
Technische Universit -at Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Decidability of ALCP(D) for concrete domains
with the EHD-property

Claudia Carapelle Anni-Yasmin Turhan

LTCS-Report 16-01

Postal Address:
Lehrstuhl f �ur Automatentheorie
Institut f �ur Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
N �othnitzer Str. 46

Dresden

Decidability of ALCP(D) for concrete domains

with the EHD-property

Claudia Carapelle Anni-Yasmin Turhan ∗

April 2016

Abstract

Reasoning for Description logics with concrete domains and w.r.t. general TBoxes eas-
ily becomes undecidable. For particular, restricted concrete domains decidablity can be
regained. We introduce a novel way to integrate a concrete domain D into the well-known
description logic ALC, we call the resulting logic ALCP(D). We then identify sufficient con-
ditions on D that guarantee decidability of the satisfiability problem, even in the presence
of general TBoxes. In particular, we show decidability of ALCP(D) for several domains
over the integers, for which decidability was open. More generally, this result holds for all
negation-closed concrete domains with the EHD-property, which stands for the existence of
a homomorphism is definable. Such technique has recently been used to show decidability
of CTL∗ with local constraints over the integers.

Contents

1 Introduction 2

2 Preliminary Notions 3

3 The Description Logic ALCP(D) 6

3.1 ALCP(D) has the tree-model property . 8

3.2 Strong negation normal form . 12

4 The EHD-method 15

4.1 The EHD-property . 15

4.2 Satisfiability of ALCP(D) . 19

5 Undefined concrete features 26

6 Conclusions 27

∗This work is supported by the German Research Foundation (DFG) within the Collaborative Research
Center SFB 912 HAEC.

1

1 Introduction

Description Logics (DLs) are a collection of knowledge representation formalisms with well-
founded semantics. They allow to characterize notions from an application domain by concepts.
Each DL offers a set of concept constructors that allow to build complex concepts from atomic
concepts and roles, which are binary relations. Concepts can be related to each other via
sub-concept statements called general concept inclusions (GCIs). The (possibly cyclic) GCIs
represent the terminological knowledge of the application domain and are collected in the TBox.
DLs are employed nowadays in a range of application areas such as the biomedical field or the
semantic web. DLs are the foundations of the web ontology language OWL 2 [18]. DLs are
investigated for a range of reasoning problems. Several of the classical reasoning problems can
be reduced to the satisfiability problem (if negation is present in the set of concept constructors),
so we concentrate on this reasoning problem in this report.

DLs are an excellent tool to represent abstract knowledge, but practical applications often
require concrete properties with values from a fixed domain, such as integers or strings, and
to support built-in predicates. In [1], DLs were extended with concrete domains. These are
relational structures D = (D,R1, R2, . . .), with a domain D and n-ary relations R1, R2,
The resulting logic ALC(D) extends the standard DL ALC by the concept constructor concrete
domain restriction and the DL can be parameterized with a concrete domain D. Concrete
domain restrictions can be used to build complex concepts based on concrete qualities of their
instances such as the age, temperature or even measured values. For instance, ALC(D)-concepts
can characterize drivers of a motor vehicle by requiring that they are at least as old as the legal
driving age of 18:

motor-vehicle-driver v Person u ∃has− age. ≥18

A concrete domain restriction can connect several abstract objects via feature-paths, i.e. paths
of functional roles, and assert a predicate of arbitrary arity for concrete quantities of those
objects. Concrete domains are incorporated in a weakend form in the ontology language OWL
as data-types for which only unary predicates are admitted [18].

If definitorial and acyclic TBoxes are used, then reasoning for ALC with certain concrete
domains, so called admissible ones, is decidable [1]. Reasoning becomes undecidable in the
presence of general TBoxes [10, 14] for this kind of concrete domains. There have been several
attempts to regain decidability for reasoning in ALC(D) with general TBoxes. Some approaches
impose syntactic restrictions on the concept constructor – allowing only unary predicates [9]
or admitting only feature-paths of length 1 [8] in concrete domain restrictions. These restric-
tions limit the modelling capabilities severely. Lutz and Miličić took a different approach and
showed that if a concrete domain respects a criterion called ω-admissibility, then satisfiability
for ALC(D) with general TBoxes is decidable [15]. The condition of ω-admissibility essentially
allows to lift local satisfiability of finite (connected) concrete domain parts to global satisfiability
by requiring compactness and that the concrete domain parts need to conform on the predi-
cates asserted for the shared objects. This condition indicates decidability of DL reasoning for
some concrete domains, for instance, the RCC8 relations and the Allen relations over the reals
[15]. However, several interesting domains do not satisfy ω-admissibility, for instance domains
based on non-dense domains, as the integers or the natural numbers. In [13], Lutz considers
a concrete domain over the rational numbers, and proves that reasoning w.r.t. general TBoxes
is decidable. Such domain can however not be used to reasonably represent some situations:
certain concrete features, such as ‘number of children’, cannot possibly be fractions.

In this paper we devise a new criterion for concrete domains that guarantees decidability of
the satisfiability problem in the presence of general TBoxes. This criterion holds also for some
concrete domains that are known to be not ω-admissible, such as the integers. To this end
we introduce the new DL ALCP(D) that uses path constraints instead of concrete domain
restrictions. Unlike the latter, which only allow feature-paths to connect an individual and a
concrete value, path constraints can use the full expressiveness of role-paths. This enables to

2

model for instance ‘person who only has younger siblings’, as an individual whose age is greater
than that of all his siblings, where the sibling relation need not be functional.

We show decidability of the satisfiability problem of ALCP(D) w.r.t. general TBoxes, if used
with concrete domains that:

• are negation-closed, which requires that the complement of each (atomic) relation is ef-
fectively definable by a positive existential first-order formula, and

• have the EHD-property, which stands for ‘the existence of a homomorphism is definable’
and is a property of a relational structure A, expressing the ability of a logic L to dis-
tinguish between those structures B which can be mapped to A by a homomorphism and
those who cannot.

Our approach to show decidability of ALCP(D) with concrete domains that fulfill the above
conditions is an adaptation of the EHD-method, used in [6, 7] for CTL∗ and ECTL∗. This, in
turn, uses a recent decidability result by Bojańczyk and Toruńczyk for WMSO+B over infinite
trees, an extension of weak monadic second order logic by the bounding quantifier B (see [3]).
The idea for testing satisfiability of an ALCP(D)-concept C w.r.t. an ALCP(D)-TBox T is to
proceed in two steps. First, an ordinary ALC interpretation is built that satisfies an abstracted
version of C and T , where each path constraint is replaced by a fresh concept name. Second,
this interpretation is used to generate a so-called constraint graph, which is a structure in
charge of remembering the contribution of the constraints that were abstracted away. We show
that the fact that such a constraint graph allows a homomorphism to the concrete domain
is enough to guarantee that the constraints are satisfied. In contrast to the mentioned CTL
variants, ALCP(D) is multi-modal and uses features, i.e. functional roles, which required some
adaptation to apply the techniques from [6, 7].

By the newly established criterion for decidability of ALCP(D) w.r.t. TBoxes, we confirm what
the authors of Lutz and Miličić have conjectured: ω-admissibility is a sufficient, but not a
necessary condition. We show, in fact, that reasoning with non ω-admissible concrete domains
over the natural numbers and the integers w.r.t. general TBoxes is decidable. We also show
that it is possible to add a feature to a concrete domain over the rational numbers presented
in [11, 10], that allows to ask that a certain concrete value is an integer.

This report is structured as follows. In the next section we introduce basic notions on structures,
the logic BMWB capturing Boolean combinations of WMSO+B and MSO. Section 3 gives
preliminaries on DL and introduces the new DL ALCP(D) with some of its properties and normal
forms. In Section 4 we introduce the EHD-property and structures that enjoy such property,
we explain the EHD method and show decidability of negation-closed concrete domains that
have the EHD-property. Section 5 shows that we can add to a concrete domain a mechanism
to mimic undefined concrete values.

2 Preliminary Notions

Structures

Definition 1. A (relational) signature σ = {R1, R2, . . .} is a countable (finite or infinite) set
of relation symbols. Every relation symbol R ∈ σ has an associated arity ar(R) ≥ 1.

A σ-structure is a tuple A = (A,RA1 , R
A
2 , . . .), where A is a non-empty set (the universe of the

structure) and for each R ∈ σ, RA ⊆ Aar(R) is the interpretation of the relation symbol R in
A, that is an ar(R)-ary relation over A.

Example 2. A simple example of a {=, <}-structure is Z = (Z,=Z , <Z), where =Z and <Z

are defined as expected, namely as {(a, b) ∈ Z2 | a = b} and {(a, b) ∈ Z2 | a < b}, respectively.

3

In case it does not create ambiguity, we often identify the relation RA with the relation symbol
R, and we specify a σ-structure as (A,R1, R2, . . .) where σ = {R1, R2, . . .}. In the example
above, then, we would simply write (Z,=, <).

Definition 3. For a σ-structure A and a τ -structure B such that τ ⊆ σ, a homomorphism from
B to A is a mapping h : B → A such that for all R ∈ τ and all tuples (b1, . . . , bar(R)) ∈ Bar(R)

we have
(b1, . . . , bar(R)) ∈ RB ⇒ (h(b1), . . . , h(bar(R))) ∈ RA .

We write B � A if there is a homomorphism from B to A. Note that we do not require this
homomorphism to be injective.

MSO, WMSO+B and BMWB

We fix countably infinite sets Ve and Vs of element variables and set variables, respectively.

Monadic second-order logic (MSO) is the extension of first-order logic where also quantification
over subsets of the underlying structure is allowed. Let us fix a signature σ.

Definition 4 (MSO Syntax). MSO-formulas over the signature σ are defined by the following
grammar, where R ∈ σ, x, y, x1, . . . , xar(R) ∈ Ve and X ∈ Vs:

ϕ ::= R(x1, . . . , xar(R)) | x = y | x ∈ X | ¬ϕ | (ϕ ∧ ϕ) | ∃xϕ | ∃Xϕ . (1)

MSO-formulas are evaluated on σ-structures, where element and set variables range over ele-
ments and subsets of the domain, respectively.

Definition 5 (MSO Semantics). If A = (A,RA1 , R
A
2 , . . .) is a σ-structure, the semantics of

MSO-formulas on A are defined inductively on the structure of the formula with the help of
a valuation function ν : Ve ∪ Vs → A ∪ 2A. We write ν[x 7→ a] to denote the function which
assigns a to x and is otherwise identical to ν.

• (A, ν) |= R(x1, . . . , xar(R)) iff (ν(x1), . . . , ν(xar(R))) ∈ RA;

• (A, ν) |= x = y iff ν(x) = ν(y);

• (A, ν) |= x ∈ X iff ν(x) ∈ ν(X);

• (A, ν) |= ¬ϕ iff it is not the case that (A, ν) |= ϕ;

• (A, ν) |= (ϕ1 ∧ ϕ2) iff (A, ν) |= ϕ1 and (A, ν) |= ϕ2;

• (A, ν) |= ∃xϕ iff there exists b ∈ A such that (A, ν[x 7→ b]) |= ϕ;

• (A, ν) |= ∃Xϕ iff there exists B ⊆ A such that (A, ν[X 7→ B]) |= ϕ;

Remark 6. Introducing disjunction as

• (ϕ1 ∨ ϕ2) := ¬(¬ϕ1 ∧ ¬ϕ2),

and universal quantification over element and set variables

• ∀xϕ := ¬∃x¬ϕ,

• ∀Xϕ := ¬∃X¬ϕ,

we can associate to each formula ϕ its semantically equivalent negation normal form ϕ̂, where
negation only appears in front of atomic formulas and relations.

4

Remark 7. Note that, if in a formula ϕ no variable occurs freely, i.e. all variables appear in the
scope of a quantifier, the semantics of ϕ do not depend on the choice of ν. We can therefore
simply write A |= ϕ.

Weak monadic second-order logic (WMSO) has the same syntax as MSO (1), but second-order
variables are interpreted as finite subsets of the underlying universe.

WMSO+B is the extension of WMSO by the bounding quantifier BXϕ for X ∈ Vs. The
semantics of BXϕ in the structure A with universe A are defined as follows: (A, ν) |= BXϕ(X)
if and only if there is a bound b ∈ N such that whenever (A, ν) |= ϕ(B) for some finite subset
B ⊆ A, then |B| ≤ b. The dual quantifier is denoted by U. It is called the unbounding quantifier
and UXϕ = ¬BXϕ expresses that there are arbitrarily large finite sets that satisfy ϕ.

Finally, let BMWB denote the set of all Boolean combinations of MSO-formulas and (WMSO+B)-
formulas.

MSO and WMSO+B can express many interesting properties of relational structures.

Example 8. Given a graph G = (V,E), WMSO can express reachability in G. We define the
WMSO-formula reachZ(x1, x2) to be

x1∈Z ∧ ∀Y ⊆Z
[(
x1∈Y ∧ ∀y∀z(y∈Y ∧ z∈Z ∧ E(y, z))→ z∈Y

)
→ x2∈Y

]
.

It is easy to see that for every finite subset B ⊆ A, we have A |= reachB(a, b) if and only
if (a, b) ∈ (E∗ ∩ B2), i.e., b is reachable from a in the subgraph G|B . Note that reachZ is
the standard MSO-formula for reachability but restricted to the subgraph induced by Z. If
we define reach(x, y) := ∃ZreachZ(x, y), the semantics of reach seen as an MSO-formula or a
WMSO-formula are the same because b is reachable from a in the graph G if and only if it is in
some finite subgraph of G.

BMWB-satisfiability is decidable over n-trees

Consider the signature S2S = {S0, S1, p1, p2, . . . } formed by two binary relation symbols and
countably many unary predicates. A (labeled) binary tree with left and right successor is then
a structure T = ({0, 1}∗, S0, S1, p

T
1 , p

T
2 , . . .)

1 where Si = {(x, xi) | x ∈ {0, 1}∗} for i = 0, 1, and
pTj ⊆ {0, 1}∗ are arbitrary interpretations for each pj .

In [3] Bojańczyk and Toruńczyk proved that WMSO+B over the signature S2S has a decidable
satisfiability problem over binary trees.

Theorem 9 (cf. [3]). One can decide whether for a given formula ϕ ∈ WMSO+B over the
signature S2S there is a binary tree T such that T |= ϕ.

Let [1, n] indicate the set {1, 2, . . . , n}, and S1S be the signature {S, p1, p2, . . . }. We call
(labeled) n-tree a structure Tn = ([1, n]∗, S, pT1 , p

T
2 , . . .) where S = {(x, xi) | x ∈ [1, n]∗ and i ∈

[1, n]} is the successor relation. Using the above Theorem 9, together with some properties of
MSO and WMSO+B, it is proven in [7] that BMWB over the signature S1S has a decidable
satisfiability problem over n-trees:

Theorem 10 (cf. [7]). One can decide whether for a given formula ϕ ∈ BMWB over S1S there
exists an n-tree Tn such that Tn |= ϕ.

1We omit the superscript T for the interpretation of the relations S1 and S2 because they are always inter-
preted in the same way on a binary tree.

5

3 The Description Logic ALCP(D)

Let us fix for the rest of this section a countably infinite set of register variables Reg, a relational
signature σ, and an arbitrary σ-structure D = (D,R1, R2, . . .), called the concrete domain.

Definition 11. We define a constraint c(x1, . . . , xk) of arity k over D as a Boolean combination
of atomic constraints R(xi1 , . . . , xiar(R)

), where R ∈ σ and ij ∈ {1, . . . , k}. We write D |=
c(a1, . . . , ak) if the constraint is satisfied in D by the assignment xi 7→ ai.

Example 12. Consider as concrete domain Z = (Z, <,=), the relational structure introduced
in Example 2. We use infix notation for the relations to improve readability. Then c(x, y, z) =
[(x < y ∨ x = y) ∧ ¬ y < z] is a constraint of arity 3 over Z, and Z |= c(0, 1, 0).

Let us fix two countably infinite sets NC and NR of concept names and role names, respectively.
Let then NF ⊆ NR be the set of features, a special kind of roles that are interpreted as partial
functions. We call a finite sequence P = r1 · · · rn of role names a role-path of length n.

Definition 13. We recursively define ALCP(D)-concepts as follows

C := A | ¬C | (C u C) | ∃r.C | ∃P.c(Si1x1, . . . , Sikxk)

where A ∈ NC, r ∈ NR, P is a role-path of length n ≥ 0, c is a constraint of arity k, x1, . . . , xk ∈
Reg and i1, . . . , ik ≤ n. We call ∃P.c(Si1x1, . . . , Sikxk) a path constraint. The symbol S
appearing in the path constraints stands for successor, as the term Six points at the register
variable x in the i-th position of the path P .

Definition 14. A general concept inclusion (GCI) is an expression of the form C v D, where
C and D are concepts. A TBox is a finite set of GCIs.

Definition 15. A D-interpretation I is a tuple (∆, ·I , γ), where ∆ is a set called the domain,
·I is the interpretation function, and γ : ∆ × Reg → D is the valuation function, assigning a
value from the concrete domain to each register variable in each element of the interpretation
domain. The interpretation function maps

• each concept name A ∈ NC to some AI ⊆ ∆,

• each role name r ∈ NR to a binary relation rI ⊆ ∆×∆,

• if f ∈ NF the binary relation fI has to be functional, i.e. for all a, b, c ∈ ∆, (a, b), (a, c) ∈
fI implies b = c.

It is then extended to role-paths and arbitrary concepts as follows:

(r1 · · · rn)I := {(v0, . . . , vn) ∈ ∆n+1 | (vi−1, vi) ∈ rIi for i = 1, . . . , n}
(¬C)I := ∆ \ CI

(C uD)I := CI ∩DI

(∃r.C)I := {v ∈ ∆ | ∃w ∈ ∆ with (v, w) ∈ rI and w ∈ CI}

and, if P has length n, we define (∃P.c(Si1x1, . . . , Sikxk))I as

{v ∈ ∆ | ∃(v0, . . . , vn) ∈ P I s.t. v0 = v, and D |= c(γ(vi1 , x1), . . . , γ(vik , xk))} .

So the fact that an element v ∈ ∆ belongs to the interpretation of ∃P.c(Si1x1, . . . , Sikxk) means
that there exists an instance of the path P I starting in v, namely some (v0, v1, . . . , vn) ∈ P I
with v0 = v, such that the assignment yj 7→ γ(vji , xj) satisfies the constraint c(y1, . . . , yk). A

6

term Si inside the constraint is used to point at the i-th element of the path P I . Note that the
requirement that i1, . . . , ik ≤ n ensures that such element is well-defined.

Note also that an atomic constraint R(Si1x1, . . . , S
ikxk) is local in the sense that it involves

only nodes in a fixed neighborhood of the position at which they are evaluated. We call d :=
max{i1, . . . , ik} the depth of R. By extension, the depth of a constraint c is the maximum depth
of all the atomic constraints which appear in c.

If we call RegC,T the set of register variables that occur in C and T , it is clear that the relevance
of the valuation function γ is limited to the domain (∆ × RegC,T).

Definition 16. A D-interpretation I is a model of a TBox T (I |= T) if and only if every GCI
C v D ∈ T is satisfied, that is, if and only if CI ⊆ DI .

Given a concept C and a TBox T , we say C is satisfiable with respect to T if and only if there
exists a model I of T such that CI 6= ∅. We write I |=T C.

Remark 17. We define some additional operators:

• C tD := ¬(¬C u ¬D),

• ∀r.C := ¬∃r.¬C,

• ∀P.c := ¬∃P.¬c,

• ∃P.C := ∃r1.∃r2. · · · ∃rn.C, where P = r1 · · · rn

and special concepts:

• > := A t ¬A,

• ⊥ := A u ¬A,

Using this extended set of operators and DeMorgan’s laws we can, given an ALCP(D)-concept
C, obtain an equivalent concept in negation normal form nnf(C), where negation only appears
before concept names or relations from the concrete domain R(x1, . . . , xk) with R ∈ σ.

A TBox-concept of the TBox T is defined as CT =
d
CvD∈T (¬C tD).

Note that it is equivalent to ask that an interpretation I = (∆, ·I , γI) satisfies all GCIs C v D
in T , and to ask that the CT is globally satisfied, i.e. (CT)I = ∆. Vice-versa, any globally
satisfied concept C can be seen as the GCI > v C. For technical reasons, it is convenient for
us to adopt this view, and from now on we will always assume that a TBox consists of a single
concept CT that needs to be globally satisfied. We say a TBox T is in negation normal form if
so is CT .

Example 18. Take again Z = (Z, <,=) as concrete domain and consider the following TBox:
T = {∃neighbor.(green grass < Sgreen grass), ¬GreenThumb t (alive plants = plants)}2. Here
we consider three register variables: green grass measures the degree of greenness of an indi-
vidual’s lawn, while plants and alive plants count the number of plants (total or alive) of an
individual. In any model of T , every individual has a neighbor whose grass is greener, and
individuals with a green thumb keep all their plants alive.

Remark 19. In example 18, there cannot exist a model for T with a finite underlying domain,
as the degree of greenness of neighboring lawns is strictly increasing. This is never the case for
ordinary ALC, which enjoys the finite model property.

2Here the absence of a path quantifier before (alive plants = plants) means that we are referring to a “path
of length zero”.

7

Remark 20. In the literature on description logics with concrete domains (for instance in [1,
15]) one finds constraints of the kind ∃R(P1x1, . . . , Pkxk), where R is a relation from the
concrete domain and each Pi is a path composed of features only. The constraint is satisfied
by an element d if there exist k elements, d1 . . . dk, reachable from d via the feature-paths
P1 . . . Pk, such that the tuple (γ(d1, x1), . . . , γ(dk, xk)) belongs to the relation R in the concrete
domain. Nonetheless, in many interesting cases this kind of constraint can be replaced with
path constraints by introducing some additional register variables. For example, the constraint
∃(P1x1 < P2x2) can be expressed as ∃P1.(S

|P2|x1 < z) u ∃P2.(z ≤ S|P2|x2), where z is a fresh
register variable. Likewise, the constraint ∀(P1x1 < P2x2) can be replaced by the expression
¬(∃P1.>u∃P2.>)t(∃P1.(S

|P1|x1 < z)u∃P2.(z ≤ S|P2|x2)).3 On the other hand, our constraints
can use role-paths of arbitrary length, which—to the best of our knowledge—is not allowed in the
previously existing literature, where they are limited in length or disallowed completely in favor
of feature-paths. Therefore, although these two kinds of constraints are generally incomparable
in expressiveness, they are strictly more expressive on interesting concrete domains.

3.1 ALCP(D) has the tree-model property

Definition 21. Let I = (∆, ·I , γ) be a D-interpretation and define →:=
⋃
r∈NR

rI . We say I
is a tree-shaped D-interpretation if and only if (∆,→) is a tree, that is:

• ∆ ⊆ Σ∗ is (isomorphic to) a prefix-closed set of strings over some alphabet Σ, and

• for all u, v ∈ ∆, u→ v if and only if v = ua for some a ∈ Σ.

We call I an n-tree D-interpretation if ∆ = [1, n]∗ for some n ∈ N, where [1, n] denotes the
closed interval {1, . . . , n}.

A logic has the tree model property, if for every concept C and every TBox T , C is satisfiable
w.r.t. T if and only if there exists a tree-shaped D-interpretation J such that J |=T C, in
particular, the root ε of J is such that ε ∈ CJ .

We denote by Sub(T , C) the set of all concepts which appear in a TBox T and in a concept C.

Theorem 22. ALCP(D) has the tree-model property.

Proof. We show that given a D-interpretation I = (∆, ·I , γ) such that I |=T C, we can build a
tree-shaped D-interpretation J = (∆′, ·J , γ′) such that J |=T C. This is done by the process
commonly known as unravelling, made non-standard only by the fact that we have to deal with
the concrete values assigned by the valuation function.

So let v ∈ ∆ be such that vI ∈ CI , such element exists because C is satisfiable. First of all we
define ∆′, the domain of J , as the set of all paths in ∆ originating in v, namely as

{v0r1v1r2v2 · · · rnvn | v0 = v and (vi−1, vi) ∈ rIi for all i = 1, . . . , n} .

We successively define ·J according to the last node semantics :

• AJ := {v0 · · · vn ∈ ∆′ | vn ∈ AI} for all concept names A ∈ NC,

• rJ := {(v0 · · · vn, v0 · · · vnrvn+1) | (vn, vn+1) ∈ rI} for all role names r ∈ NR,

and extend it to arbitrary concepts in the usual way.

3Such translations must be applied after the concepts are converted to strong negation normal form (see
Sec. 3.2) because they preserve satisfiability but are not necessarily closed under negation.

8

Finally the valuation function γ′ is defined for all v0 · · · vn ∈ ∆′ and for all x ∈ Reg as
γ′(v0 · · · vn, x) := γ(vn, x).

Now, if we consider → =
⋃
r∈NR

rJ , it is easy to see that (∆′,→) is a tree with root v. To
prove that J |=T C, we show the following (HP): For all v0 · · · vn ∈ ∆′ and for all concepts
D ∈ Sub(T , C), v0 · · · vn ∈ DJ ⇔ vn ∈ DI .

Using (HP) and the fact that I |= T we obtain that v0 · · · vn ∈ (CT)J for all v0 · · · vn ∈ ∆′,
where CT is the TBox concept for T , thus showing J |= T . Furthermore the one-node path v
belongs to CJ , which implies that J |=T C, as wanted.

Let us now prove (HP) by structural induction on a concept D. Let p = v0 · · · vn be a path
originating in v:

• If D is a concept name, then (HP) is satisfied by definition of DJ .

• If D = ¬E for some concept E, then p ∈ DJ if and only if p /∈ EJ . By induction
hypothesis vn does not belong to EI , that is, vn ∈ (¬E)I .

• Let D = E u F . If p ∈ DJ , by definition p belongs to both EJ and FJ . By induction
hypothesis this holds if and only if vn ∈ EI ∩ F I , that is vn ∈ DI .

• Let D = ∃r.E. Then p ∈ DJ if and only if there exists p′ ∈ ∆′ such that (p, p′) ∈ rJ
and such that p′ ∈ EJ . By definition of rJ , this means that p′ = v0 · · · vnrv′ for some
v′ ∈ ∆ such that (vn, v

′) ∈ rI . Also, by induction hypothesis p′ ∈ EJ holds if and only
if v′ ∈ EI . This yields p ∈ DJ if and only if vn ∈ DI , as wanted.

• Let now D = ∃P.c(Si1x1, . . . , Sikxk), with P = r1 · · · rm. We know that v0 · · · vn ∈ DJ
if and only if there exists (p0, p1, . . . , pm) ∈ PJ with p0 = v0 · · · vn such that D |=
c(γ(pi1 , x1), . . . , γ(pik , xk)). Now, notice that (p0, . . . , pm) belongs to PJ if and only if
(pi−1, pi) ∈ rJi for i = 1, . . . ,m, which is true if and only if pi = pi−1riwi for some
w1, . . . , wm ∈ ∆. But this is equivalent to (w0, w1, . . . , wm) ∈ P I where w0 = vn. Now,
by definition of γ′, γ(pij , xj) = γ(wij , xj) for all j = 0, . . . , k, and therefore vn ∈ DI .

We prove now, that ALCP(D) actually has a stronger form of the tree-model property, where the
branching degree is bounded. We denote by #E(T , C) the number of existentially quantified
subconcepts that occur in Sub(T , C). We can prove the following:

Lemma 23. Consider a concept C and a TBox T , both in negation normal form, let d be the
maximum depth of an existential path constraint occurring in C and T , and let e = #E(T , C).
Given a tree-shaped D-interpretation I = (∆I , ·I , γI) such that I |=T C, we can obtain an
n-tree D-interpretation H = (∆H, ·H, γH) such that H |=T C, where n = d · e .

Proof. The idea is the following: first we prove that, given the tree-model I, we can build
a tree-shaped interpretation J for C w.r.t. T which is an infinitely branching infinite tree.
Successively we prune such model to obtain a new one where each node has exactly n = d · e
many successors.

Let us look in detail at the first step. Suppose the role name s ∈ NR \ NF does not appear in
C nor in T . The idea is to introduce new s-successors to the elements of ∆I , and then attach
copies of I to it, until we obtain an infinitely branching infinite tree: J = (∆J , ·J , γJ). We
define ∆J ⊆ (∆I ×N)∗ recursively, and for each v ∈ ∆I we write vi instead of (v, i) to increase
readability.

First of all set (∆I ×{0}) ⊆ ∆J . We also set, for all v, w ∈ ∆I and for all A ∈ NC and r ∈ NR,
v0 ∈ AJ if and only if v ∈ AI , and (v0, w0) ∈ rJ if and only if (v, w) ∈ rI . Furthermore we
define γJ (v0, x) = γI(v, x), for all x ∈ Reg.

9

Now let v ∈ ∆J be some node with only finitely many successors. Then for each w ∈ ∆I we add
infinitely many elements vw1, vw2, vw3 . . . to ∆J . If ε is the minimal element of ∆I , we add
(v, vεi) to sJ for all i = 1, 2, 3 Furthermore, for all r ∈ NR, if (w, z) ∈ rI , we add (vwi, vzi)
to rJ for all i = 1, 2, 3 For all concept names A ∈ NC and for all w ∈ ∆I such that w ∈ AI ,
we add vwi to AJ . Finally, for all w ∈ ∆I and x ∈ Reg, we set γJ (vwi, x) = γI(w, x).

We repeat this procedure until an infinitely branching infinite tree is obtained. Note that all
elements v of ∆′ are either of the form v = w0 or v = v′wi for some v′ ∈ ∆′ and some w ∈ ∆.
We say then that v is a copy of w. Note also that this procedure respects the functional
requirements for all f ∈ NF.

We now show by induction the following (HP): For all v ∈ ∆′ and w ∈ ∆ such that v is a copy
of w and for all concepts D ∈ Sub(T , C), v ∈ DJ if and only if w ∈ DI . This implies that
J |=T C, as wanted.

Let us now prove (HP) by structural induction on D ∈ Sub(T , C). Let v ∈ ∆′ be a copy of
w ∈ ∆:

• If D is a concept name, then (HP) is satisfied by definition of DJ .

• If D = ¬E for some concept E, then v ∈ DJ if and only if v /∈ EJ , if and only if (by
induction hypothesis) w does not belong to EI , that is, w ∈ (¬E)I .

• Let D = E u F . If v ∈ DJ , by definition v belongs to both EJ and DJ . By induction
hypothesis this holds if and only if w belongs to EI and F I , that is w ∈ DI .

• Let D = ∃r.E. Note that r 6= s, because D ∈ Sub(T , C) and we chose s specifically among
those role names which do neither appear in C nor in T . Now, v ∈ DJ if and only if there
exists v1 such that (v, v1) ∈ rJ and v1 ∈ EJ . By construction of rJ , v1 must be a copy
of some w1 ∈ ∆ such that (w,w1) ∈ rI . Furthermore, by induction hypothesis v1 ∈ EJ
if and only if w1 ∈ EI which yields w ∈ DI , as wanted. For the vice-versa, suppose now
that w ∈ DI . Then there exists w1 ∈ ∆ such that (w,w1) ∈ rI and w1 ∈ EI . Deducing
that v ∈ DJ is as simple as proving that there exists an element v1 ∈ ∆′ such that v1
is a copy of w1 and such that (v, v1) ∈ rJ . But this is a straightforward consequence
of the construction we used: If v = w0, then w0

1 also belongs to ∆′ and it is such that
(w0, w0

1) ∈ rJ . If v = v′wi for some v′ ∈ ∆′, then v′wi1 belongs to ∆′ and respects our
requirements.

• Let now D = ∃P.c(Si1x1, . . . , Sikxk), with P = r1 · · · rm. If v ∈ DJ , then there exist
v0, v1, . . . , vm ∈ ∆′ such that v0 = v and (vj−1, vj) ∈ rJj for j = 1, . . . ,m. Furthermore,
D |= c(γJ (vi1 , x1), . . . , γJ (vik , xk)). Again, notice that none of the r1, . . . , rm which
appear in the path P can be the role s. Suppose v = w0, by construction we can
find elements w0, . . . , wm such that vj = w0

j for j = 0 . . .m (in particular w0 = w).

By construction we find that (wj−1, wj) ∈ rI for j = 1 . . .m. According to how we
defined γJ , we know that γI(w, x) = γJ (w0, x) and therefore we deduce that D |=
c(γI(wi1 , x1), . . . , γI(wik , xk)). Then w ∈ EI , as wanted. The case where v = v′wi for
some v′ ∈ ∆′ and some i ≥ 1 is treated analogously. Also the direction w ∈ DI ⇒ v ∈ DJ
is proved using the same tools.

The second step consists in pruning J until we are left with an n-tree interpretation. To this
end, we select only those elements of ∆J which are in some sense necessary. Let us see how.

As a base step we take v1 = ε, the root of ∆J , and ∆0
H = {ε}. We define ∆1

H by applying the
procedure shown in Figure 1, instantiated for i = 1.

For the i-th step we first choose a node vi from ∆i−1
H , namely the successor of vi−1 according to

the same-level traversal, and then define ∆i
H ⊃ ∆i−1

H following the rules described above. We
will prove that at each step of the procedure the following properties are respected:

10

Suppose that C1, . . . , Cj are the existentially quantified concepts appearing in Sub(T , C)
such that vi ∈ CJk for all 1 ≤ k ≤ j. Note that j is necessarily smaller or equal to e. Then
we define ∆i

H the following way:

• ∆i−1
H ∪ {vi} ⊆ ∆i

H;

• For all 1 ≤ k ≤ j, if Ck has the form ∃r.D, then there must exist w ∈ ∆J such that
(vi, w) ∈ rJ and such that w ∈ DJ . We then add w to ∆i

H.

• For all 1 ≤ k ≤ j, if Ck is an atomic path constraint ∃P.c of depth dk ≤ d, then we
can find an instance of the path P , namely some tuple (vi, w1, . . . , wdk) ∈ PJ that
satisfies the constraint c. We then add w1, . . . , wdk to ∆i

H.

• If vi still has t < n successors, we choose wt+1, . . . , wn arbitrarily among the succes-
sors of ε in ∆J that we have not yet added to ∆i

H, and include them.

Figure 1: Procedure for obtaining ∆i
H.

(1) ∆i
H \∆i−1

H only contains nodes of the form viw, i.e. we are only adding descendants of vi.

(2) All nodes w E vi, where E denotes the same-level traversal, have exactly n successors in
∆i
H.

(3) All nodes viw ∈ ∆i
H such that |w| = k for 1 ≤ k ≤ d have at most (d− k)e successors.

Note that, thanks to rule (2), the choice of vi is well defined, because vi−1 has n successors,
which are bigger than vi−1 itself according to the same level traversal.

Conditions (1) and (2) are trivially verified for i = 1. Condition (3) is easily seen as follows: At
each step of the procedure we are either adding single nodes which are successors of ε, or we
are adding at most d-many nodes w1, . . . , wd such that |wl| = l. Since we are adding at most e
of such d-tuples of nodes, it is clearly satisfied that each one of them has at most e successors,
which proves condition (3).

Now suppose that for all j < i vj and ∆j
H respect conditions (1)-(3). Let us prove that vi and

∆i−1
H also do.

(1) This is clear from the definition of ∆i
H.

(2) By induction hypothesis, given any node w E vi−1, this has exactly n successors in ∆i−1
H ,

and by (1) we have not added any new successors of w to ∆i
H. Suppose vi is the successor

of some node v. Then v = vj for some j < i, and vi ∈ ∆j
H, because all successive steps of

the procedure cannot have added new successors of vj . By inductive hypothesis on (3) we
know that at step j, vi had at most (d− 1)e successors, and, by (1), no new successors of
vi can have been added in steps j + 1, . . . , i− 1. Then, according to the second and third
step of the procedure, we will add at most e-many distinct successors of vi, obtaining a
number of successors for vi that is smaller or equal to n. The last step of the procedure
assures that vi has exactly n successors.

(3) As noted above, vi is the successor of some vj such that j < i, and by the inductive hypoth-

esis (1) no new descendants of vi could have been added to the domains ∆j+1
H , . . . ,∆i−1

H .
Therefore, by inductive hypothesis (3), we know that for all 1 ≤ k ≤ d, and for all nodes
vjw with |w| = k, vjw has at most (d−k)e-many successors. Since vi is a direct successor
of vj , this implies that at step i − 1, all descendants of vi of the form viw with |w| = k
correspond to a node vjw

′ with |w′| = k + 1, and have therefore at most (d − k − 1)e-
many successors. Note that k cannot be larger than d − 1, because all nodes vjw

′ with

11

|w′| = d have no successors. By the second and third step of the procedure, we will add
at most (d · e)-many nodes viw

j
k for j = 1, . . . , e and k = 1, . . . , d, such that |wjk| = k

for all k and j. That is, we are adding to ∆i
H at most e-many nodes k levels below vi

for each k = 1, . . . , d, which implies that all nodes viw with |w| = k have now at most
(d− k)e-many successors, as wanted.

Now ∆H is defined as the union of all ∆i
H for i ∈ N, and ·H and γH are defined as the restriction

of ·J and γJ to ∆H. Due to properties (1) and (2), we have guaranteed that H is an n-tree. It is
only left to show that H |=T C, and this is obtained through a simple induction on the structure
of the formula, where we use the fact that, whenever an existentially quantified subconcept of
T and C is satisfied on J , we have included in H the witnesses that made such concept true.

Given this result, we can restrict ourselves from now on to those D-interpretations of the form
I = ([1, n]∗, ·I , γI) where for each u, v ∈ [1, n]∗ there exists r ∈ NR such that (u, v) ∈ rI if and
only if there exists i ∈ [1, n] such that v = ui.

3.2 Strong negation normal form

We show now how, requiring that the concrete domain satisfies a property called negation
closure, we can obtain a strong negation normal form, where negation only appears in front of
concept names.

Definition 24. We call a σ-structure D = (D,RD1 , R
D
2 , . . .) negation-closed if for every R ∈ σ

the complement of RD is effectively definable by a positive existential first-order formula, i.e.,
if there is a computable function that maps each relation symbol R ∈ σ to a positive existential
first-order formula ϕR(x1, . . . , xar(R)) (i.e., a formula that is built up from relations of σ using
∧, ∨, and ∃) such that

Dar(R) \RD = {(a1, . . . , aar(R)) | D |= ϕR(a1, . . . , aar(R))}.

Example 25. Consider the structure (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), where =a := {a} is the
unary predicate which holds only for a, and ≡a,b := {a + kb | k ∈ Z} is a unary predicate
expressing the fact that some number is congruent to a modulo b. Such structure is negation-
closed, we have in fact:

• ¬x = y if and only if x < y ∨ y < x,4

• ¬x < y if and only if x = y ∨ y < x,

• ¬x = a if and only if ∃y (y = a ∧ (x < y ∨ y < x)), and

• ¬x ≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b with a 6= c :∨
0≤c<b
a 6=c

x ≡ c mod b .

Definition 26. We say that an ALCP(D)-concept ϕ is in strong negation normal form if it is
in negation normal form and if, additionally, all constraints c(x1, . . . , xk) do not contain any
negation. Consequently we say that a TBox T is in strong negation normal form if so is the
TBox-concept CT .

4To improve readability we write x = y instead of =(x, y), x = a instead of =ax, and so on.

12

Lemma 27. If D = (D,RD1 , R
D
2 , . . .) is negation-closed, given a concept C and a TBox T , one

can compute Ĉ and T̂ in strong negation normal form such that C is satisfiable with respect to
T if and only if Ĉ is satisfiable with respect to T̂ .

Proof. We can assume that C and T are in negation normal form, that is, negation only occurs
before a concept name or before a relation from the concrete domain, inside a constraint. Using
induction, it suffices to eliminate one negated atomic constraint θ = ¬R(Si1x1, . . . , S

ikxk) from
C and T , where k = ar(R). Let d = max{i1, . . . , ik} be the depth of θ. Since D is negation-
closed, we can compute a positive quantifier-free first-order formula ψ(y1, . . . , yk, z1, . . . , zm)
such that

(a1, . . . , ak) /∈ RD ⇐⇒ D |= ∃z1 · · · ∃zmψ(a1, . . . , ak, z1, . . . , zm) . (2)

Let s1, . . . , sm ∈ Reg be fresh register variables not occurring in ψ. We define Ĉ and T̂ as
obtained from C and CT by replacing every occurrence of the negated relation θ by

ψ(Si1x1, . . . , S
ikxk, S

ds1, . . . , S
dsm) , (3)

i.e., we replace in the positive quantifier-free formula ψ(y1, . . . , yk, z1, . . . , zm) every occurrence
of a variable yj (respectively, zj) by Sijxj (respectively, Sdsj).

The idea is the following: Given a negated atomic constraint θ, we substitute it with a boolean
combination of positive ones, involving the same variables appearing in θ (Sijxj), but also new
ones (Sds1 . . . , S

dsm) which will carry the value of those existentially quantified values that
occur in the formula ψ. These new variables are “placed” at depth d, so that (considering the
tree-like structure of an ALCP(D) model) we can use a different tuple of values (Sds1, . . . , S

dsm)
for each path P on which the constraint containing ψ is evaluated.

Now we want to prove that

C is satisfiable with respect to T ⇐⇒ Ĉ is satisfiable with respect to T̂ .

Proof of =⇒. If C is satisfiable w.r.t. T , then by Lemma 23 there is an n-tree D-interpretation
I = ([1, n]∗, ·I , γI) such that I |=T C. We modify I and obtain a new n-tree D-interpretation

J = ([1, n]∗, ·J , γJ), such that J |=T̂ Ĉ. We redefine γJ on the fresh register variables
s1, . . . , sm and leave otherwise γJ = γI as follows: Consider wv ∈ ∆ such that |v| = d and let
vp denote the prefix of v of length ip for 1 ≤ p ≤ k,

D1. By (2), (γ(wv1, r1), . . . , γ(wvk, rk)) /∈ RI , if and only if there exist values b1, . . . , bm ∈ D
such that

D |= ψ(γI(wv1, r1), . . . , γI(wvk, rk), b1, . . . , bm) .

In this case we set γJ (wv, sq) = bq for all 1 ≤ q ≤ m.

D2. If (γI(wv1, r1), . . . , γI(wvk, rk)) ∈ RI , we choose γJ (wv, sq) ∈ D arbitrarily for all 1 ≤
q ≤ m.

D3. Finally, for all w ∈ ∆ such that |w| < d we choose γJ (w, sq) ∈ D arbitrarily for all
1 ≤ q ≤ m.

We finally define XJ := XI for X ∈ NC ∪NR and extend it as usual to all ALCP(D)-concepts.
Note that the resulting interpretation function ·J can differ from ·I because γJ may differ from
γI .

Using induction we can now prove the following (HP): for all concepts E ∈ Sub(T , C) and all

v ∈ ∆, v ∈ EI ⇒ v ∈ ÊJ . Since I |= T , we know that v ∈ (CT)I for all v ∈ ∆. Then using

(HP) we can deduce that v ∈ ĈT
J

for all v ∈ ∆, that is, J |= T̂ . Furthermore, since I |=T C

13

there exists v ∈ ∆ such that v ∈ CI . Using (HP) we can then deduce that v ∈ ĈJ , which

together with the previous observation proves J |=T̂ Ĉ.

The proof of (HP) is easy, given the fact that I and J coincide on everything except the
values of γI and γJ on the new variables s1 . . . sm. The only non-trivial case is the one where
E has the form ∃P.c(Sj1y1, . . . , Sjtyt) or ∀P.c(Sj1y1, . . . , Sjtyt), where P is a path of length
n and c contains the negated atomic constraint θ = ¬R(Si1x1, . . . , S

ikxk). We show how
to deal with this case: v ∈ EI if and only if for some (or for all) tuples (v0, . . . , vn) ∈ P I

with v0 = v we have that D |= c(γI(vj1 , y1), . . . , γI(vjt , yt)). Since rI = rJ for all r ∈ NR

we know that (v0, . . . , vn) ∈ P I implies (v0, . . . , vn) ∈ PJ . Then we simply need to prove
D |= ĉ(γJ (vj1 , y1), . . . , γJ (vjt , yt), γJ (vd, s1), . . . , γJ (vd, sm)). Now ĉ is a boolean combination
of relations on the concrete domain D in negation normal form, obtained from c by replacing
every occurrence of θ with the formula (3). We hence apply a second level of induction on
the subformulas of c, and reduce ourselves to proving that D |= ¬R(γI(vi1 , x1), . . . , γI(vik , xk))
implies D |= ψ(γJ (vi1 , x1), . . . , γJ (vik , xk), γJ (vd, s1), . . . , γJ (vd, sm)). But this is clear, given
how we have chosen the values of γJ (vd, sq) for q = 1 . . .m according to D1.

Proof of ⇐=. If Ĉ is satisfiable w.r.t. T̂ , then there exists a D-interpretation I = (∆, ·I , γI)

such that I |=T̂ Ĉ. We claim that I is also a model for C and, in particular, for each element

v ∈ ∆ and for each concept E ∈ Sub(T , C), v ∈ ÊI implies v ∈ EI .

To prove this, again by induction on the structure of all subconcepts in Sub(T , C), after a
sequence of trivial steps, we find ourselves with the task to show that

D |= ψ(γI(vi1 , x1), . . . , γI(vik , xk), γI(vd, s1), . . . , γI(vd, sm))

implies D |= ¬R(γI(vi1 , x1), . . . , γI(vik , xk)),

but this is a direct consequence of (2).

Example 28. Consider the concrete domain D = (Z, <,=, (=a)a∈Z) and the ALCP(D)-concept
C = ∃rs.[S1x < S2x∧¬S2x = 3]. An individual d which belongs to an interpretation of C must
necessarily have an r-successor d1 which has an s-successor d2, such that the value of x in d1
is smaller than the value of x in d2, which in turn must be different than 3. As one can see
from Example 25, D is negation-closed, and we can find an existentially quantified positive first
order formula, namely

ψ(a) = ∃z(z = 3 ∧ (a < z ∨ z < a)) ,

such that ¬x = 3 if and only if ψ(x) holds. The strong negation normal form of C is then

Ĉ = ∃rs.[S1x < S2x ∧ S2y = 3 ∧ (S2x < S2y ∨ S2y < S2x)] .

As you can see we have introduced a new register variable y and placed it at depth 2 inside the
constraint to hold the value that was existentially quantified in ψ.

Now that we have successfully eliminated negation from inside the constraints, there is one last
step to do, in order to obtain a normal form that will be useful in the next section. Observe
that if a constraint c(x1, . . . , xk) does not contain negation, it is possible to apply distributivity
repeatedly and obtain an equivalent constraint in DNF or in CNF5 which still does not contain
negation. Therefore we can assume that all path constraints of the form ∃P.c (respectively
∀P.c) are such that the constraint c is in DNF (resp. CNF). Using then the fact that universal
quantification commutes with conjunction and that existential quantification commutes with
disjunction, we can easily prove the following facts:

5Disjunctive or conjunctive normal form.

14

∃P.
n∨
i=1

(ai1 ∧ · · · ∧ aimi
) ≡

n⊔
i=1

∃P.(ai1 ∧ · · · ∧ aimi
), and

∀P.
n∧
i=1

(ai1 ∨ · · · ∨ aini
) ≡

nl

i=1

∀P.(ai1 ∨ · · · ∨ aini
),

where each aij is an atomic constraint. Therefore, given a concept C in strong negation normal
form, and applying the above described transformations, we can obtain a new concept C ′ which
is still in strong negation normal form, and is such that all path constraints are of the kind
∃P.c (or ∀P.c) where c is a conjunction (resp. disjunction) of atomic constraints. We call this
the constraint normal form of the concept C.

4 The EHD-method

Here we retrace the steps of the work done in [6, 7] for CTL∗ and ECTL∗ to show how, assuming
the right properties on the concrete domain, we can reduce the satisfiability problem of ALCP(D)
to the satisfiability problem for BMWB over n-trees.

4.1 The EHD-property

We now introduce one of the central notions involved in the decidability proof: the EHD-
property. EHD stands for “the existence of a homomorphism is definable”. This is a property
of a relational structure A, expressing the ability of a logic L to distinguish between those
structures B which can be mapped to A by a homomorphism (B � A) and those who cannot.
Recall the definition of homomorphism (Definition 3).

Definition 29. Let L be a logic (e.g. MSO). A σ-structure A has the property EHD(L) if there
is a computable function that maps every finite subsignature τ ⊆ σ to an L-sentence ϕτ such
that for every countable τ -structure B we have:

B � A ⇔ B |= ϕτ .

One can also formulate a variant of the EHD-property for classes of structures:

Definition 30. A class Γ of relational structures over the common signature σ has the property
EHD(L) if there is a computable function that maps every finite subsignature τ ⊆ σ to an L-
sentence ϕτ such that for every countable τ -structure B we have:

∃A ∈ Γ s.t. B � A ⇔ B |= ϕτ .

As we will see later, it turns out that for a negation-closed domain D with the EHD(BMWB)-
property, satisfiability of ALCP(D) is decidable. For this reason, in the following we will be
mainly interested in structures which have the property EHD(L) where L is BMWB or some
fragment of this logic. In this cases, we sometimes omit to specify L and simply write EHD.

Example 31. In [6, 7, 5] several relational structures and classes of relational structures are
investigated and found to enjoy the property EHD. Most notably

• the integers with equality-, order-, constants-, and modulo-constraints:
(Z,=, <, (=a)a∈Z, (≡a,b)a<b),

15

• the natural numbers with the same relational signature:
(N,=, <, (=a)a∈N, (≡a,b)0≤a<b),

• the rational numbers (Q,=, <, (=q)q∈Q),

• the class of all semi-linear orders (see [5]),

• the class of all ordinal trees (see [5]),

• the class of all trees of height h for some fixed h ∈ N,

• (Zn, <lex,=) where <lex is the lexicographic order,

• AllenZ: the set of intervals over the integers together with Allen’s relations, which allow
to describe their relative positioning.

It was first shown in [6] that (Z, <) has the property EHD. Consider any countable {<}-
structure A = (A,<). For x, y ∈ A we write x <∗ y if there exist x1, . . . , xn such that
x < x1 < · · · < xn < y in A. We call then {x, x1, . . . , xn, y} a <-path between x and y.

It was proved in [6] that A � (Z, <) if and only if

• A does not contain a cycle, that is, two elements x, y such that x <∗ y < x, and

• for every two elements x, y ∈ A, there exists a bound n such that one cannot find a <
path between x and y with more than n elements.

This is then expressed in the following BMWB-formulas: ¬∃x, y(reach<(x, y) ∧ y < x) and
∀x∀y BXPath(X,x, y). Here reach< is the same as in ex. 8, where the edge relation E is
replaced by <, and Path(X,x, y) is a formula indicating that the set X is a <-path from x to
y (see [7, ex. 2]). We see here the bounding quantifier in action, bounding the size of all paths
between any two elements.

In [11, 12] concrete domains over the rationals are considered for the logics Q-SHIQ and
T DL. This last one differs from ALCP(D) only in the fact that it solely allows feature-paths as
connectors to the concrete domains. In both cases, it is stated that adding a unary predicate
int, allowing to express that a certain concrete value has to be an integer, would be extremely
useful. Decidability of reasoning in these logics under this addition remained an open problem.
Here we show that the domain Q = (Q, <, int, int), where int = Z and int = Q \ Z, has the
EHD-property. In [7, lem. 38] it is shown that, whenever a domain D has the EHD-property,
then so does D=, obtain by adding the equality relation. This proves that Q= (which is now
negation-closed) has the EHD-property. This will imply that satisfiability of ALCP(Q=) is
decidable.

Proposition 32. Q has the EHD-property.

Proof. Consider an arbitrary countable structure A = (A,<, intA, int
A

). We want to prove that
A allows a homomorphism to (Q, <, int, int) if and only if

H1 A does not contain two elements x, y such that x <∗ y < x,

H2 there exists no x such that x ∈ intA ∩ int
A

,

H3 given any two elements x, y ∈ A, there exists a bound n such that each <-path between
x and y contains at most n elements from intA.

16

In this setting, it is only the number of elements of intA that needs to be bounded on all
path between any two elements. The reason is that, being Q dense, we can accommodate any
countable amount of numbers in any interval, provided that they are not forced to be integers.

Let us denote from now on I = intA. Properties H1-H3 are easily expressed in BMWB: acyclic-
ity using reach< as above, H2 by ¬∃x(int(x) ∧ int(x)) and H3 is expressed by the formula
∀x,y BX[X ⊆ I ∧ ∃Z(X ⊆ Z ∧ Path(Z, x, y))].

Now let us prove our claim. The “only if” implication is straightforward, let us consider
the “if” direction. Fix an enumeration a0, a1, a2, . . . of the countable set A. For n ≥ 0 let
Sn := {a ∈ A | ∃i, j ≤ n : ai <

∗ a and a <∗ aj}, which has the following properties:

(P1) Sn is convex w.r.t. the partial order <∗: If a, c ∈ Sn and a <∗ b and b <∗ c, then b ∈ Sn.

(P2) For a ∈ A \ Sn all <-paths between a and Sn are “one-way”, i.e., there do not exist
b, c ∈ Sn such that b <∗ a and a <∗ c. This follows from (P1).

(P3) For all a ∈ A \ Sn there exists a bound c ∈ N such that all <-paths between a and Sn
contain at most c elements x ∈ I. Let can ∈ N be the smallest such bound (hence, we have
can = 0 if there exist no <-paths between a and Sn, or if all <-paths do not intersect I).

To see (P3), assume that there only exist <-paths from Sn to a but not the other way round
(see (P2)); the other case is symmetric. If there is no bound c such that all <-paths from Sn
to a have at most c elements from I, then by definition of Sn, there is no bound on the number
of elements from I on <-paths from {a0, . . . , an} to a. By the pigeon principle, there exists
0 ≤ i ≤ n such that the number of elements from I on <-paths from ai to a is unbounded. But
this contradicts property (H2).

We build our homomorphism h inductively. For every n ≥ 0 we define functions hn : Sn → Z
such that the following invariants hold for all n ≥ 0.

(I1) If n > 0 then hn(a) = hn−1(a) for all a ∈ Sn−1

(I2) hn(Sn) is bounded in Z, i.e., there exist z1, z2 ∈ Z such that hn(Sn) ⊆ [z1, z2].

(I3) for all a ∈ Sn, hn(a) ∈ Z if and only if a ∈ I.

(I4) hn is a homomorphism from the substructure A|Sn
to Q.

For n = 0 we have S0 = {a0}. We set h0(a0) = 0 if a0 ∈ I (any other integer would be also
fine), or h0(a0) = 1/2 otherwise. Properties (I1)–(I4) are easily verified. For n > 0, there are
four cases.

Case 1. an ∈ Sn−1, thus Sn = Sn−1. We set hn = hn−1. Clearly, (I1)–(I4) hold for n.

Case 2. an /∈ Sn−1 and there is no <-path from an to Sn−1 or vice versa. We set hn(an) := 0
if an ∈ I and hn(an) = 1/2 otherwise. Note that in this case Sn = Sn−1 ∪ {an}, and (I1)–(I4)
follow easily from the induction hypothesis.

Case 3. an /∈ Sn−1 and there exist <-paths from an to Sn−1. Then, by (P2) there do not exist
paths from Sn−1 to an. Hence, we have

Sn = Sn−1 ∪ {a ∈ A | ∃b ∈ Sn−1 : an <
∗ a <∗ b}.

We have to assign a value hn(a) for all a ∈ A \Sn−1 that lie along a path from an to Sn−1. By
(I2) there exist z1, z2 ∈ Z with hn−1(Sn−1) ⊆ [z1, z2]. Recall the definition of can−1 from (P3).
For all a ∈ S := (Sn \ Sn−1) ∩ I we set hn(a) := z1 − can−1. Since a ∈ I, we have can−1 > 0,
hence hn(a) < z1.

17

Let us now call B = S \ I and fix an enumeration b1, b2, . . . all elements from B. Note that

∀a, b ∈ B a <∗ b⇒ can−1 ≥ cbn−1 . (4)

For each bi ∈ B we will define hn as the union over i of the functions hin(bi) defined inductively
as follows, so that

(i) hin(bi) belongs to the interval (z1 − cbin−1 − 1, z1 − cbin−1), and

(ii) for all j, k < i, bj <
∗ bk implies hin(bj) < hin(bk).

For b0 we set h0n(b0) = z1 − cb0n−1 − 1/2, which respects (i) and (ii).

For step i define hin(bj) = hi−1n (bj) for all j < i. Then, define mi = maxj<i{z1 − cbin−1 −
1} ∪ {hin(bj) | bj <∗ bi} and Mi = minj<i{z1 − cbin−1} ∪ {hin(bj) | bi <∗ bj}. We then set

hin(bi) = mi + |Mi−mi|/2. We claim that z1− cbin−1− 1 ≤ mi < Mi ≤ z1− cbin−1. The first and
last inequality are trivial consequences of the definition of max and min. The central inequality
is given by the inductive hypothesis: in fact since all x, y such that x ∈ {bj | j < i, bj <

∗ bi}
and y ∈ {bj | j < i, bi <

∗ bj} are such that x <∗ y, applying (ii) we obtain hin(x) < hin(y).

Furthermore for such x and y, thanks to (4), we know that cxn−1 ≥ c
bi
n−1 ≥ c

y
n−1, and therefore,

thanks to (i), hin(x) < z1 − cbin−1 and hin(y) > z1 − cbin−1 − 1. This proves the claim. We can
then use this claim to easily deduce that hin(bi) respects (i) and (ii).

Now that we have defined hn on the whole Sn \ Sn−1, let us check that it satisfies (I1)– (I4):
Invariant (I1) and (I3) hold by definition of hn. For (I2) note that hn(Sn) ⊆ [z1 − cann−1, z2].

It remains to show (I4), i.e., that hn is a homomorphism from A|Sn
to Q. By (I3) we have

that a ∈ I implies h(a) ∈ Z, as wanted. If int(a) holds in A, then by H2 it cannot be a ∈ I.
Therefore also by (I3) h(a) /∈ Z.

We have to show that for all b1 < b2 ∈ Sn we have h(b1) < h(b2).

• If b1, b2 ∈ Sn−1, then hn(b1) = hn−1(b1) < hn−1(b2) = hn(b2) by induction hypothesis.

• If b1 ∈ Sn \ Sn−1 and b2 ∈ Sn−1, we know that hn(b2) = hn−1(b2) ≥ z1 while hn(b1) < z1
by construction. This directly implies hn(b1) < hn(b2).

• If b2 ∈ Sn \ Sn−1 and b1 ∈ Sn−1, then b1 <
∗ b2 and by assumption b2 must be on a path

from an to Sn−1 which contradicts (P2).

• If both b1 and b2 belong to (Sn \ Sn−1) ∩ I then hn(bi) := z1 − cbin−1 for i ∈ {1, 2} Since

b1 < b2, we have cb1n−1 > cb2n−1. This implies hn(b1) < hn(b2).

• If both b1 and b2 belong to (Sn \ Sn−1) \ I, then we know by (ii) that for the first i ∈ N
such that hin is defined on both b1 and b2, hin(b1) < hin(b2). Since hn(b1) = hin(b1) and
hn(b2) = hin(b2), we have what we want.

• If b1 ∈ (Sn \ Sn−1) ∩ I and b2 ∈ (Sn \ Sn−1) \ I, we know that hn(b1) = z1 − cb1n−1 and

by (i) hn(b2) > z1 − cb2n−1 − 1. We also know that since b1 < b2, we have cb1n−1 > cb2n−1.
Therefore hn(b1) < hn(b2). The symmetrical case is treated analogously.

Case 4. an /∈ Sn−1 and there exist paths from Sn−1 to an. For all a ∈ Sn \ Sn−1 = {a ∈
A \ Sn−1 | a belongs to a path from Sn−1 to an}, such that a ∈ I set hn(a) = z2 + can−1. The
rest of the argument goes analogously to Case 3.

This concludes the construction of hn. By (I1) limit function h =
⋃
i∈N hi exists. By (I4) and

A =
⋃
i∈N Si, h is a homomorphism from A to (Z, <).

18

4.2 Satisfiability of ALCP(D)

Definition 33. Fix a concrete domain D. The satisfiability problem for ALCP(D) is the
following computational problem: Given an ALCP(D)-concept C and a TBox T , is there a
D-interpretation I such that I |=T C?

We are now ready to introduce the main result of this work:

Theorem 34. If a concrete domain D is negation-closed and has the property EHD(BMWB),
the satisfiability problem for ALCP(D) is decidable.

The above Thm. 34 can be applied to all the concrete domains listed in Ex. 31 and the new
one from Proposition 32, yielding a good number of decidability results for ALCP(D) in the
presence of general TBoxes, which strictly improves what was known so far.

The idea behind this theorem is to separate the search of a D-interpretation for a concept C with
respect to a TBox T into two parts: In a first step we look for an ordinary ALC interpretation
(i.e., without the valuation function) that satisfies an abstracted version of C and T . That is, we
replace each atomic constraint appearing in C and T with a fresh concept name B and obtain
a classical ALC-concept Ca and TBox Ta, where the a stands for abstracted. The fact that Ca
is satisfiable with respect to Ta is clearly not enough to guarantee that C is satisfiable with
respect to T : for instance the ALCP(D)-concept ∃r.(x < Sx ∧ Sx < x) is unsatisfiable, while
its abstraction ∃r.(B1 uB2) is satisfiable. So the second step consists in creating alongside the
interpretation of the abstracted concept what we call a constraint graph, a structure in charge
of remembering the contribution of the constraints that we abstracted away. It turns out that
asking that such constraint graph allows a homomorphism to our concrete domain is enough to
guarantee that the constraints are satisfied.

For the following definitions let us fix a signature σ, a negation-closed σ-structure D with the
EHD-property as concrete domain, and an ALCP(D)-concept C and TBox T , both in constraint
normal form, in which only the atomic constraints θ1, . . . , θn occur. Let di be the depth of each
θi, and let B1, . . . , Bn be concept names that do not appear in Sub(T , C).

Definition 35. Let E = ∃P.c(Si1x1, . . . , Sikxk) be an existential path constraint, where P =
r1 . . . rp and c is a conjunction of the atomic constraints θ1, . . . , θm with m ≤ n where the
depths are such that 0 =: d0 ≤ d1 ≤ · · · ≤ dm ≤ dm+1 := p (if this is not the case it will suffice
to reorder the constraints). Then we define the abstraction of E as

Ea = ∃P1.(B1 u ∃P2.(B2 u · · · ∃Pm.(Bm u ∃Pm+1.>) . . .) , (5)

where ∃Pi is short for ∃rdi−1+1 . . . ∃rdi . It can happen that di = di+1, in which case ∃Pi+1 is
empty.

Symmetrically, if E = ∀P.c(Si1x1, . . . , Sikxk) where c is a disjunction of atomic constraints
containing θ1, . . . , θm with 0 =: d0d1 ≤ · · · ≤ dm ≤ dm+1 := p, we define

Ea = ∀P1.(B1 t ∀P2.(B2 t · · · ∀Pm.(Bm t ∀Pm+1⊥) . . .) , (6)

where Pi is defined as above. We define Ca and Ta as the ALC-concept and TBox obtained by
C and T by replacing every occurrence of a path constraint E by its abstraction Ea.

Notice how we use the fact that the constraints from ALCP(D) are local to individuate the
“lower” node involved in the constraint (the one at depth di) and mark it as belonging to the
fresh concept Bi. This way, when navigating a tree-model of the abstracted concept Ca with
respect to Ta, we know that all paths of length di that end in a node marked with Bi should
satisfy the constraint θi. This would not work if the constraints were non-local.

19

Example 36. If C = ∃.r1r2r3(x = y ∧ x < S2x ∧ S1y = S2x), the abstraction Ca is

B1 u ∃r1.∃r2.(B2 uB3 u ∃r3.>) ,

where we have assigned the new concept names to the atomic constraints in order of appearance.

Definition 37. Given an n-tree D-interpretation I = ([1, n]∗, ·I , γI) such that B1
I = · · · =

Bm
I = ∅, we define the abstraction of I as the interpretation Ia = ([1, n]∗, ·Ia) where ·Ia is

defined as

• AIa = AI for all A ∈ (NC \ {B1, . . . , Bm}),

• rIa = rI for all r ∈ NR,

• if θj = R(Si1x1, . . . , S
ikxk) has depth dj then u ∈ BjIa if and only if

– u = wv for some w, v ∈ [1, n]∗ with |v| = dj , and

– (γ(wv1, x1), . . . , γ(wvk, xk)) ∈ RD,

where vt denotes the prefix of v of length it.

Hence, the fact that an element wv with |v| = dj belongs to the interpretation of Bj means
that the atomic constraint θj is satisfied along every path that starts in node w and descends
in the tree down via wv.

Now let RegC,T be the set of register variables occurring in C and T .

Definition 38. Given a tree shaped interpretation J = ([1, n]∗, ·J) where the new concept
names B1, . . . , Bm can have a non-empty interpretation, we define a countable σ-structure GJ =
(([1, n]∗×RegC,T), RG1 , R

G
2 , . . .) (the constraint graph of J) as follows: The interpretation RG of

the relation symbol R ∈ σ contains all k-tuples ((wv1, x1), . . . , (wvk, xk)), where k = ar(R), for
which there are 1 ≤ j ≤ m and v ∈ [1, n]dj such that wv ∈ BJj , and θj = R(Si1x1, . . . , S

ikxk),
where vt still denotes the prefix of v of length it.

The domain of GJ has one element for each pair (v, x) where v is a member of the domain of
J and x is a register variable appearing in C. When we abstract an atomic constraint θi we
replace it with its placeholder Bi, but any appearance of Bi marks a path where θi needs to
hold. Such information is stored in the relations of RG . GJ is called a constraint graph because
(when all relations are binary) it can be seen as a graph with different kinds of edges (one for
each relation) representing the atomic constraints, and we will use this image in the following.

Example 39. Let D be a concrete domain having < and = in its signature and suppose
the concept names B1 and B2 are used to replace the atomic constraints θ1 = (x = y) and
θ2 = (x < Sx) of depth d1 = 0 and d2 = 1, respectively. In Figure 2 we show how to build the
constraint graph associated to an ordinary 2-tree interpretation J .

In the next theorem, we illustrate what is the connection between the satisfiability of an
ALCP(D) concept w.r.t. a TBox, and the satisfiability of its abstraction. Let C and T be
an ALCP(D)-concept and TBox in constraint normal form, and let n = d ·#E(C, T) where d
is the maximum depth of all constraints appearing in Sub(T , C). Then the following holds:

Theorem 40. C is satisfiable with respect to T if and only if there exists an ordinary n-tree
interpretation I = ([1, n]∗, ·I) such that I |=Ta Ca and such that GI � D.

Proof. Let θ1, . . . , θm, d1, . . . , dm and RegC,T be defined as before.

(⇒) Without loss of generality assume that I = ([1, n]∗, ·I , γI) is an n-tree D-interpretation
such that I |=T C. Our first claim is that Ia |=Ta Ca, which we show by induction, proving
that for all v ∈ [1, n]∗ and for all subconcepts E ∈ Sub(T , C), u ∈ EI implies u ∈ EIaa .

20

•

•

• •

•

• •

B1

B2

B1B2 B2

B1B2

B1B2

ε

...
...

...
...

J • •

• •

• • • •

• •

• • • •

...
...

...
...

GJ(ε, x) (ε, y)

<

<

<

< <

=

=

= =

Figure 2: An ordinary 2-tree interpretation where B1 and B2 have a non-empty interpretation and
its associated constraint graph from Example 39.

• If E ∈ Sub(T , C) is a concept name, then Ea = E. Since EIa = EI for all E ∈
(NC\{B1, . . . , Bm}), and since B1, . . . , Bm /∈ Sub(T , C), we have that u ∈ EI ⇔ u ∈ EIaa .
This also proves the case E = ¬F with F ∈ NC.

• If E = F uG, then u ∈ EI implies u ∈ F I and u ∈ GI . By induction hypothesis we have
that u ∈ F Iaa and u ∈ GIaa which yields u ∈ (Fa uGa)Ia = EIaa .

• If E = F tG, we use the induction hypothesis as in the case above.

• If E = ∃r.F and u ∈ EI , then we know that there exists an element v ∈ [1, n]∗, such that
(u, v) ∈ rI and v ∈ F I . Then (u, v) ∈ rIa by definition of Ia and v ∈ F Iaa by induction
hypothesis. Together we obtain u ∈ (∃r.Fa)Ia = EIaa .

• The case E = ∀r.F is treated analogously.

• Let E = ∃P.c(Si1x1, . . . , Sitxt) with P = r1 · · · rp. Since C and T are in constraint
normal form, we can assume that (eventually renaming the atomic constraints) c = θ1 ∧
· · · ∧ θn where the depths d1, . . . , dn satisfy 0 =: d0 ≤ d1 ≤ · · · ≤ dn ≤ dn+1 := p.
Since u ∈ EI , we know that there exists a tuple (u0, . . . , up) ∈ P I such that u0 =
u and D |= c(γ(ui1 , x1), . . . , γ(uit , xt)). If θi = R(Sj1y1, . . . , S

jkyk), this means that
(γ(uj1 , y1), . . . , γ(ujk , yk)) ∈ RD. By definition of Ia, this implies that udi ∈ B

Ia
i . Now,

since (a, b) ∈ rI implies (a, b) ∈ rIa , then (u0, . . . , up) ∈ P Ia as well. This, together

with the fact that udi ∈ BIai for i = 1, . . . , n, implies that u ∈ (∃P1.(B1 u ∃P2.(B2 u
. . . ∃Pn.(Bn u∃Pn+1.>) . . .))Ia , where ∃Pi is short for ∃rdi−1+1 . . . ∃rdi . Which is exactly
what we wanted to show.

• Let E = ∀P.c(Si1x1, . . . , Sitxt) with P = r1 · · · rp. We can assume that c = θ1 ∨ · · · ∨ θn
where the depths d1, . . . , dn satisfy 0 =: d0 ≤ d1 ≤ · · · ≤ dn ≤ dn+1 := p. Given
u ∈ EI , we want to prove that u ∈ EIaa , where Ea is defined as ∀P1.(B1 t ∀P2.(B2 t
. . . ∀Pn.(Bn t ∀Pn+1⊥) . . .) with Pi = rdi−1+1 · · · rdi . Towards a contradiction suppose
u /∈ EIaa , then u belongs to the interpretation in Ia of ¬Ea = ∃P1.(¬B1 u ∃P2.(¬B2 u
. . . ∃Pn.(¬Bn u ∃Pn+1.>) . . .). This implies that there exists a path (v0, . . . , vp) ∈ P Ia
such that vdi ∈ (¬Bi)Ia for all i = 1, . . . , n. Given the fact that, by definition, for all
role names r ∈ NR (a, b) ∈ rI if and only if (a, b) ∈ rIa , we know that (v0, . . . , vp) ∈ P I .
Then, since u ∈ EI , this implies that D |= c(γ(vi1 , x1), . . . , γ(vit , xt)). In particular, i
must exist such that θi = R(Sj1y1, . . . , S

jkyk) and (γ(vj1 , y1), . . . , γ(vjk , yk)) ∈ RD. By
Definition 37, this implies that vdi ∈ Bi. We have reached a contradiction.

21

The second claim is that GIa � D. More specifically, we want to prove that the valuation
function γI : ([1, n]∗ × RegC,T) → D is a homomorphism. For this, suppose that a tuple(
(u1, x1), . . . , (uk, xk)

)
∈ RG . By Definition 38 this means that there exist j ∈ {1, . . . ,m}

and wv ∈ (Bj)
Ia such that θj has the form R(Si1x1, . . . , S

ikxk) with depth dj and such
that v = v1 · · · vdj and ut = wvit for all t = 1 . . . k. By Definition 37, this means that
(γI(u1, x1), . . . , γI(ut, xt)) ∈ RD, as wanted.

(⇐) Now we want to show that, given an ordinary n-tree interpretation I = ([1, n]∗, ·I) such
that I |=Ta Ca and a homomorphism h from GI to D, we can construct a D-interpretation J
such that J |=T C. Let us define J = ([1, n]∗, ·J , h) where ·J coincides with ·I on all concept
names and role names, and is extended to all concepts using the valuation function h. We prove
by induction that, for all concepts E ∈ Sub(T , C) and for all u ∈ [1, n]∗, u ∈ (Ea)I implies
u ∈ EJ .

• If E ∈ NC, then Ea = E and since ·J = ·I on concept names, u ∈ (Ea)I if and only if
u ∈ EJ . This also proves the case E = ¬F with F ∈ NC.

• If E = F tG or E = F uG, we can easily use the induction hypothesis.

• If E = ∃r.F or E = ∀r.F , then we can use the induction hypothesis plus the fact that
rI = rJ to show that u ∈ EIa implies u ∈ EJ .

• Suppose E = ∃P.c(Si1x1, . . . , Sikxk) where P = r1 · · · rp is a role-path of length p
and c is a conjunction of atomic constraints θ1 ∧ · · · ∧ θn with depths d1, . . . , dn such
that 0 =: d0 ≤ d1 ≤ · · · ≤ dn ≤ dn+1 := p. Then Ea = ∃P1.(B1 u ∃P2.(B2 u
. . . ∃Pn.(Bn u ∃Pn+1.>) . . .) with Pi = rdi−1+1 · · · rdi . If u ∈ (Ea)I then there exists
a tuple (u0, . . . , up) ∈ P I with u0 = u and such that udi ∈ (Bi)

I for i = 1, . . . , n. Fix i ∈
{1, . . . , n}, if θi has the form R(Sj1y1, . . . , S

jtyt), according to Definition 38, this means
that ((uj1 , y1), . . . , (ujt , yt)) ∈ RG . Now, since h is a homomorphism from GI to D, we
have (h(uj1 , y1), . . . , h(ujt , yt)) ∈ RD, which means that D |= R(h(uj1 , y1), . . . , h(ujt , yt)).
Since this is true for an arbitrary i ∈ {1, . . . , n} this holds true for the conjunction
θ1 ∧ · · · ∧ θn, that is D |= c(h(ui1 , x1), . . . , h(uik , xk)). Also, since rI = rJ , we know that
(u0, . . . , up) ∈ PJ . This means that u ∈ EJ , as wanted.

• If E = ∀P.c(Si1x1, . . . , Sikxk) with P = r1 · · · rp. As usual, we can assume that c =
θ1∨· · ·∨θn where the depths d1, . . . , dn satisfy 0 =: d0 ≤ d1 ≤ · · · ≤ dn ≤ dn+1 := p. Then
Ea = ∀P1.(B1 t ∀P2.(B2 t . . . ∀Pn.(Bn t ∀Pn+1⊥) . . .) with Pi = rdi−1+1 · · · rdi . Suppose
that u ∈ (Ea)I , we want to prove that u ∈ EJ . Towards a contradiction, suppose that
u /∈ EJ . This means that there exists an instance of the path P , a tuple (u0, . . . , up) ∈ PJ
with u0 = u, such that D 2 c(h(ui1 , x1), . . . , h(uik , xk)), that is ¬θ1 ∧ · · · ∧¬θn is satisfied
along the path (u0, . . . , up). Since rI = rJ for all role names, (u0, . . . , up) also belongs
to P I . Because u ∈ (Ea)I , we have that there exists some i ∈ {1, . . . , n} such that
udi ∈ (Bi)

I . By Definition 38, if θi = R(Sj1y1, . . . , S
jtyt) then ((uj1 , y1), . . . , (ujt , yt)) ∈

RG . Since h is a homomorphism, (h(uj1 , y1), . . . , h(ujt , yt)) ∈ RD. This means that θi is
satisfied on (u0, . . . , up), which is in contrast with what derived above. Therefore u must
belong to EJ , as wanted.

We are now almost ready to give the proof of the main result of this work. We only need a few
additional results:

Definition 41. Given an n-tree ordinary interpretation I = ([1, n]∗, ·I) we define an n-tree
T (I) over the signature {S} ∪ NC ∪ NR, where NC and NR are seen as unary predicates whose
interpretation is given by: AT (I) = AI for each A ∈ NC and rT (I) = {xi ∈ [1, n]∗ | (x, xi) ∈ rI}
for all r ∈ NR.

22

Remark 42. The only difference between an n-tree interpretation I and its induced n-tree
T = T (I) is the fact that roles are turned into unary predicates such that, if a pair (x, y) ∈ rI ,
now y ∈ rT . In particular, if we define GT = (([1, n]∗ × RegC,T), RG1 , R

G
2 , . . .) (the constraint

graph of T) in exactly the same way as in Definition 38, only substituting the interpretation J
with T , what we obtain is that GI = GT .

Lemma 43. Given C and T an ordinary ALC-concept and TBox in negation normal form, we
can write a FO formula ϕ over the signature {S} ∪NC ∪NR, where all elements of NC ∪NR are
seen as unary symbols, such that for any given n-tree interpretation I = ([0, 1]∗, ·I) we have
I |=T C if and only if T (I) |= ϕ.

Proof. The method is similar to what is described in [2, Chapter 3], with the only difference
that here we are only allowed to use unary predicates. Roles and features are then seen as
unary predicates added to the second node of the relation, which can be done only due to the
fact that we are considering tree-shaped models. We define two translations πx and πy which
inductively map ALC concepts to FO formulas with only one free variable, x or y respectively:

• πi(A) := A(i) for each A ∈ NC and i = x, y;

• πi(¬A) := ¬A(i) for each A ∈ NC and i = x, y;

• πi(D u E) := πi(D) ∧ πi(E) for i = x, y;

• πi(D t E) := πi(D) ∨ πi(E) for i = x, y;

• πi(∃r.D) := ∃j.S(i, j) ∧ r(j) ∧ πj(D) for (i, j) = (x, y) or (y, x);

• πi(∀r.D) := ∀j.(S(i, j) ∧ r(j))→ πj(D) for (i, j) = (x, y) or (y, x);

Now let R be the set of role names appearing in C and T , and let F ⊆ R be feature names.
Keeping in mind that the root ε of a tree is definable in first order logic, we define

ψR := ∀(x 6= ε).
∨
r∈R

r(x) ∧
∧

r,s∈R,r 6=s

¬(r(x) ∧ s(x))

ψF := ∀x.∀(y 6= z). S(x, y) ∧ S(x, z)→
∧
f∈F

¬(f(y) ∧ f(z)) .

ψR enforces that each pair of elements (x, y), where y is a successor of x, is assigned a unique
role name. ψF ensures that the functionality of the features is respected. Then we can prove
easily that given a tree-shaped interpretation I and a TBox T = {C1, . . . , Ct}, I |=T C if and
only if T (I) is a model for the following FO formula

ϕ = ∃x.πx(C) ∧ ∀x.(πx(C1) ∧ · · · ∧ πx(Ct)) ∧ ψR ∧ ψF .

Lemma 44. Let C, T and ϕ be as in Lemma 43. Given an n-tree T over the relational signature
{S} ∪ NR ∪ NF that satisfies ϕ we can build an n-tree interpretation I such that T = T (I) and
such that I |=T C.

Sketch of proof. The fact that T |= ϕ means in particular that T |= ψR ∧ψF , which guarantees
that each node of the tree T is assigned at most one role name, and that the functionality of
the features is respected. We can therefore safely define AI = AT for all A ∈ NC and rI =
{(x, y) ∈ ([1, n]∗)2 | S(x, y) and y ∈ rT } for all r ∈ NR and obtain a tree shaped interpretation.
It is easy to see that T (I) = T , and I |=T C can be proved by structural induction.

23

Now we show a useful property of BMWB, which is also needed to prove our main result.

Definition 45. Let k ∈ N and let A = (A,RA1 , R
A
2 , . . .) be a structure over the signature σ

that does not contain relation symbols ∼, P1, P2, . . . , Pk (∼ is binary and all Pi are unary).
The k-copy of A, denoted by A×k, is the (σ ∪ {∼, P1, P2, . . . , Pk})-structure with the domain
(A× {1, 2, . . . , k}) and

• for all R ∈ σ if R has arity m,

RA
×k

= {((a1, i), (a2, i), . . . , (am, i)) | (a1, a2, . . . , am) ∈ RA, 1 ≤ i ≤ k} ,

• ∼A×k

= {((a, i1), (a, i2)) | a ∈ A, 1 ≤ i1, i2 ≤ k}, and

• for each 1 ≤ m ≤ k, Pm
A×k

= {(a,m) | a ∈ A}.

Given a structure A, the k-copy operation creates a new structure, A×k, which contains k
many copies of A: there are k disjoint substructures of A×k (identifiable through the predicates
P1, . . . , Pk) which, seen as σ-structures, are isomorphic to A. The additional binary predicate
∼ relates all those members of A×k which are a duplicate of the same element in A.

The following proposition states that BMWB is compatible with the k-copy operation, i.e.,
whatever property we can specify on A×k using BMWB can also be recognized by BMWB
directly on A.

Proposition 46 (Prop. 2.26 of [4]). Let k ∈ N be some number, A some infinite structure over
the signature σ, and τ = σ ∪ {∼, P1, P2, . . . , Pk} an extension of σ by one fresh binary relation
symbol ∼ and k fresh unary relation symbols P1, . . . , Pk. Given a BMWB-sentence ϕ over τ ,
we can compute a BMWB-sentence ϕk over σ such that A×k |= ϕ if and only if A |= ϕk.

Let τ ⊆ σ, we say a τ -structure A with domain A is FO-interpretable in a σ-structure B with
domain B, if there exists a FO-formula ϕ such that A ∼= {b ∈ B | B |= ϕ(b)}, and for each
R ∈ τ of arity k, there exists a FO-formula ϕR such that RA ∼= {(b1, . . . , bk) ∈ Bk | B |=
ϕR(b1, . . . , bk)}. Intuitively, the fact that A is interpretable in B means that we can describe A
inside B using FO logic.

Lemma 47. Suppose RegC,T = {x1, . . . , xk}, then for an n-tree T over the signature {S} ∪
NC ∪ NR, the structure GT is FO-interpretable in T×k.

Proof. The domains of GT and T×k, ([1, n]∗ ×{x1, . . . , xk}) and ([1, n]∗ ×{1, 2, . . . , k}) respec-
tively, are trivially in a bijection through the mapping f : (v, xk) 7→ (v, k). We then extend the
bijection f to tuples of elements of ([1, n]∗×{x1, . . . , xk}) as f(a1, . . . , at) = (f(a1), . . . , f(at)).

We claim that the relations RG1 , R
G
2 , . . . from GT can be represented in T×k using first order logic,

let us describe how: Suppose the relation R ∈ σ of arity t is used to form one of the atomic
constraints θ = R(Si1y1, . . . , S

ityt), with y1, . . . , yt ∈ {x1, . . . , xk} and d = max{i1, . . . , it}.
Then we know that a tuple

(
(v1, y1), . . . , (vt, yt)

)
belongs to RG if (1) there exist elements

w0, w1, . . . , wd ∈ [1, n]∗ such that wil = vl for l = 1, . . . , t and S(wj−1, wj) holds in T for
j = 1, . . . , d, and (2) vd ∈ BTj . We would like to identify the tuples in T×k in bijection through
f with those tuples in GT satisfying conditions (1) and (2). These are the ones that satisfy the
following FO formula

ϕθ(a1, . . . , at) = ∃b0 . . . ∃bd
∧

j=1,...,d

S(bj−1, bj) ∧
∧

l=1,...,t

bil ∼ al ∧
∧

i=1,...,t

Pzi(ai)

where i1, . . . , it are the same indices appearing in θ = R(Si1y1, . . . , S
ityt) and zi is such that

yi = xzi . Once we have defined ϕθj for the atomic constraints θ1, . . . , θn, which appear in C

24

and T , we can state the following: if the relation R of arity t is used in all and only θj1 , . . . , θjk ,
then ā = (a1, . . . , at) ∈ RG if and only if ϕR(f(ā)) = ϕθj1 (f(ā)) ∨ · · · ∨ ϕθjk (f(ā)) holds. If the
relation R ∈ σ of arity t is not used in any of the atomic constraints θj1 , . . . , θjk , then there will
be no tuple in GT which belongs to RG . Therefore (a1, . . . , at) ∈ RG if and only if ϕR(f(ā)) = ⊥
holds.

Corollary 48 (of Lemma 47). If α is a BMWB-formula over the signature σ, we can write a
BMWB formula α′ over the signature {S}∪NC∪NR∪{∼, P1, Pn} such that GT |= α if and only
if T×k |= α′.

Sketch of proof. Since GT is FO-interpretable in T×k, and since FO is a fragment of BMWB, we
can easily obtain the formula α′ from α. This is done by replacing any occurrence of an atomic
relation R(a1, . . . , at) by the formula ϕR(a1, . . . , at) defined in the proof of Lemma 47.

We are now ready to give the proof of our main result.

Proof of Theorem 34. Let C and T be an ALCP(D)-concept and TBox respectively. Let n =
d ·#E(T , C) where d is the maximum depth of all constraints that appear in Sub(T , C). Due
to Lemma 27 we can assume without loss of generality, that C and T are in constraint normal
form. By Theorem 40, we have to check, whether there is an ordinary n-tree interpretation I
such that

I |=Ta Ca and GI � D .

Let τ ⊆ σ be the finite subsignature consisting of all relation symbols that occur in C and T .
Note that GI is actually a countable τ -structure. Since the concrete domain D has the property
EHD(BMWB), one can compute from τ a BMWB-sentence α such that for every countable τ -
structure B we have B |= α if and only if B � D. Our new goal is to decide whether there is an
ordinary n-tree interpretation I such that

I |=Ta Ca and GI |= α . (7)

Now Ta and Ca are ordinary ALC-concepts. We can then use Lemma 43, Lemma 44 and
Remark 42, and obtain a FO formula ϕ such that: If Ca is satisfied with respect to Ta by some
n-tree interpretation I, then ϕ is satisfied by an n-tree T such that GI = GT . Also, if ϕ is
satisfied by some n-tree T , then there exists an n-tree interpretation I such that I |=Ta Ca and
such that GT = GI .

Then finding I such that (7) holds is equivalent to finding an n-tree T such that

T |= ϕ and GT |= α .

By Corollary 48, we can find a BMWB-formula β such that GT |= α if and only if T×k |= β. But
we also know, due to Proposition 46, that we can compute a formula βk such that T×k |= β if
and only if T |= βk. At this point we have to check whether there exists an n-tree T such that

T |= ϕ ∧ βk ,

where ψ∧βk is a BMWB-sentence. By Theorem 10 this is decidable, which completes the proof.

25

5 Undefined concrete features

In the original definition of ALC with concrete domains from [1], concrete features do not need
to be defined for each individual of the interpretation: the valuation function γ is a partial
function, assigning values from the concrete domain to some - not necessarily all! - of the pairs
(v, x) where v is an individual and x is a concrete feature (or register variable).

For instance, a concrete feature boarding priority could be defined only for the passengers of
a specific airline. In this case, writing ∀(boarding priority = 1) v Board First means that if
the concrete feature boarding priority is defined for an individual, then the fact that it has
value 1 implies that the individual will board first. The same will happen if boarding priority
is undefined for this individual (because the universal quantifier is trivially satisfied) but not if
it is defined and it holds a value different than 1.

In our framework, instead, the valuation function needs to be defined for every pair (v, x), more
in the flavor of the attributes used by Toman and Weddell (see [17]). The difference is in our
case not crucial. One could define a dummy value, for instance 1.000, and use it for all the
passengers of an airline that does not assign boarding priority. For instance we could write
∀flies with.¬AIR1 v (boarding priority = 1.000) to make sure that all the individuals that do
not fly with AIR1 (or do not fly at all) are assigned the dummy boarding priority.

In some situations, though, it is not clear whether a concrete feature is bounded, and which
values it can or cannot assume. Think for example of a tax identification number, or a numerical
id assigned to all participants of a summer camp. One should then identify a specific dummy
value to use for each concrete feature, and tailor a solution for the specific situation. It could
be then interesting to add a default dummy value to our concrete domain in the following way:
Instead of using (Z, <,=, (=a)a∈Z, (≡a,b)a<b∈Z), we consider the domain Zu = (Z∪ {u}, und, <
,=, (=a)a∈Z, (≡a,b)a<b∈Z), where und is a unary predicate which only holds for the freshly
introduced domain element u, while the other relations remain unchanged and do not involve
u. Notice that the Zu still negation-closed, since the complement of und can be defined as
{x | x = 0∨x > 0∨x < 0}, let us write def instead of ¬und to increase readability. Using Zu as
concrete domain, one can leave the possibility for a concrete feature to be undefined. Consider
the following TBox: {Staff v und(camp id),Participant v def(camp id), (0 < camp id < 200) ≡
(lunch turn = 1), (200 < camp id < 400) ≡ (lunch turn = 2)}. This simple ontology regulates
the lunch breaks at a summer camp, where all participants are assigned a camp id , but the
staff member are not. All individuals with camp id between 0 and 199 (which excludes the staff
members) have the first lunch turn, while the ones with camp id between 200 and 400 have the
second lunch turn.

To ensure that ALCP(Zu) has a decidable satisfiability problem we can prove the following:

Theorem 49. Zu has the EHD-property.

Proof. Let τ be a finite subsignature of {und, <,=, (=a)a∈Z, (≡a,b)a<b∈Z} and let A be a τ -
structure with domain A. Let us refer with Z+ to the structure (Z, <,=, (=a)a∈Z, (≡a,b)a<b∈Z).
Define U = {x | ∃y. reach=(x, y)∧ und(y)}, where reach= is the MSO formula expressing reach-
ability through =-edges (see Ex. 8). Our claim is the following: A � Zu if and only if

(1) A|A\U � Z+,

(2) (U ×A) ∩ (<A ∪ (<A)−1) = ∅,

(3) (U ∩ (=a)A) = ∅ for all =a in τ , and

(4) (U ∩ (≡a,b)A) = ∅ for all =a,b in τ .

Facts (2)-(4) are easily expressible in MSO. For instance (2) can be expressed as x ∈ U →
¬∃y.(x < y ∨ y < x), where x ∈ U is defined as ∃y. reach=(x, y) ∧ und(y) . Regarding (1), in

26

[7] we proved that Z+ has the EHD-property. Therefore, we can compute a BMWB-formula ψ
such that A � Z+ if and only if A |= ψ. Now, since U is MSO-definable in A, we can easily
compute a formula ψ′ such that A |= ψ′ if and only if A|A\U |= ψ if and only if A|A\U � Z+.

We just need to prove that the claim holds. Let us start with the if direction. Suppose (1)-(4)
hold. Due to (1) we can find a homomorphism h from A|A\U to Z+. We define h′ : A →
Z ∪ {u} as h′(x) = u for all x ∈ U and h′ = h otherwise, and we want to prove that this
is a homomorphism from A to Zu. Consider a pair (a, b) ∈ <A. Due to (2), we know that
a, b ∈ (A \ U), therefore (h′(a), h′(b)) = (h(a), h(b)) ∈ <Z+ and since <Z+ = <Zu , this is what
we wanted. The same kind of reasoning can be applied to the relations =a and ≡b,c that belong
to τ . Now suppose that (a, b) ∈ (=A), if a, b ∈ A \ U , then h′(a) = h(a) = h(b) = h′(b). On
the other hand, if a ∈ U , then the definition of U guarantees that b ∈ U as well. We have then
h′(a) = u = h′(b). Finally, if a ∈ undA, we know that a ∈ U and therefore h′(a) = u, as wanted.

For the only if direction, assume that there exists a homomorphism h from A to Zu, we want to
show that (1)-(4) hold. First of all we prove that for all a ∈ U , h(a) = u. Suppose a ∈ U , then
there exists b ∈ U that is reachable from a through =-edges, such that b ∈ undA. There must
exist then a = a0, . . . , an = b such that (ai−1, ai) ∈ =A for i = 1, . . . , n. Then we know that,
since h is a homomorphism, h(a) = h(b) = u, as wanted. We know then that h(A\U) ⊆ Z, and
that all relations are preserved by h. Therefore h is a homomorphism from A|A\U to Z+, i.e. (1)
holds. To prove (2) we work towards a contradiction: Suppose w.l.o.g. (a, b) ∈ (U × A) ∩<A,
then h(a) < h(b) in Z, but h(a) = u, and (u, x) ∈ <Zu is false for all x ∈ A. The proofs of (3)
and (4) use the same reasoning.

6 Conclusions

We have introduced a novel way to integrate concrete domains in ALC, via path constraints.
The resulting logic, ALCP(D), is of incomparable expressiveness with the several variants of
ALC(D) that are present in the literature. We have seen, however, how on the domains that
we are interested in, our logic is strictly more expressive: We allow not only feature-paths, but
also full role-paths, to connect abstract individuals and their concrete attributes.

We exploit the path-structure of the constraints to show that ALCP(D) is compatible with the
EHD-method from [6] and show the very general result: satisfiability for ALCP(D) is decidable
w.r.t. general TBoxes, if the concrete domain D is negation-closed and has the EHD-property.
This solves the problem that has been open for some time (see [12]), whether reasoning in
ALC with non-dense concrete domains such as the natural numbers or the integers would be
decidable in the presence of general TBoxes, since these domains enjoy our required properties.
Such domains did not satisfy the ω-admissibility criterion that was formulated in [15]. In this
sense, we prove that ω-admissibility is not a necessary condition to guarantee the decidability
of reasoning over a concrete domain in the presence of general TBoxes.

We could have easily chosen a more expressive DL than ALC as underlying logic. In principle
we could add any concept constructor preserving the tree model property, and that can be then
translated to MSO over trees with one successor and unary predicates only (see Lemma 43).
Examples of such constructors would be transitive roles, role hierarchy and qualified number
restriction.

The main open question remains the complexity. The EHD method reduces our problem to
satisfiability of WMSO+B, which is decidable [3]. Here the authors do not provide complexity
bounds for their decision procedure for the logic. On the other hand, the WMSO+B-formulas
that need to be checked for decidability are fixed and depend solely on the concrete domain.
Roughly speaking, once we fix our domain D, the EHD method transforms a given ALCP(D)-
TBox and -concept into constraint normal form which already blows up the size. This in turn
get transformed into an MSO-formula ϕ (which is clearly non optimal). We then have to decide

27

whether a conjunction of ϕ and a fixed WMSO+B-formula ψ (which depends on D) is decidable.
Analyzing this procedure would very hardy lead to tight complexity bounds. In our opinion the
EHD-method is more of an admissibility criterion, which provides easy conditions on a concrete
domain D to establish whether reasoning with it remains decidable or not.

Also, it would be interesting to know if one can add constant predicates of the form (=q)q∈Q to
the domain Q from Prop. 32 and prove that the resulting structure still has the EHD-property.
We conjecture that a method similar to the one presented in [7] for constant predicates over
the integers could apply to this case.

Another follow-up question is whether the EHD method can be adapted to show decidability for
fuzzy concrete domains. It was shown in [16] that ω-admissibility remains a sufficient condition
for decidability of satisfiability even if predicate membership is given by a membership degree.
It would be interesting to show a similar result for the EHD-property.

References

[1] F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept lan-
guages. In Proceedings of the 12th International Joint Conference on Artificial Intelligence,
IJCAI-91, pages 452–457, Sydney (Australia), 1991.

[2] F. Baader, I. Horrocks, and U. Sattler. Description logics. In F. van Harmelen, V. Lifschitz,
and B. Porter, editors, Handbook of Knowledge Representation, pages 135–179. Elsevier,
2007.

[3] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In Christoph Dürr and
Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of Computer
Science (STACS 2012), volume 14 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 648–660, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[4] Claudia Carapelle. On the satisfiability of temporal logics with concrete domains.
PhD thesis, Universität Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:

15-qucosa-190987.

[5] Claudia Carapelle, Shiguang Feng, Alexander Kartzow, and Markus Lohrey. Satisfiability
of ECTL* with Tree Constraints. In Lev D. Beklemishev and Daniil V. Musatov, editors,
Computer Science – Theory and Applications, volume 9139 of Lecture Notes in Computer
Science, pages 94–108. Springer International Publishing, 2015.

[6] Claudia Carapelle, Alexander Kartzow, and Markus Lohrey. Satisfiability of CTL* with
Constraints. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013
Concurrency Theory, volume 8052 of Lecture Notes in Computer Science, pages 455–469.
Springer Berlin Heidelberg, 2013.

[7] Claudia Carapelle, Alexander Kartzow, and Markus Lohrey. Satisfiability of ECTL* with
Constraints. Journal of Computer and System Sciences, 2016. To appear.

[8] Volker Haarslev, Ralf Möller, and Michael Wessel. The description logic ALCNHR+ ex-
tended with concrete domains: A practically motivated approach. In R. Goré, A. Leitsch,
and T. Nipkow, editors, In Proceedings of the First International Joint Conference on
Automated Reasoning, IJCAR, volume 2083 of Lecture Notes in Computer Science, pages
29–44. Springer, 2001.

[9] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic.
In B. Nebel, editor, Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI, pages 199–204, 2001.

28

http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190987
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190987

[10] C. Lutz. Nexptime-complete description logics with concrete domains. LTCS-Report
LTCS-00-01, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2000. See
http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html.

[11] C. Lutz. Adding numbers to the SHIQ description logic—First results. In Proceedings
of the Eighth International Conference on Principles of Knowledge Representation and
Reasoning (KR’02), pages 191–202. Morgan Kaufman, 2002.

[12] C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logic
2002 (AiML 2002), Toulouse, France, 2002. Final version appeared in Advanced in Modal
Logic Volume 4, 2003.

[13] C. Lutz. Combining interval-based temporal reasoning with general tboxes. Artificial
Intelligence, 152(2):235–274, 2004.

[14] Carsten Lutz. NExpTime-complete description logics with concrete domains. ACM Trans-
actions on Computational Logic, 5(4):669–705, 2004.

[15] Carsten Lutz and Maja Miličić. A tableau algorithm for description logics with concrete
domains and general TBoxes. Journal of Automated Reasoning, 38(1-3):227–259, 2007.

[16] Dorian Merz, Rafael Peñaloza, and Anni-Yasmin Turhan. Reasoning in ALC with fuzzy
concrete domains. In Carsten Lutz and Michael Thielscher, editors, Proceedings of 37th
edition of the German Conference on Artificial Intelligence (KI’14), volume 8736 of Lecture
Notes in Artificial Intelligence, pages 171–182. Springer Verlag, 2014.

[17] David Toman and Grant E. Weddell. Applications and extensions of PTIME description
logics with functional constraints. In IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pages 948–954, 2009.

[18] W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/

REC-owl2-overview-20091027/.

29

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

	Introduction
	Preliminary Notions
	The Description Logic
	 has the tree-model property
	Strong negation normal form

	The EHD-method
	The EHD-property
	Satisfiability of

	Undefined concrete features
	Conclusions

