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Theoretical Computer Science, TU Dresden, Germany

Abstract. Recently introduced approaches for relaxed query answering, approximately
defining concepts, and approximately solving unification problems in Description Logics
have in common that they are based on the use of concept comparison measures together
with a threshold construction. In this paper, we will briefly review these approaches, and
then show how weighted automata working on infinite trees can be used to construct
computable concept comparison measures for FL0 that are equivalence invariant w.r.t.
general TBoxes. This is a first step towards employing such measures in the mentioned
approximation approaches.

1 Introduction

Description Logics (DLs) [5] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [21]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be atomic properties required for the individual (expressed
by concept names) or properties that refer to relationships with other individuals and their
properties (expressed as role restrictions). The expressivity of a particular DL L is determined
on the one hand by what sort of properties can be required and how they can be combined.
On the other hand, DLs provide their users with ways of stating terminological axioms in a so-
called TBox. The simplest kind of TBoxes are called acyclic TBoxes, which consist of concept
definitions without cyclic dependencies among the defined concepts. Basically, such a TBox
introduces abbreviations for complex concept descriptions. General TBoxes use so-called gen-
eral concept inclusions (GCIs) to state subconcept-superconcept constraints between concepts.
Once the relevant concepts of an application domain are formalized in a TBox, they can be
employed to state information about specific entities (individuals, objects) and their relation-
ships in a so-called ABox. Given a TBox and an ABox, queries can then be used to retrieve
new information from the data formalized this way. We will introduce the basic notions of DLs
in Section 2, and define three DLs of different expressive power, namely the DLs ALC, EL, and
FL0.

Since the semantics of traditional DLs is based on classical first-order logic, the interpretation
of the properties required for a concept is strict in the sense that all these properties need to be
satisfied for an individual to belong to a concept, and the same is true for answers to queries. In
applications where exact definitions are hard to come by, it would be useful to relax this strict
requirement and allow for approximate definitions of concepts, where most, but not all, of the
stated properties are required to hold. Similarly, if a query has no exact answer, approximate
answers that satisfy most of the features the query is looking for could be useful. For example,
? Supported by DFG Graduiertenkolleg 1763 (QuantLA).



2

in clinical diagnosis, diseases are often linked to a long list of medical signs and symptoms,
but patients that have a certain disease rarely show all these signs and symptoms. Instead, one
looks for the occurrence of sufficiently many of them. Similarly, people looking for a flat to rent
or a bicycle to buy may have a long list of desired properties, but will also be satisfied if many,
but not all, of them are met.

In order to allow for approximate definitions of concepts, we have introduced the notion of
a graded membership function in [4]. Instead of a Boolean membership value 0 or 1 such a
graded function yields a membership degree from the interval [0,1]. Threshold concepts can
then, for example, require that an individual belongs to a concept C with degree at least
0.8. A different approach, which is based on the use of similarity measures on concepts [25],
was used by Ecke et al. [18,19] to relax instance queries (i.e., queries that consist of a single
concept). Given a query concept C, they are looking for answers to queries D whose similarity
to C is higher than a certain threshold. While these two approaches were originally developed
independently of each other, it has turned out that there are close connections. Similarity
measures can be used to define graded membership functions, and threshold concepts w.r.t.
these functions provide a more natural semantics for relaxed instance queries [4,6]. Thus, in
both approximation approaches mentioned until now, the availability of appropriate measures
for comparing concepts is crucial. The same is true for the approximate unification of concepts
introduced in [7]. Basically, unification in DLs tries to make two concepts equivalent by replacing
some of the concept names occurring in their descriptions by complex concepts [9,8]. In the
approximate case, one requires that concepts are made “almost” equivalent, where the meaning
of “almost” is formalized using distance measures between concepts. Strictly speaking, these
distance measures are not similarity measures in the sense of [25] since they need not map into
[0,1]. In the following, we will call functions that compare pairs of concepts by mapping them
into a (usually numerical) domain equipped with a partial order concept comparison measures.

An indispensable requirement for the concept comparison measures used in the three approxi-
mation approaches mentioned above is that they respect the semantics of concepts in the sense
that they are invariant under equivalence of concepts w.r.t. their definitions in the TBox. For
the DL EL, a framework for defining concept similarity measures that are equivalence invariant
w.r.t. acyclic TBoxes has been introduced in [25]. This was extended in [19] to general TBoxes.
For FL0, concept similarity measures that are equivalence invariant for acyclic TBoxes were
introduced in [30]. The main technical contribution of this paper is to introduce a framework
for defining computable concept comparison measures for FL0 that are equivalence invariant
w.r.t. general TBoxes. Basically, this is achieved by leveraging a new formal language-based
characterization of equivalence in FL0 w.r.t. general TBoxes [28], where the semantics of a
concept is characterized using a tuple of (possibly infinite) formal languages. Following the
ideas in [9,10,28], such tuples can be represented by (infinite) trees. These trees (or more pre-
cisely, appropriate finite representations of them) can in turn be used as inputs for weighted
tree automata [31], which then yield the output of the measure. We will show that, under cer-
tain conditions on the weighted tree automata, this approach indeed yields computable concept
comparison measures.

2 Description Logics, concept comparison measures, and
approximation

We start by recalling basic notions of Description Logics, and in particular the DLs ALC, EL,
and FL0. Then, we introduce concept comparison measures, which generalize concept similar-
ity measures, and finally we show how such measures can be used to relax query answering,
approximately define concepts, and approximately solve unification problems.
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2.1 Description Logics

In Description Logics, concept constructors are used to build complex concept descriptions out
of concept names (unary predicates) and role names (binary predicates). A particular DL L
is determined by the available constructors. Given finite, disjoint sets NC and NR of concept
names and role names, respectively, we denote the set of all concept descriptions that can be
built from NC and NR using the constructors of L with CL(NC,NR).

As an example, consider the constructors top concept (>), bottom concept (⊥), conjunction
(CuD), disjunction (CtD), negation (¬C), value restriction (∀r.C), and existential restriction
(∃r.C), which determine the DL ALC. Then, CALC(NC,NR) is inductively defined as follows:

– {>,⊥} ∪ NC ⊆ CALC ,
– if C,D ∈ CALC and r ∈ NR, then {C uD,C tD,¬C, ∀r.C, ∃r.C} ⊆ CALC .

We will also consider the following two sub-logics EL and FL0 of ALC:

– EL has the constructors top concept, conjunction, existential restriction;
– FL0 has the constructors top concept, conjunction, value restriction.

The semantics of a DL L is defined using first-order interpretations I = (∆I , .I) consisting
of a non-empty domain ∆I and an interpretation function .I that assigns a set AI ⊆ ∆I to
each concept name A ∈ NC and a binary relation rI ⊆ ∆I × ∆I to each role name r ∈ NR.
This function is extended to complex concept descriptions by assigning a set CI ⊆ ∆I to
each C ∈ CL(NC,NR) according to the semantics of the constructors of L. The semantics of
the constructors is defined by equations that enable the inductive definition of CI for any
interpretation I.

For the above constructors, the equations fixing their semantics are as follows:

>I = ∆I and ⊥I = ∅,
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , and (¬C)I = ∆I \ CI ,
(∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI},
(∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}.

An L terminology (TBox) T is a finite set of general concept inclusions (GCIs), which are
expressions of the form C v D for C,D ∈ CL(NC,NR). The interpretation I is a model of T if it
satisfies all its GCIs, i.e., CI ⊆ DI holds for all GCIs C v D in T . An L ABox A is a finite set
of assertions, which are expressions of the form C(a) or r(a, b), where C ∈ CL(NC,NR), r ∈ NR

and a, b are elements of an additional set NI of individual names, which is disjoint with NC

and NR. An interpretation then additionally assigns elements aI ∈ ∆I to individual names
a ∈ NI. The interpretation I is a model of A if it satisfies all its assertions, i.e., aI ∈ CI (resp.
(aI , bI) ∈ rI) holds for all assertions C(a) (resp. r(a, b)) in A.

Given an L TBox T and two L concept descriptions C,D, we say that C is subsumed by D
w.r.t. T (denoted as C vT D) if CI ⊆ DI for all models I of T . These two concept descriptions
are equivalent (denoted as C ≡T D) if C vT D and D vT C. Equivalent concept descriptions
have the same meaning w.r.t. T in the sense that they always (i.e., in every model of T ) yield
the same set. In the presence of an L ABox A, we can also consider the instance problem : given
an individual name a and an L concept description C we say that a is an instance of C in A
w.r.t. T (written A |=T C(a)) if aI ∈ CI for all models I of T that are also models of A. For
the DL EL, the subsumption, equivalence, and instance problem are polynomial [14] whereas
they are ExpTime-complete for FL0 [3] and for ALC [32].
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2.2 Concept comparison measures

Subsumption and equivalence can be seen as operations that compare concept descriptions, and
yield the comparison value 1 if the relation holds and 0 otherwise, i.e.,

vT (C,D) = 1 if C vT D and vT (C,D) = 0 if C 6vT D,

and accordingly for equivalence. Intuitively, concept comparison measures generalize such op-
erations by yielding a degree to which the comparison relation is satisfied. More formally, they
return a value in a partially ordered set.

Definition 1. Let L be a DL. A concept comparison measure (CCM) for L is a family of func-
tions c that contains, for every L TBox T , an equivalence invariant function cT : CL(NC,NR)×
CL(NC,NR)→ S, where

– S is a non-empty set equipped with a partial order ≤S,
– and equivalence invariant means that cT (C,D) = cT (C

′, D′)
whenever C ≡T C ′ and D ≡T D′.

The reason we require equivalence invariance is that we do not view concept descriptions as
syntactic objects, but rather as semantic ones that, for every interpretation, yield a subset of
the interpretation domain. Since equivalent concept descriptions always yield the same sets,
they are the same objects from a semantic point of view, and thus should also be treated the
same way by the comparison function. The partial order on S allows us to compare different
comparison degrees. We will later use the natural numbers and the non-negative real numbers,
possibly extended with infinity +∞, as well as the closed real interval [0, 1] with the obvious
orders as sets S.

Well-investigated examples of CCMs are concept similarity measures (CSMs), for which S =
[0, 1] (see e.g., [25]). Intuitively, a CSM ./T is a graded variant of equivalence, where two concept
descriptions C,D are equivalent iff ./T (C,D) = 1, and they become less and less similar with
decreasing value ./T (C,D). Usually, one also requires CSMs to be symmetric in the sense that
./T (C,D) = ./T (D,C). For the DL EL, a framework for defining CSMs satisfying certain
additional properties has been introduced in [25], but equivalence invariance was only achieved
for so-called acyclic TBoxes. This was extended in [19] to general TBoxes. For FL0, CSMs that
are equivalence invariant for acyclic TBoxes were introduced in [30]. We will show later how
CCMs for FL0 that are equivalence invariant for general TBoxes can be obtained by using
weighted tree automata. CSMs for ALC are, for instance, investigated in [15].

Our definition of CCMs encompasses CSMs, but also covers other measures such as concept
distance measures, which are mappings into [0,+∞) for which a larger value indicates that
the concept descriptions are less similar (see e.g., [7]). In addition, it covers graded variants of
subsumption, which map into [0, 1], but in contrast to CSMs are not supposed to be symmetric.
For example, the CSMs for EL and FL0 in [34] and [30], respectively, are based on asymmetric
concept subsumption measures, which are then turned into symmetric CSMs by combining the
results of the comparisons in both directions by computing the average.

2.3 Approximation

In contrast to approaches that try to speed up reasoning by employing approximate inference
techniques [27], we use approximation as a way to extend the range of admissible answers
to queries or admissible elements of concept descriptions. In this context, CCMs can be used
together with a threshold construction to define which answers or individuals are admissible.
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Relaxing instance queries Ecke et al. [18,19] use CSMs to relax instance queries in EL, i.e.,
instead of requiring that an individual is an instance of the query concept, they only require
that it is an instance of a concept description that is “similar enough” to the query concept.

Definition 2. Let ./ be a CSM for EL, T an EL TBox, A an EL ABox, and t ∈ [0, 1). The
individual a ∈ NI is a relaxed instance of the EL concept description Q w.r.t. T , A, ./, and the
threshold t if there exists an EL concept description X such that ./T (Q,X) > t and A |=T X(a).

Ecke et al. [18,19] show that, under certain conditions on the CSMs used, the relaxed instance
problem for EL is decidable. They also introduce a class of polynomially computable CSMs on
EL concept descriptions for which the relaxed instance problem is in NP.

Adding threshold concepts to EL In [4], a similar construction is used to relax membership
in EL concept descriptions. To be more precise, the authors introduce the notion of a graded
membership function m to generalize elementhood in concept descriptions, and then use a
threshold construction to obtain new concept constructors.

Definition 3. A graded membership function m is a family of functions that contains for every
interpretation I a function mI : ∆I × CEL(NC,NR) → [0, 1] satisfying the following conditions
(for C,D ∈ CEL(NC,NR)):

M1: ∀I ∀d ∈ ∆I : d∈CI ⇔ mI(d, C)=1,

M2: C≡D ⇔ ∀I ∀d ∈ ∆I : mI(d, C) = mI(d,D).

Intuitively, given an interpretation I and d ∈ ∆I , mI(d, C) ∈ [0, 1] represents the degree to
which d belongs to C in I. The threshold concept C∼t for ∼ ∈ {<,≤, >,≥} then collects all
the elements of ∆I that belong to C with degree ∼ t, as measured by m. To be more precise,
the formal semantics of threshold concepts is then defined as follows: (C∼t)I := {d ∈ ∆I |
mI(d, C)∼ t}. The DL τEL(m) extends EL with such threshold concepts.

In [4] a specific such graded membership function called deg is introduced and the complexity of
reasoning in τEL(deg) w.r.t. empty TBoxes (NP-complete or coNP-complete, depending on the
reasoning problem) is investigated in detail. In addition, it is shown that, using a construction
similar to the one in Definition 2, a CSM ./ satisfying certain properties can be used to define
a graded membership function:

mI./(d, C) := max{./∅(C,D) | D ∈ CEL(NC,NR) and d ∈ DI}.

To ensure that this construction yields a well-defined graded membership function, the CSM
must be equivalence invariant, role-depth bounded, and equivalence closed (see [25,4] for def-
initions of the latter two properties). Finally, the authors of [4] prove that answering relaxed
instance queries w.r.t. ./ is the same as answering instance queries for threshold concepts C>t
in τEL(m./).

In [6] it is shown that, for computable CSMs ./ satisfying these properties, reasoning in τEL(m./)
can effectively be reduced to reasoning in the DL ALC, but the reduction is in general non-
elementary. The authors then introduce a class of CSMs ./ such that reasoning in τEL(m./)
has the same complexity as reasoning in τEL(deg).

2.4 Approximate unification

Unification has been introduced as a novel inference service that can be used to detect redun-
dancies in ontologies. Basically, in unification one views some of the concept names in concept
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descriptions as variables, which can be replaced by concept descriptions using a substitution.
The goal is then to make two concept descriptions equivalent by applying the same substitution
to both. For example, consider the FL0 concept descriptions

C = A u ∀r.(X u ∀s.B) and D = Y u ∀r.(Z uA u ∀r.B).

Obviously, the substitution σ that replaces X by Au∀r.B, Y by A, and Z by ∀s.B makes C,D
equivalent (w.r.t. the empty TBox):

σ(C) = A u ∀r.(A u ∀r.B u ∀s.B) ≡∅ A u ∀r.(∀s.B uA u ∀r.B) = σ(D).

Such substitutions are called unifiers.

Unification was first investigated in detail for the DL FL0 [9], and later on for the DL EL [8].
The unification problem, i.e., deciding whether two concept descriptions with variables have
a unifier or not, is ExpTime-complete in FL0 and NP-complete in EL. Both works basically
restrict their attention to the case of an empty TBox. For EL, some attempts have been made
to extend the results to unification w.r.t. GCIs [2], but these approaches can at the moment
only deal with TBoxes that satisfy a certain restriction on cyclic dependencies between concept
names. For ALC, decidability of the unification problem (even w.r.t. the empty TBox) is a
longstanding open problem, though it is known that undecidability holds for extensions of ALC
by so-called nominals or the universal role [36].

Approximate unification relaxes the requirement that the two concept descriptions must be
made equivalent. Instead, it requires that they are made “almost” equivalent, where the meaning
of “almost” is formalized using distance measures between concept descriptions. Such measures
are CCMs that map into [0,+∞) and satisfy some additional properties. Basically, given such
a measure and a threshold value, one then asks whether one can lower the distance between
two concept descriptions below the threshold value by applying a substitution. This is called
the decision problem for approximate unification. For the computation problem, one wants to
calculate the lowest achievable distance.

In [7], approximate unification is introduced and then investigated for the DL FL0 and two
concept distance measures that are induced by distance measures between formal languages (see
the next section). It is shown that (w.r.t. the empty TBox and these two measures), approximate
unification has the same complexity (ExpTime) as unification.

3 Concept comparison measures for FL0

Until recently, the research on concept comparison measures in DLs was mostly concerned
with EL [25,19,34] and more expressive DLs [15]. To achieve equivalence invariance, concept
descriptions are usually first translated into an appropriate normal form, and then the structure
of the normalized descriptions is compared. For instance, measures that achieve equivalence
invariance only for the empty TBox or for acyclic TBoxes in EL [25,34] make use of the reduced
form of EL concept descriptions introduced in [24]. Extensions to general TBoxes [19] use the
so-called canonical model, which is generated by the polynomial-time subsumption algorithm
for EL [3].

Two recent approaches for defining concept comparison measures for FL0 [30,7] were restricted
to the case of the empty TBox. Both approaches employ a formal language-based characteriza-
tion of equivalence between FL0 concept descriptions. In the remainder of this paper, we will
develop a general approach for defining concept comparison measures for FL0 concept descrip-
tions that are equivalence invariant also w.r.t. general TBoxes. This is achieved by using a new
formal language-based characterization of equivalence in FL0 w.r.t. general TBoxes [28], where
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the semantics of a concept description is characterized using a tuple of (possibly infinite) formal
languages. Basically, this tuple serves as a normal form for the concept description. In order to
define equivalence invariant measures on FL0 concept descriptions, it is thus sufficient to define
measures that compare such tuples. We will show how tuples of languages can be represented
by infinite trees, and then use appropriate weighted tree automata to compute the comparison
value.

3.1 From FL0 concept descriptions to tuples of formal languages

In FL0, subsumption and equivalence can be nicely characterized using language inclusion. This
characterization relies on transforming FL0 concept descriptions into an appropriate normal
form as follows. First, the semantics given to concept constructors in FL0 implies that value
restrictions distribute over conjunction, i.e., for all C,D ∈ CFL0(NC,NR) and r ∈ NR it holds
that

∀r.(C uD) ≡∅ ∀r.C u ∀r.D.

Using this equivalence as a rewrite rule from left to right, each FL0 concept description can be
translated into an equivalent concept description that is either > or a conjunction of concept
descriptions of the form ∀r1 . . . ∀rn.A, where {r1, . . . , rn} ⊆ NR and A ∈ NC. Such concept
descriptions can be abbreviated as ∀w.A, where w represents the word r1 . . . rn. Note that
n = 0 means that w is the empty word ε, and thus ∀ε.A corresponds to A. Furthermore, a
conjunction of the form ∀w1.A u . . . u ∀wm.A can be written as ∀L.A where L ⊆ NR

∗ is the
finite language {w1, . . . , wm}. We use the convention that ∀∅.A corresponds to the top concept
>. Thus, if we fix the set of concept names as NC := {A1, . . . , A`}, then any two concept
descriptions C,D ∈ CFL0

(NC,NR) can be represented as

C ≡∅ ∀K1.A1 u . . . u ∀K`.A`,

D ≡∅ ∀L1.A1 u . . . u ∀L`.A`,
(1)

where K1, L1, . . . ,K`, L` are finite languages over the alphabet of role names NR, i.e., finite
subsets of NR

∗. Using this representation, it was shown in [9] that C v∅ D iff Li ⊆ Ki for all
i, 1 ≤ i ≤ `. Since equivalence corresponds to subsumption in both directions, the FL0 concept
descriptions C,D in (1) are equivalent w.r.t. the empty TBox iff Li = Ki for all i, 1 ≤ i ≤ `.

In the presence of a non-empty TBox T , a similar characterization of subsumption and equiv-
alence can be obtained [28], but now the definition of the languages needs to take the GCIs in
T into account. Given an FL0 concept description C and a TBox T , we define for all A ∈ NC

the following language
LT (C,A) := {w ∈ NR

∗ | C vT ∀w.A},

and call this language the value restriction set of C w.r.t. T and A. It can easily be verified that,
for all concept names Ai ∈ NC, the sets Ki in (1) are actually equal to L∅(C,Ai). However, while
in the case of the empty TBox these languages are finite, they may be infinite for non-trivial
TBoxes. This is illustrated by the following example.

Example 1. Let C be the FL0 concept description C := A u ∀s.(A u B) and T the TBox
T := {A v ∀r.A,B v ∀s.B}. It is easy to see that the value restriction sets for A and B are

LT (C,A) = r∗ ∪ sr∗ and LT (C,B) = ss∗,

where we have used standard notation for writing regular expressions to describe these infinite
languages.
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Just as in the case of the empty TBox, the value restriction sets can be used to characterize
equivalence and subsumption w.r.t. general TBoxes (see [28]):

C vT D iff LT (D,Ai) ⊆ LT (C,Ai) (1 ≤ i ≤ `), (2)
C ≡T D iff LT (C,Ai) = LT (D,Ai) (1 ≤ i ≤ `). (3)

The equivalence (3) shows that, in FL0, formal languages can be used to represent the se-
mantic content of concept descriptions: up to equivalence, every FL0 concept description
C ∈ CFL0

(NC,NR) is uniquely represented by the tuple of languages

LT (C) := (LT (C,A1), . . . ,LT (C,A`)).

We will use this fact to reduce the definition of concept comparison measures between FL0

concept descriptions w.r.t. a TBox to the definition of measures comparing tuples of languages:
given two FL0 concept descriptions C,D, we define cT (C,D) by comparing the tuples LT (C)
and LT (D). One advantage of this approach is that equivalence invariance comes “for free” since
equivalent concept descriptions are indistinguishable from the language point of view.

3.2 Using tuples of languages to define CCMs

The idea of using tuples of languages to compare FL0 concept descriptions has already been
employed in [30,7], but restricted to the empty TBox. In both works, the general approach used
to define such measures consists of the following three steps:

1. Translate the FL0 concept descriptions C and D into their corresponding tuples of lan-
guages L∅(C) = (K1, . . . ,K`) and L∅(D) = (L1, . . . , L`). For the sake of readability, we will
denote these tuples as K and L, respectively.

2. To compare the tuples K and L, their components Ki and Li are compared pairwise, and
the values obtained this way are then appropriately combined into a value s(K,L).

3. Finally, the value s(K,L) is used to define c∅(C,D).

In the following, we recall the exact definitions of the measures introduced in [30] and [7].

Example 2. In [30], the authors’ goal is to define concept similarity measures. To this end, given
K and L, they first define an asymmetric measure s, which they apply to (K,L) and (L,K).
The obtained values are then combined using average. For the definition of the asymmetric
measure, they propose two possible functions e1 and e2 to compare every pair (Ki, Li):

– the function e1 checks inclusion: e1(Ki, Li) = 1 if Li ⊆ Ki, and 0 otherwise;
– the function e2 returns the fraction of the words in Li that also belong to Ki, and thus

yields 1 if Li ⊆ Ki, but 0 only if the two languages are disjoint:1

e2(Ki, Li) =
|Ki ∩ Li|
|Li|

The asymmetric measure s is then defined as s(K,L) = f(ej(K1, L1), . . . , ej(K`, L`)), where
f is the average operator and j ∈ {1, 2}. Finally, the CSM ./∅ for FL0 concept descriptions is
defined as

./∅(C,D) :=
s(L∅(C),L∅(D)) + s(L∅(D),L∅(C))

2
.

1 Note that this function is well-defined only for finite languages. Thus, e2 cannot be used in the
presence of general TBoxes, where the languages may be infinite.
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Example 3. In [7], the authors introduce the notion of concept distance measures for FL0. They
obtain such measures by applying a language distance (which is assumed to be a topological
metric) to the pairs of languages (Ki, Li), and then combining these values using a function f .
In particular, they define two language distances d1 and d2, which we introduce below.

Let M1 and M2 be two languages over an alphabet Σ. We denote the symmetric difference of
M1 and M2 as M1∆M2, i.e.,

M1∆M2 := (M1 \M2) ∪ (M2 \M1). (4)

The language distances d1 and d2 are now defined as

d1(M1,M2) := 2−n where n = min {|w| | w ∈M1∆M2},

d2(M1,M2) := µ(M1∆M2) where µ(M) = 1
2

∑
w∈M

(2|Σ|)−|w|.

Intuitively, the symmetric difference captures all the discrepancies between two concept de-
scriptions C and D with respect to a concept name A. More precisely, if for instance, w ∈
L∅(C,A) \ L∅(D,A) for some w ∈ NR

∗, then C v∅ ∀w.A and D 6v∅ ∀w.A, which amounts to
a semantically relevant difference between C and D. Based on this intuition, the first distance
looks for the shortest such discrepancy, while the second one takes all differences into account,
but differences for longer words count less than differences for shorter ones (see [7] for a more
detailed explanation).

As already mentioned, these language distances are then used to define a measure s on tuples
by setting s(K,L) := f(dj(K1, L1), . . . , dj(K`, L`)) where j ∈ {1, 2}. For functions f satisfying
certain properties (called combining functions in [7]), this yields a concept distance md,f for
FL0 concept descriptions:

md,f (C,D) := s(L∅(C),L∅(D))

In the two examples above, the definition of a CCM for FL0 was in the end reduced to define
a distance function that compares two languages. Thus, the input for this function is a pair
of languages. In general, one may also want to allow for definitions of distance functions on
language tuples that do not resort to binary comparisons of the components of the tuples. The
inputs for the function are then 2`-tuples of languages. For this reason we now develop means
for defining functions that receive tuples of languages as input, which covers both the binary
and the general case.

Though developed for the case of the empty TBox, and thus with finite languages in mind, the
functions e1, d1, d2 of our examples are also well-defined for infinite languages, and thus can
also be employed in the more general setting of non-empty TBoxes. However, if we are not only
interested in defining, but also in computing the functions, we need to find ways of representing
their input (i.e., tuples of possibly infinite languages) in a finite way. In the next section, we
show that finite automata working on infinite trees can be used for this purpose.

3.3 Finitely representing tuples of languages

Following the ideas in [9,10,28], we will represent tuples of (possibly infinite) languages using
infinite trees.

Definition 4. Let Σ = {σ1, . . . , σk} be a non-empty finite set of symbols. Given a set of labels
L, an L-labeled Σ-tree is a mapping t : Σ∗ → L that assigns a label t(w) ∈ L to every node
w ∈ Σ∗. The set of all L-labeled Σ-trees is denoted as TωΣ,L.
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Intuitively, the nodes of a Σ-tree t correspond to finite words in Σ∗, where the empty word ε rep-
resents the root of t and every node w has k children corresponding to the words wσ1, . . . , wσk.
Since for a non-empty alphabet Σ the set Σ∗ of all words over Σ is infinite, Σ-trees are by
definition infinite. We use tuples over {0, 1} as labels to represent tuples of languages over Σ.

Definition 5. Let Σ be a finite set of symbols and ` ∈ N. We define the mapping γ` :
(
2Σ
∗)` →

TωΣ,{0,1}` as follows. Given a tuple of languages L = (L1, . . . , L`) over Σ, γ`(L) := tL where
tL : Σ∗ → {0, 1}` is the Σ-tree such that

tL(w) := (x1, . . . , x`), where xi = 1 iff w ∈ Li (for all w ∈ Σ∗).

It is easy to see that γ` is a bijection between tuples of languages over the alphabet Σ and
{0, 1}`-labeled Σ-trees. Given a tree t ∈ TωΣ,{0,1}` , the inverse function yields the tuple γ−1` (t) =

(L1, . . . , L`) where Li consists of the words w for which the ith component of t(w) is equal to
1.

Basically, this translation of tuples of languages into trees is used in [28] to represent the tuple of
value restriction sets LT (C) of an FL0 concept description C as an NR-tree tC . Strictly speaking,
the label set employed in [28] is 2NC for NC = {A1, . . . , A`} rather than {0, 1}`, but it should
be clear that, by fixing a linear order A1 < A2 < . . . < A` on NC, these two representations
can be translated into each other. Obviously, a single value restriction set LT (C,Ai) can be
represented as a {0, 1}-labeled NR-tree tC,Ai , where the words belonging to this language receive
label 1 and the others label 0.

The following example illustrates this representation of value restriction sets by trees using the
concept description C and the TBox T of Example 1.

Example 4. Recall from Example 1 that LT (C,A) = r∗ ∪ sr∗ and LT (C,B) = ss∗. To express
the tuple of these languages as a tree, we assume that r is the first symbol of the alphabet and s
is the second, and that A < B. Then LT (C) = (r∗∪sr∗, ss∗), and this tuple is represented by the
tree sketched on the left-hand side of Figure 1. For better readability, we have labeled the edges
with the symbols r and s. As an example for the labeling, consider the node corresponding to
the word sr. It has label (1, 0) since this word belongs to r∗∪sr∗, but not to ss∗. The extension
of this tree to infinity is obtained as follows. On the one hand, the outgoing dotted edges tell us
that all the nodes below are labeled with the tuple (0, 0). Notice, for example, that there are no
words starting with rs or srs in any of the two languages. On the other hand, the nodes rrr,
srr and sss are the roots of infinite trees representing the tuples of languages (r∗, ∅), (r∗, ∅)
and (∅, s∗), respectively.

The tree on the right-hand side of the figure represents the language LT (C,A), which is obtained
from tC by projecting the label-tuples to the first component.

Using the same approach, given two concept descriptions C,D, the pair of tuples (LT (C),LT (D))
can obviously be represented as an infinite NR-tree t(C,D) : NR

∗ → {0, 1}` × {0, 1}`.

As mentioned before, our goal is to represent such input tuples in a finite way. Using infinite trees
obviously does not solve this problem. Thus, we need to develop an approach for representing
such trees in a finite way. For general tuples of infinite languages and thus arbitrary Σ-trees
this is clearly not possible. However, a closer look at the trees tC constructed in [28] shows that
they are actually regular trees, which admit a finite representation. Therefore, we restrict our
attention to the class of regular trees. We start by formally defining the notion of a regular
tree, and then show that regular trees can always be represented using certain kinds of tree
automata.
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tC : (1, 0)
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. . .
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(0)

s

r

(1)

(1)

(1)

r

. . .

r

(0)

s

s

Fig. 1. Tuples of languages as infinite trees.

Definition 6 (regular tree). Let t be a tree in TωΣ,L. Given a node w ∈ Σ∗, the subtree
tw : Σ∗ → L of t is defined as tw(v) := t(wv) for all v ∈ Σ∗. We say that t contains the subtree
tw. Then, t is a regular tree if it contains finitely many distinct subtrees.

There are different ways to represent regular trees in a finite way [35]. Here, we use looping tree
automata for this purpose.

Definition 7 (Looping tree automaton (LTA)). A looping tree automaton is a tuple A =
(Σ,Q,L,∆, I) where Σ = {σ1, . . . , σk} is a finite set of symbols, Q is a finite set of states, L
is a finite set of labels, ∆ ⊆ Q× L×Qk is the transition relation and I ⊆ Q is a set of initial
states. A run of this automaton on a tree t ∈ TωΣ,L is a Q-labeled Σ-tree r : Σ∗ → Q such that
r(ε) ∈ I and

(r(w), t(w), r(wσ1), . . . , r(wσk)) ∈ ∆

for all w ∈ Σ∗. The tree language L(A) recognized by A is the set of all trees t ∈ TωΣ,L such
that A accepts t, i.e., A has a run on t.

In general, LTAs recognize sets of trees. Therefore, to uniquely represent a tree we only consider
those recognizing singleton sets.

Definition 8. Let A = (Σ,Q,L,∆, I) be a looping tree automaton. We say that A represents
the infinite tree t ∈ TωΣ,L if L(A) = {t}.

It is easy to see that trees that can be represented by looping tree automata are indeed regular.
In fact, LTAs are Rabin tree automata [29,35] with trivial acceptance conditions, and it is
well-known that non-empty tree languages recognized by Rabin tree automata always contain
a regular tree. Thus, if such an automaton recognizes the singleton set {t}, then t must be
regular. Conversely, we can show that any regular tree can be represented in this way.

Proposition 1. Let t ∈ TωΣ,L be an L-labeled Σ-tree. Then, t is regular iff it can be represented
by an LTA.

Proof. We have already seen that the if-direction holds. To show the only-if direction, assume
that t is a regular tree. By Definition 6 it thus contains only finitely many distinct subtrees,
say t0, t1, . . . , tm where we assume without loss of generality that t0 = t. For all 1 ≤ i ≤ m, we
denote the direct subtrees of ti as tiσ1

, . . . , tiσk . Note that these are also subtrees of t, and thus
belong to the set {t0, t1, . . . , tm}. We build the looping tree automaton At = (Σ,Qt, L,∆t, {t0})
as follows: Qt := {t0, t1, . . . , tm} and ∆t := {(ti, ti(ε), tiσ1

, . . . , tiσk) | 1 ≤ i ≤ m}.
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In the following, we show that that t = t0 is the only tree accepted by At. Initially, we prove
that At accepts t, by inductively defining a run r of At on t. Set r(ε) = t0 = tε. Assume that
for w ∈ Σ∗, the state r(w) has already been defined and it holds that r(w) = tw = tj for
some 0 ≤ j ≤ m. Note that tjσi = twσi for every 1 ≤ i ≤ k. Since t(w) = tw(ε) = tj(ε) and
(tj , tj(ε), tjσ1

, . . . , tjσk) ∈ ∆, we define r(wσi) = tjσi = twσi . In this way, the run r of At on t is
inductively defined, and thus t ∈ L(At).

Next, assume that At has a run r′ on a tree t′. We will inductively show that r′ = r and t′ = t.
Note that r′(ε) = t0 = r(ε), since otherwise r′ would not be a run. The induction hypothesis
is that r′(w) = r(w) = tj for some 0 ≤ j ≤ m. Recall that, by construction of r, r(w) = tw.
Hence, (r′(w), t′(w), r′(wσ1), . . . , r′(wσk)) ∈ ∆ implies that t′(w) = tj(ε) = tw(ε) = t(w) and
that (r′(wσ1), . . . , r′(wσk)) = (tjσ1

, . . . , tjσk) = (r(wσ1), . . . , r(wσk)). Thus, for every w ∈ Σ∗ we
have that r′(w) = r(w) and t′(w) = t(w) and hence r′ = r and t′ = t, implying that At accepts
exactly t and has a unique run on it. ut

The automaton At constructed in the above proof actually has a very specific syntactic shape
(see Definition 9 below), which ensures that it accepts only one tree.

Definition 9 (Representing looping tree automaton (rLTA)). A representing looping
tree automaton is a looping tree automaton A = (Σ,P, L,∆, {ps}) such that ∆ satisfies the
following condition:

– for every p ∈ P , there exists a unique symbol lp ∈ L and a unique tuple (p1, . . . , p|Σ|) ∈ P |Σ|
such that (p, lp, p1, . . . , p|Σ|) ∈ ∆.

The following proposition states some obvious consequences of this definition and the proof of
Proposition 1.

Proposition 2. Let A be an rLTA and t a regular tree. Then

1. t can be represented by some rLTA At.
2. L(A) is a singleton set consisting of a regular tree tA and A has a unique run rA on tA.

Proof. The first claim is immediate after observing that the automaton At introduced in the
proof of Proposition 1 is an rLTA. For the second claim, completely analogously to the proof
of Proposition 1, we can prove that A has a run r on some tree t, and for any run r′ of A on
some tree t′ it holds that r′ = r and t′ = t.

In [28] it is shown that, given an FL0 concept description C and a TBox T , the tree tC encoding
the tuple LT (C) can be represented by an rLTA.

Theorem 1 ([28]). Let C be an FL0 concept description and T a TBox. Then, one can
construct a representing looping tree automaton that represents tC in time exponential in the
size of C and T .

In case we are given a general LTA A, we should like to know whether it actually represents a
tree (i.e., recognizes a singleton set), and if the answer is affirmative construct an rLTA that
represents the same tree.

Lemma 1. Let A be an LTA. We can decide in polynomial time whether A represents a tree.
If A represents a tree t ∈ TωΣ,L, then we can construct an rLTA representing t in polynomial
time.
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Proof. Given A, we remove superfluous states by applying the emptiness test for looping au-
tomata [12,10] and check whether L(A) = ∅. If this is the case, A does not represent a tree.
Otherwise, we check whether the automaton accepts a unique tree. If the answer is affirmative,
we obtain an automaton Ar by removing all but one transition for every state. Obviously, Ar
is an rLTA and L(Ar) ⊆ L(A). If A represents a tree, Ar is the rLTA we are looking for.

Before providing the exact algorithm below, a definition is due. Claiming that an LTA has no
superfluous states is the informal way of saying that the LTA is trim. An LTA A is called trim
if every state can be used in some run of A. It is easy to see that every LTA can be transformed
into a trim LTA that is equivalent in the sense of having the same runs.

Algorithm for deciding whether a given LTA represents a tree.

Given an LTA A = (Σ,Q,L,∆, I):

– Construct an equivalent trim LTA A′ = (Σ,Q′, L,∆′, I ′) [10, Lemma 2]. If the resulting
automaton has no initial states, then L(A) = ∅, and thus A does not represent a tree.

– Otherwise, compute the binary relation ∼ on Q′ (that is inspired from automata minimiza-
tion) as follows:
• B0 = {(q, q′) ∈ Q′2 | ∃(q, σ1, ...), (q′, σ2, ...) ∈ ∆′ with σ1 6= σ2}
• For i = 1, 2, . . . , set

Bi = Bi−1 ∪ {(q, q′) ∈ Q′2 | ∃(q, σ, q1, . . . , qk), (q′, σ, q′1, . . . , q′k) ∈ ∆′

and 1 ≤ i ≤ k s.t. (qi, q′i) ∈ Bi−1}.

The iteration becomes stable and thus terminates afterm ≤ |Q′2| steps. Define∼:= Q′2\Bm.
– Check whether q ∼ q′ for every q, q′ ∈ I ′. The answer is positive iff A represents a tree.

The following lemma proves correctness of the algorithm.

Lemma 2. A trim LTA A = (Σ,Q,L,∆, I) represents a tree iff I 6= ∅ and q ∼ q′ for every
q, q′ ∈ I.

Proof. Assume that A does not represent a tree. This means that either it does not accept any
tree, or it accepts more than one. In the first case, since A is trim, we get that I = ∅. In the
second case, there are at least two trees t1, t2 accepted by A. Let w = σ1 . . . σn be a minimal
word s.t. t1(w) 6= t2(w) and r1, r2 be runs of A on t1, t2 respectively. Thus, we get that there
are transitions (r1(w), t1(w), ...), (r2(w), t2(w), ...) ∈ ∆ with t1(w) 6= t2(w). By the construction
in the algorithm, (r1(w), r2(w)) ∈ B0 ⊆ Bm. For every proper prefix v of w, since t1(v) = t2(v)
(by minimality of w) we get that (r1(v), r2(v)) ∈ Bm. In particular, (r1(ε), r2(ε)) ∈ Bm, and
since r1(ε), r2(ε) ∈ I the proof of this direction is complete.

For the other direction, if I = ∅ then obviously A does not accept any trees. Assume that q 6∼ q′,
i.e., (q, q′) ∈ Bm for some q, q′ ∈ I. Then, let l be the least number such that (q, q′) ∈ Bl. If
l = 0, there exist (q, σ, . . . ), (q′, σ′, . . . ) ∈ ∆ with σ 6= σ′, and since the automaton is trim,
we get that A accepts at least two trees, one with root σ and one with σ′. If l ≥ 1, exist
(q, σ, q1, . . . , qk), (q

′, σ, q′1, . . . , q
′
k) ∈ ∆ with (qi, q

′
i) ∈ Bl−1 for some 1 ≤ i ≤ k. Iterating the

above argument, we get a word w ∈ Σ∗ (with length at most l) and a pair (p, p′) ∈ B0 s.t. p is
a w-successor of q and p′ of q′ and, as before, we derive that A accepts at least two trees (with
the difference existing in the node w instead of the root). ut

The results of this section show that we can restrict the attention to rLTAs when representing
regular trees.
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4 Using weighted looping tree automata to assign a value to a tuple
of languages

Our goal is now to assign values from a (numerical or other) domain to tuples of (possibly
infinite) languages that can be represented by regular trees. Consequently, we need a device
that takes as input such a tree and returns a value. Weighted looping tree automata are such
devices: they assign values (from a so-called semiring) to infinite trees. In the next subsection,
we introduce the special type of weighted tree automata that we will use together with the
necessary notions (semirings, discounting, etc.). We show how the language distances d1, d2 and
the function e1 introduced in the previous section can be realized using such automata. Then,
we turn to the problem of how to actually compute the value assigned by such an automaton
to a regular tree that is represented by an rLTA.

4.1 Weighted looping tree automata

In order to assign a value to a tree, weighted tree automata make use of transitions that are
equipped with weights. These weights are usually elements of a semiring such that one can add
and multiply weights. An extensive survey of weighted tree automata can be found in [20]. In
a setting where the automata are required to work on infinite trees, the underlying semiring
should admit suitable infinite sums and products [31]. In the context of infinite trees, it is also
useful to employ discounting. This has been used for modeling systems with non-terminating
behavior [1] in order to assign different degrees of importance to incidents that happen later in
time. In our setting, discounting can be used to assign less importance to differences that occur
for longer words, i.e., further down in the tree.

Semirings. The weight structures underlying our weighted tree automata are totally complete
commutative semirings [31].

Definition 10. A semiring S = (S,⊕,⊗,O,1) consists of a set S, two binary operations ⊕
and ⊗, and two constant elements O and 1 such that:

1. (S,⊕,O) is a commutative monoid,
2. (S,⊗,1) is a monoid,
3. multiplication distributes over addition from left and right,
4. O⊗ a = a⊗O = O for all a ∈ S.

A semiring is called commutative if a⊗ b = b⊗ a for all a, b ∈ S.

Next, assume that addition can be suitably extended to infinite sums, i.e., the semiring S is
equipped with infinitary sum operations

⊕
I : SI → S, for any index set I, such that for all I

and all families (ai | i ∈ I) of elements of S the following hold:⊕
i∈∅

ai = O,
⊕
i∈{j}

ai = aj ,
⊕

i∈{j,k}

ai = aj ⊕ ak for j 6= k,

⊕
j∈J

⊕
i∈Ij

ai

 =
⊕
i∈I

ai, if
⋃
j∈J

Ij = I and Ij ∩ Ik = ∅ for j 6= k,

⊕
i∈I

(c⊗ ai) = c⊗

(⊕
i∈I

ai

)
,

⊕
i∈I

(ai ⊗ c) =

(⊕
i∈I

ai

)
⊗ c.
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The semiring S together with the operations
⊕

I is called complete.

A complete semiring is said to be totally complete, if it is endowed with countably infinite
product operations satisfying for all sequences (ai | i ≥ 0) of elements of S the following
conditions: ⊗

i≥0

1 = 1, a0 ⊗
⊗
i≥0

ai+1 =
⊗
i≥0

ai,
⊗
i≥0

ai =
⊗
i≥0

ai
′,

where a0′ = a0 ⊗ . . . ⊗ an1 , a1
′ = an1+1 ⊗ . . . ⊗ an2 , . . . for an increasing sequence 0 < n1 <

n2 < . . . of natural numbers, and

⊗
j≥1

⊕
i∈Ij

ai

 =
⊕

(i1,i2,... )∈I1×I2×...

⊗
j≥1

aij

 ,

where I1, I2, . . . are arbitrary index sets.

A totally commutative complete semiring is a commutative and totally complete semiring that
additionally satisfies: ⊗

i≥0

(ai ⊗ bi) =

⊗
i≥0

ai

⊗
⊗
i≥0

bi

 .

Examples The following semirings are totally commutative complete:

– the semiring (N ∪ {+∞},+, ·, 0, 1) of natural numbers extended with positive infinity +∞,
– the tropical semiring Trop = (N ∪ {+∞},min,+,+∞, 0) and the arctic semiring Arc =

(N∪{+∞,−∞}, sup,+,−∞, 0) with the binary operations extended in the natural way to
infinitary operations,

– the real counterparts of the aforementioned semirings, Rinf = (R≥0 ∪ {+∞}, inf,+,+∞, 0)
and Rsup = (R≥0 ∪ {+∞,−∞}, sup,+,−∞, 0),

– the Viterbi semiring ([0, 1], sup, ·, 0, 1),
– every complete distributive lattice.

All of the above examples but Viterbi can be found in [31]. To the best of our knowledge,
whether the Viterbi semiring is totally commutative complete has not been investigated in the
literature before. To prove that this is indeed the case, it suffices to makes the following two
observations:

– It is well-known (see for example [22]) that the infinite product
∏
i≥0 ai converges in case∑

i≥0(1 − ai) converges, and is equal to 0 if
∑
i≥0(1 − ai) = +∞. Since 0 ≤ ai ≤ 1, we

have that
∑
i≥0(1− ai) either converges or is equal to +∞, and thus the infinite product is

well-defined.
– For any index set I and any family (ai | i ∈ I) of elements in [0, 1] it holds that

sup
i∈I

ai = e
− inf
i∈I
{− log ai}

,

and for any sequence (ai | i ≥ 0) of elements in [0, 1]

∏
i≥0

ai = e
−

∑
i≥0

(− log ai)

.
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Thus, Viterbi being a totally commutative complete semiring is a corollary of Rinf being one.

Even though in Definition 1 we required S to be equipped with a partial order ≤S , it is often
enough if a preorder is available. On one hand, for the relaxed instance and approximate unifi-
cation problems, strict orders, not partial ones are utilized. Given a partial order or a preorder
�, a strict order ≺ is induced in the same way by setting a ≺ b ⇐⇒ a � b ∧ b 6� a. On the
other hand, a partial order can always be derived from a preorder by considering the quotient
set, identifying elements a and b s.t. a � b ∧ b � a.

For every semiring S = (S,⊕,⊗,O,1) a natural preorder � is induced, by setting a � b if
there exists some c ∈ S such that a⊕ c = b. Note, however, that in all the examples above, the
induced preorder is actually a partial order.

Discounting. In the setting of semirings, discounting is defined by using semiring endomor-
phisms. This approach was originally used for weighted automata on infinite words by Droste
and Kuske in [16], and extended to weighted automata on infinite trees by Mandrali and Rahonis
[26].

Definition 11. Let S = (S,⊕,⊗,O,1) be a semiring. A mapping f : S → S is called an
endomorphism if f(a ⊕ b) = f(a) ⊕ f(b) and f(a ⊗ b) = f(a) ⊗ f(b) for all a, b ∈ S, and
f(O) = O, f(1) = 1. The set End(S) of all endomorphisms of S is a monoid with composition
◦ as binary operation and the identity mapping id as unit.

For Rsup, it was proved in [16] that every endomorphism is of the form p(a) = p · a for some
p ∈ [0,+∞), and conversely, every p ∈ [0,+∞) defines an endomorphism of Rsup in this way.
The same result can be shown for Rinf as well [17]. Finally, it is not difficult to see that, a
similar result holds for the Viterbi semiring.

Lemma 3. In the Viterbi semiring ([0, 1], sup, ·, 0, 1), every endomorphism is of the form p̃(a) =
ap for some p ∈ [0,+∞), and conversely every p ∈ [0,+∞) defines an endomorphism of Viterbi.

Proof. Initially, observe that for every a, b ∈ [0, 1] and for every p ∈ [0,+∞) it holds that

– p̃(sup{a, b}) = (sup{a, b})p = sup{ap, bp} = sup{p̃(a), p̃(b)},
– p̃(a · b) = (a · b)p = ap · bp = p̃(a) · p̃(b),
– p̃(0) = 0p = 0 and
– p̃(1) = 1p = 1.

Thus, every p ∈ [0,+∞) defines an endomorphism of Viterbi.

Next, assume that Φ is an endomorphism of Viterbi, and define

φ(x) = − log(Φ(e−x)).

We will show that φ is an endomorphism of Rinf . Indeed, for every x, y ∈ Rinf it holds that

φ(inf{x, y}) = − log(Φ(e− inf{x,y})) = − log(Φ(sup{e−x, e−y}))
= − log(sup{Φ(e−x), Φ(e−y)}) = inf{− log(Φ(e−x)),− log(Φ(e−y))}
= inf{φ(x), φ(y)}

and also

φ(x+ y) = − log(Φ(e−(x+y))) = − log(Φ(e−x · e−y))
= − log(Φ(e−x) · Φ(e−y)) = − log(Φ(e−x))− log(Φ(e−y))

= φ(x) + φ(y).
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Thus, φ is indeed an endomorphism of Rinf . Consequently, by [17], we know that there exists
some p ∈ [0,+∞), such that φ(x) = p · x for every x ∈ [0,+∞). Hence, for every x ∈ [0,+∞)
we get that

φ(x) = p · x =⇒ − log(Φ(e−x)) = p · x =⇒ Φ(e−x) = e−p·x = (e−x)p.

Since the image of the interval [0,+∞) under the function e−x is the interval (0, 1], for every
a ∈ (0, 1] we have that Φ(a) = ap. Finally, since by definition of endomorphism Φ(0) = 0 = 0p,
we get that Φ(a) = ap holds in the complete interval, i.e., for every a ∈ [0, 1]. ut

Definition 12. Let Σ = {σ1, . . . , σk} be a finite set of symbols and S a semiring. A discounting
for Σ and S is a tuple Φ ∈ (End(S))k.2

For a discounting Φ = (φ1, . . . , φk) and for every word w = σi1σi2 . . . σin ∈ Σ∗, we define the
endomorphism φw of S induced by Φ and w as φw = φi1 ◦ φi2 ◦ · · · ◦ φin , where for w = ε the
empty composition is id .

Weighted looping tree automata. In the following, S is assumed to be a totally complete
commutative semiring. An infinitary tree series h over L and S is a mapping h : TωΣ,L → S.
The class of all infinitary tree series over L and S is denoted by S〈〈TωΣ,L〉〉.

Definition 13 (Weigthed looping tree automaton with discounting Φ). A weighted
looping tree automaton with discounting Φ (Φ-wLTA) over S is a tuple M = (Σ,Q,L, in, wt)
where Q is a finite state set, L is a finite set of labels, Σ = {σ1, . . . , σk} is a finite set of symbols,
in : Q→ S is the initial distribution, and wt : Q×L×Qk → S is a mapping assigning weights
to the transitions of the automaton.

Given a Φ-wLTA M = (Σ,Q,L, in, wt) over S, a run of M on a tree t ∈ TωΣ,L is a mapping
r : Σ∗ → Q. We denote the set of all runs of M on t by RM(t). Given a run r, we denote
the transition (r(w), t(w), r(wσ1), . . . , r(wσk)) by −→r (w). The weight of the run r at w ∈ Σ∗ is
defined as wt(r, w) := wt(−→r (w)). The Φ-weight (or simply weight) of r is defined as

weight(r) := in(r(ε))⊗
⊗
w∈Σ∗

φw(wt(r, w)).

Finally, the Φ-behavior (or simply behavior) ofM is the infinitary tree series ||M|| ∈ S〈〈TωΣ,L〉〉
whose coefficients are determined for every t ∈ TωΣ,L by

(||M||, t) :=
⊕

r∈RM(t)

weight(r).

If we take φi = id for every i = 1, . . . , k, then we are left with a “normal” wLTA over S in the
sense of [31], and thus dispense with the prefix Φ- in the notation.

If |L| = 1, then TωΣ,L consists of a single tree tul , which we will call the unlabeled tree since
the labels are then irrelevant. In this case, we omit the label from the transitions of a Φ-wLTA
M and write RM for its runs, omitting tul . Also note that then ‖M‖ is a single element of S
rather than a tree series.
2 In the literature, more general forms of discounting have been introduced, where the tuple of endo-
morphisms to be used depends also on the label of a node, but here we restrict our attention to the
simpler form of discounting introduced above.



18

Expressing language distance functions. The functions d1, d2 introduced in Example 3
and the function e1 of Example 2 take a pair of languages over an alphabet Σ as input. Thus, to
represent this kind of input in a tree, we use the label set L2 := {0, 1}2. We show that d2 as well
as a vital component of d1 can be expressed by weighted looping automata with discounting
over Rinf . The function d1 itself and the function e1 can be expressed using the Viterbi semiring.

Example 5. The first language distance described in [7] is d1(K,N) = 2−n where n = min{|w| |
w ∈ K∆N}. We introduce a wLTA (without discounting) that, given a tree t representing the
tuple of languages (K,N), computes the minimum n rather than 2−n itself. Given n, the expo-
nentiation can be done by external computation. Consider the wLTAM1 = (Σ,Q,L2, in1, wt1)
over Rinf = (R≥0 ∪ {+∞}, inf,+,+∞, 0), where Q = {q0, q1}, in1(q0) = +∞, in1(q1) = 0 and

wt1(q, l, p1, . . . , pk) =



1 if q = q1, l ∈ {(0, 0), (1, 1)}, pi = q1 for some 1 ≤ i ≤ k
and pj = q0 for j 6= i

0 if q = q1, l ∈ {(1, 0), (0, 1)}, pi = q0 for all 1 ≤ i ≤ k
0 if q = q0, l ∈ {0, 1}2, pi = q0 for all 1 ≤ i ≤ k
+∞ otherwise

Intuitively, each run using only transitions with non-infinite weights selects one path in the tree,
which it labels with q1 until an element in the symmetric difference is found. The transitions
up to this point in the selected path receive weight 1, and all other transitions have weight
0. Thus, adding up the weights (with the multiplication ⊗ = + of Rinf) gives us the distance
from the root to the node where the difference was detected, i.e., the length of the word in the
symmetric difference (or +∞ in case no difference is found on the chosen path). By building
the infimum over all runs, the length of the shortest word in the symmetric difference is found.

Example 5’. Actually, we can compute the exact value of d1 by making use of the Viterbi semir-
ing. Consider the wLTA M′1 = (Σ,Q,L2, in

′
1, wt

′
1) over the Viterbi semiring ([0, 1], sup, ·, 0, 1)

where Q = {q0, q1}, in′1(q0) = 0, in′1(q1) = 1 and

wt′1(q, l, p1, . . . , pk) =



1
2

if q = q1, l ∈ {(0, 0), (1, 1)}, pi = q1 for some 1 ≤ i ≤ k
and pj = q0 for j 6= i

1 if q = q1, l ∈ {(1, 0), (0, 1)}, pi = q0 for all 1 ≤ i ≤ k
1 if q = q0, l ∈ {0, 1}2, pi = q0 for all 1 ≤ i ≤ k
0 otherwise

It is easy to see that this automaton works completely analogously to the previous one, com-
puting ( 12 )

n instead of n.

Example 6. The second distance described in [7] is d2(K,N) = µ(K∆N), where µ(M) =
1
2

∑
w∈M (2|Σ|)−|w|. We introduce a Φ-wLTA that, given a tree t representing the tuple of

languages (K,N), computes µ(K∆N). Consider the Φ-wLTA M2 = (Σ,Q,L2, in2, wt2) over
Rinf where Q = {q0, q1}, in2(q0) = in2(q1) = 0 and

wt2(q, l, p1, . . . , pk) =


0 if q = q0, l ∈ {(0, 0), (1, 1)}
1
2

if q = q1, l ∈ {(1, 0), (0, 1)}
+∞ otherwise

Finally, the discounting Φ = (φ1, . . . , φk) is defined as φi = 1
2|Σ| for every i = 1, . . . , k, where

1
2|Σ| (a) =

1
2|Σ| · a for a ∈ R≥0 and 1

2|Σ| (+∞) = +∞.

It is easy to see that there is a unique run r0 with non-infinite weight, the one that assigns q0
to the nodes labeled with (0, 0) or (1, 1), i.e., words that do not belong to K∆N , and q1 to the
ones labeled with (1, 0) or (0, 1), i.e., words that belong to K∆N . The discounting multiplies
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the weight of every word w ∈ Σ∗ with ( 1
2|Σ| )

|w|. If the word does not belong to K∆N it gets a
zero weight. If it does belong to K∆N , it gets weight 1

2 . “Multiplying” in Rinf (i.e., summing
over all words in Σ∗), we obtain exactly µ(K∆N) as weight for this run.

Example 7. Recall the function e1 from Example 2 where e1(K,N) = 1 if N ⊆ K, and 0
otherwise. As was the case for d1, given a tree t representing the tuple of languages (K,N) we
can either consider a wLTA over Rinf that helps computing e1(K,N), or make use of a wLTA
over the Viterbi semiring to compute the exact value. In this example, we examine the second
case.

Consider the wLTAMe = (Σ,Q,L2, ine, wte) over the Viterbi semiring ([0, 1], sup, ·, 0, 1) where
Q = {q0}, in(q0) = 1 and

wt(q0, l, p1, . . . , pk) =

{
1 if l ∈ {(0, 0), (1, 0), (1, 1)}
0 otherwise

Note that, since |Q| = 1, there is exactly one run r of Me on t. The intuition behind this
construction is the following: we have that N 6⊆ K iff ∃w ∈ Σ∗ such that w ∈ N ∧ w /∈ K
iff ∃w ∈ Σ∗ such that t(w) = (0, 1). In other words, if there exists a node of t labeled with
(0, 1) we have that N 6⊆ K. From the automaton point of view, a node labeled with (0, 1)
requires a transition with weight 0, and thus weight(r) = 0. On the other hand, if only the
labels (0, 0), (1, 0) and (1, 1) appear, implying that N ⊆ K, every transition has weight 1, and
thus weight(r) = 1. Hence, by computing (||M||, t) we know e1(K,N).

4.2 Computing the behavior on regular trees

Given a Φ-wLTAM over a semiring S and an rLTA A representing a regular tree t, we want to
compute the behavior of M on t, i.e., (||M||, t). In a first step, we reduce this problem to the
problem of computing the behavior of a Φ-wLTA on the unlabeled tree. To be more precise, we
combine the two automata M and A into a single Φ-wLTA MA that works on the unlabeled
tree tul such that (||M||, t) = (||MA||, tul).

Theorem 2. Given a Φ-wLTAM = (Σ,Q,L, in, wt) over S and an rLTA A = (Σ,P, L,∆, {ps})
representing a regular tree t, one can construct in polynomial time a Φ-wLTAMA over S work-
ing on the unlabeled tree tul such that (||M||, t) = (||MA||, tul).

Proof. Let S = (S,⊕,⊗,O,1). By the definition of rLTAs, for every state p ∈ P there exists a
unique letter lp ∈ L such that (p, lp, . . .) ∈ ∆. Additionally, by Proposition 2 it holds that A
has a unique run, say θ, on t. For simplicity, for every w ∈ Σ∗ we denote θ(w) ∈ P by pw.

We define the Φ-wLTAMA = (Q× P × L,Σ, in′, wt′) over S as follows:

in′(q, p, l) :=

{
in(q) if p = ps and l = lps
O otherwise

wt′
(
(q0, p0, l0),(q1, p1, l1), . . . , (qk, pk, lk)

)
:=

{
wt(q0, l0, q1, . . . , qk) if (p0, l0, p1, . . . , pk) ∈ ∆
O otherwise

To prove that (‖M‖, t) = (‖MA‖, tul), it is sufficient to show that there exists an injection
τ : RM(t)→ RMA such that weight(r) = weight(τ(r)) for every r ∈ RM(t) and weight(r′) = O

for every r′ ∈ RMA \ im(τ), where im(τ) stands for the image set of the mapping τ .
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More precisely, the injection is defined as follows. Given a run r ∈ RM(t), we define τ(r) = r′

by setting r′(w) = (r(w), pw, lpw). We have in′(r′(ε)) = in′(r(ε), pε, lpε) = in(r(ε)),xx and for
all w ∈ Σ∗:

wt(r′, w) = wt′(
−→
r′ (w)) = wt′(r′(w), r′(wσ1), . . . , r

′(wσk))

= wt′((r(w), pw, lpw ), (r(wσ1), pwσ1 , lpwσ1 ), . . . , (r(wσk), pwσk , lpwσk ))

= wt(r(w), lpw , r(wσ1), . . . , r(wσk)) = wt(r(w), t(w), r(wσ1), . . . , r(wσk))

= wt(r, w).

Thus, we obtain

weight(r′) = in′(r′(ε))⊗
⊗
w∈Σ∗

φw(wt(r
′, w))

= in(r(ε))⊗
⊗
w∈Σ∗

φw(wt(r, w)) = weight(r).

Now suppose that r′ ∈ RMA \ im(τ). In other words, for every r ∈ RM(t), r′ 6= τ(r), and hence

∃z ∈ Σ∗, r′(z) 6= (r(z), pz, lpz ) (5)

From r′ we define three mappings r0 : Σ∗ → Q, p0 : Σ∗ → P, l0 : Σ∗ → L by setting
r′(w) = (r0(w), p0(w), l0(w)) for every w ∈ Σ∗. Obviously, r0 ∈ RM(t) (since any mapping
from Σ∗ to Q is a run ofM on t). Then, from (5), we get that ∃z ∈ Σ∗ such that p0(z) 6= pz
or l0(z) 6= lpz (otherwise it would be the case that r′ = τ(r0)), and assume without loss of
generality that z has minimal length. We distinguish two cases.

– z = ε. This implies that p0(ε) 6= pε or l0(ε) 6= lpε . In both cases, in(r′(ε)) = O and thus
weight(r′) = O, since O⊗ a = O for all a ∈ S.

– z = vσi. This implies that pz 6= p0(z) or lpz 6= l0(z). In the first case, we have that
(pv, lpv , . . . , p0(z), . . . ) 6= (pv, lpv , . . . , pvσi , . . . ). Since (pv, lpv , . . . , pvσi , . . . ) is the unique
pv-transition, we get that (pv, lpv , . . . , p0(z), . . . ) /∈ ∆, yielding wt(r′, v) = O.
In the second case, (pz, l0(z), . . . ) 6= (pz, lpz , . . . ) and thus (pz, l0(z), . . . ) /∈ ∆, yielding
wt(r′, z) = O. In both cases, we get that weight(r′) = O

Finally, since (S,⊕,O) is a commutative monoid, we get that:

(‖MA‖, tul) =
⊕

r′∈RMA

weight(r′) =
⊕

r′∈im(τ)

weight(r′)

=
⊕

r∈RM(t)

weight(τ(r)) =
⊕

r∈RM(t)

weight(r)

= (‖M‖, t)

ut

Thus, it remains to show how the behavior of a Φ-wLTA working on the unlabeled tree can be
computed. For wLTAs (without discounting) over complete distributive lattices this was done
in [11]. In the next section, we show how the behavior of a Φ-wLTA over the semiring Rinf can
be computed.

5 Computing the behavior on the unlabeled tree in Rinf

Concentrating on Rinf is motivated, on the one hand, by the fact that our motivating examples
(the distance functions d1 and d2 and the similarity function e1) can be expressed using wLTA
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with discounting over this semiring. On the other hand, discounting for this semiring is well-
understood [16] and nicely behaved. Note, however, that our algorithms can be extended to
the Viterbi semiring. Still, in order to get analogous complexity results, further computability
and/or precision considerations have to be taken into account (see comments at the end of each
section).

Recall that, for Rinf , all endomorphisms are of the form p(a) = p · a for p ∈ R≥0, and thus the
discounting is of the form Φ = (p1, . . . , pk). Given w = σi1 . . . σim ∈ Σ∗, we set pw = pi1 · . . . ·pim
where the empty product (case w = ε) is 1. Then φw(a) = φi1 ◦ · · · ◦φim(a) = pi1 · . . . · pim · a =
pw(a), and thus φw = pw. It is easy to see that, for p > 0, p distributes over inf and

∑
. In the

following, we assume that pi 6= 0 for i = 1, . . . , k, and we will write pw · a instead of φw(a).

A q-run r of M is a run with r(ε) = q. We denote the set of all q-runs of M as R(q). The
running weight of a q-run is defined like its weight, but without taking the initial distribution
into account, i.e., rweight(r) :=

∑
w∈Σ∗ pw ·wt(r, w), and thus weight(r) = in(q)+ rweight(r).

Consequently, if we define

µ(q) := infr∈R(q)rweight(r) (for every q ∈ Q)

then (‖M‖, tul) = minq∈Q {in(q) + µ(q)} . Hence, in order to compute the behavior of M on
tul , it suffices to calculate the values µ(q) for all q ∈ Q.

The following lemma provides recursive equations that are useful to achieve this goal.

Lemma 4. For every state q ∈ Q it holds that

µ(q) = min
(q1,...,qk)∈Qk

{
wt(q, q1, . . . , qk) +

k∑
i=1

pi · µ(qi)

}
.

Proof.

µ(q) = inf
r∈R(q)

rweight(r) = inf
r∈R(q)

∑
w∈Σ∗

pw · wt(r, w)

= inf
r∈R(q)

pε · wt(r, ε) + ∑
w∈Σ+

pw · wt(r, w)


= inf
r∈R(q)

wt(r, ε) + ∑
w∈Σ+

pw · wt(r, w)


= inf
r∈R(q)

{
wt(r, ε) +

∑
w∈Σ∗

pσ1w · wt(r, σ1w) + · · ·+
∑
w∈Σ∗

pσkw · wt(r, σkw)

}

= inf
r∈R(q)

{
wt(r, ε) +

k∑
i=1

∑
w∈Σ∗

pσiw · wt(r, σiw)

}

= min
(q1,...,qk)∈Qk

inf
(r1,...,rk)∈

R(q1)×···×R(qk)

{
wt(q, q1, . . . , qk) +

k∑
i=1

pi ·
∑
w∈Σ∗

pw · wt(ri, w)

}

= min
(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) + inf
(r1,...,rk)∈

R(q1)×···×R(qk)

k∑
i=1

pi ·
∑
w∈Σ∗

pw · wt(ri, w)


= min

(q1,...,qk)∈Qk

{
wt(q, q1, . . . , qk) +

k∑
i=1

inf
r∈R(qi)

pi ·
∑
w∈Σ∗

pw · wt(r, w)

}
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= min
(q1,...,qk)∈Qk

{
wt(q, q1, . . . , qk) +

k∑
i=1

pi · inf
r∈R(qi)

∑
w∈Σ∗

pw · wt(r, w)

}

= min
(q1,...,qk)∈Qk

{
wt(q, q1, . . . , qk) +

k∑
i=1

pi · µ(qi)

}
ut

Note that the exact same computations can be made for the Viterbi semiring ([0, 1], sup, ·, 0, 1),
with the difference that inf,min,+,

∑
,∞, 0 are replaced by sup,max, ·,

∏
, 0, 1 respectively, and

that endomorphisms are of the form p̃(a) = ap. Thus, we would obtain equations of the form

µ(q) = max
(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ·
k∏
j=1

µ(qi)
pj

 . (6)

Our approach for computing the values µ(q) depends on the kind of discounting used.

5.1 Behavior for nondecreasing discounting

In this section we assume that the discounting is nondecreasing, i.e., pi ≥ 1 for all i = 1, . . . , k.
Note that absence of discounting corresponds to the special case where pi = 1 for all i = 1, . . . , k.

If the discounting is nondecreasing, then we have for every run r ∈ RM that

rweight(r) =
∑
w∈Σ∗

pw · wt(r, w) ≥
∑
w∈Σ∗

wt(r, w),

where in the latter infinite sum only finitely many distinct non-negative real numbers occur.
Consequently, this sum (and thus the original sum as well) is a finite number iff only 0 is used
infinitely often in the sum. Therefore, a run r has finite weight iff, from a certain depth on,
it has only zero-weight transitions. Consequently, we can restrict our attention to deciding for
each state q whether such a (finite weight) q-run exists, and compute the smallest weight among
all of them.

The first step consists of computing the set of states in Q that admit a run with only zero-
weight transitions. Clearly, these are exactly the states q for which µ(q) = 0. By keeping only
transitions with weight 0 and then applying the emptiness test for LTAs [12] to the resulting
automaton, these states can easily be computed.

More precisely, the computation can be done as follows. Let ∆0 ⊆ Qk+1 be the set containing
only the transitions inM with zero weight:

∆0 := {(q, q1, . . . , qk) ∈ Qk+1 | wt(q, q1, . . . , qk) = 0}

and B0 the subset of Q containing all the states that have no transition in ∆0, i.e.,

B0 := {q ∈ Q | ∀(q1, . . . , qk) ∈ Qk. (q, q1, . . . , qk) /∈ ∆0}

Then, we define the following iteration for i ≥ 0:

Bi+1 := Bi ∪ {q ∈ Q | ∀(q, q1, . . . , qk) ∈ ∆0. ∃i. qi ∈ Bi}

The iteration becomes stable after at most ` ≤ |Q| steps. The set Q` = Q \ B` is then the set
of states that admit a run with only zero-weight transitions, as the following lemma shows.
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Lemma 5. q ∈ Q` ⇐⇒ ∃r ∈ R(q) that has only transitions with weight 0.

Proof. Let q ∈ Q`. This means that there is a transition (q, q1, . . . , qk) ∈ ∆0 such that
(q1, . . . , qk) ∈ (Q`)

k. Iterating this argument for the successor states one can build the wanted
run r.

For the opposite direction, suppose that q /∈ Q` and thus q ∈ B`. Assume that j is the least
index such that q ∈ Bj . By induction on j we will prove that there is no q-run that has only
zero-transitions, i.e., transitions from ∆0. If j = 0, i.e., q ∈ B0, then there is no zero-weight
transition starting from q, and thus no q-run with only zero-weight transitions. If j > 0, this
implies that for every (q, q1, . . . , qk) ∈ ∆0 exists some i such that qi ∈ Bj−1. By the induction
hypothesis, there is no qi-run with only zero-weight transitions, and thus the same holds for
q. ut

The following lemma is a straightforward consequence of the previous one and the definition of
µ(q).

Lemma 6. q ∈ Q` ⇐⇒ µ(q) = 0

Proof. Suppose that q ∈ Q`. Then ∃r ∈ R(q) such that rweight(r) = 0, and thus µ(q) = 0.
Conversely, q /∈ Q` implies that ∀r ∈ R(q) there is a transition with non-zero weight. Let
a0 be the least non-zero weight among all transitions in the automaton. Then, ∀r ∈ R(q),∑
w∈Σ∗ wt(r, w) ≥ a0, and thus µ(q) ≥ a0 > 0. ut

Summing up, the above construction gives us the next lemma.

Lemma 7. The set of states Qµ=0 := {q ∈ Q | µ(q) = 0} can be computed in polynomial time.

A run with finite weight does not use a transition with weight +∞ and below a certain depth in
the tree it contains only states that belong to Qµ=0. Thus, the states used in the run must have
access to states in Qµ=0 through transitions with finite weight. To be more precise, define the
set Qacc of states that have access to Qµ=0 to be the least subset of Q such that (i) Qµ=0 ⊆ Qacc
and (ii) if qi ∈ Qacc for every i = 1, . . . , k and wt(q, q1, . . . , qk) 6= +∞ then q ∈ Qacc. States q
that have access to Qµ=0 have a q-run with finite running weight, and hence µ(q) < +∞. If q
does not have access to Qµ=0, then µ(q) = +∞. By using an approach inspired by Dijkstra’s
shortest path algorithm, we can compute the states that have access to Qµ=0 together with
their µ-value in polynomial time.

Initially, note that in case Q` = ∅, no state has access to Q` and thus µ(q) =∞ for all q ∈ Q.

To compute µ(q) for all the states q we use the following algorithm. Set S0 = Q` and consider
the function

m0(q) =

0, if q ∈ S0

min
(q1,...,qk)∈(S0)k

wt(q, q1, . . . , qk), otherwise

Next, for i > 0, iteratively do the following:

– Si := Si−1 ∪ {si}, for some si = argminq/∈Si−1
mi−1(q).

– For all q /∈ Si, update their m value:

mi(q) := min

{
mi−1(q), min

(q1,...,qk)∈(Si)k

{
wt(q, q1, . . . , qk) +

k∑
j=1

pj ·mi−1(qj)

}}

while for all q ∈ Si, mi(q) := mi−1(q).
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This iteration terminates after f = |Q \Q`| steps. Moreover, since by Lemma 4 we know that
µ(q) corresponds to:

µ(q) = min
(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) +
k∑
j=1

pj · µ(qj)

 ,

based on the definition of mi and the fact that (Si)
k ⊆ Qk it can be shown by induction on i

that:
µ(q) ≤ mi(q), for all q ∈ Q and i ≥ 0 (7)

We now show that, upon termination, mf (q) = µ(q) = infr∈R(q) rweight(r) holds for all q ∈ Q.
From this, the behavior ofM can be directly computed, since it can then be expressed as:

‖M‖ = min
q∈Q

(
in(q) +mf (q)

)
Lemma 8. For all i ≥ 0 and s ∈ Si, it holds that:

1. µ(s) ≤ µ(q) for all q 6∈ Si, and
2. µ(s) = mi(s).

Proof. We prove our claims by induction on i.

Base case. i = 0. Since s ∈ S0 and S0 = Q`, by Lemma 6 and the definition of m0, it follows
that µ(s) = m0(s) = 0. In addition, let q 6∈ S0 be a state in Q. Since µ(q) ∈ (R≥0 ∪ {∞}), this
means that µ(s) ≤ µ(q).

Induction step. We show our claims hold for all i > 0, based on the assumption that they hold
for all numbers smaller than i.

Let Si = Si−1 ∪ {si}. The application of induction yields µ(s) = mi−1(s) and µ(s) ≤ µ(si) for
all s ∈ Si−1. Since mi(s) = mi−1(s) for all s ∈ Si−1, this means that µ(s) = mi(s). Hence, it
remains to show that the claims hold for si.

1. We want to show that µ(si) ≤ µ(q) for all q 6∈ Si. Suppose for a contradiction that there
exists s′ 6∈ Si such that µ(s′) < µ(si). Without loss of generality, s′ is selected such that
µ(s′) ≤ µ(q) for all q 6∈ Si. Based on Lemma 4, µ(s′) can be expressed as:

µ(s′) = wt(s′, q01 , . . . , q
0
k) +

k∑
j=1

pj · µ(q0j ), (8)

for some tuple (q01 , . . . , q
0
k) ∈ Qk. Let us first show that (q01 , . . . , q0k) ∈ (Si−1)

k. Suppose on
the contrary that q0j 6∈ Si−1 for some 1 ≤ j ≤ k. Then, it clearly holds that 0 < µ(s′) ≤ µ(q0j )
by the way s′ was selected. We distinguish the following two cases:
– wt(s′, q01 , . . . , q

0
k) > 0.Consequently, µ(s′) > µ(q0j ) must hold3, a contradiction.

– wt(s′, q01 , . . . , q
0
k) = 0. To avoid the same contradiction as before, it must be the case that

µ(q0λ) = 0 for all λ 6= j. Hence, µ(s′) = µ(q0j ), and q0j could have been chosen as s′. By
iterating this argument, while assuming the corresponding transition has zero-weight,
we will end up with s′ having a run with only zero-weight transitions, i.e., belonging to
Qµ=0

4. Thus, we obtain a contradiction since s′ 6∈ S0 = Q` = Qµ=0.
3 Recall that pj ≥ 1.
4 This iteration terminates in at most | Q \Q` | steps.
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Then, having (q01 , . . . , q
0
k) ∈ (Si−1)

k implies that µ(q0j ) = mi−1(q0j ) for all 1 ≤ j ≤ k (by
induction). Recall that mi(s′) corresponds to the expression:

mi(s′) = min

{
mi−1(s′), min

(q1,...,qk)∈(Si)k

{
wt(s′, q1, . . . , qk) +

k∑
j=1

pj ·mi−1(qj)

}}

Since (Si−1)
k ⊆ (Si)

k, this means that the value corresponding to the inner minimization
in the previous expression is not greater than µ(s′). Therefore, using (7) we obtain:

mi(s′) = µ(s′) < µ(si) ≤ mi(si) = mi−1(si) (9)

Moreover, if mi(s′) < mi−1(s′) holds, this must have been a direct consequence of intro-
ducing si to form Si. In other words, mi(s′) is updated by using the value mi−1(si), which
means that mi−1(si) ≤ mi(s′). The latter is obviously not consistent with (9). Therefore,
in order to still be consistent with µ(s′) < µ(si), the equality mi(s′) = mi−1(s′) must hold.
But then, it follows that mi−1(s′) < mi−1(si) which is a contradiction since si was selected
to obtain Si. Thus, we can conclude that µ(si) ≤ µ(q) for all q 6∈ Si.

2. Consider µ(si) expressed as in (8) (substitute s′ by si). Since we have just shown that
µ(si) ≤ µ(q) for all q 6∈ Si, similarly as before, it can be proved that (q01 , . . . , q0k) ∈ (Si−1)

k

holds for si as well. Then, the same argument used in 1. yields that mi(si) ≤ µ(si). Thus,
mi(si) = µ(si) holds (using (7)).

ut

Summing up, computing Q` requires quadratic time and computing mf (q) for every q ∈ Q
requires cubic time. Since the behavior of M on tul can easily be computed from the values
µ(q) for q ∈ Q, this yields the following theorem.

Theorem 3. The behavior of a Φ-wLTA with nondecreasing discounting Φ over Rinf on the
unlabeled tree can be computed in polynomial time.

Note that a similar algorithm can be utilized for the behavior over the Viterbi semiring. As was
done for obtaining Equation (6), replace inf,min,+,

∑
,∞, 0 by sup,max, ·,

∏
, 0, 1 respectively.

Also recall that endomorphisms are of the form p̃(a) = ap. Other than this, the algorithm and
the proof of its correctness is the same. However, since we might have to compute numbers as
small as xp

|Q|
, the algorithm might take exponential time because of their computation.

5.2 Behavior for contracting discounting

In this section, we assume a contracting discounting, i.e., p < 1
k , where k = |Σ| and p =

max
i=1,...,k

pi.

Recall that it suffices to compute the value µ(q) for every q ∈ Q. To achieve this, we generalize
the approach used in [7] for the special case of d2. Let Q = {q1, . . . , qn}. For each qi ∈ Q,
the unknown value µ(qi) is associated to a variable xi. Additionally, let I = {1, . . . , n}. Then,
Lemma 4 states that (µ(q1), . . . , µ(qn)) is a solution of the following system of equations:

xi = min
(i1,...,ik)∈Ik

wt(qi, qi1 , . . . , qik) +
k∑
j=1

pj · xij

 (10)

Before we continue with solving this system of equations, we recall some notions from Metric
Topology. Formal definitions can be found in any book on the subject, for example [13,23].
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A metric space (X, d) consists of a set X equipped with a metric d, i.e., a function that assigns
a non-negative number to any two elements of X (and satisfies some extra properties). The
Chebyshev distance, d∞, is a metric on Rn which for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn is
defined as

d∞(a,b) = max
i=1,...,n

|ai − bi|.

It is well known that the metric space (Rn, d∞) is complete.

Definition 14. Given a metric space (X, d), a function f : X → X is called a contraction, if
there is a λ ∈ (0, 1) such that d(f(a), f(b)) 6 λd(a, b) for any a, b ∈ X.

Since we use contracting discounting, Banach’s fixed point theorem can be used to show that
the system (10) has a unique solution in R.

Theorem 4 (Banach’s Fixed Point Theorem [13]). Let (X, d) be a complete metric space
and a function f : X → X be a contraction on X. Then there exists a unique a ∈ X such that
f(a) = a.

For all qi ∈ Q, we define a function fi : Rn → R as follows:

fi(a1, . . . , an) = min
(i1,...,ik)∈Ik

wt(qi, qi1 , . . . , qik) +
k∑
j=1

pj · aij


Next, we define the vector function f : Rn → Rn as:

f(a1, . . . , an) = (f1(a1, . . . , an), . . . , fn(a1, . . . , an))

Clearly, a vector a = (a1, . . . , an) is a solution of the system of equations in (10) iff it is a fixed
point of f . Thus, it is enough to show that f is indeed a contraction on a complete metric space
(Rn, d).

Lemma 9. The function f defined above is a contraction on (Rn, d∞).

Proof. Given a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn, recall that d∞(a,b) =
maxi∈I |ai − bi|.

For every i ∈ I we have:

fi(a) = min
(i1,...,ik)∈Ik

wt(qi, qi1 , . . . , qik) +
k∑
j=1

pj · aij


= wt(qi, qi01 , . . . , qi0k) +

k∑
j=1

pj · ai0j

for a particular (i01, . . . , i0k) ∈ Ik, and likewise

fi(b) = wt(qi, qi11 , . . . , qi1k) +

k∑
j=1

pj · bi1j .

Since for a, the minimum is achieved for (i01, . . . , i0k), it holds that:

wt(qi, qi01 , . . . , qi0k) +

k∑
j=1

pj · ai0j ≤ wt(qi, qi11 , . . . , qi1k) +
k∑
j=1

pj · ai1j .
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Without loss of generality, assume that fi(b) ≤ fi(a). Thus, we have:

|fi(a)− fi(b)| = fi(a)− fi(b)

= wt(qi, qi01
, . . . , qi0

k
) +

k∑
j=1

pj · ai0j −

(
wt(qi, qi11

, . . . , qi1
k
) +

k∑
j=1

pj · bi1j

)

≤ wt(qi, qi11 , . . . , qi1k ) +
k∑
j=1

pj · ai1j −

(
wt(qi, qi11

, . . . , qi1
k
) +

k∑
j=1

pj · bi1j

)

=

k∑
j=1

pj · (ai1j − bi1j )

≤
k∑
j=1

max
i=1,...,k

pi ·max
i∈I
|ai − bi|

= k · p ·max
i∈I
|ai − bi| = k · p · d∞(a,b)

Overall, we get that |fi(a)− fi(b)| ≤ k · p · d∞(a,b) for every i ∈ I, and thus

d∞(f(a), f(b)) = max
i∈I
|fi(a)− fi(b)| ≤ k · p · d∞(a,b).

Since p < 1
k , implying k · p < 1, we have that f is a contraction. ut

From Banach’s fixed point theorem, we have that f has a unique fixed point, and thus the
system of equations (10) has a unique solution. Thus, to compute the values µ(q) for q ∈ Q it
is sufficient to compute this unique solution. This can be realized using Linear Programming
[33], basically by the same approach used in [7].

Definition 15. A Linear Programming problem or LP problem is a set of restrictions along
with an objective function. In its most general form, an LP problem looks like this:

objective : min/max z = c1x1 + . . .+ cnxn

restrictions : a1,1x1 + . . .+ a1,nxn T b1

...

am,1x1 + . . .+ am,nxn T bm

where ai,j , bi, cj are rational numbers.

The feasible region of the LP problem consists of all the tuples (x1, . . . , xn) that satisfy the
restrictions. The answer to an LP problem is a tuple in the feasible region that maximizes the
objective function and “no” if the feasible region is empty.

It is well known that LP problems are solvable in polynomial time in the size of the problem
[33].

From the above system of equations 10 we can derive an LP problem. Consider for every
i ∈ I, (i1, . . . , ik) ∈ Ik the inequation

xi ≤ wt(qi, qi1 , . . . , qik) +
k∑
j=1

pj · xij (11)

and the objective
z = max

∑
i∈I

xi. (12)
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Lemma 10. The LP problem consisting of the inequations (11), and the objective (12) has the
unique solution

{xi 7→ µ(qi) | i ∈ I}.

Proof. Initially, observe that the above vector is in the feasible region, since it satisfies the
restrictions (11). Next, we procede to show that it is indeed the only point that maximizes the
objective function. First, we need the following claim.

Claim. If a is a solution that maximizes the objective function then, for every i ∈ I, at least
one of the inequalities (11) holds as an equality.

Proof (Claim). Suppose on the contrary that c is a solution that maximizes z, but for some
i ∈ I, inequalities ci ≤ wt(qi, qi1 , . . . , qik) +

∑k
j=1 pj · cij are strict for all (i1, . . . , ik) ∈ Ik.

This would mean that the value of ci can be increased, and all inequalities would still hold; the
increase in ci might increase the right-hand side of some other inequality, but since the left-hand
side remains the same, all restrictions are satisfied. Thus, a new point c′ has been produced
that satisfies all the restrictions of the LP problem and additionally gives a larger value for the
objective function. This is a contradiction to our initial assertion about c. This completes the
proof of the claim.

As a result, any points that are solutions to the LP problem, satisfy the condition xi =

min(i1,...,ik)∈Ik
{
wt(qi, qi1 , . . . , qik) +

∑k
j=1 pj · xij

}
for all i ∈ I. Thus, they correspond to so-

lutions of the system of equations (10).

Finally, since there is a unique such solution, the solution of the LP problem is this unique
solution, the vector (µ(q1), . . . , µ(qn)). ut

Since solutions of Linear Programming problems can be computed in polynomial time, this is
also the case for the values µ(q), and thus for the behavior.

Theorem 5. The behavior of a Φ-wLTA with contracting discounting Φ over Rinf on the unla-
beled tree can be computed in polynomial time.

Note that for the Viterbi semiring we get analogous equations:

yi = max
(i1,...,ik)∈Ik

wt(qi, qi1 , . . . , qik) ·
k∏
j=1

yij
pj


By taking the logarithm of these equations, we derive equations of the form (10). However, the
numbers might no longer be rational, and thus further computational issues should be taken
into consideration.

6 Conclusion

We have seen that concept comparison measures are important components of several ap-
proaches for approximation in DLs. Given two concepts C,D, such a measure assigns to them
a value that expresses how well they compare. In general, these values come from a partially
ordered set, but in most approaches to approximation considered so far, measures that map
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into the real numbers, and often only into the real interval [0, 1], are used. An important re-
quirement for such measures is that they respect the semantics of concepts, i.e., are invariant
under equivalence in the sense that, if we replace C,D by equivalent concepts C ′, D′, then the
returned similarity comparison value is the same. To be useful in practice, another important
requirement on the measures is that they are computable.

The main technical contribution of this paper is the development of a general framework for
defining concept comparison measures for the DL FL0 that are computable and invariant under
equivalence w.r.t. general TBoxes. Our framework is based on a characterization of equivalence
w.r.t. general FL0 TBoxes that uses tuples of formal languages. These tuples can be expressed
by infinite trees, which in turn are represented by looping tree automata. Assigning a comparison
value to a pair of FL0 concepts in an equivalence invariant way thus boils down to assigning a
value to a tree that is represented by a looping tree automaton. We use weighted tree automata
with discounting for this purpose, and reduce the problem of computing the comparison value
to the problem of computing the behavior of such an automaton on the unlabeled infinite tree. If
the weights of the automaton come from the semiring Rinf , then this behavior can be computed
in polynomial time provided that the employed discounting is nondecreasing or contracting. An
obvious topic for future research is thus to extend these results to discounting that is neither
contracting nor nondecreasing, or to other semirings as weight structures.

While the use of our framework guarantees that the obtained concept comparison measures are
equivalence invariant and computable, the user of the framework needs to ensure (by appro-
priately defining the weighted automaton) that the obtained values make sense in the intended
application. Nevertheless, it might be helpful to provide the user with automated tools for
checking whether the defined measure satisfies certain properties, such as the properties often
required for concept similarity measures [25]. In our framework, this boils down to deciding
certain properties of weighted tree automata with discounting.

Finally, if concept comparison measures defined using our framework are employed within one of
the approximation approaches sketched in Section 2.3, one can investigate whether the impor-
tant inference problems in this approach are guaranteed to be decidable. For example, assume
that a concept similarity measure defined using our approach is employed to relax instance
queries in FL0. Can we extend our computability result for the measure to a decidability result
for the relaxed instance problem? If the answer is affirmative, what is the exact complexity of
the relaxed instance problem in this setting?
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