
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Constructing SNOMEDCT Concepts via Disunification

Franz Baader Stefan Borgwardt Barbara Morawska

LTCS-Report 17-07

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden



1 Introduction

Description Logics (DLs) [BCM+07] are prominent modeling formalisms underlying the Web
Ontology Language (OWL).1 The lightweight DL EL in particular is used to formulate many
biomedical ontologies.2 DLs allow to represent subconcept-superconcept relationships between
concepts, e.g., diseases, as well as more complex correspondences. Unification in DLs has been
proposed as a non-standard reasoning task to detect redundant concepts in ontologies [BN01,
BM10b]. Recently, disunification in EL has been investigated and several algorithms were
proposed to solve disunification problems [BBM16].

We investigate the use of (local) disunification in EL for ontology generation, i.e., supporting an
ontology engineer in the task of creating an ontology. Common approaches in this area focus on
ontology learning, which tries to extract meaningful concepts and definitions from other kinds of
data, e.g., facts about instances or textual descriptions of concepts [LV14]. Tools that implement
such approaches are particularly important for maintaining and updating very large ontologies.
For example, the biomedical ontology SNOMEDCT published by SNOMED International3
contains around 300.000 atomic concepts4 describing many things from the bones of the inner
ear to the treatments of bacterial infections. The contents of SNOMEDCT can be formalized in
EL. By offering automated modeling tools for SNOMEDCT, the quality of SNOMEDCT can
be increased, making it more useful for “post-coordination”, i.e., reasoning [RI12].

This initial study on the benefit of disunification for ontology generation tackles the following
concrete problem: Given an existing SNOMEDCT concept, can we reconstruct its definition
given only the definitions of its parents (i.e., direct superconcepts) and siblings (i.e., concepts
having the same parents)? There are several obstacles that have to be overcome before we can
give a positive answer. In particular, a straightforward application of the SAT-based algorithm
from [BBM16] yields too many possible solutions. However, most of these solutions do not even
represent legal SNOMEDCT concepts as prescribed in the SNOMEDCT Editorial Guide.5
Hence, we augment the disunification algorithm by additional constraints in order to restrict
the set of possible solutions to conform to the SNOMEDCT specification. For some concepts
of SNOMEDCT, this results in the set of solutions actually containing the original definition,
which was our goal.

2 Disunification in EL

The syntax of EL is defined based on two disjoint sets NC and NR of concept names and role names,
respectively. Concept terms are built from concept names using the constructors conjunction
(C uD), existential restriction (∃r.C for r ∈ NR), and top (>). An interpretation I = (∆I , ·I)
consists of a non-empty domain ∆I and an interpretation function that maps concept names to
subsets of ∆I and role names to binary relations over ∆I . This function is extended to concept
terms as shown in the semantics column of Table 1.

A (primitive) concept definition is an expression of the form A ≡ CA (A v CA), where A is a
concept name and CA a concept term. A is called a defined concept name, and CA its definition.
An acyclic ontology O is a set of concept definitions such that each concept name has at most one
definition, and the following depends on relation between concept names is acyclic: A concept
name A depends on a concept name B if there is a concept definition A ≡ CA or A v CA in O

1https://www.w3.org/TR/owl-overview/
2https://bioportal.bioontology.org/
3Version: January 2017 v1.0, see http://snomed.org
4SNOMED CT browser: http://browser.ihtsdotools.org
5http://snomed.org/eg

1

https://www.w3.org/TR/owl-overview/
https://bioportal.bioontology.org/
http://snomed.org
http://browser.ihtsdotools.org
http://snomed.org/eg


Table 1: Syntax and semantics of EL

Name Syntax Semantics
concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I := ∆I

conjunction C uD (C uD)I := CI ∩DI

existential restriction ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

such that B occurs in CA. An interpretation I is a model of O if for each A ≡ CA (A v CA)
in O, it holds that AI = CIA (AI ⊆ CIA).

A concept term C is subsumed by a concept term D w.r.t. O (written C vO D) if for every
model I of O it holds that CI ⊆ DI . We write a dissubsumption C 6vO D to abbreviate the fact
that C vO D does not hold. The two concept terms C and D are equivalent w.r.t. O (written
C ≡O D) if C vO D and D vO C, i.e., they are interpreted as the same set.

Since conjunction is interpreted as set intersection, we can treat u as a commutative and
associative operator, and thus dispense with parentheses in nested conjunctions. An atom is
a concept name or an existential restriction. Hence, every concept term C is a conjunction of
atoms or >. We call the atoms in this conjunction the top-level atoms of C. Obviously, C is
equivalent (even w.r.t. the empty ontology) to the conjunction of its top-level atoms, where the
empty conjunction corresponds to >. An atom is flat if it is a concept name or an existential
restriction of the form ∃r.A with A ∈ NC.

We now recall the relevant definitions from [BBM16]. For the purposes of disunification, we
partition the set NC into a set of (concept) variables (Nv) and a set of (concept) constants (Nc).
A concept term is ground if it does not contain any variables. In the following, let O be an
acyclic ontology that contains only ground concept terms.

A (flat) disunification problem Γ (w.r.t. O) is a set of (dis)subsumptions of the form

C1 u · · · u Cn v?
O D1 u · · · uDm (or C1 u · · · u Cn 6v?

O D1 u · · · uDm),

where C1, . . . , Cn, D1, . . . , Dm are flat atoms. We use an equation C ≡?
O D to abbreviate the

two subsumptions C v?
O D and D v?

O C. When O is empty, we drop the subscript O. A
substitution σ (w.r.t. O) maps every variable to a ground concept term constructed from the
concept and role names appearing in O. This mapping can be extended to all concept terms in
the usual way. A substitution σ solves a (dis)subsumption C v?

O D (C 6v?
O D) if σ(C) vO σ(D)

(σ(C) 6vO σ(D)). A substitution that solves a given disunification problem (w.r.t. O) is called a
solution of this problem. A disunification problem is solvable if it has a solution. The restriction
to flat disunification problems is without loss of generality [BBM16].

We denote by At(Γ) the set of (flat) atoms occurring as subterms in Γ, by Ex(Γ) the set of
existential restrictions occurring in Γ, by Rol(Γ) the set of role names occurring in Γ, by Var(Γ)
the set of variables occurring in Γ, and by Atnv(Γ) := At(Γ) \ Var(Γ) the set of non-variable
atoms of Γ.

2.1 Incorporating Acyclic Definitions

In [BM10b], a procedure is described that can eliminate an acyclic ontology O from a disuni-
fication problem Γ. As a preliminary step, we transform every primitive definition A v CA

2



in O into a full definition A ≡ AUNDEF u CA by introducing a fresh concept name AUNDEF that
represents the “undefined part” of the concept name A. Then, every definition A ≡ CA from O
is added as A ≡? CA to the disunification problem, each such A is changed into a variable, and
the result is denoted by ΓO, which is a disunification problem w.r.t. the empty ontology. Then,
it holds that Γ has a solution w.r.t. O iff ΓO has a solution w.r.t. ∅.

If the ontology O is very large, this approach is not practical. Instead, in our system UEL6 we
implemented a goal-oriented approach that only incorporates those definitions A ≡ C from O
into Γ that are actually relevant for the disunification problem. This is done in a recursive
fashion: first, all definitions A ≡ CA are imported for which A occurs in Γ, then all definitions of
newly imported concept names (those occurring in the definitions CA) are imported, and so on.

2.2 Local Disunification

We are interested in so-called local solutions [BM10b, BBM16], which are restricted to use only
the atoms occurring in the input problem. Although this restriction is not without loss of
generality [BBM16], it is useful to restrict the search space. Deciding the existence of local
solutions for EL-disunification problems is NP-complete, and the decidability of this problem is
open for general solutions.

Let Γ be a (flat) disunification problem w.r.t. the empty ontology. Let S : Var(Γ)→ 2Atnv(Γ) be an
assignment (for Γ), i.e., a function that assigns to each variable X ∈ Var(Γ) a set SX ⊆ Atnv(Γ)
of non-variable atoms. The relation >S on Var(Γ) is defined as the transitive closure of

{(X,Y ) ∈ Var(Γ)× Var(Γ) | Y occurs in an atom of SX}.

If this defines a strict partial order, i.e., >S is irreflexive, then S is called acyclic. In this case,
we can define the substitution σS inductively along >S as follows: if X is minimal w.r.t. >S ,
then all elements of SX are ground and we simply take

σS(X) :=
l

D∈SX

D;

otherwise, we assume that σS(Y ) is defined for all Y ∈ Var(Γ) with X >S Y , and set

σS(X) :=
l

D∈SX

σS(D).

It is easy to see that the concept terms σS(D) are ground, and hence σS is a valid candidate for
a solution of Γ. A substitution σ is called local (w.r.t. Γ) if there exists an acyclic assignment S
for Γ such that σ = σS .

2.3 The SAT Reduction

One of the algorithms presented in [BM10a, BBM16] and implemented in UEL is based on a
representation of the disunification problem as a propositional satisfiability problem. Since our
approach is based on this reduction, we present its main ideas here. We again consider a flat
disunification problem Γ w.r.t. the empty ontology.

The translation uses the propositional variables [C v D] for all C,D ∈ At(Γ). The SAT problem
consists of a set of clauses Cl(Γ) over these variables that express properties of (dis)subsumption
in EL and encode the elements of Γ. The intuition is that a satisfying valuation of Cl(Γ) induces

6http://julianmendez.github.io/uel/

3

http://julianmendez.github.io/uel/


a local solution σ of Γ such that σ(C) v σ(D) holds whenever [C v D] is true under the
valuation. The solution σ is constructed by first extracting an acyclic assignment S, where
D ∈ SX whenever [X v D] is evaluated to true, and then computing σ := σS . The additional
variables [X > Y ] for all X,Y ∈ Nv ensure that the generated assignment S is indeed acyclic.
This is achieved by adding clauses to Cl(Γ) that express that >S is a strict partial order, i.e.,
irreflexive and transitive.

The size of Cl(Γ) is polynomial in the size of Γ, and Γ has a local solution iff Cl(Γ) is satisfiable.
Moreover, this reduction preserves all solutions (modulo equivalence), i.e., for every local
solution σ of Γ there is a satisfying valuation τ of Cl(Γ) that yields a local solution στ (as
described above) that is equivalent to σ, i.e., we have σ(X) ≡ στ (X) for all X ∈ Var(Γ).

3 Constructing SNOMEDCT Concepts

Our approach can be roughly described as follows: Given any concept name A that has a full
definition A ≡ CA in SNOMEDCT, we want to construct a disunification problem ΓA (without
using this definition) that describes some constraints on a variable XA intended to represent A.
The procedure is successful if our disunification algorithm outputs at least one solution that
represents the original definition of A in the sense that XA is mapped to CA. It has failed if no
solutions for ΓA can be found or none of the solutions represents CA in this way (more precisely,
none of the solutions found within a reasonable time limit represent CA).

As a running example, consider the following definition for A = Difficulty_writing7 from
SNOMEDCT (in EL syntax):

Difficulty_writing ≡ Language_finding u
Finding_related_to_ability_to_write u
∃RoleGroup.(
∃Has_interpretation.Able_with_difficulty u
∃Interprets.Ability_to_write

)

In contrast to the other roles, the special role RoleGroup does not carry any medical semantics;
it is used to group different existential restrictions together. In the above definition, it signals
that the qualifier Able_with_difficulty refers to the Ability_to_write. This is useful in
more complex concepts, e.g., when several abilities are described.

3.1 The Basic Problem

We start to construct the disunification problem ΓA as follows. Let parents(A) denote the
parents of A, which are those concept names that occur in the top-level of its definition CA. In
our example, these are Language_finding and Finding_related_to_ability_to_write.
Further, for an element B ∈ parents(A), the set siblingsB(A) contains the siblings of A w.r.t. B,
i.e., those concept names C that also have B as a parent. Difficulty_writing has many
siblings w.r.t. Language_finding, but only 2 w.r.t. Finding_related_to_ability_to_
write, namely, Able_to_write and Unable_to_write. While the former has a definition
that is very similar to the one of Difficulty_writing, curiously Unable_to_write is not
defined to be a subconcept of Language_finding.

7In SNOMED CT, this is represented by the IRI http://snomed.info/id/102938007. For clarity, we here use
the (abbreviated) textual labels of the concept names.

4

http://snomed.info/id/102938007


We now construct the subsumptions and dissubsumptions

XA v? B, B 6v? XA for all B ∈ parents(A), (1)

which express that XA should be a proper subconcept of the parents of A, as well as

XA 6v? C, C 6v? XA for all C ∈
⋂

B∈parents(A)

siblingsB(A) that are fully defined, (2)

i.e., XA should be incomparable to the siblings of A that share all its parents. The initial
disunification problem Γ0

A is constructed from the subsumptions and dissubsumptions in (1)
and (2) by recursively including all definitions of concept names occurring in them, as described
in Section 2.1.

Together, the basic constraints in Γ0
A encode the relative position of A in the concept hierarchy

of SNOMEDCT. Additionally, the inclusion of the siblings of A in Γ0
A causes their definitions to

be included in the final disunification problem. The idea is that definitions of siblings should be
similar, and hence the definitions of A’s siblings are one of the sources from which A’s definition
can be reconstructed. Note that A itself does not occur in Γ0

A, and hence the disunification
problem does not contain any knowledge about its true definition.

3.2 Additional Siblings

However, the definition of Able_to_write by itself is not enough to reconstruct the definition
of Difficulty_writing—we also need to include the siblings of the concept names occurring
in this definition inside existential restrictions. For example, without including the sibling
Able_with_difficulty of Able it is impossible to reconstruct the definition of Difficulty_
writing from the one of Able_to_write.

Including all possible siblings of all concept names in Γ0
A would lead to a disunification problem

that is too large to handle with the SAT algorithm of UEL in its current form. Hence, we
restrict ourselves here to the siblings of the most specific concept names in Γ0, i.e., those that
are not used in other definitions. However, in contrast to (2), we include all siblings of those
concept names, and not only the ones that share all their parents. Formally, Γ1

A is obtained
from Γ0

A by including the definitions of all C ∈ siblingsB(D), where D does not occur in any
definition in Γ0

A except its own and B is a parent of D (and, as usual, recursively adding all
definitions of concept names that are used in the definition of C).

3.3 Additional Atoms

To give the disunification algorithm additional flexibility in the construction of solutions, we
further introduce, for each role name r ∈ Rol(Γ1

A), an auxiliary atom ∃r.Xr with a fresh
variable Xr. This allows to construct new existential restrictions over the existing role names in
order to find a solution. For example, the definition of Difficulty_writing contains the atom
∃Has_interpretation.Able_with_difficulty, which is not an atom of the disunification
problem we have constructed so far, and hence cannot appear in any local solution. But
now we can use ∃Has_interpretation.XHas_interpretation instead, since we can map the new
variable XHas_interpretation to Able_with_difficulty. Formally, Γ2

A is obtained by adding
the above atoms ∃r.Xr, r ∈ Rol(Γ1

A), to At(Γ1
A), e.g., by introducing trivial subsumptions of the

form ∃r.Xr v? ∃r.Xr.

This finally allows us to obtain the original definition of Difficulty_writing as a solution
of Γ2

A. However, it turns out that this problem in general has too many solutions to feasibly

5



enumerate, in particular since the wanted solution is often not among the first ones computed
by UEL. Hence, we need to include additional constraints on the form of the solutions, which
are obtained by taking into account the structure of SNOMEDCT concept definitions and their
design guidelines. In the following sections, we directly present the constraints as they appear
in the SAT encoding used by UEL. Hence, we consider the set of propositional clauses Cl(Γ2

A)
encoding Γ2

A as described in [BBM16]. We extend this set by additional constraints on the
existing propositional variables of the form [C v D] with C,D ∈ At(Γ2

A), in order to prune the
set of solutions. Since we do not introduce any more atoms, for brevity we use the notations At,
Ex, Var, Rol in the following without explicitly referring to Γ2

A.

3.4 Domains and Ranges of Roles

The SNOMEDCT Editorial Guide specifies so-called hierarchies, which group the concept
names according to common characteristics. Each hierarchy can be identified by the most
general concept name contained in it, which subsumes all other concept names in that hierachy.
For example, all subconcepts of Clinical_finding belong to the “finding” hierarchy, which
encompasses all kinds of diagnoses. The “disorder” hierarchy is characterized by the direct
subconcept Disease of Clinical_finding.

The importance of these hierarchies lies in the specification of contexts in which roles are allowed
to occur. For example, the role Interprets can only be used in the definition of subconcepts
of Clinical_finding, and its fillers must be subconcepts of either Observable_entity,
Laboratory_procedure, or Evaluation_procedure. Note that these are purely syntactic
restrictions, and do not correspond to the common notions of domain and range restrictions in
DLs [BBL08]. Since the input for UEL is given in the form of OWL ontologies, we nevertheless
specify these restrictions as OWL ObjectPropertyDomain and ObjectPropertyRange axioms. For
SNOMEDCT, we manually extracted them from the SNOMEDCT Editorial Guide.

In this way, each role is assigned a domain and a range, which are disjunctions of concept names,
and we denote the sets of these concept names by domain(r) and range(r), respectively. The
only exception is the special role RoleGroup, which has neither domain nor range—it can be
used in any subhierarchy of SNOMEDCT. We call the concept names occurring in a domain or
range restriction types, and collect them in the set T . We assume that all types already occur
in At; if this is not the case, we drop the superfluous types from all domains and ranges, since
they are apparently not relevant for A. We now add the following restrictions:

[X v ∃r.C]→
∨

D∈domain(r)

[X v D] for all X ∈ Var and ∃r.C ∈ Ex, (3)

> →
∨

D∈range(r)

[C v D] for all ∃r.C ∈ Ex, (4)

Intuitively, (3) says that, whenever the substitution of a variable contains an existential restriction
over a role r, this variable must be of a type compatible with r, i.e., it must belong to one of the
subhierarchies of SNOMEDCT specified as the domain for r. Similarly, (4) expresses that the
filler of an existential restriction over r must belong to a subhierarchy that is in the range of r.

3.5 The Special Case of RoleGroup

Although RoleGroup is not restricted like the other roles, there is a strong relation between
the domains of the existential restrictions occurring within a role group and the hierarchy of
the concept in which the role group occurs. Since RoleGroup only serves to group together
other existential restrictions, the intuition is that it does not affect their domains. Moreover,

6



certain roles occur within SNOMEDCT only inside of RoleGroup restrictions. To enforce this
syntactic restriction also in our solutions, we introduce artificial “role group types” (denoted,
e.g., Clinical_findingRoleGroup) that denote the scope of a RoleGroup restriction. The
domains of all roles (except for Laterality, Has_dose_form and Has_active_ingredient,
which never occur in RoleGroup restrictions) are hence modified by replacing all types by the
corresponding role group types. We denote by R the set of all role group types that occur in
the domain of any role after this modification.

We construct new propositional variables of the form type(C,DRoleGroup) to encode that a
concept name C has the role group type DRoleGroup. In a first step, we modify the encoding (3)
of the domain restrictions for all roles r that can only occur with a RoleGroup-restriction as
follows:

[X v ∃r.C]→
∨

DRoleGroup∈domain(r)

type(X,DRoleGroup) for all X ∈ Var and ∃r.C ∈ Ex. (3′)

We then add constraints that “translate” between normal concepts and role group types inside
RoleGroup restrictions:

[X v ∃RoleGroup.C] ∧ type(C,DRoleGroup)→ [X v D]
for all X ∈ Var, ∃RoleGroup.C ∈ Ex, and DRoleGroup ∈ R, (5)

> →
∨

DRoleGroup∈R
type(C,DRoleGroup) for all ∃RoleGroup.C ∈ Ex, (6)

[X v C] ∧ type(X,DRoleGroup)→ ⊥ for all X ∈ Var, C ∈ T , and DRoleGroup ∈ R (7)

The implication (6) requires that each concept name C occurring within a RoleGroup restriction
has some role group type DRoleGroup, and (5) says that DRoleGroup then determines the position
in the subsumption hierarchy of any variable X that contains ∃RoleGroup.C in its substitution,
i.e., X must lie below D. The converse implication that [X v D] and [X v ∃RoleGroup.C]
imply type(C,DRoleGroup) would not be correct—it is perfectly fine if X has a more specific
type D′, as long as D′ v D holds. Finally, (7) says that a variable cannot have a role group
type and at the same time be part of the ordinary SNOMEDCT hierarchy.

3.6 Compatibility of Classes and Types

Additional syntactic restrictions concern the kinds of concept names that can co-occur in
the same conjunction. For example, it would not make sense to write the conjunction
Language_findinguAble, as this goes against the intuitive interpretation of the conjuncts. A
naive idea is to restrict such concept names to belong to the same subhierarchy of SNOMEDCT
(in the above example, we would allow concepts of the “finding” or the “qualifier value” hier-
archy, but not from both). However, this is already violated by many definitions occurring
within SNOMEDCT itself; for example, the high-level concept Post-surgical_anatomy
is declared to be a subconcept of both Effect_of_surgery (from the “morphologic ab-
normality” hierarchy) and Acquired_body_structure (a “body structure”). Similarly a
Drug-device_combination_product belongs to both the “physical object” and the “(phar-
maceutical/biologic) product” hierarchies.

To allow such combinations to occur in a solution of our problem, we first extract a binary
compatibility relation compatible between all SNOMEDCT concept names occurring in Var.
The idea is that all concept names C,D that are superconcepts of a common subconcept are
marked as compatible. More formally, we define the set ancestors(C) of all ancestors of a concept
name C as the closure of {C} under applications of parents: ancestors(C) :=

⋃
i≥0 parentsi({C}),

where parents(C) for a set of concept names C is defined as the union of all sets parents(C),

7



C ∈ C. Since SNOMEDCT is finite, ancestors(C) can be computed in finite time, and is usually
not very large. We now set (C,D) ∈ compatible for two concept names C,D ∈ Var iff there is a
concept name E such that C,D ∈ ancestors(E) (this concept name must also occur within Var
since we imported all necessary definitions from SNOMEDCT; see Section 2.1). The relation
compatible in particular includes pairs of sub- and superconcepts, as well as pairs (C,D) that
co-occur in (the top-level conjunction of) the same definition.

We can now use the additional information contained in compatible to formulate new constraints
reflecting the intuition described above, for all X,C,D ∈ Var with (C,D) /∈ compatible:

[X v C] ∧ [X v D]→ ⊥ (8)
type(X,CRoleGroup) ∧ type(X,DRoleGroup)→ ⊥ if CRoleGroup, DRoleGroup ∈ R (9)

These two statements enforce that incompatible concepts C,D cannot both occur on the top-level
conjunction of the substitution of a variable X (since X is supposed to represent a SNOMEDCT
concept). Similarly, incompatible concept names should not appear as role group types within
role group restrictions (recall that, if X has a role group type, then there must be an existential
restriction of the form ∃RoleGroup.X ∈ Ex).

3.7 UNDEF concept names

The concept names of the form XUNDEF that are introduced for the primitive definitions in
SNOMEDCT fulfill a special function in our encoding. If we would treat them as variables,
they could be substituted by >, and hence we would lose the ability to distinguish sub-
and superconcepts; e.g., Clinical_finding and Disease could become equivalent under
some solutions. Since we do not want to change the meaning of SNOMEDCT, we instead
designate them as constants, which allows us to faithfully preserve the subsumption hierarchy of
SNOMEDCT.

Moreover, we require these concept names to appear only in the context they were originally
introduced for, i.e., if DiseaseUNDEF appears in the substitution of a variable X, then X must
be subsumed by the whole concept Disease (including it superconcepts Clinical_finding,
Clinical_findingUNDEF, etc.):

[X v CUNDEF]→ [X v C] for all X ∈ Var, CUNDEF ∈ At. (10)

3.8 Restricting the Number of Existential Restrictions

As a final restriction on the solutions, we investigated how existential restrictions over the same
role usually co-occur in definitions of SNOMEDCT. For example, inside of a RoleGroup
restriction there may occur several restrictions over Finding_site that denote possible places of
a finding within the body. In contrast, for Interprets there is always at most one existential
restriction inside a role group. Hence, we restrict our solutions to follow the same behavior.

Additionally, we introduce a parameter k that bounds the number of existential restrictions
over RoleGroup that can co-occur in the same conjunction. Sometimes it may be sufficient to
look for solutions with at most one role group in them, but for other concepts we may need to
allow more. Increasing this parameter increases the number of possible solutions that have to
be investigated, and hence we could start with k = 1 and successively increase k until we obtain
the desired solution.

In the following, we denote by num(r) the number of existential restrictions over a role r
that are allowed to co-occur in the same conjunction, where 0 represents no limit; that is,

8



num(Finding_site) = 0, num(Interprets) = 1, num(RoleGroup) = k, etc. We enforce
these constraints as follows:

[X v ∃r.C1] ∧ · · · ∧ [X v ∃r.Cn]→
∨

1≤i<j≤n
Ci,Cj∈Var

[Ci v Cj ] ∨ [Cj v Ci] ∨

∨
∃r.C′∈Ex

[X v ∃r.C ′] ∧ [C ′ v Ci] ∧ [C ′ v Cj ] (11)

for all X ∈ Var, r ∈ Rol with n = num(r) + 1, and all ∃r.C1, . . . , ∃r.Cn ∈ Ex. That is, whenever
there are num(r) + 1 existential restrictions in the top-level conjunction of the substitution of
the same variable X, then one of the following cases must hold:

• One existential restriction is redundant, i.e., subsumes a more specific one.

• Two existential restrictions are redundant, i.e., subsume another existential restriction
that is also present in the substitution of X.

In both cases, we can obtain an equivalent solution that contains less existential restrictions
over r.

4 Evaluation

We implemented the encoding described above in our tool UEL, and executed a preliminary
evaluation on SNOMEDCT. For the parameter num(RoleGroup), we observed that with only
one role group we could miss some solutions that were possible if we allowed two role groups
instead, but larger numbers did not yield any improvement. Therefore, our experiments were
executed with num(RoleGroup) = 2.

Our first experiments on the full SNOMEDCT ontology were not very successful, which is
why we also looked at some submodules. For this, we chose several concepts C at the root of
important subhierarchies in SNOMEDCT, such as Body_structure and Clinical_finding
(see the left half of Table 2). For each C, we first extracted all definitions of concept names
that are subsumed by C, as well as all dependent definitions, i.e., those of concepts used in
the definitions of subconcepts of C. The number of concept names in the resulting modules of
SNOMEDCT are reported in Table 2. Since we try to reconstruct only full definitions A ≡ CA
from SNOMEDCT, the third column lists the number of all subconcepts of C that have a full
definition. Of those concept names, we randomly chose 100 to run UEL with the encoding
described in Section 3.

We ran the experiments on a MacBook Pro with 2,2 GHz Intel Core i7 CPU, 16 GB DDR3 RAM
at 1600 MHz, and a Java heap limit of 14 GB. We set a timeout of 5 minutes per concept name,
and report in Table 2 the number of timeouts, the number of successes (i.e., where we were able
to reconstruct CA) and failures (where no solutions were equivalent to CA). For successes and
failures, we indicate the average time spent until detecting success or failure, and the number of
solutions computed until then. In case of success, this number must be at least 1, but does not
need to be the total number of solutions to the given problem, whereas failure is also possible
with 0 solutions, but cannot be declared until all solutions have been computed. Since the SAT
encoding can yield solutions that are equivalent w.r.t. SNOMEDCT, we checked for every new
solution if it was equivalent to a previously computed one, and did not count such duplicates.

From the results, we can see that only in 6 of 100 cases our approach could reconstruct the original
definition of a concept name from SNOMEDCT. However, in specific subhierarchies, such as those

9



Table 2: Evaluation results on SNOMEDCT modules. “Size” denotes the number of concept
names in the module, “Def.” the number of fully defined concept names below the root concept
name, “#” is the number of timed-out/successful/failed test cases, “Time” is the average time
(in seconds) to completion, and “Sol.” is the average number of solutions that were computed.

T/O Success Failure
Root concept name Size Def. # # Time Sol. # Time Sol.
SNOMED_CT_Concept 325 143 79 468 92 6 19.0 4.7 2 5.0 0.0

Body_structure 31 540 1 086 0 99 2.8 2.3 1 22.0 1.0
Clinical_finding 126 993 47 225 86 9 18.6 1.2 5 69.8 47.4

Clin._hist._&_obs._find. 23 446 5 297 27 60 17.1 3.7 13 21.8 1.4
Functional_finding 6 741 3 325 7 85 17.8 4.6 8 44.1 3.1

Disease 88 594 38 056 89 9 4.2 1.1 2 30.5 0.0
Poisoning 6 738 3 171 40 53 5.2 1.7 7 2.6 11.0

Finding_by_site 15 149 2 725 87 2 7.0 1.0 11 26.4 21.2
Observable_entity 9 243 136 64 0 – – 36 13.8 0.0
Pharm./biol._product 23 678 2 678 82 9 13.9 2.7 9 5.3 0.0
Procedure 70 608 23 907 89 2 18.0 4.5 9 34.8 2.7

below Body_structure, Clinical_history_&_observation_finding, or Poisoning, the
success rates were much higher. The reason for this is that these hierarchies are well-structured,
with a smaller number of children per parent concept name, and a larger number of levels in the
subsumption hierarchy. Since we add the definitions of all siblings to the SAT encoding, such
a structure prevents the search space from getting too large. In contrast, the hierarchy below
Observable_entity is relatively flat and contains mostly primitive definitions, which do not
allow to distinguish siblings from each other. For example, the concept names Ability_to_
use_non-verbal_communication and Ability_to_use_verbal_communication are both
defined simply as subconcepts of Ability_to_communicate, with no existential restrictions
to distinguish them. Another problem occurred when siblings were not sufficiently similar to
allow to deduce the original definition of a concept name from the definitions of its siblings.

5 Conclusion

We demonstrated that disunification can find definitions of SNOMEDCT concept names when
given only a general description of their position in the concept hierarchy. An ontology engineer
could, for example, specify only the direct superconcepts and some incomparable concepts, in
order to obtain the definition of a new concept for SNOMEDCT.

References
[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further.

In Kendall Clark and Peter F. Patel-Schneider, editors, Proc. of the 4th Workshop
on OWL: Experiences and Directions, pages 1–10, 2008.

[BBM16] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification
in EL to disunification: The case of dismatching and local disunification. Logical
Methods in Computer Science, 12(4:1):1–28, 2016.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

10



Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2 edition, 2007.

[BM10a] Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In
Christian G. Fermüller and Andrei Voronkov, editors, Proc. of the 17th Int. Conf. on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10), volume
6397 of Lecture Notes in Computer Science, pages 97–111. Springer-Verlag, 2010.

[BM10b] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical
Methods in Computer Science, 6(3:17):1–31, 2010.

[BN01] Franz Baader and Paliath Narendran. Unification of concept terms in description
logics. Journal of Symbolic Computation, 31(3):277–305, 2001.

[LV14] Jens Lehmann and Johanna Völker. Perspectives on Ontology Learning, volume 18
of Studies on the Semantic Web. 2014.

[RI12] Alan Rector and Luigi Iannone. Lexically suggest, logically define: Quality assurance
of the use of qualifiers and expected results of post-coordination in SNOMED CT.
Journal of Biomedical Informatics, 45(2):199–209, 2012.

11


	Introduction
	Disunification in EL
	Incorporating Acyclic Definitions
	Local Disunification
	The SAT Reduction

	Constructing SNOMED CT Concepts
	The Basic Problem
	Additional Siblings
	Additional Atoms
	Domains and Ranges of Roles
	The Special Case of RoleGroup
	Compatibility of Classes and Types
	UNDEF concept names
	Restricting the Number of Existential Restrictions

	Evaluation
	Conclusion

