
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Temporal Query Answering in DL-Lite
over Inconsistent Data

Camille Bourgaux Anni-Yasmin Turhan

LTCS-Report 17-06

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Temporal Query Answering in DL-Lite
over Inconsistent Data∗

Camille Bourgaux Anni-Yasmin Turhan

September 20, 2017
(Revised version. Initial version: May 16, 2017)

Abstract

In ontology-based systems that process data stemming from different sources and that is
received over time, as in context-aware systems, reasoning needs to cope with the temporal
dimension and should be resilient against inconsistencies in the data. Motivated by such
settings, this paper addresses the problem of handling inconsistent data in a temporal
version of ontology-based query answering. We consider a recently proposed temporal
query language that combines conjunctive queries with operators of propositional linear
temporal logic and extend to this setting three inconsistency-tolerant semantics that have
been introduced for querying inconsistent description logic knowledge bases. We investigate
their complexity for DL-LiteR temporal knowledge bases, and furthermore complete the
picture for the consistent case.

Contents

1 Introduction 2

2 Preliminaries 3

3 Temporal Query Answering over Inconsistent Data 5

4 Complexity Analysis for DL-LiteR 10

4.1 Complexity of TCQ answering for the classical semantics 11

4.2 Complexity of inconsistency-tolerant TCQ answering 27

5 Conclusion and Future Work 33

∗Supported by the DFG in CRC 912 (HAEC) and the DAAD.

1

1 INTRODUCTION 2

1 Introduction

Context-aware systems [17, 3] observe their environment over time and are able to detect
situations while running in order to adapt their behaviour. They rely upon heterogeneous
sources such as sensors (in a broad sense) or other applications that provide them with data. A
context-aware system needs to integrate this data and should behave resilient towards erroneous
or contradictory data. Since the collected data usually provides an incomplete description of
the observed system, the closed world assumption employed by database systems, where facts
not present are assumed to be false, is not appropriate. Moreover, it is convenient to use
some knowledge about the system to reason with the data and get more complete answers
to the queries than from the data alone. To address these requirements and facilitate data
integration, ontologies have been used to implement situation recognition [17, 3, 13, 24].

Ontology-mediated query answering [14] performs database-style query answering over descrip-
tion logic (DL) knowledge bases that consist of an ontology (called a TBox) expressing con-
ceptual knowledge about a domain and a dataset (or ABox) containing facts about particular
individuals [5]. An important issue that may arise when querying data through ontology rea-
soning, especially in the context of situation recognition where the data comes from sensors and
is changing frequently, is the inconsistency of the data w.r.t. the ontology. Indeed, under the
classical semantics, every query is entailed from an inconsistent theory. Several inconsistency-
tolerant semantics have thus been introduced in the context of DL knowledge bases (see [7] for
a survey).

A situation is often defined not only w.r.t. the current state of the system but depends also on
its history. For instance, a system that operates on a cluster of servers may need the list of
servers which have been almost overloaded at least twice in the past ten time units. That is why
research efforts have recently been devoted to temporalizing query answering [4, 11] by allowing
to use operators of the linear temporal logic (LTL) [25] in the queries. In this setting, the query is
answered over a temporal knowledge base consisting of a global TBox and a sequence of ABoxes
that represents the data at different time points. The situation previously described can then
be recognised by answering the query “♦−(AlmostOverloaded(x)∧#−♦−AlmostOverloaded(x))",
where ♦− is the LTL operator “eventually in the past" and #− the operator “previous", over
the sequence of datasets that correspond to the last ten observations of the system, an ontology
defining the concept AlmostOverloaded. A lot of work has been dedicated to the temporalization
of DL, combining different temporal logics and DL languages (see [22] for a survey). As efficiency
is a primary concern, particular attention has been paid to temporalized DLs of the DL-Lite
family [15] which underly the OWL 2 QL profile of the Semantic Web standard [23] and possess
the notable property that query answering can be reduced to evaluation of standard database
queries (see [2] for different temporal extensions of DL-Lite). The construction of temporal
queries has attracted a lot of interest recently [18, 19, 1], and querying temporal databases has
also been studied (see e.g., [16]). Here, we consider the setting proposed in [11] which does not
allow for temporalized concepts or axioms in the TBox but focuses on querying sequences of
ABoxes.

This work presents results on lifting inconsistency-tolerant reasoning to temporal query answer-
ing. To the best of our knowledge, this is the first investigation of temporal query answering
under inconsistency-tolerant semantics. We consider three semantics that have been defined for
DL knowledge bases and that we find particularly relevant. They are all based upon the notion
of a repair, which is a maximal consistent subset of the data. The AR semantics [20, 21], in-
spired by consistent query answering in the database setting [6], considers the queries that hold
in every repair. This semantics is arguably the most natural and is widely accepted to query
inconsistent knowledge bases. However, AR query answering is intractable even for DL-Lite,
which leads [20, 21] to propose a tractable approximation of AR, namely the IAR semantics,
which queries the intersection of the repairs. Beside its better computational properties, this

2 PRELIMINARIES 3

semantics is more cautious since it provides answers supported by facts that are not involved
in any contradictions, so it may be interesting in our setting when the system should change
its behaviour only if some situation has been recognised with a very high confidence. Finally,
the brave semantics [9] returns every answer that holds in some repair, so is supported by some
consistent set of facts. This less cautious semantics may be relevant for context recognition,
when critical situations must imperatively be handled.

The contributions of this paper are as follows. In Section 3 we extend the AR, IAR and brave
semantics to the setting of temporal query answering. We distinguish in our analysis three
cases for rigid predicates, i.e., whose extensions stay unchanged across time points : no rigid
predicates, rigid concepts only, or rigid concepts and roles. We show that when there is no
rigid predicate, existing algorithms for temporal query answering and for IAR query answering
can be combined to perform IAR temporal query answering. We also show that this method
can sometimes be used for AR and provides in any case an approximation of the AR answers.
In Section 4 we investigate the computational properties of the three semantics, considering
both data complexity (in the size of the data only), and combined complexity (in the size of
the whole problem), and distinguishing three different cases regarding the rigid symbols that
are allowed. We show that in all cases except for brave semantics with rigid predicates, the
data complexity is not higher than in the atemporal setting. In all cases, adding the temporal
dimension does not increase the combined complexity. Our complexity analysis also leads us
to close some open questions about temporal query answering under the classical semantics in
the presence of rigid predicates. In particular, we show that it can often be reduced to the case
without rigid predicates.

2 Preliminaries

We briefly recall the syntax and semantics of DLs, the three inconsistency-tolerant semantics
we consider, and the setting of temporal query answering.

Syntax. A DL knowledge base (KB) K consists of an ABox A and a TBox T , both constructed
from three countably infinite sets: a set NC of concept names (unary predicates), a set NR of role
names (binary predicates), and a set NI of individual names (constants). The ABox (dataset)
is a finite set of concept assertions A(a) and role assertions R(a, b), where A ∈ NC, R ∈ NR,
a, b ∈ NI. The TBox (ontology) is a finite set of axioms whose form depends on the particular
DL. In DL-LiteR, TBox axioms are either concept inclusions B v C or role inclusions P v S
built according to the following syntax (where A ∈ NC and R ∈ NR):

B := A | ∃P, C := B | ¬B, P := R | R−, S := P | ¬P

Inclusions of the form B1 v B2 or P1 v P2 are called positive inclusions (PI), those of the form
B1 v ¬B2 or P1 v ¬P2 are called negative inclusions (NI).

Semantics. An interpretation has the form I = (∆I , ·I), where ∆I is a non-empty set and ·I
maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each R ∈ NR to RI ⊆ ∆I ×∆I .
We adopt the unique name assumption (i.e., for all a, b ∈ NI, aI 6= bI if a 6= b). The function ·I
is straightforwardly extended to general concepts and roles, e.g., (R−)I = {(d, e) | (e, d) ∈ RI}
and (∃P)I = {d | ∃e : (d, e) ∈ P I}. An interpretation I satisfies an inclusion G v H if
GI ⊆ HI ; it satisfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ RI). We call I a model
of K = 〈T ,A〉 if I satisfies all axioms in T and all assertions in A. A KB is consistent if it has
a model, and we say that an ABox A is T -consistent (or simply consistent for short), if the
KB 〈T ,A〉 is consistent.

Queries. A conjunctive query (CQ) takes the form q = ∃~y ψ(~x, ~y), where ψ is a conjunction of
atoms of the forms A(t) or R(t, t′), with t, t′ individuals or variables from ~x∪ ~y. A CQ is called

2 PRELIMINARIES 4

Boolean (BCQ) if it has no free variables (i.e. ~x = ∅). A BCQ q is entailed from K, written
K |= q, iff q holds in every model of K. Given a CQ q with free variables ~x = (x1, . . . , xk) and
a tuple of individuals ~a = (a1, . . . , ak), ~a is a certain answer to q over K just in the case that
K |= q(~a), where q(~a) is the BCQ resulting from replacing each xj by aj .

Inconsistency-tolerant semantics. A repair of K = 〈T ,A〉 is an inclusion-maximal subset of A
that is T -consistent. We consider three semantics based on repairs. A tuple ~a is an answer to
q over K under

• AR semantics, written K |=AR q(~a),
iff 〈T ,A′〉 |= q(~a) for every repair A′ of K;

• IAR semantics, written K |=IAR q(~a),
iff 〈T ,A∩〉 |= q(~a) where A∩ is the intersection of all repairs of K;

• brave semantics, written K |=brave q(~a),
iff 〈T ,A′〉 |= q(~a) for some repair A′ of K.

In DL-LiteR, IAR or brave CQ answering is in P w.r.t. data complexity (in the size of the ABox)
and NP-complete w.r.t. combined complexity (in the size of the whole KB and the query), and
AR CQ answering is coNP-complete w.r.t. data complexity and Πp

2-complete w.r.t. combined
complexity [20, 9].

Temporal query answering. We consider the framework presented in [11].

Definition 1 (TKB). A temporal knowledge base (TKB) K = 〈T , (Ai)0≤i≤n〉 consists of a TBox
T and a finite sequence of ABoxes (Ai)0≤i≤n. A sequence J = (Ii)0≤i≤n of interpretations
Ii = (∆, ·Ii) over a fixed non-empty domain ∆ is a model of K iff for all 0 ≤ i ≤ n, Ii is a
model of 〈T ,Ai〉, and for every a ∈ NI and all 1 ≤ i ≤ j ≤ n, aIi = aIj . Rigid predicates
are elements from the set of rigid concepts NRC ⊆ NC or of rigid roles NRR ⊆ NR. A sequence
of interpretations J = (Ii)0≤i≤n respects the rigid predicates iff for every X ∈ NRC ∪ NRR and
all 1 ≤ i ≤ j ≤ n, XIi = XIj . A TKB is consistent if it has a model that respects the rigid
predicates. A sequence of ABoxes (Ai)0≤i≤n is T -consistent, or simply consistent, if the TKB
〈T , (Ai)0≤i≤n〉 is consistent.

It is sometimes convenient to represent a sequence of ABoxes as a set of assertions associated
with timestamps, which we call timed-assertions : (Ai)0≤i≤n becomes {(α, i) | α ∈ Ai, 0 ≤ i ≤
n}. A rigid assertion is of the form A(a) with A ∈ NRC or R(a, b) with R ∈ NRR. We distinguish
three cases in our analysis : Case 1 with NRC = NRR = ∅, Case 2 with NRC 6= ∅ and NRR = ∅,
and Case 3 with NRC 6= ∅ and NRR 6= ∅. Note that since rigid roles can simulate rigid concepts,
these three cases cover all possibilities. We denote by NKC , N

K
R , N

K
RC, N

K
RR, and NKI respectively

the sets of concepts, roles, rigid concepts, rigid roles, and individuals that occur in the TKB K.

Definition 2 (TCQ). Temporal conjunctive queries (TCQs) are built from CQs as follows: each
CQ is a TCQ, and if φ1 and φ2 are TCQs, then so are φ1∧φ2 (conjunction), φ1∨φ2 (disjunction),
#φ1 (strong next), φ1 (weak next), #−φ1 (strong previous), −φ1 (weak previous), �φ1
(always), �−φ1 (always in the past), ♦φ1 (eventually), ♦−φ1 (some time in the past), φ1Uφ2
(until), and φ1Sφ2 (since). Given a TCQ φ with free variables ~x = (x1, . . . , xk) and a tuple of
individuals ~a = (a1, . . . , ak), φ(~a) denotes the Boolean TCQ (BTCQ) resulting from replacing
each xj by aj . The tuple ~a is an answer to φ in a sequence of interpretations J = (Ii)0≤i≤n
at time point p (0 ≤ p ≤ n) iff J , p |= φ(~a), where the entailment of a BTCQ φ is defined by
induction on its structure as shown in Table 1. It is a certain answer to φ over K at time point
p, written K, p |= φ(~a), iff J , p |= φ(~a) for every model J of K that respects the rigid predicates.

Remark 1. The additional LTL operators W (weak until), W− (weak since), R (release), and
R− (past release) can be expressed w.r.t. our operator basis as follows: φ1Wφ2 ≡ (φ1Uφ2) ∨

3 TEMPORAL QUERY ANSWERING OVER INCONSISTENT DATA 5

φ J , p |= φ iff

∃~y ψ(~y) Ip |= ∃~y ψ(~y)

φ1 ∧ φ2 J , p |= φ1 and J , p |= φ2
φ1 ∨ φ2 J , p |= φ1 or J , p |= φ2
#φ1 p < n and J , p+ 1 |= φ1
 φ1 p < n implies J , p+ 1 |= φ1
#−φ1 p > 0 and J , p− 1 |= φ1
 −φ1 p > 0 implies J , p− 1 |= φ1
�φ1 ∀k, p ≤ k ≤ n, J , k |= φ1
�−φ1 ∀k, 0 ≤ k ≤ p, J , k |= φ1
♦φ1 ∃k, p ≤ k ≤ n, J , k |= φ1
♦−φ1 ∃k, 0 ≤ k ≤ p, J , k |= φ1
φ1Uφ2 ∃k, p ≤ k ≤ n, J , k |= φ2 and ∀j, p ≤ j < k,J , j |= φ1
φ1Sφ2 ∃k, 0 ≤ k ≤ p, J , k |= φ2 and ∀j, k < j ≤ p,J , j |= φ1

Table 1: Entailment of BTCQs.

(�φ1), φ1W−φ2 ≡ (φ1Sφ2) ∨ (�−φ1), φ1Rφ2 ≡ φ2W(φ2 ∧ φ1), and φ1R−φ2 ≡ φ2W
−(φ2 ∧ φ1).

Since the top and bottom concepts > and ⊥ are not allowed in every DL, ♦ and � cannot be
expressed w.r.t. the other operators as usual in LTL (♦φ1 ≡ trueUφ1, �φ1 ≡ φ1U(φ1 ∧ false)).

Note also that since disjunctions are allowed, TCQs could be defined with unions of conjunctive
queries (UCQs) instead of CQs (in this case, in the first line of Table 1, the CQ ∃~y ψ(~y) would
be replaced by a UCQ

∨
1≤j≤m ∃~yj ψj(~yj)). We use CQs for simplicity.

It follows from the definition of certain answers that TCQ answering is straightforwardly reduced
to entailment of BTCQs and we can focus w.l.o.g. on the latter problem.

3 Temporal Query Answering over Inconsistent Data

We extend the three inconsistency-tolerant semantics to temporal query answering. The main
difference to the atemporal case is that in the presence of rigid predicates, a TKB K =
〈T , (Ai)0≤i≤n〉 may be inconsistent even if each KB 〈T ,Ai〉 is consistent. In this case there
need not exist a sequence of interpretations J = (Ii)0≤i≤n such that each Ii is a model of
〈T ,Ai〉 and which respects rigid predicates. That is why we need to consider as repairs the
T -consistent sequences of subsets of the initial ABoxes that are component-wise maximal.

Definition 3 (Repair of a TKB). A repair of a TKB K = 〈T , (Ai)0≤i≤n〉 is a sequence of
ABoxes (A′i)0≤i≤n such that {(α, i) | α ∈ A′i, 0 ≤ i ≤ n} is a maximal T -consistent subset of
{(α, i) | α ∈ Ai, 0 ≤ i ≤ n}.We denote the set of repairs of K by Rep(K).

The next example shows the influence of rigid predicates on the repairs.

Example 1. Consider the following TKB K = 〈T , (Ai)1≤i≤2〉. The TBox expresses that
web servers and application servers are two distinct kinds of servers, and the ABoxes provide
information about a server a that executes two processes.

T = {WebServer v Server, AppServer v Server, WebServer v ¬AppServer}
A1 = {WebServer(a), execute(a, b)}
A2 = {AppServer(a), WebServer(a), execute(a, c)}

3 TEMPORAL QUERY ANSWERING OVER INCONSISTENT DATA 6

Assume that no predicate is rigid. The TKB K is inconsistent because the timed-assertions
(AppServer(a), 2) and (WebServer(a), 2) violate the negative inclusion of T , since AppServer(a)
and WebServer(a) cannot both be true at time point 2. It follows that K has two repairs
(A′i)1≤i≤2 and (A′′i)1≤i≤2 with A′1 = A′′1 = A1, and A′2 = {AppServer(a), execute(a, c)} and
A′′2 = {WebServer(a), execute(a, c)} which correspond to the two different ways of restoring
consistency.

Assume now that AppServer is rigid. There is a new reason for K being inconsistent: the timed-
assertions (WebServer(a), 1) and (AppServer(a), 2) violate the negative inclusion of T due to the
rigidity of AppServer which implies that AppServer(a) and WebServer(a) should be both entailed
at time point 1. Then K has two repairs (A′i)1≤i≤2 and (A′′i)1≤i≤2 with A′1 = {execute(a, b)},
A′2 = {AppServer(a), execute(a, c)}, and A′′1 = A1, A′′2 = {WebServer(a), execute(a, c)}. Note
that even if (A′i)1≤i≤2 is maximal (since adding WebServer(a) to A′1 renders the TKB inconsis-
tent), A′1 is not a repair of 〈T ,A1〉 since it is not maximal.

Next we extend the semantics AR, IAR, and brave to the temporal case in the natural way by
regarding sequences of ABoxes.

Definition 4 (AR, IAR, brave semantics for TCQs). A tuple ~a is an answer to a TCQ φ over
a TKB K = 〈T , (Ai)0≤i≤n〉 at time point p under

• AR semantics, written K, p |=AR φ(~a),
iff 〈T , (A′i)0≤i≤n〉, p |= φ(~a) for every repair (A′i)0≤i≤n of K;

• IAR semantics, written K, p |=IAR φ(~a),
iff 〈T , (AIRi)0≤i≤n〉, p |= φ(~a), with AIRi =

⋂
(A′j)0≤j≤n∈Rep(K)

A′i, 0 ≤ i ≤ n;

• brave semantics, written K, p |=brave φ(~a),
iff 〈T , (A′i)0≤i≤n〉, p |= φ(~a) for some repair (A′i)0≤i≤n of K.

The following relationships between the semantics are implied by their definition:

K, p |=IAR φ(~a) ⇒ K, p |=AR φ(~a) ⇒ K, p |=brave φ(~a)

Next, we illustrate the effect of the different semantics in the temporal case.

Example 2 (Example 1 cont’d). Consider the three temporal conjunctive queries:

φ1 = �(∃y execute(x, y)) φ2 = �(∃y Server(x) ∧ execute(x, y))

φ3 = �(∃y AppServer(x) ∧ execute(x, y))

In Case 1 with no rigid predicate, the intersection of the repairs is (AIRi)1≤i≤2 with AIR1 = A1,
AIR2 = {execute(a, c)}. Then K, 1 |=IAR φ1(a), since in every model of the intersection of the
repairs a executes b at time point 1 and c at time point 2. For φ2, K, 1 |=AR φ2(a), since every
model of every repair assigns a to WebServer at time point 1 and either to AppServer (in models
of (A′i)1≤i≤2) or to WebServer (in models of (A′′i)1≤i≤2) at time point 2, but K, 1 6|=IAR φ2(a).
Finally, K, 1 6|=brave φ3(a) because no repair entails AppServer(a) at time point 1.

If AppServer is rigid, the intersection of the repairs is (AIRi)1≤i≤2 with AIR1 = {execute(a, b)},
AIR2 = {execute(a, c)}. So still K, 1 |=IAR φ1(a) holds. Since every model of every repair assigns
a to Server at time points 1 and 2 (either because a is a web server or an application server),
K, 1 |=AR φ2(a), but K, 1 6|=IAR φ2(a). Finally, K, 1 |=brave φ3(a) because every model of
〈T , (A′i)1≤i≤2〉 assigns a to AppServer at any time point by rigidity of AppServer, but K, 1 6|=AR
φ3(a).

3 TEMPORAL QUERY ANSWERING OVER INCONSISTENT DATA 7

φ K, p |=S φ iff

∃~y ψ(~y) 〈T ,Ap〉 |=S ∃~y ψ(~y)

φ1 ∧ φ2 K, p |=S φ1 and K, p |=S φ2
φ1 ∨ φ2 K, p |=S φ1 or K, p |=S φ2
#φ1 p < n and K, p+ 1 |=S φ1
 φ1 p < n implies K, p+ 1 |=S φ1
#−φ1 p > 0 and K, p− 1 |=S φ1
 −φ1 p > 0 implies K, p− 1 |=S φ1
�φ1 ∀k, p ≤ k ≤ n, K, k |=S φ1
�−φ1 ∀k, 0 ≤ k ≤ p, K, k |=S φ1
♦φ1 ∃k, p ≤ k ≤ n, K, k |=S φ1
♦−φ1 ∃k, 0 ≤ k ≤ p, K, k |=S φ1
φ1Uφ2 ∃k, p ≤ k ≤ n, K, k |=S φ2 and ∀j,p ≤ j < k,K, j |=S φ1
φ1Sφ2 ∃k, 0 ≤ k ≤ p, K, k |=S φ2 and ∀j,k < j ≤ p,K, j |=S φ1

Table 2: Entailment under classical or IAR semantics without rigid predicates.

We point out some characteristics of Case 1. Since there is no rigid predicate, the interpretations
Ii of a model J = (Ii)0≤i≤n of K that respects the rigid predicates are independent, besides
the interpretation of the constants.

Proposition 1. If NRC = NRR = ∅, then a TKB K = 〈T , (Ai)0≤i≤n〉 is consistent iff every
〈T ,Ai〉 is consistent. Moreover, if K is consistent, for every 0 ≤ p ≤ n, I ′p is a model of 〈T ,Ap〉
iff there exists a model J = (Ii)0≤i≤n of K such that Ip = I ′p.

Proof. If NRC = NRR = ∅, a sequence of interpretations J = (Ii)0≤i≤n is a model of K that
respects the rigid predicates iff it is a model of K, iff for every i, Ii is a model of 〈T ,Ai〉, and
for every a ∈ NI and all 1 ≤ i ≤ j ≤ n, aIi = aIj . It follows that K is consistent iff there
exists J = (Ii)0≤i≤n such that for every i, Ii is a model of 〈T ,Ai〉, and for every a ∈ NI and
all 1 ≤ i ≤ j ≤ n, aIi = aIj . We show that this is the case iff each 〈T ,Ai〉 has a model.
Let I ′0 = (∆I

′
0 , ·I′0), . . . , I ′n = (∆I

′
n , ·I′n) be models of 〈T ,A0〉, . . . 〈T ,An〉 respectively, and

0 ≤ p ≤ n. Let J = (Ii)0≤i≤n with Ii = (∆, ·Ii) where ∆ = ∆I
′
p and for every 0 ≤ i ≤ n, ·Ii

is defined as follows: aIi = aI
′
p for every a ∈ NI, AIi = {aI

′
p | aI′i ∈ AI′i} for every A ∈ NC,

and RIi = {(aI
′
p , bI

′
p) | (aI′i , bI′i) ∈ RI′i} for every R ∈ NR. Since we adopted the unique name

assumption, each Ii is a model of 〈T ,Ai〉. It follows that J = (Ii)0≤i≤n is such that for every
i, Ii is a model of 〈T ,Ai〉, and for every a ∈ NI and all 1 ≤ i ≤ j ≤ n, aIi = aIj . Moreover, J
is such that Ip = I ′p. The other direction is trivial.

Proposition 1 has several important consequences. First, the repairs of K are all possible
sequences (A′i)0≤i≤n where A′i is a repair of 〈T ,Ai〉, so the intersection of the repairs of K is
(A∩i)0≤i≤n where A∩i is the intersection of the repairs of 〈T ,Ai〉. Second, we show that the
entailment (resp. IAR entailment) of a BTCQ from a consistent (resp. possibly inconsistent)
DL-LiteR TKB can be equivalently defined w.r.t. the entailment (resp. IAR entailment) of the
BCQs it contains as follows:

Proposition 2. If K is a DL-LiteR TKB and NRC = NRR = ∅, then the entailments shown in
Table 2 hold for S = classical when K is consistent, and for S = IAR.

Proof. We start with the classical semantics when K is consistent.

For CQs we apply Proposition 1:

3 TEMPORAL QUERY ANSWERING OVER INCONSISTENT DATA 8

• K, p |= ∃~y ψ(~y)
iff for every model J = (Ii)0≤i≤n of K that respects the rigid predicates, Ip |= ∃~y ψ(~y)
iff for every model Ip of 〈T ,Ap〉, Ip |= ∃~y ψ(~y) by Proposition 1
iff 〈T ,Ap〉 |= ∃~y ψ(~y).

For the other cases where φ is built from TCQs φ1, φ2, we make use of the canonical model of
K. Indeed, it has been shown in [10] that if NRC = NRR = ∅, for any DL-LiteR TKB K, there
exists a canonical model JK of K such that for every BTCQ φ, and time point p, K, p |= φ iff
JK, p |= φ. Applying the definitions of Table 1 with JK gives the relations of Table 2.

For IAR semantics, let (AIRi)0≤i≤n denote the intersection of the repairs of K and A∩i denote
the intersection of the repairs of 〈T ,Ai〉:

• K, p |=IAR ∃~y ψ(~y)
iff 〈T , (AIRi)0≤i≤n〉, p |= ∃~y ψ(~y)
iff 〈T ,AIRp 〉 |= ∃~y ψ(~y) since (AIRi)0≤i≤n is consistent
iff 〈T ,A∩p 〉 |= ∃~y ψ(~y) since the repairs of K are the sequences of the repairs of the 〈T ,Ai〉
iff 〈T ,Ap〉 |=IAR ∃~y ψ(~y)

• K, p |=IAR φ1 ∧ φ2
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1 ∧ φ2
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1 and 〈T , (AIRi)0≤i≤n〉, p |= φ2
iff K, p |=IAR φ1 and K, p |=IAR φ2

• K, p |=IAR φ1 ∨ φ2
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1 ∨ φ2
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1 or 〈T , (AIRi)0≤i≤n〉, p |= φ2
iff K, p |=IAR φ1 or K, p |=IAR φ2

• K, p |=IAR #φ1
iff 〈T , (AIRi)0≤i≤n〉, p |= #φ1
iff p < n and 〈T , (AIRi)0≤i≤n〉, p+ 1 |= φ1
iff p < n and K, p+ 1 |=IAR φ1

• K, p |=IAR φ1
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1
iff p < n implies 〈T , (AIRi)0≤i≤n〉, p+ 1 |= φ1
iff p < n implies K, p+ 1 |=IAR φ1

• K, p |=IAR �φ1
iff 〈T , (AIRi)0≤i≤n〉, p |= �φ1
iff for every k, p ≤ k ≤ n, 〈T , (AIRi)0≤i≤n〉, k |= φ1
iff for every k, p ≤ k ≤ n, K, k |=IAR φ1

• K, p |=IAR ♦φ1
iff 〈T , (AIRi)0≤i≤n〉, p |= ♦φ1
iff there exists k, p ≤ k ≤ n, 〈T , (AIRi)0≤i≤n〉, k |= φ1
iff there exists k, p ≤ k ≤ n, K, k |=IAR φ1

• K, p |=IAR φ1Uφ2
iff 〈T , (AIRi)0≤i≤n〉, p |= φ1Uφ2
iff there exists k, p ≤ k ≤ n, 〈T , (AIRi)0≤i≤n〉, k |= φ2 and for every j, p ≤ j <
k, 〈T , (AIRi)0≤i≤n〉, j |= φ1
iff there exists k, p ≤ k ≤ n, K, k |=IAR φ2 and for every j, p ≤ j < k,K, j |=IAR φ1Uφ2

• K, p |=IAR #−φ1, K, p |=IAR −φ1, K, p |=IAR �−φ1, K, p |=IAR ♦−φ1, K, p |=IAR φ1Sφ2:
similar to the corresponding future operators

3 TEMPORAL QUERY ANSWERING OVER INCONSISTENT DATA 9

This is a remarkable result, since it follows from it that answering temporal CQs under IAR
semantics can be done with the algorithms developed for the consistent case [10, 11] by replacing
classical CQ answering by IAR CQ answering (see [21, 8, 26] for algorithms). The following
example shows that this is unfortunately not true for brave or AR semantics.

Example 3. Consider the following TKB K = 〈T , (Ai)1≤i≤n〉 and TCQ φ.

T ={T v ¬F} Ai ={T (a), F (a)} for 1 ≤ i ≤ n φ =�−(T (a) ∧ −F (a))

Now, K, k |=brave T (a) ∧ −F (a) for every 0 ≤ k ≤ n, but K, n 6|=brave φ. This is because the
same repair cannot entail T (a)∧ −F (a) both at time point k and k+ 1, since it would contain
both (T (a), k) and (F (a), k) which is not possible. For AR semantics, consider φ = T (a)∨F (a)
over the TKB K: while φ holds under AR semantics at each time point, neither T (a) nor F (a)
does.

However, if the operators allowed in the TCQ are restricted to ∧,#, ,#−, −,�, and �−,
then AR TCQ answering can be done with the algorithms developed for the consistent case by
simply replacing classical CQ answering by AR CQ answering (see [8] for algorithms). Indeed,
for these operators, the relations of Proposition 2 hold for S = AR:

• K, p |=AR ∃~y ψ(~y)
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= ∃~y ψ(~y)
iff for every repair (A′i)0≤i≤n of K, 〈T ,A′p〉 |= ∃~y ψ(~y)
iff for every repair A′p of 〈T ,Ap〉, 〈T ,A′p〉 |= ∃~y ψ(~y) since the repairs of K are the
sequences of the repairs of the 〈T ,Ai〉
iff 〈T ,Ap〉 |=AR ∃~y ψ(~y)

• K, p |=AR φ1 ∧ φ2
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= φ1 ∧ φ2
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= φ1 and 〈T , (A′i)0≤i≤n〉, p |= φ2
iff K, p |=AR φ1 and K, p |=AR φ2

• K, p |=AR #φ1
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= #φ1
iff for every repair (A′i)0≤i≤n of K, p < n and 〈T , (A′i)0≤i≤n〉, p+ 1 |= φ1
iff p < n and K, p+ 1 |=AR φ1

• K, p |=AR φ1
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= φ1
iff for every repair (A′i)0≤i≤n of K, p < n implies 〈T , (A′i)0≤i≤n〉, p+ 1 |= φ1
iff p < n implies K, p+ 1 |=AR φ1

• K, p |=AR �φ1
iff for every repair (A′i)0≤i≤n of K, 〈T , (A′i)0≤i≤n〉, p |= �φ1
iff for every repair (A′i)0≤i≤n of K, for every k, p ≤ k ≤ n, 〈T , (A′i)0≤i≤n〉, k |= φ1
iff for every k, p ≤ k ≤ n, K, k |=AR φ1

• K, p |=AR #−φ1, K, p |=AR −φ1, K, p |=AR �−φ1: similar to the corresponding future
operators

The following counter examples show that this is not the case for the other operators (∨,♦,♦−,U, S):

4 COMPLEXITY ANALYSIS FOR DL-LITER 10

• K, 1 |=AR φ1 ∨ φ2 but K, 1 6|=AR φ1 and K, 1 6|=AR φ2:

T ={A v ¬B} φ1 =A(a) φ2 =B(a) A1 ={A(a), B(a)}

• K, 1 |=AR ♦φ1 but for every k, 1 ≤ k ≤ 3, K, k 6|=AR φ1:

T ={A v ¬B} φ1 =A(a) ∧#B(a)

A1 ={A(a)} A2 ={A(a), B(a)} A3 ={B(a)}

• K, 1 |=AR φ1Uφ2 but for every k, 1 ≤ k ≤ 3, either K, k 6|=AR φ2 or there exists j,
1 ≤ j < k, K, j 6|=AR φ1:

T ={A v ¬B} φ1 =A(a) φ2 =B(a)

A1 ={A(a)} A2 ={A(a), B(a)} A3 ={B(a)}

• Similar counter example to ♦ for ♦− and to U for S.

Interestingly, contrary to the brave semantics, even for general TCQs the “if” direction of
Proposition 2 is true:

• if K, p |=AR φ1 or K, p |=AR φ2, then K, p |=AR φ1 ∨ φ2

• if there exists k, p ≤ k ≤ n, K, k |=AR φ1, then K, p |=AR ♦φ1

• if there exists k, 0 ≤ k ≤ p, K, k |=AR φ1, then K, p |=AR ♦−φ1

• if there exists k, p ≤ k ≤ n, K, k |=AR φ2 and for every j, p ≤ j < k, K, j |=AR φ1, then
K, p |=AR φ1Uφ2

• if there exists k, 0 ≤ k ≤ p, K, k |=AR φ2 and for every j, k < j ≤ p, K, j |=AR φ1, then
K, p |=AR φ1Sφ2

It follows that even for unrestricted TCQs, combining algorithms for TCQ answering with
algorithms for AR query answering will provide a sound approximation of AR answers.

4 Complexity Analysis for DL-LiteR

In this section, K = 〈T , (Ai)0≤i≤n〉 is a DL-LiteR TKB and φ is a BTCQ. The set of constants
of φ is denoted by NφI . We make use of the following notations: for a role P and two constants
or variables x and y, P− := S if P = S− and P (x, y) denotes S(x, y) if P = S and S(y, x) if
P = S−. We assume w.l.o.g. that no x ∈ NKI is of the form xew where w, e are words built over
NKI ∪ NKC ∪ NKR and N respectively.

We recall the definitions of the complexity classes that appear in this section:

• P: problems which are solvable in polynomial time.

• NP: problems which are solvable in non-deterministic polynomial time.

• coNP: problems whose complement is in NP.

• Σp2: problems which are solvable in non-deterministic polynomial time with an NP oracle.

• Πp
2: problems whose complement is in Σp2.

4 COMPLEXITY ANALYSIS FOR DL-LITER 11

• ALogTime: class of languages decidable in logarithmic time by a random access alter-
nating Turing machine. In this work, we only use that ALogTime ⊆ P.

• PSpace: problems which are solvable in polynomial space.

We conclude this introductory paragraph with the notions of conflicts and causes that will be
used in some proofs. A conflict for a KB K = 〈T ,A〉 is a minimal T -inconsistent subset of A.
A cause for a BCQ q w.r.t. K is a minimal T -consistent subset C ⊆ A such that 〈T , C〉 |= q.
The following definitions extend these notions to the temporal setting.

Definition 5 (Conflicts of a TKB). A conflict of a TKB K = 〈T , (Ai)0≤i≤n〉 is a sequence of
ABoxes (A′i)0≤i≤n such that {(α, i) | α ∈ A′i, 0 ≤ i ≤ n} is a minimal T -inconsistent subset of
{(α, i) | α ∈ Ai, 0 ≤ i ≤ n}.

Because of DL-LiteR syntax, the conflicts of a DL-LiteR TKB are at most binary, i.e., contain
at most two timed-assertions.

Definition 6 (Causes for a BTCQ in a TKB). A cause for a BTCQ φ at time point p in
K = 〈T , (Ai)0≤i≤n〉 is a sequence of ABoxes (Ci)0≤i≤n such that {(α, i) | α ∈ Ci, 0 ≤ i ≤ n} is
a minimal T -consistent subset of {(α, i) | α ∈ Ai, 0 ≤ i ≤ n} such that 〈T , (Ci)0≤i≤n〉, p |= φ.

Note that a KB (resp. TKB) is consistent iff it has no conflict, and that a BCQ (resp. BTCQ)
is entailed from a KB (resp. a TKB) K under brave semantics iff it has some cause in K, since
such a cause can be extended to a repair that entails the query.

4.1 Complexity of TCQ answering for the classical semantics

The complexity of TCQ answering under the classical semantics in DL-LiteR with negations in
the query has been shown ALogTime-complete w.r.t. data complexity and PSpace-complete
w.r.t. combined complexity, rigid concepts and roles being present or not [12]. In our case,
i.e., without negations, CQ evaluation over databases provides a NP lower bound for combined
complexity and it has been shown in [10, 11] that TCQs in DL-LiteR are rewritable so that
they can be answered over a temporal database—albeit for a restricted setting without rigid
roles and with rigid concepts only for TCQs that are rooted. The NP membership of TCQ
answering in Case 1 for combined complexity is implied by this latter work as follows: it is
possible to guess for each time point i and CQ q from the TCQ either a rewriting q′ of q that
holds in Ai together with the rewriting steps that produce q′ and the variables assignment that
maps q′ in Ai, or to guess “false”. Checking that q′ is indeed a rewriting of q and holds in Ai can
be done in polynomial time and there are polynomially many such pairs of a time point and a
CQ to test. Moreover, verifying that the propositional LTL formula obtained by replacing the
CQs by propositional variables is satisfied by the sequence of truth assignments that assigns
the propositional abstraction of q to false at time point i if “false” has been guessed and to true
otherwise is in P since the formula does not contain negation. It follows that TCQ answering
is NP-complete w.r.t. combined complexity. To alleviate the limitations imposed in [10, 11], we
first show that TCQ answering without negations is NP-complete w.r.t. combined complexity
even in the presence of rigid concepts and roles, with the restriction that a rigid role can only
have rigid sub-roles. Indeed, we show that under this restriction, TCQ answering in Case 3
can be reduced to TCQ answering in Case 1 by adding to every ABox a set of assertions that
models rigid consequences of the TKB and is computable in polynomial time.

As a first step, we assume that K is consistent and construct a model JK of K such that for any
BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff JK, p |= φ. This model will be used latter to prove

4 COMPLEXITY ANALYSIS FOR DL-LITER 12

that in the case where K is consistent, TCQ answering gives the same answers over K and over
the TKB we will construct by adding a set of assertions to each ABox and NRC = NRR = ∅. We
build a sequence of (possibly infinite) ABoxes (chaseKrig(Ai))0≤i≤n similar to the chase presented
in [14] for KBs. Let S be a set of DL-LiteR assertions. A PI α is applicable in S to an assertion
β ∈ S if

• α = A1 v A2, β = A1(a), and A2(a) /∈ S

• α = A v ∃P , β = A(a), and there is no b such that P (a, b) ∈ S

• α = ∃P v A, β = P (a, b), and A(a) /∈ S

• α = ∃P1 v ∃P2, β = P1(a1, a2), and there is no b such that P2(a1, b) ∈ S

• α = P1 v P2, β = P1(a1, a2), and P2(a1, a2) /∈ S.

Applying a PI α to an assertion β means adding a new suitable assertion βnew to S such that
α is not applicable to β in S ∪ {βnew}.

Definition 7 (Rigid chase of a TKB). Let K = 〈T , (Ai)0≤i≤n〉 be a DL-LiteR TKB. Let
(A′i)0≤i≤n = (Ai∪{β | ∃k, β ∈ Ak and β is rigid})0≤i≤n, let Tp be the set of positive inclusions
in T , and let Ni be the number of assertions in A′i. Assume that the assertions of each A′i
are numbered from N1 + · · · + Ni−1 + 1 to N1 + · · · + Ni following their lexicographic order.
Consider the sequences of sets of assertions Sj = (Sji)0≤i≤n defined as follows:

S0 = (A′i)0≤i≤n and Sj+1 = Sj ∪ Snew = (Sji ∪ S
new
i)0≤i≤n,

where Snew is defined in terms of the assertion βnew obtained as follows: let β ∈ Sjiβ be the
first assertion in Sj such that there exists a PI in Tp applicable in Sjiβ to β and let α be the
lexicographically first PI applicable in Sjiβ to β. In case α, β are of the form

• α = A1 v A2 and β = A1(a) then βnew = A2(a)

• α = A v ∃P and β = A(a) then βnew = P (a, anew)

• α = ∃P v A and β = P (a, b) then βnew = A(a)

• α = ∃P1 v ∃P and β = P1(a, b) then βnew = P (a, anew)

• α = P1 v P2 and β = P1(a1, a2) then βnew = P2(a1, a2)

where anew is constructed from α and β as follows:

• if a ∈ NKI then anew = x
iβ
aP

• otherwise a /∈ NKI , then let a = xi1...ila′P1...Pl
and define anew = x

i1...iliβ
a′P1...PlP

.

If βnew is rigid, then Snew = ({βnew})0≤i≤n, otherwise, Snew = (Snew
i)0≤i≤n with Snew

iβ
= {βnew}

and Snew
i = ∅ for i 6= iβ .

Let N be the total number of assertions in Sj . The assertion(s) added are numbered as follows:
if βnew is not rigid, βnew is numbered by N + 1, otherwise for every 0 ≤ i ≤ n, the assertion
βnew ∈ Snew

i added to Sji is numbered by N + 1 + i.

We call the rigid chase of K, denoted by chaserig(K) = (chaseKrig(Ai))0≤i≤n, the sequence of
sets of assertions obtained as the infinite union of all Sj , i.e.,

chaserig(K) = (chaseKrig(Ai))0≤i≤n =
⋃
j∈N
Sj = (

⋃
j∈N
Sji)0≤i≤n.

4 COMPLEXITY ANALYSIS FOR DL-LITER 13

Let ΓN be the set of individuals that appear in chaserig(K) but not in K. The following
properties of chaserig(K) will be useful:

Proposition 3. chaserig(K) is such that:

(P1) xi1aP1
∈ ΓN =⇒ P1(a, xi1aP1

) ∈ chaseKrig(Ai1)

(P2) xi1...ilaP1...Pl
∈ ΓN , l > 1 =⇒ Pl(x

i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ chaseKrig(Ail)

(P3) chaseKrig(Ai) |= B(xi1...ilaP1...Pl
) =⇒ T |= ∃P−l v B

(P4) xi1...ilaP1...Pl
∈ ΓN , l > 1 =⇒ T |= ∃P−l−1 v ∃Pl

(P5) chaseKrig(Ai) |= B(a), a ∈ NKI =⇒ 〈T ,Ai〉 |= B(a) or there exists B′ := A|∃R|∃R− with
A ∈ NRC, R ∈ NRR such that T |= B′ v B and there exists j such that 〈T ,Aj〉 |= B′(a)

(P6) chaseKrig(Ai) |= B(xi1...ilaP1...Pl
) =⇒ i = il or there exists B′ := A|∃R|∃R− with A ∈

NRC, R ∈ NRR such that T |= B′ v B and chaseKrig(Ail) |= B′(xi1...ilaP1...Pl
)

(P7) P (a, b) ∈ chaseKrig(Ai), a, b ∈ NKI =⇒ 〈T ,Ai〉 |= P (a, b) or there exists P ′ :=
R|R− with R ∈ NRR such that T |= P ′ v P and there exists j such that 〈T ,Aj〉 |= P ′(a, b)

(P8) P (a, xi1aP1
) ∈ chaseKrig(Ai), a ∈ NKI , i1 = i =⇒ T |= P1 v P and 〈T ,Ai〉 |= ∃xP1(a, x)

or there exists B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR such that T |= B v ∃P1 and there
exists j such that 〈T ,Aj〉 |= B(a)

(P9) P (a, xi1aP1
) ∈ chaseKrig(Ai), a ∈ NKI , i1 6= i =⇒ there exists P ′ := R|R− with R ∈ NRR

such that T |= P1 v P ′ v P

(P10) P (x, y) ∈ chaseKrig(Ai), x, y ∈ ΓN =⇒ x = xi1...ilaP1...Pl
, y = x

i1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v

P or x = x
i1...ilil+1

aP1...PlPl+1
, y = xi1...ilaP1...Pl

and T |= Pl+1 v P−

(P11) P (xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ai), il+1 6= i =⇒ there exists P ′ := R|R− with

R ∈ NRR such that T |= Pl+1 v P ′ v P and P ′(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ail+1

)

(P12) Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ chaseKrig(Ail) =⇒ ∃j, 〈T ,Aj〉 |= ∃xyPl−1(x, y)

Proof. (P1) If xi1aP1
∈ ΓN , xi1aP1

has been introduced to construct P1(a, xi1aP1
) at some step j of

the construction of the chase by applying a PI to an assertion β ∈ Sji1 , so P1(a, xi1aP1
) ∈ Sj+1

i1
,

so P1(a, xi1aP1
) ∈ chaseKrig(Ai1).

(P2) If xi1...ilaP1...Pl
∈ ΓN , xi1...ilaP1...Pl

has been introduced to construct Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) at
some step j of the construction of the chase by applying a PI to an assertion β ∈ Sjil , so
Pl(x

i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ Sj+1
il

, so Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ chaseKrig(Ail).

4 COMPLEXITY ANALYSIS FOR DL-LITER 14

(P3) We show that if there is some i and step j such that Sji |= B(xi1...ilaP1...Pl
) then T |= ∃P−l v B

by induction on p = j − s where s is the step where xi1...ilaP1...Pl
has been introduced to produce

Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

). If p = 0, since Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) is the only assertion of Sj that

contains the individual xi1...ilaP1...Pl
, if Sji |= B(xi1...ilaP1...Pl

), it follows that Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈
Sji and that Pl(x

i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) |= B(xi1...ilaP1...Pl
), so B = ∃P−l and T |= ∃P−l v B. For p > 0,

assume that Sji |= B(xi1...ilaP1...Pl
). If there exists i′ such that Sj−1i′ |= B(xi1...ilaP1...Pl

), T |= ∃P−l v B
by induction hypothesis. Otherwise, let β ∈ Sji be such that β |= B(xi1...ilaP1...Pl

). Since β /∈ Sj−1i ,
it has been created at step j by applying a PI α ∈ T to an assertion β′ ∈ Sj−1i′ . Either
β′ = A(xi1...ilaP1...Pl

) for some concept A, so by induction hypothesis T |= ∃P−l v A, and since
α, β′ |= B(xi1...ilaP1...Pl

), T |= A v B and T |= ∃P−l v B, or β′ = P (xi1...ilaP1...Pl
, x) for some role P ,

so by induction hypothesis T |= ∃P−l v ∃P , and since α, β′ |= B(xi1...ilaP1...Pl
), T |= ∃P v B and

T |= ∃P−l v B.

(P4) By (P2) chaseKrig(Ail) |= ∃Pl(x
i1...il−1

aP1...Pl−1
) so by (P3), it follows that T |= ∃P−l−1 v ∃Pl.

(P5) We show that if Sji |= B(a) then 〈T ,Ai〉 |= B(a) or there exist B′ := A|∃R|∃R− with A ∈
NRC, R ∈ NRR such that T |= B′ v B and i′ such that 〈T ,Ai′〉 |= B′(a) by induction on j. If
j = 0, since S0i = Ai ∪ {β | ∃k, β ∈ Ak and β is rigid}, then either Ai |= B(a) or there exist k
and a rigid assertion β ∈ Ak such that β |= B(a), so there exists B′ := A|∃R|∃R− with A ∈
NRC, R ∈ NRR such that T |= B′ v B and Ak |= B′(a). For j > 0, assume that Sji |= B(a). If
Sj−1i |= B(a), we apply the induction hypothesis. Otherwise, let β ∈ Sji be such that β |= B(a).
Since β /∈ Sj−1i , it has been created at step j by applying a PI α ∈ T to an assertion β′ ∈ Sj−1i′ .
Either β′ = A(a) for some concept A, and since α, β′ |= B(a), T |= A v B, or β′ = P (a, x) for
some role P , and since α, β′ |= B(a), T |= ∃P v B. Let C = A in the first case, C = ∃P in the
second case. Sj−1i′ |= C(a) so by induction hypothesis 〈T ,Ai′〉 |= C(a) |= B(a) or there exist a
rigid concept C ′ such that T |= C ′ v C v B and i′′ such that 〈T ,Ai′′〉 |= C ′(a). In the first
case, either i′ = i and 〈T ,Ai〉 |= B(a), or i′ 6= i, so since β ∈ Sji , β is rigid and B is rigid.

(P6) We show that if Sji |= B(xi1...ilaP1...Pl
) then i = il or there exist B′ := A|∃R|∃R− with A ∈

NRC, R ∈ NRR such that T |= B′ v B and i′ such that chaseKrig(Ai′) |= B′(xi1...ilaP1...Pl
) by

induction on p = j − s where s is the step where xi1...ilaP1...Pl
has been introduced to produce

Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

). If p = 0, since Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) is the only assertion of Sj

that contains xi1...ilaP1...Pl
, if Sji |= B(xi1...ilaP1...Pl

), B = ∃P−l and Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ Sji so
i = il or Pl is rigid. For p > 0, assume that Sji |= B(xi1...ilaP1...Pl

). If Sj−1i |= B(xi1...ilaP1...Pl
), we

apply the induction hypothesis. Otherwise, let β ∈ Sji be such that β |= B(xi1...ilaP1...Pl
). Since

β /∈ Sj−1i , it has been created at step j by applying a PI α ∈ T to an assertion β′ ∈ Sj−1i′ .
Either β′ = A(xi1...ilaP1...Pl

) for some concept A, and since α, β′ |= B(xi1...ilaP1...Pl
), T |= A v B,

or β′ = P (xi1...ilaP1...Pl
, x) for some role P , and since α, β′ |= B(xi1...ilaP1...Pl

), T |= ∃P v B. Let
C = A in the first case, C = ∃P in the second case. Sj−1i′ |= C(xi1...ilaP1...Pl

) so by induction
hypothesis i′ = il or there exist a rigid concept C ′ such that T |= C ′ v C v B and i′′ such that
chaseKrig(Ai′′) |= C ′(xi1...ilaP1...Pl

).

(P7) We show that if P (a, b) ∈ Sji then 〈T ,Ai〉 |= P (a, b) or there exist a rigid role P ′ such
that T |= P ′ v P and i′ such that 〈T ,Ai′〉 |= P ′(a, b) by induction on j. If j = 0, since
S0i = Ai ∪ {β | ∃k, β ∈ Ak and β is rigid}, then either P (a, b) ∈ Ai or P is rigid and there
exist k such that P (a, b) ∈ Ak. For j > 0, assume that P (a, b) ∈ Sji . If P (a, b) ∈ Sj−1i , we
apply the induction hypothesis. Otherwise, since P (a, b) /∈ Sj−1i , it has been created at step
j by applying a PI P ′ v P ∈ T to an assertion P ′(a, b) ∈ Sj−1i′ , so by induction hypothesis
〈T ,Ai′〉 |= P ′(a, b) |= P (a, b) or there exist a rigid role P ′′ such that T |= P ′′ v P ′ v P and i′′

4 COMPLEXITY ANALYSIS FOR DL-LITER 15

such that 〈T ,Ai′′〉 |= P ′′(a, b). In the first case, either i′ = i and 〈T ,Ai〉 |= P (a, b), or i′ 6= i,
so since P (a, b) ∈ Sji , P is rigid.

(P8) First, since P (a, xi1aP1
) ∈ chaseKrig(Ai1), chaseKrig(Ai1) |= ∃P1(a), so by (P5), either

〈T ,Ai1〉 |= ∃xP1(a, x) or there exist a rigid concept B such that T |= B v ∃P1 and i such
that 〈T ,Ai〉 |= B(a). We then show that if P (a, xi1aP1

) ∈ Sji for some i, then T |= P1 v P

by induction on p = j − s where s is the step where xi1aP1
has been introduced to produce

P1(a, xi1aP1
). If p = 0, since P1(a, xi1aP1

) is the only assertion of Sj that contains xi1aP1
, P = P1.

For p > 0, assume that P (a, xi1aP1
) ∈ Sji . If P (a, xi1aP1

) ∈ Sj−1i , we apply the induction hy-
pothesis. Otherwise, since P (a, xi1aP1

) /∈ Sj−1i , it has been created at step j by applying a PI
P ′ v P ∈ T to an assertion P ′(a, xi1aP1

) ∈ Sj−1i′ , so by induction hypothesis T |= P1 v P ′ v P .

(P9) We show that if P (a, xi1aP1
) ∈ Sji for some i 6= i1, then there exists a rigid P ′ such that

T |= P1 v P ′ v P by induction on p = j−s where s is the step where xi1aP1
has been introduced

to produce P1(a, xi1aP1
). If p = 0, since P1(a, xi1aP1

) is the only assertion of Sj that contains xi1aP1
,

P = P1 and is rigid since i 6= i1. For p > 0, assume that P (a, xi1aP1
) ∈ Sji . If P (a, xi1aP1

) ∈ Sj−1i ,
we apply the induction hypothesis. Otherwise, since P (a, xi1aP1

) /∈ Sj−1i , it has been created at
step j by applying a PI P ′ v P ∈ T to an assertion P ′(a, xi1aP1

) ∈ Sj−1i′ , so either i′ 6= i1 and
by induction hypothesis there exists a rigid P ′′ such that T |= P1 v P ′′ v P ′ v P , or i′ = i1
and since i 6= i1, P is rigid, and by (P8), T |= P1 v P ′ v P .

(P10) We show that if P (x, y) ∈ Sji for some i, then x = xi1...ilaP1...Pl
, y = x

i1...ilil+1

aP1...PlPl+1
and T |=

Pl+1 v P , or x = x
i1...ilil+1

aP1...PlPl+1
, y = xi1...ilaP1...Pl

and T |= Pl+1 v P− by induction on p = j − s
where s is the maximum of the steps where x or y has been introduced. If p = 0, either (i)
P (x, y) has been created by applying a PI of the form B v ∃P to an assertion B(x), and if
x = xi1...ilaP1...Pl

, then y = x
i1...ilil+1

aP1...PlPl+1
with Pl+1 = P , or (ii) P (x, y) has been created by applying

a PI of the form B v ∃P− to an assertion B(y), and if y = xi1...ilaP1...Pl
, then x = x

i1...ilil+1

aP1...PlPl+1
with

Pl+1 = P−. For p > 0, P (x, y) has been created by applying a PI of the form P ′ v P to an
assertion P ′(x, y) ∈ Sj−1i′ , so by induction x = xi1...ilaP1...Pl

, y = x
i1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P ′ v

P or x = x
i1...ilil+1

aP1...PlPl+1
, y = xi1...ilaP1...Pl

and T |= Pl+1 v P ′− v P−.

(P11) We show that if P (xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ Sji for some i 6= il+1, then there exists

a rigid role P ′ such that T |= Pl+1 v P ′ v P and the assertion P ′(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈

chaseKrig(Ail+1
) by induction on p = j−s where s is the step where the individual xi1...ilil+1

aP1...PlPl+1
has

been introduced to produce Pl+1(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
). If p = 0, since Pl+1(xi1...ilaP1...Pl

, x
i1...ilil+1

aP1...PlPl+1
)

is the only assertion of Sj that contains xi1...ilil+1

aP1...PlPl+1
, P = Pl+1 and is rigid since i 6= il+1, and

Pl+1(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ail+1

). For p > 0, assume that P (xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈

Sji . If P (xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ Sj−1i , we apply the induction hypothesis. Otherwise, since

P (xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) /∈ Sj−1i , it has been created at step j by applying a PI P ′ v P ∈ T to

an assertion P ′(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈ Sj−1i′ , so either i′ 6= il+1 and by induction hypothesis

there exists a rigid P ′′ such that T |= Pl+1 v P ′′ v P ′ v P and P ′′(xi1...ilaP1...Pl
, x
i1...ilil+1

aP1...PlPl+1
) ∈

chaseKrig(Ail+1
), or i′ = il+1 and since i 6= il+1, P is rigid so P (xi1...ilaP1...Pl

, x
i1...ilil+1

aP1...PlPl+1
) ∈

chaseKrig(Ail+1
).

(P12) We show that if Pl(x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈ chaseKrig(Ail) then there is some j such

that 〈T ,Aj〉 |= ∃xyPl−1(x, y) by induction on l. If l = 2, by (P1), Pl−1(a, x
i1...il−1

aP1...Pl−1
) ∈

chaseKrig(Ail−1
) so chaseKrig(Ail−1

) |= ∃Pl−1(a) so by (P5), there is some j such that 〈T ,Aj〉 |=

4 COMPLEXITY ANALYSIS FOR DL-LITER 16

∃Pl−1(a), so 〈T ,Aj〉 |= ∃xyPl−1(x, y). For l > 2, by (P2), Pl−1(x
i1...il−2

aP1...Pl−2
, x
i1...il−1

aP1...Pl−1
) ∈

chaseKrig(Ail−1
) so by induction there is some j such that 〈T ,Aj〉 |= ∃xyPl−2(x, y), and since

by (P4) T |= ∃P−l−2 v ∃Pl−1, 〈T ,Aj〉 |= ∃xyPl−1(x, y).

Based on the rigid chase of K, we construct the sequence of interpretations JK = (Ii)0≤i≤n
where Ii = (∆, ·Ii) is defined as follows: ∆ = NKI ∪ ΓN , aIi = a for every a ∈ ∆, AIi = {a |
A(a) ∈ chaseKrig(Ai)} for every A ∈ NC, and RIi = {(a, b) | R(a, b) ∈ chaseKrig(Ai)} for every
R ∈ NR. We show that JK is a model of K that respects the rigid predicates and such that for
any BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff JK, p |= φ.

Lemma 1. If K is consistent, then JK is a model of K that respects the rigid predicates.

Proof. We first show that JK is a model of K, i.e., that for every 1 ≤ i ≤ n, Ii |= Ai and Ii |= T .
It is easy to see that Ii |= Ai because Ai ⊆ chaseKrig(Ai). We can show that Ii satisfies every
positive inclusion of T with similar arguments as those used in [14]. Indeed, if a PI α ∈ Tp is not
satisfied, there is an assertion β ∈ chaseKrig(Ai) such that α is applicable to β in chaseKrig(Ai).
This is impossible given that every PI applicable to β in Sji at step j of the construction of the
rigid chase becomes not applicable to β in Ski for some k ≥ j, since there are not infinitely many
assertions before β nor infinitely many PIs applied to some assertion that precedes β because a
PI can be applied only once to a given assertion. Finally, Ii satisfies every negative inclusion of
T because K is consistent. Indeed, if a negative inclusion is not satisfied, this implies that there
is a conflict B in chaseKrig(Ai). If B = {α}, the timed-assertion (α′, j) ∈ (Ai)0≤i≤n from which
α has been derived by applying PIs from Tp is clearly inconsistent. Otherwise B = {α, β} with
α derived from (α′, j), β derived from (β′, k). If j = k, {(α′, j), (β′, k)} is clearly inconsistent. If
j 6= k, since α and β belong to chaseKrig(Ai), if j 6= i (resp. k 6= i) there exists α′′ ∈ chaseKrig(Ai)
rigid such that α derives from α′′ which derives from α′ (resp. β′′ ∈ chaseKrig(Ai) rigid such
that β derives from β′′ which derives from β′), so {(α′, j), (β′, k)} is inconsistent because no
sequence of interpretations that respects rigid predicates can be a model of K.

Moreover, the model JK respects the rigid predicates because if an assertion β of chaseKrig(Ai)
is rigid, either β ∈ Ai and by construction β ∈ S0k = A′k for every k, or β has been derived at
some step j by applying some PI to an assertion of Sj and β ∈ Sj+1

k for every k, so in both
cases β ∈ chaseKrig(Ak) for every k.

Lemma 2. If K is consistent, then for any BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff JK, p |= φ.

Proof. Since JK = (Ii)0≤i≤n with Ii = (∆, ·Ii) is a model of K that respects the rigid predicates,
the first direction is clear and we only need to show that if JK, p |= φ then K, p |= φ. Let
J = (I ′i)0≤i≤n with I ′i = (∆′, ·I′i) be a model of K that respects rigid predicates. We show by
structural induction on φ that if JK, p |= φ then J , p |= φ.

If φ is a CQ ∃~y ψ(~y), we show that if there exists a homomorphism π of ∃~y ψ(~y) into Ip, then
I ′p |= ∃~y ψ(~y). We define a mapping h from ∆ into ∆′ (we assume w.l.o.g. that ∆ and ∆′ are
disjoint) as follows:

• for every a ∈ NKI , h(aIp) = aI
′
p

• for every xi1aP1
∈ ΓN , h(x

i1Ip
aP1

) = y where (aI
′
p , y) ∈ P

I′i1
1 (if there are several such y,

choose one of them randomly)

• for every xi1...ilaP1...Pl
∈ ΓN with l > 1, h(x

i1...ilIp
aP1...Pl

) = y where (h(x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l (if

there are several such y, choose one of them randomly).

4 COMPLEXITY ANALYSIS FOR DL-LITER 17

We first show that h is well defined, i.e., that in the two latter cases there always exists a y
as required by induction on l. In the case of l = 1, since xi1aP1

∈ ΓN , by (P1) P1(a, xi1aP1
) ∈

chaseKrig(Ai1) so by (P8) either (i) 〈T ,Ai1〉 |= ∃xP1(a, x) and since I ′i1 is a model of 〈T ,Ai1〉,

there is some (aI
′
p , y) ∈ P

I′i1
1 , or (ii) there exists B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR, such

that T |= B v ∃P1 and there exists j such that 〈T ,Aj〉 |= B(a). In the latter case, since J
is a model of K that respects the rigid predicates, I ′i1 |= B(a), so since I ′i1 is a model of T ,

there is some (aI
′
p , y) ∈ P

I′i1
1 . Then, for l > 1, since xi1...ilaP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl.

It follows that since by induction there is an (x, h(x
i1...il−1Ip
aP1...Pl−1

)) ∈ P
I′il
l−1, then there is some

(h(x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l .

We then show that h is a homomorphism of Ip into I ′p, which implies that h ◦ π is a homomor-
phism of ∃~y ψ(~y) into I ′p:

For every a ∈ NKI and concept A, if aIp ∈ AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5),
either (i) 〈T ,Ap〉 |= A(a), and since I ′p is a model of 〈T ,Ap〉, then h(aIp) = aI

′
p ∈ AI

′
p ,

or (ii) there exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR, such that T |= B v A and
there exists j such that 〈T ,Aj〉 |= B(a). In the latter case, since J is a model of K that
respects the rigid predicates, I ′p |= B(a) |= A(a) so h(aIp) = aI

′
p ∈ AI

′
p . For every pair

a, b ∈ NKI and role P , if (aIp , bIp) ∈ P Ip , by (P7), similar arguments can be used to prove that
(h(aIp), h(bIp)) = (aI

′
p , bI

′
p) ∈ P I

′
p .

For every xi1...ilaP1...Pl
∈ ΓN , such that xi1...ilIpaP1...Pl

∈ AIp , i.e., A(xi1...ilaP1...Pl
) ∈ chaseKrig(Ap), by (P6) we

are in one of the following cases:

(i) il = p. By (P3), T |= ∃P−l v A and by construction of h, h(x
i1...pIp
aP1...Pl

) = y with

(h(x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′p
l (note that if l = 1, xi1...il−1

aP1...Pl−1
= a). It follows that since I ′p

is a model of T , then y ∈ AI
′
p .

(ii) there exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR such that T |= B v A and
chaseKrig(Ail) |= B(xi1...ilaP1...Pl

). As in case (i), by (P3) and definition of h we have that
h(x

i1...ilIp
aP1...Pl

) = y ∈ BI
′
il . Since B is rigid, y ∈ BI

′
p . It follows that since I ′p is a model of

T , then y ∈ AI
′
p .

For every pair x, y ∈ ΓN and role P , such that (xIp , yIp) ∈ P Ip , by (P10) x = xi1...ilaP1...Pl
, y =

x
i1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P or x = x

i1...ilil+1

aP1...PlPl+1
, y = xi1...ilaP1...Pl

and T |= Pl+1 v P−. We can
assume w.l.o.g. that we are in the first case (otherwise we consider (yIp , xIp) ∈ P−Ip). If il+1 =

p, by definition of h, (h(xIp), h(yIp)) ∈ P I
′
p

l+1, so since I ′p is a model of T , (h(xIp), h(yIp)) ∈ P I
′
p .

Otherwise, by (P11), there exists P ′ := R|R− with R ∈ NRR such that T |= Pl+1 v P ′ v P
and P ′(x, y) ∈ chaseKrig(Ail+1

). With the same arguments as in the first case we show that

(h(xIp), h(yIp)) ∈ P ′I
′
il+1 , and since P ′ is rigid (h(xIp), h(yIp)) ∈ P ′I

′
p . It follows that since I ′p

is a model of T , then (h(xIp), h(yIp)) ∈ P I
′
p .

Finally, if a ∈ NKI and x ∈ ΓN , (aIp , xIp) ∈ P Ip only if x = xi1aP1
. If i1 = p, by definition of

h, (h(aIp), h(xIp)) ∈ P I
′
p

1 . Since by (P8) T |= P1 v P and I ′p is a model of T , it follows that
(h(aIp), h(xIp)) ∈ P I

′
p . If i1 6= p, by (P9), there exists P ′ rigid such that T |= P1 v P ′ v P

and since by definition of h, (h(aIp), h(xIp)) ∈ P
I′i1
1 , then (h(aIp), h(xIp)) ∈ P ′I

′
i1 . Since J

respects rigid predicates, it follows that (h(aIp), h(xIp)) ∈ P ′I
′
p and (h(aIp), h(xIp)) ∈ P I

′
p .

4 COMPLEXITY ANALYSIS FOR DL-LITER 18

We have thus shown that if JK, p |= ∃~y ψ(~y) then J , p |= ∃~y ψ(~y).

Assume that for two BTCQs φ1, φ2 such that Nφ1

I ⊆ NKI and Nφ2

I ⊆ NKI , if JK, p |= φi then
J , p |= φi (i ∈ {1, 2}). Then:

• If JK, p |= φ1 ∧ φ2 then JK, p |= φ1 and JK, p |= φ2
so by assumption J , p |= φ1 and J , p |= φ2
then J , p |= φ1 ∧ φ2

• If JK, p |= φ1 ∨ φ2 then JK, p |= φ1 or JK, p |= φ2
so by assumption J , p |= φ1 or J , p |= φ2
then J , p |= φ1 ∨ φ2

• If JK, p |= #φ1 then p < n and JK, p+ 1 |= φ1
so by assumption p < n and J , p+ 1 |= φ1
then J , p |= #φ1

• If JK, p |= φ1 then p = n or JK, p+ 1 |= φ1
so by assumption p = n or J , p+ 1 |= φ1
then J , p |= φ1

• If JK, p |= �φ1 then for every k, p ≤ k ≤ n, JK, k |= φ1
so by assumption for every k, p ≤ k ≤ n, J , k |= φ1
then J , p |= �φ1

• If JK, p |= ♦φ1 then there exists k, p ≤ k ≤ n, JK, k |= φ1
so by assumption J , k |= φ1
then J , p |= ♦φ1

• If JK, p |= φ1Uφ2 then there exists k, p ≤ k ≤ n, JK, k |= φ2 and for every j, p ≤ j < k,
JK, j |= φ1
so by assumption J , k |= φ2 and for every j, p ≤ j < k, J , j |= φ1
then J , p |= φ1Uφ2

• #−φ1, −φ1, �−φ1, ♦−φ1, φ1Sφ2: similar to the corresponding future operators

We conclude by induction that for every BTCQ φ such that NφI ⊆ NKI , if JK, p |= φ then
J , p |= φ. It follows that if JK, p |= φ then K, p |= φ.

We have thus shown that for every BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff JK, p |= φ.

To show that TCQ answering in Case 3 reduces to TCQ answering in Case 1, we want to
construct in polynomial time a set of assertions R that captures all relevant information about
rigid concepts and roles for consistency checking and TCQ answering, i.e., such that TCQ
answering over K with NRC 6= ∅, NRR 6= ∅ can be done by TCQ answering over 〈T , (Ai∪R)0≤i≤n〉
with NRC = NRR = ∅. Without any restriction on the TBox, R may be infinite, as illustrated
in the following example.

Example 4. ConsiderK = 〈T , (Ai)0≤i≤n〉 with T = {A v ∃P, ∃P− v ∃R, ∃R− v ∃R, R v S}
with S rigid, and (Ai)0≤i≤n with A0 = {A(a)}, and Ai = ∅ for 1 ≤ i ≤ n. A model of K that
respects rigid predicates is such that φ = ∃x1...xk+1S(x1, x2) ∧ ... ∧ S(xk, xk+1) holds for any
k > 0 and at any time point. Since with NRC = NRR = ∅, K entails such a query only at time
point 0, R should be such that 〈T ,R〉 entails such a query, so that 〈T , (Ai ∪R)0≤i≤n〉 entails
it at any time point. Moreover, a model of K that respects rigid predicates can be such that
neither ∃x1...xkS(x1, x2)∧ ... ∧ S(xk, x1), nor ∃xA(x), ∃xyP (x, y) or ∃xyR(x, y) holds at some
time point i > 0, so R should not contain any cycle of S, or any A, P or R assertions. It follows
that R has to contain an infinite chain of S.

4 COMPLEXITY ANALYSIS FOR DL-LITER 19

Therefore we assume the restriction that rigid roles only have rigid sub-roles, i.e., T does not
entail any role inclusion of the form P1 v P2 with P1 := R1|R−1 , R1 ∈ NR\NRR and P2 := R2|R−2 ,
R2 ∈ NRR. This condition avoids that there may be chains of rigid roles in the anonymous part
of JK that cannot be entailed by a single rigid assertion. In the example above, if rigid roles
only have rigid sub-roles, R has to be rigid, so adding the single assertion R(x, y) to every Ai
is sufficient for φ = ∃x1...xk+1R(x1, x2) ∧ ... ∧ R(xk, xk+1) being entailed at every time point
for any k > 0, thus sufficient for φ = ∃x1...xk+1S(x1, x2) ∧ ... ∧ S(xk, xk+1) being entailed at
every time point for any k > 0 since R v S.

Proposition 4. Let R be as follows:

R ={A(a) | A ∈ NKRC, a ∈ NKI , ∃i, 〈T ,Ai〉 |=brave A(a)} ∪
{R(a, b) | R ∈ NKRR, a, b ∈ NKI , ∃i, 〈T ,Ai〉 |=brave R(a, b)} ∪
{P (a, xaP) | R ∈ NKRR, P := R|R−, a ∈ NKI , ∃i, 〈T ,Ai〉 |=brave ∃xP (a, x)} ∪
{A(xP1) | S ∈ NKR \NKRR, P1 := S|S−, A ∈ NKRC,

∃i, 〈T ,Ai〉 |=brave ∃xyP1(x, y) and T |= ∃P−1 v A} ∪
{P2(xP1

, xP1P2
) | S ∈ NKR \NKRR, P1 := S|S−, R ∈ NKRR, P2 := R|R−,

∃i, 〈T ,Ai〉 |=brave ∃xyP1(x, y) and T |= ∃P−1 v ∃P2}

The set R is computable in polynomial time and such that

1. K is consistent iff KR = 〈T , (Ai ∪R)0≤i≤n〉 is consistent with NRC = NRR = ∅, and

2. for any BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff KR, p |= φ with NRC = NRR = ∅.

The size of R is polynomial in the size of NKC ,N
K
R , and NKI , and since atomic query answering

under brave semantics as well as subsumption checking can be done in polynomial time, R can
be computed in P. The first three parts of R retain information about the participation of in-
dividuals of NKI in rigid predicates. The last two witness the participation in rigid predicates of
the role-successors w.r.t. non-rigid roles, thus take into account also anonymous individuals that
are created in chaserig(K) when applying PIs whose right-hand side is an existential restriction
with a non-rigid role. Note that the individuals created in chaserig(K) when applying such a PI
with a rigid role are witnessed by the xaP or xP1P2

if they do not follow from a rigid role asser-
tion, and do not need to be witnessed otherwise, since the assertion P2(xP1 , xP1P2) is sufficient
to trigger all the anonymous part implied by the fact that xP1P2 is in the range of P2. We use the
brave semantics to define R because there is no guarantee that every 〈T ,Ai〉 is consistent, and
everything would be entailed under classical semantics if it is inconsistent. The brave semantics
allows us to derive any relevant fact because if some fact is entailed from some 〈T ,Ai〉 under
the classical semantics but not under brave semantics, this means that 〈T ,Ai〉 is inconsistent,
so K is already inconsistent with NRC = NRR = ∅, and KR is also inconsistent since 〈T ,Ai ∪R〉
is inconsistent (and in this case any BTCQ φ is entailed from both K and KR at any time point).

We break the proof of Proposition 4 in several lemmas.

Lemma 3. K is consistent iff KR is consistent with NRC = NRR = ∅.

Proof. KR is consistent with NRC = NRR = ∅ iff each 〈T ,Ai∪R〉 is consistent by Proposition 1.
We show that K is consistent iff each 〈T ,Ai ∪R〉 is consistent.

If K is not consistent, let B be a conflict of K. Then B is either internal to some Ai, and
〈T ,Ai ∪ R〉 is inconsistent, or is of the form B = {(α, i), (β, j)} with i 6= j. In the latter case,
{α, β} violates some negative inclusion of the closure of the TBox that involves at least a rigid

4 COMPLEXITY ANALYSIS FOR DL-LITER 20

concept A or a rigid role R by assigning an individual a (or two individuals a, b) to two disjoint
concepts (or roles). We can then assume w.l.o.g. that 〈T , α〉 |= A(a) (resp. 〈T , α〉 |= ∃xR(a, x),
resp. 〈T , α〉 |= ∃xR(x, a), resp. 〈T , α〉 |= R(a, b)). It follows that 〈T ,Ai〉 |=brave A(a) (resp.
〈T ,Ai〉 |=brave ∃xR(a, x), resp. 〈T ,Ai〉 |=brave ∃xR(x, a), resp. 〈T ,Ai〉 |=brave R(a, b)) since α
is consistent (otherwise {(α, i), (β, j)} is not a conflict). By construction of R, A(a) ∈ R (resp.
R(a, xaR) ∈ R, resp. R(xaR− , a) ∈ R, resp. R(a, b) ∈ R), so 〈T ,Aj ∪R〉 is inconsistent.

In the other direction, if there exists i, 0 ≤ i ≤ n, such that 〈T ,Ai ∪ R〉 is inconsistent, let B
be a conflict of 〈T ,Ai ∪ R〉. If B is internal to Ai, K is clearly inconsistent. Otherwise B is
of the form {α, β} and involves at least an assertion of R. The assertions α and β assign an
individual x to two disjoint concepts (that may be existential restrictions of roles) C1, C2 or two
individuals x, y to two disjoint roles R1, R2. Suppose for a contradiction that x appears only
in R. If x = xaP (resp. x = xP1P2

), since P (a, xaP) (resp. P2(xP1
, xP1P2

)) is the only assertion
of R that contains x, it implies that ∃P− (resp. ∃P−2) is unsatisfiable. This contradicts the
fact that there exists j such that 〈T ,Aj〉 |=brave ∃xP (a, x) (resp. 〈T ,Aj〉 |=brave ∃xyP1(x, y)
and T |= ∃P−1 v ∃P2). If x = xP1 , since xP1 appears only in concepts that subsume ∃P−1 ,
it implies that ∃P−1 is unsatisfiable, which contradicts the fact that there exists j such that
〈T ,Aj〉 |=brave ∃xyP1(x, y). It follows that x ∈ NKI . Since α or β is in R, at least one of C1, C2

(or R1, R2) is rigid. Let cα be a cause for the brave entailment that triggered the addition of α
to R if α /∈ Ai (in this case cα belongs to some Ajα), and otherwise (cα, jα) = (α, i), and cβ be
a cause for the brave entailment that triggered the addition of β to R if β /∈ Ai (in this case cβ
belongs to some Ajβ), and otherwise (cβ , jβ) = (β, i). Then {(cα, jα), (cβ , jβ)} is a conflict of
K because cα and cβ have for consequence that a (or a, b) is assigned to two disjoint concepts
(or disjoint roles) such that at least one of them is rigid.

We now assume that K and KR are consistent. Note that if it is not the case, they both trivially
entail any BTCQ. The brave entailments in the construction of R correspond thus to classical
entailments. The two following lemmas show that if a Boolean conjunctive query q = ∃~y ψ(~y)
is such that NqI ⊆ NKI , then KR, p |= q iff K, p |= q iff Ip |= q.

Lemma 4. If q = ∃~y ψ(~y) is such that NqI ⊆ NKI , if KR, p |= q then Ip |= q.

Proof. Assume that KR, p |= ∃~y ψ(~y), i.e., 〈T , (Ap ∪ R)〉 |= ∃~y ψ(~y) (since NRC = NRR = ∅).
Let IRp = (∆I

R
p , ·I

R
p) be the canonical model of 〈T , (Ap ∪ R)〉. There exists a homomorphism

π of ∃~y ψ(~y) into IRp . We first define a mapping σ from {xI
R
p | x ∈ NKI or occurs in R} into

{xIp | x ∈ NKI ∪ ΓN , x occurs in chaseKrig(Ap)} (we assume that ∆ and ∆I
R
p are disjoint) as

follows:

• σ(aI
R
p) = aIp for a ∈ NKI

• σ(x
IRp
aP) = xIp such that P (a, x) ∈ chaseKrig(Ap)

• σ(x
IRp
P) = xIp such that there exists P (y, x) ∈

⋃n
i=0 chase

K
rig(Ai)

• σ(x
IRp
PP ′) = xIp such that P ′(y, x) ∈ chaseKrig(Ap) with σ(x

IRp
P) = yIp

Claim 1. σ is well defined:

If xaP occurs in R, there exists i such that 〈T ,Ai〉 |= ∃xP (a, x), and since Ii is a model of
〈T ,Ai〉, there is some P (a, x) ∈ chaseKrig(Ai). Moreover, since P is rigid, P (a, x) ∈ chaseKrig(Ap).

If xP occurs in R, there exists i such that 〈T ,Ai〉 |= ∃xyP (x, y), so since Ii is a model of
〈T ,Ai〉, there exist x, y ∈ NKI ∪ ΓN such that P (y, x) ∈ chaseKrig(Ai). Moreover, x occurs

4 COMPLEXITY ANALYSIS FOR DL-LITER 21

in chaseKrig(Ap) because there exists B := A|∃R|∃R− with A ∈ NRC and R ∈ NRR such that
T |= ∃P− v B, so there is a rigid assertion β |= B(x) such that β ∈ chaseKrig(Ap).

If xPP ′ occurs in R, xP occurs in R, so there exist i and y ∈ NKI ∪ΓN such that P (y, σ(x
IRp
P)) ∈

chaseKrig(Ai), and since by construction of R P ′ is rigid and such that T |= ∃P− v ∃P ′ and

Ii is a model of T , there exists x ∈ NKI ∪ ΓN such that P ′(σ(x
IRp
P), x) ∈ chaseKrig(Ai), and

P ′(σ(x
IRp
P), x) ∈ chaseKrig(Ap).

Claim 2. σ is a partial homomorphism of IRp into Ip:

For every a ∈ NKI and concept A, if aI
R
p ∈ AI

R
p , since IRp is the canonical model of 〈T , (Ap∪R)〉,

〈T , (Ap ∪ R)〉 |= A(a). Let {α} be a cause for A(a). If α ∈ Ap, α ∈ chaseKrig(Ap), so since Ip
is a model of T and 〈T , α〉 |= A(a), σ(aI

R
p) = aIp ∈ AIp . Otherwise α ∈ R and is either of

the form A′(a) with A′ ∈ NRC, P (a, b), or P (a, xaP) with P rigid. In the two first cases, there
exists i such that 〈T ,Ai〉 |= α so since Ii is a model of 〈T ,Ai〉, α ∈ chaseKrig(Ai). Since α is
rigid, α ∈ chaseKrig(Ap) so since Ip is a model of T and 〈T , α〉 |= A(a), σ(aI

R
p) = aIp ∈ AIp .

If α = P (a, xaP), there exists i such that 〈T ,Ai〉 |= ∃xP (a, x). Since Ii is a model of 〈T ,Ai〉,
there is some P (a, x) ∈ chaseKrig(Ai). Since P is rigid, P (a, x) ∈ chaseKrig(Ap) so since Ip is a
model of T and 〈T , P (a, x)〉 |= A(a), σ(aI

R
p) = aIp ∈ AIp .

For every pair a, b ∈ NKI and role P , if (aI
R
p , bI

R
p) ∈ P I

R
p , we can use similar arguments to show

that (σ(aI
R
p), σ(bI

R
p)) = (aIp , bIp) ∈ P Ip .

For every xaP that occurs in R and A ∈ NC, if x
IRp
aP ∈ A

IRp , since IRp is the canonical model of
〈T , (Ap ∪ R)〉, 〈T , (Ap ∪ R)〉 |= A(xaP). Let {α} be a cause for A(xaP). By construction, the
only assertion of Ap ∪R that involves xaP is P (a, xaP) so α = P (a, xaP) and 〈T , P (a, xaP)〉 |=
A(xaP). Since σ(x

IRp
aP) = xIp is such that P (a, x) ∈ chaseKrig(Ap) and Ip is a model of T , then

σ(x
IRp
aP) ∈ AIp .

For every a ∈ NKI , x /∈ NKI that occurs in R, and role P , if (aI
R
p , xI

R
p) ∈ P I

R
p , since IRp is the

canonical model of 〈T , (Ap ∪R)〉, 〈T , (Ap ∪R)〉 |= P (a, x). Let {α} be a cause for P (a, x). By

construction of R, x = xaP1
, and α = P1(a, xaP1

) so by definition of σ, (σ(aI
R
p), σ(x

IRp
aP1P

)) ∈

P
Ip
1 . Since 〈T , P1(a, x)〉 |= P (a, x) and Ip is a model of T , it follows that (σ(aI

R
p), σ(x

IRp
aP1P

)) ∈
P Ip .

For every xP1 that occurs in R and A ∈ NC, if x
IRp
P1
∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap ∪R)〉, 〈T , (Ap ∪R)〉 |= A(xP1). Let {α} be a cause for A(xP1). By construction, either
α = A′(xP1

) with A′ ∈ NRC and T |= ∃P−1 v A′, or α = P2(xP1
, xP1P2

) with P2 rigid and T |=
∃P−1 v ∃P2. Since σ(x

IRp
P1

) = xIp is such that there exists i such that P1(y, x) ∈ chaseKrig(Ai)
and Ii is a model of T , then A′(x) ∈ chaseKrig(Ai) (resp. there is some P2(x, z) ∈ chaseKrig(Ai)).
Therefore A′(x) ∈ chaseKrig(Ap) (resp. there is some P2(x, z) ∈ chaseKrig(Ap)). It follows that

σ(x
IRp
P1

) ∈ AIp because Ip is a model of T .

For every xP1P2 that occurs in R and A ∈ NC, if x
IRp
P1P2

∈ AI
R
p , since IRp is the canonical

model of 〈T , (Ap ∪ R)〉, 〈T , (Ap ∪ R)〉 |= A(xP1P2). Let {α} be a cause for A(xP1P2). By

construction, α = P2(xP1
, xP1P2

), P2 is rigid, and T |= ∃P−1 v ∃P2. Since σ(x
IRp
P1P2

) = xIp such

that there exists P2(y, x) ∈ chaseKrig(Ap) (with yI
R
p = σ(x

IRp
P1

)) and Ip is a model of T , then

4 COMPLEXITY ANALYSIS FOR DL-LITER 22

σ(x
IRp
P1P2

) ∈ AIp .

Finally, for every x, y /∈ NKI that occur in R and role P , if (xI
R
p , yI

R
p) ∈ P I

R
p , since IRp is the

canonical model of 〈T , (Ap ∪ R)〉, 〈T , (Ap ∪ R)〉 |= P (x, y). Let {α} be a cause for P (x, y).
By construction x = xP1

, y = xP1P2
, α = P2(xP1

, xP1P2
), and P2 is rigid, so as previously,

(σ(x
IRp
P1

), σ(x
IRp
P1P2

)) ∈ P Ip .

Claim 3. σ can be extended to a homomorphism σ′ of IRp into Ip:

Since IRp is the canonical model of 〈T , (Ap∪R)〉, Ip is a model of T , and σ preserves the concept
or role memberships, we can extend σ to a homomorphism σ′ of IRp into Ip by mapping the
anonymous part of IRp rooted in xI

R
p ∈ {xI

R
p | x ∈ NKI or occurs in R} to the part of Ip rooted

in σ(xI
R
p).

It follows from Claim 3 that σ′ ◦ π is a homomorphism of ∃~y ψ(~y) into Ip. We have thus shown
that if KR, p |= ∃~y ψ(~y) then Ip |= ∃~y ψ(~y).

Lemma 5. If q = ∃~y ψ(~y) is such that NqI ⊆ NKI , if Ip |= q then KR, p |= q.

Proof. Assume that Ip |= ∃~y ψ(~y), i.e., there exists a homomorphism π of ∃~y ψ(~y) into Ip. Let
IRp = (∆I

R
p , ·I

R
p) be a model of 〈T , (Ai ∪ R)〉. We define a mapping hRp from {xIp | x ∈

NKI ∪ ΓN , x occurs in chaseKrig(Ap)} into ∆I
R
p (we assume that ∆ and ∆I

R
p are disjoint) as

follows:

• for every a ∈ NKI , h
R
p (aIp) = aI

R
p

• for every xi1aP1
with i1 6= p and P1 is rigid, hRp (x

i1Ip
aP1

) = x
IRp
aP1

• for every xi1...ilaP1...Pl
with l > 1, such that every ij 6= p, and Pl is rigid and Pl−1 is not rigid,

hRp (x
i1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

• for every xi1...ilaP1...Pl
with l > 1, such that every ij 6= p, and Pl is rigid and Pl−1 is rigid,

hRp (x
i1...ilIp
aP1...Pl

) = y where (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l (if there are several such y, choose one
of them randomly).

• for every xi1...ilaP1...Pl
such that every ij 6= p, and Pl not rigid, hRp (x

i1...ilIp
aP1...Pl

) = x
IRp
Pl

• for every xi1...ilaP1...Pl
such that there exists ij = p, hRp (x

i1...ilIp
aP1...Pl

) = y where (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈

P
IRp
l (if there are several such y, choose one of them randomly).

Claim 1. hRp is well defined:

• Case xi1aP1
with i1 6= p and P1 is rigid, hRp (x

i1Ip
aP1

) = x
IRp
aP1

:
The individual xaP1

appears in R because xi1aP1
∈ ΓN only if ∃xP1(a, x) is entailed by

some 〈T ,Aj〉 by (P1) and (P8).

• Case xi1...ilaP1...Pl
with l > 1, such that every ij 6= p, and Pl is rigid and Pl−1 is not rigid,

hRp (x
i1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

:
The individual xPl−1Pl appears in R because Pl is rigid, Pl−1 is not rigid, and since

4 COMPLEXITY ANALYSIS FOR DL-LITER 23

xi1...ilaP1...Pl
∈ ΓN then by (P4) T |= ∃P−l−1 v ∃Pl, and by (P2) and (P12) there is some j

such that 〈T ,Aj〉 |= ∃xyPl−1(x, y).

• Case xi1...ilaP1...Pl
with l > 1, such that every ij 6= p, and Pl is rigid and Pl−1 is rigid,

hRp (x
i1...ilIp
aP1...Pl

) = y where (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l :

We show that there is always such (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l by induction on the length
length = l − r of the sequence of rigid roles Pr...Pl−1.

- If length = 1, we are in one of the following cases:

(i) r > 1 and hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

. Then (x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P I
R
p

l−1 because IRp is
a model of R. Since xi1...ilaP1...Pl

∈ ΓN , by (P4) T |= ∃P−l−1 v ∃Pl, so since IRp is a model of

T , there is some (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l .

(ii) r = 1 and hRp (x
i1...il−1Ip
aP1...Pl−1

) = hRp (x
i1Ip
aP1

) = x
IRp
aP1

is such that (aI
R
p , x

IRp
aP1

) ∈ P I
R
p

1 because
P1(a, xaP1

) ∈ R. Since xi1i2aP1P2
∈ ΓN , T |= ∃P−1 v ∃P2 by (P4), so since IRp is a model of

T , there is some (x
IRp
aP1

, y) ∈ P I
R
p

2 .

- Then for length > 1, T |= ∃P−l−1 v ∃Pl by (P4). It follows that since by induction

there is an (x, hRp (x
i1...il−1Ip
aP1...Pl−1

)) ∈ P I
R
p

l−1, then there is some (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l .

• Case xi1...ilaP1...Pl
such that every ij 6= p, and Pl not rigid, hRp (x

i1...ilIp
aP1...Pl

) = x
IRp
Pl

:
Since T does not contain any role inclusion of the form P ′ v P with P ′ := R1|R−1 , R1 ∈
NR\NRR and P := R2|R−2 , R2 ∈ NRR, and Pl is not rigid, there is no P such that Pl v P

and P is rigid. Therefore, since il 6= p, there is no P such that P (x
i1...il−1

aP1...Pl−1
, xi1...ilaP1...Pl

) ∈
chaseKrig(Ap) so xi1...ilaP1...Pl

occurs in chaseKrig(Ap) only if there is B := A|∃R|∃R− with
A ∈ NRC, R ∈ NRR such that chaseKrig(Ap) |= B(xi1...ilaP1...Pl

). By (P3) T |= ∃P−l v B, and
by (P2) and (P12) there is some j such that 〈T ,Aj〉 |= ∃xyPl−1(x, y). It follows that xPl
appears in R.

• Case xi1...ilaP1...Pl
such that there exists ij = p, hRp (x

i1...ilIp
aP1...Pl

) = y where (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈

P
IRp
l :

We show that there is always such (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l by induction on the length
length = l− r of the chain of roles that links xi1...ilaP1...Pl

to the first individual xi1...iraP1...Pr
such

that ir = p:
- If length = 0, then il = p and there is no j < l such that ij = p. We

are thus in one of the following cases: either (i) hRp (x
i1...il−1Ip
aP1...Pl−1

) = aI
R
p , or (ii)

hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
aP1

, or (iii) hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

, or (iv) hRp (x
i1...il−1Ip
aP1...Pl−1

) is such

that (hRp (x
i1...il−2Ip
aP1...Pl−2

), hRp (x
i1...il−1Ip
aP1...Pl−1

)) ∈ P I
R
p

l−1, or (v) h
R
p (x

i1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

:

(i) if hRp (x
i1...il−1Ip
aP1...Pl−1

) = aI
R
p : by definition of hRp , x

i1...il−1

aP1...Pl−1
= a, so xi1...paP1...Pl

= xpaP1
. Since

xpaP1
∈ ΓN , by (P1) P1(a, xpaP1

) ∈ chaseKrig(Ap). By (P8) either (a) 〈T ,Ap〉 |= ∃xP1(a, x),

so there is some (aI
R
p , y) ∈ P

IRp
1 because IRp is a model of 〈T ,Ap〉, or (b) there exists

B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR, such that T |= B v ∃P1 and there exists j such
that 〈T ,Aj〉 |= B(a). In the latter case, R |= B(a) by construction of R, and since IRp is

a model of R, IRp |= B(a). Since IRp is a model of T , there is some (aI
R
p , y) ∈ P I

R
p

1 .

(ii) if hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
aP1

: by definition of hRp , x
i1...il−1

aP1...Pl−1
= xi1aP1

and P1 is rigid.
By (P1) P1(a, xi1aP1

) ∈ chaseKrig(Ai1), so by (P8) either (a) 〈T ,Ai1〉 |= ∃xP1(a, x), so

4 COMPLEXITY ANALYSIS FOR DL-LITER 24

P1(a, xaP1) ∈ R since P1 is rigid, or (b) there exists B := A|∃R|∃R− with A ∈ NRC, R ∈
NRR, such that T |= B v ∃P1 and there exists j such that 〈T ,Aj〉 |= B(a). In the latter

case 〈T ,Aj〉 |= ∃xP1(a, x), so P1(a, xaP1) ∈ R. In both cases, (aI
R
p , x

IRp
aP1

) ∈ P I
R
p

1 since
IRp is a model of R. Moreover, since xi1...ilaP1...Pl

= xi1paP1P2
∈ ΓN , by (P4) T |= ∃P−1 v ∃P2,

so since IRp is a model of T , there is some (x
IRp
aP1

, y) ∈ P I
R
p

2 .

(iii) if hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

: by definition of R, since xPl−2Pl−1
appears in R,

Pl−1(xPl−2
, xPl−2Pl−1

) ∈ R, so (x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P I
R
p

l−1. Since xi1...ilaP1...Pl
∈ ΓN , by (P4)

T |= ∃P−l−1 v ∃Pl, so there is some (x
IRp
aPl−2Pl−1

, y) ∈ P I
R
p

l .

(iv) if (hRp (x
i1...il−2Ip
aP1...Pl−2

), hRp (x
i1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1: since xi1...ilaP1...Pl

∈ ΓN , by (P4) T |=

∃P−l−1 v ∃Pl, so there is some (hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l .

(v) if hRp (x
i1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

: by (P2) and since il = p, Pl(x
i1...il−1

aP1...Pl−1
, xi1...paP1...Pl

) ∈
chaseKrig(Ap). By (P6), since chaseKrig(Ap) |= ∃Pl(x

i1...il−1

aP1...Pl−1
) and il−1 6= p, there

exists B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR, such that T |= B v ∃Pl and
chaseKrig(Ail−1

) |= B(x
i1...il−1

aP1...Pl−1
). By (P3), T |= ∃P−l−1 v B, so R |= B(xPl−1

) (since
xPl−1

occurs in R and B is rigid), so 〈T ,R〉 |= ∃xPl(xPl−1
, x). Since IRp is a model of

〈T ,R〉, there is some (x
IRp
Pl−1

, y) ∈ P I
R
p

l .

- Then for length > 0, since xi1...ilaP1...Pl
∈ ΓN , by (P4) T |= ∃P−l−1 v ∃Pl. It fol-

lows that since by induction there is an (x, hRp (x
i1...il−1Ip
aP1...Pl−1

)) ∈ P I
R
p

l−1, then there is some

(hRp (x
i1...il−1Ip
aP1...Pl−1

), y) ∈ P I
R
p

l .

Claim 2. hRp is a homomorphism of Ip into IRp :

For every a ∈ NKI and concept A, if aIp ∈ AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5),
either (i) 〈T ,Ap〉 |= A(a), and since IRp is a model of 〈T ,Ap〉, then hRp (aIp) = aI

R
p ∈ AI

R
p ,

or (ii) there exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR, such that T |= B v A and
there exists j such that 〈T ,Aj〉 |= B(a). In the latter case R |= B(a), so since IRp is a
model of R, IRp |= B(a) |= A(a). It follows that hRp (aIp) = aI

R
p ∈ AI

R
p . For every pair

a, b ∈ NKI and role P , if (aIp , bIp) ∈ P Ip , by (P7), similar arguments can be used to prove that
(hRp (aIp), hRp (bIp)) = (aI

R
p , bI

R
p) ∈ P I

R
p .

For every xi1...ilaP1...Pl
∈ ΓN , such that xi1...ilIpaP1...Pl

∈ AIp , by (P3), T |= ∃P−l v A, and by construction

of hRp , hRp (x
i1...ilIp
aP1...Pl

) = y such that either (i) there exists (x, y) ∈ P I
R
p

l , so since IRp is a model

of T , y ∈ AI
R
p , or (ii) y = x

IRp
Pl

, Pl is not rigid and for every ij , ij 6= p. In the latter case
by (P6) there exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR, such that T |= B v A and
chaseKrig(Ail) |= B(xi1...ilaP1...Pl

). By (P3) T |= ∃P−l v B, so by construction of R, R |= B(xPl)

and 〈T ,R〉 |= A(xPl). It follows that y ∈ AI
R
p .

For every pair x, y ∈ ΓN and role P , such that (xIp , yIp) ∈ P Ip , by (P10) x = xi1...ilaP1...Pl
, y =

x
i1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P or x = x

i1...ilil+1

aP1...PlPl+1
, y = xi1...ilaP1...Pl

and T |= Pl+1 v P−. We
can assume w.l.o.g. that we are in the first case (otherwise we consider (yIp , xIp) ∈ P−Ip). If

il+1 = p, by definition of hRp , (hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1. Otherwise, by (P11), there exists

P ′ := R|R− with R ∈ NRR such that T |= Pl+1 v P ′ v P and P ′(x, y) ∈ chaseKrig(Ail+1
). In

this case, there are several possibilities:

4 COMPLEXITY ANALYSIS FOR DL-LITER 25

(i) Pl is not rigid: given that T |= Pl+1 v P ′ and P ′ is rigid, Pl+1 is rigid by our hypothesis on

the TBox. It follows that hRp (yIp) = x
IRp
PlPl+1

. If there is no ij = p, then hRp (xIp) = x
IRp
Pl

so

since Pl+1(xP1
, xPlPl+1

) ∈ R, (hRp (xIp), hRp (yIp)) ∈ P I
R
p

l+1. Otherwise there is some ij = p,

and (hRp (xIp), hRp (yIp)) ∈ P I
R
p

l+1 by definition of hRp .

(ii) Pl is rigid: hRp (yIp) is such that (hRp (xI
R
p), hRp (yI

R
p)) ∈ P I

R
p

l+1.

Since in any case (hRp (xIp), hRp (yIp)) ∈ P I
R
p

l+1 and IRp is a model of T , (hRp (xIp), hRp (yIp)) ∈ P I
R
p .

Finally, if a ∈ NKI and x ∈ ΓN , (aIp , xIp) ∈ P Ip only if x = xi1aP1
. If i1 = p, by definition of

hRp , (hRp (aIp), hRp (xIp)) ∈ P I
R
p

1 and since by (P8) T |= P1 v P , (hRp (aIp), hRp (xIp)) ∈ P I
R
p . If

i1 6= p, by (P9), there exists P ′ rigid such that T |= P1 v P ′ v P , so by our hypothesis on
the TBox P1 is rigid. By (P1) and (P8), there is some j such that 〈T ,Aj〉 |= ∃xP1(a, x), so

P1(a, xaP1
) ∈ R so (hRp (aIp), hRp (xIp)) = (aI

R
p , x

IRp
aP1

) ∈ P I
R
p

1 . Thus (hRp (aIp), hRp (xIp)) ∈ P I
R
p .

It follows from Claim 2 that hRp ◦ π is a homomorphism of ∃~y ψ(~y) into IRp , so we have shown
that if Ip |= ∃~y ψ(~y) then KR, p |= ∃~y ψ(~y).

Now that we have shown that K and KR with NRC = NRR = ∅ entail the same BCQs, we show
by induction on the structure of the BTCQ φ that if NφI ⊆ NKI , then K, p |= φ iff KR, p |= φ
with NRC = NRR = ∅. It follows that TCQ answering over K in Case 3 can be done by TCQ
answering over KR in Case 1 and pruning answers that contain individual names not from NKI .
Note that a model of KR is a model of K but does not respect rigid predicates in general.
We can reduce BTCQ entailment over K with rigid predicates to BTCQ entailment over KR
without rigid predicates only because our TCQs do not allow LTL operators to be nested in
existential quantifications. This prevents existentially quantified variables to link different time
points. Otherwise a query as ∃xy�(R(a, x)∧R(x, y)) with T = {B v ∃R, ∃R− v ∃R}, R ∈ NRR

and Ai = {B(a)} would be entailed from K but not from KR with NRR = ∅. Indeed, in this case
R = {R(a, xaR)}, so xaR may have a different R-successor in each interpretation of a model of
KR and y cannot be mapped to the same object at every time point.

Lemma 6. If a BTCQ φ is such that NφI ⊆ NKI , then K, p |= φ iff KR, p |= φ with NRC = NRR =
∅.

Proof. By Lemma 2, K, p |= φ iff JK, p |= φ. We show by induction on the structure of φ that
JK, p |= φ iff KR, p |= φ.

If φ = ∃~y ψ(~y), since NφI ⊆ NKI , by Lemmas 4 and 5, JK, p |= φ iff KR, p |= φ.

Assume that for two BTCQs φ1, φ2 such that Nφ1

I ⊆ NKI and Nφ2

I ⊆ NKI , JK, p |= φi iffKR, p |= φi
(i ∈ {1, 2}). Then:

• JK, p |= φ1 ∧ φ2 iff JK, p |= φ1 and JK, p |= φ2
iff KR, p |= φ1 and KR, p |= φ2
iff KR, p |= φ1 ∧ φ2 by Proposition 2 (NRC = NRR = ∅)

• JK, p |= φ1 ∨ φ2 iff JK, p |= φ1 or JK, p |= φ2
iff KR, p |= φ1 or KR, p |= φ2
iff KR, p |= φ1 ∨ φ2 by Proposition 2 (NRC = NRR = ∅)

4 COMPLEXITY ANALYSIS FOR DL-LITER 26

• JK, p |= #φ1 iff p < n and JK, p+ 1 |= φ1
iff p < n and KR, p+ 1 |= φ1
iff KR, p |= #φ1 by Proposition 2 (NRC = NRR = ∅)

• JK, p |= φ1 iff p < n implies JK, p+ 1 |= φ1
iff p < n implies KR, p+ 1 |= φ1
iff KR, p |= φ1 by Proposition 2 (NRC = NRR = ∅)

• JK, p |= �φ1 iff for every k, p ≤ k ≤ n, JK, k |= φ1
iff for every k, p ≤ k ≤ n, KR, k |= φ1
iff KR, p |= �φ1 by Proposition 2 (NRC = NRR = ∅)

• JK, p |= ♦φ1 iff there exists k, p ≤ k ≤ n, JK, k |= φ1
iff there exists k, p ≤ k ≤ n, KR, k |= φ1
iff KR, p |= ♦φ1 by Proposition 2 (NRC = NRR = ∅)

• JK, p |= φ1Uφ2 iff there exists k, p ≤ k ≤ n, JK, k |= φ2 and for every j, p ≤ j < k,
JK, j |= φ1
iff there exists k, p ≤ k ≤ n, KR, k |= φ2 and for every j, p ≤ j < k, KR, j |= φ1
iff KR, p |= φ1Uφ2 by Proposition 2 (NRC = NRR = ∅)

• #−φ1, −φ1, �−φ1, ♦−φ1, φ1Sφ2: similar to the corresponding future operators

We conclude by induction that for every BTCQ φ such that NφI ⊆ NKI , K, p |= φ iff KR, p |=
φ.

Theorem 1 states the complexity results for the classical semantics as we will use them for the
complexity analysis of the inconsistency-tolerant semantics. They follow from known results
and Proposition 4. Note that for data complexity, we will need only the P upper bound implied
by the ALogTime-completeness of TCQ answering.

Theorem 1. If T does not entail any role inclusion of the form P1 v P2 with P1 := R1|R−1 ,
R1 ∈ NR\NRR and P2 := R2|R−2 , R2 ∈ NRR, then consistency checking is in P w.r.t. combined
complexity and TCQ answering is in P w.r.t. data complexity, and NP-complete w.r.t. combined
complexity.

Proof. It has been shown in [12] that TCQ answering is in ALogTime ⊆ P w.r.t. data com-
plexity.

The NP membership of TCQ answering in Case 1 (NRC = NRR = ∅) for combined complexity
follows from the rewritability results of [10]. We describe how to guess a certificate that K, p |= φ
that can be checked in P. A certificate consists of:

• a sequence of functions (νi)0≤i≤n that associate to each BCQ q of φ true or false, and

• for each BCQ q of φ and time point i, if νi(q) = true: a rewriting q′ of q that holds in Ai
together with the rewriting steps that produce q′ from q and T , and a variable assignment
that maps q′ in Ai.

There are polynomially many pairs of a time point and a BCQ, and the number of steps
required to produce each q′ from q is polynomial, so the certificate has a polynomial size and
checking that each q′ is indeed a rewriting of q and holds in Ai can be done in polynomial
time. Moreover verifying that the propositional LTL formula obtained by replacing the BCQs
by propositional variables is satisfied by the sequence of truth assignments that assign the
propositional abstraction of q to νi(q) is in P because the formula does not contain negation.

4 COMPLEXITY ANALYSIS FOR DL-LITER 27

AR IAR brave

Case 1 (NRC = ∅,NRR = ∅) coNP-c in P in P

Case 2 (NRC 6= ∅,NRR = ∅) coNP-c in P NP-c

Case 3* (NRC 6= ∅,NRR 6= ∅) coNP-c in P NP-c

AR IAR brave

Πp
2-c NP-c NP-c

Πp
2-c NP-c NP-c

Πp
2-c NP-c NP-c

Figure 1: Data [left] and combined [right] complexity of BTCQ entailment over DL-LiteR TKBs
under the different semantics. *: only with rigid specializations of rigid roles

For the NP upper bound of BTCQ entailment in Cases 2 and 3 (if T does not contain any
role inclusion of the form P1 v P2 with P1 := R1|R−1 , R1 ∈ NR\NRR and P2 := R2|R−2 ,
R2 ∈ NRR), we compute R in polynomial time then check whether φ is entailed from KR with
NRC = NRR = ∅.

The NP-hardness comes from the atemporal case.

We have shown that disallowing negations in the TCQ makes the combined complexity of TCQ
answering drop from PSpace to NP and that rigid concepts and roles can be handled by adding
a set of assertions that captures all relevant information about rigid assertions to each ABox of
the TKB.

4.2 Complexity of inconsistency-tolerant TCQ answering

We now turn our attention to the inconsistency-tolerant semantics.

Theorem 2. The results in Figure 1 hold.

We break the proof of Theorem 2 in several propositions. First, the following lemma shows
that verifying that a sequence of ABoxes is a repair of K is in P.

Lemma 7. Verifying that a sequence of ABoxes (A′i)0≤i≤n is a repair of K can be done in P.

Proof. We show that (A′i)0≤i≤n is a repair of K as follows (consistency checking is in P, cf.
Theorem 1):

• For every i, check that A′i ⊆ Ai,

• Check that (A′i)0≤i≤n is T -consistent,

• For every (α, j) ∈ (Ai)0≤i≤n\(A′i)0≤i≤n, check that (A′i)0≤i≤n∪{(α, j)} is T -inconsistent.

The complexity results for AR semantics follow straightforwardly from Lemma 7 and the com-
plexity of TCQ answering under classical semantics.

Proposition 5. AR TCQ answering is coNP-complete w.r.t. data complexity, and Πp
2-complete

w.r.t. combined complexity.

Proof. For the upper bounds, we show that a BTCQ φ is not entailed under AR semantics from
a TKB K by guessing a repair (A′i)0≤i≤n of K that does not entail φ. Checking that (A′i)0≤i≤n

4 COMPLEXITY ANALYSIS FOR DL-LITER 28

is a repair can be done in P by Lemma 7, and checking that 〈T , (A′i)0≤i≤n〉 6|= φ is in P w.r.t.
data complexity and coNP-complete w.r.t. combined complexity (Theorem 1).

The lower bounds come from the atemporal case [20, 9].

For IAR semantics, we show that the intersection of the repairs can be computed in polynomial
time because in DL-LiteR TKBs the size of the conflicts is at most two. The complexity of IAR
TCQ answering is then the same as that of the classical semantics.

Proposition 6. IAR TCQ answering is in P w.r.t. data complexity, and NP-complete w.r.t.
combined complexity.

Proof. For the upper bounds, we compute the conflicts of K in P by checking the consistency
of every timed-assertion and pair of timed-assertions, then answer the query in P w.r.t. data
complexity, NP w.r.t. combined complexity, over the TKB from which they have been removed.
Indeed, we show that the intersection of the repairs of K is obtained by removing the conflicts of
K. If a timed-assertion (α, i) is inconsistent it cannot be in a repair, and if (α, i) is consistent, if
there exists (β, j) consistent such that {(α, i), (β, j)} is inconsistent, (α, i) is not in the repairs
that contain (β, j). In the other direction, if (α, i) does not appear in some repair (A′i)0≤i≤n of
K, since the repairs are maximal, (A′i)0≤i≤n∪{(α, i)} is inconsistent so (α, i) is in some conflict
of K.

The lower bound comes from CQ entailment in the atemporal case.

For brave semantics, the combined complexity follows from Lemma 7 and Theorem 1.

Proposition 7. Brave TCQ answering is NP-complete w.r.t. combined complexity.

Proof. For the upper bound, we show that a BTCQ φ is entailed under brave semantics from
a TKB K by guessing a repair (A′i)0≤i≤n of K that entails φ together with a certificate that
〈T , (A′i)0≤i≤n〉 |= φ (cf. Theorem 1). Checking that (A′i)0≤i≤n is a repair can be done in P by
Lemma 7, and checking the certificate that 〈T , (A′i)0≤i≤n〉 |= φ is in P as in proof of Theorem 1.

The lower bound comes from CQ entailment in the atemporal case.

The data complexity of brave semantics is less straightforward. Indeed, the data complexity
upper bound for brave CQ answering relies on the fact that the size of the minimal sets of
assertions that support the query is bounded by the query size, which is not true in the temporal
setting (e.g., consider φ = �A(a), which needs n assertions to be entailed). Moreover, while
brave BCQ entailment is tractable in the atemporal setting, we show that if rigid concepts are
allowed, brave BTCQ entailment is NP-hard.

Proposition 8. If NRC 6= ∅, then brave TCQ answering is NP-complete w.r.t. data complexity.

Proof. The upper bound comes from the combined complexity.

We show the lower bound by reduction from SAT. Let ϕ = C1 ∧ ... ∧ Cn be a CNF formula
over variables x1, ..., xm. We define the following problem of BTCQ entailment under brave
semantics, with two rigid concepts T and F . Let K = {T , (Ai)1≤i≤n} be such that:

T = {∃Pos v Sat , ∃Neg v Sat , ∃Pos− v T, ∃Neg− v F, T v ¬F}
Ai = {Pos(c, xj) | xj ∈ Ci} ∪ {Neg(c, xj) | ¬xj ∈ Ci} for 1 ≤ i ≤ n

Let φ = �−Sat(c). We show that ϕ is satisfiable iff K, n |=brave φ. Indeed, since T and F
are rigid, a repair (A′i)0≤i≤n of K is such that each xj has only Pos or Neg incoming edges in

4 COMPLEXITY ANALYSIS FOR DL-LITER 29

(A′i)0≤i≤n. We can thus define a valuation ν of the variables such that ν(xj) = true if (A′i)0≤i≤n
does not contain any timed-assertion of the form (Neg(c, xj), k), ν(xj) = false otherwise. The
clause Ci is satisfied by ν iff there exists xj such that either xj ∈ Ci and ν(xj) = true or ¬xj ∈ Ci
and ν(xj) = false, so iff there exists xj such that either Pos(c, xj) ∈ A′i or Neg(c, xj) ∈ A′i, so
iff 〈T , (A′i)0≤i≤n〉, i |= Sat(c). It follows that ϕ is satisfiable iff there exists a repair (A′i)0≤i≤n
of K that entails φ at time point n.

It remains to show that in Case 1, brave TCQ answering can be done in polynomial time. We
describe a method for brave BTCQ entailment when NRC = NRR = ∅ that proceeds by type
elimination over a set of tuples built from the query and that represent the TCQs that are
entailed at each time point. First, we define the structure on which the method operates. We
consider the set L(φ) of leaves of φ, that is, the set of all BCQs in φ, and the set F (φ) of
subformulas of φ. In what follows, we identify the BCQs of L(φ) and the BTCQs of F (φ) with
their propositional abstractions : if we write that a KB or a TKB entails some elements of L(φ)
or F (φ), we consider them as BCQs or BTCQs, and if we write that some elements of L(φ)
or F (φ) entail others, we consider the elements of L(φ) as propositional variables and those of
F (φ) as propositional LTL formulas built over these variables.

Definition 8. A justification structure J for the BTCQ φ in the TKB K is a set of tuples of the
form (i, Lnow, Fnow, Fprev, Fnext), where 0 ≤ i ≤ n, Lnow ⊆ L(φ), Fnow ⊆ F (φ), Fprev ⊆ F (φ),
and Fnext ⊆ F (φ).

Note that the size of a justification structure for φ in K = 〈T , (Ai)0≤i≤n〉 is linearly bounded
in n and independent of the size of the ABoxes. A tuple (i, Lnow, Fnow, Fprev, Fnext) is justified
in J iff it fulfils all of the following conditions:

1. 〈T ,Ai〉 |=brave
∧
q∈Lnow

q

2. If i > 0, there exists (i− 1, L′now, F
′
now, F

′
prev, F

′
next) ∈ J such that

Fprev = F ′now and Fnow = F ′next

3. If i < n, there exists (i+ 1, L′now, F
′
now, F

′
prev, F

′
next) ∈ J such that

Fnext = F ′now and Fnow = F ′prev

4. For every ψ ∈ L(φ), if Fnow |= ψ, then ψ ∈ Lnow

5. For every ψ ∈ F (φ), if Fnow |= ψ, then ψ ∈ Fnow

6. For every ψ ∈ F (φ), if
∧
q∈Lnow

q ∧#−(
∧
χ∈Fprev

χ) ∧#(
∧
χ∈Fnext

χ) |= ψ, then ψ ∈ Fnow

7. For every ψ,ψ′ ∈ F (φ):

if ψ ∨ ψ′ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow

if ♦ψ ∈ Fnow, then either ψ ∈ Fnow or ♦ψ ∈ Fnext

if ♦−ψ ∈ Fnow, then either ψ ∈ Fnow or ♦−ψ ∈ Fprev

if ψ′Uψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow and ψ′Uψ ∈ Fnext

if ψ′Sψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow and ψ′Sψ ∈ Fprev

8. If i = n,

∀ψ ∈ F (φ) of the form ϕ, ψ ∈ Fnow

∀ψ ∈ F (φ) of the form #ϕ, ψ /∈ Fnow

∀ψ ∈ F (φ) of the form ♦ϕ,�ϕ,ϕ′Uϕ, ψ ∈ Fnow iff ϕ ∈ Fnow

4 COMPLEXITY ANALYSIS FOR DL-LITER 30

9. If i = 0,
∀ψ ∈ F (φ) of the form −ϕ, ψ ∈ Fnow

∀ψ ∈ F (φ) of the form #−ϕ, ψ /∈ Fnow

∀ψ ∈ F (φ) of the form ♦−ϕ,�−ϕ,ϕ′Sϕ, ψ ∈ Fnow iff ϕ ∈ Fnow

We give the intuition behind the elements of the tuples fulfilling these conditions. The first
element i is the time point we are considering, Lnow is a set of BCQs whose conjunction is
entailed under brave semantics by 〈T ,Ai〉 (Condition 1), and Fnow is the set of formulas that
can be entailed together with Lnow, depending on what is entailed in the previous and next time
points, this information being stored in Fprev and Fnext respectively (Condition 6). Conditions
2 and 3 ensure that there is a sequence of tuples representing every time point from 0 to n such
that this information is coherent between consecutive tuples. Condition 4 expresses that Lnow
is exactly the set of BCQs contained in Fnow and Condition 5 that Fnow is maximal in the sense
that it contains its consequences. Condition 7 enforces that Fnow, Fprev and Fnext respect the
semantics of LTL operators and Conditions 8 and 9 enforce this semantics at the ends of the
finite sequence.

A justification structure J is correct if every tuple is justified, and φ is justified at time point p
by J if there is (p, Lnow, Fnow, Fprev, Fnext) ∈ J such that φ ∈ Fnow. We show that φ is entailed
from K at time point p under brave semantics iff there is a correct justification structure for
φ in K that justifies φ at time point p. The main idea is to link the tuples of a sequence
((i, Lnow, Fnow, Fprev, Fnext))0≤i≤n to a consistent TKB K′ = 〈T , (Ci)0≤i≤n〉 such that for every
i, Ci ⊆ Ai and 〈T , Ci〉 |=

∧
q∈Lnow

q. We show that there is such a K′ such that K′, p |= φ iff
there is such a sequence of tuples that is a correct justification structure for φ in K and justifies
φ at time point p.

Lemma 8. If NRC = NRR = ∅ and there is a correct justification structure J for φ in K that
justifies φ at time point p, then K, p |=brave φ.

Proof. In order to show K, p |=brave φ, we determine a cause (Ci)0≤i≤n for φ. To do this, we
first select a sequence of tuples from J as follows:

1. The tuple (p, Lpnow, F
p
now, F

p
prev, F

p
next) is such that φ ∈ F pnow.

2. If the tuple (i, Linow, F
i
now, F

i
prev, F

i
next) was selected and 0 < i ≤ p, select a tuple (i −

1, Li−1now, F
i−1
now , F

i−1
prev, F

i−1
next) such that F i−1now = F iprev and F i−1next = F inow.

3. If the tuple (i, Linow, F
i
now, F

i
prev, F

i
next) was selected and p ≤ i < n, select a tuple (i +

1, Li+1
now, F

i+1
now , F

i+1
prev, F

i+1
next) such that F i+1

now = F inext and F i+1
prev = F inow.

Because J is correct and justifies φ at time point p, such a sequence can always be selected.
Based on this sequence, we construct a sequence of ABoxes (Ci)0≤i≤n by taking for each tu-
ple (i, Linow, F

i
now, F

i
prev, F

i
next) a cause Ci ⊆ Ai for

∧
q∈Linow

q. Such a cause exists because
〈T ,Ai〉 |=brave

∧
q∈Linow

q by Condition 1. Since each Ci is consistent and rigid predicates are
not allowed, the TKB 〈T , (Ci)0≤i≤n〉 is consistent.

We prove that 〈T , (Ci)0≤i≤n〉, p |= φ, by proving that 〈T , (Ci)0≤i≤n〉, p |= F pnow. To do this, we
consider the sets of LTL formulas F i,dnow = {ψ | ψ ∈ F inow, degree(ψ) ≤ d} where degree(ψ) is
the maximal number of nested LTL operators in ψ and prove by induction on d that for all
0 ≤ i ≤ n, for all ψ ∈ F i,dnow, 〈T , (Ci)0≤i≤n〉, i |= ψ, i.e., 〈T , (Ci)0≤i≤n〉, i |= F i,dnow.

For d = 0, F i,0now contains only conjunctive queries of the form ∃~y ϕ(~y). Since for every ψ ∈ L(φ),
if F inow |= ψ then ψ ∈ Linow (Condition 4), F i,0now ⊆ Linow. Then since 〈T , Ci〉 |=

∧
q∈Linow

q, it
follows that 〈T , (Ci)0≤i≤n〉, i |= F i,0now.

4 COMPLEXITY ANALYSIS FOR DL-LITER 31

Assume that for all 0 ≤ i ≤ n, 〈T , (Ci)0≤i≤n〉, i |= F i,dnow. Let ψ ∈ F i,d+1
now for some 0 ≤ i ≤ n.

If ψ ∈ F i,dnow, then 〈T , (Ci)0≤i≤n〉, i |= ψ. Otherwise, degree(ψ) = d + 1 and ψ is of one of the
following forms:

• ψ = ψ1 ∧ ψ2 where degree(ψ1) ≤ d, degree(ψ2) ≤ d: since ψ ∈ F inow, then F inow |= ψ1 and
F inow |= ψ2, so by Condition 5, ψ1 ∈ F inow and ψ2 ∈ F inow. It follows that ψ1 ∈ F i,dnow and
ψ2 ∈ F i,dnow, so 〈T , (Ci)0≤i≤n〉, i |= ψ1 and 〈T , (Ci)0≤i≤n〉, i |= ψ2. Hence 〈T , (Ci)0≤i≤n〉, i |=
ψ1 ∧ ψ2.

• ψ = ψ1 ∨ ψ2 where degree(ψ1) ≤ d, degree(ψ2) ≤ d: since ψ ∈ F inow, then by Condi-
tion 7 either ψ1 ∈ F inow or ψ2 ∈ F inow. It follows that ψ1 ∈ F i,dnow or ψ2 ∈ F i,dnow, so
〈T , (Ci)0≤i≤n〉, i |= ψ1 or 〈T , (Ci)0≤i≤n〉, i |= ψ2. Hence 〈T , (Ci)0≤i≤n〉, i |= ψ1 ∨ ψ2.

• ψ = #ψ1 where degree(ψ1) ≤ d: by Condition 8, i < n because there cannot be a formula
of the form ψ = #ψ1 in Fnnow. Since #ψ1 ∈ F inow = F i+1

prev, we have that
∧
q∈Li+1

now
q ∧

#−(
∧
χ∈F i+1

prev
χ) ∧ #(

∧
χ∈F i+1

next
χ) |= #−#ψ1 |= ψ1, so by Condition 6, ψ1 ∈ F i+1

now . Hence
ψ1 ∈ F i+1,d

now so 〈T , (Ci)0≤i≤n〉, i+ 1 |= ψ1, so 〈T , (Ci)0≤i≤n〉, i |= #ψ1.

• ψ = #−ψ1 where degree(ψ1) ≤ d: proof similar to #.

• ψ = ψ1 where degree(ψ1) ≤ d: if i < n, since ψ1 ∈ F inow = F i+1
prev, we have that∧

q∈Li+1
now

q ∧ #−(
∧
χ∈F i+1

prev
χ) ∧ #(

∧
χ∈F i+1

next
χ) |= #− ψ1 |= ψ1, so by Condition 6, ψ1 ∈

F i+1
now . Hence ψ1 ∈ F i+1,d

now so 〈T , (Ci)0≤i≤n〉, i + 1 |= ψ1, so 〈T , (Ci)0≤i≤n〉, i |= ψ1.
Otherwise, if i = n, 〈T , (Ci)0≤i≤n〉, n |= ψ1 by definition of .

• ψ = −ψ1 where degree(ψ1) ≤ d: proof similar to .

• ψ = �ψ1 where degree(ψ1) ≤ d: we show that 〈T , (Ci)0≤i≤n〉, i |= �ψ1 by descending
induction on i.

For i = n, if�ψ1 ∈ Fnnow then ψ1 ∈ Fnnow by Condition 8, so ψ1 ∈ Fn,dnow and 〈T , (Ci)0≤i≤n〉, n |=
ψ1, which implies that 〈T , (Ci)0≤i≤n〉, n |= �ψ1.

For i < n, we assume that if �ψ1 ∈ F i+1
now then 〈T , (Ci)0≤i≤n〉, i + 1 |= �ψ1. Then

since �ψ1 ∈ F inow = F i+1
prev, we have that

∧
q∈Li+1

now
q ∧ #−(

∧
χ∈F i+1

prev
χ) ∧ #(

∧
χ∈F i+1

next
χ) |=

#−�ψ1 |= �ψ1, so by Condition 6, �ψ1 ∈ F i+1
now , so by assumption 〈T , (Ci)0≤i≤n〉, i+ 1 |=

�ψ1. Moreover, since �ψ1 ∈ F inow, then F inow |= ψ1, so ψ1 ∈ F inow by Condition 5. Hence
ψ1 ∈ F i,dnow and 〈T , (Ci)0≤i≤n〉, i |= ψ1. It follows that 〈T , (Ci)0≤i≤n〉, i |= �ψ1.

• ψ = �−ψ1 where degree(ψ1) ≤ d: proof similar to �.

• ψ = ♦ψ1 where degree(ψ1) ≤ d: we show that 〈T , (Ci)0≤i≤n〉, i |= ♦ψ1 by descending
induction on i.

For i = n, if ♦ψ1 ∈ Fnnow then ψ1 ∈ Fnnow by Condition 8, so ψ1 ∈ Fn,dnow and 〈T , (Ci)0≤i≤n〉, n |=
ψ1, which implies that 〈T , (Ci)0≤i≤n〉, n |= ♦ψ1.

For i < n, we assume that if ♦ψ1 ∈ F i+1
now then 〈T , (Ci)0≤i≤n〉, i + 1 |= ♦ψ1. Then, since

♦ψ1 ∈ F inow, by Condition 7, either (i) ψ1 ∈ F inow, ψ1 ∈ F i,dnow and 〈T , (Ci)0≤i≤n〉, i |= ψ1 so
〈T , (Ci)0≤i≤n〉, i |= ♦ψ1, or (ii) ♦ψ1 ∈ F inext = F i+1

now , so by assumption 〈T , (Ci)0≤i≤n〉, i+
1 |= ♦ψ1. It follows that 〈T , (Ci)0≤i≤n〉, i |= ♦ψ1.

• ψ = ♦−ψ1 where degree(ψ1) ≤ d: proof similar to ♦.

• ψ = ψ1Uψ2 where degree(ψ1) ≤ d, degree(ψ2) ≤ d: we show that 〈T , (Ci)0≤i≤n〉, i |=
ψ1Uψ2 by descending induction on i.

For i = n, if ψ1Uψ2 ∈ Fnnow then ψ2 ∈ Fnnow by Condition 8, so ψ2 ∈ Fn,dnow and
〈T , (Ci)0≤i≤n〉, n |= ψ2, which implies that 〈T , (Ci)0≤i≤n〉, n |= ψ1Uψ2.

4 COMPLEXITY ANALYSIS FOR DL-LITER 32

For i < n, we assume that if ψ1Uψ2 ∈ F i+1
now then 〈T , (Ci)0≤i≤n〉, i+1 |= ψ1Uψ2. Then since

ψ1Uψ2 ∈ F inow, by Condition 7, either (i) ψ2 ∈ F inow, ψ2 ∈ F i,dnow and 〈T , (Ci)0≤i≤n〉, i |=
ψ2 so 〈T , (Ci)0≤i≤n〉, i |= ψ1Uψ2, or (ii) ψ1 ∈ F inow, ψ1 ∈ F i,dnow, so 〈T , (Ci)0≤i≤n〉, i |=
ψ1, and ψ1Uψ2 ∈ F inext = F i+1

now , so by assumption 〈T , (Ci)0≤i≤n〉, i + 1 |= ψ1Uψ2, thus
〈T , (Ci)0≤i≤n〉, i |= ψ1Uψ2.

• ψ = ψ1Sψ2 where degree(ψ1) ≤ d, degree(ψ2) ≤ d: proof similar to U.

Lemma 9. If NRC = NRR = ∅ and K, p |=brave φ, then there is a justification structure for φ in
K that is correct and justifies φ at time point p.

Proof. Assume K, p |=brave φ, and let K′ = 〈T , (Ci)0≤i≤n〉, Ci ⊆ Ai such that K′ is consistent
and K′, p |= φ. Based on K′, we construct a justification structure J for φ in K that justifies φ
at time point p. The elements of the tuples (i, Linow, F

i
now, F

i
prev, F

i
next) are selected as follows:

1. Linow is the largest subset of L(φ) such that K′, i |=
∧
q∈Linow

q,

2. F inow is the largest subset of F (φ) such that K′, i |= F inow,

3. F iprev = F i−1now for i > 0, and

4. F inext = F i+1
now for i < n

5. F 0
prev = Fnnext = ∅

We show that J is correct and justifies φ at time point p. Since K′, p |= φ, then φ ∈ F pnow so φ
is justified by J at time point p.

It remains to show that J is correct, i.e., that every tuple of J satisfies the nine conditions of
the definition of justified tuples. Conditions 1, 2, 3 and 4 follow straightforwardly from the
construction. Condition 5 is satisfied because if ψ ∈ F (φ) is such that ψ /∈ F inow, then K′, i 6|= ψ
so F inow 6|= ψ.

For Condition 6, we show that for every ψ ∈ F (φ), for every 0 ≤ i ≤ n, if
∧
q∈Linow

q ∧
#−(

∧
χ∈F iprev

χ) ∧ #(
∧
χ∈F inext

χ) |= ψ, then K′, i |= ψ, so ψ ∈ F inow. Since K′ entails every CQ
of Linow at time point i, every TCQ of F iprev at time point i−1, and every TCQ of F inext at time
point i + 1, then every TCQ that corresponds to a formula entailed by Linow, #−(

∧
χ∈F iprev

χ)

or #(
∧
χ∈F inext

χ) is entailed from K′ at time point i. Hence, if
∧
q∈Linow

q ∧ #−(
∧
χ∈F iprev

χ) ∧
#(

∧
χ∈F inext

χ) |= ψ, then K′, i |= ψ.

For Condition 7, since NRC = NRR = ∅, by Proposition 2, for all BTCQs ψ,ψ′:

• if K′, i |= ψ ∨ ψ′, then K′, i |= ψ or K′, i |= ψ′, so if ψ ∨ ψ′ ∈ F inow then either ψ ∈ F inow,
or ψ′ ∈ F inow.

• if K′, i |= ♦ψ, then K′, i |= ψ or K′, i+ 1 |= ♦ψ, so if ♦ψ ∈ F inow then either ψ ∈ F inow, or
♦ψ ∈ F i+1

now = F inext.

• if K′, i |= ♦−ψ, then K′, i |= ψ or K′, i−1 |= ♦−ψ, so if ♦−ψ ∈ F inow then either ψ ∈ F inow,
or ♦−ψ ∈ F i−1now = F iprev.

• if K′, i |= ψUψ′, then K′, i |= ψ′ or K′, i |= ψ and K′, i + 1 |= ψUψ′, so if ψUψ′ ∈ F inow
then either ψ′ ∈ F inow, or ψ ∈ F inow and ψUψ′ ∈ F inext.

5 CONCLUSION AND FUTURE WORK 33

• if K′, i |= ψSψ′, then K′, i |= ψ′ or K′, i |= ψ and K′, i− 1 |= ψSψ′, so if ψSψ′ ∈ F inow then
either ψ′ ∈ F inow, or ψ ∈ F inow and ψSψ′ ∈ F iprev.

The proof of Condition 8 is as follows:

• if ψ ∈ F (φ) is of the form ϕ , K′, n |= ψ so ψ ∈ Fnnow

• if ψ ∈ F (φ) is of the form #ϕ , K′, n 6|= ψ so ψ /∈ Fnnow

• if ϕ ∈ Fnnow, then K′, n |= ϕ so K′, n |= ♦ϕ, K′, n |= �ϕ and K′, n |= ϕ′Uϕ. It follows that
if they belong to F (φ), then ♦ϕ ∈ Fnnow, �ϕ ∈ Fnnow and ϕ′Uϕ ∈ Fnnow.

For the other direction

– if ♦ϕ ∈ Fnnow, K′, n |= ♦ϕ so K′, n |= ϕ and ϕ ∈ Fnnow

– if �ϕ ∈ Fnnow, K′, n |= �ϕ so K′, n |= ϕ and ϕ ∈ Fnnow

– if ϕ′Uϕ ∈ Fnnow, K′, n |= ϕ′Uϕ so K′, n |= ϕ and ϕ ∈ Fnnow

We prove Condition 9 similarly to Condition 8.

We have thus shown that every tuple in J is justified, so J is correct and justifies φ at p.

The data complexity of brave TCQ answering in Case 1 follows from the characterization of
brave BTCQ entailment with justification structures.

Proposition 9. If NRC = NRR = ∅, then brave TCQ answering is in P w.r.t. data complexity.

Proof. We start with a justification structure J for φ in K that contains all possible tuples.
We then remove the unjustified tuples as follows: (i) remove every tuple that does not satisfy
Conditions 1, 4, 5, 6, 7, 8 or 9, and (ii) repeat the following steps until a fix-point has been
reached: iterate over the tuples from time point 0 to n, eliminating those which do not satisfy
Condition 3, then from n to 0 eliminating those which do not satisfy Condition 2. For the
resulting justification structure, we check whether it contains a tuple (p, Lnow, Fnow, Fprev, Fnext)
such that φ ∈ Fnow. If yes, we return “entailed at time point p”, otherwise, we return “not
entailed at time point p”. Since the size of J is linear in n, this process requires at most
quadratically many steps. The verification that a given tuple is justified requires polynomial
time w.r.t. data complexity (the verification of Condition 3 or Condition 2 is linear in n and
only the brave entailment of a BCQ from a DL-LiteR KB for Condition 1 depends on the size
of the ABox), so the complete procedure runs in polynomial time w.r.t. data complexity.

Our complexity analysis of the three semantics for DL-LiteR shows that, encouragingly, only
brave semantics in the cases where rigid predicates are allowed has a higher data complexity
than in the atemporal case, and that the combined complexity is not impacted by the temporal
reasoning.

5 Conclusion and Future Work

We extended the AR, IAR and brave semantics to the setting of temporal query answering in
description logics. We first showed that in the case where rigid predicates are not allowed, TCQ
answering under IAR semantics can be achieved by combining algorithms developed for TCQ
answering under the classical semantics with algorithms for CQ answering under IAR semantics
over atemporal KBs. We also showed that in some cases, the same applies to AR semantics

REFERENCES 34

and that in any case, this method provides a sound approximation of AR answers. Since this is
not true for brave semantics and we believe that this semantics can be relevant, for instance in
the application of situation recognition, it would be useful to characterize the queries for which
this method would be correct. Indeed, for many pairs of TBox and query, the minimal subsets
of the TKB such that the query can be mapped into them cannot be inconsistent, for instance
if no pair of predicates that may be involved at the same time point appears in a NI entailed
by the TBox (e.g., if T = {A v ¬C,B v ¬C} and φ = ∃xA(x)∧♦(∃xB(x)∧#(∃xC(x))), for φ
being entailed at time point p, ∃xA(x) should hold at p, ∃xB(x) at time point i ≥ p and ∃xC(x)
at i+ 1 > p, so there cannot be a conflict between the C and the A or B timed-assertions used
to satisfy the different CQs).

Our second contribution is a complexity analysis of the three semantics for DL-LiteR, depending
on which predicates are allowed to be rigid. Encouragingly, only brave semantics in the cases
where rigid predicates are allowed has a higher data complexity than in the atemporal case.
We also showed that for the classical semantics, rigid predicates can be handled by adding a set
of assertions to each ABox of the TKB, proving that disallowing negations in the query makes
the combined complexity of TCQ answering drop from PSpace to NP. Practical algorithms for
inconsistency-tolerant query answering with rigid predicates remain to be found. In particular,
note that adding the set of assertions R to every ABox to reduce Cases 2 or 3 to Case 1 works
only for the classical semantics.

References

[1] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank
Wolter, and Michael Zakharyaschev. First-order rewritability of temporal ontology-
mediated queries. In Proceedings of IJCAI, 2015.

[2] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
A cookbook for temporal conceptual data modelling with description logics. ACM Trans.
Comput. Log., 15(3):25:1–25:50, 2014.

[3] Franz Baader, Andreas Bauer, Peter Baumgartner, Anne Cregan, Alfredo Gabaldon, Krys-
tian Ji, Kevin Lee, David Rajaratnam, and Rolf Schwitter. A novel architecture for situa-
tion awareness systems. In Proceedings of TABLEAUX, 2009.

[4] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporalizing ontology-based
data access. In Proceedings of CADE, 2013.

[5] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Appli-
cations. Cambridge University Press, 2003.

[6] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[7] Meghyn Bienvenu and Camille Bourgaux. Inconsistency-tolerant querying of description
logic knowledge bases. In Reasoning Web, Tutorial Lectures, pages 156–202, 2016.

[8] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. Querying inconsistent de-
scription logic knowledge bases under preferred repair semantics. In Proceedings of AAAI,
2014.

[9] Meghyn Bienvenu and Riccardo Rosati. Tractable approximations of consistent query
answering for robust ontology-based data access. In Proceedings of IJCAI, 2013.

REFERENCES 35

[10] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in
the description logic DL-Lite. In Proceedings of FroCoS, 2013.

[11] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporalizing rewritable query
languages over knowledge bases. Journal Web Sem., 33:50–70, 2015.

[12] Stefan Borgwardt and Veronika Thost. Temporal query answering in DL-Lite with nega-
tion. In Proceedings of GCAI, 2015.

[13] Jean-Paul Calbimonte, Hoyoung Jeung, Óscar Corcho, and Karl Aberer. Enabling query
technologies for the semantic sensor web. Int. J. Semantic Web Inf. Syst., 8(1):43–63, 2012.

[14] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and databases: The
DL-Lite approach. In Reasoning Web, Tutorial Lectures, pages 255–356, 2009.

[15] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. Journal of Automated Reasoning (JAR), 39(3):385–429, 2007.

[16] Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL databases with
temporal logic. ACM Trans. Database Syst., 26(2):145–178, 2001.

[17] Mica R. Endsley. Toward a theory of situation awareness in dynamic systems. Human
Factors, 37(1):32–64, 1995.

[18] Víctor Gutiérrez-Basulto and Szymon Klarman. Towards a unifying approach to repre-
senting and querying temporal data in description logics. In Proceedings of RR, 2012.

[19] Szymon Klarman and Thomas Meyer. Querying temporal databases via OWL 2 QL. In
Proceedings of RR, 2014.

[20] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. Inconsistency-tolerant semantics for description logics. In Proceedings of RR, 2010.

[21] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. Inconsistency-tolerant query answering in ontology-based data access. Journal Web
Sem., 33:3–29, 2015.

[22] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A
survey. In Proceedings of TIME, 2008.

[23] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz. OWL 2 Web Ontology Language profiles. W3C Recommendation, 11 December
2012. Available at http://www.w3.org/TR/owl2-profiles/.

[24] Özgür Lütfü Özçep and Ralf Möller. Ontology based data access on temporal and streaming
data. In Reasoning Web, Tutorial Lectures, pages 279–312, 2014.

[25] Amir Pnueli. The temporal logic of programs. In Proceedings of FOCS, 1977.

[26] Eleni Tsalapati, Giorgos Stoilos, Giorgos B. Stamou, and George Koletsos. Efficient query
answering over expressive inconsistent description logics. In Proceedings of IJCAI, 2016.

http://www.w3.org/TR/owl2-profiles/

	Introduction
	Preliminaries
	Temporal Query Answering over Inconsistent Data
	Complexity Analysis for DL-LiteR
	Complexity of TCQ answering for the classical semantics
	Complexity of inconsistency-tolerant TCQ answering

	Conclusion and Future Work

