
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Query Rewriting for DL-Lite with n-ary Concrete
Domains (Extended Version)

Franz Baader, Stefan Borgwardt, and Marcel Lippmann

LTCS-Report 17-04

This is an extended version of a paper published in the proceedings of

IJCAI 2017.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 2

2 Concrete Domains 3
2.1 Closure Properties . 4

2.1.1 Disjoint Union . 4
2.1.2 Product . 6

2.2 Unary Concrete Domains . 7

3 The Ontology Language 10
3.1 Syntax . 10
3.2 Semantics . 11
3.3 Comparison to Other DL-Lite Logics . 12

4 Conjunctive Queries with Built-ins 12
4.1 Rewritability . 14
4.2 Safety . 14

5 Canonical Models 16
5.1 Abstract Interpretations and Their Solutions . 17
5.2 The Abstract Canonical Model . 18
5.3 ABox Completion . 20
5.4 A Canonical Solution . 21
5.5 The Abstract Canonical Model is Canonical . 23

6 Rewriting CQs with Built-in Predicates 26
6.1 The Basic Operators . 26
6.2 Concrete Domain Implications . 28
6.3 Correctness of the Rewriting . 30
6.4 Evaluating the Rewriting . 36
6.5 Checking Consistency . 37
6.6 The Special Case of Unary Predicates . 37

7 Related Work 39

8 Conclusion 40

1

Abstract

We investigate ontology-based query answering (OBQA) in a setting where both the
ontology and the query can refer to concrete values such as numbers and strings. In contrast
to previous work on this topic, the built-in predicates used to compare values are not
restricted to being unary. We introduce restrictions on these predicates and on the ontology
language that allow us to reduce OBQA to query answering in databases using the so-called
combined rewriting approach. Though at first sight our restrictions are different from the
ones used in previous work, we show that our results strictly subsume some of the existing
first-order rewritability results for unary predicates.

1 Introduction

Ontology-based query answering (OBQA) (see, e.g., [32] for an overview) extends query answering
in databases in two directions. On the one hand, in OBQA it is not assumed that the available
data are complete, and thus facts that are not present are assumed to be unknown rather than
false (no closed world assumption [CWA]). On the other hand, an ontology can be used to state
background knowledge about the data and to translate between different vocabularies (e.g., user
oriented versus system oriented). Nevertheless, if the query language and the ontology language
are suitably restricted, then OBQA can be reduced to classical query answering in databases.
Regarding the query language, one usually considers (unions of) conjunctive queries ((U)CQs)
(i.e., select-project-join queries) in this setting. If the ontology language belongs to the so-called
DL-Lite family of Description Logics (DLs) [3, 10], then the ontology can often be compiled into
the query, which can then be evaluated over the unchanged data using the CWA [10, 13]. If this
approach is feasible, then one says that the query language is first-order (FO) rewritable w.r.t.
the ontology language. FO rewritability implies that OBQA then has the same data complexity
as query answering in databases, AC0. For settings where the data complexity of OBQA is no
longer in AC0 (e.g., if the DL EL is used as ontology language), the combined rewriting approach,
in which both the query and the data are changed, has turned out to be useful [24, 29]. In case
the data can be rewritten in polynomial time, this yields polynomial data complexity.
Real-world datasets, however, frequently contain concrete data values (such as numbers and
strings), and database queries use built-in predicates on these values to formulate restrictions
on the tuples to be selected. When extending the use of concrete data values and built-in
predicates to the OBQA setting, it makes sense to employ them not only in the query, but also
in the ontology. In ontology languages based on DLs, one then talks about DLs with concrete
domains [5, 27]. In addition to concepts and roles (i.e., unary and binary predicates on the
abstract domain), such DLs employ attributes (i.e., binary relations between the abstract and the
concrete domain) to assign concrete values to individuals, and concrete predicates (corresponding
to built-in predicates in databases) to formulate constraints on these values.
Motivated by OBQA applications, several authors have introduced dialects of DL-Lite and
CQs with concrete domains [4, 35, 38]. However, like the standard Web Ontology Language
OWL2,1 these extensions of DL-Lite with concrete domains consider only unary predicates on
data values, which can be used to constrain a single value, but cannot require relationships
between different values. With unary predicates one can, for example, express that the systolic
blood pressure of a patient is >120 and the diastolic blood pressure is >80, but setting the
systolic blood pressure into a relationship with the diastolic one requires a binary predicate.
In this work, we lift this restriction, i.e., we define an extension of DL-Lite with concrete domains
that may have predicates of arbitrary arity, and show that—for concrete domains satisfying
certain properties—CQs with built-in predicates from the concrete domain allow for a combined
rewriting w.r.t. ontologies formulated in this new language. For example, using an appropriate

1see https://www.w3.org/TR/owl2-overview/

2

binary predicate we can then express that the pulse pressure, i.e., the difference between the
systolic and the diastolic blood pressure, is 50.
Note that, in general, we do not assume that attributes are functional, but our logic can express
(local) functionality (e.g., ensuring that a patient can have only one systolic blood pressure).
We also show that concrete domains satisfying our restrictions are closed under disjoint union
and product. Using the product of two numerical domains (one for pressure values and one
for time), we can compare measurements at different time points; e.g., we can ask for patients
whose systolic blood pressure increased by 20 in 30 seconds.
In addition to introducing our combined rewriting approach and proving that it is correct, we
also show that the FO rewritability results for the DL-Lite variant with concrete domains with
unary predicates in [38] follow from our results. Basically, we show that (i) concrete domains
with unary predicates satisfying the restrictions in [38] can be turned into ones satisfying our
restrictions, and (ii) in the unary case our combined rewriting boils down to an FO rewriting.
The results in [4] are orthogonal to ours since, on the one hand, they are restricted to the unary
case, but on the other hand, they allow for more expressiveness on the DL side. In contrast
to our work and [4, 38], in [35] queries do not contain built-in predicates. Finally, in [19] the
authors also consider a setting with non-unary concrete domains, but where the data complexity
is co-NP-hard in general. They then investigate for which kinds of queries this complexity
goes down to P. In contrast, our goal is to find restrictions on non-unary concrete domains that
ensure combined rewritability, and thus polynomial data complexity, for all queries.

2 Concrete Domains

Concrete domains are a well-known formalism for dealing with values in ontologies [26, 33, 38].
We first introduce the general notion of concrete domains, and then restrict it such that it fits
our purpose.

Definition 2.1 (Concrete domain). A concrete domain D consists of

• a non-empty set ∆D of values,

• a collection of predicates Πi with associated arities mi, containing the special unary
predicate >D, and

• interpretations ΠDi ⊆ (∆D)mi for all predicates, where (>D)D = ∆D.

Concrete domains can be used to formulate constraints as follows. Let from now on NV be a
countable set of variables.

Definition 2.2 (Syntax and semantics of D-formulas). A D-formula φ is a Boolean combination
of D-atoms of the form Π(v1, . . . , vm), where Π is an m-ary predicate and v1, . . . , vm ∈ ∆D ∪NV.
The set of variables occurring in φ is denoted by Var(φ). A D-conjunction (D-disjunction) is a
conjunction (disjunction) of D-atoms.
Given a finite set V ⊆ NV, a variable assignment (for V) is a mapping f : V → ∆D. For a
D-formula φ with Var(φ) ⊆ V , the set solV (φ) contains all solutions for φ, which are the variable
assignments for V under which φ is satisfied in D (using the standard notion of satisfaction in a
relational structure). We simply write sol(φ) if V = Var(φ). A D-formula is satisfiable if it has
at least one solution. A set of D-formulas Γ implies a D-formula ψ if

⋂
φ∈Γ solV (φ) ⊆ solV (ψ),

where V :=
⋃
φ∈Γ Var(φ) ∪ Var(ψ). If Γ is a singleton {φ}, then we say that φ implies ψ.

In the DL literature, concrete domains are usually required to satisfy additional properties that
are tailored to the reasoning problems under consideration. For example, in order to obtain

3

decidability of standard DL reasoning problems such as subsumption, Baader and Hanschke [1991]
require the concrete domain to be decidable, which in our setting means that satisfiability of
D-conjunctions and implications between D-conjunctions must be decidable. In the context
of concrete domain extensions of EL, this requirement is tightened by Baader et al. [2005]
to decidability in polynomial time. However, to obtain polynomiality of subsumption, one
additionally needs to require that the concrete domain is convex, i.e., whenever a D-conjunction
implies a (non-empty) D-disjunction, then it should also imply one of its disjuncts. The
papers [4, 38] among other things require D to be unary, which means that all its predicates
must be unary.
Our combined rewritability results depend on the following properties.

Definition 2.3 (cr-admissible). The concrete domain D is cr-admissible if it is polynomial,
convex, and satisfies the following additional properties:

• D has equality: it contains all unary predicates =d with d ∈ ∆D, which are interpreted as
{d}, as well as a binary predicate =, interpreted as {(d, d) | d ∈ ∆D}.

• D is functional: for any m-ary predicate Π, d ∈ ∆D, and i, 1 ≤ i ≤ m, the formula
Π(v1, . . . , vm) ∧=d(vi) has at most one solution.

• D is constructive: for all D-conjunctions φ and D-disjunctions ψ with solV (φ)\solV (ψ) 6= ∅,
an element of this set can be computed in polynomial time.

Example 2.4. The following concrete domains are known to be p-admissible [6, 7], i.e., polyno-
mial and convex:

• DQ: The set Q of all rational numbers with the unary predicates >DQ , =q, and >q (with
the interpretation {x | x > q}), and binary predicates = and +q (with the interpretation
{(x, y) | x = q + y}), for any q ∈ Q.

• DΣ∗ : The set Σ∗ of all words over a fixed alphabet Σ with the unary predicates >DΣ∗

and =w, and binary predicates = and concw (with the interpretation {(x, y) | x = w · y}),
for any w ∈ Σ∗.

Interestingly, both DQ and DΣ∗ are also functional and constructive, and hence admissible.
Although the properties p-admissibility, functionality, and constructivity are independent, the
latter two are used extensively in the proofs of p-admissibility for DQ and DΣ∗ in [7].

2.1 Closure Properties

We consider only a single cr-admissible concrete domain D in this paper. However, one can
combine several concrete domains D1, . . . ,Dn (e.g., the ones from Example 2.4) into a single
one by constructing their disjoint union or their product, without affecting cr-admissibility.

2.1.1 Disjoint Union

The concrete domain D1 ⊕ · · · ⊕ Dn has as its domain the disjoint union of ∆D1 , . . . , ∆Dn ,
and Ω, where Ω is a set of countably infinitely many untyped values [38]. Its predicates are the
individual predicates of D1, . . . ,Dn, the unary predicates >D1⊕···⊕Dn

and =ω, ω ∈ Ω, and the
extended binary predicate =.
We have to add the set Ω as it was done in [38], since otherwise this construction would
not preserve convexity: The atom >D(v) would imply >D1(v) ∨ · · · ∨ >Dn

(v), but not any
of the disjuncts. The additional countably many predicates =ω prevent this behavior. They

4

loosely correspond to plain literals in the RDF standard, which do not have an explicit type
in OWL [14, 33]. The set Ω does not affect answers to queries since usually the type of all
variables is known; i.e., we can restrict each variable v using an atom of the form >Di

(v) to
prevent solutions from using the set Ω. In our ontology language, we can additionally restrict all
attributes to one domain Di using attribute range constraints (see Section 3), e.g., expressing
that the age of a person is always a number and the name is always a string.

Lemma 2.5. If D1, . . . ,Dn are cr-admissible concrete domains, then D1 ⊕ · · · ⊕ Dn is also
cr-admissible.

Proof. Let D := D1 ⊕ · · · ⊕ Dn. Functionality is preserved since it is a condition on single
predicates, which is satisfied by the new predicates >D, =, and =ω, ω ∈ Ω.
The satisfiability of D-conjunctions φ can be decided by the following procedure. First, we
can remove atoms involving predicate >D since they do not restrict the solutions of φ. Now,
we assign each variable v occurring in φ to one of the component domains ∆D1 , . . . ,∆Dn ,Ω as
follows: If v occurs in a predicate of one of these domains, then it is assigned to this domain.
Moreover, if v occurs in an atom =(v, v′) in φ and we already know that v′ is assigned to Di
or Ω, then v must also belong to that component. After exhaustively labeling variables in this
way, the only remaining variables are those that occur only in equality atoms =(v1, v2). These
atoms are obviously satisfiable independently of the other atoms in φ, and hence we can remove
them. This means that each atom should now be uniquely associated to one of the component
domains. If a variable occurs in predicates from several of the component domains, then φ is
obviously unsatisfiable. Otherwise, φ can be split into independent components for each of the
component domains, and satisfiability can be checked independently. A conjunction of atoms
over Ω is satisfiable iff no two variables connected by a chain of equality predicates occur in two
different =ω-atoms, which is decidable in polynomial time.
To show that D is constructive, consider a D-disjunction ψ that is not implied by a D-
conjunction φ, and let f ∈ sol(φ) \ sol(ψ). We can partition φ according to the images of
the variables under f into independent conjunctions φi, . . . , φn, φΩ, which do not share variables
and are solved by f in one of the component domains ∆D1 , . . . ,∆Dn ,Ω, respectively. Since each
component is constructive, we can compute partial solutions fi ∈ sol(φi)\sol(ψ), i ∈ {1, . . . , n,Ω}
in polynomial time. In particular, for φΩ we can easily find enough values in Ω that do not
satisfy any atom of the form =(vi, vj) or =ωi(v) in ψ. Since each fi maps the variables of φi
into a disjoint component, we can combine them directly to obtain a solution of φ that does not
satisfy any disjunct of ψ.
To show decidability of implications of D-atoms α by D-conjunctions φ, we can likewise assume
that >D does not occur in the input. Furthermore, we again assign all variables and atoms
in φ to a unique component domain, where we associate all equality atoms =(v1, v2) whose
component is not clear with Ω. If φ is unsatisfiable (for example if a variable occurs in predicates
from different domains), then the implication holds. Otherwise, if a variable in α occurs in φ in
a predicate belonging to a different domain than the one in α, then the implication does not
hold. Finally, if these type checks have succeeded, then the implication only depends on those
conjuncts in φ that match the domain of the variables in α. An implication between atoms
over Ω can be decided by computing the equivalence closure of all involved equality atoms and
assigning elements of Ω to some of the resulting equivalence classes, in polynomial time.
To prove convexity, consider a valid implication between a D-conjunction φ and a D-disjunction ψ.
If φ is unsatisfiable, then it also implies all the disjuncts of ψ individually, and hence we are
done. If ψ contains an atom of the form >D(v), then φ also implies this atom, and thus we
assume in the following that >D does not occur in ψ. Further, if >D(v) occurs in φ and v also
occurs in at least one different atom in φ, then we can remove the atom >D(v) from φ without
affecting convexity. If v occurs in φ only in an atom of the form >D(v), then the solutions of
the finite disjunction ψ must cover all possibilities of mapping v to an untyped element ω ∈ Ω.

5

Since there are infinitely many such elements and they only occur in the interpretation of the
predicates =ω, >D, and =, it must be the case that v occurs in ψ only in equality atoms of the
form =(v, v′). By fixing all other variables according to an arbitrary solution of φ, we can show
that >D(v) implies a disjunction of the form =d1(v) ∨ · · · ∨=dm(v), which is impossible (cf. the
proof of Lemma 2.7). Thus, we assume in the following that >D does not occur in φ or ψ.
Now, any disjunct Π(v1, . . . , vm) where one of the variables v1, . . . , vm occurs in φ in a predicate
from a different component domain can be removed from ψ without changing the validity of the
implication. Afterwards, it is easy to see that the implication can again be split up according
to the membership of the predicates to the same concrete domain (where all equality atoms
in ψ belong to all domains, and all equality atoms in φ that cannot be uniquely assigned to
a domain are assigned to Ω), and it must be the case that one of the resulting implications is
valid in the corresponding component. If this component is one of D1, . . . ,Dn, then it follows
from their cr-admissibility and the fact that the conjunction on the left-hand side of a valid
implication can be extended without affecting the validity of the implication that φ implies one
of the disjuncts of ψ.
Otherwise, we know that a conjunction φ′ using only the predicates =ω and = implies a
disjunction ψ′ with the same property, where the former is a part of φ and the latter is a part
of ψ. We can remove all equality atoms from φ′ by identifying the variables occurring together
in equality atoms (see the proof of Lemma 2.7). If afterwards a variable v is not constrained
by an atom =ωi

(v), then this is equivalent to having an atom >D(v), which was shown to be
impossible above. Hence, the remaining conjunction ensures that all solutions must map each
variable v occurring in ψ′ to a fixed element ωv of Ω. But then ψ′ must contain either an
equality atom of the form =(v, v), an atom of the form =(v, v′) with ωv = ωv′ , or an atom of
the form =ωv (v). In each case, this atom is obviously implied by φ′, and hence by φ.

2.1.2 Product

The concrete domain D1 ⊗ · · · ⊗Dn has as its domain ∆D1 × · · · ×∆Dn , and for each n-tuple of
m-ary predicates (Π1, . . . ,Πn), where each Πi belongs to ∆i, it contains the m-ary predicate
Π1 ⊗ · · · ⊗ Πn, whose interpretation is{(

(d1
1, . . . , d

1
n), . . . , (dm1 , . . . , dmn)

)
| ∀i ∈ {1 . . . , n} : (d1

i , . . . , d
m
i) ∈ ΠDi

i

}
.

We can define >D1⊗···⊗Dn
:= >D1 ⊗ · · · ⊗ >Dn and =(d1,...,dn) := =d1 ⊗ · · · ⊗=dn to obtain the

predicates required by Definition 2.1 and cr-admissibility.
For example, the product DQ×DQ can be used to model measurements that are associated with
time stamps, to express statements like an increase of blood pressure by 20 in 30 seconds.

Lemma 2.6. If D1, . . . ,Dn are cr-admissible concrete domains, then D1 ⊗ · · · ⊗ Dn is also
cr-admissible.

Proof. We show the claim for a binary product, from which it easily follows for products with
more components. Let hence D := D1 ⊗D2. Since both D1 and D2 have equality, the binary
equality predicate on D is obtained by the product of the individual equality predicates.
Consider now a satisfiable D-conjunction Π(v1, . . . , vm) ∧ =d(vj), where Π = Π1 ⊗ Π2 and
d = (d1, d2). This conjunction is equivalent to the two conjunctions Πi(vi1, . . . , vim) ∧=di(vij),
i ∈ {1, 2}. These conjunctions are still satisfiable in their respective domains, and hence we
obtain unique solutions for the variables vi`. These can be composed into a solution for the
original conjunction, which must be unique since any other solution would differ in at least
one component, and hence yield an alternative solution for one of the component conjunctions.
This shows functionality of D. The same arguments allow us to decompose any D-conjunction
into two conjunctions over D1 and D2 that are both satisfiable iff the original conjunction was

6

satisfiable. Similarly, an implication of a D-atom by a D-conjunction is valid iff it is valid in all
components. Hence, the assumption that D1 and D2 are polynomial yields that that D is also
polynomial.
To show that D is constructive, consider a D-disjunction ψ that is not implied by a D-
conjunction φ. By the above arguments, one component of φ, say φ1, does not imply the
corresponding component ψ1 of ψ in D1, and we know that the other component φ2 has at
least one solution in D2. Since both D1 and D2 are constructive, we can compute solutions of
sol(φ1) \ sol(ψ1) and sol(φ2) \ sol(⊥) in polynomial time, where ⊥ denotes the empty disjunction.
The combination of these solutions naturally forms an element of sol(φ) \ sol(ψ).
For convexity, consider a satisfiable D-conjunction φ that implies a D-disjunction ψ, and denote
by φi and ψi their restrictions to the i-th component, i ∈ {1, 2}. We assume that φ and ψ
contain the variables v1, . . . , vm, and these correspond to the variables vi1, . . . , vim in φi and ψi.
By assumption, each φi is satisfiable and implies ψi. We show that φ implies a disjunct of ψ by
induction on the number k of disjuncts of ψ. If k = 1, then clearly the claim holds. If k > 1, we
choose an arbitrary disjunct α of ψ and assume that φ does not imply α. We will show that
then φ must imply the remaining disjunction ψα. Since ψα has k − 1 disjuncts, the induction
hypothesis then yields that φ implies a disjunct of ψα, which is also a disjunct of ψ.
Since φ does not imply α, there is a solution f ∈ sol(φ) that does not satisfy α. By the semantics
of the product predicates, f can be split into solutions of φi, i ∈ {1, 2}, by setting fi(vij) := dij ,
where f(vj) = (d1

j , d
2
j). However, there must be one component i ∈ {1, 2} such that fi does

not satisfy αi; we assume without loss of generality that i = 1. Hence, f1 is a counterexample
for the implication of α1 by φ1. By the convexity of D1, we know that φ1 implies ψα1 . Hence,
it remains to show that also φ2 implies ψα2 , since then the product semantics yields that φ
implies ψα. Assume to the contrary that φ2 does not imply ψα2 , i.e., there is a solution f ′2 of φ2
that does not satisfy ψα2 . We obtain a new variable assignment f ′ by combining f1 and f ′2 as
follows: f ′(vj) := (f1(v1

j), f ′2(v2
j)). This assignment satisfies φ1 in the first component and φ2 in

the second component, and thus is a solution of φ. However, f ′ does not satisfy α in the first
component, and it does not satisfy ψα in the second component. Hence, it is a counterexample
to the implication between φ and ψ = α ∨ ψα, which contradicts our assumption.

2.2 Unary Concrete Domains

The paper [38] about query answering in DL-Lite with unary concrete domains D imposes the
following restriction:

(infinitediff) For any D-conjunction φ and D-disjunction ψ, whenever |solV (φ)| > 1 and
solV (φ) * solV (ψ′) for every D-atom ψ′ in ψ (where V := Var(φ) ∪ Var(ψ)), then the
cardinality of solV (φ) \ solV (ψ) is infinite.

The original definition actually does not include the condition |solV (φ)| > 1. However, it is
easily checked that the constructions and results of [38] remain valid under our weaker version
of (infinitediff). In our setting, this modification is useful to accommodate the predicates =d,
whose presence would otherwise contradict (infinitediff). The authors of [37, 38] also consider
two other restrictions, called (infinite) and (opendomain), which, after closer inspection, turn
out to be simply the special cases of (infinitediff) with ψ = false and φ = true, respectively.
In [4], a condition similar to (infinitediff) can be found, which was adapted from [37]. However,
the paper [4] also considers only unary predicates and ignores the easy case of singleton solution
sets: it requires that the difference between an arbitrary union and an arbitrary intersection
of (interpretations of) predicates must be either empty or infinite. Additionally, a convexity
condition is imposed on the concrete domain by requiring that the inclusion relationships between
all predicates can be axiomatized by Horn rules.

7

The paper [38] considers only unary concrete domains that are decidable and satisfy (infinitediff).
To show that our results also apply to this setting, we first prove that we can add equality
predicates to D without destroying (infinitediff).
Lemma 2.7. Let D be a unary concrete domain satisfying (infinitediff). Then the concrete
domain D′ that is obtained from D by adding the predicates = and =d (d ∈ ∆D) still satisfies
(infinitediff).

Proof. We first show that adding the unary predicates =d, d ∈ ∆D, does not affect (infinitediff).
To show this, we can without loss of generality restrict ourselves to formulas using only one
variable v since different variables cannot interact using only unary predicates. Assume that φ
is a conjunction of unary atoms using only v with |sol(φ)| > 1, and sol(φ) * sol(ψ′) holds for all
atoms ψ′ of a D-disjunction ψ using only v. Since |sol(φ)| > 1, we already know that φ cannot
contain any of the new predicates =d. Consider now the D-disjunction ψ− obtained from ψ by
removing all atoms of the form =d(v). Hence, by (infinitediff) we know that sol(φ) contains
infinitely many solutions that are not elements of sol(ψ−). However, since sol(ψ−) and sol(ψ)
differ only in finitely many elements, we must also have |sol(φ)\ sol(ψ)| =∞, as required. Hence,
in the following we can assume that D already contains all the unary predicates =d, d ∈ ∆D.
We show below, in Lemma 2.8, that these unary predicates cause (infinitediff) to become
equivalent to convexity of D. Hence, we know that D is convex, and need to show that D′ is also
convex. For this purpose, consider a satisfiable D′-conjunction φ that implies a D′-disjunction ψ.
We can assume without loss of generality that these formulas do not contain constants since atoms
containing only constants must be valid in D and can hence be removed without affecting the
solutions of φ and ψ, and atoms of the form =(d, v) or =(v, d) with d ∈ ∆D can be equivalently
written as =d(v).
We will further assume that φ does not contain any equality atoms, which is without loss
of generality due to the following arguments. Consider the equivalence relation = on terms
generated by the equalities occurring in φ. We obtain the D-conjunction φ/= from φ by replacing
all variables of an =-equivalence class E by a single fresh variable vE and removing all equality
atoms. Every solution f ∈ sol(φ) yields a solution f/= of φ/= by setting f/=(vE) := f(v) for
any v ∈ E. Vice versa, from f/= ∈ sol(φ/=) we obtain f ∈ sol(φ) via f(v) := f/=(vE) for all
v ∈ E. These two mappings describe a bijection between sol(φ) and sol(φ/=). We apply the
same variable replacement to ψ to obtain a D′-disjunction ψ′. It is easy to see that φ/= still
implies ψ′, and that φ implies a disjunct of ψ iff φ/= implies a disjunct of ψ′.
We can hence assume that φ is of the form φ1(v1)∧· · ·∧φn(vn), where the φi(vi) are independent
conjunctions of unary atoms over different variables vi, 1 ≤ i ≤ n. Likewise, ψ can be written
as ψ1(v1) ∨ · · · ∨ ψn(vn) ∨ ψ=, where each ψi(vi), 1 ≤ i ≤ n, is a disjunction of unary atoms
over vi, and ψ= contains all binary equality atoms.
If φ implies one of the disjunctions ψi(vi), then convexity of D yields the claim. Otherwise, we
know that Si := sol(φi(vi)) \ sol(ψi(vi)) is non-empty, for all i ∈ {1, . . . , n}. In all cases where
Si = {d1, . . . , dk} is finite, we obtain that φi(vi) implies ψi(vi) ∨=d1(vi) ∨ · · · ∨=dk

(vi). Since
we assumed that φi(vi) does not imply ψi(vi), by the convexity of D it must imply one of the
atoms =dj

(vi), which means that sol(φi(vi)) = {dj}.
Consider the (partial) variable assignment f that assigns all such variables vi their uniquely
determined solutions. If f satisfies one of the equality atoms in ψ=, this already shows that
φ implies this atom. Otherwise, we proceed to extend f to the remaining variables. For any
variable vi that does not yet have a value under f , we know that sol(φi(vi)) \ sol(ψi(vi)) is
infinite. Hence, it is possible to find a value from sol(φi(vi)) that is different from all values of f
that have already been fixed. After we have done this for all the remaining variables, we have
found a solution f of φ that does not satisfy any of the equality atoms in ψ=, and by assumption
also none of the remaining atoms of ψ. This contradicts the assumption that φ implies ψ.
In summary, we have shown that either φ must already imply one of the disjunctions ψi(vi), or

8

the singleton solution sets among sol(φi(vi)) imply an equality atom in ψ=, which concludes the
proof of convexity.

The properties convexity [6] and (infinitediff) [37, 38] were introduced independently to solve
different problems in the presence of concrete domains. The former was used together with
polynomiality of D to show that reasoning in an extension of the description logic EL remains
polynomial. Closer to this paper, (infinitediff) was introduced for unary concrete domains, in
order to obtain an FO rewriting for CQs in a dialect of DL-Lite. Surprisingly, we can show
that in our setting these two seemingly unrelated properties are actually equivalent. In general,
convexity is a weaker restriction since it does not force non-singleton predicates to be infinite.
But in the presence of =d we can show equivalence. In fact, if solV (φ) \ solV (ψ) is finite, then
one can use the predicates =d to construct a counterexample to convexity. In contrast to the
previous lemma, this result is not restricted to unary concrete domains.

Lemma 2.8. A concrete domain D containing the predicates =d (d ∈ ∆D) is convex iff it
satisfies (infinitediff).

Proof. Consider a D-conjunction φ and a D-disjunction ψ, and let V := Var(φ) ∪ Var(ψ).
(⇒) Suppose that |solV (φ)| > 1, solV (φ) * solV (ψ′) for every atom ψ′ in ψ, and that
solV (φ) \ solV (ψ) is finite. Let S := {f1, . . . , fm} := solV (φ) \ solV (ψ) be the finitely many
solutions of φ that do not satisfy ψ. Then we have

solV (φ) ⊆ solV (ψ) ∪ S

= solV (ψ) ∪
m⋃
i=1

solV
(∧
v∈V

=fi(v)(v)
)

= solV
(
ψ ∨

m∨
i=1

∧
v∈V

=fi(v)(v)
)

= solV
(
ψ ∨

∧
(v1,...,vm)∈V m

m∨
i=1

=fi(vi)(vi)
)

=
⋂

(v1,...,vm)∈V m

solV
(
ψ ∨

m∨
i=1

=fi(vi)(vi)
)
.

Hence, φ implies ψ ∨
∨m
i=1 =fi(vi)(vi), for all (v1, . . . , vm) ∈ V m. Hence, by convexity of D and

our assumption that φ does not imply any single atom of ψ, for every (v1, . . . , vm) ∈ V m there
must be an index i, 1 ≤ i ≤ m, such that solV (φ) ⊆ solV (=fi(vi)(vi)), i.e., all solutions of φ
map vi to fi(vi). Consider now the constant tuples of the form (v, . . . , v) ∈ V m. By the above
property, we know that, for all v ∈ V , there is an index iv such that all solutions of φ map v to
fiv (v). Hence, either solV (φ) is empty or it is a singleton set containing only the solution that
maps all v ∈ V to fiv (v). This contradicts our assumption that |solV (φ)| > 1.
(⇐) Assume that solV (φ) ⊆ solV (ψ) holds and ψ contains at least one atom. If solV (φ) is
empty, then clearly solV (φ) ⊆ solV (ψ′) holds for all atoms ψ′ in ψ, and hence the claim is
trivial. If |solV (φ)| = 1, then the unique solution f of φ must satisfy an atom ψ′ in ψ, and thus
solV (φ) = {f} ⊆ solV (ψ′). Finally, consider the case that |solV (φ)| > 1. Since solV (φ) ⊆ solV (ψ),
we have |solV (φ) \ solV (ψ)| = 0, which is finite, and hence (infinitediff) implies the existence of
an atom ψ′ of ψ such that solV (φ) ⊆ solV (ψ′).

Note that both convexity and (infinitediff) only talk about finite disjunctions. Hence, it is still
possible for (conjunctions of) predicates to have infinite coverings. For example, >Q is covered
by the union of all predicates >q with q ∈ Q.

9

As a further step towards showing that our results imply the ones in [38], observe that every
unary concrete domain D is trivially functional. We will finish this discussion in Section 6.6,
where we also show that polynomiality (and decidability of implications using the predicate =)
and constructivity are not needed for our results if D is unary. In contrast, in the presence of
predicates of higher arity, the predicates =d, polynomiality, and constructivity are essential for
our combined rewriting approach (see Section 6).
Convexity is also necessary for our combined rewritability results since they imply polynomial
data complexity. In fact, if the concrete domain is not convex, then answering conjunctive
queries that can refer to concrete domain predicates is co-NP-hard in data complexity (and
hence neither FO or combined rewritable, unless P = NP), even in the unary case [4, 37, 38]. For
the case of predicates of larger arity, convexity alone is not sufficient: we also need functionality
and constructivity of D.

3 The Ontology Language

For any cr-admissible concrete domain D, we introduce the logic DL-Lite(HF)
core (D), a common

extension of DL-Lite(HF)
core and DL-LiteA [3, 35].

3.1 Syntax

Let NC, NR, NA, and NI be pairwise disjoint sets of concept, role, attribute, and individual names,
respectively. A role is either a role name or an inverse role of the form P−, where P ∈ NR. A
(basic) concept is either a concept name, the special concept top (>), an existential restriction
of the form ∃R, where R is a role, or an attribute restriction of the form ∃U1, . . . , Um.Π, where
U1, . . . , Um ∈ NA and Π is an m-ary predicate of D.
A TBox (or ontology) is a finite set of

• inclusions X1 v X2,

• disjointness constraints disj(X1, X2),

• functionality constraints funct(R), and

• attribute range constraints B v ∀U1, . . . , Um.Π

where X1 and X2 are both either basic concepts, roles, or attribute names, R is a role, B is a
concept, Π is an m-ary predicate of D, and U1, . . . , Um ∈ NA. As usual, role names occurring in
a functionality constraint are not allowed to occur on the right-hand side of inclusions. Without
this restriction, CQs could not be FO-rewritable over DL-Lite logics [3].

In contrast to DL-Lite(HF)
core , we do no explicitly have role (a)symmetry or (ir)reflexivity axioms

here; they can, however, be simulated as described in [3, Lemma 5.17]. In particular, the
(instantiated) canonical model that we construct in Section 5 constitutes a so-called untangled
(tree-like) model.
An ABox is a finite set of

• concept assertions A(a),

• role assertions P (a, b), and

• attribute assertions U(a, d),

10

where A ∈ NC, P ∈ NR, U ∈ NA, a, b ∈ NI, and d ∈ ∆D.
Inclusions, constraints, and assertions are collectively called axioms. A knowledge base (KB) is
a pair K := 〈A, T 〉 consisting of a TBox T and an ABox A that uses only the concept, role, and
attribute names occurring in T . We denote by ∆D(T) the set of all concrete domain values
occurring in T , and similarly define ∆D(A) and ∆D(K). We use P−(a, b) as an abbreviation for
P (b, a), and define (P−)− := P .

3.2 Semantics

An interpretation I consists of a non-empty domain ∆I (sometimes called object domain) and
an interpretation function ·I that assigns

• to each individual name a ∈ NI an object aI ∈ ∆I such that for all a, b ∈ NI with a 6= b
we have aI 6= bI (unique name assumption (UNA)),

• to each concept name A ∈ NC a set AI ⊆ ∆I of objects,

• to each role name P ∈ NR a binary relation P I ⊆ ∆I ×∆I between objects,

• to each attribute name U ∈ NA a binary relation UI ⊆ ∆I ×∆D between objects and
concrete values.

This function is extended to roles and concepts as follows:

• (P−)I := {(e1, e2) | (e2, e1) ∈ P I};

• >I := ∆I ;

• (∃R)I := {e1 | ∃e2 : (e1, e2) ∈ RI};

• e ∈ (∃U1, . . . , Um.Π)I iff there are (d1, . . . , dm) ∈ ΠD such that (e, di) ∈ UIi , 1 ≤ i ≤ m;
and

• e ∈ (∀U1, . . . , Um.Π)I iff for all d1, . . . , dm ∈ ∆D with (e, di) ∈ UIi , 1 ≤ i ≤ m, we have
(d1, . . . , dm) ∈ ΠD;

An interpretation I satisfies (or is a model of)

• an inclusion or attribute range constraint X1 v X2 if XI1 ⊆ XI2 ;

• a disjointness constraint disj(X1, X2) if XI1 ∩XI2 = ∅;

• a functionality constraint funct(R) if (e, e1), (e, e2) ∈ RI implies that e1 = e2;

• a concept assertion A(a) if aI ∈ AI ;

• a role assertion P (a, b) if (aI , bI) ∈ P I ;

• an attribute assertion U(a, d) if (aI , d) ∈ UI ;

• a TBox, ABox, or knowledge base X if it satisfies all its axioms (written I |= X).

A KB is consistent if it has a model.

11

3.3 Comparison to Other DL-Lite Logics

Our logic extends those from [35, 38]. In fact, the missing functionality restrictions on attributes
can be expressed using attribute range constraints of the form > v ∀U,U.=. On top of that,
we even allow functional attributes to occur on the right-hand sides of inclusions. In contrast
to [4], we do not support number restriction on roles or attributes. But we can at least simulate
conjunctions in inclusions via the concrete domain. For example, since =d(v1)∧=(v1, v2) implies
=d(v2), the inclusion B1 uB2 v B3 can be simulated by the axioms

> v ∃U1.>D, > v ∃U2.>D, B1 v ∀U1.=d, B2 v ∀U1, U2.=, ∃U2.=d v B3,

where U1, U2 are fresh attribute names, and d is a fresh constant.
Example 3.1. We consider DQ from Example 2.4. The TBox

T := {Patient v ∃maxHR.>DQ , ∃age.=60 v ∀maxHR.=160,

Patient v ∀hr, hr.=, ∃maxHR, hr.+5 v Alert}

says that every patient has a maximum heart rate, which is 160 for persons of age 60, there is
always only one heart rate measurement, and an alert is raised when the measured heart rate
rises to only 5 below the maximum heart rate. A corresponding ABox contains actual data such
as

A := {Patient(p1), age(p1, 60), hr(p1, 155),
Patient(p2), hr(p2, 155), maxHR(p2, 180)},

which implies the assertion Alert(p1), but not Alert(p2).

This example illustrates the most prominent advantage of our logic, namely attribute restrictions
using predicates of arity greater than 1. Here, they allow us to express the concept of an alert by
comparing the current measurement with a maximum value. Using unary predicates, one could
express hard-coded limits like ∃hr.>180 v Alert, but not comparisons with an (age-dependent)
maximum rate, unless one writes a huge (finite) case distinction.
Usually, existential and attribute restrictions in DL-Lite are unqualified, i.e., of the form ∃R or
∃U without further restriction on the type of the R- or U -filler. However, qualified existential
restrictions (over non-functional roles) on the right-hand side of concept inclusions can be
simulated as usual [3, 35]: If R is not functional, i.e., the TBox does not contain the constraint
funct(R), then A v ∃R.B can be expressed by A v ∃PB, PB v R, and ∃P−B v B, where PB is
a fresh role name. Similarly, we could simulate attribute restrictions on the right-hand side
of inclusions using only unqualified attribute restrictions in conjunction with attribute range
restrictions and attribute inclusions. For example, to express B v ∃U, V.Π, we could write
B v ∃UΠ, B v ∃VΠ, UΠ v U , VΠ v V , and B v ∀UΠ, VΠ.Π, where UΠ, VΠ are fresh attribute
names.
As in OWL 2 QL, but in contrast to many DL-Lite dialects, we allow qualified attribute
restrictions on the left-hand side of inclusions. Since such restrictions only affect each abstract
domain element individually, these concepts are harmless for our purposes. In contrast, if we
would additionally allow feature chains, which are often used in more expressive description
logics to compare attributes of different domain elements, we could easily prove undecidability
of CQ answering by a reduction from the Post Correspondence Problem [5, 26], e.g., using the
concatenation and equality predicates provided by DΣ∗ .

4 Conjunctive Queries with Built-ins

We consider a set of variables NV that is partitioned into the two sets NOV (object variables)
and NCV (concrete domain variables). Elements of NI ∪ NOV are called object terms, and those

12

of ∆D ∪ NCV are value terms.

Definition 4.1 (CQs). A conjunctive query φ is of the form (~x,~v)← ψ(~y, ~w), where

• ~x, ~y are vectors over NOV;

• ~v, ~w are vectors over NCV;

• all variables occurring in (~x,~v) also occur in (~y, ~w); and

• ψ is a conjunction of atoms of the following forms, using exactly the variables in (~y, ~w):

– A(x) (concept atom),
– P (x, y) (role atom),
– U(x, v) (attribute atom),
– x = y (object equality atom), or
– Π(v1, . . . , vm) (value comparison atom),

where A ∈ NC, P ∈ NR, U ∈ NA, x, y are object terms, v, v1, . . . , vm are value terms, and
Π is an m-ary predicate of D.

The set of answer variables (or distinguished variables) of φ, denoted by FVar(φ), consists of the
variables occurring in (~x,~v). The remaining variables in (~y, ~w) are called existentially quantified
(or nondistinguished). As for assertions, we may write P−(x, y) instead of P (y, x). A CQ is
called Boolean if it does not have any answer variables. We write α ∈ φ to denote that α is an
atom occurring in the CQ φ. The set terms(φ) contains all elements of NI, ∆D, and NV that
occur in φ, ∆D(φ) denotes the set of all concrete domain values that occur in φ, and we similarly
define NI(φ), NCV(φ), et cetera.
An interpretation I = (∆I , ·I) satisfies (or is a model of) a Boolean CQ φ (written I |= φ) if
there is a homomorphism of φ into I, which is a mapping π : terms(φ)→ ∆I ∪∆D such that

• π maps NOV(φ) into ∆I , and NCV(φ) into ∆D;

• π(a) = aI for all a ∈ NI(φ);

• π(d) = d for all d ∈ ∆D(φ);

• π(x) ∈ AI for all concept atoms A(x) ∈ φ;

• (π(x), π(y)) ∈ P I for all role atoms P (x, y) ∈ φ;

• (π(x), π(v)) ∈ UI for attribute atoms U(x, v) ∈ φ;

• π(x) = π(y) for all object equality atoms x = y ∈ φ; and

• (π(v1), . . . , π(vm)) ∈ ΠD for all value comparison atoms Π(v1, . . . , vm) ∈ φ.

A KB K entails a Boolean CQ φ (written K |= φ) if every model I of K is also a model of φ.
A potential answer to a CQ φ w.r.t. K is a mapping a : FVar(φ) → NI(K) ∪ ∆D that maps
all distinguished object variables into NI(K) and all distinguished concrete domain variables
into ∆D. A certain answer to φ : (~x,~v)← ψ(~y, ~w) w.r.t. K is an answer tuple of the form a(~x,~v),
where a is a potential answer for which K entails the Boolean CQ a(φ) : ()← ψ(a(~y, ~w)). The set
of all certain answers to φ w.r.t. K is denoted by cert(φ,K). Similarly, for an interpretation I,
we denote by ansK(φ, I) the set of all tuples a(~x,~v), where a is a potential answer to φ w.r.t. K
such that I |= a(φ). We usually omit the subscript K since it is clear from the context.

13

4.1 Rewritability

Given any query language and ontology language, first-order (FO) rewritability of a query φ
w.r.t. a TBox T is the property that one can find a first-order query expression that, when
evaluated over any ABox A viewed as a (closed-world) database, yields the same answers as φ on
the KB 〈A, T 〉. It was shown in [8] that this is actually equivalent to rewritability into a union
(disjunction) of CQs. Combined rewritability generalizes this approach by allowing the ABox to
be rewritten as well, by incorporating some information from the TBox. These techniques allow
us to employ existing relational database systems for query answering over ontologies [13, 25].

Definition 4.2. A CQ φ is FO-rewritable w.r.t. a TBox T if there is a finite set ΦT of CQs
such that for every consistent KB K = 〈A, T 〉 we have

cert(φ,K) =
⋃

φ′∈ΦT

ans(φ′, I(A)),

where I(A) := I(0)
K is the finite interpretation that will be formally defined in Section 5.2, which

satisfies exactly the assertions in A. The set ΦT is called a rewriting of φ w.r.t. T .
The CQ φ is combined rewritable w.r.t. T if there is a finite set ΦT of CQs such that for every
consistent KB K = 〈A, T 〉 we have

cert(φ,K) =
⋃

φ′∈ΦT

ans(φ′, I(K)),

where I(K) is a finite interpretation that is constructed from A and T in polynomial time.

It is important that ΦT does not depend on the ABox, and I(K) does not depend on the
query. This allows to draw close connections between these rewritability properties and the
complexity of CQ entailment. FO rewritability implies that entailment of (Boolean) CQs is in
the circuit complexity class AC0 w.r.t. data complexity, where the query and TBox are viewed
as fixed, and only the ABox is counted as part of the input. Hence, the size of the rewriting ΦT
does not affect the data complexity, as long as it is finite. For combined rewritability, since
I(K) is of size polynomial in the size of A, CQ entailment is in P. The interpretation I(K) is
required to be polynomial since it would be impractical to increase an already large dataset by
a superpolynomial amount [17, 24, 29].
Often, it is also desirable that the size of ΦT is at most polynomial in the size of φ and T .
However, for DL-LiteHcore ontologies in general, it is impossible to find an FO rewriting that is a
polynomial-sized union of CQs [21]. If one allows to rewrite into arbitrary FO formulas, the
existence of polynomial rewritings is an open problem, although there are strong indications
that the answer to this question is negative [21].

4.2 Safety

We follow the approach commonly used for databases and assume that all concrete domain
predicates are built-in predicates of the database system, i.e., their full (possibly infinite)
extensions are known [2, 9, 22, 38]. Although strictly speaking this means that the interpretation
I(K) is not finite anymore, i.e., not a database in the classical sense, for so-called domain-
independent queries it suffices to be able to check satisfiability of D-conjunctions, which is
usually implemented in database systems by using a dedicated solver, e.g., for integer arithmetic.
Domain-independence is the crucial requirement that the set of answers should not depend on
the chosen domain ∆D of available values, but only on the values in ∆D(K) [1]. To ensure this
condition in our setting, we adopt the following syntactic restriction from [2, 38].

14

Definition 4.3 (Safety). Given a CQ φ, a variable v ∈ NCV(φ) is safe (in φ) if it occurs in φ in
an atom of the form

a) U(x, v) for some U ∈ NA and x ∈ NV(φ), or

b) =d(v) for some d ∈ ∆D.

The CQ φ is safe if all its concrete domain variables are safe. A variable v that occurs in an
atom U(x, v) in φ is bound to x (in φ). All other variables of NCV(φ) are called unbound.

A concrete domain variable may be bound to several object variables, and unbound variables
are always restricted to a constant value by condition b). Condition b) is not essential for our
results, since unbound variables can always be replaced by constants without changing the
semantics of the query (if we allow constants in answer tuples). However, this definition of safety
is more convenient to formulate the rewriting in Section 6.
While safety is not necessary to obtain rewritability for unary concrete domains [4], the next
lemma shows that for concrete domain predicates of higher arity non-safety may actually lead
to non-rewritability. Unless P = NP, there cannot even exist a combined rewriting.

Lemma 4.4. In DL-Lite(HF)
core (D{a}∗), entailment of (non-safe) Boolean CQs is co-NP-hard in

data complexity.

Proof. The proof is based on the observation that unsafe variables can be used to express
projections of n-ary predicates, which may not be convex anymore. In particular, the projection
of the binary predicates concw of D∗Σ (see Example 2.4) to the first component yields the unary
predicates prefw that match all words with prefix w, which were shown to be non-convex in [7].
Hence, we can adapt the co-NP-hardness proofs for non-convex concrete domains from [4, 37] for
our purposes. These proofs are based on a reduction of the satisfiability problem for propositional
2+2-CNF formulas, which is NP-hard and is often used for showing hardness of reasoning
problems in description logics [12, 15]. Here, we consider only a singleton alphabet, but the
proof can easily be adapted to any finite alphabet (using a union of CQs).
Let f = c1 ∧ · · · ∧ cn be a propositional 2+2-CNF formula over the variables p1, . . . , pm, where
each clause ci is of the form p

(i)
1 ∨ p

(i)
2 ∨ ¬p

(i)
3 ∨ ¬p

(i)
4 for p(i)

j ∈ {p1, . . . , pm, true, false}. For the
reduction, we abuse the notation and treat c1, . . . , cn and p1, . . . , pm, true, false as individual
names. We further use a concept name A, role names P1, P2, N1, N2, and an attribute name U .
We consider the TBox T := {A v ∃U.>{a}∗} and the ABox

Af := {A(p1), . . . , A(pm), U(true, a), U(false, ε)} ∪

{P1(ci, p(i)
1), P2(ci, p(i)

2), N1(ci, p(i)
3), N2(ci, p(i)

4) | 1 ≤ i ≤ n},

which encodes the formula f . Intuitively, the truth value assignments will be given by the
values of the attribute U at p1, . . . , pm, where ε represents false, and every other word an, n ≥ 1,
indicates true.
The following Boolean CQ checks whether there exists an unsatisfied clause:

φ := ()← P1(xc, x1) ∧ P2(xc, x2) ∧N1(xc, x3) ∧N2(xc, x4) ∧
U(x1, v1) ∧ U(x2, v2) ∧ U(x3, v3) ∧ U(x4, v4) ∧
=ε(v1) ∧=ε(v2) ∧ conca(v3, v

′
3) ∧ conca(v4, v

′
4).

Note that this query is not safe since v′3 and v′4 are not safe.
If f is satisfiable by a variable assignment η, then we can define an interpretation I by
∆I := {c1, . . . , cn, p1, . . . , pm, true, false} and UI := {(p, a) | η(p) = true} ∪ {(p, ε) | η(p) = false},

15

which can easily be extended by interpreting the other symbols in such a way that we obtain a
model of 〈Af , T 〉. However this interpretation does not satisfy φ.
Conversely, assume that f is unsatisfiable, and let I be any model of Af and T . We consider
the variable assignment η defined by η(p) := false if (p, ε) ∈ UI , and η(p) := true, otherwise.
Then there must exist a clause ci such that (p(i)

1 , ε), (p(i)
2 , ε), (p(i)

3 , an3), (p(i)
4 , an4) ∈ UI holds

for some natural numbers n3 ≥ 1 and n4 ≥ 1. But then φ can be satisfied in I by mapping v′3
to an3−1 and v′4 to an4−1.
Since satisfiability of 2+2-CNF formulas is NP-hard [15] and neither TBox nor query depend
on the input formula f , the CQ entailment problem is co-NP-hard in data complexity.

5 Canonical Models

The usual way to prove rewritability results is via so-called canonical models of the input
knowledge base. Given a KB K, a canonical model IK is a model of K with the property that
ans(φ, IK) = cert(φ,K) holds for all CQs φ. Intuitively, the canonical model must be minimal in
the sense that it does not contain any structures that are not enforced by the KB. In logics
of the DL-Lite family, such models can usually be constructed by iterative application of the
inclusions in the TBox to the facts of the ABox. For example, if A(a) ∈ A, then the canonical
model satisfies aIK ∈ AIK , and the inclusion A v ∃R would then cause a new domain element e
to be created and (aIK , e) to be added to RIK , and so on.
Although the canonical model is usually not finite, it represents a first step in proving rewritability,
by reducing query answering under the open-world assumption (i.e., certain answer semantics)
to the closed-world assumption (i.e., answers over a single interpretation). Unfortunately, such
canonical models need not exist in our setting.

Example 5.1. Consider the simple example of the KB K = 〈{A(a)}, {A v ∃U.>0}〉 over the
concrete domain DQ from Example 2.4. A canonical model IK of K must satisfy (aIK , q) ∈ UIK
for some value q > 0. However, it is clearly not possible to answer all CQs correctly using a
single such model: For a fixed q, the safe Boolean CQ φq : ()← ∃v.U(a, v) ∧>q/2(v) is satisfied
in IK, but not entailed by K.

In [38], the authors try to solve this problem by selecting q as the “most general” value, which
does not satisfy any D-atoms except those implied by the constraint >0(q). More precisely,
they propose to choose q > 0 such that “for any m predicates Π1, . . . ,Πm in DQ such that(⋃m

i=1 ΠDQ

i

)
((>0)DQ it holds that q /∈

(⋃m
i=1 ΠDQ

i

)
” [38, page 725].2 For a given choice of

Π1, . . . ,Πm, such a value q must exist due to (infinitediff). However, it is clear that one cannot
find a single value q such that all (infinitely many) predicates >q′ in DQ are avoided; regardless
of the value of q, the CQ φq remains a counterexample. This shows that this construction in
the presence of >q, q ∈ Q, contrary to the claim in [38, Example 2].
To overcome this problem, we weaken the requirements on the canonical model by considering
only those CQs that use concrete domain predicates from a fixed, finite set of predicates. This
solves the issue in Example 5.1 since there are infinitely many predicates >q/2, q ∈ Q, and thus
not all CQs φq follow this restriction. For ease of presentation, we assume in the following that
all CQs use only the concrete domain predicates from T . We call such CQs T -restricted. This
assumption does not affect our results regarding the data complexity of CQ entailment since
one can add the (constantly many) predicates Π occurring in φ to T using trivial axioms such
as > v ∀U, . . . , U.Π, where U is a fresh attribute name. Similarly, we can assume as usual that
all other symbols occurring in φ also occur in T . However, in practice this restriction affects the
kind of queries a user can ask over a given KB, which is usually fixed in advance.

2We translated the syntax of [38] and applied the construction to Example 5.1.

16

5.1 Abstract Interpretations and Their Solutions

Another difference of our approach to the construction of the canonical model in [38] is that, due
to the interaction between values enabled by n-ary predicates, the value of a concrete domain
value cannot be fixed immediately after its introduction. For example, consider the axioms
> v ∃U.>0, > v ∃V.>Q, and > v ∀U, V.+4. Applying the first inclusion to a domain element
e ∈ ∆IK creates an attribute filler: (e, q) ∈ UIK . However, at this point is is not yet clear which
value q we should take. Only after all inclusions have been applied to this domain element can
we try to find a joint solution of all obtained constraints >0(q), >Q(q′), and +4(q, q′). For this
reason, we modify the usual canonical model construction [34, 35] to use abstract interpretations
that allow us to treat q, q′ as variables instead of fixed values.

Definition 5.2 (Abstract interpretation). An abstract interpretation I = (∆I , ·I , (Γe)e∈∆I)
with the constraint sets Γe, e ∈ ∆I , is defined like an ordinary interpretation, with the exceptions
that

• each attribute name U is interpreted by a binary relation UI ⊆ ∆I × (∆D ∪ NCV), and

• each Γe, e ∈ ∆I , is a set of D-atoms of the form Π(v1, . . . , vm), where for each variable
among the terms vo, 1 ≤ o ≤ m, there exists an attribute name U such that (e, vo) ∈ UI .

We denote by terms(I) the set of all variables and constants occurring in the constraint sets
of I, by Var(I) the set terms(I) ∩NCV, and similarly for individual constraint sets. We say that
I implies a D-formula ψ if ψ is implied by the union of all constraint sets

⋃
e∈∆I Γe. To check

such an implication, we can restrict ourselves to those variables that are connected to Var(ψ)
via some atoms in the constraint sets. The (abstract) canonical model we construct below will
have the additional property that no constraint sets share variables, and hence it suffices to
consider a finite union of constraint sets.
To work with abstract interpretations, we need to modify those definitions from Sections 3 and 4
that are concerned with D:

• The interpretation of attribute restrictions and the satisfaction of attribute range con-
straints at a domain element e of I are lifted to variables by replacing the expression
“(d1, . . . , dm) ∈ ΠD” by “I implies Π(d1, . . . , dm)”.

• I satisfies a disjointness constraint disj(U1, U2) for two attribute names U1, U2 if there are
no pairs (e, v1) ∈ UI1 and (e, v2) ∈ UI2 for which I implies =(v1, v2).

• Instead of homomorphisms, we consider (abstract) homomorphisms π of a Boolean CQ φ
into I, which are defined similarly as before, with the exception that elements of NCV(φ)
may also be mapped to terms(I), and the satisfaction conditions are modified as follows:

– For every attribute atom U(x, v) ∈ φ, there must exist a w ∈ terms(I) such that
(π(x), w) ∈ UI and =(w, π(v)) is implied by I.

– For every value comparison atom Π(v1, . . . , vm) ∈ φ, the atom Π(π(v1), . . . , π(vm))
must be implied by I.

All other notions like satisfaction of knowledge bases are defined as for ordinary interpretations,
and we use |=a instead of |= to differentiate the satisfaction/entailment relations, and similarly
write ansa instead of ans.
The first step in finding an (abstract) canonical model IK of a KB K is to show that it is actually
a model, i.e., that K is consistent. However, it is not enough to show that IK |=a K, since this
ignores the satisfiability of the constraint sets in IK.

17

Definition 5.3 (Solution). Let I = (∆I , ·I , (Γe)e∈∆I) be an abstract interpretation. A
solution f of I is a variable assignment for Var(I) that satisfies all constraint sets Γe, e ∈ ∆I .
Given a solution f of I, the instance f(I) of I defined by f is the ordinary interpretation
obtained from I by replacing all variables according to f and discarding the constraint sets.

For the rest of this paper, let D be a cr-admissible concrete domain and K = 〈A, T 〉 be a KB
formulated in DL-Lite(HF)

core (D). The goal of this section is to find an abstract canonical model IK
of K, which should satisfy the following properties:

• IK characterizes the consistency of K in the sense that K is consistent iff IK |=a K and IK
has a solution (see Lemma 5.8). Although an arbitrary solution f of IK need not satisfy
f(IK) |= K, we will construct a canonical solution fK for which this is the case.

• If K is consistent, then IK is a canonical model in the sense that ansa(φ, IK) = cert(φ,K)
holds for all safe CQs φ formulated over the signature of K (see Lemma 5.9). Although
we could also show that the canonical instance fK(IK) is a canonical model in the usual
sense, it is much easier to prove our correctness results (Lemmas 5.9 and 6.4) by staying
at the level of abstract interpretations.

5.2 The Abstract Canonical Model

We construct the abstract canonical model IK of K as the limit of a sequence of abstract
interpretations I(`)

K =
(
∆I

(`)
K , ·I

(`)
K ,
(
Γ(`)
e

)
e∈∆I

(`)
K

)
, ` ≥ 0. The initial interpretation I(0)

K is based
on the assertions in A:

• ∆I
(0)
K := NI(K),

• aI
(0)
K := a and Γ(0)

a := ∅ for all a ∈ NI(K), and

• XI
(0)
K := {e | X(e) ∈ A} for all X ∈ NC ∪ NR ∪ NA.

For ` ≥ 0, I(`+1)
K is obtained from I(`)

K by applying one of the following completion rules to an

inclusion X1 v X2 ∈ T and an element e ∈ XI
(`)
K

1 \XI
(`)
K

2 :

(CR1) If X2 ∈ NC ∪ NR ∪ NA, then X
I(`+1)
K

2 := X
I(`)
K

2 ∪ {e}.

(CR2) If X2 = ∃P with P ∈ NR, we set ∆I
(`+1)
K := ∆I

(`)
K ∪{eP } and P I

(`+1)
K := P I

(`)
K ∪{(e, eP)},

where eP is a fresh element.

(CR3) If X2 = ∃P− with P ∈ NR, set ∆I
(`+1)
K := ∆I

(`)
K ∪{eP−} and P I

(`+1)
K := P I

(`)
K ∪{(eP− , e)},

where eP− is a fresh element.

(CR4) If X2 = ∃U1, . . . , Um.Π, then for each i, 1 ≤ i ≤ m, we set UI
(`+1)
K

i := U
I(`)
K

i ∪ {(e, vi)},
where vi is a fresh element of NCV, and Γ(`+1)

e := Γ(`)
e ∪ {Π(v1, . . . , vm)}.

(CR5) If X2 = P− with P ∈ NR and e = (e1, e2), then we set P I
(`+1)
K := P I

(`)
K ∪ {(e2, e1)}.

The interpretation of all other symbols under I(`+1)
K is the same as under I(`)

K , and all other
sets Γ(`+1)

e are defined to be Γ(`)
e .

For attribute range restrictions, we need the following additional completion rule, which is
similar to (CR4), but only applies if the attribute values already exist:

18

(CR6) Let B v ∀U1, . . . , Um.Π ∈ T and e ∈ BI
(`)
K . If there are vi with (e, vi) ∈ U

I(`)
K

i , 1 ≤ i ≤ m,
and Γ(`)

e does not imply Π(v1, . . . , vm), then set Γ(`+1)
e := Γ(`)

e ∪ {Π(v1, . . . , vm)}.

The (abstract) canonical model IK =
(
∆IK , ·IK ,

(
Γe
)
e∈∆IK

)
is defined as the limit of this

inductive procedure, i.e., it is obtained by applying the completion rules starting with I(0)
K in a

fair manner (meaning that each applicable completion rule should be applied at some point).
This is possible since the the set of all symbols relevant for this construction (concept names,
predicates, etc.) is finite. Note that different domain elements do not share concrete domain
variables (neither in the interpretations of attributes nor in the sets Γe).
As usual, the abstract canonical model can be embedded into every model of K in the following
sense.
Lemma 5.4. Let J = (∆J , ·J) be a model of K. Then there exist a function fo : ∆IK → ∆J
and a solution fv of IK such that, for all A ∈ NC, P ∈ NR, U ∈ NA, a ∈ NI(K), e, e′ ∈ ∆IK , and
all object terms v, we have

(E1) fo(a) = aJ ;

(E2) e ∈ AIK implies fo(e) ∈ AJ ;

(E3) (e, e′) ∈ P IK implies (fo(e), fo(e′)) ∈ PJ ; and

(E4) (e, v) ∈ UIK implies (fo(e), fv(v)) ∈ UJ .

Proof. We construct fo and fv by induction on the construction of IK. We start by setting
fo(a) := aJ for all a ∈ NI(K) and keeping fv undefined everywhere. The conditions (E1)–(E4)
are satisfied for the initial interpretation I(0)

K and the sets Γ(0)
a = ∅ since J is a model of A.

Assume now that I(`)
K , fo, and fv have already been partially constructed such that (E1)–(E4) are

satisfied and fv solves all constraint sets Γ(`)
e . We consider the next application of a completion

rule to I(`)
K . Assume that the rule application was triggered by an inclusion X1 v X2 ∈ T

and an element e ∈ XI
(`)
K

1 \XI
(`)
K

2 . By the induction hypothesis, we have that the image of e
under fo and fv belongs to XJ1 ; we show this only for the case that X1 = ∃U1, . . . , Um.Π, and
hence e is an element of ∆I

(`)
K (the other cases can be handled by similar arguments). In that

case, we know that there are terms vi with (e, vi) ∈ U
I(`)
K

i , 1 ≤ i ≤ m, such that Γ(`)
e implies

Π(v1, . . . , vm). By the induction hypothesis, we know that (fo(e), fv(vi)) ∈ UJi and that fv

solves all atoms in Γ(`)
e . By the above implication, it also solves Π(v1, . . . , vm), and hence fo(e)

satisfies ∃U1, . . . , Um.Π in J .
We now make a case distinction on the type of rule that was applied.

(CR1) Consider the case where X2 ∈ NC, and thus X1 is a basic concept. Since fo(e) ∈ XJ1 and
J |= T , we have fo(e) ∈ XJ2 . This means that adding e to XI

(`)
K

2 does not violate (E2).
The cases X2 ∈ NR and X2 ∈ NA can be treated similarly.

(CR2) Since X1 must be a basic concept, we again know that fo(e) ∈ XJ1 ⊆ XJ2 = (∃P)J .
Hence, there must exist an element e′ ∈ ∆J such that (fo(e), e′) ∈ PJ . We can thus
define fo(eP) := e′ for the fresh element eP introduced in the rule, in order to satisfy (E3).

(CR3) This rule can be treated similarly.

(CR4) We again have fo(e) ∈ XJ1 ⊆ XJ2 = (∃U1, . . . , Um.Π)J . This implies that there are di
with (fo(e), di) ∈ UJi , 1 ≤ i ≤ m, such that (d1, . . . , dm) ∈ ΠD. We define fv(vi) := di
for all the fresh variables vi introduced by the completion rule, and hence (E4) remains
satisfied and fv also solves the new atom Π(v1, . . . , vm) in Γ(`+1)

e .

19

(CR5) We have (fo(e1), fo(e2)) ∈ XJ1 ⊆ XJ2 = (P−)J , where e = (e1, e2). This implies
(fo(e2), fo(e1)) ∈ PJ , and thus (e2, e1) can be added to P I

(`)
K without violating (E3).

(CR6) If this rule was applied to an attribute range constraint B v ∀U1, . . . , Um.Π ∈ T ,
e ∈ ∆I

(`)
K , and terms v1, . . . , vm, then we know as above that fo(e) ∈ BJ . By the

induction hypothesis, we also have (fo(e), fv(vi)) ∈ UJi , 1 ≤ i ≤ m. Since J |= T ,
we obtain (fv(v1), . . . , fv(vm)) ∈ ΠD. Hence, the new atom Π(v1, . . . , vm) is satisfied
by fv.

5.3 ABox Completion

For our combined rewriting, we also consider a variant of the above construction where the
completion rules are only applied to the individual names NI(K) occurring in the input ABox.
More precisely, the variable e in the definition of (CR1)–(CR6) must either be an element of
NI(K), or be of the form (a, e′) or (e′, a) with a ∈ NI(K). In this way, we first obtain the ABox
completion I∗A =

(
∆I∗A , ·I∗A ,

(
Γ∗e)e∈∆I

∗
A

)
, which may contain fresh role successors for individual

names, but they are only used as placeholders and are not further expanded. Most importantly,
the interpretation of all basic concepts on NI(K) under I∗A coincides with the one under IK.

Lemma 5.5. For every basic concept B and a ∈ NI(K), we have a ∈ BI∗A iff a ∈ BIK .

Proof. Since we block some of the applications of completion rules, I∗A is a subinterpretation
of IK. Hence, it suffices to show that a ∈ BIK implies a ∈ BI∗A . Assume that this does not hold,
and let ` ≥ 0 be the minimal index for which there exist a basic concept B and a ∈ NI(K) with
a ∈ BI

(`)
K , but not a ∈ BI∗A . Thus, I(`−1)

K agrees with I∗A on the interpretation of basic concepts
at named individuals, and the application of the completion rule used to obtain I(`)

K from I(`−1)
K

is disallowed in the construction of I∗A. We consider the type of this completion rule.

(CR1) Consider a concept inclusion B2 v A ∈ T , where A ∈ NC. This inclusion must have been
applied directly to a since the interpretation of concept names at different individuals
would not affect the interpretation of basic concepts at a. Moreover, we must have
A = B since no other basic concept can be affected by this rule. Since a ∈ BI

(`−1)
K

2 , we
also have a ∈ BI

∗
A

2 . Hence, the completion rule is also applicable in the construction
in I∗A, which means that a ∈ BI∗A , contradicting the assumption.
In the case that R v S ∈ T was applied to a pair (e, e′), we know that B = ∃S and
e = a, or B = ∃S− and e′ = a. Hence, we know that a ∈ (∃R)I∗A or a ∈ (∃R−)I∗A ,
respectively. This means that the completion rule was also applicable in the construction
of I∗A, and we obtain a ∈ BI∗A in either case, again yielding a contradiction.
The case of attribute names can be handled in the same way.

(CR2) For an inclusion B2 v ∃P ∈ T , we again know that it must have been applied directly
to a since the rule introduces a fresh domain element. Hence, we can apply the same
arguments as above to obtain a contradiction.

(CR3) This case can be handled by similar arguments.

(CR4) For an inclusion B2 v ∃U1, . . . , Um.Π, we again know that the rule must have been
applied directly to a since it affects only the attributes and constraints at a single
domain element. Moreover, we have a ∈ BI

∗
A

2 , i.e., the rule is also applicable in the
construction of I∗A, and B must be of the form ∃U ′1, . . . , U ′k.Π′ such that an atom of the
form Π′(v′1, . . . , v′k) is implied by Γ(`)

a . However, for each term v in Γ(`−1)
a , there is an

attribute name U such that (a, v) ∈ UI
(`−1)
K , and we know that Γ(∗)

a must also contain

20

a U -filler v∗ for a since otherwise I∗A and I(`−1)
K would differ in the interpretation of a

basic concept of the form ∃U.>D at a. Furthermore, for each atom in Γ(`−1)
a , the atom

obtained by replacing each v with v∗ must be implied by Γ(∗)
a since otherwise we can

similarly find an attribute restriction on which I(`−1)
K and I∗A disagree. Since I∗A also

contains (or implies) an atom of the form Π(v1, . . . , vm), we know that Γ(∗)
a implies Γ(`)

a

(modulo a substitution), and hence B = ∃U ′1, . . . , U ′k.Π′ is satisfied by a in I∗A, which is
a contradiction.

(CR5) This rule can be handled similarly to (CR1).

(CR6) This rule can also only affect basic concepts of the form B = ∃U ′1, . . . , U ′k.Π′, and can
be handled by the same arguments as for (CR4).

Since I∗A is a subinterpretation of IK, the abstract canonical model can equivalently be con-
structed starting from I∗A instead of I(0)

K , and we will sometimes assume that it was actually
constructed in this alternative way. This representation separates the influence of the ABox
from the remainder of the canonical model, which is helpful for deriving our combined rewriting
in Section 6. Via instantiation with the canonical solution described in the next section, the
ABox completion I∗A will be used to obtain a finite interpretation I(K) that can be used to
evaluate the rewritten query (cf. Definition 4.2).

5.4 A Canonical Solution

To construct a canonical solution fK of IK, we first need to identify critical inferences that
should be preserved by this variable assignment. For example, consider the case that IK contains
two attribute fillers of e, say (e, u) ∈ UIK and (e, v) ∈ V IK , and T contains the constraint
disj(∃U, V.=, ∃U, V.=), stating that U - and V -values should never be equal. Clearly, although
IK may satisfy this constraint, i.e., Γe does not imply =(u, v), this does not have to be the case
in all solutions of IK, unless the values of u and v are forced to be different by some constraints
in Γe. However, since the canonical instance fK(IK) should satisfy T whenever possible, in
the construction of fK we have to make sure that certain atoms like =(u, v) are not satisfied
unnecessarily, i.e., unless they are implied by the constraints.
To identify the set of all these atoms, we first build a set R of relevant concrete domain
predicates. It will contain all predicates occurring in T , e.g., = in the above example, and
additional predicates of the form =d that may become relevant for the canonical solution. For
an object X (a knowledge base or a constraint set), we first define the set RX of all relevant
concrete domain predicates in X as

RX := {Π | Π occurs in X} ∪ {=d | d ∈ ∆D(X)}.

In addition to the predicates in RK, we also have to consider constants that can be implied by
the constraint sets Γe, which are combinations of atoms using predicates from RK. Due to the
completion rules, the maximal number of terms in such constraint sets Γe is bounded by the
number of constants in ∆D(K) and the number of occurrences of attribute names in attribute
restrictions on the right-hand side of inclusions in T . More precisely, we consider the maximal
number

nT :=
∑

Bv∃U1,...,Um.Π∈T
m

of variables that can occur in such a constraint set, and derive the following set of all possible
constraint sets:

ΓX := {Γ | Γ is satisfiable, |Var(Γ)| ≤ nT , RΓ ⊆ RX , ∆D(Γ) ⊆ ∆D(X)}.

21

If X is finite and we consider ΓX modulo the renaming of variables, then there can only be
finitely many such combinations Γ. By construction of IK, each constraint set Γe of the abstract
canonical model of a consistent K is an element of ΓK since it is satisfiable by Lemma 5.4.
Furthermore, Γe belongs to ΓT whenever e /∈ NI.
By the above observations, also the set

RX ,1 := {=d | =d(v) is implied by Γ ∈ ΓX }

is finite since each constraint set can imply at most one atom =d(v) for each variable v. We
further consider the finitely many predicates in

RX ,2 := {=d | =d(v) is implied by Γ ∈ ΓX [RX ,1]},

where ΓX [RX ,1] is defined as ΓX above, but additionally allows to use the predicates in RX ,1.
Hence, it holds that RX ,1 ⊆ RX ,2.
Note that RX ,2 computable since D is polynomial and constructive: given a (connected subset
of) Γ ∈ ΓX [RX ,1], we can compute a solution f of Γ, and then check whether Γ implies one of
the atoms =f(v)(v). Finally, we define R := RK ∪RK,2 ∪ {=}. The predicates in this set are
sufficient to find the canonical solution we are looking for.
In the following, we assume that ∆IK = N, and hence we have a natural enumeration
Γ1,Γ2, . . . of the constraint sets that we want to solve. We iteratively build a partial mapping
f

(j)
K : Var(IK)→ ∆D, j ≥ 0, which specifies how to replace the variables in Γ1, . . . ,Γj by actual

values. Initially, f (0)
K is undefined everywhere. We now assume that we have already constructed

a partial mapping f (j)
K , j ≥ 0, and try to find a valuation for the variables in the next constraint

set Γj+1. For this purpose, we construct the following sets of positive and negative constraints,
respectively:

Posj+1 := Γj+1 ∪
{

=d(v) | v ∈ NCV, f
(j)
K (v) = d

}
,

Negj+1 :=
{

Π(v1, . . . , vm) | Π ∈ R, v1, . . . , vm ∈ terms
(
Γj+1

)
∪∆D(K) ∪ f (j)

K (NCV)
}
.

Intuitively, the solution f (j+1)
K we are looking for should satisfy Γj+1 and agree with f (j)

K on the
variables of the previous constraint sets, but it should not satisfy any atoms formulated over R
and the relevant terms from IK.
Now we can try to solve the positive constraints while respecting the negative constraints as far
as possible. We construct the restricted set

Neg−j+1 := {Π(v1, . . . , vm) ∈ Negj+1 | Posj+1 does not imply Π(v1, . . . , vm)}

of all negative constraint atoms that are not already implied by the positive constraints.
Both Posj+1 and Neg−j+1 are finite since Γj+1 is finite and only finitely many values of f (j)

K have
already been defined. We now consider the set

solj+1 := sol
(∧

Posj+1
)
\ sol

(∨
Neg−j+1

)
.

Due to (infinitediff), there are only three options for the cardinality of this set of solutions:

• If |solj+1| = 1, then we have no choice but to replace the variables of Γj+1 according to the
single variable assignment f ∈ solj+1, i.e., we set f (j+1)

K (v) := f(v) for all v ∈ Var(Posj+1).
Note that any variable v that already had a value under f (j)

K is restricted by the atom =d(v)
in Posj+1 with d = f

(j)
K (v), and hence we have f (j+1)

K (v) = f
(j)
K (v).

• If solj+1 is empty, then Posj+1 must already be unsatisfiable, and hence K is inconsistent.
In this case, we choose arbitrary concrete domain elements to replace the variables.

22

• Otherwise, solj+1 must contain infinitely many elements. We choose one such variable
assignment and obtain f (j+1)

K as in the first case.

The variable assignment resulting from this infinite construction is denoted by fK. This
construction ensures that all necessary concrete domain restrictions are satisfied and that no
unnecessary ones from R are satisfied. For instance, no value assigned by f (j)

K will be reused
by f (j+1)

K , unless this is enforced by the atoms in Γj+1.
We first show that this construction is not too restrictive, i.e., if IK has any solution at all, then
fK is also a valid solution of IK.

Lemma 5.6. If there is a solution of IK, then all sets solj considered for the construction of fK
are non-empty, and hence fK is also a solution of IK.

Proof. Let f be a solution of IK. We show the claim by induction on the construction of f (j)
K ,

j ≥ 0. Assume that it holds for some j ≥ 0, and consider f (j+1)
K . Since different constraint

sets do not share variables and f solves Γj+1, we can construct a solution f ′ of Posj+1 by
setting f ′(v) := f

(j)
K (v) for all variables v for which f (j)

K (v) is defined, and f ′(v) := f(v) for all
v ∈ Var(Γj+1). Since we excluded in Neg−j+1 all atoms from Negj+1 that are implied by Posj+1,
by (infinitediff) we know that solj+1 cannot be empty: if there is only the one solution f ′, then
it cannot be contained in solV

(∨
Neg−j+1

)
, and if there is more than one solution of Posj+1,

there must even be infinitely many that are not also solutions of
∨

Neg−j+1.

We need another technical result that allows us to replace Posj by the constraint sets Γ1, . . . ,Γj
in some circumstances. This result crucially depends on the functionality of D.

Lemma 5.7. Assume that there is a solution of IK and let v1, . . . , vm ∈ terms(IK) and Π ∈ RT .
If Π(v1, . . . , vm) is satisfied by f (j)

K , j ≥ 0, then this atom is implied by Γ1 ∪ · · · ∪ Γj.

Proof. From the assumptions it immediately follows that the atom is contained in Negj , and
thus implied by Posj . We now show the claim by induction on j. If j = 0, we know that
v1, . . . , vm must be constants occurring in A, and hence the claim is trivial. Let now j > 0. If
the atom does not contain any variables from Γj , then it is also contained in Negj−1, and the
claim follows by the induction hypothesis. If this atom contains only variables from Γj , then it
is also implied by Γj , which again yields the claim.
It remains to consider the case that Π(v1, . . . , vm) contains both variables from Γj as well
as variables from some constraint sets that were considered earlier in the construction. Let
di := f

(j)
K (vi), 1 ≤ i ≤ m, and vj1 , . . . , vjn be the variables among v1, . . . , vm that do not occur

in Γj . Then Γj ∧
∧n
k=1 =djk

(vjk
) implies Π(v1, . . . , vm) ∧

∧n
k=1 =djk

(vjk
). By the functionality

of D and Lemma 5.6, we know that the former conjunction has exactly one solution for the
variables v1, . . . , vm, and hence it implies at least one atom of the form =d`

(v`), 1 ≤ ` ≤ m,
where v` ∈ Var(Γj). But this atom must already be implied by Γj since this set does not share
variables with the other constraint sets. Since Γj ∈ ΓK, we obtain that =d`

∈ RK,1.
Consider now the conjunction Π(v1, . . . , vm) ∧=d`

(v`). Functionality of D implies that the only
solution of this formula maps each vjk

to djk
, 1 ≤ k ≤ n, and hence we have =djk

∈ RK,2 for all
k, 1 ≤ k ≤ n. But then each atom =djk

(vjk
), 1 ≤ k ≤ n, must be implied by some Γj′ , j′ < j,

that contains the variable vjk
, due to the construction of Neg−j′ . This shows that Γ1 ∪ · · · ∪ Γj

implies Π(v1, . . . , vm) ∧
∧n
k=1 =djk

(vjk
), which in turn implies Π(v1, . . . , vm), as required.

5.5 The Abstract Canonical Model is Canonical

We now show the claimed properties of IK, starting with a characterization of consistency of K.

23

Lemma 5.8. K is consistent iff IK |=a K and IK has a solution.

Proof. For the “only if”-direction, let J be a model of K, and fv be the corresponding solution
of IK that exists by Lemma 5.4. IK clearly satisfies the ABox of K due to the construction
of I(0)

K . Furthermore, all inclusions and attribute range constraints are satisfied due to the
completion rules.

Assume now that IK violates a functionality constraint funct(R) ∈ T . Then, either (i) I(0)
K

already violates the constraint, or (ii) this violation is the direct result of an application of a
completion rule to some I(`)

K , ` ≥ 0. In case (i), there must be a1, a2, a3 ∈ NI such that a2 6= a3

and (a1, a2), (a1, a3) ∈ RI
(0)
K ⊆ RIK . By Lemma 5.4 and the UNA, J must violate funct(R),

which contradicts our assumption that it is a model of K. Case (ii) cannot be caused by (CR1)
or (CR5) since these rules cannot modify the interpretation of a functional role (recall that
such roles are not allowed to occur on the right-hand side of an inclusion). Furthermore (CR4)
and (CR6) do not affect the interpretation of roles. But for any of the remaining two rules this
would mean that the element e that triggered the rule was already present in (∃R)I

(`)
K before

the application of the rule, which contradicts the fact that these completion rules only add new
elements if the existential restriction was not already satisfied.
Suppose now that IK violates a concept (or role) disjointness constraint disj(X1, X2) in T , i.e.,
there is an element of ∆IK (or ∆IK ×∆IK) that is contained in XIK1 ∩XIK2 . By Lemma 5.4, J
must violate the constraint, which again yields a contradiction. Finally, consider an attribute
disjointness constraint disj(U1, U2) ∈ T and assume that (e, v1) ∈ U

IK
1 , (e, v2) ∈ U

IK
2 , and

=(v1, v2) is implied by Γe. Since fv satisfies Γe, the pair (e, d) with d := fv(v1) = fv(v2) must
belong to the interpretation of both U1 and U2 under J , which contradicts the fact that J
satisfies the disjointness constraint.
For the “if”-direction, assume that IK has a solution and IK |=a K. By Lemma 5.6, fK is a
solution of IK, and we now show that fK(IK) is a model of K. It is easy to see fK(IK) satisfies
the ABox A due to the construction of I(0)

K , which does not contain any variables and is a
subinterpretation of IK. Furthermore, inclusions and disjointness constraints over roles and
functionality constraints are obviously not affected by the solution.
We now show that we have BIK = BfK(IK) for all basic concepts B occurring in T . The claim
for concept names and existential restrictions is immediate from the fact that they do not
involve the concrete domain. Consider now an attribute restriction ∃U1, . . . , Um.Π, e ∈ ∆IK ,
and (e, di) ∈ U

fK(IK)
i , 1 ≤ i ≤ m, such that (d1, . . . , dm) ∈ ΠD. By construction, there are terms

vi with (e, vi) ∈ U
IK
i and fK(vi) = di, 1 ≤ i ≤ m. Since Π ∈ RK and fK satisfies Π(v1, . . . , vm),

this atom must be implied by the set Pose. Since v1, . . . , vm only contains variables from Γe,
the atom Π(v1, . . . , vm) is already implied by Γe. This shows that e ∈ (∃U1, . . . , Um.Π)IK .
Conversely, assume that this holds due to some terms v1, . . . , vm occurring in Γe. Then we
have (fK(v1), . . . , fK(vm)) ∈ ΠD since fK satisfies Γe, which proves the other direction of the
inclusion.
Since the behavior of the basic concepts is not changed by the solution fK, we can immediately
infer that all inclusions and disjointness constraints on concepts remain satisfied in fK(IK).
Consider now an attribute inclusion U1 v U2 ∈ T . Since every pair (e, v) ∈ UIK1 is contained in
U
IK
2 , we obtain the same relation after instantiation. For an attribute disjointness constraint

disj(U1, U2) ∈ T , assume that there is a pair (e, d) ∈ U
fK(IK)
1 ∩ UfK(IK)

2 . By construction,
there must be terms v1, v2 such that (e, v1) ∈ UIK1 , (e, v2) ∈ UIK2 , and fK(v1) = fK(v2) = d.
Since the atom =(v1, v2) is contained in Nege, it must be implied by Pose, and hence by Γe.
This contradicts our assumption that IK satisfies T . Finally, for an attribute range constraint
B v ∀U1, . . . , Um.Π ∈ T , consider any e ∈ BfK(IK) = BIK and (e, di) ∈ U

fK(IK)
i , 1 ≤ i ≤ m,

which means that there are terms vi with (e, vi) ∈ U
IK
i and fK(vi) = di, 1 ≤ i ≤ m. Since

24

IK satisfies T , we know that Γe implies Π(v1, . . . , vm). Since fK satisfies this set, we obtain
(d1, . . . , dm) ∈ ΠD, as required.

It remains to show that IK yields the same answers as K when evaluating safe CQs.

Lemma 5.9. Let φ be a safe CQ over the signature of K. If K is consistent, then we have
cert(φ,K) = ansa(φ, IK).

Proof. By the definition of certain answers, it suffices to verify that, for every safe and Boolean
CQ φ, it holds that K |= φ iff IK |=a φ.
For the “if”-direction, let π : terms(φ)→ ∆IK ∪∆D ∪Var(IK) be a homomorphism of φ into IK,
and J = (∆J , ·J) be a model of K. By Lemma 5.4, there are two functions fo : ∆IK → ∆J and
fv : Var(IK)→ ∆D that embed IK into J . We now define the function π′ : terms(φ)→ ∆J ∪∆D
by setting π′(x) := fo(π(x)) for all object terms x, and π′(v) := fv(π(v)) for all value terms v.
It is straightforward to check that all object variables are mapped into ∆J , all concrete domain
variables are mapped into ∆D, each a ∈ NI(φ) is mapped to aJ , and all elements of ∆D are
mapped to themselves.
We now verify that π′ is indeed a homomorphism of φ into J . For any concept atom A(x) ∈ φ,
we have π(x) ∈ AIK by assumption, and hence π′(x) ∈ AJ by (E2). Similar arguments
apply for role atoms, attribute atoms, and object equality atoms. Finally, consider a value
comparison atom Π(v1, . . . , vm) ∈ φ, where Π is an m-ary predicate of D. Since a finite union
of constraint sets Γe implies Π(π(v1), . . . , π(vm)), and fv solves all these sets, we know that
(π′(v1), . . . , π′(vm)) = (fv(π(v1)), . . . , fv(π(vm))) ∈ ΠD, as required.
For the “only if”-direction, assume that K is consistent and K |= φ. By the proof of Lemma 5.8,
we know that fK is a solution of IK and fK(IK) |= K, and hence fK(IK) |= φ. Let π be a
homomorphism of φ into fK(IK). We define a homomorphism π′ of φ into the abstract model IK
by setting π′(x) := π(x) for all object terms and concrete domain values in φ. Since φ is safe,
each of the remaining terms v ∈ NCV(φ) must satisfy case a) or b) of Definition 4.3. In case a), v
occurs in at least one attribute atom U(x, v) in φ, and thus there exists a term v′ ∈ terms

(
Γπ(x)

)
such that (π(x), v′) ∈ UIK and π(v) = fK(v′), and we define π′(v) := v′. Otherwise, case b)
applies, which means that an atom of the form =d(v) occurs in φ. Since π solves this atom, we
must have π(v) = d ∈ ∆D, and we set π′(v) := d.
This mapping obviously satisfies all concept, role, and object equality atoms in φ. For an
attribute atom U(x, v) that is satisfied by π in fK(IK), consider first the case that v is a
constant. Then we know that (π(x), v) ∈ UfK(IK). If this tuple also occurs in UIK , then we are
done. Otherwise, there must be a variable w such that (π(x), w) ∈ UIK and fK(w) = v. Since
=v ∈ RK, by Lemma 5.7 the atom =(v, w) is implied by IK. Hence, the atom U(x, v) is also
satisfied under π′ in the abstract interpretation IK. If v is a (nondistinguished) variable, then
we know that case a) from above applies due to the atom U(x, v) in φ. Let U ′(x′, v) be the
attribute atom that was chosen to define π′(v), i.e., we have (π(x′), w′) ∈ U ′IK , π(v) = fK(w′),
and π′(v) = w′. Similarly, we know that there exists a term w such that (π(x), w) ∈ UIK and
π(v) = fK(w). This means that fK(w) = fK(w′), and hence by Lemma 5.7 the atom =(w,w′)
is implied by IK. Since π′(v) = w′, the mapping π′ satisfies the attribute atom U(x, v).
Finally, consider any Π(v1, . . . , vm) ∈ φ. For every variable vi, 1 ≤ i ≤ m, to which case a)
applies, there is an attribute atom Ui(xi, vi) and a term v′i ∈ terms

(
Γπ′(xi)

)
as chosen above.

If case b) applies or vi is a constant, then π(vi) = π′(vi) is a constant, and we set v′i := π′(vi).
We thus have (fK(v′1), . . . , fK(v′m)) = (π(v1), . . . , π(vm)) ∈ ΠD and π′(vi) = v′i, 1 ≤ i ≤ m.
By Lemma 5.7, we obtain that Π(v′1, . . . , v′m) is implied by IK, which shows that π′ satisfies
Π(v1, . . . , vm).

25

6 Rewriting CQs with Built-in Predicates

To obtain a combined rewriting, we extend the approach from [10, 34]. The idea is to construct
the rewriting ΦT of the initial CQ φ w.r.t. the TBox T by iterative application of several
operators (called reduce, split, inferT , and inferD). Variants of the two basic operators reduce
and inferT have first been used in [10, 34]. The former tries to unify redundant atoms in CQs,
while the latter applies the TBox inclusions as rewrite rules. Intuitively, A v B ∈ T means that
any certain answer to A(x) is also a certain answer to B(x), and hence A(x) should be included
in the rewriting of B(x). We need to extend inferT to deal also with attribute range restrictions,
which behave similarly to inclusions. A special case of this extension for unary concrete domains
can be found in [38].
To deal with concrete domain predicates of higher arity, we introduce two new operators. The
operator split allows to “split” two occurrences of a concrete domain variable into separate
variables, as long as they are both restricted to the same value by a predicate of the form =d.
The operator inferD behaves like inferT , but takes care of implications in the concrete domain
instead of the abstract domain.

6.1 The Basic Operators

Formally, ΦT is the result of iteratively applying

step(Φ) := Φ ∪ reduce(Φ) ∪ split(Φ) ∪ inferT (Φ) ∪ inferD(Φ)

to the initial set {φ}, until we reach a fixed-point. In such sets of CQs, we regard CQs as equal
if they are equivalent modulo a renaming of the nondistinguished variables. We first define the
two operators reduce and split.
A substitution w.r.t. an CQ φ is a function σ : NV(φ) → terms(φ) with the property that all
variables are mapped to terms of the corresponding type, e.g., elements of NOV are mapped to
NI ∪ NOV. Such a substitution allows us to unify any variable of φ with any (compatible) term
occurring in φ. We denote by subst(φ) the set of all such substitutions, and by σ(φ) the CQ
that is obtained from φ by replacing all variables according to σ and subsequently removing
duplicate atoms.3 We now define

reduce(Φ) := {σ(φ) | φ ∈ Φ, σ ∈ subst(φ)}.

Analogously, we define the operator split, which can separate multiple occurrences of a concrete
domain variable, as long as this variable is restricted to a constant value (this is illustrated
below by (R6) in Example 6.1). More formally, given a set Φ of CQs, the set split(Φ) contains
all CQs that can be obtained from an element φ ∈ Φ that contains an atom of the form =d(v)
by replacing one other occurrence of v with a fresh nondistinguished variable v′ and adding the
atom =d(v′). Observe that without condition b) in Definition 4.3, the resulting CQ would not
necessarily be safe, although it is clearly equivalent to the original CQ.
Before we define the infer operators, we want to illustrate them on an example.

Example 6.1. Consider again DQ and K = 〈A, T 〉 from Example 3.1, and the CQ

φ : (x)← Alert(x)

that asks for all patients with alerts. The only certain answer to φ w.r.t. K is p1. To obtain
this answer without referring to the TBox T , we have to apply several rewriting steps. In the
following, at each step we discuss only one CQ from ΦT .

3The substitution also has to be applied to the tuple of answer variables, and hence the resulting tuple may
contain constants and multiple occurrences of the same variable, e.g., (x, x, a)← A(x). This does not affect the
semantics if we use the convention that constants are not affected by applying a potential answer.

26

(R1) The inclusion ∃maxHR, hr.+5 v Alert tells us that every individual x that satisfies the
left-hand side concept also satisfies Alert(x), and hence is a certain answer to φ. Thus, the
operator inferT applies this inclusion to φ to obtain the following CQ, which simulates the
concept ∃maxHR, hr.+5 with the help of the fresh nondistinguished variables v and w:

(x)← maxHR(x, v) ∧ hr(x,w) ∧+5(v, w).

This corresponds to the usual backward chaining rule for DL-Lite inclusions, but in
contrast to previous work now also refers to a binary concrete domain predicate.

(R2) In DQ, it holds that =160(v) ∧ =155(w) implies +5(v, w). Hence, inferD can apply this
implication in the same way as inferT above, replacing +5(v, w) by the conjunction
=160(v) ∧=155(w):

(x)← maxHR(x, v) ∧=160(v) ∧ hr(x,w) ∧=155(w).

Note that this step introduces the new predicate =155, which is not present in φ or T . In
order to avoid an infinite rewriting, we obviously have to restrict the kinds of implications
that can be applied in this way.

(R3) Since the maximum heart rate of every 60-year-old is 160, in the context of this CQ
the atom =160(v) is implied by age(x, u) ∧ =60(u), and hence can be replaced by this
conjunction. This is similar to an inclusion, but applying inferT to the attribute range
constraint ∃age.=60 v ∀maxHR.=160 in this way does not remove the attribute atom
maxHR(x, v). Hence, we obtain

(x)← maxHR(x, v) ∧ age(x, u) ∧=60(u) ∧ hr(x,w) ∧=155(w).

(R4) Since v does not occur anywhere else, the atom maxHR(x, v) can now be removed by
applying inferT to the inclusion Patient v ∃maxHR.>DQ (we assume that the atom >DQ(v)
is implicitly satisfied for all concrete domain variables). This yields

(x)← Patient(x) ∧ age(x, u) ∧=60(u) ∧ hr(x,w) ∧=155(w).

This query can now be evaluated directly over A to obtain the expected certain answer p1 via
the homomorphism mapping u to 60 and w to 155.
To illustrate the operator split, consider now the different CQ

(x)← maxHR(x, v) ∧ hr(x, v)

and the modified ABox A′, where hr(p1, 155) is replaced by hr(p1, 160). Again, the goal is to
obtain the certain answer p1 by rewriting the query. However, one cannot directly apply the
inclusion Patient v ∃maxHR.>DQ to eliminate the first atom since the variable v also occurs in
the second atom, i.e., we would lose the information that the maximum temperature is the same
as the measured temperature. Instead, we perform the following rewriting steps:

(R5) We make the query more restrictive by introducing the atom =160(v) via inferD. This is
correct since this atom implies >DQ(v), which is implicitly satisfied. We obtain

(x)← maxHR(x, v) ∧ hr(x, v) ∧=160(v).

(R6) Now we can apply the operator split to v in order to separate its two occurrences as follows:

(x)← maxHR(x, v) ∧=160(v) ∧ hr(x,w) ∧=160(w).

This is correct since both variables are still bound to the same constant.

27

(R7) Now we can rewrite the first two atoms as before to get

(x)← Patient(x) ∧ age(x, u) ∧=60(u) ∧ hr(x,w) ∧=160(w),

from which we obtain the desired answer.

Based on this intuition, we can define the operator

inferT (Φ) := {σ(φ′′) | φ′ ∈ Φ, φ′ →T φ′′, σ ∈ subst(φ′′)},

where the relation φ′ →T φ′′ holds for two safe CQs φ′, φ′′ if one of the following cases applies:

• Inclusions (cf. (R1) and (R4)):
There exist an atom X2(~x) in φ′ and X1 v X2 in T , and φ′′ is obtained from φ′ by
replacing X2(~x) with X1(~x). Here, ~x denotes a vector of terms matching the type of X2,
e.g., ~x is an object term in case X2 is a basic concept.
As usual, the expression (∃R)(x) stands for an atom R(x, y), where y is a unique nondistin-
guished variable, i.e., it does not occur elsewhere in the CQ. Similarly, (∃U1, . . . , Um.Π)(x)
abbreviates the set of atoms {U1(x, v1), . . . , Um(x, vm),Π(v1, . . . , vm)}, where v1, . . . , vm
are unique nondistinguished variables. We also allow that X2(~x) comprises only a subset
of these atoms, as long as it includes at least one attribute atom.

• Attribute range constraints (cf. (R3)):
There exist Π(v1, . . . , vm) in φ′ and B v ∀U1, . . . , Um.Π in T , and φ′′ is obtained from φ′ by
replacing Π(v1, . . . , vm) with the conjunction of the atoms B(x), U1(x, v1), . . . , Um(x, vm),
where x is an object variable in φ′ that at least one vi is bound to.

As in previous rewriting algorithms, this operator does not introduce new object variables
(except if they occur only once). This is necessary to bound the size of the produced CQs.

6.2 Concrete Domain Implications

The operator inferD is defined in the same way, based on a similar relation →D on CQs. A first
naive idea would be to define φ′ →D φ′′ as follows:

• Concrete domain implications (cf. (R2) and (R5)):
There exists an atom Π(v1, . . . , vm) in φ′ that is implied by a D-conjunction ψ such that
φ′′ is obtained by replacing Π(v1, . . . , vm) with ψ, and adding new attribute atoms U(x, v)
for the fresh variables v in ψ (where must U occur in T and x must occur in φ′).

The additional attribute atoms U(x, v) are necessary to ensure safety of the resulting CQ, and
as above we make sure that they use only existing object variables. However, without a similar
bound on the number of concrete domain variables, this operation may yield CQs of unbounded
size, and hence an infinite rewriting. In fact, one could obtain an “infinite FO rewriting” in this
way.
To avoid this problem, we introduce a bound on the number of concrete domain variables that
are allowed to occur in the CQs produced by inferD. Recall from Section 5 that an element of
the abstract canonical model IK may have at most nT associated concrete domain variables.
Moreover, by Lemma 5.9 we know that we only need to consider IK when looking for certain
answers to CQs. Hence, we only need to consider nT concrete domain variables bound to each
object variable x. By a similar argument, the constraint sets in IK can only use the predicates
of RT , and hence we can restrict ourselves to those predicates in the rewriting.
We now call a CQ bounded if all its value comparison atoms are of the form

28

(B1) Π(v1, . . . , vm), where Π ∈ RT and the variables among v1, . . . , vm are bound to at most
one object variable x. In the set of all such atoms Π(v1, . . . , vm), there may occur only nT
concrete domain variables bound to the same object variable x, i.e., these atoms must
constitute an element of ΓT (recall its definition from Section 5.4). In view of split, however,
we count multiple variables that are restricted to the same constant value as if they were
only a single variable.

We now amend the definition of →D by requiring that the D-conjunction ψ introduces only
atoms of this form, bound to some object variable x that already occurs in φ′. We also ensure
that the new attribute atoms U(x, v) bind the fresh variables v only to the x chosen above, i.e.,
the one associated to the atoms that v occurs in.
Unfortunately, this is still not enough to obtain the desired rewriting. The reason is that the
initial CQ φ itself need not satisfy (B1). In particular, it may contain value comparison atoms
whose variables are bound to different object variables. However, due to the functionality of D,
such atoms can only be implied by the TBox if all of their variables already satisfy atoms of the
form =d(v) (see also the proof of Lemma 5.7). It remains to find a finite set of values d that
are relevant in these situations. It turns out that it suffices to consider such values d that are
implied by some set of atoms of the form (B1), i.e., those occurring in RT ,2. Recall that, since
D is polynomial and constructive, it is possible to construct RT ,2 (in polynomial time).
We now relax the definition of boundedness by allowing also the following kinds of value
comparison atoms:

(B2) Atoms from the original CQ φ, possibly after applying reduce or split.

(B3) Atoms of the form =d(v), where =d ∈ RT ,2.

In →D, we now allow atoms of the form (B2) to be rewritten using a conjunction of atoms
satisfying either (B1) or (B3) (possibly after applying a substitution to the resulting query).
However, atoms of the form (B3) cannot be rewritten further. For completeness, we reproduce
the full definition of φ′ →D φ′′ here:

• Concrete domain implications:

– There exists an atom Π(v1, . . . , vm) of the form (B2) or (B1) in φ′

– that is implied by a D-conjunction ψ such that
∗ for each object variable x in φ′, ψ may contain atoms of type (B1) bound to x,
possibly using fresh concrete domain variables (that will then be bound to x);

∗ if Π(v1, . . . , vm) is of the form (B2), but not of the form (B1), then ψ may
additionally contain atoms of type (B3) over the variables NCV ∩ {v1, . . . , vm};

and
– φ′′ is obtained from φ′ by replacing Π(v1, . . . , vm) with ψ, and adding new attribute

atoms U(x, v) for the fresh variables v in ψ that must be bound to x (where U must
occur in T).

Recall that we allow the CQ φ′′ to violate condition (B1), as long as it can be restored by an
immediate application of a substitution (see the definition of inferT).
Observe that unbound variables v can be assumed to occur at most twice in a bounded, safe CQ:
once in an atom =d(v) and once somewhere else. If this is not the case, we can split v into two
or more unbound variables. Moreover, we assume that unbound variables always co-occur with
at least one bound variable in a value comparison atom. If this does not hold, then consider the
conjunction of all value comparison atoms that contain only unbound variables (except those of
the form =d(v)), which by our assumption cannot occur in other atoms of the CQ. Since the

29

CQ is safe, all these variables must satisfy condition b) of Definition 4.3, i.e., they are restricted
to a constant. Hence, this conjunction can have at most one solution. Since D is cr-admissible,
we can decide whether it is satisfiable at all. If it is satisfiable, then we can safely remove all
these atoms from the CQ; otherwise, the query cannot have any answers w.r.t. a consistent KB.
We assume in the following that all CQs resulting from each rewriting step are preprocessed in
this way, i.e., either they are removed from the rewriting, or the unbound atoms are removed
(and possibly distinguished concrete domain variables replaced by the associated constants).
This concludes the description of the rewriting ΦT .

6.3 Correctness of the Rewriting

As a first step, we need to show that the rewriting does not violate our assumptions on the
safety and boundedness of the CQs.

Lemma 6.2. The initial CQ φ is bounded. Furthermore, if φ is safe, then every CQ φ′ in ΦT
is also safe and bounded.

Proof. The initial CQ is trivially bounded by condition (B2). Further note that reduce does
not affect the safety conditions and cannot lead to a violation of the boundedness conditions.
Moreover, split preserves safety by duplicating atoms of the form =d(v), and can explicitly not
affect boundedness.
For step, we explicitly restrict to bounded CQs. For safety, observe that the application of
attribute range restrictions can only remove value comparison atoms, and inclusions explicitly
introduce only safe concrete domain variables. Regarding implications in the concrete domain,
observe that all new variables are immediately bound to some object variable x that was already
present in the original CQ.

From this, we obtain the following important fact.

Lemma 6.3. The set ΦT is finite.

Proof. We first analyze the number of variables that occur in an element φ′ of ΦT . For each
object term x in φ′, the number of fresh concrete domain variables bound to x (that were
not already present in φ) is bounded by nT due to (B1). Although we do not count variables
introduced by split, this operator can at most introduce one new variable for each occurrence of
a variable in a constraint set of ΓT , the number of which is also bounded by a function of the
size of T .
Hence, it remains to consider the number of possible object variables. Note that a fresh object
variable y can only be introduced by an inclusion with an existential restrictions ∃R on the
left-hand side, which must be applied to some existing object variable x. Moreover, y can only
be used further in the rewriting by applying an inclusion with ∃R− on the right-hand side to
the atom R(x, y) introduced by the previous rule (or similarly with a subrole S of R), which
means that the variable x must be nondistinguished and not occur elsewhere in the CQ. But
then applying this inclusion will remove x. In essence, we can only replace x by y. This means
that the number of object terms in any element of ΦT can be at most 2 · |NOV(φ)|+ |NI(φ)|.
In total, the number of terms is bounded by a function in the sizes of T and φ, and hence the
number of sets of atoms over these terms using the concept, role, and attribute names of T , as
well as the concrete domain predicates from RT ∪RT ,2, is finite.

We now take one step closer to our main rewritability result, which began by constructing
the canonical model (see Lemma 5.9). We reduce answering a query over IK to answering
its rewriting over the ABox completion I∗A. Afterwards, the last step will be to construct a

30

finite interpretation from the abstract interpretation I∗A, obtaining a combined rewriting as in
Definition 4.2.
Since our rewriting directly deals with implications over D, the proof of the following lemma
holds different challenges than similar ones in [10, 38]. In particular, it is important to separate
variables that occur together in query atoms Π(v1, . . . , vm), but are bound to different elements
of the domain of the canonical model. Due to the functionality of D, such atoms can only be
implied by the TBox if each variable is mapped to a fixed value. Hence, Π(v1, . . . , vm) can be
replaced by a set of atoms of the form (B3).

Lemma 6.4. If K is consistent, then we have

ansa(φ, IK) =
⋃

φ′∈ΦT

ansa(φ′, I∗A).

Proof. For the ⊇-direction, let a be a potential answer with I∗A |=a a(φ′) for some element
φ′ ∈ ΦT . Since IK is an extension of I∗A, this implies that IK |=a a(φ′). Moreover, we know
that φ′ is the result of a finite number of applications of the operators reduce, split, and infer
to φ. Hence, it suffices to show that for each of these operations every answer tuple of the result
in IK is also an answer tuple of the original query in IK.
Consider first an application of reduce, in which a substitution was applied to an intermediate
CQ φ′′, resulting in the CQ σ(φ′′). Clearly, a homomorphism π of a(σ(φ′′)) into IK yields a
potential answer a′ and a homomorphism π′ of a′(φ′′) into IK by setting a′(x) := a(σ(x)) for
all answer variables x ∈ FVar(φ′′), π′(x) := π(σ(x)) for all x ∈ terms(a′(φ′′)) \ FVar(σ(φ′′)), and
π′(x) := a(σ(x)) for all x ∈ terms(a′(φ′′)) ∩ FVar(σ(φ′′)). Recall that individual names and
concrete domain elements are not affected by σ, and that variables must be replaced by terms
of the same type. Moreover, we obtain the same answer tuple due to our definition of a′.
Assume now that =d(v) occurs in φ′′ and we applied split to obtain φ′′′, where another occurrence
of v is replaced by a fresh nondistinguished variable v′ and a new atom =d(v′) is added. Let π
be a homomorphism of a(φ′′′) into IK. Hence, we have π(a(v)) = π(a(v′)) = d, which means
that we can merge v′ into v without changing the satisfaction of the query. This means that π
is also a homomorphism of a(φ′′) into IK.
Finally, consider the case of a CQ φ′′ that was used to obtain φ′′′ with φ′′ →T φ′′′ via the
operator inferT . We consider the cases of the definition of →T :

• Assume that there exists an inclusion X1 v X2 ∈ T such that (part of) X2(~x) ∈ φ′′

for appropriate terms ~x, was replaced by X1(~x) in order to obtain φ′′′. If an additional
substitution was applied to satisfy (B1), this can be shown correct using the same arguments
as for reduce above. Again, let π be a homomorphism of a(φ′′′) into IK. A homomorphism
π′ of a(φ′′) into IK can be constructed using the completion rules (CR1)–(CR5). We
consider here only the case of an inclusion of the form ∃U1, . . . , Um.Π v ∃U ′1, . . . , U ′k.Π′;
the other kinds of inclusions can be treated using similar, but simpler, arguments. By
assumption, φ′′ contains a subset of {U ′1(x, v′1), . . . , U ′k(x, v′k),Π′(v′1, . . . , v′k)}, where the
variables v′i do not occur in any other atoms of φ′′′. In φ′′′, these atoms were replaced by
Π(v1, . . . , vm) and Ui(x, vi), 1 ≤ i ≤ m, where all concrete domain variables are fresh.
Hence, terms(a(φ′′)) and terms(a(φ′′′)) differ only in the terms v′1, . . . , v′k and v1, . . . , vm.
Moreover, we know that (π(a(x)), wo) ∈ U

IK
i , 1 ≤ i ≤ m, and the atoms =(wi, π(vi)) and

Π(π(v1), . . . , π(vm)) are implied by the relevant constraint sets Γe. Since the constraint
sets do not share variables, we can infer that Γπ(a(x)) implies Π(w1, . . . , wm). Thus, we
obtain π(a(x)) ∈ (∃U1, . . . , Um.Π)I

(`)
K for some finite ` ≥ 0. By (CR4), there must exist

terms v′′i such that (π(a(x)), v′′i) ∈ (U ′i)IK , 1 ≤ i ≤ k, and Π′(v′′1 , . . . , v′′k) is implied
by Γπ(a(x)). Hence, by defining π′(v′i) := v′′i for those of the variables v′i, 1 ≤ i ≤ k, that
occur in ψ′′, and π′(z) := π(z) for all z ∈ terms(a(φ′′′)) \ {v1, . . . , vm}, we can satisfy the

31

atoms that were replaced in φ′′; all other atoms remain satisfied since the variables among
v′1, . . . , v

′
k do not occur in them.

• Consider B v ∀U1, . . . , Um.Π ∈ T such that Π(v1, . . . , vm) occurs in φ′′, and in φ′′′ this
atom was replaced by B(x) and Ui(x, vi), 1 ≤ i ≤ m. Let π be a homomorphism of a(φ′′′)
into IK. Hence, we have

– π(a(x)) ∈ BIK ,

– there exist terms wi, 1 ≤ i ≤ m, such that (π(a(x)), wi) ∈ U
IK
i and =(wi, π(a(vi)))

is implied by IK.

By (CR6), we obtain that IK implies Π(w1, . . . , wm), and hence Π(π(a(v1)), . . . , π(a(vm))),
which shows that π is also a homomorphism of a(φ′′) into IK.

Finally, for inferD, consider an atom Π(v1, . . . , vm) and a D-conjunction ψ using variables from
{v1, . . . , vm} and additional fresh variables, such that ψ implies Π(v1, . . . , vm), and the latter
atom was replaced in φ′′ by the atoms of ψ and additional attribute atoms to obtain φ′′′. Again,
we assume that no additional substitution was applied in this process. Let π be a homomorphism
of a(φ′′′) into IK, which means that π(a(ψ)) is implied by IK. If a variable vi, 1 ≤ i ≤ m, does
not occur in ψ, then its value is irrelevant for the implication, and moreover it must still occur
in φ′′′ since φ′′ is safe. Hence, IK implies Π(π(a(v1)), . . . , π(a(vm))), i.e., π satisfies the atom
Π(a(v1), . . . , a(vm)) (as well as all other atoms) in a(φ′′).
For the ⊆-direction, we assume that IK was constructed starting from I∗A (for ease of presentation,
we set I(0)

K := I∗A). Let now a be a potential answer such that IK |=a a(φ). We show that there
exists a φ′ ∈ ΦT with I∗A |=a a′(φ′) such that

• a(φ) and a′(φ′) yield the same answer tuple, and

• all atoms =d(v) of type (B3) in φ′ are satisfied since v is mapped (by the homomorphism
and a′) to a constant or to a term occurring in I∗A, and hence by Lemma 5.5 they are
satisfied already in I∗A.

Consider the smallest index ` ≥ 0 for which there is a φ′ ∈ ΦT , a potential answer a′ with
the above properties, and a homomorphism of a′(φ′) into I(`)

K . Such an index must exist since
IK |=a a(φ), φ ∈ ΦT , φ does not contain atoms of type (B3), and due to the fairness requirement
in the construction of IK. If ` = 0, then we have proven the claim; we now consider the case
that ` > 0 and show that it is impossible. Let φ′ ∈ ΦT and π be a homomorphism of a′(φ′)
into I(`)

K . Since ` is minimal, we know that the last completion rule applied to obtain I(`)
K from

I(`−1)
K was necessary to satisfy an atom of a′(φ′) under π. We make a case distinction on the

type of the rule that was applied.

• If (CR1) was applied, then there is an inclusion X1 v X2 ∈ T and an element e ∈ XI
(`−1)
K

1

that was added to XI
(`)
K

2 .
We consider first the case that X2 is a basic concept or a role. Since we assumed that
the rule application is necessary to satisfy a′(φ′) via π, there must be at least one atom
X2(~x) ∈ φ′ such that π(a′(~x)) = e. Hence, we can try to replace each such atom X2(~x) by
X1(~x), according to →T . If this is possible, then the resulting CQ is also an element of ΦT
and is satisfied by a′ and π in I(`−1)

K , which contradicts our assumption on the minimality
of `. The only problematic case is when X1 is of the form ∃U1, . . . , Um.Π, since then we
introduce new concrete domain variables v1, . . . , vm that are bound to x. Hence, we have
to show that there is a substitution that can enforce the restriction in (B1). First, note
that Π is an element of RT . Furthermore, any concrete domain variable bound to x in φ′

32

must be mapped by π and a′ to some term w of Γe (or a term that is equivalent to w
due to the constraint sets); otherwise, we must have e ∈ NI, and hence X2(x) is satisfied
already in I∗A, which contradicts our assumption that ` > 0. But then all terms mapped to
terms that are equivalent to the same term w in Γe can be unified, since afterwards they
still satisfy all affected attribute or value comparison atoms since they are still mapped
to terms that are equivalent to w. This brings the total number of variables bound to x
down to at most nT , and thereby satisfies (B1).

Finally, consider the case that X1, X2 ∈ NA. By assumption, the new tuple (e, w) ∈ XI
(`)
K

2
was necessary to satisfy at least one attribute atom X2(x, v) ∈ φ′ under π, i.e., we
have π(a′(x)) = e and the relevant constraint sets Γ(`)

e′ imply =(w, π(a′(v))). Since

(e, w) ∈ XI
(`−1)
K

1 and Γ(`−1)
e′ = Γ(`)

e′ , we can apply →T to replace all such atoms X2(x, v)
with X1(x, v) to obtain an element of ΦT that is satisfied by a′ and π in I(`−1)

K , which
again yields a contradiction.

• If (CR4) was applied, then there is an inclusion B v ∃U1, . . . , Um.Π in T , an element
e ∈ BI

(`−1)
K , and v1, . . . , vm such that (e, vi) is added to UI

(`)
K

i , 1 ≤ i ≤ m, and Π(v1, . . . , vm)
is added to Γ(`)

e . By our assumption, φ′ must contain at least one atom of the form

(a) Ui(x, v′i) such that π(a′(x)) = e and =(π(a′(v′i)), vi) is implied by I(`)
K ; or

(b) Π′(v′1, . . . , v′k) such that Π′(π(a′(v′1)), . . . , π(a′(v′k))) is implied by I(`)
K .

Before we can apply the inclusion B v ∃U1, . . . , Um.Π (via →T) to φ′, we first need to
rewrite it as follows:

1. Using inferD, we rewrite the atoms of type (b), with the goal of putting atoms mapped
by π and a′ to Π(v1, . . . , vm) into the rewriting. These will be the only remaining
value comparison atoms that are not already satisfied in I(`−1)

K .
2. We unify all atoms of the above form using reduce.
3. We also unify all atoms of the form (a) above (depending on the attribute involved).
4. We can apply the inclusion B v ∃U1, . . . , Um.Π to eliminate these atoms, obtaining

an element of ΦT that is satisfied in I(`)
K , which again contradicts our minimality

assumption on `.

For step 1, observe that atoms of the form (b) cannot be of type (B3), since then they
must be of the form =d(v′1) and π and a′ satisfies this atom already in I∗A, contrary to
our assumption that the completion rule was necessary to satisfy it.
Hence, any atom Π′(v′1, . . . , v′k) from (b) must be of the form (B2) or (B1). Let now Γ be
a minimal subset of the union of all sets Γ(`)

e′ that implies Π′(π(a′(v′1)), . . . , π(a′(v′k))). We
need to consider only those sets containing the variables among π(a′(v′1)), . . . , π(a′(v′k)),
and hence Γ is finite. We consider the set π−1(Γ) that is obtained from Γ by re-
placing every variable of the form π(a′(v′i)), 1 ≤ i ≤ k, by v′i. Then we have that
Γ′ := π−1(Γ) ∪ {=d(v′i) | 1 ≤ i ≤ k, π(a′(v′i)) = d ∈ ∆D} implies Π′(v′1, . . . , v′k).
Since the goal is to replace Π′(v1,

′ . . . , v′k) by Γ′, we need to ensure that it satisfies the
boundedness conditions and the definition of →. First, we ensure that all object variables
that v′1, . . . , v′k are bound to are mapped to distinct domain elements of I(`)

K ; a violation
of this property is easily repaired using a substitution, which can be applied after the
rewriting step with →.

We now ensure that Γ′ contains ABox variables v′i, i.e., variables that are bound to object
variables which are mapped to named individuals, only in atoms of the form =d(v′i) with
=d ∈ RT ,2. Observe that not all terms v′i can be ABox variables or be mapped to constants

33

by π and a′, since otherwise Π′(v′1, . . . , v′k) would be satisfied already in I∗A. Since we
assumed that all unbound variables are mapped to constants by π and a′, there must be
at least one other variable v′i′ that is bound to an object variable that is not mapped to a
named individual. This can only be the case if Π′(v′1, . . . , v′k) is of type (B2) since φ′ is
bounded. Since Γ′ is satisfiable and contains at least two connected components and D is
functional, each connected component involving v′i′ must be equivalent to an atom of the
form =d′(v′i′). Since this connected component is derived via π−1 from (a subset of) the
constraint set involving π(v′i′), we know that =d′ ∈ RT ,1. Again by functionality of D,
we know that =d′(v′i′) and Π′(v′1, . . . , v′k) imply some atom of the form =d(v′i). Hence,
we have that =d ∈ RT ,2. If the atom =d(v′i) is already contained in Γ′ and v′i does not
occur elsewhere in Γ′, we are finished. Otherwise, this atom must also be equivalent to
the constraint set involving π(a(v′i)), and hence we can replace the corresponding part
of π−1(Γ) by =d(v′i), which achieves our goal. Furthermore, since Π′(v′1, . . . , v′k) is of
type (B2), we are allowed to use the atom =d(v′i) for rewriting Π′(v′1, . . . , v′k).
The remaining elements of π−1(Γ) fall into the category (B1) since they are obtained
from constraint sets over T , they must involve the variables among v′1, . . . , v′k, variables
bound to different object variables must belong to different constraint sets, and any two
constraint sets do not share variables.
We now show that the remaining atoms of the form =d(v′i) with π(a′(v′i)) = d ∈ ∆D, where
v′i is not an ABox variable, also comply with the definition of infer. Since v′i occurs in φ′,
which is safe by Lemma 6.2, we must have one of the following cases:

– If an atom =d′(v′i) occurs in φ′, then we have d = d′ since this atom is satisfied by π
and a′. But then including this atom in Γ′ is safe since we only reintroduce an atom
to φ′ that is already present. This atom cannot actually be equal to Π′(v′1, . . . , v′k)
since then it would already be satisfied in I(`−1)

K .

– Otherwise, there is an atom U(x, v′i) in φ′, i.e., we have (π(a′(x)), w) ∈ UI
(`)
K such that

=(w, d) is implied by Γ(`)
π(a′(x)). This means that =d(v′i) is implied by this constraint

set when we replace w by v′i. Since π(a′(x)) /∈ NI, we can replace =d(v′i) in Γ′ by
this modified constraint set, and maintain all properties above, i.e., that Γ′ implies
Π′(v′1, . . . , v′k) and that all its atoms are satisfied by π and a′ in I(`)

K .

Furthermore, Γ′ uses only variables that already occur in φ′ and fresh ones from Var(I(`−1)
K),

for which we assume without loss of generality that they do not occur in φ′. Finally, Γ′
can only use constants from ∆D(T) since we have already eliminated all constraint sets
originating from named individuals above.
After these preparations, we can finally replace Π′(v′1, . . . , v′k) in φ′ according to →D by
the atoms of Γ′, where for each fresh variable v in this set we know that it must occur
in some (π(a′(x)), v) ∈ UI

(`)
K , where x already occurs in φ′, and hence we can add the

required atom U(x, v) to the query. These atoms can be satisfied by mapping v to itself,
and the atoms in Γ′ are then also satisfied since they directly occur in the relevant sets Γ(`)

e′

or are already satisfied by a′ and π. Moreover, the only new attribute atoms that are not
already satisfied in I(`−1)

K are new ones of the form (a) above, which involve the fresh
variables vi introduced by the completion rule. To satisfy (B1), i.e., bound the number
of concrete domain variables, we may need to apply a substitution again, which can be
obtained in the same way as in the case of (CR1) above.
This finishes the description of step 1. Via a series of rewriting operations, we have now
obtained another query φ′′ from ΦT and a homomorphism π′ of a′(φ′′) into I(`)

K . The only
atoms in φ′′ that are not already satisfied by a′ and π′ in I(`−1)

K are those of the form
π−1(Π(v1, . . . , vm)) introduced by the above replacements, and the ones of the form (a)
(possibly more than in φ′). However, each of the atoms of the first kind is mapped by a′

34

and π′ to the same atom, namely Π(v1, . . . , vm), and hence for step 2 we can apply a
substitution σ that unifies these atoms.
For step 3, observe that similarly each atom Ui(x, v′i) of type (a) is mapped by a′ and π′

to some Ui(e, wi) for which =(vi, wi) is implied by I(`)
K , and hence we can similarly ensure

by an application of reduce that there is at most one such atom for each fresh variable vi,
and moreover that they use the same object variable x. Furthermore, v′i can be merged
with the i-th term of the single remaining atom of the form π−1(Π(v1, . . . , vm)).
If the resulting merged atoms Ui(x, v′i) and Π(v′1, . . . , v′m) are such that some v′i, 1 ≤ i ≤ m,
that occurs in Ui(x, v′i) is a constant or a distinguished variable, then we cannot directly
apply the inclusion to rewrite these atoms. However, in such a case we know that
wi = a′(v′i) ∈ ∆D and =wi

(vi) is implied by the constraint sets in I(`)
K . Since vi is a fresh

variable, this atom is already implied by Π(v1, . . . , vm), and hence in particular we have
=wi ∈ RT ,1. We can now eliminate the occurrence of v′i in Ui(x, v′i) by first introducing a
new atom =wi

(v′i) of type (B3) (since it implies >D(v′i)), and then splitting the term in
order to obtain the atoms Π(v′1, . . . , v′′i , . . . , v′m), Ui(x, v′′i), =wi

(v′i), and =wi
(v′′i), where

v′′i is a fresh nondistinguished variable. The third atom is obviously already satisfied
by a′, and π′ can easily be extended to v′′i by setting π′(v′′i) := π′(a′(v′i)) = wi. We
can then eliminate the fourth atom by replacing it with Π(v′′1 , . . . , v′′m), using some fresh
nondistinguished variables and attribute atoms Ui(x, v′′i′). These atoms can be merged
with Π(v′1, . . . , v′′o , . . . , v′m) and Ui(x, v′i′) as described above.
After step 3, all atoms Ui(x, v′i) of type (a) must be such that v′i is nondistinguished, and
furthermore equal to the i-th term of the single remaining atom of the form Π(v′1, . . . , v′m).
All these operations can be done using split and reduce, and hence we stay inside ΦT . It
is straightforward to adapt the potential answer a′ of φ′′ into a new potential answer a′′
of the resulting query that yields the same answer tuple (we may have merged some
distinguished variables).

The result is yet another element φ′′′ of ΦT that is satisfied in I(`)
K via a′′ and π′, and

the only atoms that are not already satisfied I(`−1)
K form a subset of (∃U1, . . . , Um.Π)(x)

(we have eliminated all constants and distinguished variables v′i above). No other terms
can be mapped to the new variables vi introduced by the completion rule, and hence the
concrete domain variables in these atoms do not occur elsewhere in φ′′′. If none of the
relevant attribute atoms Ui(x, v′i) present, then we can simply remove Π(v′1, . . . , v′m) and
the associated atoms of the form =d(v′i) from the CQ since π′ and a′′ satisfy them, and
hence they are valid in D. Otherwise, we finally come to step 4 and can apply the operator
inferT in order to obtain another element of ΦT that is satisfied in I(`−1)

K via a′′ and π′,
which yields a contradiction.

• If (CR6) was applied, then there is an attribute range constraint B v ∀U1, . . . , Um.Π ∈ T
and an element e ∈ BI

(`−1)
K with (e, vi) ∈ U

I(`−1)
K

i , 1 ≤ i ≤ m, and Π(v1, . . . , vm) was
added to Γ(`−1)

e in order to obtain Γ(`)
e . By our assumption, this atom is necessary to

imply one or more atoms of the form Π′(π(a′(v′1)), . . . , π(a′(v′k))), where Π′(v′1, . . . , v′k) is a
value comparison atom of φ′. These atoms can be replaced using the same technique as for
the rule (CR4). Since (CR6) does not change the interpretation of the attribute names,
the only atoms in the resulting CQ φ′′ ∈ ΦT that are not already satisfied by the obtained
potential answer a′′ and homomorphism π′ in I(`)

K are of the form π−1(Π(v1, . . . , vm)). If
such an atom does not contain bound variables, then it can simply be removed. Otherwise,
it is mapped by π′ and a′′ to the atom Π(v1, . . . , vm) in Γ(`)

e , which means that at least
one of the involved variables is bound to an object variable x that is mapped to e. Hence,
for each such atom we can apply a rewriting step w.r.t. the attribute range constraint
B v ∀U1, . . . , Um.Π, thereby replacing π−1(Π(v1, . . . , vm)) with B(x) and all associated
atoms Ui(x, π−1(vi)), which are all satisfied by π′ since x is mapped to e and each term

35

π−1(vi) is mapped to a term equivalent to vi. This results in an element of ΦT that is
satisfied in I(`−1)

K , which again yields a contradiction.

The remaining rules can be handled by similar, but simpler, arguments.

For other DL-Lite formalisms, usually at this point combined rewritability has been shown and
the CQs in ΦT can simply be evaluated over a finite relational database [10, 35]. However, in
our setting we need to take another step.

6.4 Evaluating the Rewriting

In order to obtain a combined rewriting as described in Definition 4.2, the last step is to replace
the abstract interpretation I∗A by an ordinary finite interpretation, i.e., a database. We will use
the canonical solution fK from Section 5.4 to instantiate the variables in I∗A. We assume without
loss of generality that the individual names in NI(K) are the first elements occurring in the
enumeration of ∆IK that was used in the construction of fK. Since I∗A is equal to IK on NI(K),
this means that we only have to compute the partial solutions f (1)

K , . . . , f (|NI(K)|)
K in order to

obtain fK(I∗A). For each f (j)
K , we have to find a variable assignment in sol(

∧
Posj) \ sol(

∨
Neg−j),

which is possible in polynomial time since D is polynomial and constructive. Observe that
Posj and Neg−j are of size polynomial in the number of value terms from I∗A and ∆D(K) and
exponential in the maximum arity of the involved predicates. The latter is not problematic
since all predicates in R = RK ∪ RK,2 ∪ {=} whose arity is larger than 2 must occur in the
(fixed) TBox T . This shows that we can construct fK(I∗A) in polynomial time in the size of A.
Moreover, fK actually is a solution of I∗A since K is consistent (see Lemmas 5.6 and 5.8). The
correctness of this approach can be shown by similar arguments as in the proofs of Lemmas 5.8
and 5.9.

Lemma 6.5. If K is consistent, then we have ansa(φ′, I∗A) = ans(φ′, fK(I∗A)) for all φ′ ∈ ΦT .

Proof. Given a homomorphism of φ′ into fK(I∗A), we can construct a homomorphism of φ′ into I∗A
exactly as in the proof of Lemma 5.9. Conversely, let a ∈ ansa(φ′, I∗A) and π be an abstract
homomorphism of φ′ into I∗A. We construct a homomorphism π′ of φ′ into fK(I∗A) by setting
π′(x) := π(x) for all object terms x and π′(v) := fK(π(v)) for all value terms v in φ′. All atoms
involving only object variables are obviously still satisfied. For an attribute atom U(x, v) ∈ φ′,
there must be a w ∈ terms(I∗A) such that (π(x), w) ∈ UI∗A and =(w, π(v)) is implied by I∗A.
Since π(v) is either a constant or a variable from I∗A and fK satisfies all constraint sets of I∗A,
we know that fK(w) = fK(π(v)) = π′(v), and hence (π′(x), π′(v) = (π(x), fK(w)) ∈ UfK(I∗A),
i.e., the atom is also satisfied by π′. Consider now a value comparison atom Π(v1, . . . , vm) ∈ φ,
which must be satisfied by π, i.e., Π(π(v1), . . . , π(vm)) is implied by I∗A. Again, since fK satisfies
all constraint sets in I∗A, we know that the atom remains satisfied.

Hence, we obtain our main result.

Theorem 6.6. If D is cr-admissible, then safe and T -restricted CQs are combined rewritable
w.r.t. DL-Lite(HF)

core (D) TBoxes T , and the rewritings are computable.

Proof. From Lemmas 5.9, 6.4, and 6.5 we obtain the requirements of Definition 4.2 if we set
I(K) := fK(I∗A).

This shows that the entailment problem for safe Boolean CQs in DL-Lite(HF)
core (D) is in P in

data complexity. From a practical point of view, this result allows us to combine an off-line
(polynomial) computation of the database fK(I∗A) with an on-line rewriting of incoming queries.

36

6.5 Checking Consistency

So far, we have ignored the omnipresent side condition that K = 〈A, T 〉 should be consistent,
since query answering over an inconsistent KB is meaningless. However, by Lemma 5.8, this can
be checked by testing whether (i) IK has a solution and (ii) IK |=a K holds. For (i), observe
that there can be only finitely many constraint sets Γe in IK (modulo variable renaming), and
hence we can use the following modified construction of IK:

• After each application of a completion rule, we check whether all constraint sets are
satisfiable, which is possible due to the cr-admissibility of D.

• Each new domain element e that is created in the construction initially satisfies exactly
one basic concept of the form ∃R−, and all other concepts, role successors, and attribute
values must follow from this concept. This also means that the obtained constraint set Γe
will be isomorphic to the constraint set of any other such anonymous R-successor. Hence,
it suffices to construct only one such element for each role R, and saturate it according to
the completion rules (cf. Section 5.3), in order to verify the existence of a solution for IK.

If this check is successful, it remains to verify (ii). The proof of Lemma 5.8 suggests the following
standard procedure [10, 35] for checking this: If functionality constraints are violated by IK,
then this must be the case already in I(0)

K , which can be checked in polynomial time. For the
disjointness constraints, we restrict K to the KB K′ := 〈A, T ′〉, where T ′ is obtained from T by
dropping all functionality and disjointness constraints. We know that K′ is consistent since its
canonical model is the same as that of K, and hence has a solution, and the only other sources of
inconsistencies have been removed (see the proof of Lemma 5.8). We then ask a set of Boolean
CQs Ψ over K′: For each disj(X1, X2) ∈ T , we include the CQ ()← X1(~x) ∧X2(~x) in Ψ, where
~x contains variables of the appropriate types. By Theorem 6.6, we can answer these CQs, and
we know that K is consistent iff none of the CQs in Ψ is entailed by K′.

6.6 The Special Case of Unary Predicates

We consider again the special case of a unary, decidable concrete domain D satisfying (infinitediff),
as in [38]. We show that in this case the ABox completion is not necessary, i.e., we can extend
the rewriting of 6.4 directly to the substructure I(0)

K of I∗A, which does not contain any variables.
Before we come to the proof, we make several critical observations (see also Section 2.2):

• By Lemma 2.7, we can add the equality predicates to D without affecting (infinitediff).
Moreover, since the binary equality predicate = cannot occur in T or φ, for →D it suffices
to decide implications that do not contain =. It is easy to see that the unary predicates
=d (d ∈ ∆D) do not affect decidability.

• The rewriting ΦT cannot contain =, and any atom =d(v) can be eliminated by replacing v
with d. Hence, the rewritten CQs are formulated over D.

• By Lemma 2.8, D is convex due to the predicates =d. Moreover, D is trivially functional.

• The only places where polynomiality and constructivity of D are needed are in the
constructions of RT ,2 (for condition (B3) of boundedness) and fK (to obtain fK(I∗A)). We
now define a weaker notion of boundedness without RT ,2 that suffices for unary concrete
domains, and subsequently show that one can directly use I(A) = I(0)

K instead of fK(I∗A).
Hence, D does not need to be polynomial or constructive, and our results apply to any
unary, decidable concrete domain D that satisfies (infinitediff).

37

To get rid of RT ,2, observe that, since D is unary, all constraint sets can be partitioned into
independent components for each involved concrete domain variable. We will consider each
separately, and hence assume in the following that all Γ ∈ ΓT contain at most one variable.
Note that all constraint sets Γa, a ∈ NI, are also of this form, i.e., for each variable or constant
occurring in them they contain an element of ΓT . We adapt the notion of boundedness and
say that a CQ is weakly bounded if condition (B1) is modified such that each object variable x
may have an arbitrary number of bound concrete domain variables v, but the value comparison
atoms involving v must form an element of ΓT . The overall size and number of CQs in the
rewriting is still bounded since two nondistinguished concrete domain variables satisfying the
same attribute and value comparison atoms can clearly be merged into one variable without
affecting the semantics. Hence, Lemmas 6.2 and 6.3 still hold in this setting. As a consequence
of these changes, case (B2) in the definition of boundedness is now subsumed by (B1). This also
means that the rewriting cannot produce atoms of the form (B3), and hence the only remaining
case is (B1). Another consequence of this is that we do not need to compute the set RT ,2.
We now provide the final missing piece for our arguments above, by showing that the rewriting
can be directly evaluated over I(0)

K instead of fK(I∗A) (cf. Lemmas 6.4 and 6.5).

Lemma 6.7. If D is unary, decidable, and satisfies (infinitediff), and K is consistent, then we
have

ansa(φ, IK) =
⋃

φ′∈ΦT

ans(φ′, I(0)
K).

Proof. Since I(0)
K is also a substructure of IK, soundness of the rewrite rules can be shown as

in Lemma 6.4. For the other direction, we already know from Lemma 6.4 that for each a with
IK |=a a(φ) there exists a φ′ ∈ ΦT such that I∗A |=a a′(φ′) and a(φ) and a′(φ′) yield the same
answer tuple. We can extend the arguments from the proof of that lemma to find a rewriting
of φ that obtains the same answer from I(0)

K . Hence, assume that ` > 0 is minimal such that
I(`)
K |=a a′(φ′) holds for some φ′ ∈ ΦT and a potential answer a′ for which a(φ) and a′(φ′) yield

the same answer tuple. Let π be a homomorphism of a′(φ′) into I(`)
K . Most of the arguments in

the proof of Lemma 6.4 still apply here, and many are not necessary (i.e., those for predicates
of higher arity), with a few exceptions.

• For the case that (CR1) was applied to an inclusion ∃U.Π v X2 to obtain I(`)
K , it suffices

to note that, if the application of this inclusion to φ′ results in two nondistinguished
concrete domain variables having isomorphic sets of attribute and value comparison atoms,
then one of these variables can be removed without affecting the semantics of the query.

• For the case of (CR4), assume that the inclusion B v ∃U.Π was applied to e ∈ BI
(`−1)
K ,

resulting in (e, v) ∈ UI
(`)
K and the new atom Π(v) in Γ(`)

e . As in the proof of Lemma 6.4,
the first step is to rewrite atoms Π′(v′) that are implied by Γ(`)

e , but not already by Γ(`−1)
e .

This can only be the case if π(a′(v′)) = v since otherwise its satisfaction would not depend
on the new atom Π(v). Hence, we can simply replace v in Γ(`)

e by v′ to obtain an element
of ΓT that implies Π′(v′), which can be used by infer. The property (B1) can be preserved
by a suitable substitution, as in the case of (CR1) above. The atoms Π(v′) and U(x, v′)
in φ′ can then be merged as in the proof of Lemma 6.4. Assume now that the resulting
two atoms Π(v′), U(x, v′) of φ′′ are such that v′ is mapped by π and a′ to a constant d. By
the satisfaction condition U(x, v′), it then must be the case that =(d, v) is implied by Γ(`)

e .
Since the only atom involving v in Γ(`)

e is Π(v), the predicate Π must be of the form =d.
Hence, we can split the variable v′, and obtain a fresh nondistinguished variable v′′ and the
atoms =d(v′), =d(v′′), and U(x, v′′). The first atom is satisfied by π and a′ in I(0)

K , while
the other two can be satisfied by mapping v′′ to v. This finally allows to apply a rewriting
step for B v ∃U.Π via inferT , obtaining an element of ΦT that is satisfied in I(`−1)

K .

38

• The case of (CR6) can again be treated in the same way.

We obtain the claimed FO rewriting for unary concrete domains.
Theorem 6.8. If D is unary, decidable, and satisfies (infinitediff), then safe and T -restricted
CQs are FO rewritable w.r.t. DL-Lite(HF)

core (D) TBoxes T , and the rewritings are computable.

Proof. This follows directly from Lemmas 5.9 and 6.7.

Further note that consistency of KBs is still decidable since D is decidable. Thus, we have
extended the results of [38] to a more expressive ontology language, and added the missing
condition of T -restrictedness.

7 Related Work

The roots of our research lie in the built-in predicates of relational database systems [1]. A lot
of effort has been spent on analyzing query containment for CQs with built-in predicates in
this context, with the usual goal of finding equivalent queries that are easier to evaluate. As
expected, built-in predicates increase the complexity from NP to ΠP

2 , PSpace, or even make
the problem undecidable [2, 9, 22].
More recently, concrete domains have been investigated as an extension of classical DL reasoning
problem, and found to cause similar problems [26, 28, 30]. Starting with [34, 35], the problem
of CQ answering has been investigated in DLs capable of referring to concrete values. Under
similar restrictions as for roles, attributes were found to not increase the complexity of this
reasoning task. However, it was only in [4, 37, 38] that also the queries were allowed to refer to
concrete values, and several known techniques were extended to deal with this case. However,
most of this work is restricted to unary concrete domain predicates, which is justified by the
OWL2 standard [31].
Only very recently were CQs with the binary predicate ≤ over the rational numbers considered [18,
19]. These papers classify a restricted form of CQs according to their data complexity over the
concrete domain (Q,≤); the authors obtain a P/co-NP dichotomy result based on a classification
of the patterns of value comparison atoms occurring in the query and TBox. In [19], the abstract
canonical model is called universal pre-model, and solutions are called completion functions.
There are several differences to our approach. On the one hand, (Q,≤) is not convex, and [19]
does not need our safety restriction since the authors are interested also in the co-NP-hard
cases (cf. Lemma 4.4). On the other hand, our queries are not restricted to satisfy the so-called
bounded match depth property, which in particular holds if the CQ is rooted, i.e., all object
variables are connected via atoms to a constant or an answer variable, or if the TBox has a finite
canonical model w.r.t. all ABoxes (see [19, Lemma 4.3] for details). Moreover, our ontology
language is incomparable to the one in [19], which is an extension of DL-LiteA with qualified
attribute restrictions of the form ∃U.φ or ∀U.φ on the right-hand side of concept inclusions,
where φ is a D-conjunction in which all variables except one are existentially quantified. Hence,
such restrictions are essentially unary in that they can refer only to one attribute value explicitly;
however, they allow to refer to the existence of concrete domain values that are not involved in an
attribute. It is easy to see that our logic DL-Lite(HF)

core (D) can simulate ∃U.φ, and we conjecture
that our results could be extended to cover also ∀U.φ. While Lemma 4.4 and results in [4, 37]
show that (combined) rewritability cannot hold for the more general setting of non-convex
concrete domains with non-safe CQs, it is still open whether the results of [19] can be extended
to arbitrary CQs and TBoxes with ∃U1, . . . , Um.Π or ∃U.φ on the left-hand side of concept
inclusions.
The technique we employ for obtaining the query rewriting is based on the first algorithms
for DL-Lite [10] and not very sophisticated. There is definitely room for improvement, e.g.,

39

obtaining a combined rewriting that is (nearly) polynomial in the size of the query and the
TBox [23], or rewriting into a different query language like (non-recursive) Datalog [36].
In less closely related research, very expressive aggregates over concrete values are considered,
but only under so-called closed world or epistemic semantics, i.e., decoupled from the logical
reasoning [16, 20].

8 Conclusion

Our combined rewritability result for CQs with built-in predicates over DL-Lite(HF)
core (D) on-

tologies establishes for the first time a polynomial data complexity for query answering w.r.t.
ontologies formulated in an ontology language with n-ary concrete domains. These results
subsume the ones of [38] for the case of unary concrete domains, and they are orthogonal to the
results in [19]. In the latter work, the data complexity is in general co-NP, and the authors
investigate for which queries this goes down to P.
Until now, our focus was on showing rewritability and complexity results. To be useful in
practice, the size of the rewriting needs to be reduced, e.g., by investigating whether more concise
rewritings [23] or alternative target languages [36] can be employed in our setting. Instead of
considering all possible implications in the concrete domain, it may also be possible to realize the
operator inferD by a dedicated solving engine for the concrete domain. In addition to considering
minor extensions, like allowing for concrete domain variables and predicates in the ABox as
in [26], we will also try to extend the language by local identification constraints (keys) [11] and
functional roles on the right-hand side of inclusions, and investigate whether FO rewritability
holds in the general case.

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[2] Foto Afrati, Chen Li, and Prasenjit Mitra. Rewriting queries using views in the pres-
ence of arithmetic comparisons. Theoretical Computer Science, 368(1-2):88–123, 2006.
doi:10.1016/j.tcs.2006.08.020.

[3] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. Journal of Artificial Intelligence Research, 36:1–69, 2009.
doi:10.1613/jair.2820.

[4] Alessandro Artale, Vladislav Ryzhikov, and Roman Kontchakov. DL-Lite with attributes
and datatypes. In Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter Lucas, editors, Proc. of the 20th Eur. Conf. on Artificial
Intelligence (ECAI’12), volume 242 of Frontiers in Artificial Intelligence and Applications,
pages 61–66. IOS Press, 2012. doi:10.3233/978-1-61499-098-7-61.

[5] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into
concept languages. In John Mylopoulos and Raymond Reiter, editors, Proc. of the 12th Int.
Joint Conf. on Artificial Intelligence (IJCAI’91), pages 452–457. Morgan Kaufmann, 1991.
URL http://ijcai.org/Proceedings/91-1/Papers/070.pdf.

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack
Kaelbling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI’05), pages 364–369. Professional Book Center, 2005. URL http:
//www.ijcai.org/papers/0372.pdf.

40

http://dx.doi.org/10.1016/j.tcs.2006.08.020
http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.3233/978-1-61499-098-7-61
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://www.ijcai.org/papers/0372.pdf
http://www.ijcai.org/papers/0372.pdf

[7] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. LTCS-Report
05-01, Chair for Automata Theory, TU Dresden, Germany, 2005. https://lat.inf.tu-
dresden.de/research/reports-abs.html#BaaderBrandtLutz-LTCS-05-01.

[8] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, CSP, and MMSNP. In Richard Hull and
Wenfei Fan, editors, Proc. of the 32nd Symp. on Principles of Database Systems (PODS’13),
pages 213–224. ACM, 2013. doi:10.1145/2463664.2465223.

[9] Nieves R. Brisaboa, Héctor J. Hernández, José R. Paramá, and Miguel R. Penabad.
Containment of conjunctive queries with built-in predicates with variables and constants
over any ordered domain. In Witold Litwin, Tadeusz Morzy, and Gottfried Vossen, editors,
Proc. of the 2nd East European Symp. on Advances in Databases and Information Systems
(ADBIS’98), volume 1475 of Lecture Notes in Computer Science, pages 46–57. Springer,
1998. doi:10.1007/bfb0057716.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite
family. Journal of Automated Reasoning, 39(3):385–429, 2007. doi:10.1007/s10817-007-
9078-x.

[11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Path-based identification constraints in description logics. In Gerhard Brewka and
Jérôme Lang, editors, Proc. of the 11th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’08), pages 231–241. AAAI Press, 2008. URL http://www.aaai.org/
Library/KR/2008/kr08-023.php.

[12] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and databases: The
DL-Lite approach. In Sergio Tessaris and Enrico Franconi, editors, Reasoning Web. Se-
mantic Technologies for Informations Systems. 5th Int. Summer School, Tutorial Lectures,
volume 5689 of Lecture Notes in Computer Science, pages 255–356. Springer-Verlag, 2009.
doi:10.1007/978-3-642-03754-2_7.

[13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. The MASTRO system for ontology-based data access. Semantic Web, 2:43–53, 2011.
doi:10.3233/SW-2011-0029.

[14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts and abstract
syntax. W3C recommendation, W3C, February 2014. http://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

[15] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Deduction
in concept languages: from subsumption to instance checking. Journal of Logic and
Computation, 4(4):423–452, 1994. doi:10.1093/logcom/4.4.423.

[16] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 entailment regimes. W3C recommen-
dation, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-entailment-
20130321/.

[17] Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial combined rewritings for
existential rules. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Proc.
of the 14th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’14),
pages 268–277. AAAI Press, 2014. URL http://www.aaai.org/ocs/index.php/KR/KR14/
paper/view/7973.

41

https://lat.inf.tu-dresden.de/research/reports-abs.html#BaaderBrandtLutz-LTCS-05-01
https://lat.inf.tu-dresden.de/research/reports-abs.html#BaaderBrandtLutz-LTCS-05-01
http://dx.doi.org/10.1145/2463664.2465223
http://dx.doi.org/10.1007/bfb0057716
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x
http://www.aaai.org/Library/KR/2008/kr08-023.php
http://www.aaai.org/Library/KR/2008/kr08-023.php
http://dx.doi.org/10.1007/978-3-642-03754-2_7
http://dx.doi.org/10.3233/SW-2011-0029
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://dx.doi.org/10.1093/logcom/4.4.423
http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973

[18] André Hernich, Julio Lemos, and Frank Wolter. Constraint patterns for tractable ontology-
mediated queries with datatypes. In Maurizio Lenzerini and Rafael Peñaloza, editors, Proc.
of the 29th Int. Workshop on Description Logics (DL’16), volume 1577 of CEUR Workshop
Proceedings, 2016. URL http://ceur-ws.org/Vol-1577/paper_9.pdf.

[19] André Hernich, Julio Lemos, and Frank Wolter. Query answering in DL-Lite with datatypes:
A non-uniform approach. In Satinder Singh and Shaul Markovitch, editors, Proc. of the
31st AAAI Conf. on Artificial Intelligence (AAAI’17), pages 1142–1148. AAAI Press, 2017.
URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14660.

[20] Evgeny Kharlamov, Yannis Kotidis, Theofilos Mailis, Christian Neuenstadt, Charalampos
Nikolaou, Özgür Özçep, Christoforos Svingos, Dmitriy Zheleznyakov, Sebastian Brandt,
Ian Horrocks, Yannis Ioannidis, Steffen Lamparter, and Ralf Möller. Towards analytics
aware ontology based access to static and streaming data. In Paul Groth, Elena Simperl,
Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck, and Yolanda
Gil, editors, Proc. of the 15th Int. Semantic Web Conf. (ISWC’16), volume 9982 of Lecture
Notes in Computer Science, pages 344–362. Springer-Verlag, 2016. doi:10.1007/978-3-319-
46547-0_31.

[21] Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, and Michael Zakharyaschev.
Exponential lower bounds and separation for query rewriting. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Proc. of the 39th Int. Coll. on
Automata, Languages and Programming (ICALP’12), volume 7392 of Lecture Notes in
Computer Science, pages 263–274. Springer-Verlag, 2012. doi:10.1007/978-3-642-31585-5_26.

[22] Anthony Klug. On conjunctive queries containing inequalities. Journal of the ACM, 35(1):
146–160, 1988. doi:10.1145/42267.42273.

[23] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in DL-Lite. In Fangzhen Lin, Ulrike Sattler,
and Miroslaw Truszczynski, editors, Proc. of the 12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’10), pages 247–257. AAAI Press, 2010. URL http:
//aaai.org/ocs/index.php/KR/KR2010/paper/view/1282.

[24] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In Toby Walsh, editor, Proc. of the
22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11), pages 2656–2661. AAAI Press,
2011. doi:10.5591/978-1-57735-516-8/IJCAI11-442.

[25] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael
Zakharyaschev. Answering SPARQL queries over databases under OWL 2 QL entailment
regime. In Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig Knoblock,
Denny Vrandečić, Paul Groth, Natasha Noy, Krzysztof Janowicz, and Carole Goble, editors,
Proc. of the 13th Int. Semantic Web Conf. (ISWC’14), volume 8796 of Lecture Notes in
Computer Science, pages 552–567. Springer, 2014. doi:10.1007/978-3-319-11964-9_35.

[26] Carsten Lutz. The Complexity of Description Logics with Concrete Domains. PhD thesis,
RWTH Aachen, Germany, 2002. URL https://lat.inf.tu-dresden.de/research/phd/
Lutz-PhD-2002.pdf.

[27] Carsten Lutz. Description logics with concrete domains - a survey. In Philippe Balbiani,
Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, Advances in Modal
Logic 4 (AiML’02), pages 265–296. King’s College Publications, 2003. URL http://www.
aiml.net/volumes/volume4/Lutz.ps.

[28] Carsten Lutz and Maja Miličić. A tableau algorithm for description logics with concrete
domains and general tboxes. Journal of Automated Reasoning, 38(1–3):227–259, 2007.
doi:10.1007/s10817-006-9049-7.

42

http://ceur-ws.org/Vol-1577/paper_9.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14660
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-642-31585-5_26
http://dx.doi.org/10.1145/42267.42273
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-442
http://dx.doi.org/10.1007/978-3-319-11964-9_35
https://lat.inf.tu-dresden.de/research/phd/Lutz-PhD-2002.pdf
https://lat.inf.tu-dresden.de/research/phd/Lutz-PhD-2002.pdf
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://dx.doi.org/10.1007/s10817-006-9049-7

[29] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in the
description logic EL using a relational database system. In Craig Boutilier, editor, Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09), pages 2070–2075. AAAI
Press, 2009. URL http://ijcai.org/papers09/Papers/IJCAI09-341.pdf.

[30] Despoina Magka, Yevgeny Kazakov, and Ian Horrocks. Tractable extensions of the descrip-
tion logic EL with numerical datatypes. Journal of Automated Reasoning, 47(4):427–450,
2011. doi:10.1007/s10817-011-9235-0.

[31] Boris Motik and Ian Horrocks. OWL datatypes: Design and implementation. In Amit
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and
Krishnaprasad Thirunarayan, editors, Proc. of the 7th Int. Semantic Web Conf. (ISWC’08),
volume 5318 of Lecture Notes in Computer Science, pages 307–322. Springer-Verlag, 2008.
doi:10.1007/978-3-540-88564-1_20.

[32] Magdalena Ortiz. Ontology based data access: The story so far. In Loreto Bravo and
Maurizio Lenzerini, editors, Proc. of the 7th Alberto Mendelzon Int. Workshop on Foun-
dations of Data Management, volume 1087 of CEUR Workshop Proceedings, 2013. URL
http://ceur-ws.org/Vol-1087/keynote3.pdf.

[33] Peter Patel-Schneider, Bijan Parsia, and Boris Motik. OWL 2 web ontology language
structural specification and functional-style syntax (second edition). W3C recommendation,
W3C, 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

[34] Antonella Poggi. Structured and Semi-Structured Data Integration. PhD thesis, Università
degli Studi di Roma “La Sapienza” and Université de Paris Sud, Italy/France, 2006. URL
http://www.dis.uniroma1.it/~poggi/publi/thesis.pdf.

[35] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. Journal on Data Semantics, X:
133–173, 2008. doi:10.1007/978-3-540-77688-8_5.

[36] Riccardo Rosati and Alessandro Almatelli. Improving query answering over DL-Lite
ontologies. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Proc. of
the 12th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’10),
pages 290–300. AAAI Press, 2010. URL http://aaai.org/ocs/index.php/KR/KR2010/
paper/view/1400.

[37] Ognjen Savković. Managing data types in ontology-based data access. Master’s thesis, Free
University of Bozen-Bolzano, Italy, 2011. URL http://www.inf.unibz.it/~savkovic/
publications/savkovic-msc-thesis-2011.pdf.

[38] Ognjen Savković and Diego Calvanese. Introducing datatypes in DL-Lite. In Luc De Raedt,
Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and
Peter Lucas, editors, Proc. of the 20th Eur. Conf. on Artificial Intelligence (ECAI’12),
volume 242 of Frontiers in Artificial Intelligence and Applications, pages 720–725. IOS
Press, 2012. doi:10.3233/978-1-61499-098-7-720.

43

http://ijcai.org/papers09/Papers/IJCAI09-341.pdf
http://dx.doi.org/10.1007/s10817-011-9235-0
http://dx.doi.org/10.1007/978-3-540-88564-1_20
http://ceur-ws.org/Vol-1087/keynote3.pdf
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.dis.uniroma1.it/~poggi/publi/thesis.pdf
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1400
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1400
http://www.inf.unibz.it/~savkovic/publications/savkovic-msc-thesis-2011.pdf
http://www.inf.unibz.it/~savkovic/publications/savkovic-msc-thesis-2011.pdf
http://dx.doi.org/10.3233/978-1-61499-098-7-720

	Introduction
	Concrete Domains
	Closure Properties
	Disjoint Union
	Product

	Unary Concrete Domains

	The Ontology Language
	Syntax
	Semantics
	Comparison to Other DL-Lite Logics

	Conjunctive Queries with Built-ins
	Rewritability
	Safety

	Canonical Models
	Abstract Interpretations and Their Solutions
	The Abstract Canonical Model
	ABox Completion
	A Canonical Solution
	The Abstract Canonical Model is Canonical

	Rewriting CQs with Built-in Predicates
	The Basic Operators
	Concrete Domain Implications
	Correctness of the Rewriting
	Evaluating the Rewriting
	Checking Consistency
	The Special Case of Unary Predicates

	Related Work
	Conclusion

