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Abstract

The Golog action programming language is a powerful means to express
high-level behaviours in terms of programs over actions defined in a Situation
Calculus theory. In particular for physical systems, verifying that the program
satisfies certain desired temporal properties is often crucial, but undecidable in
general, the latter being due to the language’s high expressiveness in terms of
first-order quantification and program constructs. So far, approaches to achieve
decidability involved restrictions where action effects either had to be context-
free (i.e. not depend on the current state), local (i.e. only affect objects men-
tioned in the action’s parameters), or at least bounded (i.e. only affect a finite
number of objects). In this paper, we present a new, more general class of action
theories (called acyclic) that allows for context-sensitive, non-local, unbounded
effects, i.e. actions that may affect an unbounded number of possibly unnamed
objects in a state-dependent fashion. We contribute to the further exploration of
the boundary between decidability and undecidability for Golog, showing that
for acyclic theories in the two-variable fragment of first-order logic, verification
of CTL∗ properties of programs over ground actions is decidable.

∗Supported by DFG Research Unit FOR 1513, project A1, http://www.hybrid-reasoning.org
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1 Introduction

When it comes to the design and programming of an autonomous agent, the Golog [LRL+97]
family of action languages offers a powerful means to express high-level behaviours in terms of
complex programs whose basic building blocks are the primitive actions described in a Situation
Calculus [Rei01] action theory. Golog’s biggest advantage perhaps is the fact that a programmer
can freely combine imperative control structures with non-deterministic constructs, leaving it
to the system to resolve non-determinism in a suitable manner.

In particular when Golog is used to control physical robots, it is often crucial to verify a program
against some specification of desired behaviour, for example in order to ensure liveness and
safety properties, typically expressed by means of temporal formulas. Unfortunately, the general
verification problem for Golog is undecidable due to the language’s high expressivity in terms of
first-order quantification, range of action effects, and program constructs. For this reason, there
have recently been endeavours to identify restricted, but non-trivial fragments of Golog where
verification (and hence other reasoning tasks such as projection) becomes decidable, while a
great deal of expressiveness is retained.

So far, approaches to decidability [CLLZ14, ZC14, DLP12] required action theories to be re-
stricted such that action effects are either context-free (not depend on the current state), local
(only affect objects mentioned in the action’s parameters), or at least bounded (only affect a
finite number of objects). Examples that do not fall into either of these categories are the
classical briefcase domain [Ped88] and exploding a bomb [LR97]: When a briefcase is moved,
(unboundedly many, unmentioned) objects that are currently in it are being moved along, and
if a bomb explodes, everything in its vicinity is destroyed.

In this paper, we extend the results from [ZC14] and present two new, more general classes of
action theories over the decidable FOL fragment C2 that also allow for context-sensitive, non-
local, unbounded effects, i.e. actions that may affect an unbounded number of possibly unnamed
objects in a state-dependent fashion. In our classes of action theories we do not impose any
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bound on the number of affected objects, but restrict the dependencies between fluents in the
successor state axioms. This allows for a much wider range of application domains, including
the above mentioned briefcase and bomb examples.

In a transportation domain such as the briefcase example, the action of moving a briefcase
changes the location of objects represented by the fluent predicate At. To describe the actual
set of objects affected one also has to refer to the fluent predicate In relating the briefcase
to its content. Thus, the effect of the move action on At depends on In. The class of acyclic
theories is obtained by disallowing cyclic dependencies between fluents, and another class we call
flat theories is obtained by resorting to quantifier-free formulas for defining the set of affected
objects. Both are syntactic restrictions and are decidable to check.

After proving that verification of CTL∗ properties is generally undecidable for Golog, even
when restricted to ground actions and C2, we then show that for our new classes of action
theories, decidability can be achieved. The proof introduces a new, compact form of regression
of formulas and establishes an abstraction to propositional model checking.

2 Preliminaries

2.1 Basic action theories in ES based on C2

In this subsection we recall the main definitions of a fragment of the first-order modal logic
ES [LL04, LL10] for reasoning about actions. We consider Situation Calculus Basic Action
Theories (BATs) [Rei01] formulated in ES where the base logic is restricted to the two variable
fragment with equality and counting of FOL named C2.

We start by defining a set of terms.

Definition 1 (terms). In our language we consider terms of two sorts object and action. They
can be built using the following symbols:

• variables x, y, · · · of sort object ;

• a single variable a of sort action;

• a countably infinite set NO of object constant symbols (i.e. 0-ary function symbols);

• a countably infinite set NA of action function symbols with arguments of sort object;

A term is called ground term if it contains no variables. We denote the set of all ground terms
(also called standard names) of sort object by NO, and those of sort action by NA. N

To build formulas we consider fluent predicate symbols with at most two arguments of sort
object. Fluents vary as the result of actions. Formulas are then built using the usual logical
connectives and in addition we have two modal operators [·] and 2 for referring to future
situations, where 2φ says that φ holds after any sequence of actions, and [t]φ means that φ
holds after executing action t.

Definition 2 (formulas). Let NF be a set of fluent predicate symbols. The set of formulas is
defined as the least set satisfying the following conditions:

• If t1, ..., tk are terms and F ∈ NF a k-ary predicate symbol with 0 ≤ k ≤ 2, then
F (t1, ..., tk) is a formula.
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• If t1 and t2 are terms, then t1 = t2 is a formula.

• If φ1 and φ2 are formulas, x a variable and t a term of sort action, then

– φ1 ∧ φ2, ¬φ1, ∀x.φ1, ∃≤mx.φ1 and ∃≥mx.φ1 with m ∈ N are formulas and

– 2φ1 (φ1 always holds) and [t]φ1 (φ1 holds after executing t) are formulas.

We understand ∨, ∃, ∃=m, ⊃, ≡ and true and false as the usual abbreviations. A formula is
called fluent formula if it contains no 2 and no [·]. A fluent sentence is a fluent formula without
free variables. A C2-fluent formula is a fluent formula that contains no terms of sort action
and at most two variables. We assume that in a C2-fluent formula only the variable symbols x
and y are allowed to occur. N

The semantics of formulas is defined in terms of worlds.

Definition 3 (world). Let PF be the set of all primitive formulas F (n1, ..., nk), where F is a
k-ary fluent with 0 ≤ k ≤ 2 and the ni are standard names of sort object. Let Z := N ∗A. A
world w is a mapping of the form

w : PF ×Z → {0, 1}.

The set of all worlds is denoted by W. N

A world thus maps primitive formulas to truth values.

We use the symbol 〈〉 to denote the empty sequence of action standard names. We are now
equipped to define the truth of formulas:

Definition 4 (truth of formulas). Given a world w ∈ W and a closed formula ψ, we define
w |= ψ as w, 〈〉 |= ψ, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;

2. w, z |= (n1 = n2) iff n1 and n2 are identical;

3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;

4. w, z |= ¬ψ iff w, z 6|= ψ;

5. w, z |= ∀x.φ iff w, z |= φxn for all n ∈ Nx;

6. w, z |= ∃≤mx.φ iff |{n ∈ Nx | w, z |= φxn}| ≤ m;

7. w, z |= ∃≥mx.φ iff |{n ∈ Nx | w, z |= φxn}| ≥ m;

8. w, z |= 2ψ iff w, z · z′ |= ψ for all z′ ∈ Z;

9. w, z |= [t]ψ iff w, z · t |= ψ;

N

Above, Nx refers to the set of all standard names of the same sort as x. We moreover use φxn
to denote the result of simultaneously replacing all free occurrences of x in φ by n. Note that
by rule 2 above, the unique names assumption (UNA) for actions and object constants is part
of our semantics. In the following we use the notation ~x and ~y for sequences of object variables
and ~v for a sequence of object terms.
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In the following we will often omit leading universal quantifiers and parentheses. We assume the
following precedence order of the logical connectives and quantifiers: [·],¬,∧,∨, ∀, ∃,⊃,≡,2,
i.e. [·] has the highest priority and 2 the lowest.

We now define a basic action theory as a set of axioms of a pre-defined structure in order to
model a dynamic application domain.

Definition 5. A C2-basic action theory (C2-BAT) D = D0 ∪ Dpost describes the dynamics of
a specific application domain, where

1. D0, the initial theory, is a finite set of C2-fluent sentences describing the initial state of
the world.

2. Dpost is a finite set of successor state axioms (SSAs), one for each fluent relevant to
the application domain, incorporating Reiter’s [Rei01] solution to the frame problem,
and encoding the effects the actions have on the different fluents. The SSA for a fluent
predicate has the form

∀a.∀~x.2
((

[a]F (~x)
)
≡ γ+F ∨

(
F (~x) ∧ ¬γ−F

))
where the positive effect condition γ+F and negative effect condition γ−F are fluent formulas.
We require that γ+F and γ−F are (possibly empty) disjunctions of formulas of the form
∃~y.
(
a = A(~v) ∧ φ ∧ φ′

)
such that

(a) ∃~y.
(
a = A(~v)∧φ∧φ′

)
contains the free variables ~x and a and no other free variables;

(b) A(~v) is an action term and ~v contains ~y;

(c) φ is a fluent formula with no terms of sort action and the number of variable symbols
in φ that do not occur in ~v or occur bounded in φ is less or equal two;

(d) φ′ is a fluent formula with free variables among ~v, no terms of sort action, and at
most two bounded variables.

The formula φ is called effect descriptor and φ′ is called context condition.

N

The restrictions 2a and 2b on SSAs are wlog and describe the usual syntactic form of SSAs.
Intuitively, the effect descriptor φ possibly defines a complex set of objects (or a set of pairs of
objects in case F is a binary fluent) that are added or deleted to or from the relational fuent F ,
respectively, if A(~v) is executed. Provided that free occurrences of variables in φ that occur as
arguments of A(~v) are instantiated, the condition 2c ensures definability of the (instantiated)
effect descriptor in our base logic C2. In contrast to the effect descriptor the context condition
φ′ only tells us whether A(~v) has an effect on F but not which objects are actually affected.
As for the effect descriptor the condition 2d ensures that after instantiation of the action, the
context condition is a sentence in C2. Therefore the variables ~x mentioned in 2a may have free
occurrences in φ but not in φ′.

Example 6. We consider a domain with servers hosting virtual machines and processes that
might be classified as malware. There is a fluent Avail(x) denoting processes x that are currently
available, and Ovl(x) for a server x that is overloaded. Hosts(x, y) furthermore says that a server
x hosts a virtual machine or a process y, and Runs(x, y) is true for a virtual machine x running
a process y.
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The agent can migrate a virtual machine (v) hosted on server (s) to a server (s′) if s′ is not
overloaded using the action Migr(v, s, s′). We also have exogenous actions, i.e. actions not under
the control of the agent, of the form Att(s), saying that a server is subject of an attack causing
it to be overloaded, and Repair(s), which returns the server s to its original state. Figure 2
exemplarily shows the effect conditions for the fluents Avail(x),Ovl(x) and Hosts(x, y). The
effect descriptors are underlined with a solid line and the context conditions with a dashed
line. Consider the execution of Migr(vm, s1, s2) in an initial situation incompletely described
by the axioms in Figure 1. The action has an effect on the fluent Avail(x) because the context
condition is satisfied, i.e. the target server s2 is not overloaded. The instantiated effect descriptor
yields that for all objects d, Avail(d) is true after doing the action if Runs(vm, d) is true before
doing the action. Thus, all processes running on vm become available. Furthermore, the fluent
Hosts(x, y) is also affected: all processes running on vm are now hosted by s2 and no longer by
s1. A BAT based on these axioms for example entails

[Migr(vm, s1, s2)]
(
∀x.Runs(vm, x) ⊃ Avail(x)

)
.

N

Hosts(s1, vm),Hosts(s1, p),Runs(vm, p),¬Avail(p)
Server(s2),¬Ovl(s2), ∀y.∃≤1x.Hosts(x, y),

∀x, y.Hosts(x, y) ⊃ Server(x) ∧
(
Proc(y) ∨VM (y)

)
Figure 1: Example initial theory

γ+Avail := ∃v, s, s′.
(
a = Migr(v, s, s′)∧
Runs(v, x) ∧ ¬Ovl(s′)

)
∨

∃s.
(
a = Repair(s) ∧ Hosts(s, x) ∧ Proc(x)

)
;

γ−Avail := ∃s.
(
a = Att(s) ∧Hosts(s, x) ∧ Proc(x)∧
∃y.Hosts(s, y) ∧Malware(y)

)
;

γ+Ovl := ∃s.
(
a = Att(s) ∧ x = s∧
∃y.Hosts(s, y) ∧Malware(y)

)
;

γ−Ovl := ∃s.
(
a = Repair(s) ∧ x = s

)
;

γ+Hosts := ∃v, s, s′.
(
a = Migr(v, s, s′) ∧ x = s′ ∧(
Runs(v, y) ∨ y = v

)
∧ ¬Ovl(s′)

)
;

γ−Hosts := ∃v, s, s′.
(
a = Migr(v, s, s′) ∧ x = s ∧(
Runs(v, y) ∨ y = v

)
∧ ¬Ovl(s′)

)
Figure 2: Example effect conditions

2.2 Golog programs and the verification problem

In a Golog program we combine atomic actions, whose effects are defined in a C2-BAT, and
tests using a set of programming constructs to define a complex action. Here we define program
expressions as extra-logical expressions.
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Definition 7 (Golog program). A program expression δ is built according to the following
grammar

δ ::= 〈〉 | t | ψ? | δ;δ | δ|δ | δ∗ | δ‖δ

A program expression can thus be the empty program 〈〉, a ground action term t, a test ψ?,
where ψ is a C2 fluent sentence, or constructed from subprograms be means of sequence δ;δ,
non-deterministic choice δ|δ, non-deterministic iteration δ∗ and interleaving δ‖δ.

A Golog program G = (D, δ) consists of a C2-BAT D = D0 ∪Dpost and a program expression δ
where all fluents occurring in D and δ have an SSA in Dpost.

To handle termination and failure of a program we use two 0-ary fluents Final and Fail and
two 0-ary action functions ε and f and include the SSAs 2[a]Final ≡ a = ε ∨ Final and
2[a]Fail ≡ a = f ∨ Fail in Dpost. Furthermore, we require that ¬Final ∈ D0 and ¬Fail ∈ D0,
and that the fluents Final, Fail and actions ε and f do not occur in δ. N

Next, we define the semantics of programs following [CL08].

Definition 8 (program semantics). A configuration 〈z, δ〉 consists of an action sequence z ∈ Z
and a program expression δ, where intuitively z is the history of actions that have already been
performed, while δ is the program that remains to be executed. The transition relation w−→
among configurations, given a world w ∈ W , is defined by induction on the size of program
expressions as the least set satisfying the following conditions:

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;

2. 〈z, δ1; δ2〉
w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉

w−→ 〈z · t, γ〉;

3. 〈z, δ1; δ2〉
w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉

w−→ 〈z · t, δ′〉;

4. 〈z, δ1|δ2〉
w−→ 〈z · t, δ′〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉 or 〈z, δ2〉
w−→ 〈z · t, δ′〉;

5. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉.

6. 〈z, δ1||δ2〉
w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉;

7. 〈z, δ1||δ2〉
w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉

w−→ 〈z · t, δ′〉;

The set of final configurations Fin(w) w.r.t. a world w is the smallest set such that

1. 〈z, 〈〉〉 ∈ Fin(w).

2. 〈z, ψ?〉 ∈ Fin(w) if w, z |= ψ;

3. 〈z, δ1; δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈ Fin(w);

4. 〈z, δ1|δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) or 〈z, δ2〉 ∈ Fin(w);

5. 〈z, δ∗〉 ∈ Fin(w);

6. 〈z, δ1‖δ2〉 ∈ Fin(w) if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈ Fin(w);

The set of failing configurations w.r.t. a world w is given by

Fail(w) := {〈z, δ〉 | 〈z, δ〉 /∈ Fin(w), there is no 〈z · t, δ′〉 s.t. 〈z, δ〉 w−→ 〈z · t, δ′〉}.

We extend final and failing configurations with additional transitions by defining an extension
of w→. Let w ∈ W . The extended transition relation

w
↪→ among configurations is defined as the

least set satisfying the following conditions
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1. 〈z, δ〉 w
↪→ 〈z · t, δ′〉, if 〈z, δ〉 w→ 〈z · t, δ′〉;

2. 〈z, δ〉 w
↪→ 〈z · ε, 〈〉〉, if 〈z, δ〉 ∈ Fin(w);

3. 〈z, δ〉 w
↪→ 〈z · f, δ〉, if 〈z, δ〉 ∈ Fail(w).

Let
w
↪→
∗
denote the reflexive and transitive closure of

w
↪→.

The set of reachable configurations from 〈〈〉, δ〉 in w is given by

Reach(w, δ) := {〈z, δ′〉 | 〈〈〉, δ〉 w
↪→
∗
〈z, δ′〉}.

Let G = (D, δ) be a Golog program and w ∈ W a world with w |= D. Execution of δ in w yields
the transition system of G w.r.t. w given by

Twδ =
(
Reach(w, δ),

w,δ
↪→
)
,

where
w,δ
↪→ is the restriction of

w
↪→ to configurations in Reach(w, δ). N

A path π in Twδ =
(
Reach(w, δ),

w,δ
↪→
)
starting in 〈z0, ρ0〉 ∈ Reach(w, δ) is an infinite sequence of

the form
π = 〈z0, ρ0〉

w,δ
↪→ 〈z1, ρ1〉

w,δ
↪→ 〈z2, ρ2〉

w,δ
↪→ · · · .

For π and j ∈ {0, 1, 2, . . .} we denote the path

〈zj , ρj〉
w,δ
↪→ 〈zj+1, ρj+1〉

w,δ
↪→ 〈zj+2, ρj+2〉

w,δ
↪→ · · ·

by π[j..]. The set of all paths starting in 〈z, ρ〉 is denoted by Paths(〈z, ρ〉,Twδ ).

We are now ready to formulate temporal properties of transition systems.

Definition 9 (temporal properties of programs). We define temporal formulas, whose syntax
is the same as for propositional CTL∗, but in place of propositions we allow for C2-fluent
sentences:

Φ ::= ψ | ¬Φ | Φ ∧ Φ | EΨ (1)
Ψ ::= Φ | ¬Ψ | Ψ ∧Ψ | XΨ | Ψ U Ψ (2)

Above, ψ can be any C2-fluent sentence. We call formulas according to (1) temporal state
formulas, and formulas according to (2) temporal path formulas. We use the usual abbreviations
AΨ (Ψ holds on all paths) for ¬E¬Ψ, FΨ (eventually Ψ holds) for > U Ψ and GΨ (globally Ψ)
for ¬F¬Ψ.

Let Φ be a temporal state formula, Twδ =
(
Reach(w, δ),

w,δ
↪→
)
the transition system of a program

G = (D, δ) w.r.t. a world w with w |= D and 〈z, ρ〉 ∈ Reach(w, δ).

Truth of Φ in Twδ , 〈z, ρ〉, denoted by Twδ , 〈z, ρ〉 |= Φ, is defined as follows:

• Twδ , 〈z, ρ〉 |= ψ iff w, z |= ψ;

• Twδ , 〈z, ρ〉 |= ¬Φ iff Twδ , 〈z, ρ〉 6|= Φ;

• Twδ , 〈z, ρ〉 |= Φ1 ∧ Φ2 iff Twδ , 〈z, ρ〉 |= Φ1 and Twδ , 〈z, ρ〉 |= Φ2;

• Twδ , 〈z, ρ〉 |= EΨ iff there exists π ∈ Paths(〈z, ρ〉,Twδ ) such that Twδ , π |= Ψ.
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Let Ψ be a temporal path formula, Twδ and 〈z, ρ〉 as above, and π ∈ Paths(〈z, ρ〉,Twδ ). Truth of
Ψ in Twδ , π, denoted by Twδ , π |= Ψ, is defined as follows:

• Twδ , π |= Φ iff Twδ , 〈z, ρ〉 |= Φ;

• Twδ , π |= ¬Ψ iff Twδ , π 6|= Ψ;

• Twδ , π |= Ψ1 ∧Ψ2 iff Twδ , π |= Ψ1 and Twδ , π |= Ψ2;

• Twδ , π |= XΨ iff Twδ , π[1..] |= Ψ;

• Twδ , π |= Ψ1 U Ψ2 iff ∃k ≥ 0 : Twδ , π[k..] |= Ψ2 and ∀j, 0 ≤ j < k : Twδ , π[j..] |= Ψ1.

N

The verification problem is defined as follows.

Definition 10 (verification problem). Let G = (D, δ) be a Golog program and Φ a temporal
state formula. Φ is valid in G iff for all worlds w ∈ W with w |= D it holds that Twδ , 〈〈〉, δ〉 |= Φ.
Φ is satisfiable in G iff there exists w ∈ W with w |= D such that Twδ , 〈〈〉, δ〉 |= Φ. N

Example 11. Consider the program expressions in Figure 3. In δavail the virtual machine vm
is migrated from server s1 to server s2 if s1 hosts vm and is overloaded and vice versa if s2 is
overloaded. δexo consists of the exogenous attack and repair actions. To describe the actions
that occur in the domain, both parts δavail and δexo are concurrently executed in infinite loops.
A temporal property one might want to verify for the Golog program consisting of the C2-BAT
described in Example 6 and the program expression δdomain could be:

E
(
GF
(
Ovl(s1) ∧Ovl(s2)

)
⊃

E
(
GF
(
∀x.Runs(vm, x) ⊃ Avail(x)

)
∧ GF

(
Ovl(s1) ∧Ovl(s2)

))
.

Validity of this property ensures that if it is possible that both servers are both infinitely often
available, then it is possible that in addition also all processes running on vm are infinitely often
available. N

δavail := ∃x.(Hosts(x, vm) ∧Ovl(x))?;(
Hosts(s1, vm)?;Migr(vm, s1, s2) |
Hosts(s2, vm)?;Migr(vm, s2, s1)

)
δexo :=

(
Att(s1) | Att(s2) | Repair(s1) | Repair(s2)

)
δdomain :=

[(
δavail

)∗
;⊥?

]
‖
[(
δexo

)∗
;⊥?

]
Figure 3: Example program

3 (Un-)decidability of Verification

3.1 Undecidability in the General Case

As shown in [GS07], the projection problem that asks for a sequence of ground actions over a
C2-BAT whether a given C2-fluent sentence holds after executing that sequence, is decidable.
Unfortunately, verification for programs over ground actions is not:
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We show that the verification problem is undecidable using a reduction of the halting problem
of two-counter machines.

Theorem 12. The verification problem is undecidable.

Proof. We show undecidability by a reduction of the halting problem of two-counter machines
[Min67]. A two-counter machine M manipulates the non-negative integer values of two counters,
denoted by c0 and c1 in the following. A machine M is given by a finite sequence of instructions
of the form

M = J0; · · · ; Jm.

Let i, j ∈ {0, . . . ,m} and ` ∈ {0, 1}. There are three types of instructions:

• Inc(`, i) : Increment c` by one and jump to instruction Ji.

• Dec(`, i, j) : If c` = 0 jump to Ji, else if c` > 0 decrement c` by one and jump to Jj .

• Halt: The machine stops.

A configuration of M is of the form (i, v0, v1) where i ∈ {0, . . . ,m} is the index of the instruction
to be executed next and v0, v1 ∈ N are the values of the two counters. M induces a transition
relation on configurations, denoted by `M, that is defined as explained above.

We assume that initially both counters are set to zero and that the execution of M starts with in-
struction J0. We say that M halts iff there exists a computation such that (0, 0, 0) `M

∗ (j, v0, v1)
for some v0, v1 ∈ N and Jj = Halt. The problem of deciding whether a given two-counter ma-
chine halts or not is undecidable [Min67].

We define a Golog program simulating M using the following signature

• two unary fluents C0 and C1 one for each counter;

• a 0-ary fluent Halt, and 0-ary fluents J0, . . . , Jm one for each instruction

• a binary rigid predicate Adj and a constant 0 ∈ NO.

To represent the values of the counters in a world we define an infinite chain of objects starting
in 0 using the binary predicate Adj. We ensure that in each situation C`(n) is true for exactly
one object n in this chain. The distance of n from 0 in the chain represents the value of the
counter c`. Furthermore, M is in a halting configuration if Halt is true and Ji is the currently
executed instruction if the corresponding fluent Ji holds true. The initial theory is given by

D0 := { ∀x.
(
x = 0 ≡ C0(x)

)
, ∀x.

(
x = 0 ≡ C1(x)

)
,¬Halt, J0,¬J1, . . . ,¬Jm,

∀x.∃=1y.Adj(x, y), ∀x.
(
x 6= 0 ⊃ ∃=1y.Adj(y, x)

)
, ∀x.¬Adj(x,0)}.

We use 0-ary actions Inc0, Inc1, Dec0, Dec1, Jump0, . . . Jumpm and Stop. For each fluent there
is an SSA in Dpost. The effect conditions for the fluent C`(x) are given as follows:

γ+C`
:= a = Inc` ∧ ∃y.

(
C`(y) ∧Adj(y, x)

)
∨ a = Dec` ∧ ∃y.

(
C`(y) ∧Adj(x, y)

)
γ−C`

:= a = Inc` ∧ C`(x) ∨ a = Dec` ∧ C`(x).
(3)

And for Jj and Halt the positive and negative effect conditions are defined by

γ+Jj := a = Jumpj and γ−Jj :=
∨
j′ 6=j

a = Jumpj′

γ+Halt := a = Stop and γ−Halt := a = a ∧ 0 6= 0.

(4)
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For each instruction Jj of M we define a program expression δj as follows. If Jj = Inc(`, i), then

δj := Inc`; Jumpi.

If Jj = Dec(`, i, j), then

δj :=
(
C`(0)?; Jumpi

)
|
(
¬C`(0)?;Dec`; Jumpj

)
.

And if Jj = Halt, then δj = Stop. Now we can assemble the program expression for M.

δM :=
(
J0?; δ0 | · · · | Jm?; δm

)∗
.

It is straightforward to show that the temporal state formula EFHalt is valid in

GM = (DM = D0 ∪ Dpost, δM)

iff M halts.

3.2 Decidable Verification with Acyclic Action Theories

To achieve decidability of the verification problem we restrict the syntax of the SSAs in the
action theory.

Fluent dependencies and acyclic basic action theories

To analyze the source of undecidability we investigate the dependencies between the different
fluents occurring in the action theory.

Definition 13. Let D be a C2-BAT. The fluent dependency graph for D, denoted by GD,
consists of a set of nodes, one for each fluent in D. There is a directed edge (F, F ′) from fluent
F to fluent F ′ iff there exists a disjunct ∃~y.

(
a = A(~v)∧φ∧φ′

)
in γ+F or γ−F such that F ′ occurs

in the effect descriptor φ. We call D acyclic iff GD is acyclic. The fluent depth of an acyclic
action theory D, denoted by fd(D), is given by the length of the longest path in GD. For a
fluent F in an acylic BAT D the fluent depth of F w.r.t. D, denoted by fdD(F ), is given by the
length of the longest path in GD starting in F . N

Example 14. First, consider the BAT in the undecidability proof. Obviously, the dependency
graph is cyclic as there are edges (C0, C0) and (C1, C1).

On the other hand, the BAT from Example 6 has an acyclic dependency graph (with fluent
depth 2) as shown in Figure 4. Fluents Ovl ,Server and VM were omitted as they are not
incident to any edges. Ovl for instance only occurs in the context conditions of γ+Avail , γ

+
Hosts

and γ−Hosts, and Hosts in the context condition of γ+Ovl . For the dependency graph however,
only effect descriptors are relevant. For instance, there is an edge from Avail to Runs because
Runs occurs in the effect descriptor in conjunction with the migration action in γ+Avail , i.e.
the migration of a virtual machine may affects the availability of all processes running on this
machine. In an analogous way Avail and Hosts , Proc are related due to the effect descriptor of
the repair action in γ+Avail . The other edges can be explained similarly. N

Note that if actions have only local-effects [VLL08], then D is acyclic. In case of local-effect
actions the effect descriptors do not contain any fluents. Consequently, the corresponding
BAT has fluent depth 0. Another well-known special case are context-free actions [LR97]
where the positive and negative effect conditions are restricted to contain only rigid predicate
symbols. Clearly, BATs restricted in this way have at most fluent depth 1. The so called
solitary stratified theories considered in [McI00] are based on a similar acyclicity condition, but
without distinguishing between effect descriptors and context conditions. The action theory in
our example is therefore not a solitary stratified theory.

11



Avail

RunsHosts Proc

Figure 4: Example fluent dependencies

Compact representation of effects using regression

We restrict our attention to programs G = (D, δ) with an acyclic C2-BAT D. The finite set of
ground actions (including ε and f) is denoted by A and the finite set of fluents in G = (D, δ) by
F in the following. We construct finite propositional abstractions of the transition systems Twδ
with w |= D. The essential part for this abstraction is a compact representation of the effects
generated by executing a sequence of ground actions in a given world satisfying the BAT.

In case of local-effect actions as considered in [ZC14] the idea is as follows. The execution of a
ground action A(~c) with only local-effects changes only the truth values of primitive formulas
of the form F (~n) where the objects ~n are arguments of the action, i.e. they are contained in ~c.
Therefore, to capture the effects of any action sequence admitted by a program over local-effect
actions it is sufficient to consider all finitely many finite sets of fluent literals built from the
fluents and objects mentioned in the program.

Since a ground action defined in an acyclic BAT may change the truth values of possibly
infinitely many primitive formulas, a direct adaption of the approach for local-effect actions is
not possible.

First, we consider the ground instantiations of the SSAs where the universally quantified action
variable a is substituted with actions from A.

Let F (~x) ∈ F and t ∈ A. The ground instantiation of the SSA of F with t is of the form

2[t]F (~x) ≡
(
γ+F
)a
t
∨ F (~x) ∧ ¬

(
γ−F
)a
t
.

Lemma 15. The instantiated positive and negative effect conditions
(
γ+F
)a
t
and

(
γ−F
)a
t
are,

respectively equivalent to a disjunction of the form

φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n (5)

for some n ≥ 0, where the formulas φeff
1 , . . . , φ

eff
n , are C2-fluent formulas with ~x as free variables

and no other free variables and the formulas φcon
1 , . . . , φcon are C2-fluent sentences.

Proof. According to Definition 5 of C2-BATs the effect conditions are disjunctions of formulas
of the form

∃~y.
(
a = A(~v) ∧ φ ∧ φ′

)
. (6)

After replacing a with a ground action term t the disjunct is either equivalent to false or there is
a matcher for the variables in ~v and the free variables in φ and φ′ can be replaced by constants
such that φeff corresponds to the effect descriptor and φcon to the context condition φ′. We can
proceed with all disjuncts in

(
γ+F
)a
t
and

(
γ−F
)a
t
in this way and obtain an equivalent formula of

the form (5).

In the remainder of this report we assume that for each F (~x) ∈ F and t ∈ A the instantiated
positive and negative effect conditions

(
γ+F
)a
t
and

(
γ−F
)a
t
are, respectively, given as a fixed

12



disjunction of the form (5). We call the formulas φeff
1 , . . . , φ

eff
n effect descriptors and φcon

1 , . . . , φcon
n

context conditions.

In the following we often view the instantiated effect condition
(
γ+F
)a
t
and

(
γ−F
)a
t
, respectively,

as a set of the form {(φeff
1 , φ

con
1 ), . . . , (φeff

n , φ
con
n )}. We write (φeff

i , φ
con
i ) ∈

(
γ+F
)a
t
and (φeff

i , φ
con
i ) ∈(

γ−F
)a
t
to denote that φeff

i ∧ φcon
i is a disjunct in

(
γ+F
)a
t
and

(
γ−F
)a
t
, respectively.

For a given fluent F ∈ F and set of ground action A we define the sets of relevant effect
descriptors as follows:

eff+
A(F ) := {φeff | (φeff , φcon) ∈

(
γ+F
)a
t
for some t ∈ A}

eff−A(F ) := {φeff | (φeff , φcon) ∈
(
γ−F
)a
t
for some t ∈ A}.

(7)

First, we introduce an action-centric representation of effects that captures also a possible
unbounded number of affected primitive formulas.

Definition 16. Let F (~x) be a fluent and φ a C2-fluent formula with free variables ~x. We call
the expression 〈F+, φ〉 a positive effect on F , and the expression 〈F−, φ〉 is called a negative
effect on F . We use the notation 〈F±, φ〉 if we do not explicitly distinguish between a positive
or negative effect on F .

Let D be a C2-BAT, w a world with w |= D, z ∈ Z and t ∈ A. The effects of executing t in
(w, z) are defined as follows.

ED(w, z, t) :={〈F+, φeff〉 | ∃(φeff , φcon) ∈
(
γ+F
)a
t
such that w, z |= φcon} ∪

{〈F−, φeff〉 | ∃(φeff , φcon) ∈
(
γ−F
)a
t
such that w, z |= φcon}.

N

Intuitively, if 〈F+, φ〉 ∈ ED(w, z, t) and w, z |= φ~x~c holds before executing t in w, z, then F (~c)
will be true after the execution. Likewise, if 〈F−, φ〉 ∈ ED(w, z, t) and w, z |= φ~x~c holds before
executing t in w, z, then F (~c) will be false after the execution.

To accumulate the effects of consecutively executed actions we define a regression operator
applied to a C2-fluent formula given a set of effects. From now on we assume that only the
object variable symbols x and y are used in C2-fluent formulas. For a given fluent formula φ,
the formula φ̂ is obtained from φ by replacing each occurrence (bound and free) of x in φ by y
and each occurrence of y by x.

Definition 17. Let E be a set of effects and ϕ a C2-fluent formula. The regression of ϕ through
E, denoted by R[E, ϕ], is a C2-fluent formula defined by induction on the structure of ϕ as given
in Figure 5. If a set of effects E contains no effect on F , then R[E, F (~v)] = F (~v). And if E is
the empty set, then we have R[E, φ] = φ for any C2-fluent formula φ. Note that as usual we
assume that the empty disjunction is false and the empty conjunction is true. N

We show a standard property of the one-step regression operator.

Lemma 18. Let D be a C2-BAT and w ∈ W such that w |= D, z ∈ Z, t ∈ A and ψ a C2-fluent
sentence. It holds that

w, z · t |= ψ iff w, z |= R[E, ψ] with E = ED(w, z, t).

Proof. The proof is done by structural induction on fluent formuals using the definition of the
regression operator and the definition of action effects. Let w ∈ W with w |= D, z ∈ Z, t ∈ A,

13



R[E, F (v)] :=


F (v) ∧

∧
〈F (x)−,ϕ〉∈E

¬ϕx
v ∨

∨
〈F (x)+,ϕ〉∈E

ϕx
v v 6= y

F (v) ∧
∧

〈F (x)−,ϕ〉∈E

¬ϕ̂ ∨
∨

〈F (x)+,ϕ〉∈E

ϕ̂ v = y

R[E, F (v1, v2)] :=



F (v1, v2) ∧
∧

〈F (x,y)−,ϕ〉∈E

∃y.
(
x = y ∧ ¬ϕ

)
∨∨

〈F (x,y)+,ϕ〉∈E

∃y.
(
x = y ∧ ϕ

) v1 = x, v2 = x

F (v1, v2) ∧
∧

〈F (x,y)−,ϕ〉∈E

∃x.
(
y = x ∧ ¬ϕ

)
∨∨

〈F (x,y)+,ϕ〉∈E

∃x.
(
y = x ∧ ϕ

) v1 = y, v2 = y

F (v1, v2) ∧
∧

〈F (x,y)−,ϕ〉∈E

¬
(
ϕ̂
)x y

v2 v1
∨

∨
〈F (x,y)+,ϕ〉∈E

(
ϕ̂
)x y

v2 v1
v1 = y, v2 = x or
v1 = y, v2 = c or
v1 = c, v2 = x

F (v1, v2) ∧
∧

〈F (x,y)−,ϕ〉∈E

¬
(
ϕ
)x y

v1 v2
∨

∨
〈F (x,y)+,ϕ〉∈E

(
ϕ
)x y

v1 v2
otherwise

R[E, t1 = t2] := t1 = t2

R[E, φ1 ∧ φ2] := R[E, φ1] ∧R[E, φ2]

R[E, ∀x.φ] := ∀x.R[E, φ]

R[E, ∃≤mx.φ] := ∃≤mx.R[E, φ].

Figure 5: Regression operator adapted from [GS07]
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φ a C2-fluent formula where ~v are the free variables in φ and let ~c be a sequence of object
standard names of the same length as ~v.

w, z · t |= φ~v~c iff w, z |=
(
R[E, φ]

)~v
~c
with E = ED(w, z, t).

First assume φ = F (x). The ground instantiated SSA for F with t in D is of the form

2[t]F (x) ≡
(
γ+F
)a
t
∨ F (x) ∧ ¬

(
γ−F
)a
t

(8)

where the effect conditions
(
γ+F
)a
t
and

(
γ−F
)a
t
are given by(

γ+F
)a
t

= φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n and(
γ−F
)a
t

= ϕeff
1 ∧ ϕcon

1 ∨ · · · ∨ ϕeff
m ∧ ϕcon

m .
(9)

It holds that w, z · t |=
(
F (x)

)x
c
iff w, z · t |= F (c)

iff w, z |= [t]F (c)

iff w, z |=
((
γ+F
)a
t
∨ F (x) ∧ ¬

(
γ−F
)a
t

)x
c

(since w |= D)

iff w, z |=
(
φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n

)x
c
∨

F (c) ∧ ¬
(
ϕeff
1 ∧ ϕcon

1 ∨ · · · ∨ ϕeff
m ∧ ϕcon

m

)x
c
(with (9))

iff w, z |=
(
φeff
1

)x
c
∧ φcon

1 ∨ · · · ∨
(
φeff
n

)x
c
∧ φcon

n ∨

F (c) ∧
(
¬
(
ϕeff
1

)x
c
∨ ¬ϕcon

1

)
∧ · · · ∧

(
¬
(
ϕeff
m

)x
c
∨ ¬ϕcon

m

)
iff w, z |=

∨
φcon
i ∈{φ

con
1 ,...,φcon

n },
w,z|=φcon

i

(
φeff
i

)x
c
∨ F (c) ∧

∧
ϕcon

i ∈{ϕ
con
1 ,...,ϕcon

m },
w,z|=ϕcon

i

¬
(
ϕeff
i

)x
c

iff w, z |=
∨

(φeff ,φcon)∈
(
γ+
F

)a
t
,

w,z|=φcon

(
φeff
)x
c
∨ F (c) ∧

∧
(ϕeff ,ϕcon)∈

(
γ−F

)a
t
,

w,z|=ϕcon

¬
(
ϕeff
)x
c

iff w, z |=
∨

〈F (x)+,φ〉∈E

φxc ∨ F (c) ∧
∧

〈F (x)−,ϕ〉∈E

¬ϕxc with E = ED(w, z, t)

iff w, z |=
(
R[E, F (x)]

)x
c
with E = ED(w, z, t).

Next consider the case φ = F (y). It holds that w, z · t |=
(
F (y)

)y
c
iff w, z · t |= F (c). As shown

above it holds that

w, z · t |= F (c) iff w, z |=
∨

〈F (x)+,φ〉∈E

φxc ∨ F (c) ∧
∧

〈F (x)−,ϕ〉∈E

¬ϕxc with E = ED(w, z, t).

Obviously, for an effect formula φ with free variable x it holds that w, z |= φxc iff w, z |= φ̂yc ,
where φ̂ is obtained from φ by swapping the variable symbols x and y. By definition of the
regression operator we therefore obtain

w, z · t |=
(
F (y)

)y
c
iff w, z |=

(
R[E, F (y)]

)y
c
with E = ED(w, z, t).

Next consider the case φ = F (x, x). The ground instantiated SSA for F is of the form

2[t]F (x, y) ≡
(
γ+F
)a
t
∨ F (x, y) ∧ ¬

(
γ−F
)a
t
. (10)
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There are effect formulas φeff
1 , . . . , φ

eff
n and ϕeff

1 , . . . , ϕ
eff
m with x and y as the free variables such

that (
γ+F
)a
t

= φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n and(
γ−F
)a
t

= ϕeff
1 ∧ ϕcon

1 ∨ · · · ∨ ϕeff
m ∧ ϕcon

m .
(11)

It holds that w, z · t |=
(
F (x, x)

)x
c
iff w, z · t |= F (c, c)

iff w, z |= [t]F (c, c)

iff w, z |=
((
γ+F
)a
t
∨ F (x, y) ∧ ¬

(
γ−F
)a
t

)x y
c c

(since w |= D)

iff w, z |=
(
φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n

)x y
c c
∨

F (c, c) ∧ ¬
(
ϕeff
1 ∧ ϕcon

1 ∨ · · · ∨ ϕeff
m ∧ ϕcon

m

)x y
c c

(with (9))

iff w, z |=
(
φeff
1

)x y
c c
∧ φcon

1 ∨ · · · ∨
(
φeff
n

)x y
c c
∧ φcon

n ∨

F (c, c) ∧
(
¬
(
ϕeff
1

)x y
c c
∨ ¬ϕcon

1

)
∧ · · · ∧

(
¬
(
ϕeff
m

)x y
c c
∨ ¬ϕcon

m

)
iff w, z |=

∨
φcon
i ∈{φ

con
1 ,...,φcon

n },
w,z|=φcon

i

(
φeff
i

)x y
c c
∨ F (c, c) ∧

∧
ϕcon

i ∈{ϕ
con
1 ,...,ϕcon

m },
w,z|=ϕcon

i

¬
(
ϕeff
i

)x y
c c

iff w, z |=
∨

(φeff ,φcon)∈
(
γ+
F

)a
t
,

w,z|=φcon

(
φeff
)x y
c c
∨ F (c, c) ∧

∧
(ϕeff ,ϕcon)∈

(
γ−F

)a
t
,

w,z|=ϕcon

¬
(
ϕeff
)x y
c c

iff w, z |=
∨

〈F (x,y)+,φ〉∈E

φx yc c ∨ F (c, c) ∧
∧

〈F (x,y)−,ϕ〉∈E

¬ϕx yc c with E = ED(w, z, t)

iff w, z |=
∨

〈F (x,y)+,φ〉∈E

(
∃y.x = y ∧ φ

)x
c
∨ F (c, c) ∧

∧
〈F (x,y)−,ϕ〉∈E

(
∃y.x = y ∧ ¬ϕ

)x
c
with E =

ED(w, z, t) since for a fluent formula α with free variables x and y it obviously holds that

w, z |= αx yc c iff
(
∃y.x = y ∧ α

)x
c
.

iff w, z |=
(
R[E, F (x, x)]

)x
c
with E = ED(w, z, t).

We omit the cases φ = F (y, y), F (y, x), F (x, y). They follow with analogous arguments.

Now let φ = (t1 = t2) with free variables ~v. We have (t1 = t2)~v~c = (n1 = n2) where n1 and n2
are standard names. The claim follows immediately.

Let φ = ϕ1 ∧ ϕ2. It holds that w, z · t |=
(
ϕ1 ∧ ϕ2

)~v
~c

iff w, z · t |=
(
ϕ1

)~v
~c
and w, z · t |=

(
ϕ2

)~v
~c

iff w, z |=
(
R[E, ϕ1]

)~v
~c
and w, z |=

(
R[E, ϕ2]

)~v
~c
with E = ED(w, z, t) (by induction)

iff w, z |=
(
R[E, ϕ1]

)~v
~c
∧
(
R[E, ϕ2]

)~v
~c
with E = ED(w, z, t)

iff w, z |=
(
R[E, ϕ1] ∧R[E, ϕ2]

)~v
~c
with E = ED(w, z, t)

iff w, z |=
(
R[E, ϕ1 ∧ ϕ2]

)~v
~c
with E = ED(w, z, t).
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Let φ = ∀x.ϕ. Obviously, y is the only free variable in ∀x.ϕ or there is no free variable. It holds
that w, z · t |=

(
∀x.ϕ

)y
c

iff w, z · t |= ∀x.
(
ϕ
)y
c

iff w, z · t |=
(
ϕ
)y x
c n

for all n ∈ NO

iff w, z |=
(
R[E, ϕ]

)y x
c n

with E = ED(w, z, t) for all n ∈ NO (by induction)

iff w, z |= ∀x.
(
R[E, ϕ]

)y
c
with E = ED(w, z, t)

iff w, z |=
(
∀x.R[E, ϕ]

)y
c
with E = ED(w, z, t)

iff w, z |=
(
R[E, ∀x.ϕ]

)y
c
with E = ED(w, z, t).

We omit the cases φ = ∃≤mx.ϕ and φ = ∃≥mx.ϕ. They can be shown with analogous arguments.

Using the regression operator we can accumulate several sets of effects. Let E0 and E1 be two
sets of effects. First executing E0 and then afterwards E1 yields a set of effects, denoted by
E0 � E1, that is defined as follows:

E0 � E1 :={〈F±,R[E0, ϕ]〉 | 〈F±, ϕ〉 ∈ E1} ∪

{〈F+,
(
ϕ ∧

∧
〈F−,ϕ′〉∈E1

¬R[E0, ϕ
′]
)
〉 | 〈F+, ϕ〉 ∈ E0} ∪

{〈F−, ϕ〉 ∈ E0}.

(12)

Lemma 19. Let φ be a C2-fluent formula and E0 and E1 two sets of effects. It holds that
R[E0,R[E1, φ]] ≡ R[E0 � E1, φ].

Proof. Let E0, E1 be sets of effects and φ a C2-fluent formula. We show by induction on the
structure of φ that R[E0,R[E1, φ]] ≡ R[E0 � E1, φ]. We consider the case φ = F (v) with v 6= y.

It holds that R[E0,R[E1, F (v)]]

= R[E0,

(
F (v) ∧

∧
〈F (x)−,ϕ〉∈E1

¬ϕxv
)
∨

∨
〈F (x)+,ϕ〉∈E1

ϕxv ]

=

(
R[E0, F (v)] ∧

∧
〈F (x)−,ϕ〉∈E1

¬R[E0, ϕ
x
v ]

)
∨

∨
〈F (x)+,ϕ〉∈E1

R[E0, ϕ
x
v ]

≡
(
R[E0, F (v)] ∧

∧
〈F (x)−,ϕ〉∈E1

¬
(
R[E0, ϕ]

)x
v

)
∨

∨
〈F (x)+,ϕ〉∈E1

(
R[E0, ϕ]

)x
v

=

((
F (v) ∧

∧
〈F (x)−,ϕ〉∈E0

¬ϕxv ∨
∨

〈F (x)+,ϕ〉∈E0

ϕxv

)
∧

∧
〈F (x)−,ϕ〉∈E1

¬
(
R[E0, ϕ]

)x
v

)
∨

∨
〈F (x)+,ϕ〉∈E1

(
R[E0, ϕ]

)x
v
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≡
((

F (v) ∧
∧

〈F (x)−,ϕ〉∈E0

(
¬ϕxv ∧

∧
〈F (x)−,ϕ〉∈E1

¬
(
R[E0, ϕ]

)x
v

))
∨

∨
〈F (x)+,ϕ〉∈E0

(
ϕxv ∧

∧
〈F (x)−,ϕ〉∈E1

¬
(
R[E0, ϕ]

)x
v

))
∨

∨
〈F (x)+,ϕ〉∈E1

(
R[E0, ϕ]

)x
v

≡ R[E0 � E1, F (v)].

We omit the remaining cases here. They can be shown following the same lines.

We can now accumulate the effects of a sequence of actions into a single set of effects.

Definition 20. Let D be a C2-BAT, A a finite set of ground actions, w a world with w |= D,
and z = t1t2 · · · tn ∈ A∗ a sequence of ground actions of length n ∈ N. For a given i ≤ n, z[i]
denotes the subsequence of z that consists of the first i elements of z. We define the following
sequence of sets of effects:

E1 := ED(w, 〈〉, t1)

Ei := Ei−1 � ED(w, z[i− 1], ti) for i = 2, . . . , n.

We say that En is generated by executing t1t2 · · · tn in w. N

We can now generalize Lemma 18 to the case with a sequence of ground actions.

Lemma 21. Let D, w |= D, z ∈ A∗ be as above. For the effects Ez generated by executing z in
w and a C2-fluent sentence ψ it holds that w, z |= ψ iff w, 〈〉 |= R[Ez, ψ].

Proof. This lemma is a direct consequence of Lemma 18 and Lemma 19.

We can now define a finite representation of all effects that can be generated with actions from
A defined in an acyclic BAT.

Definition 22 (relevant effects). Let D be an acyclic BAT w.r.t. A with fd(D) = n. We define
a sequence of sets of effects, denoted by ED,A0 ,ED,A1 , . . . ,ED,An , as follows:

ED,A0 := {〈F±, ϕ〉 | fdD(F ) = 0, ϕ ∈ eff+
A(F ) ∪ eff−A(F )};

ED,Ai := ED,Ai−1 ∪ {〈F
−,R[E, ϕ]〉 | fdD(F ) = i, ϕ ∈ eff−A(F ),E ⊆ ED,Ai−1 } ∪

{〈F+,

(
R[E, φ] ∧

∧
(ϕ,E′)∈X

¬R[E′, ϕ]

)
〉 | fdD(F ) = i,

φ ∈ eff+
A(F ),E ⊆ ED,Ai−1

X ⊆
(
eff−A(F )× 2E

D,A
i−1
)
}.

for i = 1, . . . , n.

The set of all relevant effects w.r.t. D and A is given by ED,A := ED,An . N

Obviously, ED,A is a finite set of effects. We show that any set of effects generated by executing
an action sequence with actions from A in a world that satisfies D is a subset of ED,A. For the
proof we first need some auxiliary notions and properties.

Lemma 23. Let D be an acyclic C2-BAT, F the set of fluents occurring in D, w ∈ W with
w |= D, z ∈ A∗ and t ∈ A. It holds that ED(w, z, t) ⊆ ED,A.
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Proof. Let fd(D) = f . Let 〈F±, φ〉 ∈ ED(w, z, t) with fdD(F ) = i for some i ∈ {0, . . . , f}. By
definition of ED(w, z, t) it holds that φ ∈ eff+

A(F ) ∪ eff−A(F ) and by definition of ED,Ai it holds
that 〈F±, φ〉 ∈ ED,Ai ⊆ ED,A.

Let E be a set of effects on fluents from F defined in an acyclic BAT D and f ∈ N. The
restriction of E to fluents of depth ≤ f is given by

E≤f := {〈F±, φ〉 ∈ E | fdD(F ) ≤ f}. (13)

Let φ be a fluent formula built from fluents in F . The fluent depth of φ, denoted by fdD(φ), is
the maximal depth among the depths of all the fluents occurring in φ.

Lemma 24. Let D, A and F be as above. Let E be a set of effects on F , φ a fluent formula
over F with fdD(φ) ≤ f . It holds that R[E, φ] = R[E≤f , φ].

Proof. It follows from the definition of the regression operator that for the regression result
R[E, φ] effects in E on fluents that do not occur in φ are irrelevant and can be omitted. Therefore
the claim follows immediately.

We say that two effects 〈F (~x)±, ϕ〉 and 〈F (~x)±, ϕ′〉 are equivalent iff ϕ ≡ ϕ′, i.e. ∀~x.(ϕ ≡ ϕ′)
is a tautology, and the effects are both positive or both negative. Furthermore, let E and E′ be
two finite sets of effects. We write E ≡ E′ iff for each effect in E there is an equivalent effect in
E′ and vice versa. For equivalent effect sets we need the following lemma.

Lemma 25. Let E and E′ be sets of effects with E ≡ E′.

1. Let ϕ be a C2-fluent formula with free variables ~x. It holds that ∀~x.
(
R[E, ϕ] ≡ R[E′, ϕ]

)
is a tautology.

2. Let E′′ be a set of effects. It holds that (E � E′′) ≡ (E′ � E′′).

Finally, we show that ED,A indeed captures all the effects that can be generated with actions
from A in worlds satisfying D. Intuitively, for a given fluent F with fdD(F ) = 0 it holds that
either F is rigid, i.e. there are no effects on F , or there are only local effects on F . Consequently,
all effects on F generated by a ground action sequence from A must be contained in ED,A0 . For
fluents F with fdD(F ) = i and i > 0 the fluents in the effect descriptors may also be subject
to changes but have a depth strictly smaller than i. To obtain all relevant effects on F it is
therefore sufficient to consider the effects in ED,Ai−1 .

Lemma 26. Let D be an acyclic C2-BAT, w a world with w |= D, z ∈ A∗ an action sequence
and Ez the effects generated by executing z in w. There exists E′ ⊆ ED,A such that Ez ≡ E′.

Proof. Let fd(D) = f . We prove the claim by induction on the length n of z.

n = 1: Let z = t for some t ∈ A. It holds that Ez = ED(w, 〈〉, t). Lemma 23 implies Ez ⊆ ED,A.

n− 1⇒ n: Let z = z′ · t with t ∈ A, z′ ∈ A∗ of length n − 1 and E the effects generated by
executing z′ in w. Assume that the claim is true for E. We need to show that for each
〈F±, ϕ〉 ∈ E � ED(w, z′, t) we can find 〈F±, ϕ′〉 ∈ ED,A such that ϕ ≡ ϕ′.
Lemma 23 yields

ED(w, z′, t) ⊆ ED,A. (14)

First, let 〈F±, ϕ〉 ∈ E � ED(w, z′, t) with fdD(F ) = 0. We have to distinguish three cases
according to the definition of “�”.
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Case 1: There exists 〈F±, ϕ̂〉 ∈ ED(w, z′, t) such that ϕ = R[E, ϕ̂]. Since fdD(F ) = 0 the
effect descriptor ϕ̂ does not mention any fluents. Consequently, ϕ = R[E, ϕ̂] = ϕ̂
and with (14) it follows that 〈F±, ϕ〉 ∈ ED(w, z′, t) ⊆ ED,A.

Case 2: Next, we assume that 〈F±, ϕ〉 is a positive effect and there exists 〈F+, φ〉 ∈ E
such that

ϕ = φ ∧ ¬R[E, φ′1] ∧ · · · ∧ ¬R[E, φ′m] for some m ≥ 0

and 〈F−, φ′k〉 ∈ ED(w, z′, t) for each k = 1, . . . ,m . Since F (~x) has depth 0 we can
assume w.l.o.g. that the effect descriptors in eff+

A(F ) ∪ eff−A(F ) are of the form true
or false (if F has arity 0) or ~x = ~c where ~c is an object tuple (if F has arity > 0).
By definition of the regression operator we obtain

ϕ = φ ∧ ¬φ′1 ∧ · · · ∧ ¬φ′m.

Using the assumption 〈F+, φ〉 ∈ E and the induction hypothesis it follows that φ is
equivalent to a formula in eff+

A(F ) ∪ eff−A(F ). In case F has arity 0 it follows that ϕ
is equivalent to true or false. Obviously, it holds that true ∈ ED,A0 or false ∈ ED,A0 ,
respectively. In case F has arity > 0 it follows that φ ⊃ ¬φ′1 ∧ · · · ∧ ¬φ′m due to the
standard name assumption. Consequently, ϕ ≡ φ and the claim holds.

Case 3: 〈F±, ϕ〉 ∈ E and 〈F±, ϕ〉 ∈ E is a negative effect. The claim follows directly from
the induction hypothesis.

Now, let 〈F±, ϕ〉 ∈ E � ED(w, z′, t) with fdD(F ) = i and 0 < i ≤ f .

Case 1: There exists 〈F±, ϕ̂〉 ∈ ED(w, z′, t) such that ϕ = R[E, ϕ̂]. Let fdD(ϕ̂) = j. It
follows that j ≤ i − 1. Using Lemma 24 it follows that ϕ = R[E, ϕ̂] = R[E≤j , ϕ̂].
Using the induction hypothesis it follows that there exists a set E′ ⊆ ED,Ai−1 such that
E≤j ≡ E′. We obtain

ϕ = R[E, ϕ̂] = R[E≤j , ϕ̂] ≡ R[E′, ϕ̂].

With ϕ̂ ∈ eff+
A(F ) ∪ eff−A(F ) we obtain 〈F±,R[E′, ϕ̂]〉 ∈ ED,Ai ⊆ ED,A according to

the definition of ED,Ai .
Case 2: Next, we assume that 〈F±, ϕ〉 is a positive effect and there exists 〈F+, φ〉 ∈ E

such that
ϕ = φ ∧ ¬R[E, φ′1] ∧ · · · ∧ ¬R[E, φ′m] for some m ≥ 0

and for each k ∈ {1, . . . ,m} there exists 〈F−, φ′k〉 ∈ ED(w, z′, t). Since D is acyclic it
holds that fdD(F ) > fdD(φ′k) for all k. Therefore we can restrict E to effects on fluents
of depth ≤ i − 1. With Lemma 24 it follows that R[E, φ′k] = R[E≤i−1, φ

′
k] for all

k ∈ {1, . . . ,m}. By induction there exists Ê ⊆ ED,Ai−1 with Ê ≡ E≤i−1. Consequently
using Lemma 25,

ϕ ≡ φ ∧ ¬R[Ê, φ′1] ∧ · · · ∧ ¬R[Ê, φ′m] (15)

with

{(φ′1, Ê), . . . , (φ′m, Ê)} ⊆
[

eff−A(F )× 2E
D,A
i−1

]
. (16)

Since 〈F+, φ〉 ∈ E and due to the induction hypothesis for E there are ζ ∈ eff+
A(F ),

L ⊆ ED,Ai−1 and X ′ ⊆
[

eff−A(F )× 2E
D,A
i−1

]
such that

φ ≡ R[L, ζ] ∧
∧

(ζ′,L′)∈X′
¬R[L′, ζ ′] (17)
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Let
X = {(φ′1, Ê), . . . , (φ′m, Ê)} ∪X ′.

(15) and (17) yields
ϕ ≡ R[L, ζ] ∧

∧
(φ̂,E′)∈X

¬R[E′, φ̂]

It follows that 〈F+,R[L, ζ] ∧
∧

(φ̂,E′)∈X
¬R[E′, φ̂]〉 ∈ ED,A by definition of ED,A.

Case 3: 〈F±, ϕ〉 ∈ E is a negative effect. The claim follows directly from the induction
hypothesis.

Finite abstractions

Using the finite representation of action effects we follow basically the same steps as in [ZC14]
to construct finite abstractions of the transition systems generated by executing the program
in worlds satisfying an acyclic C2-BAT. First, we identify a finite set of relevant C2-fluent
sentences called context of a program.

Definition 27 (context of a program). Let G = (D, δ) be a Golog program with D = D0∪Dpost,
A the finite set of ground actions and F the finite set of fluents occurring in G. The context
C(G) of G is defined as the smallest set satisfying the following conditions:

• D0 ⊆ C(G)

• If F ∈ F , t ∈ A and (φeff , φcon) ∈
(
γ+F
)a
t
∪
(
γ−F
)a
t
, then φcon ∈ C(G).

• If ψ? is a test occurring in δ, then ψ ∈ C(G).

• If ψ ∈ C(G), then ¬ψ ∈ C(G) (modulo elimination of double negation).

N

As in [ZC14] the central notion for the abstraction is that of a type of a world representing an
equivalence class of worlds. Intuitively, the type of a world tells us which of the context axioms
are satisfied in the initial situation and in all relevant future situations of the world.

Definition 28 (type of a world). Let G = (D, δ) be a Golog program with an acyclic BAT
D = D0∪Dpost w.r.t. A, where A is a finite set of ground actions that includes all ground actions
occurring in δ and the two special actions ε (for termination) and f (for failure). Furthermore,
let C(G) be the context of G and ED,A the set of all relevant effects according to Definition 22.
The set of all type elements is given by

TE(G) := {(ψ,E) | ψ ∈ C(G),E ⊆ ED,A}.

A type w.r.t. G is a set τ ⊆ TE(G) satisfying the following conditions

1. For all ψ ∈ C(G) and all E ⊆ ED,A it holds that either (ψ,E) ∈ τ or (¬ψ,E) ∈ τ .

2. There exists a world w ∈ W such that w |= D0 ∪ {R[E, ψ] | (ψ,E) ∈ τ}.
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The set of all types w.r.t. G is denoted by Types(G). Let w ∈ W be a world. The type of w
w.r.t. G is given by

type(w) := {(ψ,E) ∈ TE(G) | w |= R[E, ψ]}.

N

We show that Types(G) captures exactly the types of all worlds satisfying the BAT D.

Lemma 29. Let G = (D, δ) and Types(G) be as defined above.

1. Let w ∈ W with w |= D. It holds that type(w) ∈ Types(G).

2. For each τ ∈ Types(G) there exists a world w ∈ W with w |= D such that τ = type(w).

Proof.

1. It holds that

• for all ψ ∈ C(G) and all E ⊆ ED,A either (ψ,E) ∈ type(w) or (¬ψ,E) ∈ type(w) and

• w |= D and w |= {R[E, ψ] | (ψ,E) ∈ type(w)}.

Therefore, type(w) ∈ Types(G).

2. Let τ ∈ Types(G). There exists a world w such that w |= D0 ∪ {R[E, ψ] | (ψ,E) ∈ τ}.
It follows that τ = type(w). We define a world wD with wD |= D satisfying type(w) =
type(wD). Let F be the set of fluents occurring in G with an SSA in Dpost. Given the
world w, we define wD as the world satisfying the following conditions:

• For all F (~n) ∈ PF with F /∈ F and all z ∈ Z: wD[F (~n), z] = w[F (~n), z].

• For all F (~n) ∈ PF with F ∈ F :
– wD[F (~n), 〈〉] = w[F (~n), 〈〉] and
– wD[F (~n), z · t] = 1 iff wD, z |=

(
γ+F
)a~x
t ~n
∨ F (~n) ∧ ¬

(
γ−F
)a~x
t ~n

for all z · t ∈ Z.

It is easy to see that wD ∈ W exists, is uniquely determined and satisfies wD |= D. Using
Lemma 21 it follows that type(w) = type(wD).

The abstraction of a situation consisting of a world w ∈ W with w |= D and an action sequence
z ∈ A∗ is then given by type(w) and the set of effects Ez generated by executing z in w. We
define an abstract version of the effect function (see Definition 16).

Definition 30. Let G = (D, δ), ED,A and Types(G) be as above. Let τ ∈ Types(G), E ⊆ ED,A

and t ∈ A. The effects of executing t in (τ,E) are given by

ÊD(τ,E, t) :={〈F+, φeff〉 | ∃(φeff , φcon) ∈
(
γ+F
)a
t
s.t. (φcon,E) ∈ τ} ∪

{〈F−, φeff〉 | ∃(φeff , φcon) ∈
(
γ−F
)a
t
s.t. (φcon,E) ∈ τ}.

N

We show that the concrete effect function and the abstract one yield the same result.
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Lemma 31. Let w be a world with w |= D, z ∈ A∗, t ∈ A and Ez the effects generated by
executing z in w. For E′ ⊆ ED,A with Ez ≡ E′ it holds that ED(w, z, t) = ÊD(type(w),E′, t).

Proof. Let w, z, t and Ez be as stated in the claim. Lemma 26 implies that there exists a
set of effects E′ ⊆ ED,A with Ez ≡ E′. Lemma 29 yields type(w) ∈ Types(G). Therefore,
ÊD(type(w),E′, t) is well defined. It holds that 〈F±, φ〉 ∈ ED(w, z, t)

iff there exists (φ, ψ) ∈
(
γ+F
)a
t
∪
(
γ−F
)a
t
such that w, z |= ψ

iff there exists (φ, ψ) ∈
(
γ+F
)a
t
∪
(
γ−F
)a
t
such that w |= R[Ez, ψ] (by Lemma 21)

iff there exists (φ, ψ) ∈
(
γ+F
)a
t
∪
(
γ−F
)a
t
such that w |= R[E′, ψ] (with Ez ≡ E′)

iff there exists (φ, ψ) ∈
(
γ+F
)a
t
∪
(
γ−F
)a
t
such that (ψ,E′) ∈ type(w) (by Def. 27 and 28)

iff 〈F±, φ〉 ∈ ÊD(type(w),E′, t).

Next, we introduce additional notions for traversing the space of reachable subprograms. Before
executing the next action according to a program we first need to perform the necessary tests.

Definition 32 (guarded action). Let δ be a program expression over ground actions A ⊂ NA
(including the termination action ε). A guarded action in δ is of the form ψ1?; · · · ;ψn?; t for
some n ≥ 0 where t ∈ Act and ψ1, . . . , ψn are tests occurring in δ. N

We use the symbol a to denote a guarded action. Analogous to [BZ13, ZC13] we define two
functions head(·) and tail(·, ·). Intuitively, head(δ) contains those guarded actions that can be
executed first when executing δ and tail(a, δ) yields the program expressions that remain to be
executed after executing the guarded action a from the head of δ.

Definition 33. The function head(·) maps a program expression to a set of guarded actions in
this program expression. It is defined by induction on the structure of program expressions:

1. head(〈〉) := {ε};

2. head(t) := {t} for all t ∈ A;

3. head(ψ?) := {ψ?; ε};

4. head(δ∗) := {ε} ∪ head(δ);

5. head(δ1; δ2) := {a | a = ψ1?; · · · ;ψn?; t ∈ head(δ1) ∧ t 6= ε} ∪
{ψ1?; · · · ;ψn?;ψ′1?; · · · ;ψ′m?; t | ψ1?; · · · ;ψn?; ε ∈ head(δ1) ∧

ψ′1?; · · · ;ψ′m?; t ∈ head(δ2)};

6. head(δ1|δ2) := head(δ1) ∪ head(δ2);

7. head(δ1‖δ2) := {a | a = ψ1?; · · · ;ψn?; t ∈ head(δi) ∧ i ∧ t 6= ε} ∪
{ψ1?; · · · ;ψn?;ψ′1?; · · · ;ψ′m?; t | ψ1?; · · · ;ψn?; ε ∈ head(δi)∧

ψ′1?; · · · ;ψ′m?; t ∈ head(δj)∧
{i, j} = {1, 2}}.

N
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Definition 34. The function tail(·, ·) maps a guarded action and a program expression to a set
of program expressions.

• If a /∈ head(δ), then tail(a, δ) = ∅.

• If a ∈ head(δ) and a = ψ1?; · · · ;ψn?; ε, then tail(a, δ) = {〈〉}.

• If a ∈ head(δ) and a = ψ1?; · · · ;ψn?; t for t ∈ A\{ε}, then tail(a, δ) is defined by induction
on the combined size of a and δ:

1. tail(a, t′) := {〈〉} for t ∈ A;1

2. tail(a, δ∗) := {δ′; (δ)∗ | δ′ ∈ tail(a, δ)};
3. tail(a, δ1; δ2) := {δ′; δ2 | δ′ ∈ tail(a, δ1)} ∪

{δ′′ | ∃0 ≤ i ≤ n s.t. a = ψ1; · · · ;ψi?; · · · ;ψn?; t ∧
ψ1?; · · · ;ψi?; ε ∈ head(δ1) ∧
δ′′ ∈ tail(ψi+1?; · · · ;ψn?; t, δ2)};

4. tail(a, δ1|δ2) := tail(a, δ1) ∪ tail(a, δ2).

5. tail(a, δ1‖δ2) := {δ′‖δ2 | δ′ ∈ tail(a, δ1)} ∪ {δ1‖δ′ | δ′ ∈ tail(a, δ2)} ∪
{δ′′ | ψ1?; · · · ;ψn?; ε ∈ head(δi) ∧ ψ′1?; · · · ;ψ′m?; t ∈ head(δj) ∧

δ′′ ∈ tail(ψ′1?; · · · ;ψ′m?; t, δj) ∧ {i, j} = {1, 2} ∧
a is of the form ψ1?; · · · ;ψn?;ψ′1?; · · · ;ψ′m?; t}.

N

We establish the relationship of the head and tail functions with the transition semantics.

Lemma 35. Let G = (D, δ) be a program, w a world with w |= D and 〈z, ρ〉 ∈ Reach(w, δ). It
holds that

1. 〈z, ρ〉 ∈ Fin(w) iff there exists ψ1?; · · · ;ψn?; ε ∈ head(ρ) and w, z |= ψi for all i = 1, . . . , n;

2. 〈z, ρ〉 w−→ 〈z · t, ρ′〉 iff there exists a = ψ1?; · · · ;ψn?; t ∈ head(ρ) with t 6= ε, w, z |= ψi for
all i = 1, . . . , n and ρ′ ∈ tail(a, ρ);

3. 〈z, ρ〉 ∈ Fail(w) iff there exists no a = ψ1?; · · · ;ψn?; t ∈ head(ρ) such that w, z |= ψi for
all i = 1, . . . , n.

Proof. The claims can be shown by induction on the structure of ρ. The proof is analogous to
the proof of Lemma 15, page 9 in [ZC13].

We define the set of reachable subprograms using the head and tail functions.

Definition 36. Let δ be a program expression. The program expression ρ is a reachable
subprogram of δ if there is an n ≥ 0 and program expressions δ0, δ1, . . . , δn such that δ0 = δ,
δn = ρ and for all i = 0, . . . , n − 1 there exists ai ∈ head(δi) such that δi+1 ∈ tail(ai, δi). We
denote the set of all reachable subprograms of δ by Sub(δ). N

As shown in [BZ13] the set Sub(δ) is finite. Now we are ready to define the finite propositional
abstraction of a transition system.

0Note that a ∈ head(t′) implies a = t′.
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Definition 37. Let G = (D, δ) be a program with an acyclic C2-BAT D w.r.t. the ground
actions occurring in δ and let Types(G) and C(G) be as defined above. We define a set of atomic
propositions by introducing for each axiom ψ in C(G) a corresponding atomic proposition pψ:

PC(G) := {pψ | ψ ∈ C(G)}.

Let τ ∈ Types(G). The corresponding propositional transition system T τδ =
(
Sτ,δ,

τ,δ
=⇒, LC

)
consists of a set of states given by

Sτ,δ := 2E
D,A
× Sub(δ),

a transition relation τ,δ
=⇒⊆ Sτ,δ × Sτ,δ with (E, ρ)

τ,δ
=⇒ (E′, ρ′) iff

• there exists ψ1?; · · · ;ψn?; t ∈ head(ρ) such that

– {(ψ1,E), . . . , (ψn,E)} ⊆ τ ,
– E′ ≡ E � ÊD(τ,E, t) and
– ρ′ ∈ tail(ψ1?; · · · ;ψn?; t, ρ)

or

• there exists no ψ1?; · · · ;ψn?; t ∈ head(ρ) such that {(ψ1,E), . . . , (ψn,E)} ⊆ τ and ρ = ρ′

and E′ ≡ E � ÊD(τ,E, f)

and a labeling function LC such that

LC : (E, ρ) 7→ {pψ ∈ PC(G) | (ψ,E) ∈ τ}

for all (E, ρ) ∈ Sτ,δ. N

Consider a program G = (D, δ) and a world w |= D. We define a relation

'w,δ⊆ Reach(w, δ)× Sτ,δ with τ = type(w)

satisfying the following condition: It holds that 〈z, ρ〉 'w,δ (E, ρ′) iff E ≡ Ez, where Ez are the
effects generated by executing z in w, and ρ = ρ′.

Lemma 38. Let G = (D, δ) be as above, w ∈ W with w |= D and τ := type(w) and let
〈z, ρ〉 ∈ Reach(w, δ) and (E, ρ) ∈ Sτ,δ such that 〈z, ρ〉 'w,δ (E, ρ).

1. For all ψ ∈ C(G) it holds that w, z |= ψ iff pψ ∈ LC(E, ρ).

2. For all 〈z′, ρ′〉 ∈ Reach(w, δ) with 〈z, ρ〉
w,δ
↪→ 〈z′, ρ′〉 there exists (E′, ρ′) ∈ Sτ,δ such that

(E, ρ)
τ,δ

=⇒ (E′, ρ′) and 〈z′, ρ′〉 'w,δ (E′, ρ′).

3. For all (E′, ρ′) ∈ Sτ,δ with (E, ρ)
τ,δ

=⇒ (E′, ρ′) there exists 〈z′, ρ′〉 ∈ Reach(w, δ) such that

〈z, ρ〉
w,δ
↪→ 〈z′, ρ′〉 and 〈z′, ρ′〉 'w,δ (E′, ρ′).

Proof.

1. Let ψ ∈ C(G) and let Ez be the effects generated by executing z in w. By definition
〈z, ρ〉 'w,δ (E, ρ) implies Ez ≡ E. It holds that w, z |= ψ
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iff w |= R[Ez, ψ] ≡ R[E, ψ] (by Lemma 21)
iff (ψ,E) ∈ τ (by definition of types)
iff pψ ∈ LC(E, ρ).

2. Let 〈z · t, ρ′〉 ∈ Reach(w, δ) with 〈z, ρ〉
w,δ
↪→ 〈z · t, ρ′〉. We distinguish the three cases with

t /∈ {ε, f}, t = ε or t = f.

(a) t /∈ {ε, f} implies 〈z, ρ〉 w→ 〈z · t, ρ′〉. The second claim of Lemma 35 implies
that there is ψ1?; · · · , ψn?; t ∈ head(ρ) such that w, z |= ψ1 ∧ · · · ∧ ψn and ρ′ ∈
tail(ψ1?; · · · , ψn?; t, ρ). By definition of the context it holds that {ψ1, . . . , ψn} ⊆
C(G). By assumption it holds that 〈z, ρ〉 'w,δ (E, ρ) and the first claim of this
lemma yields {pψ1 , . . . , pψn} ⊆ LC(E, ρ) and therefore

{(ψ1,E), . . . , (ψn,E)} ⊆ τ.

By Lemma 26, E ⊆ ED,A implies that there exists a set of effects E′ ⊆ ED,A such
that E′ ≡ E � ED(w, z, t). Lemma 31 yields ED(w, z, t) = ÊD(τ,E, t) and E′ ≡
E � ÊD(τ,E, t). By definition of τ,δ

=⇒ we obtain (E, ρ)
τ,δ

=⇒ (E′, ρ′).
With Lemma 25 and E ≡ Ez it follows that E′ ≡ Ez � ED(w, z, t) and therefore

〈z · t, ρ′〉 'w,δ (E′, ρ′).

(b) t = ε implies 〈z, ρ〉 ∈ Fin(w) and ρ′ = 〈〉. The first claim of Lemma 35 implies
that ψ1?; · · · ;ψn?; ε ∈ head(ρ) and w, z |= ψ1 ∧ · · · ∧ ψn. Since 〈z, ρ〉 'w,δ (E, ρ)
and {ψ1, . . . , ψn} ⊆ C(G) it follows that {(ψ1,E), . . . , (ψn,E)} ⊆ τ . There exists
E′ ⊆ ED,A with

E′ ≡ E � ÊD(τ,E, ε) ≡ Ez � ED(w, z, ε).

Consequently, there is a transition (E, ρ)
τ,δ

=⇒ (E′, 〈〉) with 〈z · ε, 〈〉〉 'w,δ (E′, 〈〉).
(c) t = f implies that 〈z, ρ〉 ∈ Fail(w) and ρ = ρ′. The third claim of Lemma 35 implies

that there is no ψ1?; · · · ;ψn?; t ∈ head(ρ) such that w, z |= ψ1 ∧ · · · ∧ ψn. For all
ϕ1?; · · · ;ϕn?; t ∈ head(ρ) it holds that {ϕ1, . . . , ϕn} ⊆ C(G). Since 〈z, ρ〉 'w,δ (E, ρ)
it follows that there is no ψ1?; · · · ;ψn?; t ∈ head(ρ) such that {(ψ1,E), . . . , (ψn,E)} ⊆
τ . There exists E′ ⊆ ED,A with

E′ ≡ E � ÊD(τ,E, f) ≡ Ez � ED(w, z, f).

Consequently, there is a transition (E, ρ)
τ,δ

=⇒ (E′, 〈〉) with 〈z · f, 〈〉〉 'w,δ (E′, 〈〉).

3. Let (E′, ρ′) ∈ Sτ,δ such that (E, ρ)
τ,δ

=⇒ (E′, ρ′).

(a) There exists ψ1?; · · · ;ψn?; t ∈ head(ρ) such that {(ψ1,E), . . . , (ψn,E)} ⊆ τ , E′ ≡
E� ÊD(τ,E, t) and ρ′ ∈ tail(ψ1?; · · · ;ψn?; t, ρ). Since 〈z, ρ〉 'w,δ (E, ρ) it follows that
w, z |= ψ1 ∧ · · · ∧ ψn.
i. Assume t 6= ε. Lemma 35 implies that 〈z, ρ〉 w→ 〈z · t, ρ′〉. Lemma 31 implies
〈z · t, ρ〉 'w,δ (E′, ρ′).

ii. Assume t = ε. We have ρ′ = 〈〉. Lemma 35 implies that 〈z, ρ〉 ∈ Fin(w).

Therefore, there is a transition 〈z, ρ〉
w,δ
↪→ 〈z · ε, 〈〉〉. As in the previous case it

follows that 〈z · ε, ρ〉 'w,δ (E′, ρ′).
(b) There exists no ψ1?; · · · ;ψn?; t ∈ head(ρ) such that {(ψ1,E), . . . , (ψn,E)} ⊆ τ and

ρ = ρ′ and E′ ≡ E � ÊD(τ,E, f). Since 〈z, ρ〉 'w,δ (E, ρ) it follows that there is
no ψ1?; · · · ;ψn?; t ∈ head(ρ) such that w, z |= ψ1 ∧ · · · ∧ ψn. Lemma 35 yields

〈z, ρ〉 ∈ Fail(w). There is a transition 〈z, ρ〉
w,δ
↪→ 〈z · f, ρ〉. With Lemma 31 it follows

that 〈z · f, ρ〉 'w,δ (E′, ρ).
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Consider a temporal state formula Φ and a temporal path formula Ψ over axioms from C(G).
From Φ and Ψ we obtain a propositional CTL∗ state formula and CTL∗ path formula, respec-
tively, by replacing each axiom ψ in Φ and Ψ, respectively, by the corresponding proposition
pψ ∈ PC(G). The resulting formulas are denoted by pr(Φ) and pr(Ψ), respectively. Given a state

s in the propositional transition system T τδ =
(
Sτ,δ,

τ,δ
=⇒, LC

)
, satisfaction of pr(Φ) in T τδ , s

denoted by T τδ , s |= pr(Φ) is defined in the standard way [BK08]. Similarly, for an infinite path

π in T τδ =
(
Sτ,δ,

τ,δ
=⇒, LC

)
satisfaction of pr(Ψ) in T τδ , π denoted by T τδ , π |= pr(Ψ) is defined

accordingly [BK08].

Lemma 39. Let G = (D, δ) be a program satisfying the acyclicity condition, Φ a temporal state
formula over axioms in C(G) and w a world with w |= D. It holds that

Twδ , 〈〈〉, δ〉 |= Φ iff T type(w)
δ , (∅, δ) |= pr(Φ).

Proof. This lemma is a consequence of Lemma 38.

To decide whether a temporal state formula Φ over axioms in C(G) is valid in G = (D, δ)
with an acyclic action theory we first compute Types(G). For each τ ∈ Types(G) the finite
propositional transition system T τδ can be computed. Finally, we check for each τ ∈ Types(G)
whether T τδ , (∅, δ) |= pr(Φ) holds using model checking.

Theorem 40. Let G = (D, δ) be a program with a C2-BAT that is acyclic and Φ a temporal
state formula over axioms in C(G). It is decidable to verify whether Φ is valid in G.

3.3 Decidable Verification with Flat Action Theories

The techniques introduced for acyclic theories can also be applied to programs with a C2-BAT
D where all the effect descriptors in the SSAs in D are quantifier-free but may contain cycles.
(The domain in Example 6 satisfies also this restriction). We call this class flat action theory.
It is straightforward to show that in this case only finitely many effects can be generated. We
use the same arguments as for the acyclic case to show that a finite abstraction of the transition
system can be constructed such that satisfaction of temporal properties is preserved.

Definition 41. Let D = D0 ∪Dpost be a C2-BAT. We say that D is a flat action theory if for
each effect condition γ±F occurring in Dpost and all disjuncts

∃~y.
(
a = A(~v) ∧ φ ∧ φ′

)
occurring in γ±F the effect descriptors φ are quantifier-free. N

Based on the finite set of fluents F occurring in a program G = (D, δ) with a flat action theory
D and the constants occurring in G = (D, δ) there are finitely many atomic C2-fluent formulas
of the following forms:

• F ′′, F ′(x), F ′(y), F (x, y), F (y, x), F (x, x), F (y, y),

• F ′(c), F (c, x), F (c, y), F (x, c), F (y, c), F (c, c′),

• x = c, y = c or c = c′,
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where {F ′′, F ′, F} ⊆ F and c and c′ are constants occurring in D. We denote this finite set of
atoms by At(G) and in addition require that At(G) is closed under negation.

Note that the regression operator R[E, φ] in Figure 5 introduces new quantifiers for the cases
R[E, F (x, x)] and R[E, F (y, y)]. Here we only need to consider quantifier-free effects in E and
we modify the regression operator for the two cases as follows:

R[E, F (x, x)] := F (x, x) ∧
∧

〈F (x,y)−,ϕ〉∈E

∧¬ϕyx ∨
∨

〈F (x,y)+,ϕ〉∈E

ϕyx;

R[E, F (y, y)] := F (y, y) ∧
∧

〈F (x,y)−,ϕ〉∈E

∧¬ϕxy ∨
∨

〈F (x,y)+,ϕ〉∈E

ϕxy .

Consequently, if φ and the effects in E are quantifier-free, then R[E, φ] is quantifier-free as
well. A quantifier-free C2-formula can be equivalently transformed into conjunctive normal
form (CNF) and can be viewed as a set of sets of atoms in At(G). For a flat theory D and the
set of ground action A in G = (D, δ) the effect descriptors in eff+

A(F ) ∪ eff−A(F ) are boolean
combinations of atoms in At(G) for all fluents in F . We define the set of relevant effects as
follows:

ED,A := {〈F±, ϕ〉 | F (~x) ∈ F , ϕ has free variables ~x,
ϕ is in CNF consisting of atoms in At(G)}.

We can now easily prove Lemma 26 for flat action theories as well.

Lemma 42. Let D be a flat C2-BAT, w a world with w |= D, z ∈ A∗ an action sequence and
Ez the effects generated by executing z in w. There exists E′ ⊆ ED,A such that Ez ≡ E′.

Using the same abstraction technique as for programs with acyclic theories we obtain our
decidability result for the verification problem.

Theorem 43. Let G = (D, δ) be a program with a flat C2-BAT and Φ a temporal state formula
over axioms in C(G). It is decidable to verify whether Φ is valid in G.

4 Related Work

De Giacomo, Lespérance and Patrizi [DLP12] show decidability for first-order µ-calculus proper-
ties for a class of BATs where fluent extensions are bounded by some fixed threshold. Moreover,
their notion of boundedness is a semantical condition that is in general undecidable to check,
whereas our approach relies on purely syntactical restrictions. [HCMD14] investigate acyclicity
conditions that ensure state-boundedness in data-aware dynamic systems. State-boundedness
then in turn allows for decidable verification by constructing finite abstraction of infinite tran-
sition systems. However, the setting is quite different: The transition systems in [HCMD14]
have a fixed database instance as initial state, actions do not respect the frame assumption but
for example may cause an infinite branching degree.

5 Conclusion

In this paper we broadened the class of Golog programs and action theories for which de-
cidability of verification can be achieved. The new class of acyclic theories subsumes many
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of the ones that were previously studied, including the context-free and local-effect ones and
also the class considered in Theorem 43 subsumes local-effect theories. We observe that the
decidability does not merely depend on whether actions may affect an unbounded number of
objects, i.e. have non-local effects, but also on the dependencies between fluents in the action
theory. Interestingly, it turns out that in domains as the one described in Example 6, in the
briefcase domain [Ped88], or in the logistics domain [Bac01], actions have non-local effects but
dependencies are acyclic. Note that we refer to non-propositional models of the domains in the
Situation Calculus, i.e. ones that admit a (possibly) infinite number of objects.
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