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Repairing Description Logic Ontologies by
Weakening Axioms

Franz Baader, Francesco Kriegel, Adrian Nuradiansyah,
Rafael Peñaloza

Abstract

The classical approach for repairing a Description Logic ontology O in
the sense of removing an unwanted consequence α is to delete a minimal
number of axioms from O such that the resulting ontology O′ does not have
the consequence α. However, the complete deletion of axioms may be too
rough, in the sense that it may also remove consequences that are actually
wanted. To alleviate this problem, we propose a more gentle way of repair
in which axioms are not necessarily deleted, but only weakened. On the one
hand, we investigate general properties of this gentle repair method. On
the other hand, we propose and analyze concrete approaches for weakening
axioms expressed in the Description Logic EL.

1 Introduction

Description logics (DLs) [2, 5] are a family of logic-based knowledge representation
formalisms, which are employed in various application domains, such as natural
language processing, configuration, databases, and bio-medical ontologies, but
their most notable success so far is the adoption of the DL-based language OWL1

as standard ontology language for the Semantic Web. As the size of DL-based
ontologies grows, tools that support improving the quality of such ontologies be-
come more important. DL reasoners2 can be used to detect inconsistencies and
to infer other implicit consequences, such as subsumption and instance relation-
ships. However, for the developer of a DL-based ontology, it is often quite hard
to understand why a consequence computed by the reasoner actually follows from
the knowledge base, and how to repair the ontology in case this consequence is
not intended.

Axiom pinpointing [22] was introduced to help developers or users of DL-based
ontologies understand the reasons why a certain consequence holds by computing

1see https://www.w3.org/TR/owl2-overview/ for its most recent edition OWL2.
2see http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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1 INTRODUCTION 2

so-called justifications, i.e., minimal subsets of the ontology that have the con-
sequence in question. Black-box approaches for computing justifications such as
[23, 14, 8] use repeated calls of existing highly-optimized DL reasoners for this
purpose, but it may be necessary to call the reasoner an exponential number
of times. In contrast, glass-box approaches such as [3, 22, 20, 18] compute all
justifications by a single run of a modified, but usually less efficient reasoner.

Given all justifications of an unwanted consequence, one can then repair the
ontology by removing one axiom from each justification. However, removing
complete axioms may also eliminate consequences that are actually wanted. For
example, assume that our ontology contains the following terminological axioms:

Prof v ∃employed .Uni u ∃enrolled .Uni ,
∃enrolled .Uni v Studi .

These two axioms are a justification for the incorrect consequence that professors
are students. While the first axiom is the culprit, removing it completely would
also remove the correct consequence that professors are employed by a university.
Thus, it would be more appropriate to replace the first axiom by the weaker axiom
Prof v ∃employed .Uni . This is the basic idea underlying our gentle repair ap-
proach. In general, in this approach we weaken one axiom from each justification
such that the modified justifications no longer have the consequence.

Approaches for repairing ontologies while keeping more consequences than the
classical approach based on completely removing axioms have already been con-
sidered in the literature. On the one hand, there are approaches that first modify
the given ontology, and then repair this modified ontology using the classical ap-
proach. In [13], a specific syntactic structural transformation is applied to the
axioms in an ontology, which replaces them by sets of logically weaker axioms.
More recently, the authors of [11] have generalized this idea by allowing for differ-
ent specifications of the structural transformation of axioms. They also introduce
a specific structural transformation that is based on specializing left-hand sides
and generalizing right-hand sides of axioms in a way that ensures finiteness of the
obtained set of axioms. Closer to our gentle repair approach is the one in [16],
which adapts the tracing technique from [4] to identify not only the axioms that
cause a consequence, but also the parts of these axioms that are actively involved
in deriving the consequence. This provides them with information for how to
weaken these axioms. In [24], repairs are computed by weakening axioms with
the help of refinement operators that were originally introduced for the purpose
of concept learning [17].

In this paper, we will introduce a general framework for repairing ontologies based
on axiom weakening. This framework is independent of the concrete method
employed for weakening axioms and of the concrete ontology language used to
write axiom. It only assumes that ontologies are finite sets of axioms, that there
is a monotonic consequence operator defining which axiom follows from which,
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and that weaker axioms have less consequences. However, all our examples will
consider ontologies expressed in the light-weight DL EL. Our first important
result is that, in general, the gentle repair approach needs to be iterated, i.e.,
applying it once does not necessarily remove the consequence. This problem has
actually been overlooked in [16], which means that their approach does not always
yield a repair. Our second result is that at most exponentially many iterations are
always sufficient to reach a repair. The authors of [24] had already realized that
iteration is needed, but they did not give an example explicitly demonstrating
this, and they had no termination proof. Instead of allowing for arbitrary ways of
weakening axioms, we then introduce the notion of a weakening relation, which
restricts the way in which axioms can be weakened. Subsequently, we define
conditions on such weakening relations that equip the gentle repair approach with
better algorithmic properties if they are satisfied. Finally, we address the task of
defining specific weakening relations for the DL EL. After showing that two quite
large such relations do not behave well, we introduce two restricted relations,
which are based on generalizing the right-hand sides of axioms semantically or
syntactically. Both of them satisfy most of our conditions, but from a complexity
point of view the syntactic variant behaves considerably better.

2 Basic definitions

In the first part of this section, we introduce basic notions from DLs to provide
us with concrete examples for how ontologies and their axioms may look like. In
the second part, we provide basic definitions regarding the repair of ontologies,
which are independent of the ontology language these ontologies are written in.
However, the concrete examples given there are drawn from DL-based ontologies.

2.1 Description Logics

A wide range of DLs of different expressive power haven been investigated in the
literature. Here, we only introduce the DL EL, for which reasoning is tractable [9].

Let NC and NR be mutually disjoint sets of concept and role names, respectively.
Then EL concepts over these names are constructed through the grammar rule

C ::= A | > | C u C | ∃r.C,

where A ∈ NC and r ∈ NR, i.e., the DL EL has the concept constructors > (top
concept), u (conjunction), and ∃r.C (existential restriction). The size of an EL
concept C is the number of occurrences of > as well as concept and role names
in C, and its role depth is the maximal nesting of existential restrictions. If S is
a finite set of EL concepts, then we denote the conjunction of these concepts asd
S.
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Knowledge is represented using appropriate axioms formulated using concepts,
role names and an additional set of individual names NI . An EL axiom is either
a GCI of the form C v D with C,D concepts, or an assertion, which is of the
form C(a) (concept assertion) or r(a, b) (role assertion), with a, b ∈ NI , r ∈ NR,
and C a concept. A finite set of GCIs is called a TBox ; a finite set of assertions
is an ABox. An ontology is a finite set of axioms.

The semantics of EL is defined using interpretations I = (∆I , ·I), where ∆I is
a non-empty set, called the domain, and ·I is the interpretation function, which
maps every a ∈ NI to an element aI ∈ ∆I , every A ∈ NC to a set AI ⊆ ∆I , and
every r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I
is extended to arbitrary EL concepts by setting >I := ∆I , (C uD)I := CI ∩DI ,
and (∃r.C)I := {δ ∈ ∆I | ∃η ∈ CI .(δ, η) ∈ rI}.

The interpretation I satisfies the GCI C v D if CI ⊆ DI ; it satisfies the assertion
C(a) and r(a, b), if aI ∈ CI and (aI , bI) ∈ rI , respectively. It is a model of the
TBox T , the ABox A, and the ontology O, if it satisfies all the axioms in T , A,
and O, respectively. Given an ontology O, and an axiom α, we say that α is a
consequence of O (or that O entails α) if every model of O satisfies α. In this
case, we write O |= α. The set of all consequences of O is denoted by Con(O).
As shown in [9], consequences in EL can be decided in polynomial time. We say
that the two axioms γ, δ are equivalent if Con({γ}) = Con({δ}).

A tautology is an axiom α such that ∅ |= α, where ∅ is the ontology that contains
no axioms. For example, GCIs of the form C v > and C v C, and assertions of
the form >(a) are tautologies. We write C v∅ D to indicate that the GCI C v D
is a tautology. In this case we say that C is subsumed by D. We say that the
concepts C,D are equivalent (written C ≡∅ D) if C v∅ D and D v∅ C; and that
C is strictly subsumed by D (written C @∅ D) if C v∅ D and C 6≡∅ D.

The following recursive characterization of the subsumption relation v∅ has been
proved in [6].

Lemma 1. Let C,D be two EL concepts such that

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn,

and A1, . . . , Ak, B1, . . . , B` ∈ NC. Then C v∅ D iff {B1, . . . , B`} ⊆ {A1, . . . , Ak}
and for every j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such that ri = sj and
Ci v∅ Dj.

2.2 Repairing Ontologies

For the purpose of this subsection and also large parts of the rest of this paper,
we leave it open what sort of axioms and ontologies are allowed in general, but we
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draw our examples from EL ontologies. We only assume that there is a monotonic
consequence relation O |= α between ontologies (i.e., finite sets of axioms) and
axioms, and that Con(O) consists of all consequences of O.

Assume in the following that the ontology O = Os ∪Or is the disjoint union of
a static ontology Os and a refutable ontology Or. When repairing the ontology,
only the refutable part may be changed. For example, the static part of the
ontology could be a carefully hand-crafted TBox whereas the refutable part is
an ABox that is automatically generated from (possibly erroneous) data. It may
also make sense to classify parts of a TBox as refutable, for example if the TBox
is obtained as a combination of ontologies from different sources, some of which
may be less trustworthy than others. In a privacy application [10, 1], it may be
the case that parts of the ontology are publicly known whereas other parts are
hidden. In this setting, in order to hide critical information, it only makes sense
to change the hidden part of the ontology.

Definition 2. Let O = Os ∪ Or be an ontology consisting of a static and a
refutable part, and α an axiom such that O |= α and Os 6|= α. The ontology O′

is a repair of O w.r.t. α if

Con(Os ∪O′) ⊆ Con(O) \ {α}.

The repair O′ is an optimal repair of O w.r.t. α if there is no repair O′′ of O w.r.t.
α with Con(Os ∪O′) ⊂ Con(Os ∪O′′). The repair O′ is a classical repair of O
w.r.t. α if O′ ⊂ Or, and it is an optimal classical repair of O w.r.t. α if there is
no classical repair O′′ of O w.r.t. α such that O′ ⊂ O′′.

The condition Os 6|= α ensures that O does have a repair w.r.t. α since obviously
the empty ontology ∅ is such a repair. In general, optimal repairs need not exist.

Proposition 3. There is an EL ontology O = Os ∪Or and an EL axiom α such
that O does not have an optimal repair w.r.t. α.

Proof. We set α := A(a), Os := T , and Or := A where

T := {A v ∃r.A, ∃r.A v A} and A := {A(a)}.

To show that there is no optimal repair of O w.r.t. α, we consider an arbitrary
repair O′ and show that it cannot be optimal. Thus, let O′ be such that

Con(T ∪O′) ⊆ Con(O) \ {A(a)}.

Without loss of generality we assume that O′ contains assertions only. In fact, if
O′ contains a GCI that does not follow from T , then Con(T ∪ O′) 6⊆ Con(O).
This is an easy consequence of the fact that, in EL, a GCI follows from a TBox
together with an ABox iff it follows from the TBox alone. It is also easy to see
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that O′ cannot contain role assertions since no such assertions are entailed by O.
In addition, concept assertions following from T ∪O′ must have a specific form.

Claim: If the assertion C(a) is in Con(T ∪O′), then C does not contain A.

Proof of claim. By induction on the role depth n of C.
Base case: If n = 0 and A is contained in C, then A is a conjunct of C and thus
C(a) ∈ Con(T ∪O′) implies A(a) ∈ Con(T ∪O′), which is a contradiction.
Step case: If n > 0 and A occurs at role depth n in C, then C(a) ∈ Con(T ∪O′)
implies that there are roles r1, . . . , rn such that (∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪O′).
Since Con(T ∪ O′) ⊆ Con(O), this can only be the case if r1 = . . . = rn = r
since O clearly has models in which all roles different from r are empty. Since
T contains the GCI ∃r.A v A and rn = r, (∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪ O′)
implies (∃r1. · · · ∃rn−1.A)(a) ∈ Con(T ∪O′). Induction now yields that this is not
possible, which completes the proof of the claim.

Furthermore, as argued in the proof of the claim, any assertion belonging to
Con(O) cannot contain roles other than r. The same is true for concept names
different from A. Consequently, all assertions C(a) ∈ Con(T ∪O′) are such that
C is built using r and > only. Any such concept C is equivalent to a concept of
the form (∃r.)n>.

Since O′ is finite, there is a maximal n0 such that ((∃r.)n0>)(a) ∈ O′, but
((∃r.)n>)(a) 6∈ O′ for all n > n0. Since (∃r.)n> v (∃r.)m> if m ≤ n, we
can assume without loss of generality that O′ = {((∃r.)n0>)(a)}. We claim that
((∃r.)n>)(a) 6∈ Con(T ∪O′) if n > n0. To this purpose, we construct a model I
of T ∪O′ such that aI 6∈ ((∃r.)n>)I . This model is defined as follows:

∆I = {d0, d1, . . . , dn0},
rI = {(di−1, di) | 1 ≤ i ≤ n0},
AI = ∅,
aI = d0.

Clearly, I is a model of O′, and it does not satisfy ((∃r.)n>)(a) if n > n0. In
addition, it is a model of T since AI = (∃r.A)I = ∅.

Consequently, if we choose n such that n > n0 and define O′′ := {((∃r.)n>)(a)},
then Con(T ∪O′) ⊂ Con(T ∪O′′). In addition, Con(T ∪O′′) ⊆ Con(O)\{A(a)},
i.e., O′′ is a repair. This shows that O′ is not optimal. Since we have chosen O′

to be an arbitrary repair, this shows that there cannot be an optimal repair.

In contrast, optimal classical repairs always exist. One approach for computing
such a repair uses justifications and hitting sets [21].

Definition 4. Let O = Os∪Or be an ontology and α an axiom such that O |= α
and Os 6|= α. A justification for α in O is a minimal subset J of Or such that
Os ∪ J |= α. Given justifications J1, . . . , Jk for α in O, a hitting set of these
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justifications is a set H of axioms such that H ∩ Ji 6= ∅ for i = 1, . . . , k. This
hitting set is minimal if there is no other hitting set strictly contained in it.

Note that the condition Os 6|= α implies that justifications are non-empty. Con-
sequently, hitting sets and thus minimal hitting sets always exist.

The algorithm for computing an optimal classical repair of O w.r.t. α proceeds in
two steps: (i) compute all justifications J1, . . . , Jk for α in O; and then (ii) com-
pute a minimal hitting set H of J1, . . . , Jk and remove the elements of H from
Or, i.e., output O′ = Or \H.

It is not hard to see that, independently of the choice of the hitting set, this
algorithm produces an optimal classical repair. Conversely, all optimal classical
repairs can be generated this way by going through all hitting sets.

3 Gentle Repairs

Instead of removing axioms completely, as in the case of a classical repair, a gentle
repair replaces them by weaker axioms.

Definition 5. Let β, γ be two axioms. We say that γ is weaker than β if
Con({γ}) ⊂ Con({β}).

Alternatively, we could have introduced weaker w.r.t the strict part of the on-
tology, by requiring Con(Os ∪ {γ}) ⊂ Con(Os ∪ {β}).3 In this paper, we will
not consider this alternative definition, although most of the results in this sec-
tion would also hold w.r.t. it (e.g., Theorem 7). The difference between the two
definitions is, however, relevant in the next section, where we consider concrete
approaches for how to weaken axioms. In the case where the whole ontology is
refutable, there is of course no difference between the two definitions.

Obviously, the weaker-than relation from Definition 5 is transitive, i.e., if α is
weaker than β and β is weaker than γ, then α is also weaker than γ. In addition,
a tautology is always weaker than a non-tautology. Replacing an axiom by a tau-
tology is obviously the same as removing this axiom. We assume in the following
that there exist tautological axioms, which is obviously true for description logics
such as EL.

Gentle repair algorithm: we still compute all justifications J1, . . . , Jk for α
in O and a minimal hitting set H of J1, . . . , Jk. But instead of removing the
elements of H from Or, we replace them by weaker axioms. To be more precise,

3Defining weaker w.r.t the whole ontology O does not make sense since this ontology is
possibly erroneous.
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if β ∈ H and Ji1 , . . . , Ji` are all the justifications containing β, then replace β by
a weaker axiom γ such that

Os ∪ (Jij \ {β}) ∪ {γ} 6|= α for j = 1, . . . , `. (1)

Note that such a weaker axiom γ always exists. In fact, we can choose a tautology
as the axiom γ. If γ is a tautology, then replacing β by γ is the same as removing
β. Thus, we have Os ∪ (Jij \ {β}) ∪ {γ} 6|= α due to the minimality of Jij . In
addition, minimality of Jij also implies that β is not a tautology since otherwise
Os ∪ (Jij \ {β}) would also have the consequence α. In general, different choices
of γ yield different runs of the algorithm.

In principle, the algorithm could always use a tautology γ, but then this run
would produce a classical repair. To obtain more gentle repairs, the algorithm
needs to use a strategy that chooses stronger axioms (i.e., axioms γ that are less
weak than tautologies) if possible. In contrast to what is claimed in the literature
(e.g. [16]), this approach does not necessarily yield a repair.

Lemma 6. Let O′ be the ontology obtained from Or by replacing all the elements
of the hitting set by weaker ones such that the condition (1) is satisfied. Then
Con(Os ∪O′) ⊆ Con(O), but in general we may still have α ∈ Con(Os ∪O′).

Proof. The definition of “weaker than” (see Definition 5) obviously implies that
Con(Os ∪O′) ⊆ Con(O).

We now give an example where this approach nevertheless does not produce a
repair. Let O = Os ∪ Or where Os = ∅ and Or = T ∪ A with T = {B v A}
and A = {(A u B)(a)}, and α be the consequence A(a). Then α has a single
justification J = {(AuB)(a)}, and thus H = {β = (AuB)(a)} is the only hitting
set. The assertion γ = B(a) is weaker than β and it satisfies (J \{β})∪{γ} 6|= α.
However, if we define O′ = (O \ {β}) ∪ {γ}, then O′ |= α still holds.

A similar example that uses only GCIs is the following, where now we consider
a refutable ontology O = Or = {C v A u B,B v A} and we assume that α is
the consequence C v A. Then α has a single justification J = {C v A u B}
and thus H = {β = C v A u B} is the only hitting set. The GCI γ = C v B
is a weaker than β and it satisfies (J \ {β}) ∪ {γ} 6|= α. However, if we define
O′ = (O \ {β}) ∪ {γ}, then O′ |= α.

These examples show that applying the gentle repair approach only once may
not lead to a repair. For this reason, we need to iterate this approach, i.e., if
the resulting ontology Os ∪ O′ still has α as a consequence, we again compute
all justifications and a hitting set for them, and then replace the elements of the
hitting set with weaker axioms as described above. This is iterated until a repair
is reached. We can show that this iteration indeed always terminates after finitely
many steps with a repair.
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Theorem 7. Let O(0) = O
(0)
s ∪O(0)

r be a finite ontology and α an axiom such that
O(0) |= α and O

(0)
s 6|= α. Applied to O(0) and α, the iterative algorithm described

above stops after a finite number of iterations that is at most exponential in the
cardinality of O(0)

r , and yields as output an ontology that is a repair of O(0)
s w.r.t.

the consequence α.

Proof. Assume that O
(0)
r contains n axioms, and that there is an infinite run

R of the algorithm on input O(0) and α. Take a bijection `0 between O
(0)
r and

{1, . . . , n} that assigns unique labels to axioms. Whenever we weaken an axiom
during a step of the run, the new weaker axiom inherits the label of the original
axiom. Thus, we have bijections `i : O

(i)
r → {1, . . . , n} for all ontologies O

(i)
r

considered during the run R of the algorithm. For i ≥ 0 we define

Si := {K ⊆ {1, . . . , n} |
Os ∪ {β ∈ O

(i)
r | `i(β) ∈ K} |= α},

i.e., Si contains all sets of indices such that the corresponding subset of O
(i)
r

together with Os has the consequence α.

We claim that Si+1 ⊂ Si. Note that Si+1 ⊆ Si is an immediate consequence of the
fact that `i(γ) = j = `i+1(γ

′) implies that γ = γ′ or γ′ is weaker than γ. Thus,
it remains to show that the inclusion is strict. This follows from the following
observations. Since the algorithm does not terminate with the ontology O

(i)
r , we

still have Os ∪O(i)
r |= α, and thus there is at least one justification ∅ ⊂ J ⊆ O

(i)
r .

Consequently, the hitting set H used in this step of the algorithm contains an
element β of O(i)

r . When going from O
(i)
r to O

(i+1)
r , β is replaced by a weaker

axiom β′ such that Os ∪ (J \ {β}) ∪ {β′} 6|= α. But then the set {`(γ) | γ ∈ J}
belongs to Si, but not to Si+1.

Since S0 contains only exponentially many sets, the strict inclusion Si+1 ⊂ Si can
happen only exponentially often, which contradicts our assumption that there is
an infinite run R of the algorithm on input O(0) and α. This shows termination
after exponentially many steps. However, if the algorithm terminates with output
O

(i)
r , then Os ∪ O

(i)
r 6|= α. In fact, otherwise, there would be a possibility to

weaken O
(i)
r into O

(i+1)
r since it would always be possible to replace the elements

of a hitting set by tautologies, i.e., perform a classical repair.

When computing a classical repair, considering all justifications and then remov-
ing a minimal hitting set of these justifications guarantees that one immediately
obtains a repair. We have seen in the proof of Lemma 6 that with our gentle
repair approach this need not be the case. Nevertheless, we were able to show
that, after a finite number of iterations of the approach, we obtain a repair. The
proof of termination actually shows that for this it is sufficient to weaken only one
axiom of one justification such that the resulting set is no longer a justification.
This motivates the following modification of our approach:
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Modified gentle repair algorithm: compute one justification J for α in O
and choose an axiom β ∈ J . Replace β by a weaker axiom γ such that

Os ∪ (J \ {β}) ∪ {γ} 6|= α. (2)

Clearly, one needs to iterate this approach, but it is easy to see that the termi-
nation argument used in the proof of Proposition 7 also applies here.

Corollary 8. Let O(0) = O
(0)
s ∪ O

(0)
r be a finite ontology and α an axiom such

that O(0) |= α and O
(0)
s 6|= α. Applied to O(0) and α, the modified iterative

algorithm stops after a finite number of iterations that is at most exponential in
the cardinality of O(0)

r , and yields as output an ontology Ôs that is a repair of
O

(0)
s w.r.t. α.

An important advantage of this modified approach is that the complexity of a
single iteration step may decrease considerably. For example, for the DL EL,
a single justification can be computed in polynomial time, while computing all
justifications may take exponential time [7]. In addition, to compute a minimal
hitting set one needs to solve an NP-complete problem [12] whereas choosing
one axiom from a single justification is easy. However, as usual, there is no free
lunch: we can show that the modified gentle repair algorithm may indeed need
exponentially many iteration steps.4

Proposition 9. There is a sequence of EL ontologies O(n) = O
(n)
s ∪ O

(n)
r with

O
(n)
s = ∅ and an EL axiom α such that the modified gentle repair algorithm applied

to O(n) and α has a run with exponentially many iterations in the size of O(n).

Proof. For n ≥ 1, consider the set of concept names I(n) = {Pi, Qi | 1 ≤ i ≤ n},
and define O(n) := O

(n)
r := T (n)

1 ∪ T (n)
2 , where

T (n)
1 := {A v ∃r.

d
I(n), ∃r.(Pn uQn) v B} ∪

{Pi uQi v Pi+1, Pi uQi v Qi+1 | 1 ≤ i < n},
T (n)
2 := {∃r.(X u Y ) v DXY , DXY uX v Y |

X ∈ {Pi, Qi}, Y ∈ {Pi+1, Qi+1}, 1 ≤ i < n} ∪
{∃r.P1 v P1, ∃r.Q1 v Q1, Pn v B, Qn v B}.

It is easy to see that the size of O(n) is polynomial in n and that O(n) |= A v B.
Suppose that we want to get rid of this consequence using the modified gentle
repair approach. First, we can find the justification

{A v ∃r.
l

I(n), ∃r.(Pn uQn) v B}.

We repair it by weakening the first axiom to

γ := A v ∃r.
l

(I(n) \ {Pn}) u ∃r.
l

(I(n) \ {Qn}).

4It is not clear yet whether this is also the case for the unmodified gentle repair algorithm.
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At this point, we can find a justification that uses γ and Pn−1 uQn−1 v Pn. We
further weaken γ to

A v ∃r.
d

(I(n) \ {Pn, Pn−1}) u
∃r.

d
(I(n) \ {Pn, Qn−1}) u ∃r.

d
(I(n) \ {Qn}).

Repeating this approach, after 2n weakenings we have only changed the first
axiom, weakening it to the axiom

A v
l

Xi∈{Pi,Qi},1≤i≤n

∃r.(X1 u · · · uXn), (3)

whose right-hand side is a conjunction with 2n conjuncts, each of them represent-
ing a possible choice of Pi or Qi at every location i, 1 ≤ i ≤ n.

So far, we have just considered axioms from T (n)
1 . Taking also axioms from T (n)

2

into account, we obtain for every conjunct ∃r.(X1 u · · · u Xn) in axiom (3) a
justification for A v B that consists of (3) and the axioms

{ ∃r.X1 v X1, Xn v B } ∪
{ ∃r.(Xi uXi+1) v DXiXi+1

, DXiXi+1
uXi v Xi+1 | 1 ≤ i < n }.

This justification can be removed by weakening (3) further by deleting one con-
cept name appearing in the conjunct. The justifications for other conjuncts are
not influenced by this modification. Thus, we can repeat this for each of the
exponentially many conjuncts, which shows that overall we have exponentially
many iterations of the modified gentle repair algorithm in this run.

3.1 Weakening Relations

In order to obtain better bounds on the number of iterations of our algorithms, we
restrict the way in which axioms can be weakened. Before introducing concrete
approaches for how to do this for EL axioms in the next section, we investigate
such restricted weakening relations in a more abstract setting.

Definition 10. Given a pre-order � (i.e., an irreflexive and transitive binary
relation) on axioms, we say that it

• is a weakening relation if β � γ implies that Con({γ}) ⊂ Con({β});

• is bounded (linear, polynomial) if, for every axiom α, there is a (linear,
polynomial) bound b(α) on the length of all �-chains issuing from α;

• is complete if, for any axiom β that is not a tautology, there is a tautology
γ such that β � γ.
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If we use a linear (polynomial) and complete weakening relation, then termination
with a repair is guaranteed after a linear (polynomial) number of iterations.

Proposition 11. Let � be a linear (polynomial) and complete weakening relation.
If in the above (modified) gentle repair algorithm we have β � γ whenever β is
replaced by γ, then the algorithm stops after a linear (polynomial) number of
iterations and yields as output an ontology that is a repair of O = Os ∪Or w.r.t.
the consequence α.

Proof. For every axiom β in Or we consider the length of the longest �-chain
issuing from it, and then sum up these numbers over all axioms in Or. The
resulting number is linearly (polynomially) bounded by the size of the ontology
(assuming that this size is given as sum of the sizes of all its axioms). Let us
call this number the chain-size of the ontology. Obviously, if β is replaced by β′
with β � β′, then the length of the longest �-chain issuing from β′ is smaller
than the length of the longest �-chain issuing from β. Consequently, if O(i+1)

r is
obtained from O

(i)
r in the i-th iteration of the algorithm, then the chain-size of

O
(i)
r is strictly larger than the chain-size of O(i+1)

r . This implies that there can be
only linearly (polynomially) many iterations.

Consider a terminating run of the algorithm that has produced the sequence of
ontologies Or = O

(0)
r ,O

(1)
r , . . . ,O

(n)
r . Then we have

Con(Os ∪Or) ⊇ Con(Os ∪O(1)
r ) ⊇ . . . ⊇ Con(Os ∪O(n)

r )

since � is a weakening relation. If the algorithm has terminated due to the fact
that α 6∈ Con(Os∪O(n)

r ), then O
(n)
r is a repair of O w.r.t. α. Otherwise, the only

reason for termination could be that, although α ∈ Con(Os∪O(n)
r ), the algorithm

cannot generate a new ontology O
(n+1)
r . In the unmodified gentle repair approach

this means that there is an axiom β in the hitting set H such that there is no
axiom γ with β � γ such that (1) is satisfied. However, using a tautology as
the axiom γ actually allows us to satisfy the condition (1). Thus, completeness
of � implies that this reason for termination without success cannot occur. An
analogous argument can be used for the modified gentle repair approach.

When describing our (modified) gentle repair algorithm, we have said that the
chosen axiom β needs to be replaced by a weaker axiom γ such that (1) or (2)
holds. But we have not said how such an axiom γ can be found. This of course
depends on which ontology language and which weakening relation is used. In
the abstract setting of this section, we assume that an “oracle” provides us with
a weaker axiom.

Definition 12. Let � be a weakening relation. An oracle for � is a computable
function W that, given an axiom β that is not �-minimal, provides us with an
axiom W (β) such that β � W (β). For �-minimal axioms β we assume that
W (β) = β.
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If the weakening relation is complete and well-founded (i.e., there are no infinite
descending �-chains β1 � β2 � β2 � · · · ), we can effectively find an axiom γ
such that (1) or (2) holds. We show this formally only for (2), but condition (1)
can be treated similarly.

Lemma 13. Assume that J is a justification for the consequence α, and β ∈ J .
If � is a well-founded and complete weakening relation and W is an oracle for
�, then there is an n ≥ 1 such that (2) holds for γ = W n(β). If � is additionally
linear (polynomial), then n is linear (polynomial) in the size of β.

Proof. Well-foundedness implies that the �-chain β � W (β) � W (W (β)) � . . .
is finite, and thus there is an n such that W n+1(β) = W n(β), i.e., W n(β) is �-
minimal. Since � is complete, this implies that W n(β) is a tautology. Minimality
of the justification J then yields Os∪(J \{β})∪{W n(β)} 6|= α. Linearity (polyno-
miality) of � ensures that the length of the �-chain β � W (β) � W (W (β)) � . . .
is linearly (polynomially) bounded by the size of β.

Thus, to find an axiom γ satisfying (1) or (2), we iteratively apply W to β until
an axiom satisfying the required property is found. The proof of Lemma 13 shows
that at the latest this is the case when a tautology is reached, but of course the
property may already be satisfied before that by a non-tautological axiom W i(β).

In order to weaken axioms as gently as possible, W should realize small weakening
steps. The smallest such step is one where there is no step in between.

Definition 14. Let � be a pre-order. The one-step relation5 induced by � is
defined as

�1 := {(β, γ) ∈ � | there is no δ such that β � δ � γ}.

We say that �1 covers � if its transitive closure is again �, i.e., �+
1 = �. In this

case we also say that � is one-step generated.

If � is one-step generated, then every weaker element can be reached by a finite
sequence of one-step weakenings, i.e., if β � γ, then there are finitely many
elements δ0, . . . , δn (n ≥ 1) such that β = δ0 �1 δ1 �1 . . . �1 δn = γ. This leads
us to the following characterization of pre-orders that are not one-step generated.

Lemma 15. The pre-order � is not one-step generated iff there exist two com-
parable elements β � γ such that every finite chain β = δ0 � δ1 � . . . � δn = γ
can be refined in the sense that there is an i, 0 ≤ i < n, and an element δ such
that δi � δ � δi+1.

If β � γ are such that any finite chain between them can be refined, then obviously
there cannot be an upper bound on the length of the chains issuing from β. Thus,
Lemma 15 implies the following result.

5This is sometimes also called the transitive reduction of �.
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Proposition 16. If � is bounded, then it is one-step generated.

The following example shows that well-founded pre-orders need not be one-step
generated.

Example 17. Consider the pre-order � on the set

P := {β} ∪ {δi | i ≥ 0},

where β � δi for all i ≥ 0, and δi � δj iff i > j. It is easy to see that � is well-
founded and that �1 = {(δi+1, δi) | i ≥ 0}. Consequently, �1

+ contains none of
the tuples (β, δi) for i ≥ 0, which shows that �1 does not cover �. In particular,
any finite chain between β and δi can be refined.

Interestingly, if we add elements γi (i ≥ 0) with β � γi � δi to this pre-order,
then it becomes one-step generated.

One-step generated weakening relations allow us to find maximally strong weaken-
ings satisfying (1) or (2). Again, we consider only condition (2), but all definitions
and results can be adapted to deal with (1) as well.

Definition 18. Let J be a justification for the consequence α, and β ∈ J . We
say that γ is a maximally strong weakening of β in J if Os∪ (J \ {β})∪{γ} 6|= α,
but Os ∪ (J \ {β}) ∪ {δ} |= α for all δ with β � δ � γ.

In general, maximally strong weakenings need not exist. As an example, assume
that the pre-order introduced in Example 17 (without the added axioms γi) is a
weakening relation on axioms, and assume that J = {β} and that none of the
axioms δi have the consequence. Obviously, in this situation there is no maximally
strong weakening of α in J .

Next, we introduce conditions under which maximally strong weakenings always
exist, and can also be computed. We say that the one-step generated weakening
relation � is effectively finitely branching if for every axiom β the set {γ | β �1 γ}
is finite and can effectively be computed.

Proposition 19. Let � be a well-founded, one-step generated, and effectively
finitely branching weakening relation and assume that the consequence relation |=
is decidable. Then all maximally strong weakenings of an axiom in a justification
can effectively be computed.

Proof. Let J be a justification for the consequence α, and β ∈ J . Since � is well-
founded, one-step generated, and finitely branching, König’s Lemma implies that
there are only finitely many γ such that β � γ, and all these γ can be reached
by following �1. Thus, by a breadth-first search, we can compute the set of all γ
such that there is a path β �1 δ1 �1 . . . �1 δn �1 γ with Os∪(J \{β})∪{γ} 6|= α,
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but Os∪ (J \{β})∪{δi} |= α for all i, 1 ≤ i ≤ n. If this set still contains elements
that are comparable w.r.t. � (i.e., there is a �1-path between them), then we
remove the weaker elements. It is easy to see that the remaining set consists of
all maximally strong weakenings of β in J .

Note that the additional removal of weaker elements in the above proof is really
necessary. In fact, assume that β �1 δ1 �1 γ and β �1 δ2 �1 γ, and that
Os∪(J \{β})∪{γ} 6|= α, Os∪(J \{β})∪{δ1} |= α, but Os∪(J \{β})∪{δ2} 6|= α.
Then both δ2 and γ belong to the set computed in the breadth-first search, but
only δ2 is a maximally strong weakening (see Example 29, where it is shown that
this situation can really occur when repairing EL ontologies).

In particular, this also means that iterated application of a one-step oracle, i.e.,
an oracle W satisfying β �1 W (β), does not necessarily yield a maximally strong
weakening.

4 Weakening Relations for EL Axioms

In this section, we restrict the attention to ontologies written in EL, but some of
our approaches and results could also be transferred to other DLs. We start with
observing that weakening relations for EL axioms need not be one-step generated.

Proposition 20. If we define β �g γ if Con(γ) ⊂ Con(β), then �g is a weakening
relation on EL axioms that is not one-step generated.

Proof. It is obvious that �g is a weakening relation.6 To see that it is not one-step
generated, consider a GCI β that is not a tautology and an arbitrary tautology γ.
Then we have β � γ. Let β = δ0 �g δ1 �g . . . �g δn = γ be a finite chain leading
from β to γ. Then δn−1 must be a GCI that is not a tautology. Assume that
δn−1 = C v D. Then δ := ∃r.C v ∃r.D satisfies δn−1 �g δ �g γ. By Lemma 15,
this shows that � is not one-step generated.

Our main idea for obtaining more well-behaved weakening relations is to weaken a
GCI C v D by generalizing the right-hand side D and/or by specializing the left-
hand side C. Similarly, a concept assertion D(a) can be weakened by generalizing
D. For role assertions we can use as weakening an arbitrary tautological axiom,
but will no longer consider them explicitly in the following.

Proposition 21. If we define

C v D �s C ′ v D′ if C ′ v∅ C, D v∅ D′ and {C ′ v D′} 6|= C v D,
D(a) �s D′(a) if D @∅ D′,

then �s is a complete weakening relation.
6In fact, it is the greatest one w.r.t. set inclusion.
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Proof. To prove that �s is a weakening relation we must show that β �s γ
implies Con({γ}) ⊂ Con({β}). If C ′ v∅ C and D v∅ D′ hold, then it follows
that Con({C ′ v D′}) ⊆ Con({C v D}) and Con({a : D′}) ⊆ Con({a : D}).
The second inclusion is strict iff D @∅ D′. For the first inclusion to be strict,
C ′ @∅ C or D @∅ D′ is a necessary condition, but it is not sufficient. This is
why we explicitly require {C ′ v D′} 6|= C v D, which yields strictness of the
inclusion. Completeness is trivial due to the availability of all tautologies of the
form C v > and >(a).

To see why, e.g., D @∅ D′ does not imply Con({C v D′}) ⊂ Con({C v D}),
notice that A u ∃r.A @∅ ∃r.A, but Con({A v ∃r.A}) = Con({A v A u ∃r.A}).

Unfortunately, the weakening relation �s introduced in Proposition 21 is not
well-founded since left-hand sides can be specialized indefinitely. For example,
we have > v A �s ∃r.> v A �s ∃r.∃r.> v A �s · · · . To avoid this problem, we
now restrict the attention to sub-relations of �s that only generalize the right-
hand sides of GCIs. We will not consider concept assertions, but they can be
treated similarly.

4.1 Generalizing the Right-Hand Sides of GCIs

We define

C v D �sub C ′ v D′ if C ′ = C and C v D �s C ′ v D′.

Theorem 22. The relation �sub on EL axiom is a well-founded, complete, and
one-step generated weakening relation, but it is not polynomial.

Proof. Proposition 21 implies that �sub is a weakening relation and completeness
follows from the fact that C v D �sub C v > whenever C v D is not a tautology.
In EL, the inverse subsumption relation is well-founded, i.e., there cannot be an
infinite sequence C0 @∅ C1 @∅ C2 @∅ . . . of EL concepts. Looking at the proof
of this result given in [6], one sees that it actually shows that @∅ is bounded.
Obviously, this implies that �sub is bounded as well, and thus one-step generated
by Proposition 16.

It remains to show that�sub is not polynomial. Let n ≥ 1 andNn := {A1, . . . , A2n}
be a set of 2n distinct concept names. Then we have

∃r.
l
Nn @∅

l

X⊆Nn∧|X|=n

∃r.
l
X.

Note that the size of ∃r.
d
Nn is linear in n, but that the conjunction on the right-

hand side of this strict subsumption consists of exponentially many concepts
∃r.

d
X that are incomparable w.r.t. subsumption. Consequently, by removing
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one conjunct at a time, we can generate an ascending chain w.r.t. @∅ of EL
concepts whose length is exponential in n. Using these concepts as right-hand
sides of GCIs with left-hand side B for a concept name B 6∈ Nn, we obtain an
exponentially long descending chain w.r.t. �sub .

To be able to apply Proposition 19, it remains to show that �sub is effectively
finitely branching. For this purpose, we first investigate the one-step relation @∅1
induced by @∅. Given an EL concept C, we want to characterize the set of its
upper neighbors

Upper(C) := {D | C @∅1 D},

and show that it can be computed in polynomial time.

In a first step, we reduce the concept C by exhaustively replacing subconcepts of
the form E u F with E v∅ F by E (modulo associativity and commutativity of
u). As shown in [15], this can be done in polynomial time, and two concepts C,D
are equivalent (i.e., C ≡∅ D) iff their reduced forms are equal up to associativity
and commutativity of u.

Definition 23. Given a reduced EL concept C, we define the set U(C) by in-
duction on the role depths of C. More precisely, U(C) consists of the concepts D
that can be obtained from C as follows:

• Remove a concept name A from the top-level conjunction of C.

• Remove an existential restriction ∃r.E from the top-level conjunction of
C, and replace it by the conjunction of all existential restrictions ∃r.F for
F ∈ U(E).

For example, if C = Au∃r.(B1uB2uB3), then U(C) consists of the two concepts
∃r.(B1 u B2 uB3) and A u ∃r.(B1 u B2) u ∃r.(B1 uB3) u ∃r.(B2 u B3).

We want to prove that Upper(C) = U(C). Obviously, this shows that Upper(C)
can be computed in time polynomial in the size of C. But first we we need to
show some technical lemmas.

Lemma 24. Let C be reduced and assume that D ∈ U(C). Then C @∅ D.

Proof. We prove the lemma by induction on the role depths of C. If D is obtained
from C by removing a concept name from the top-level conjunction of C, then
C @∅ D is an immediate consequence of Lemma 1.

Thus, assume that D is obtained from C by replacing an existential restriction
∃r.E from the top-level conjunction of C with the conjunction of all existential
restrictions ∃r.F for F ∈ U(E). Then induction yields E @∅ F for all F ∈ U(E).
Thus, C v∅ D is an immediate consequence of Lemma 1. Now, assume that
D v∅ C. By Lemma 1 this implies that there is an existential restriction ∃r.D′ in
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the top-level conjunction of D such that D′ v∅ E. Obviously, D′ 6∈ U(E) since
in that case we would have E @∅ D′. Thus, ∃r.D′ is an existential restriction
different from ∃r.E from the top-level conjunction of C. But then D′ v∅ E
contradicts our assumption that C is reduced. Thus, we have shown C @∅ D also
in this case.

Lemma 25. Let C be reduced and assume that C @∅ D. Then there is D′ ∈ U(C)
such that D′ v∅ D.

Proof. Again, we prove the lemma by induction on the role depths of C. Let
C = A1u. . .uAku∃r1.C1u. . .u∃rm.Cm andD = B1u. . .uB`u∃s1.D1u. . .u∃sn.Dn

for concept names A1, . . . , Ak, B1, . . . B`. Since C v∅ D, we know by Lemma 1
that {B1, . . . , B`} ⊆ {A1, . . . , Ak} and that for every j, 1 ≤ j ≤ n, there is
i, 1 ≤ i ≤ m such that ri = sj and Ci v∅ Dj.

Strictness of the subsumption relationship C @∅ D may be due to the fact that
{B1, . . . , B`} ⊂ {A1, . . . , Ak}. In this case, let A ∈ {A1, . . . , Ak} \ {B1, . . . , B`},
and let D′ be obtained from C by removing the concept name A from the top-level
conjunction of C. Then D′ ∈ U(C), and D′ v∅ D holds by Lemma 1.

Now assume that {B1, . . . , B`} = {A1, . . . , Ak}. Then D 6v∅ C implies that there
is an i, 1 ≤ i ≤ m such that for all j, 1 ≤ j ≤ n with ri = sj we have Dj 6v∅ Ci.
Let D′ be obtained from C by replacing the existential restriction ∃ri.Ci from
the top-level conjunction of C with the conjunction of all existential restrictions
∃ri.F for F ∈ U(Ci). Then D′ ∈ U(C) and it remains to prove that D′ v∅ D.

To show that the conditions of Lemma 1 are satisfied, we consider an existential
restriction ∃sj.Dj in the top-level conjunction of D. Since C v∅ D, there is an
index ν, 1 ≤ ν ≤ m such that rν = sj and Cν v∅ Dj. If ν 6= i, then ∃rν .Cν is also
a top-level conjunct of D′, and thus we are done. Thus, assume that ν = i. In
this case, we know that Dj 6v∅ Cν = Ci, and thus Cν @∅ Dj. By induction, there
is a concept F ∈ U(Ci) such that F v∅ Dj, and we are again done since ∃ri.F is
a top-level conjunct of D′.

Lemma 26. Let C be a reduced EL concept. If D and D′ are different elements
of U(C), then D 6v∅ D′.

Proof. If D and D′ are obtained from C by removing different concept names,
then D v∅ D′ obviously cannot hold by Lemma 1. The same is true if D is ob-
tained by removing a concept name and D′ is obtained by replacing an existential
restriction.

Assume that D is obtained from C by replacing an existential restriction ∃r.E
with the conjunction of the existential restrictions ∃r.F for F ∈ U(E). Since
D,D′ are different elements of U(C), ∃r.E still belongs to the top-level conjunc-
tion of D′. Now, D v∅ D′ implies that there is an existential restriction ∃r.E ′
in the top-level conjunction of D such that E ′ v∅ E. If ∃r.E ′ is an original
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conjunct in the top-level conjunction of C, this contradicts our assumption that
C is reduced. Otherwise, ∃r.E ′ must be such that E ′ ∈ U(G) for an existential
restriction ∃r.G different from ∃r.E in the top-level conjunction of C. But then
G @∅ E ′ v∅ E, which again contradicts our assumption that C is reduced.

Proposition 27. Let C be a reduced EL concept. Then up to equivalence we have
Upper(C) = U(C). In particular, this implies that the cardinality of Upper(C) is
polynomial in the size of C and that this set can be computed in polynomial time
in the size of C.

Proof. First, assume that D ∈ Upper(C), i.e., C @∅1 D. Then Lemma 25 implies
that there is D′ ∈ U(C) such that D′ v∅ D. But then C @∅ D′ v∅ D and C @∅1 D
imply D′ ≡∅ D, and thus D is equivalent to an element of U(C).

Conversely, assume that D ∈ U(C). Then Lemma 24 yields C @∅ D. To show
that C @∅1 D, assume to the contrary that there is a concept D′ such that
C @∅ D′ @∅ D. Then Lemma 25 yields the existence of a concept D′′ ∈ U(C)
such that C @∅ D′′ v∅ D′ @∅ D. But then D and D′′ are two different elements
of U(C) that are comparable w.r.t. @∅, which contradicts Lemma 26.

The polynomiality results for U(C) can easily be shown by induction on the role
depth of C.

Unfortunately, this result does not transfer immediately from concept subsump-
tion to axiom weakening. In fact, as we have seen before, strict subsumption
need not produce a weaker axiom (see the remark below Proposition 21). Thus,
to find all GCIs C v D′ with C v D �sub

1 C v D′, it is not sufficient to consider
only concepts D′ with D @∅1 D

′. In case C v D′ is equivalent to C v D, we need
to consider upper neighbors of D′, etc.

Proposition 28. The one-step relation �sub
1 induced by �sub is effectively finitely

branching.

Proof. Since @∅ is one-step generated, finitely branching, and well-founded, for
a given concept D, there are only finitely many concepts D′ such that D @∅ D′.
Thus, a breadth first search along @∅1 can be used to compute all concepts D′
such that there is a path D @∅1 D1 @∅1 . . . Dn @∅1 D

′ where C v D is equivalent to
C v Di for i = 1, . . . , n, and C v D �sub C v D′. Since @∅ is one-step generated,
it is easy to see that all axioms γ with C v D �sub

1 γ can be obtained this way.
However, the computed set of axioms may contain elements that are not one-step
successors of C v D. Thus, in a final step, we remove all axioms that are weaker
than some axiom in the set.

Example 29. To see that the final step of removing axioms in the proof of
Proposition 28 is needed, consider the axiom β = > v A u ∃r.A in Fig. 1. The



4 WEAKENING RELATIONS FOR EL AXIOMS 20

> v A u ∃r.A

> v A u ∃r.> > v ∃r.A

> v ∃r.>

|=

|=

|=
6|=

|=
6|= |=6|=

Figure 1: One-step weakening

right-hand side A u ∃r.A has two upper neighbors, namely ∃r.A and A u ∃r.>.
The first yields the axiom > v ∃r.A, which satisfies> v A u ∃r.A �sub

1 > v ∃r.A.
The second yields the axiom > v A u ∃r.>, which is equivalent to β. Thus, the
only upper neighbor > v ∃r.> is considered, but this concept yields an axiom
that is actually weaker than > v ∃r.A, and thus needs to be removed.

A similar, but simpler example can be used to show that the additional removal
of weaker elements in the proof of Proposition 19 is needed. Let α be the conse-
quence > v A, J = {β} for β := > v A u B, δ1 := > v A, δ2 := > v B, and
γ := > v >. Then we have exactly the situation described below the proof of
Proposition 19, with �sub as the employed weakening relation.

Corollary 30. All maximally strong weakenings w.r.t. �sub of an axiom in a
justification can effectively be computed.

Proof. By Proposition 19, this is an immediate consequence of the fact that �sub

is well-founded, one-step generated, and effectively finitely branching.

The algorithm for computing maximally strong weakenings described in the proof
of Proposition 19 has non-elementary complexity for �sub . In fact, the bound for
the depth of the tree that must be searched grows by one exponential for every
increase in the role-depth of the concept on the right-hand side. It is not clear
how to obtain an algorithm with a better complexity. Example 40 below yields
an exponential lower-bound, which still leaves a huge gap. We can also show that
even deciding whether a given axiom is a maximally strong weakening w.r.t. �sub

is coNP-hard.

Before we can prove this hardness result, we must introduce the coNP-complete
problem that will be used in our proof by reduction. A monotone Boolean formula
ϕ is built from propositional variables using the connectives conjunction (∧) and
disjunction (∨) only. If V is the set of propositional variables occurring in ϕ, then
propositional valuations can be seen as subsets W of V . Since ϕ is monotone,
the valuation V clearly satisfies ϕ, and the valuation ∅ falsifies ϕ. We are now
interested in maximal valuations falsifying ϕ, where valuations are compared
using set inclusion.
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Definition 31. The all-maximal-valuations problem receives as input

• a monotone Boolean formula ϕ with propositional variables V , and

• a set V of maximal valuations falsifying ϕ.

The question is then whether V is the set of all maximal valuations falsifying ϕ.

As shown in [19] (Lemma 6.13), the all-maximal-valuations problem is coNP-
complete.

Proposition 32. The problem of deciding whether a given EL GCI C v D′ is a
maximally strong weakening of the EL GCI C v D w.r.t. �sub is coNP-hard.

Proof. Given an instance ϕ,V of the all-maximal-valuations problem, we con-
struct an instance of our problem as follows. For every subformula ψ of ϕ, we
introduce a new concept name Bψ. If ψ is not a propositional variable, we define
the TBox:

Tψ :=

{
{Bψ1 uBψ2 v Bψ} ψ = ψ1 ∧ ψ2,

{Bψ1 v Bψ, Bψ2 v Bψ} ψ = ψ1 ∨ ψ2.

Let V be the set of all propositional variables appearing in ϕ, and let csub(ϕ) be
the set of all subformulas of ϕ that are not in V .

We construct the ontology that has only one refutable axiom

A v ∃r.
l
{Bp | p ∈ V },

and as static part the ontology

Ts =
⋃

ψ∈csub(ϕ)

Tψ ∪ {∃r.Bϕ v C}.

Clearly, the refutable axiom is a justification for A v C.

Given a set W of valuations, define the concept

XW :=
l

W∈W

∃r.
l
{Bp | p ∈ W}.

It follows that {A v XW} ∪ Ts 6|= A v C iff no valuation in W satisfies ϕ.

We claim that V is the set of all maximal valuations not satisfying ϕ iff A v XV
is a maximally strong weakening of A v ∃r.

d
{Bp | p ∈ V }.

First, assume that V is the set of all maximal valuations not satisfying ϕ. Then
{A v XV} ∪ Ts 6|= A v C and clearly A v ∃r.

d
{Bp | p ∈ V } �sub A v XV . If

A v XV is not maximally strong, then there is a concept E such that ∃r.
d
{Bp |
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p ∈ V } @∅ E @∅ XV and {A v E} ∪ Ts 6|= A v C. The strict subsumption
relationships imply the E contains a top-level conjunct ∃r.

d
{Bp | p ∈ U} for a

set U ⊆ V such that U is incomparable w.r.t. set inclusion with all the sets in V .
Since V is the set of all maximal valuations not satisfying ϕ, this implies that U
satisfies ϕ. Consequently, {A v E} ∪ Ts |= A v C, which yields a contradiction
to our assumption that A v XV is not maximally strong.

Conversely, assume that V is not the set of all maximal valuations not satisfying
ϕ, i.e., there is a maximal valuation U not satisfying ϕ such that U 6∈ V . This
implies that U is incomparable w.r.t. inclusion with any of the elements of V ,
and thus ∃r.

d
{Bp | p ∈ V } @∅ XV∪{U} @∅ XV . In addition, we know that

{A v XV∪{U}} ∪ Ts 6|= A v C, which shows that A v XV is not maximally
strong.

4.2 Syntactic Generalization

In order to obtain a weakening relation that has better algorithmic properties than
�sub , we consider a syntactic approach for generalizing EL concepts. Basically,
the concept D is a syntactic generalization of the concept C if D can be obtained
from C by removing occurrences of subconcepts. To ensure that such a removal
really generalizes the concept, we work here with reduced concepts.

Definition 33. Let C,D be EL concepts. Then D is a syntactic generalization
of C (written C @syn D) if it is obtained from the reduced form of C by replacing
some occurrences of subconcepts 6= > with >.

For example, the concept C = A1u∃r.(A1uA2) is already in reduced form, and its
syntactic generalizations include, among others, >u∃r.(A1uA2) ≡∅ ∃r.(A1uA2),
A1 u ∃r.(> u A2) ≡∅ A1 u ∃r.A2, ∃r.>, and >.

Lemma 34. If C @syn D, then C @∅ D, and the length of any @syn-chain issuing
from C is linearly bounded by the size of C.

Proof. We use a modified definition of size (called m-size) where only occurrences
of concept and role names are counted. Reducing a concept preserves equivalence
and never increases the m-size. Since the concept constructors of EL are mono-
tonic, C @syn D implies C v∅ D. In addition, the m-size of the reduced form
of C is strictly larger than the m-size of the reduced form of D since concepts
6= > have an m-size > 0 whereas > has m-size 0. This shows C 6≡∅ D (and thus
C @∅ D), since these reduced forms then cannot be equal up to associativity and
commutativity of u. In addition, it clearly yields the desired linear bound on the
length of @syn-chains.

By Proposition 16, this linear bound implies that @syn is one-step generated. In
the corresponding one-step relation @syn

1 , the replacements can be restricted to
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subconcepts that are concept names or existential restriction of the form ∃r.>.
For example, we have (modulo equivalence)

∃r.(A1 u A2 u A3) @
syn
1 ∃r.(A1 u A2) @

syn
1 ∃r.A2 @

syn
1 ∃r.> @syn

1 >.

However, not all such restricted replacements lead to single steps w.r.t. @syn . For
example, consider the concept C = ∃r.(A1 u A2) u ∃r.(A2 u A3). Then replacing
A3 by > leads to D = ∃r.(A1 u A2) u ∃r.(A2 u >) ≡ ∃r.(A1 u A2), but we have
C @syn ∃r.(A1 u A2) u ∃r.A3 @syn D.

Before proving that every @syn
1 -step can be realized by such restricted replace-

ments, we use the fact that any EL concept can be written as a conjunction of
concept names and existential restrictions to give a recursive characterization of
@syn . Let C be an EL concept, and assume that its reduced form is

C ′ = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃r`.C`.

Then we have Ai 6= Aj for all i 6= j in {1, . . . , k} and rµ 6= rν or Cµ 6v∅ Cν for
all ν 6= µ in {1, . . . , `}, since otherwise C ′ would not be reduced. Replacing some
occurrences of subconcepts with > then corresponds (modulo equivalence) to

• removing some of the conjuncts of the form Ai,

• removing some of the conjuncts of the form ∃rµ.Cµ,

• replacing some of the conjuncts of the form ∃rν .Cν with a conjunct of the
form ∃rν .Dν where Cν @syn Dν

such that at least one of these actions is really taken. Thus, C @syn
1 D implies

that D can be obtained from the reduced form of C by taking exactly one of these
actions for exactly one conjunct. In fact, either taking several actions has the
same effect as taking one of them, or taking the actions one after another leads
to a sequence of several strict syntactic generalizations steps, which is precluded
by the definition of @syn

1 .

Lemma 35. Let C 6≡∅ > with reduced form C ′ = A1u. . .uAku∃r1.C1u. . .u∃r`.C`,
and assume that C @syn

1 D. Then D is obtained (modulo equivalence) from C ′ by
either

1. removing exactly one of the concept names Ai,

2. removing exactly one of the existential restrictions ∃rµ.Cµ for Cµ ≡∅ >, or

3. replacing exactly one of the existential restrictions ∃rν .Cν with ∃rν .Dν

for Cν @syn
1 Dν.

Proof. As argued above, C @syn
1 D implies that D is obtained from C ′ by per-

forming one of the following three actions:



4 WEAKENING RELATIONS FOR EL AXIOMS 24

• Removing exactly one of the conjuncts of the form Ai: in this case, we are
done.

• Removing exactly one of the conjuncts of the form ∃rµ.Cµ: in this case we
are done if Cµ ≡∅ >. Thus, assume that Cµ 6≡∅ >. Let D′ be obtained from
C ′ by replacing ∃rµ.Cµ with ∃rµ.>. Then we either have C @syn D′ @syn D
or D′ ≡∅ D. The first case contradicts our assumption that C @syn

1 D. The
second case is dealt with below since Cµ @syn >.

• Replacing exactly one of the conjuncts of the form ∃rν .Cν with a conjunct of
the form ∃rν .Dν where Cν @syn Dν: in this case we are done if Cν @syn

1 Dν .
Thus, assume that there is an EL conceptD′ν such that Cν @syn D′ν @

syn Dν .
Since we already know that @syn is one-step generated, we can assume
without loss of generality that Cν @syn

1 D′ν . Let D′ be obtained from C ′ by
replacing ∃rν .Cν with ∃rµ.D′ν . Then we either have C @syn D′ @syn D or
D′ ≡∅ D. The first case contradicts our assumption that C @syn

1 D. In the
second case, we are done.

Since there are no other cases, this completes the proof of the lemma.

Based on this lemma, the following proposition can now easily be shown by
induction on the role depth of C.

Proposition 36. Let C be an EL concept and C ′ its reduced form. If C @syn
1 D,

then D can be obtained (modulo equivalence) from C ′ by either replacing a concept
name or a subconcept of the form ∃r.> by >.

As an immediate consequence we obtain that @syn is effectively linearly branching.

Corollary 37. For a given EL concept C, the set {D | C @syn
1 D} has a cardi-

nality that is linear in the size of C and it can be computed in polynomial time.

Proof. That the cardinality of {D | C @syn
1 D} is linearly bounded by the size of

C is an immediate consequence of Proposition 36. To compute the set, one first
computes all concepts that can be obtained by replacing in the reduced form of
C a concept name or a subconcept of the form ∃r.> by >. The polynomially
many concepts obtained this way contain all the elements of {D | C @syn

1 D}.
Additional elements in this set are obviously strictly subsumed by an element of
{D | C @syn

1 D}, and thus we can remove them by removing elements that are
not subsumption minimal.

Now, we define our new weakening relation, which syntactically generalizes the
right-hand sides of GCIs:

C v D �syn C ′ v D′ if C = C ′, D @syn D′ and
{C ′ v D′} 6|= C v D.
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The following theorem is an easy consequence of the properties of @syn and of
Corollary 37.

Theorem 38. The relation �syn on EL axiom is a linear, complete, one-step
generated, and effectively linearly branching weakening relation.

Due to fact that �syn
1 -steps do not increase the size of axioms, the linear bounds

on the branching of �syn
1 and the length of �syn-chains imply that the algorithm

described in the proof of Proposition 19 has an exponential search space.

Corollary 39. All maximally strong weakenings w.r.t. �syn of an axiom in a
justification can be computed in exponential time.

The following example shows that there may be exponentially many maximally
strong weakenings w.r.t. �syn , and thus the exponential complexity stated above
is optimal.

Example 40. Let βi := PiuQi v B for i = 1, . . . , n and β := A v P1uQ1u . . .u
Pn u Qn. We consider the ontology O = Os ∪Or, where Os := {βi | 1 ≤ i ≤ n}
and Or := {β}. Then J = {β} is a justification for the consequence α = A v B,
and all axioms of the form A v X1 u X2 u . . . u Xn with Xi ∈ {Pi, Qi} are
maximally strong weakenings w.r.t. �syn of β in J . The same is true for �sub

since in the absence of roles, these two weakening relations coincide.

A single maximally strong weakening can however be computed in polynomial
time.

Proposition 41. A single maximally strong weakening w.r.t. �syn can be com-
puted in polynomial time.

Proof. The algorithm that computes a maximally strong weakening works as
follows. Starting from the concept D′ := >, it looks at all possible ways of
making one step in the direction of D using Asyn

1 , i.e., it considers all D′′ where
D vsyn D′′ @syn

1 D′. The concepts D′′ can be obtained by adding a concept name
A or an existential restriction ∃r.> at a place where (the reduced form of) D has
such a concept or restriction. Obviously, there are only polynomially many such
concepts D′′. For each of them we check whether

Os ∪ (J \ {C v D}) ∪ {C v D′′} |= α.

If this is the case for all D′′, we return C v D′. Otherwise, we choose an arbitrary
D′′ with Os ∪ (J \ {C v D}) ∪ {C v D′′} 6|= α, and continue with D′ := D′′.

This algorithm terminates after linearly many iterations since in each iteration
the size of D′ is increased and it cannot get larger than D. In addition, C v D′ is
maximally strong since for every axiom C v E such that C v D �syn C v E �syn

C v D′ there is a sequence E @syn
1 . . . @syn

1 D′′ @syn
1 D′. Consequently, C v D′′

has the consequence, and thus also C v E.
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Nevertheless, we can show that deciding whether an axiom is a maximally strong
weakening w.r.t. �syn is coNP-complete.

Proposition 42. The problem of deciding whether a given EL GCI C v D′ is a
maximally strong weakening of the EL GCI C v D w.r.t. �syn is coNP-complete.

Proof. First, we show the coNP upper bound. Let O = Os ∪ Or, J ⊆ Or a
justification of the consequence α, C v D an element of J , and C v D′ a GCI.
Obviously, we can decide in polynomial time whether C v D �syn C v D′ and
whether Os ∪ (J \ {C v D}) ∪ {C v D′} 6|= α. To disprove that C v D′ is
maximally strong, we guess an EL concept D′′ such that D @syn D′′ @syn D′.
This requires only polynomially many guesses: in fact, D′ is obtained from D by
replacing linearly many occurrences of subconcepts with >, and we simply guess
which of these replacements are not done when going from D to D′′. We then
check in polynomial time whether C v D′′ satisfies

• Os ∪ (J \ {C v D}) ∪ {C v D′′} 6|= α, and

• {C v D′} 6|= C v D′′.

If both tests succeed then C v D′′ is a counterexample to C v D′ being maximally
strong.

For the hardness proof, we use again the all-maximal-valuations problem. Given
an instance ϕ,V of the all-maximal-valuations problem, we construct an instance
of our problem as follows. For every subformula ψ of ϕ, we introduce a new
concept name Bψ. If ψ is not a propositional variable, we define the TBox:

Tψ :=

{
{Bψ1 uBψ2 v Bψ} ψ = ψ1 ∧ ψ2

{Bψ1 v Bψ, Bψ2 v Bψ} ψ = ψ1 ∨ ψ2.

Let V be the set of all propositional variables appearing in ϕ, and let csub(ϕ) be
the set of all subformulas of ϕ that are not in V . Define the concept

XV :=
l

W∈V

∃r.
l
{Bp | p ∈ W}.

We construct the ontology that has only one refutable axiom

XV v ∃r.
l
{Bp | p ∈ V },

and as static part the ontology

Ts =
⋃

ψ∈csub(ϕ)

Tψ ∪ {∃r.Bϕ v C}
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Clearly, the refutable axiom is the only justification for XV v C.

For every valuation W ⊆ V , if W is a subset of some valuation in V , then

XV v ∃r.
l
{Bp | p ∈ W} is equivalent to XV v >.

We claim that XV v > is a maximally strong weakening w.r.t. �syn of the only
refutable axiom iff V is the set of all maximal valuations not satisfying ϕ.

To prove this claim, first assume that V is not the set of all maximal valuations
not satisfying ϕ, i.e., there is a maximal valuation W not satisfying ϕ such that
W 6∈ V . On the one hand, this implies that W is incomparable w.r.t. inclusion
with any of the elements of V , and thus XV v ∃r.

d
{Bp | p ∈ W} is not a

tautology. On the other hand, we have

Ts ∪ {XV v ∃r.
l
{Bp | p ∈ W}} 6|= XV v C,

and XV v ∃r.
d
{Bp | p ∈ V } �syn XV v ∃r.

d
{Bp | p ∈ W}. This shows that the

tautology XV v > is not a maximally strong weakening w.r.t. �syn of the only
refutable axiom XV v ∃r.

d
{Bp | p ∈ V }.

Conversely, assume that V is the set of all maximal valuations not satisfying ϕ,
and that γ is a maximally strong weakening w.r.t. �syn of XV v ∃r.

d
{Bp | p ∈

V }. If γ = XV v >, then we are done. Otherwise, there is a set W ⊆ V such
that γ = XV v ∃r.

d
{Bp | p ∈ W}. But then Ts∪{γ} 6|= XV v C implies that W

does not satisfy ϕ, and thus W is a subset of some valuation in V . Consequently,
γ is a tautology and thus equivalent to XV v >. This shows that XV v > is a
maximally strong weakening w.r.t. �syn of XV v ∃r.

d
{Bp | p ∈ V }.

5 Conclusions

We have introduced a framework for repairing DL-based ontologies that is based
on weakening axioms rather than deleting them, and have shown how to in-
stantiate this framework for the DL EL using appropriate weakening relations.
More precisely, we have introduced weakening relations of decreasing strength
�g ⊃ �s ⊃ �sub ⊃ �syn , and have shown that �g and �s do not satisfy the
properties required to apply our gentle weakening approach. In contrast, both
�sub and �syn satisfy these properties, but from a complexity point of view �syn

is to be preferred.

Computing maximally strong weakenings w.r.t. �sub or �syn using the algorithm
described in the proof of Proposition 19 is akin to the black-box approach for
computing justifications. It would be interesting to see whether a glass-box ap-
proach that modifies an EL reasoning procedure can also be used for this purpose,
similar to the way a tableau-based algorithms for ALC was modified in [16]. This
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should be possible for �syn , whereas handling �sub with a glass-box approach is
probably more challenging, but might yield better complexity upper bounds than
the generic approach based on Proposition 19.

Our weakening relations can also be used in the setting where the ontology is first
modified, and then repaired using the classical approach as in [11]. In fact, for
effectively finitely branching and well-founded weakening relations such as �sub

and �syn , we can add for each axiom all (or some of) its finitely many weakenings
w.r.t. the given relation, and then apply the classical repair approach. In contrast
to the gentle repair approach proposed in this paper, a single axiom could then
be replaced by several axioms, which might blow up the size of the ontology.

In order to apply our gently repair approach in practice, one can either compute
all maximally strong weakening, and let the user choose between them, which
should be viable at least for �syn . Alternatively, one can try to find heuristics for
obtaining weakening oracles that compute “good” weakenings or involve the user
in the decisions made in each weakening step.
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