underlying representation of the changes that are caused by the execution of
primitive actions. We do not follow an axiomatic approach as it is done in dynamic logic or in
the Situation Calculus, but use a semantics based on a meta-theoretic state transition model.
Here, the state of the world is viewed as a (first-order) interpretation, and an action is viewed as
an operator that modifies interpretation. In an L-action theory, the domain designer provides
an incomplete representation of the initial state in terms of a Boolean L-KB and a specification
of a list of actions, their effects and their durations.

3.1 Primitive Actions

We start with defining effect descriptions to describe atomic changes.

Definition 2. Let A ∈ NC be a concept name, r ∈ NR a role name, o, o′ ∈ NI individual names
and ϕ a Boolean L-KB. An L-effect description (L-effect for short) has one of the following
forms

ϕ . 〈A(a)〉+, ϕ . 〈r(a, b)〉+, ϕ . 〈A(a)〉−, ϕ . 〈r(a, b)〉−,

where ϕ is called effect condition. In case the effect condition ϕ is a tautology like for example
> v >, then the effect description is called unconditional and is written without the effect
condition. N

We define the update of an interpretation given a set of effects.
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Definition 3. Let I = (∆I , ·I) be an interpretation and L a set of unconditional effects. The
update of I with L is an interpretation denoted by IL and is defined as follows

• ∆IL = ∆I ;

• AIL

:= AI \ {aI | 〈A(a)〉− ∈ L} ∪ {bI | 〈A(b)〉+ ∈ L} for all A ∈ NC;

• rIL

:= rI \ {(aI , bI) | 〈r(a, b)〉− ∈ L} ∪ {(cI , dI) | 〈r(c, d)〉+ ∈ L} for all r ∈ NR;

• aIL

:= aI for all a ∈ NI.

Let E be a set of (possibly conditional) effects. The update of I with E, denoted by IE, is given
by the update IE(I) with E(I) := {l | (ϕ . l) ∈ E, I |= ϕ}. N

We define an L-action theory with an initial KB and a finite set of primitive actions where each
of them is equipped with a finite set of L-effect descriptions and a duration.

Definition 4. An L-action theory is a tuple of the form

Σ = (K,Act,Eff,Dur),

where

• K is a Boolean L-KB,

• Act is a finite set of primitive action names (actions for short),

• Eff maps each primitive action name α ∈ Act to a set of L-effects Eff(α),

• Dur maps each primitive action name to a natural number.

N

In the following, the symbols (possibly indexed or primed) α, β stand for primitive action names,
the symbol σ for a (possibly empty) sequence of actions and 〈〉 for the empty sequence. We
often just write “effect” or “action theory” in the following and do not mention the underlying
logic L, if it is not relevant.

The size of an action theory Σ = (K,Act,Eff,Dur) is given by the sum of

• size of K,

• the sum of the number of symbols needed to write down the effects in Eff(α) for each
primitive action name α ∈ AP,

• the sum of the number of bits needed to encode the duration for each α ∈ Act.

Example 5. We consider a domain with papers and conferences using the concept names Paper
and Conf , respectively. Conferences currently accepting paper submissions are described by
the concept name Open, the role name sub-to relates papers to conferences and the concept
name Writing describes papers that are in the writing process. As a general domain constraint
we formulate that papers can be submitted to at most one conference and only papers can be
submitted to conferences:

(Paper v ≤1 sub-to.Conf ) ∧ (∃sub-to.Conf v Paper) . (2)
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Facts about the initial situation:

((Conf u ¬Open)(lpar)) ∧ (Paper(p)) ∧ (¬sub-to(p, lpar)) (3)

express that lpar is a conference that is currently not open for submissions. p (individual name)
is a paper that has not been submitted yet to lpar.

We consider a set of primitive actions

open(lpar), close(lpar), start-w(p), end-w(p), submit(p, lpar), tick (4)

with the following effects:

Eff(open(lpar)) := {〈Open(lpar)〉+}, Eff(close(lpar)) := {〈Open(lpar)〉−},
Eff(start-w(p)) := {〈Writing(p)〉+}, Eff(end-w(p)) := {〈Writing(p)〉−}

that is the action open(lpar) stands for the starting point of a submission phase of lpar,
close(lpar) for the corresponding end point and start-w(p) and end-w(p) mark the start and
end points of a writing phase of paper p. For the submission action we have:

Eff(submit(p, lpar)(p, lpar)) := {((¬Writing u ¬∃sub-to.Conf )(p)) . 〈sub-to(p, lpar)〉+}.

that is, if p has not been submitted to some conference before executing submit(p, lpar), then
sub-to(p, lpar) is made true afterwards and nothing else is changing.

In our example domain, we consider all user-definable actions α to be instantaneous with
duration zero (Dur(α) = 0). In order to model the passage of one time unit, we use a single
action tick that has a duration of one. We have Dur(tick) = 1 and Eff(tick) = ∅. N

3.2 ConGolog-like Programs

In this section, we define syntax and semantics of a ConGolog-like action programming language
[12, 7]. It allows to describe agent behaviour through program expressions that are constructed
from primitive actions, programming constructs and tests formulated as Boolean KBs.

Definition 6. Let Σ = (K,Act,Eff,Dur) be an L-action theory. A program expression δ over
Σ is built according to the following syntax rule

δ ::= 〈〉 | α | ψ? | δ; δ | (δ|δ) | δ∗ | δ‖δ,

where 〈〉 is the empty program, α ∈ Act is a primitive action name and ψ is a Boolean L-KB. N

A program can thus be the empty program 〈〉, a primitive action α, a test ψ?, where ψ is a
Boolean KB, or constructed from subprograms by means of sequence δ; δ, non-deterministic
choice δ|δ, non-deterministic iteration δ∗ (meaning execute δ zero or more times) and inter-
leaving δ‖δ.

To handle terminating, non-terminating and failing runs of a program uniformly two dummy
actions for termination and failure are introduced that are executed indefinitely in a final state
and failure state, respectively.

Definition 7. Let Σ = (K,Act,Eff,Dur) be an L-action theory and δ a program expression
over Σ. An L-ConGolog program (program for short) is a tuple P = (Σ, δ) such that there are
two actions in Act namely ε (termination action) and f (failure action) that do not occur in δ
and we have

Eff(ε) := {〈Final(prog)〉+} Eff(f) := {〈Fail(prog)〉+}
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1. 〈I, σ, 〈〉〉 ∈ Final();

2. 〈I, σ, ψ?〉 ∈ Final(Σ), if I |= ψ;

3. 〈I, σ, δ∗〉 ∈ Final(Σ);

4. 〈I, σ, δ1; δ2〉 ∈ Final(Σ), if 〈I, σ, δ1〉 ∈ Final(Σ) and 〈I, σ, δ2〉 ∈ Final(Σ);

5. 〈I, σ, δ1|δ2〉 ∈ Final(Σ), if 〈I, σ, δ1〉 ∈ Final(Σ) or 〈I, σ, δ2〉 ∈ Final(Σ);

6. 〈I, σ, δ1‖δ2〉 ∈ Final(Σ), if 〈I, σ, δ1〉 ∈ Final(Σ) and 〈I, σ, δ2〉 ∈ Final(Σ).

Figure 1: Rules for final program states

and Dur(ε) = Dur(f) = 0, where Final and Fail are concept names and prog an individual name
not occurring in any test in δ and not altered by any effect of any other primitive action in Act.
Furthermore, we require K |= ¬Final(prog) ∧ ¬Fail(prog). N

The execution of a program in some model of the initial KB K yields an infinite tree, where
states are labeled with interpretations and the edges with natural numbers.

Definition 8. Let Σ = (K,Act,Eff,Dur) be an action theory. A program state over Σ is a tuple
of the form

〈I, σ, δ〉,

where

• I is an interpretation,

• σ ∈ Act∗ an action sequence and

• δ a program expression over Σ.

The set of all program states over Σ is denoted by States(Σ) (for an arbitrary but fixed signature
of concept names NC, role names NR and individual names NI).

The set of all final program states over Σ, denoted by Final(Σ), is defined as the smallest set
satisfying the conditions in Figure 1.

A partial transition relation

−→Σ ⊆ States(Σ)× N× States(Σ)

is defined as the smallest set satisfying the rules in Figure 2.

The set of all failure program states over Σ, denoted by Fail(Σ), is defined as follows

Fail(Σ) := {s ∈ States(Σ) | s /∈ Final(Σ) and

there is no s′ ∈ States(Σ) and no d ∈ N with s d−→Σ s′}.

N

The semantics of programs is now defined in terms of a first-order timed transition system (first-
order TTS for short). First, we provide the general definition and then define the first-oder
TTS induced by a program.

Definition 9. Let LT be a set of state labels. A transition system over LT is a tuple

T = (QT, IT, ↪→T, λT),

where
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1. 〈I, σ, α〉 d−→Σ 〈I′, σ · α, 〈〉〉, if I′ = IEff(I,α) and d ∈ Dur(α);

2. 〈I, σ, δ∗〉 d−→Σ 〈I′, σ · α, δ′; δ∗〉, if 〈I, σ, δ〉
d−→Σ 〈I′, σ · α, δ′〉;

3. 〈I, σ, δ1; δ2〉
d−→Σ 〈I′, σ · α, δ′1; δ2〉, if 〈I, σ, δ1〉

d−→Σ 〈I′, σ · α, δ′1〉;

4. 〈I, σ, δ1; δ2〉
d−→Σ 〈I′, σ · α, δ′2〉, if 〈I, σ, δ1〉 ∈ Final(Σ) and 〈I, σ, δ2〉

d−→Σ 〈I′, σ · α, δ′2〉;

5. 〈I, σ, δ1|δ2〉
d−→Σ 〈I′, σ · α, δ′〉, if 〈I, σ, δ1〉

d−→Σ 〈I′, σ, δ′〉 or 〈I, σ, δ2〉
d−→Σ 〈I′, σ, δ′〉

6. 〈I, σ, δ1‖δ2〉
d−→Σ 〈I′, σ · α, δ′1‖δ2〉, if 〈I, σ, δ1〉

d−→Σ 〈I′, σ · α, δ′1〉;

7. 〈I, σ, δ1‖δ2〉
d−→Σ 〈I′, σ · α, δ1‖δ′2〉, if 〈I, σ, δ2〉

d−→Σ 〈I′, σ · α, δ′2〉.

Figure 2: Transition rules

• QT is a set of states and IT ⊆ QT a set of initial states ;

• ↪→T ⊆ QT ×N×QT is the transition relation such that for each state q ∈ QT there is at
least one state q′ ∈ QT and d ∈ N such that (q, d, q′) ∈ ↪→T;

• λT : QT → LT is a total labeling function that maps each state to a single element of the
label set LT.

T is called a first-order TTS iff LT is a set of first-order interpretations and the labeling function
λT : q 7→ Iq maps each state q ∈ QT to a first-order interpretation Iq.

Let AP be a finite set of atomic propositions (propositional letters). T is called a propositional
TTS over AP iff LT = 2AP, that is the labelling function λT maps each state to a set of atomic
propositions from AP.

Instead of

(q, d, q′) ∈ ↪→T we often write q
d
↪→T q

′.

A path π in T is an infinite sequence of the form

π = q0d0q1d1q2d2q3 · · · , where qi
di
↪→T qi+1 holds for all i ≥ 0.

Given a path π = q0d0q1d1q2d2q3 · · · and an index j ∈ {0, 1, 2, . . .}

the infinite suffix path qjdjqj+1dj+1qj+2dj+2qj+3 · · · is denoted by π[j..] and
the initial path fragment q0d0q1d1q2 · · · qj is denoted by π[..j].

The jth state in π is denoted by π[j]. The duration of an initial path fragment π[..j], denoted
by time(π[..j]), is the sum of the transition durations:

time(π[..j]) := d0 + · · ·+ dj−1.

The set of all paths in T starting in a state q ∈ QT is denoted by paths(T, q). N

Now, we are ready to define the first-order TTS induced by a program P.

Definition 10. Let P = (Σ, δ) be a program consisting of an action theory Σ = (K,Act,Eff,Dur)
and a program expression δ over Σ. The induced first-order TTS

T(P) = (QP , IP , ↪→P , λP)

is defined as follows:
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• QP := States(Σ);

• IP := {〈I, 〈〉, δ′〉 ∈ States(Σ) | I |= K, δ′ = δ};

• ↪→P := −→Σ ∪
{

(〈I, σ, δ′〉, 0, 〈J , σ · ε, 〈〉〉)
∣∣∣ 〈I, σ, δ′〉 ∈ Final(Σ),J = IEff(ε)

}
∪
{

(〈I, σ, δ′〉, 0, 〈J , σ · f, δ′〉)
∣∣∣ 〈I, σ, δ′〉 ∈ Fail(Σ),J = IEff(f)

}
;

• λP : 〈I, σ, δ′〉 7→ I for all 〈I, σ, δ′〉 ∈ States(Σ).

N

Example 11. We continue Example 5. In our domain, we have three agents: the conference
organiser opens and closes lpar for submissions an arbitrary number of times, the author of p
can do several writing phases as long as p is not submitted and can do several attempts to
submit to lpar, and the clock is ticking forever. There is one program expression for each agent:

δconf := (open(lpar); close(lpar))∗ ,

δauthor := ([¬∃sub-to.>(p)]?; start-w(p); end-w(p))
∗ ‖ submit(p, lpar)∗,

δclock := (tick)
∗

; (¬ (> v >))?.

It might happen that δconf and δauthor terminate but the clock runs forever due to the unsatisfiable
test (¬ (> v >))?. All three programs run in parallel:

δdomain := δconf ‖ δauthor ‖ δclock

In δdomain the submission phase and the writing phase might overlap. The length of each phase
is determined by the number of tick actions that occur in between the corresponding start and
end points. Note that the program expression itself does not impose any timing constraints. N

4 Temporal Properties and the Verification Problem

For specifying correctly timed executions of the program, we use the metric temporal logics
L-TCTL∗, L-TCTL, L-CTL∗ and L-CTL, where L is some DL. The verification problem for a
program and a specification in these logics is formalised as a model checking problem.

Syntactically, L-TCTL∗ (as well as the other logics) is defined like propositional TCTL∗ in [11],
but it allows Boolean L-KBs instead of propositional letters.

Definition 12. Formulas describing properties of a state and of a path are distinguished. L-
TCTL∗ state formulas Φ and L-TCTL∗ path formulas Ψ are built according to the following
syntax rules:

Φ ::= % | ¬Φ | Φ ∧ Φ | EΨ | AΨ;

Ψ ::= Φ | ¬Ψ | Ψ ∧Ψ | XΨ | Ψ U∼c Ψ,
(5)

where % stands for an L-axiom, ∼ ∈ {<,≤,=,≥, >} and c ∈ N. For path formulas we use
the following common abbreviations: F∼cΨ := true U∼c Ψ (eventually) and G∼cΨ := ¬F∼c¬Ψ
(always), where true stands for > v >.

Propositional TCTL∗ state and path formulas over some set of atomic proposition AP are
defined using the same syntax rules as above, but requiring that % ∈ AP.

L-TCTL formulas (without star) are L-TCTL∗ state formulas that are built according to the
syntax rule

Φ ::= % | ¬Φ | Φ ∧ Φ | EXΦ | EΦ U∼c Φ | AΦ U∼c Φ.

9



We use a measure for the size of a formula where the numbers attached to the until operator
are coded in binary. N

If all until operators are indexed with ≥ 0, we may omit the indices and speak of L-CTL∗- and
L-CTL-formulas respectively.

The semantics is defined in terms of first-order TTS, as defined in the last section.

Definition 13. Let Φ be an L-TCTL∗ state formula, T = (QT, IT, ↪→T, λT) a first-order TTS
and q ∈ Q a state. Satisfaction of Φ in T, q, denoted by T, q |= Φ, is defined inductively by:

T, q |= % iff Iq |= %, where % is an L-axiom and Iq = λ(q),

T, q |= ¬Φ′ iff T, q 6|= Φ′

T, q |= Φ1 ∧ Φ2 iff T, q |= Φ1 and T, q |= Φ2

T, q |= EΨ iff T, π |= Ψ for some π ∈ paths(T, q),

T, q |= AΨ iff T, π |= Ψ for all π ∈ paths(T, q),

satisfaction of an L-TCTL∗ path formula Ψ in a path π in T, denoted by T, π |= Ψ, is defined
similar for formulas ¬Ψ′ and Ψ1 ∧Ψ2, and otherwise by

T, π |= Φ iff T, π[0] |= Φ

T, π |= XΨ′ iff T, π[1..] |= Ψ′

T, π |= Ψ1 U∼c Ψ2 iff there exists a j with j ≥ 0 such that T, π[j..] |= Ψ2, time(π[..j]) ∼ c,
and for all k with 0 ≤ k < j, we have T, π[k..] |= Ψ1. N

Now, we are ready to define the verification problem.

Definition 14 (verification problem). Let P = (Σ, δ) be a program, Φ a L-TCTL∗ state
formula, and T(P) = (QP , IP , ↪→P , λP) the induced first-order TTS. We write

P |= Φ

iff T(P), s |= Φ for all s ∈ IP . The verification problem is the problem of deciding whether
P |= Φ is true. N

For a purely qualitative (untimed) instance of the verification problem, we assume that the tem-
poral property is an L-CTL∗ or L-CTL formula (that is, only ≥ 0 is used as a time constraint)
and in the action theory, each primitive action has duration 1.

Example 15. We continue our running example. Assume the action tick counts days. One
can then specify that the submission phase of lpar lasts exactly 60 days (Ψ1), and that lpar
opens at least every 365 days (Ψ2):

Ψ1 := G>0 [(¬Open(lpar) ∧ XOpen(lpar))→ X (Open(lpar) U=60 (¬Open(lpar)))] ,

Ψ2 := G>0 [¬Open(lpar)→ F<365Open(lpar)] .

We can use this additional constraint to define the property that eventually, p is submitted to
lpar.

Φ := E (Ψ1 ∧Ψ2 ∧ F≥0 (sub-to(p, lpar)))

This state formula is not entailed by the program. In contrast, the formula (∀sub-to.⊥(p))→ Φ,
which additionally requires p not to be submitted anywhere else initially, is. N

10



5 Hardness

We first analyse complexity lower bounds of the verification problem, before we provide match-
ing upper bounds in the next section. Our lower bounds already apply to the qualitative
(untimed) instance of the verification problem, which is why we only consider this setting here.

In this and the following section, it is convenient to focus on the complementary problem
of formula satisfiability rather than on verification. A TCTL∗ formula Φ is satisfiable in a
program P iff there exists an initial state s ∈ IP s.t. T(P), s |= Φ. One easily establishes that Φ
is satisfiable in P iff P 6|= ¬Φ.

5.1 Expressive Description Logics

We start with programs and verification formulae over expressive DLs. Specifically, we show
hardness for the expressive DLs by a reduction from the satisfiability problem for DLs with
nominal schemas [10]. Nominal schemas allow variables to be shared between different concepts
in an axiom. To preserve decidability however, they only quantify over a specified finite set of
individual names. Let NV be a set of variable names disjoint from NI,NC and NR. For a DL L
introduced in Section 2, we denote by LV the DL obtained from L by additionally allowing
concepts of the form {x}, where x ∈ NV, which are called nominal schemas.

For simplicity, we assume that every axiom in an LV-KB is of the form C v D. All other
types of axioms can be brought into this form, since C(a) is equivalent to {a} v C and r(a, b)
is equivalent to {a} v ∃r.{b}. Given a concept C with nominal schemas, and a function
ν : NV → NI, we denote by Cν the result of replacing every variable v ∈ NV by ν(v). The
semantics of nominal schemas is then provided by the following definition.

Definition 16. Let K be an LV-KB with nominal schemas, Var the finite set of all variable
names occurring in K, and let Obj be a finite set of object names. We define the set of all
possible groundings of K w.r.t. Obj as follows:

ground(K,Obj) :=
⋃

CvD∈K

{Cν v Dν | ν with ν(x) ∈ Obj for all x ∈ Var}.

We say that K is satisfiable w.r.t. Obj iff the L-TBox ground(K,Obj) is satisfiable. N

If the given set of object names has cardinality m, then an axiom with n different variable names
has mn possible groundings. Therefore, the set of all possible groundings of a KB with nominal
schemas w.r.t. a finite set of object names can be exponentially large. In fact, for the logics
considered in this paper, the complexity of satisfiability checking increases by an exponential if
we add nominal schemas.

Theorem 17 ([10]). Satisfiability of LV-KBs is

1. ExpTime-complete for L = ELO⊥,

2. 2ExpTime-complete for L ∈ {ALCO,ALCIO,ALCQO}, and

3. N2ExpTime-complete for L = ALCQIO.

We transfer these bounds to the verification problem, by reducing satisfiability of LV-KBs to
satisfiability of L-CTL-formulas in untimed L-ConGolog-programs, that is, all actions have a
duration of 1. For a given L-KB K with nominal schemas and a finite set Obj of object names, we
construct an L-action theory ΣS,Obj = (KS,Obj,ActS,Obj,Eff,Dur), a program expression δS,Obj
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and a temporal property ΦS,Obj of polynomial size such that K is consistent w.r.t. Obj iff ΦS,Obj

is satisfiable in P = (ΣS,Obj, δS,Obj). Intuitively, the program generates all groundings of the
variables and checks the satisfaction of the axioms in K against each of them.

Let Var = {x1, . . . , xn} be the set of all variable names occurring in K and let Obj = {o1, . . . , om}.
The initial KB KS,Obj is given by

KS,Obj = {Ax v ⊥ | x ∈ Var} ∪ {(¬AllGrounded)(s)}.

The concepts Ax will store the current grounding of the variable x, while we will use the
assertion AllGrounded(s) to state whether the grounding of variables is complete. For every pair
x ∈ Var, o ∈ Obj, we use the action groundx,o with Eff(groundx,o) = {〈Ax(o)〉+} to instantiate x
with o. The action finished is used to indicate that all variables are instantiated, for which
we set Eff(finished) = {〈AllGrounded(s)〉+}.

We define the program sequence δS,Obj. To non-deterministically assign an instantiation to a
variable x ∈ Var, we use the program expression δx defined as

δx := (groundx,o1 | groundxi,o2 | · · · | groundxi,om).

The final program sequence δS,Obj that generates all possible groundings is then defined as

δS,Obj := δx1 ; δx2 ; · · · ; δxn ; finished.

It remains the define the temporal property to be checked. For an C v D ∈ K, the axiom
Ĉ v D̂ is obtained from C v D by simultaneously replacing all occurrences of the concepts
{x}, x ∈ Var, in C and D by the corresponding concept name Ax. The temporal property is
then defined as

ΦS,Obj := AG

(AllGrounded(s))→

 ∧
CvD∈K

Ĉ v D̂

 .

The size of ΣS,Obj, δS,Obj and ΦS,Obj is quadratic in the size of K and Obj, and indeed, we can
show that our reduction captures satisfiability of K w.r.t. Obj.

We first show that the groundings are performed properly.

Lemma 18. Let P = (D(ΣS,Obj), δS,Obj) be as defined above and 〈I, σ, ρ〉 a state in the first-
order transition system T(P) = (QP , IP , ↪→P , λP) induced by P that satisfies the following
conditions

• there exists an initial state 〈I0, 〈〉, δS,Obj〉 ∈ IP with 〈I0, 〈〉, δS,Obj〉 ↪→P∗ 〈I, σ, ρ〉;

• I |= AllGrounded(s).

Then, it holds that for all x ∈ Var there exists an object name o ∈ Obj such that (Ax)I = {oI}.

Proof. Let 〈I, σ, ρ〉 be a state in the transition system T(P) satisfying the conditions described
above. Let

D(ΣS,Obj) = (F ,KS,Obj,ActS,Obj, E ,�poss)

be the FO-DS induced by ΣS,Obj. Since 〈I, σ, ρ〉 is reachable from an initial state, there is a
model I0 |= KS,Obj such that I0 ⇒σ

D I.

Note that since I0 |= KS,Obj, we have (Ax)I0 = ∅ for all x ∈ Var.
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Since the ABox assertion AllGrounded(s) is true in I, the state 〈I, σ, ρ〉 was reached by exe-
cuting finished. It follows that σ is of the form

σ = groundx1,oj1
· · · · · groundxn,ojn · finished

for some objects oj1 , . . . , ojn ∈ Obj. Now, I0 ⇒σ
D I implies that

I0 ⇒
groundx1,oj1
D I1 ⇒

groundx2,oj2
D · · · ⇒

groundxn,ojn
D In ⇒finished

D I.

It follows that (Axi)
I = {oIji} for all i = 1, . . . , n.

We are now ready to prove that consistency of K w.r.t. Obj implies satisfiability of ΦS,Obj in P.

Lemma 19. If K is satisfiable w.r.t. Obj, then ΦS,Obj is satisfiable by P = (D(ΣS,Obj), δS,Obj).

Proof. Assume that K is satisfiable w.r.t. Obj. Let

D(ΣS,Obj) = (F ,KS,Obj,ActS,Obj, E ,�poss)

be the FO-DS induced by ΣS,Obj. The newly introduced concept names Ax1 , . . . , Axn and
AllGrounded do not occur in K. Therefore, there exists an interpretation I with

I |= ground(K,Obj) and I |= KS,Obj.

Consequently, 〈I, 〈〉, δS,Obj〉 is an initial state in T(P). We show that

T(P), 〈I, 〈〉, δS,Obj〉 |= AG
(
AllGrounded(s)→

( ∧
CvD∈K

Ĉ v D̂
))
.

Let π ∈ paths(T(P), 〈I, 〈〉, δS,Obj〉) and j ≥ 0 a natural number such that

T(P), π[j] |= AllGrounded(s).

Let π[j] = 〈J , σ, ρ〉. It follows that I ⇒σ
D J . Since all the concept and role names occurring

in K are not affected by the actions in ActS,Obj, we have that I |= ground(K,Obj) implies also
J |= ground(K,Obj). Furthermore, due to Lemma 18 it follows that there are object names
oj1 , . . . , ojn ∈ Obj such that

(Axi)
J = {oJji} for all i = 1, . . . , n.

There exists a variable mapping νσ such that νσ(xi) = oji for all i = 1, . . . , n. With J |=
ground(K,Obj) it follows that

J |=
∧

CvD∈K

Cνσ v Dνσ .

Due to (Axi)
J = {νσ(xi)}J for all i = 1, . . . , n it follows that

J |=
∧

CvD∈K

Ĉ v D̂.

Consequently, we have

T(P), π[j] |= AllGrounded(s)→
( ∧
CvD∈K

Ĉ v D̂
)
.

Note that π ∈ paths(T(P), 〈I, 〈〉, δS,Obj〉) and j ≥ 0 are arbitrarily chosen. The claim follows
directly.
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Lemma 20. If ΦS,Obj is satisfiable in P = (D(ΣS,Obj), δS,Obj), then K is satisfiable w.r.t. Obj.

Proof. Let
D(ΣS,Obj) = (F ,KS,Obj,ActS,Obj, E ,�poss)

be the FO-DS induced by ΣS,Obj. Assume there is an initial state 〈I, 〈〉, δS,Obj〉 in T(P) such
that T(P), 〈I, 〈〉, δS,Obj〉 |= ΦS,Obj. We show that for an arbitrary variable mapping ν with
ν(xi) ∈ Obj for all i = 1, . . . , n it holds that

I |=
∧

CvD∈K

Cν v Dν .

This implies I |= ground(K,Obj). For an arbitrary but fixed ν with ν(xi) ∈ Obj for all i =
1, . . . , n we consider the following action sequence:

σν = groundx1,ν(x1) · · · · · groundxn,ν(xn) · finished.

Obviously, σν is executable in I and is admitted in δS,Obj. There exists an interpretation J ν
with I ⇒σν

D J ν and subprogram ρ ∈ sub(δS,Obj) such that 〈J ν , σν , ρ〉 is a state in T(P) and is
reachable from 〈I, 〈〉, δS,Obj〉. Initially, we have

I |= {Ax v ⊥ | x ∈ Var}.

It follows that after executing σ in I the resulting interpretation J ν satisfies:

(Axi)
J ν = {ν(xi)

J ν} for all i = 1, . . . , n and J ν |= AllGrounded(s).

The assumption T(P), 〈I, 〈〉, δS,Obj〉 |= ΦS,Obj implies that

J ν |=
∧

CvD∈K

Ĉ v D̂.

With (Axi)
J ν = {ν(xi)

J ν} for all i = 1, . . . , n it follows that

J ν |=
∧

CvD∈K

Cν v Dν .

For all concept, role and object names X mentioned in K it holds that XJ
ν

= XI , because the
execution of σν in I changes only the interpretation of the names Ax1

, . . . , Axn and AllGrounded ,
which are not occurring in K. It follows that

I |=
∧

CvD∈K

Cν v Dν .

Since the grounding ν with ν(xi) ∈ Obj for all i = 1, . . . , n was arbitrarily chosen, we obtain
I |= ground(K,Obj).

Together with Theorem 17, we thus obtain the following lower bounds regarding verification
for expressive DLs.

Theorem 21. Verifying L-CTL properties of an L-ConGolog program is

1. 2ExpTime-hard for L ∈ {ALCO,ALCIO,ALCQO}, and

2. coN2ExpTime-hard for L = ALCQIO.
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Proof. Checking whether an L-CTL state formula Φ is satisfiable in an L-ConGolog program
over local effect actions of the form P = (D(Σ), δ), where Σ is a local effect L-action theory
is 2ExpTime-hard if L ∈ {ALCO,ALCIO,ALCQO}, and N2ExpTime-hard if L = ALCQIO.
This is a consequence of Lemma 19 and 20 and Theorem 17. It holds that Φ is valid in P
iff ¬Φ is not satisfiable. Therefore, the verification problem has the same complexity as the
complementary problem of the satisfiability problem. Hence, verification is 2ExpTime-hard if
L ∈ {ALCO,ALCIO,ALCQO}, and co-N2ExpTime-hard if L = ALCQIO.

Note that, since our reduction uses only a simple CTL property, only unconditional actions and
no loops or tests in the program, this hardness result already applies to verification of CTL
formulae over programs in a quite restricted fragment of L-ConGolog.

5.2 The Lightweight Description Logic ELO⊥

Lemma 19 also gives us an ExpTime lower bound for the lightweight DL ELO⊥, since by
Theorem 17, satisfiability of ELOV⊥-KBs is ExpTime-complete. As a lightweight DL, ELO⊥
admits tractable complexity for common reasoning tasks, which are between ExpTime and
NExpTime for the other DLs considered in this paper. It might therefore be reasonable to
believe that also the complexity of verification decreases when we restrict ourselves to ELO⊥.
However, it turns out that this is not the case, and that already for ELO⊥, verification becomes
2ExpTime-hard, as it is already for ALCO, ALCIO and ALCQO.

Without loss of generality, we assume that the KB of the program is empty: if it is not, we can
simply add it as conjunct to the verification formula, and obtain a formula that is satisfiable
by the program without KB iff the original formula is satisfiable by the original program.

For technical reasons, it is furthermore convenient to assume that our formula is satisfiable by
interpretations that have at least two domain elements. Note that may not be the case if the
program or the formula contains axioms of the form > v {a}. The following lemma however
shows that our simplifying assumption is sufficient.

Lemma 22. Let Φ be a formula and P be a program. Then, there is a formula Φ′ and a
program P ′ that can be constructed in polynomial time from Φ and P s.t. Φ is satisfiable by P
iff Φ′ is satisfiable by P ′ by a state q0 ∈ IP = (I, 〈〉, δ) s.t. |∆I | > 1.

Proof. We first note that nominals can be simulated using actions: for this, we use a fresh
concept name Aa for every named individual a and replace every occurrence of {a} by Aa. For
every named individual, we add the axiom Aa v ⊥ to the initial KB, and prepend the program
with a sequence of actions that places a into the extension of a, so that a is the only named
individual in the extension of Aa. It is easy to see that Aa now behaves exactly like the concept
{a}. For this reason, we can assume without loss of generality that neither P nor Φ contain
any concepts of the form {a}. The idea is now to duplicate every named individual a into two
named individuals a1 and a2, and replace the effects of every action α in P so that all changes
apply two both individuals synchronously. Specifically, we replace

• every positive effect A(a) by A(a1) and A(a2),

• every positive effect r(a, b) by r(a1, b1), r(a1, b2), r(a2, b1) and r(a2, b2),

• every negative effect ¬A(a) by ¬A(a1) and ¬A(a2), and

• every negative effect ¬r(a, b) by ¬r(a1, b1), ¬r(a1, b2), ¬r(a2, b1) and ¬r(a2, b2).
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Denote the resulting program by P ′. Now assume that Φ is only satisfiable by P via inter-
pretations I s.t. |∆I | = 1. Specifically, let π be an execution path in T(P) s.t. for some i,
|∆λP(π[i])| = 1. There must then exists a named individual a s.t. λP(π[i]) |= > v {a}. Clearly,
there is a corresponding execution path π′ in T(P ′) s.t. λP′(π[i]) |= > v {a1, a2}, and therefore,
|∆λP′ (π

′[i])| = 2. It follows that Φ is satisfiable in P iff it is satisfiable in P ′ via interpretations
that have at most two domain elements.

We present our reduction. The main idea is to use the non-determinism inherent to expressions
of the form ∃r.C, in which C might refer to a specific named individual whose interpretation
we can change using an action. Depending on whether, in the current interpretation, the role
successor of some domain element points to that specific individual or not, we interpret it as a
concept or its complement.

In the following, let P = (Σ, δ) be a fixed Golog program and Φ be a fixed CTL state formula to
be verified against P. We define a polynomially-sized program P ′ and a polynomiall-sized CTL
state formulae Φ′ such that both use only ELO⊥ concepts, and such that Φ is satisfiable by P iff
Φ′ is satisfiable by P ′. The idea is to use a special concept name AD to represent the negation
of a concept D, so that any domain element in a relevant interpretation in the transition system
of P ′ satisfies AD iff it satisfies ¬D. We first define an operation that replaces ALCO concepts
by ELO⊥ concepts by using these special concept names. For a given ALCO concept C, we
define the operation C† as the result of replacing from C every outermost concept of the form
¬D by AD, where AD is a concept fresh to both P and Φ, and uniquely determined by D.

To ensure that every domain element in an interpretation satisfies either C or AD, we define
the KB ψ1 which contains for every introduced concept name AD the following ELO⊥-axioms,
where SD, aD, aD and ra are fresh.

• D† uAD v ⊥,

• > v ∃ra.SD,

• ∃ra.{aD} v D†, and

• ∃ra.{aD} v AD.

Note that we may need to introduce further concept names AD′ due to the concept D† occurring
in the axioms, for which we inductively add the corresponding axioms as well. The first axiom
ensures that every domain element can only satisfy one of D† or AD, thus expressing that the
concepts D and ¬D must be disjoint. The next axioms ensure for the extended program P ′
defined below that it also satisfies at least one of D† and AD, thus completing the behaviour
of concept negation. Specifically, we demand that every domain element d has an ra-successor
satisfying SD, for which we in the program will make sure that it contains exactly two named
individuals, namely aD and aD. Depending on which is the case, d will then satisfy either D†
or AD.

We are now ready to define the ELO⊥ program sequence δ′, which is of the form ψ2?αs; δ
†,

with the components ψ2, αs and δ† defined one after the other in the following. The role of
the prefix ψ2?αs is to ensure that in execution paths of the program, SD contains only the two
named individuals aD and aD, so that the axioms in ψ1 have their intended effect.

ψ2 contains for every introduced concept name SD the axiom SD v ⊥ to make sure that the
interpretation of SD is empty. αs now assigns the required named individuals, which is achieved
by setting the effects

Eff(αs) = {〈SD(aD)〉+, 〈SD(aD)〉+ | SD was introduced }.
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Note that actions may change which concept names a named individual satisfies, but any such
change has to be specified explicitly by the action. Therefore, our program has to deal explicitly
with the interpretation of the introduced names. For each introduced concept name AD and
each named individual a occurring in P or Φ, we use the actions αD,d and αD,a for this, which
are defined by

Eff(αD,d) = {〈AD(d)〉−, 〈ra(a, aD)〉+〈ra(d, aD)〉−}

and
Eff(αD,d) = {〈AD(d)〉+, 〈ra(d, aD)〉−, 〈ra(d, aD)〉−},

and are then non-deterministically applied after each action. We further use two special actions
α+
e and α−e to mark “exceptional states” in which the interpretation of AD might not have been

repaired yet, which are defined by Eff(α+
e ) = {〈Ae(ae)〉+} and Eff(α−e ) = {〈Ae(ae)〉−}. Intu-

itively, Ae(ae) marks states in which we are currently fixing the interpretation of the introduced
symbols.

From the original program sequence δ, we obtain δ† by replacing every axiom of the form C v D
by C† v D†, every axiom of the form C(a) by C†(a), and every action α with

α;α+
e ; (αC1,a1 | αC1,a1

); . . . ; (αCn,an | αCn,an);α−e ,

where Ci, ai range over all (quadratically many) pairs of named individuals ai occurring in the
input and concepts Ci for which we introduced the concept name ACi . Note that this explores
all possibilities of choosing some assignment in the program. The CTL∗ formula will later make
sure that we pick the right one in each case.

This formula we construct next. For this, we define the operator ·◦ on CTL∗-formulae, which
is recursively defined as follows.

• (C v D)◦ = (C† v D†),

• (C(a))◦ = C†(a),

• (¬Ψ)◦ = ¬Ψ◦,

• (Ψ1 ∧Ψ2)◦ = Ψ◦1 ∧Ψ◦2,

• (XΨ)◦ = X(Ae(ae) U Ψ◦),

• (Ψ1 U Ψ2)◦ = (Ae(ae) ∨Ψ◦1) U (¬Ae(ae) ∧Ψ◦2)

• (EΨ)◦ = E(G(Ae(ae) ∨Ψ1) ∧ (Ae(ae) U Ψ◦))

We first translate all ALCO-concepts into ELO⊥ concepts using the operator ·◦ defined above.
Since we appended to each action in the original program a sequence of non-deterministic ac-
tions, we have to translate formulae of the form XΨ so that the states in which the interpretation
is still adapted, which are those that satisfy Ae(ae), are followed first, for which we use the
until-operator. Ae(ae) has also to be taken into consideration for formulae of the form ψ1 U Ψ2.
When we choose a path that for formulae of the form EΨ, we now have to additionally make
sure we pick a path in which the introduced names are repaired correctly, which we check with
the formula G(Ae(ae) ∨ ψ1). Again, we skip states which satisfy Ae(ae), before we check the
translated formula Ψ◦.

The final CTL-formula Φ′ is now of the form EX(Φ◦ ∧ G(ψ1 ∨ Ae(ae)). This formula picks a
path in which the introduced names are always repaired in accordance with ψ1, and skips the
first action αs using the next operator, before the translated input formula Φ◦ is verified.

Lemma 23. If Φ is satisfiable by P, then Φ′ is satisfiable by P ′.

17



Proof. Assume Φ is satisfiable in P, and let q0 = (I0, 〈〉, δ) ∈ IP be an initial state in T(P) s.t.
T(P), q0 |= Φ.

We first define a transformation on interpretations and states reachable from q0. Given an
interpretation I occurring in a state reachable from I0, we extend I to a model I◦ of ψ1 s.t. all
concept and role names that occur in the input are interpreted the same by I, and additionally
we have AI

◦

D
= (¬C)I

◦
for all introduced concept names AD. For every such introduced concept

name, we proceed as follows. The interpretation of AD is straightforward:

• AI◦
D

= (¬D)I .

The other introduced symbols are interpreted as follows. We select two individuals eD, ed ∈ ∆I0

s.t. eD 6= eD and set

• aI◦D = eD,

• aI
D

= eD,

• SID = {ed, ed}, and

• (ra)I
◦

= {(d, eD) | d ∈ DI} ∪ {(d, eD) | d ∈ (¬D)I}

The construction makes sure that for every introduced concept name AD, we have A
I◦
D

= (¬D)I

and (D†)I
◦

= DI .

The initial state q◦−1 ∈ IP′ is defined as q◦−1 = (I◦−1, 〈〉, δ†), where I◦−1 is identical to I◦0 except
that SD = ∅ for all introduced concept names SD. Note that we have I◦−1 |= ψ2, and also

(I◦−1, 〈〉, φ2?;αs; δ
†) ↪→P′ (I◦0 , αs, δ†).

For all other states q ∈ QP , we define q◦ by induction on the execution paths in q◦. Specifically,
if q1 = (I1, σ, δ1) ∈ QP , q◦1 = (I◦1 , σ◦, δ◦1) ∈ QP′ and q2 = (I2, σ · α, δ2) s.t. q1 ↪→P q2, then q◦2
is defined as

(I◦2 , σ◦ · α · α+
e · α1 · . . . · αnα−e , δ◦2),

where α1 · . . . · αn is a sequence of actions chosen from the program expression

(αC1,a1 | αC1,a1
); . . . ; (αCn,an | αCn,an);

used when constructing P ′, so that q◦2 is a state in QP′ . Such a state always exists, and clearly
we have q◦1 ↪→P′∗ q◦2 . Note that this associates to every state q ∈ QP s.t. q0 ↪→P q a state q◦
s.t. q◦0 ↪→P′∗ q◦. Furthermore, for any two states q1, q2 s.t. q1 ↪→P q2, there is a path between
q◦1 and q◦2 in which every state satisfies Ae(ae). This means that every path π in T(P) has a
corresponding path π◦ in T(P ′) s.t. for every i ≥ 0, there exists j ≥ 0 s.t. π◦[j] = (π[i])◦.
Furthermore, for every consequtive values i, j = i+ 1, we have

• π◦[i′] = (π[i])◦,

• π◦[j′] = (π[j])◦,

• i′ < j′ and

• T(P ′), π◦[k] |= Ae(ae) for all k with i′ < k < j′.
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As a consequence, for every path π in T(P) s.t. π[0] = q0, we have T(P ′), π◦ |= G(Ae(ae)∨ψ1).

To show that T(P ′), q◦0 |= Φ◦, we proceed by structural induction on Φ. For this, we have to
show that for every path π in T(P) s.t π[0] = q0 and for every i ≥ 0,

1. if Ψ is a state formula, then T(P), π[i] |= Ψ iff there is path π◦ in T(P ′) with π◦[0] = q◦0
and an index j s.t. (π[i])◦ = π◦[j] and T(P ′), π◦[j] |= Ψ◦,

2. if Ψ is a path formula, then T(P), π[i..] |= Ψ iff there is path π◦ in T(P ′) with π[0] = q◦0
and an index j s.t. (π[i])◦ = π[j] and T(P ′), π◦[j..] |= Ψ◦.

Let π[i] = (I, σ, δ). We distinguish the cases based on the syntactical shape of Ψ.

1. Ψ = C v D. Then I |= C v D iff I◦ |= C† v D†, and consequently also π[i] |= C v D iff
(π[i])◦ |= C† v D†. The latter holds exactly iff there is a path π◦ in T(P ′) s.t. π◦[0] = q◦0
and some j > 0 s.t. π◦[j] = (π[i])◦.

2. If Ψ is of one of the forms ¬Ψ1 or Ψ1 ∧ Ψ2, then our claim follows directly from the
inductive hypothesis.

3. If Ψ is of the form XΨ1, then by our inductive hypothesis, T(P), π[i + 1..] |= Ψ iff
T(P ′), π◦[j..] |= Ψ◦ for some path π◦ s.t. (π[i+ 1])◦ = π◦[j]. By construction, this is the
case iff there is some k < j s.t. π◦[k] = (π[i])◦ and for all l s.t. k < l < j, π◦[l] |= Ae(ae).
This means that π[i..] |= Ψ iff T(P ′), π◦[l..] |= X(Ae(ae) U (Ψ′)◦) = Ψ◦.

4. Assume Ψ is of the form Ψ1 U Ψ2. If T(P), π[i..] |= Ψ, then there exists j > i s.t.
T(P), π[j..] |= Ψ2 and for all k, j ≤ k < i, T(P), π[k..] |= Ψ1. By inductive hypothesis,
there is then a path π◦ i) there is an index j′ s.t. T(P ′), π◦[j′..] |= Ψ2 and π◦[j′] = (π[j])◦,
and ii) for every k, j ≤ k ≤ i, there is an index k′ s.t. T(P ′), π◦[k′..] |= Ψ1 and π◦[k′] =
(π[k])◦. For every such k, every state between (π[k])◦ and (π[k + 1])◦ in π◦ must satisfy
Ae(ae). As a consequence, we obtain π◦[i′] |= (Ae(ae)∨Ψ◦1)U(¬Ae(ae)∧Ψ◦2) = Ψ◦, where
π◦[i′] = (π[i])◦. The other direction is shown correspondingly.

5. Assume Ψ is of the form EΨ1. We again show only one direction of the proof, the other
direction is shown accordingly. If T(P), π[i] |= EΨ1, then there exists some path π2 in
T(P) s.t. π[..i] = π2[..i] and T(P), π2[i..] |= Ψ1. By the inductive hypothesis, there
then exists a path π◦2 and an index j s.t. π◦2 [j] = (π2[j])◦ and T(P ′), π◦2 |= Ψ◦1. As
observed above, we have T(P ′), π◦2 |= G(Ae(ae) ∨ Ψ1), and consequently, T(P ′), π◦2 [j] |=
E(G(Ae(ae) ∨Ψ1) ∧ (Ae(ae) U Ψ◦)) = Ψ◦.

It follows that T(P ′), q◦−1 |= Φ′, and that Φ′ is satisfiable in P ′.

Lemma 24. If Φ′ is satisfiable by P ′, then Φ is satisfiable by P.

Proof. Assume Φ′ is satisfiable by P ′. There then exists some initial state q0 = (I0, 〈〉, δ′) ∈ IP′
s.t. T(P ′), q0 |= Φ′.

We first show that the interpretations I reachable by q0 interpret the fresh concept names AD
correctly, provided that I |= ψ1.
Claim 25. For every q = (I, σ, δ) ∈ QP′ s.t. q0 ↪→P′∗ q and T(P ′), q |= ψ1, and for every
introduced concept name AD, we have AI

D
= (¬C)I .

Proof of claim. Let q = (I, σ, δ) be as in the claim. Since δ′ starts with the test ψ2, we
have I0 |= ψ2, and SI0D = ∅ for every introduced concept name SD. Because α is the first
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executed action, there is exactly one state q1 s.t. q0 ↪→P′ q1, for which we have q1 = (I1, α, δ
†).

Furthermore, aI1D and aI1
D
, are the only domain elements in SI1D . Since no other action in P ′

modifies the interpretation of SD, this is also the case for I, that is, SID = {aID, aID}.

Let d ∈ ∆Ii and let AD be an introduced concept name. We show that then, d ∈ AIi
D

iff
d ∈ (¬D)Ii . We first argue that, for every introduced concept name AD and every domain
element d ∈ ∆I , d satisfies either D† or AD. Because > v ∃ra.SD ∈ ψ1 and I |= ψ1, d must
have an ra-successor d2 in I s.t. d2 ∈ SID. For d2, there are exactly two possibilities.

1. d2 = aI
D
. Because ψ1 contains the axiom ∃ra.{aD} v AD, this implies that d ∈ AI

D
.

2. d2 = aID. Because ψ1 contains the axiom ∃ra.{aD} v D†, this implies that d ∈ (D†)I .

Since Ii |= ADuD† v ⊥, only one of the last two cases is possible. It follows that every domain
element d ∈ ∆Ii is either in (D†)Ii or in AIi

D
. From here it follows by structural induction

on the concept D that for every every d ∈ ∆Ii , d ∈ AIi
D

implies d ∈ (¬D)Ii , and d ∈ (D†)Ii

implies d ∈ DI2 . End of proof of claim.

As a consequence of the claim, we have for q ∈ QP′ s.t. q0 ↪→P′ q and T(P ′), q0 |= ψ1, that for
every axiom C v D occurring in the input, T(P ′), q |= C v D iff T(P ′), q |= C† v D†.

To show that Φ is satisfiable by P, we first provide translations from paths π in T(P ′) to paths
π′ in T(P). We first remove states that have no corresponding state in P. From π, we obtain
π1 by removing the first state and every state π[i] s.t. T(P ′), π[i] |= Ae(ae). To make sure that
the states appear in T(P), we further have to adapt the state descriptions. From π1, we obtain
πt by replacing each state (I, σ, δ1) by (I, σ′, δ′1), where

• σ′ is obtained from σ by removing every action introduced to an introduced name (those
are the initial action αs, as well as the actions αa,D, αa,D modifying the interpretation of
the introduced concept names AD), and

• δ′1 is obtained from δ1 by replacing α+
e , α−e and (αCi,di | αCi,di) by 〈〉, replacing every

axiom C† v D† by C v D and replacing every axiom C†(a) by C(a).

Note that the transformation on δ effectively undoes our transformation ·◦, so that for πt[i] =
(I, σ′, δ), we have π1[i] = (I, σ, δ◦).

Using our claim, it is now standard to verify that for every path π in T(P ′) s.t π[0] = q0 and
T(P ′), π |= G(Ae(ae) ∨ ψ2), πt is a path in T(P) (we only replaced axioms in the tests by equi-
satisfiable axioms, and omitted all actions that modify the introduced concept names). Note
that the query Φ′ only refers to paths that satisfy this property.

Now let q1 be the first state reached from q0, that is, q0 ↪→P′ q1, and q◦1 be the transformation of
q1 according to the above construction. Note that q1 is the first state in any path πt constructed
from π with π[0] = q0. Furthermore, every path π in T(P) is such that π = π′t for some path
π′ in T(P ′) s.t. π′[0] = q0 and T(P ′), π′ |= G(Ae(ae) ∨ ψ1).

In order to show that Φ is satifiable in P, we show that P, q◦1 |= Φ. For this, we proceed by
structural induction on Φ. Specifically, we show that for every path πt in T(P ′) s.t. πt[0] = q1,
every subformula Ψ of Φ, and every index i ≥ 0, that T(P), πt[i] |= Ψ iff T(P), π[j] |= Ψ◦ for
some j > 0 with (π[j])◦ = πt[i], and T(P), πt[i..] |= Ψ iff T(P), π[j..] |= Ψ◦ for some j > 0 with
(π[j])◦ = πt[i].

1. If Ψ is of the form C v D, then πt[i] |= C v D iff π[j] |= C† v D† by our claim.
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2. If Ψ is of the form C(a), then πt[i] |= C(a) iff π[j] |= C†(a) by our claim.

3. If Ψ is of one of the forms ¬Ψ′ and Ψ1 ∧Ψ2, then πt[i] |= Ψ iff π[j] |= Ψ◦ by the inductive
hypothesis.

4. If Ψ is of the form XΨ′, then Ψ◦ = X(Ae(ae) U Ψ◦). Since πt is obtained from π by
removing all states q s.t. q |= Ae(ae), πt[i] |= Ψ iff π[j] |= Ψ◦ by the inductive hypothesis.

5. If Ψ is of the form Ψ1 UΨ2, then Ψ◦ = (Ae(ae)∨Ψ◦1 U(¬Ae(ae)∧Ψ◦2). Since πt is obtained
from π by removing all states q s.t. q |= Ae(ae), πt[i] |= Ψ iff π[j] |= Ψ◦ by the inductive
hypothesis.

6. If Ψ is of the form EΨ1, note that every path πt in T(P) with πt[0] = q◦1 corresponds to
a path π in T(P ′) with T(P ′), π |= G(Ae(ae) ∨ ψ1). Correspondingly, there exists a path
π′t with π′t[i] |= Ψ iff π′[j] |= Ψ◦ by the inductive hypothesis.

We establish that T(P ′), q0 |= Φ′ iff T(P), q◦1 |= Φ, and hence, since T(P ′), q0 |= Φ′, T(P), q◦1 |=
Φ. Consequently Φ is satisfiable in P.

Since we can reduce satisfiability in programs over ALCO to satisfiability over programs in
ELO⊥, the lower bounsd for ALCO directly transfer to ELO⊥.

Theorem 26. Verifying ELO⊥-CTL formulae for ELO⊥-ConGolog programs is 2ExpTime-
hard.

We remark that our lower bound already applies to the less expressive DL EL⊥, which prohibits
the nominal operator {a}, because this operator can be straight-forwardly simulated in our
framework: for this, one simply replaces each occurrence of {a} by a fresh concept name Aa,
and uses an action to add a as single named individual to the extension of Aa. This is also
the reason why all logics considered in this paper support nominals. We note that the bottom
operator ⊥ is usually harmless with respect to complexity in EL [2], however needed for our
reduction. It is open whether we can obtain the same complexity results also for EL, in which
the bottom operator cannot be expressed.

6 Upper Bounds

We show that the lower bounds established in the last sections are indeed tight even for timed
ConGolog programs and properties expressed in TCTL∗, by presenting a decision procedure for
the satisfiability problem.

As in the last sections, it is more convenient to focus on the problem of satisfiability rather
than approaching verification directly. Given a program P and a model I of the initial KB K,
let

T(P, I) = (QP,I , IP,I = {〈I, 〈〉, δ〉}, ↪→P,I , λP,I)

be the first-order TTS induced by P restricted to states reachable from the initial state 〈I, 〈〉, δ〉.
To show that a TCTL∗-formula Φ is satisfiable in the timed program P, one has to find some
model I of the initial KB such that T(P, I) |= Φ. A key idea of our method is to provide for a
sufficient abstraction of I and all states in T(P, I). We call this abstraction dynamic type. Based
on the dynamic type, we can construct a propositional abstraction of the TTS of exponential
size, on which we can then evaluate a propositional abstraction of the TCTL∗-formula Φ.

Let us define these dynamic types first. The intuition is that, for a fixed initial interpretation I,
all interpretations that occur in T(P, I) can be identified by the effects applied on them. The
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dynamic type connects these effects with the relevant axioms that should be entailed or not
entailed in the interpretation obtained by applying these effects.

Let P be a program over the action theory Σ = (K,Act,Eff,Dur) and Φ be a TCTL∗-formula.
The context CP of P contains all axioms α occurring in P, K, and as precondition in Eff, as
well as their negation ¬α. Note that we can assume wlog. that ϕ contains only axioms that
also occur in P (if not, we simply add them in the form of tautogical tests). The set of relevant
effects is given by Lit(Σ) := {l | Φ . l ∈ Eff(α), α ∈ Act}. A dynamic type for P is now a set
t ⊆ CP × 2Lit(Σ). A dynamic type t is realisable if there exists a model I of the initial KB K s.t.
for every (ψ, L) ∈ t, IL |= ψ. We then say that I realises t. Note that for every model I of the
initial KB K, there exists a dynamic type t that is realised by I, which can be obtained from
I by simply collecting all elements (ψ, L) ∈ CP × 2Lit(Σ) s.t. IL |= ψ.

Realisability of dynamic types t can be decided by constructing a reduction KB Kt as described
in [5], which is satisfiable iff t is realisable. For each name X ∈ NC∪NR and effect set L ⊆ Lit(Σ),
Kt uses a fresh name X(L) to represent the interpretation of X in IL. Though [5] describe this
approach only for ALCO, careful inspection of the proofs show that the same reduction can
be used to decide realisability of dynamic types for the more expressive DLs considered here.
The reduction KB is exponential in the size of the program. Since satisfiability of KBs is in
ExpTime for L ∈ {ALCIO,ALCQO}, and in N2ExpTime for L = ALCQIO, we obtain the
following lemma.

Lemma 27. Let L be a DL and P an L-ConGolog program. Then, realisability of dynamic
types for P can be decided in 2ExpTime for L ∈ {ALCIO,ALCQO} and in N2ExpTime for
L = ALCQIO.

Based on a dynamic type t realised by I, we can construct a propositional TTS P(t) which is
bisimular to the first-order TTS T(P, I). We use a mapping ιC : CK,Φ → AP that maps each
context element to a propositional symbol. Every state in T(P, I) is of the form (IL, σ, δ′) for
some L ⊆ Lit(Σ), and has a corresponding state in P(t) which is of the form (L, δ′). The labelling
function λ ofP(t) maps each state (L, δ′) to the set {ιC(α) | (C v D, L) ∈ t}∪{¬ιC(α) | (¬α, L) ∈
t}, to allow for propositional verification based on the axioms entailed in the corresponding
interpretation IL. From Φ, we obtain ιC(Φ) by replacing every axiom α by ιC(α).

Before we prove formally that this reduction works, we introduce some more terminology. To
get a better handle on which actions are executed next from a program sequence, we introduce
the notions of a guarded action and of the head of a program sequence.

Definition 28. A program expression over some Σ = (K,Act,Eff,Dur) is called guarded action
if it is of the form

ψ1?; (ψ2?; (. . . ; (ψn?;α))),

where α ∈ Act, n ≥ 0 and each ψi? for i = 1, · · · , n is a test. We will often use the symbol a
to denote a guarded action. If n = 0, then the guarded action is actually an ordinary ground
action, and thus a may also denote a ground action. The preceding sequence of tests is called
guard. When writing a guarded action we will often omit the parentheses.

Let I be an interpretation. The guarded action ψ1?; · · · ;ψn?;α is executable in I iff

I |= ψi for all i = 1, . . . , n.

N

Next, we introduce the function head(·) to denote the head of a program. Intuitively, head(δ)
contains those guarded actions that can be executed first when executing the program expression
δ. The function head(·) is formally defined as follows.
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head(〈〉) := {ε};
head(α) := {α} for all α ∈ Act;

head(ψ?) := {ψ?; ε};
head(δ∗) := {ε} ∪ head(δ);

head(δ1; δ2) := {a | a = ψ1?; ...;ψn?;α ∈ head(δ1) ∧ α 6= ε} ∪
{ψ1?; . . . ;ψn?; a | ψ1?; ...;ψn?; ε ∈ head(δ1) ∧ a ∈ head(δ2)};

head(δ1|δ2) := head(δ1) ∪ head(δ2);

head(δ1‖δ2) := {a | a = ψ1?; . . . ;ψn?;α ∈ head(δi) ∧ i ∈ {1, 2} ∧ α 6= ε} ∪
{ψ1?; . . . ;ψn?; a | ψ1?; . . . ;ψn?; ε ∈ head(δi) ∧

a ∈ head(δj) ∧ i, j ∈ {1, 2}, i 6= j};

Figure 3: Head of a program expression

Definition 29. The function head(·) maps a program expression to a set of guarded actions.
It is defined by induction on the structure of program expressions as given in Figure 3. N

The empty program represents the final state which means that εis executed next. Since tests
do not cause a separate execution step, the head of a test is given by the termination action
ε preceded by the test itself as a guard. Executing δ∗ means executing δ zero ore more times.
Hence, the head of δ∗ consists of the termination action ε and the heads of δ. Consider the
definition of head(δ1; δ2). In this case, we first have to execute the program δ1. Therefore,
the first guarded action to be executed for the sequence is one of the heads of δ1. However, if
ψ1?; . . . ;ψn?; ε is contained in the head of δ1, then δ1 can terminate successfully if the tests are
satisfied. But in this case the subsequent program δ2 still needs to be executed. Therefore, we
must continue with a head of δ2. This is achieved by replacing ε in ψ1?; · · · ;ψn?; ε with a head
of δ2. Our definition of head(δ1‖δ2) can be explained in a similar way. To do δ1|δ2 a head of δ1
or one of δ2 has to be done in the next step.

Next, we introduce static types, which in contrast to dynamic types only capture the entailments
of a single interpretation, and the effects of applying a guarded action on them.

Definition 30 (Static types). A static type w.r.t. C is a maximal consistent subset of C. The
set of all static types w.r.t. C is denoted by SC . Let I be an interpretation. The static type of
I w.r.t. C, denoted by s-typeC(I), is given by

s-typeC(I) := {ψ ∈ C | I |= ψ}.

Let P = (Σ = (K,Act,Eff,Dur), δ) be a program, s ∈ SCP a static type, α ∈ Act and a =
ψ1?; · · · ;ψn?;α a guarded action with a ∈ head(δ′) for some δ′ ∈ sub(δ).

We define

Eff(s, α) := {l | ϕ . l ∈ Eff(α) and ϕ ∈ s}.

Furthermore, we say that a is executable in s iff ψi ∈ s for all i = 1, . . . , n. N

We have now all tools to formally define the propositional TTS P(t), which, based on t simulates
executions of P. To be able to work fully on the propositional level, we map elements in the
context to propositional symbols. Therefore, for a given context C, we fix a function ιC : C → AP
mapping each element of C to some propositional symbol AP.
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Definition 31 (Propositional TTS). Let P = (Σ = (K,Act,Eff,Dur), δ) be a program, and t
a dynamic type for P. The corresponding TTS over AP, denoted by P(t), is then defined as
follows.

P(t) = (S, J,=⇒, λ) with

• S := sub(δ)× 2Lit(Σ);

• J := {(δ, ∅)};

• it holds that (δ′, L′)
ρ

=⇒ (δ′′, L′′) for some states (δ′, L′), (δ′′, L′′) ∈ S and interval ρ iff
there exists a = ψ1?; · · · ;ψn?;α ∈ head(δ′) such that the following conditions are satisfied

– a is executable in the static type {ψ | (ψ, L′) ∈ t};
– δ′′ ∈ tail(a, δ′);

– L′′ = L′ 1 Eff({ψ | (ψ, L′) ∈ t}, α) and

– ρ = Dur(α);

• λ : (δ′, L′) 7→ {ιCP (ψ) | (ψ, L′) ∈ t} for all (δ′, L′) ∈ S.

N

To be able to describe whether P(t) and T(P, I) behave “similar”, we next define the notion
of bisimulation between a first-order TTS and a propositional TTS formally. Our notion of
bisimulation depends on a given context C, which specifies which entailments in a first-order
interpretations are relevant for us. These entailments have to be mapped to corresponding
propositional labels in the propositional TTS, based on the mapping ιC .

Definition 32 (Bisimulation). Let C be a context such that ιC has the range AP, T =
(QT, IT, ↪→T, λT) be a first-order TTS and P = (QP, IP, ↪→P, λP) a propositional TTS over
AP. A binary relation 'C ⊆ QT × QP is called C-bisimulation iff the following conditions are
satisfied:

• qT 'C qP implies λP(qP) = {ιC(ψ) | ψ ∈ s-typeC(I)}, where λT(qT) = I.

• If qT 'C qP and there is a transition qT
d
↪→T q

′
T, then there exists a transition qP

d
↪→P q′P

such that q′T 'C q′P.

• If qT 'C qP and there is a transition qP
d

↪→P q′P, then there exists a transition qT
d
↪→T q

′
T

such that q′T 'C q′P.

The relation 'C is extended to paths as follows. Let π be a path in T and p a path in P. We
write π 'C p iff π[i]'C p[i] for all i ≥ 0.

We say that T and P are C-bisimilar iff there exists a C-bisimulation 'C ⊆ QI ×QP such that

• for all qT ∈ IT there exists qP ∈ IP such that qT 'C qP and

• for all qP ∈ IP there exists qT ∈ IT such that qT 'C qP.

N
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Intuitively, if a propositional TTS P a first-order TTS T are bisimular, then every path in P
has a corresponding path in T and vice versa. Using this definition, it is standard to verify the
following lemma by structural induction on TCTL∗-formulae.

Lemma 33. Let C be a context, AP the range of ιC, T be a first-order TTS, P a propositional
TTS over AP such that there exists a C-bisimulation 'C ⊆ QT ×QP.

1. For every TCTL∗ state formula Φ that mentions only axioms from C, it holds that if
qT 'C qP for two states, then T, qT |= Φ iff P, qT |= ιC(Φ).

2. For every TCTL∗ path formula Ψ that mentions only axioms from C, it holds that if
πT 'C πP for two paths, then T, πT |= Ψ iff P, πT |= ιC(Ψ).

We have now all ingredients to show the key lemma of this section.

Lemma 34. Φ is satisfiable by P iff there exists a realisable dynamic type t for Ps.t. P(t) |=
ιCP (Φ).

Proof. We have to show that there exists a realisable dynamic type t for P and Φ s.t. P(t) |=
ιCP (Φ) iff there exists an initial state (I, 〈〉, δ) s.t. T(P), (I, 〈〉, δ) |= Φ. Specifically, we show
this for the case where I is the interpretation that realises t.

Let P = (Σ = (K,Act,Eff,Dur), δ) be a program I a model of K and t the dynamic type of
P that is realised by I. Further, let P(t) = (S, J,=⇒, λ) the propositional TTS corresponding
to t.

We define a binary relation 't ⊆ QP,I ×QP(t) by requiring

〈J , σ, δ′〉 't (δ′′, L) iff L = Eff(I, σ) and δ′′ = δ′.

It is standard to define by structural induction on the program sequence δ that 't is a bisimula-
tion between T(P) and P(t), and that indeed 〈J , σ, δ′〉 't (δ′′, L′′) iff J = IL. As consequence,
by Lemma 33, we obtain that T(P, I) |= Φ iff P(t) |= ιCP (Φ).

Since for every model I of K there exists a corresponding dynamic type t realised by I, and for
every realisable dynamic type t there exists a model I of K that realises t, we obtain that Φ is
satisfiable in P iff there exists a dynamic type t for P s.t. P(t) |= ιCP (Φ).

Using the fact that P(t) is exponential in the size of P, together with Lemma 27 and the lower
bounds established in the previous section, we can now establish the following theorem.

Theorem 35. The verification problem for L-TCTL∗-formulas and timed L-ConGolog pro-
grams is

• 2ExpTime-complete for L ∈ {ELO⊥,ALCO,ALCIO,ALCQO}, and

• coN2ExpTime-complete for L = ALCQIO.

Proof. The lower bounds have been established in the last section. For the upper bounds, we
notice that P(t) is exponential in size, and that verification of propositional TCTL∗-formulae
from propositional TTS is in ExpTime wrt. to the size of the TTS and in ExpSpace wrt.
the size of the formula [11]. Since P(t) is exponential in size wrt. P, and ιC(Φ) is linear in
size wrt. Φ, we can decide P(t) |= ιC(Φ) in 2ExpTime wrt. the size of P and Φ. Thus,
and by Lemma 27, deciding whether a given dynamic type t is realisable and witnesses the
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satisfiablity of Φ can be performed in 2ExpTime for L ∈ {ELO⊥,ALCO,ALCIO,ALCQO},
and in N2ExpTime for L = ALCQIO. We can thus decide satisfiability of Φ in P as follows.
For L = ALCQIO, we guess a dynamic type t and verify whether it witnesses the satisfiability
of Φ. For L ∈ {ELO⊥,ALCO,ALCIO,ALCQO}, we iterate over the double exponentially
many dynamic types t until we found one s.t. P(t) |= ιC(Φ). As satisfiability is complementary
to verification, we obtain the complexity results stated in the theorem.

7 Conclusion

The Golog family of programming languages is a powerful framework to model complex be-
hvaiour of agents based on the Situation Calculus. To allow for a more realistic modelling of
these actions, in timed ConGolog, actions are assigned durations of time they consume. As
with durations, time intervals become more prominent, temporal specifications for programs of
this form can be more accurately specified using metric temporal logics, such as the branching
time logics TCTL and TCTL∗.

We analysed the computational complexity of verifying TCTL formulae for timed ConGolog
programs over DL actions, covering the spectrum of description logics starting from the less
expressive ELO⊥ to expressive DLs such as ALCQIO, with complexities ranging from 2Exp-
Time to coN2ExpTime. While the focus of the paper is on timed ConGolog programs and
temporal properties in TCTL∗ and TCTL, our results also complete the picture for verifying
qualitative temporal properties over non-timed Golog programs, providing for the first time
tight bounds for these cases. An open question is whether complexities transfer to real life sit-
uations, or whether practical systems for the verification of discrete-timed Golog programs can
be implemented. Such an implementation could for example be based on the system presented
in [8], which implements verification of CTL properties over first-order formulas for (untimed)
first-order ConGolog programs based on Situation Calculus theories. Since this variant of the
verification problem is undecidable, the implementation cannot guarantee to terminate for any
given input. It would be interesting to investigate whether one can use the special properties
of DLs to obtain a system with better practical properties.

Complexity-wise, the picture of Golog programs over DL programs looks relatively complete.
However, there are various extensions and restrictions that might be interesting to investigate
in the future. Our results show that restricting the underlying DL to a tractable fragment has
no impact on the computational complexity compared to expressive DLs such as ALCIO and
ALCQO. The only way to allow for verification below 2ExpTime would therefore be to go to
an even less expressive DL such as DL-Lite, for which verification would almost resemble the
propositional case, or to restrict the operators allowed in the Golog programs and TCTL∗. Since
our reductions already apply to a relatively restricted fragment of both, it is not clear whether
such an investigation would result in a setting that is still useful for practical applications.

On the other hand, there are various ways in which our framework could be extended. For
example, one might consider operators in temporal properties to point into the past, and al-
lowing negative “durations” of actions. While this seems unnatural at first sight, there might
be applications where this is indeed useful: for example, if we are modelling energy levels of
a battery instead of the timeline, there could be actions that consume battery life, and other
actions (like recharging), which increase the battery life. This setup has been considered in the
context of weighted automata [15], where it was found that verifying LTL-formulae on weighted
automata with negative weights is undecidable. We conjecture that this undecidability result
can be transferred also to the timed L-ConGolog-programs if we allow for negative durations
of actions.
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