
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

On Implementing Temporal Query Answering
in DL-Lite

Veronika Thost Jan Holste Özgür Özçep

LTCS-Report 15-12

Postal Address:
Lehrstuhl fr Automatentheorie
Institut fr Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nthnitzer Str. 46

Dresden

On Implementing Temporal Query Answering
in DL-Lite

Veronika Thost1 Jan Holste2

Özgür Özçep3

1Technische Universität Dresden, Germany,
thost@tcs.inf.tu-dresden.de

2Technische Universität Hamburg-Harburg, Germany,
mail@janholste.com

3Universität zu Lübeck, Germany,
oezcep@ifis.uni-luebeck.de

Abstract

Ontology-based data access augments classical query answering over fact
bases by adopting the open-world assumption and by including domain know-
ledge provided by an ontology. We implemented temporal query answering w.r.t.
ontologies formulated in the Description Logic DL-Lite. Focusing on temporal
conjunctive queries (TCQs), which combine conjunctive queries via the operators
of propositional linear temporal logic, we regard three approaches for answering
them: an iterative algorithm that considers all data available; a window-based
algorithm; and a rewriting approach, which translates the TCQs to be answered
into SQL queries. Since the relevant ontological knowledge is already encoded
into the latter queries, they can be answered by a standard database system. Our
evaluation especially shows that implementations of both the iterative and the
window-based algorithm answer TCQs within a few milliseconds, and that the
former achieves a constant performance, even if data is growing over time.

1 Introduction

Temporal information plays a central role in many applications of ontology-based data
access (OBDA). For example, knowledge about the past is usually kept in patient
records, and collected by companies or scientific projects such as MesoWest1, focusing

1http://mesowest.utah.edu/

1

on weather data. Such applications obviously benefit of using ontologies for data inte-
gration and access. For example, the wind force ‘Storm’ on the well-known Beaufort
Wind Force Scale is equally characterized by wind speed and wave height. This can be
represented in an ontology by an expression such as HighWindSpeed t HighWaves v
Storm, saying that if either a ‘high wind speed’ or ‘high waves’ are observed, this im-
plies the wind force ‘Storm’. Regarding such an ontology, the conjunctive query (CQ)
Storm(x) over the fact base {HighWindSpeed(NY C)} would then retrieve the tuple
(NY C) as answer. Temporal knowledge is however not taken into account by systems
implementing OBDA, in general. Though, assuming that we consider several weather
stations’ data of the past 24 hours, a query such as the following could be interesting:
“Get the heritage sites that are nearby a weather station, for which at some time in the
past (24 hours) a danger of a hurricane was detected, since then, the wind force has
been continuously very high, and it increased considerably during the two latest times
of observation.”

For that reason, we focus on the practical answering of temporal conjunctive queries
(TCQs) [4, 5] w.r.t. ontologies written in the description logic (DL) DL-Litecore (here-
inafter called DL-Lite). TCQs combine conjunctive queries via LTL operators2 and
have been already studied extensively in the context of DL-Lite [17, 8]. The above
example query could be specified as the following TCQ:
HeritageSite(x) ∧WeatherStation(y) ∧ nearby(x, y) ∧(
HighWind(y) SDangerOfHurricane(y)

)
∧ #− Storm(y) ∧ ViolentStorm(y),

asking for all pairs (x, y) of heritage sites and nearby weather stations, whose sen-
sor values at some point in time implied a danger of a hurricane, since (S) then, the
measurements have implied Beaufort category ‘high wind’, in the previous (#−) mo-
ment of observation they implied category ‘storm’, and the latest values imply ‘violent
storm’. TCQs are answered w.r.t. temporal knowledge bases (TKBs), which, in addi-
tion to the ontology (assumed to hold at every point in time), contain a sequence of
fact bases A0,A1, . . . ,An, representing the data collected at specific points in time.
Especially note that the ontology and the fact bases itself are formulated in a classical
(i.e., atemporal) DL, only the queries are temporal.

Related Work

On the DL side, there are various optimized systems realizing OBDA [14]. In par-
ticular, the so-called rewriting approach implemented by Ontop [19] allows for ef-
ficient query answering w.r.t. an ontology written in the DL DL-Lite. Specifically,
Ontop internally rewrites a given conjunctive query, which is written in the abstract
vocabulary of the ontology, into an SQL query that encodes the relevant ontologi-
cal knowledge but addresses a standard database system; the latter can then be used
to store the data and efficiently answer the queries. However, whereas a lot of DL

2Please note that we do not consider negation.

2

research is theoretically investigating temporal extensions of ontology and query lan-
guages [2, 6, 3, 15, 17, 5, 8, 18], none of the freely available systems takes the temporal
nature of the data into account, yet (i.e., the query languages supported do not provide
operators for explicitly referencing different points in time).

Recently, several practical approaches for answering temporal queries have been devel-
oped in the fields of stream reasoning [7] and complex event processing [13, 1]. These
systems are tailored to continuously answering given queries over an infinite stream
of data—which is usually realized by restricting the focus to a so-called window of
the data (i.e., instead of considering all the past data available, the number of consid-
ered time points or data instances is fix). The proposed query languages are rather
expressive, but ontologies are not yet integrated, in general; only Morph-streams [12]
presents an exception. Similar to Ontop, Morph-streams provides OBDA to streaming
data sources by rewriting the given queries to queries that can be answered by existing
stream processors; it therefore supports a query language that extends CQs, which is
tailored to the ontology and, at the same time, window-based querying of data streams.
Nevertheless, common standards for stream representation and processing, for query
languages, and for operation semantics are still to be developed in these fields.

Our work complements these applied approaches by starting from a DL perspective,
where many use cases consider static data, all of which might be relevant; ontologies
are important; and there are several well-investigated query languages. Specifically,
we study three pragmatic approaches for answering TCQs based on the work of [8].
We prototypically implemented and evaluated them, and in this paper report on our
experiences.

Algorithms for Temporal Query Answering

In particular, [8] consider a scenario in which the sequence of fact bases is continuously
extended and a fix set of TCQs is answered with every extension, at time point n—
similar to the streaming scenario.

We first implemented the Iterative Algorithm (IA) (cf. Section 6 in [8]), which itera-
tively computes sets of answers to several subqueries of the TCQ to be answered, for
each time point i, 0 ≤ i ≤ n. For example, the answers to #−Storm(x) at i are ob-
tained by evaluating Storm(x) at i− 1. Since the processing at i only uses Ai and the
sets computed for the previous moment, whose sizes are bounded, the IA achieves a
so-called bounded history encoding (i.e., it’s runtime does not depend on the number
of considered fact bases). The latter is however due to the constant domain assump-
tion of [8], which might not fit in an application (e.g., in a streaming scenario based
on social network data). We therefore describe a window-based variant of the IA, the
Vector Algorithm (VA) (cf. Section 4 in [16]). The VA specifically supports sliding
windows, where the TCQs are not evaluated at every time point, but in fix intervals.
It therefore regards a sequence (or vector) containing only the then necessary of the

3

above mentioned sets of answers. To answer the query #−Storm(x) at every second
point in time, for example, Storm(x) does not always have to be evaluated. In order
to get an impression of the performance of a temporal rewriting approach targeting
data stored on disk, we finally consider the (rather simple) Rewriting Algorithm (RA)
translating TCQs into standard database queries.

Our evaluation shows that the implementations of both the IA and VA perform sur-
prisingly well: TCQs w.r.t. TKBs containing millions of facts are answered within
milliseconds. We could however not obtain such results for the RA, mainly due to the
simplicity of the rewriting and because the disk access was too costly. In what follows,
we first give basic knowledge about DL-Lite and TCQs, then describe the algorithms,
and finally detail our evaluation results.

2 Preliminaries

We briefly introduce the description logic DL-Lite, especially as ontology language,
and TCQs. Description Logics generally distinguish the terminological knowledge,
which is collected in an ontology, and the facts about a particular environment, col-
lected in a fact base. In particular, DLs model the domain of interest using concepts,
denoting classes of individuals, and roles, representing binary relations between indi-
viduals. As in other logics, expressions in DLs are built over an alphabet of named
symbols. We discern individual names, which represent constants, concept names, and
role names.

Definition 2.1 (Syntax of DL-Lite) In DL-Litecore, basic concepts B, (general) con-
ceptsC, and basic rolesR are built from concept namesA and role names P according
to the following syntax rules:

B ::= A | ∃R R ::= P | P−

C ::= B | ¬B

where ·− denotes the inverse-role operator.

Let now A be a concept name, B be a basic concept, C be a general concept, and P
be a role name. We focus on two types of expressions: concept inclusions (CIs), of
the form B v C, and assertions, of the form A(a) or P (a, b), where a and b denote
individual names. Further, an ontology is a finite set of concept inclusions,3 and a fact
base is a finite set of assertions.

In the context of the rewriting approach, the data store is assumed to be the fact base
containing the assertional knowledge. This can be implemented in a database, for

3Note that, in literature, the notion ontology usually includes role inclusions, expressions that are
allowed in DLs that are more expressive than DL-Litecore. That is, the ontology then comprises both the
set of CIs (called TBox) and the set of role inclusions (called RBox).

4

example, by designing it such that there is a table for every concept name and role
name [9], and especially shows the advantage of this approach—namely, that the data
does not have to be converted into a specific format, any more, but can be used as it is
usually given, stored in a conventional data management system.

We define the semantics of DL-Lite as usual in DLs, in terms of First-Order Logic
interpretations. Further, we require all these interpretations to agree on the semantics
assigned to the constants, the individual names. This means that each such name is as-
signed to a unique value of the domain, in every interpretation (also known as unique
name assumption). It also implies that different individual names are interpreted dif-
ferently in every domain.

Definition 2.2 (Semantics of DL-Lite) An interpretation I = (∆I , ·I) is a pair con-
sisting of a non-empty set ∆I (called domain) and an interpretation function ·I that
assigns to every concept name A a set AI ⊆ ∆I , to every role name P a binary re-
lation P I ⊆ ∆I × ∆I , and to every individual name a an element aI ∈ ∆I . This
function is extended to all roles and concepts as follows:

(R−)I := {(y, x) | (x, y) ∈ RI};
(∃R)I := {x | there is an y ∈ ∆I such that (x, y) ∈ RI}; and

(¬C)I := ∆I \ CI .

The interpretation I satisfies

• a CI B v C if BI ⊆ CI;

• an assertion A(a) if aI ∈ AI;

• an assertion P (a, b) if (aI , bI) ∈ P I;

• an ontology O if it satisfies all CIs contained in it (written I |= O);

• a fact base A if it satisfies all assertions contained in it (written I |= A).

Focusing on temporal OBDA, we especially do not restrict ourselves to the knowledge
known about a single moment in time. That is, we do not only consider a single fact
base, but a sequence of fact bases A0, . . . ,An and assume each of the fact bases to
contain knowledge about a particular point in time; thus, n (‘now’) denotes the latest
moment for which data is available. In contrast, we assume the ontological knowledge
to be always true (i.e., independent of the time point considered).

Definition 2.3 (Temporal Knowledge Base) A temporal knowledge base (TKB) K =
〈O, (Ai)0≤i≤n〉 consists of an ontology O and a finite sequence of fact bases Ai.

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a non-
empty domain ∆ that is fixed (constant domain assumption). Then, I is a model of K
(written I |= K) if

5

• for all i ≥ 0, we have Ii |= O; and

• for all i, 0 ≤ i ≤ n, we have Ii |= Ai.

We finally describe our query language, which combines conjunctive queries via LTL
operators.

Definition 2.4 (Syntax of TCQs) A conjunctive query (CQ) is of the form ψ(~x) =
∃~y.ψ′(~x, ~y), where ~x and ~y are tuples of (pairwise distinct) variables, and ψ′(~x, ~y) is a
(possibly empty) finite conjunction of atoms of the form

• A(t) (concept atom), for a concept name A, or

• P (t, u) (role atom), for a role name P ,

where t, u are either individual names or variables that occur in ψ. The empty con-
junction is denoted by true. The variables in ~x are called distinguished variables (vs.
undistinguished).

Temporal conjunctive queries (TCQs) are built from CQs as follows:

• Every CQ is a TCQ.

• If φ1 and φ2 are TCQs, then the following are also TCQs:

– φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),

– #φ1 (next), #−φ1 (previous),

– φ1 Uφ2 (until), φ1 Sφ2(since),

– 2φ1 (always), and 2−φ1 (always in the past).

As usual, we use the abbreviation 3φ1 (eventually) for true Uφ1, and analogously for
the past, 3−φ1, for true Sφ1.

Given an interpretation, we next describe the answers to TCQs in that interpretation
as mappings from the variables and individual names occurring in them to elements of
the domain of the interpretation. Especially, we require the distinguished variables to
be mapped to domain elements that represent individual names of the knowledge base.
We start by defining the semantics of CQs for Boolean queries. As usual, it is given
through the notion of homomorphisms [11].

Definition 2.5 (Semantics of TCQs) Let ψ(x1, . . . , xm) be a CQ, (a1, . . . , am) be a
tuple of individual names of same arity as the tuple (x1, . . . , xm), and I = (∆I , ·I) be
an interpretation. A mapping π from the variables and individual names that occur in
ψ to the elements of ∆I is a homomorphism of ψ(a1, . . . , am) into I if

6

φ I, i |= a(φ) iff

A CQ ψ Ii |= a(ψ)
φ1 ∧ φ2 I, i |= aφ1(φ1) and I, i |= aφ2(φ2)
φ1 ∨ φ2 I, i |= aφ1(φ1) or I, i |= aφ2(φ2)
#φ1 i < n and I, i+ 1 |= a(φ1)
#−φ1 i > 0 and I, i− 1 |= a(φ1)
2φ1 I, k |= a(φ1) for all k, i ≤ k ≤ n

2−φ1 I, k |= a(φ1) for all k, 0 ≤ k ≤ i
φ1 Uφ2 there is k, i ≤ k ≤ n, with I, k |= aφ2(φ2)

and I, j |= aφ1(φ1) for all j, i ≤ j < k
φ1 Sφ2 there is k, 0 ≤ k ≤ i, with I, k |= aφ2(φ2)

and I, j |= aφ1(φ1) for all j, k < j ≤ i

Table 1: The semantics of TCQs.

• π(xi) = π(ai), for all 1 ≤ i ≤ m;

• π(a) = aI , for all individual names a occurring in ψ;

• π(t) ∈ AI , for all concept atoms A(t) in ψ; and

• (π(t), π(u)) ∈ P I , for all role atoms P (t, u) in ψ.

We say that (a1, . . . , am) is an answer to ψ in I (written I |= ψ(a1, . . . , am)) iff there
is such a homomorphism.

Let now φ be a TCQ, a be a mapping from the distinguished variables in φ to individual
names, i be an integer with 0 ≤ i ≤ n, and I = (Ii)i≥0 be an infinite sequence
of interpretations. We define the satisfaction relation I, i |= φ by induction on the
structure of φ as described in Table 2.5; and, if I, i |= a(φ), then we call a an answer
to φ w.r.t. I at time point i.

We finally come to the problem this paper is about and which is targeted by our al-
gorithms. In particular, we focus on certain answers, which are answers to the given
TCQ, in every model of the considered TKB.

Definition 2.6 (Certain Answer) Let φ be a TCQ andK = 〈O, (Ai)0≤i≤n〉, be a TKB.
The mapping a from the distinguished variables of φ to individual names that occur in
K is a certain answer to φ w.r.t. K at time point i if, for all models I of K, we have
I, i |= a(φ).

We denote the set of certain answers to a TCQ φ w.r.t. a TKB K = 〈O, (Ai)0≤i≤n〉 at
i by Cert(φ,K, i). We subsequently describe three approaches to solve the problem of
finding the certain answers to TCQs in a pragmatic way.

7

3 The Iterative Algorithm

We start by describing the idea of the Iterative Algorithm. Please consider the original
definition in [8, Section 6] for the detailed definition. We assume φ to be the TCQ
answered w.r.t. a TKB K. In a nutshell, the Iterative Algorithm computes a set Φi(φ0)
of answers to φ0 (w.r.t. K) at i, for several subqueries φ0 of φ and all time points i, 0 ≤
i ≤ n. As the name suggests, it thereby proceeds iteratively, starting in the initial time
point 0 (e.g., the set Φi(#

−φ1) of answers to a TCQ #−φ1 at time point i, is defined as
Φi(#

−φ1) := Φi−1(φ1), based on the set Φi−1(φ1) of answers to φ1 computed for time
point i− 1, if i > 0 and otherwise as the empty set). It thereby always proceeds along
the part-of order of the queries reusing sets it computed before. Further, CQs can be
evaluated over the data of the current step,Ai; that is, for a given CQ ψ and TKBK, we
have Φi(ψ) := Cert(ψ,K, i). In this way, the Boolean operators and the #− operator
can be resolved in accordance with the semantics (e.g., the ∧ operator can be resolved
by intersecting the sets of answers computed for the two subqueries). However, since
the subqueries may refer to knowledge of future time points, Φi actually does not
always map to a set of answers as defined in Section 2. More specifically, it refers to
an expression over sets of answers that may contain placeholder variables of the form
x#φ2
i or xφ3 Uφ4i . x#φ2

i represents Φi(#φ2), the answers to the query #φ2 at i, because
the query directly refers to future time point(s). Similarly, the answers to φ3 Uφ4 at i,
are given by Φi(φ3 Uφ4) := Φi(φ4)∪ (Φi(φ3)∩xφ3 Uφ4i). We therefore refer to answer
terms instead of ‘sets of answers’, in the following (e.g., for a query φ := (#−φ1)∧#φ2

with i > 0, we have Φi(φ) = Φi−1(φ1) ∩ x#φ2
i).

In particular, all the answer terms that need to be considered at some time point i can
be computed based on Ai and the sets of answer terms that were computed for i − 1.
The certain answers to φ at time point i are then obtained by adequately evaluating
Φi(φ). During this evaluation, especially the placeholder variables are replaced by
either sets of answers (e.g., for i < n, xφ3 Uφ4i is replaced by Φi+1(φ3 Uφ4)) or ∅ if
i = n, according to the future knowledge available through the (whole) sequence of
fact bases given (e.g., for φ1(x) := A(x)UB(x), φ2(x) := C(x), A,B,C ∈ NC, and
a TKB with empty ontology and the fact bases A0 = {A(a)},A1 = An = {B(a)},
we have: Φ1(φ1) evaluates to {(a)} since Φ1(A(x)) and Φ2(φ1(x)), which replaces
x
A(x)UB(x)
1 , evaluate to {(a)}; though, Φn(φ) evaluates to ∅ because x#φ2

n does so).

Note that, because of the constant domain assumption, we have that the sizes of the
evaluated answer terms are bounded. The IA thus achieves a so-called bounded history
encoding. Nevertheless, the consideration of all the historical data might be neither fea-
sible nor required in several practical applications. We therefore propose an adaptation
of the IA, next.

8

4 The Vector Algorithm

The Vector Algorithm generally follows the idea of the IA in that it evaluates answer
terms based on the part-of relation of the (sub)queries to be answered. It however
specifically supports so-called sliding windows. In several applications (e.g., stream
processing), the increasing size of the input is managed by applying window operators
cutting a window of finite size (also range) r out of all the available (time-stamped)
data. Thereby, the window may either consists of the r most recent data items (for
row based windows) or of all the items given for the last r time points (for time based
windows). Since we assume a sequence S of fact bases given, we follow the latter
approach. The window cut out at time point t ≥ 0 is denoted by S[t, r, s], where
the parameter s defines how much and how often the window moves (its slide). In
that way, the time points for querying can be specified more fine-granularly, and the
window only moves at each multiple m of s:

S[t, r, s] =

{
() if t < s− 1;
(At′−j)min(r−1,t′)≥j≥0 else, where m = (t+ 1)/s and ms = t′ + 1.

For a given sequence of fact bases S , a time point t, range r, slide s, ontology O,
and TCQ φ, the Vector Algorithm then calculates the set of certain answers to φ w.r.t.
(O,S[t, r, s]) at time point r − 1 (i.e., we regard the window as sequence of r fact
bases). Obviously, the IA can be used for this computation, too. However, as outlined
in Section 1, a specific slide may considerably reduce the sets of answer terms that have
to be evaluated to answer φ w.r.t. (O,S[t, r, s]) at the last time point of the window.
For that reason, the VA does not evaluate all the answer terms as defined in [8]—it
might not even be necessary to iterate over all the time points in S[t, r, s]—, but only
considers those actually required. To identify these terms, r and s must be known in
the beginning of the processing. For a TCQ to be evaluated (at r − 1) over a given
window, the VA then specifies a sequence (or vector) of sets of answer terms, which
especially do not contain placeholder variables. Using such a vector, we can refer to
specific points in the window such that the corresponding answer term does not have to
be evaluated for all time points of the window, but still can refer to the whole window,
by adding the corresponding answer terms everywhere in the sequence (e.g., for the
TCQ φ := (#−φ0) ∧ 2−φ1 with φ0, φ1 being CQs, and a range r ≥ 4, we obtain the
sequence {Φ0(φ1)},. . . , {Φr−3(φ1)},{Φr−2(φ0),Φr−2(φ1)},{Φr−1(φ1)}). The detailed
definition of these vectors as well as the specification of their evaluation, which appro-
priately combines the answers of the evaluated answer terms (e.g., the certain answers
to φ are given through

(⋂
0≤i≤r−1 Φi(φ1)

)
∩ Φr−2(φ0)), can be found in [16]. In the

latter work, we also describe an optimized version of the VA, which exploits overlap-
ping windows, such that the results of already evaluated answer terms are reused in
computations for subsequent windows.

We finally propose a very simple and straightforward rewriting approach to get an
impression of how state-of-the-art databases cope with TCQs if they are rewritten into
SQL.

9

5 A Straightforward Rewriting Approach

We now show how a TCQ φ to be answered w.r.t. a TKB K can be rewritten into an
SQL query sql(φ) such that the answers obtained by answering sql(φ) over a database
storing the assertions of the fact bases of K are exactly the certain answers to φ w.r.t.
K. Note that the idea is similarly described by [8], where it is especially proven that
the approach is correct. However, in [8], the TCQ is assumed to be rewritten into a
temporal standard query language. Since it turned out that such query languages are
only rarely supported by existing databases, we propose a rewriting into general SQL.

As described in [9], the rewriting approaches generally use a specific mapping which
describes how the contents of the database relate to the concepts of the ontology and,
especially, how specific data items relate to assertions of a fact base. This mapping thus
specifies the sequence of fact bases represented by the given database. For example,
the mapping may describe that the sensor data in the table datatable(loc, sensor, value,
timestamp) is used to instantiate concepts such as HighWindSpeed and HighWaves
with individuals representing the location of the corresponding sensors, based on the
actual contents of the table (e.g., for a tuple (NY C,wind-speed,14,12:04:09), such a
mapping could determine that the fact base associated with the time point ‘12:04:09’
contains an assertion HighWindSpeed(NY C) based on the value of 14 m/s). For a
detailed description of this mapping, we refer to [9].

We assume such a mapping given and further that, for a CQ ψ, the function sql(ψ)
returns the SQL rewriting of ψ as it is proposed in [10, 9]. We specifically assume
sql(ψ) to refer to a column timestamp. Note that this rewriting of CQs already inte-
grates the information specified in the ontology containing concept inclusions such as
HighWindSpeed t HighWaves v Storm.4 For example, the CQ Storm(x) could be
translated by the function sql as follows:

SELECT loc, sensor, timestamp FROM datatable
WHERE (sensor = 'wind-speed' AND value > 24.5) OR

(sensor = 'wave-height' AND value > 9);

The Rewriting Algorithm uses these SQL queries and thus only needs to specifically
address the temporal operators according to the semantics of TCQs. For example, the
TCQ #−Storm(x) could be translated into the below SQL query:

SELECT loc FROM sql(Storm(loc))
WHERE timestamp = prevTimeStamp(current_time);

where the selection condition requires the timestamp to equal the time point before the
current moment—which we assume to be given—by using a function prevTimeStamp
that determines that previous time point. The translations of all the temporal operators

4Note that this kind of expression using disjunction (t) on the left-hand side is not explicitly in-
troduced in Section 2. However, it can be replaced by the two CIs HighWindSpeed v Storm and
HighWaves v Storm, while semantic equivalence is retained.

10

are given in the appendix.

6 Evaluation

We finally evaluate the applicability of the three algorithms for TCQ answering.

To this end, we implemented them prototypically in Java. The correctness was tested
using JUnit5. The implementations of the IA and the VA overlap in large parts. In
particular, they use common representation formats (e.g., for the TCQs and the fact
bases) and apply the same (proprietary) implementation of the well-known PerfectRef
algorithm [10] to answer CQs over the data (i.e., to evaluate answer terms for these
CQs). However, the implementation of the VA (cf. Section 4) requires additional pre-
processing for the creation of the vectors; further, the considered window is consumed
(and thus to be represented) as a whole, which strongly contrasts the iterative process-
ing of the IA. The RA has been implemented in the QuAnTOn library, which translates
TCQs into SQL queries. QuAnTOn accepts TCQs in a format that extends the W3C
standard SPARQL6.

Note that it is not the goal of this paper to evaluate and compare the algorithms exhaus-
tively; instead, we focus on the evaluation of the main characteristics by regarding the
time needed for preprocessing and the query answering performance.

6.1 Overview

Our experiments aim to show the following:

• The iterative processing of the IA and our constant domain assumption suit a
streaming scenario with the consideration of a fix set of sensors; specifically, the
IA then shows a rather constant performance.

• The Vector Algorithm is applicable for window-based TCQ answering.

• The simple rewriting approach of the RA is not applicable for all TCQs, in prac-
tice.

Note that an investigation of the effectiveness of the VA, meaning the dependence of
the quality of the answers in dependence of different window range and slide values—
which is strongly application-specific—, is out of the scope of this paper.

We focus on the querying of weather data as outlined above. We chose this scenario,
sketched in [20], for the evaluation of stream reasoning systems, to facilitate a com-
parison with such systems, which is planned for future work.

5http://junit.org
6http://www.w3.org/TR/sparql11-query/

11

0 50,000 100,000

0.2

0.4

0.6

Ti
m

e
(m

s)

200
400
600
800
1000

Figure 1: The time the IA takes for answering a TCQ in dependence of the number
n+ 1 of fact bases, for different numbers a of assertions per fact base.

Specifically, we regard sequences of fact bases each containing a specific number a of
assertions representing sensor measurements.7 We experimented with different num-
bers a of assertions per fact base and correspondingly used one tuple per assertion in
the table/database we applied for the evaluation of the RA. We further considered se-
quences of different length and windows of different range, for the iterative and the
window-based processing, respectively. To learn about the performance of the imple-
mentations regarding different kinds of TCQs, we only used rather simple CQs within
the latter. The ontology we applied extends the sensor-observation ontology8.

The tests were run on a usual office PC using an 2,2 GHz Intel Core i7 machine with 4
GB RAM, a Java 1.7.0_51 environment, and running OS X 10.8.5. We further applied
a MySQL (v5.2.38) database, for answering the queries of the RA.

6.2 Results

Since the iterative processing of the IA contrasts the window-based processing of VA,
the algorithms are not directly comparable. We therefore discern these two settings.

Preprocessing For the preprocessing per TCQ, we measured an average time of less
than 1 ms for both the IA and the VA, and the times never exceeded 2 ms. For the RA,
the preprocessing time per TCQ lay between 100 and 200 ms, in all experiments.

Regarding the Whole History Figure 2 shows that the IA performs rather constant,
independent of the considered number of assertions in the fact base. For example, it
can be seen that it takes about half a millisecond to (continuously) answer a TCQ over
a TKB containing up to 100 ∗ 106 assertions. Thereby, an increase of the number of
assertions by 200 causes the runtime to increase by about 0.1 ms. In contrast, the results
we obtained for the RA were not as satisfactory. While most TCQs lead to a linear

7Note that a can be compared to the tuple-rate (i.e., the rate in which new data is coming into the
system—measured in (data) tuples per second, for example), which is usually considered in evaluations
of stream reasoning systems.

8http://wiki.knoesis.org/index.php/LinkedSensorData

12

increase in runtime (i.e., in dependence of the number of fact bases), which would be
acceptable, the operators ∨,U, and S caused a quadratic increase. Furthermore, the
accessing of the database itself (e.g., the fetching of the results) lead to runtimes in
the range of seconds, already for very short sequences of fact bases. We next give
examples for this.

Window-based Query Answering Figure 4 shows the runtimes we measured for
the window-based query answering. Note that the parameters we considered are also
regarded in related work [12]. It can be seen that the VA achieves a linear performance.
For a window containing 30 fact bases, for example, the query answering can be done
within 4 ms—even for the relatively high number of 1000 assertions per fact base. The
figure also illustrates the quadratic increase in runtime we obtained for the RA, as well
as its runtimes.

Please note that our investigation is far from being exhaustive. To obtain more gen-
eral results, further studies should target other application scenarios, consider more
complex queries, and directly compare our implementations to the one presented in
[12].

7 Conclusions

In this paper, we investigated three algorithms for answering TCQs w.r.t. DL-Lite on-
tologies. In particular, we implemented the Iterative Algorithm, which takes into ac-
count all the data given, and a window-based adaptation of the IA, the Vector Algo-
rithm. We further considered a simple Rewriting Algorithm translating TCQs into SQL
queries. Our evaluation showed convincing runtimes for the IA and the VA9 both an-
swering the TCQs within milliseconds. In particular, the constant performance of the
IA w.r.t. a growing number of data over time practically confirmed the bounded history

500 1,000
0

5

10

Ti
m

e
(m

s)

500 1,000
0

200

400

600

Ti
m

e
(s

ec
)

1
10
30

Figure 2: The times the VA (left) and RA (right) take for answering a TCQ in depen-
dence of the number a of assertions per fact base, for three different window ranges
(i.e., number of fact bases per window).

9According to [12], response times of about 80 ms are still acceptable in a window-based streaming
scenario with the parameters we considered—note that our experiments for the VA yielded times which
are an order of magnitude less than that.

13

encoding of the algorithm. The results we obtained for the Rewriting Algorithm show
however that the simple approach of rewriting cannot be applied to answer all kinds
of TCQs in acceptable times. For a practical application, the RA thus still needs to be
optimized; the costs of the disk access also restrict possible applications. Nevertheless,
in several applications large amounts of temporal data are stored on disk. It thus would
be worth investigating optimizations of the RA.

We further plan a comparison of our implementations with Morph-streams. It will
be especially interesting to see if the VA outperforms Morph-streams, which is also
window-based but, similar to the RA, delegates the query answering to other systems
(i.e., after a translation of the queries).

Future plans also include an extension of our implementations of the IA and the VA
such that they support temporal queries based on other rewritable (atemporal) query
languages, as it is proposed by [8].10 For example, temporal queries over TKBs in
the DL EL could be answered by employing a corresponding system for the atemporal
query answering.

Acknowlegements.

We thank Stefan Borgwardt for the many helpful discussions on the topics of this paper.

References

[1] Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in etalis. Semant. web 3(4), 397–407 (Oct 2012)

[2] Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalis-
ing tractable description logics. In: Goranko, V., Wang, X.S. (eds.) Proceedings
of the 14th International Symposium on Temporal Representation and Reasoning
(TIME 2007), pp. 11–22. IEEE Press (2007)

[3] Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Transactions
on Computational Logic 15(3), 25 (2014)

[4] Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data
access. In: Bonacina, M.P. (ed.) Proc. of the 24th Int. Conf. on Automated De-

10Specifically, [8] propose algorithms for answering temporal queries (w.r.t. TKBs) that generalize
TCQs in that they combine queries of a generic atemporal query languageQ via LTL-operators (i.e., we
restrict Q to CQs). Thereby, Q is assumed to be a rewritable query language, which basically means
that the certain answers to every query inQ w.r.t. a knowledge base K can be obtained by answering an
appropriate adaptation of the query in a canonical model of K.

14

duction (CADE’13). Lecture Notes in Computer Science, vol. 7898, pp. 330–344.
Springer-Verlag (2013)

[5] Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the de-
scription logic SHQ. Journal of Web Semantics (2015)

[6] Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM
Transactions on Computational Logic 13(3), 21:1–21:32 (2012)

[7] Balduini, M., Calbimonte, J.P., Corcho, O., Dell’Aglio, D., Della Valle,
E.: Stream reasoning for linked data, http://streamreasoning.org/
events/sr4ld2014

[8] Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query lan-
guages over knowledge bases. Journal of Web Semantics (2015), in press.

[9] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: The dl-lite approach. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset,
M.C., Schmidt, R. (eds.) Reasoning Web. Semantic Technologies for Infor-
mation Systems, Lecture Notes in Computer Science, vol. 5689, pp. 255–
356. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-03754-2_7

[10] Calvanese, D., De Giacomo, G., Lemho, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 2. pp. 602–607. AAAI’05, AAAI
Press (2005)

[11] Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries
in relational data bases. In: Proc. of the 9th Annual ACM Symp. on Theory of
Computing (STOC’77). pp. 77–90. ACM (1977)

[12] Corcho, O., Calbimonte, J.P., Jeung, H., Aberer, K.: Enabling query technologies
for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (Jan 2012)

[13] Cugola, G., Margara, A.: Tesla: A formally defined event specification language.
In: Proceedings of the Fourth ACM International Conference on Distributed
Event-Based Systems. pp. 50–61. DEBS ’10, ACM, New York, NY, USA (2010)

[14] Gonçalves, R.S., Bail, S., Jimenez-ruiz, E., Parsia, B., Glimm, B., Kazakov, Y.:
OWL Reasoner Evaluation (ORE) workshop 2013 results: Short report

[15] Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics
and branching time: A troublesome marriage. In: Proc. of the 14th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’14). AAAI Press
(2014)

15

[16] Holste, J.: Ontology-Based Temporal Reasoning on Streams. Master’s the-
sis, Hamburg University of Technology (October 2014), http://www.sts.
tuhh.de/pw-and-m-theses/2014/holste14a.pdf

[17] Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In:
Kontchakov, R., Mugnier, M.L. (eds.) Web Reasoning and Rule Systems, Lec-
ture Notes in Computer Science, vol. 8741, pp. 92–107. Springer International
Publishing (2014)

[18] Özçep, O., Möller, R., Neuenstadt, C.: A stream-temporal query language for
ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014: Ad-
vances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 8736,
pp. 183–194. Springer International Publishing (2014)

[19] Rodriguez-Muro, M., Calvanese, D.: High performance query answering over
DL-Lite ontologies. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14, 2012 (2012)

[20] Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.P.: SRBench: a streaming RD-
F/SPARQL benchmark. In: Proceedings of the 11th International Conference on
The Semantic Web - Volume Part I. pp. 641–657. ISWC’12, Springer-Verlag,
Berlin, Heidelberg (2012)

16

Appendix

In what follows, we provide details about the Rewriting Algorithm, which translates a
TCQ φ into an SQL query sql(φ). For simplicity, we make the following assumptions:

• The database contains a table datatable with a column timestamp, and a tuple
in this table, for each time point associated with a fact base. Note that not all
the data needs to be stored in this table, but it serves as an overview of the time
points to be considered.

• The names of the distinguished variables of the CQs which we use equal the
corresponding columns of the database.

• We have the following functions:

– nextTimeStamp (prevTimeStamp): for a given time point, it returns the
next (previous) time point w.r.t. all the considered time points.

– top: given a tuple of variables, it returns all tuples of the same arity, which
can be formed using the individual names occurring in the database.

– commonVariables: given two CQs, it returns the variables that are distin-
guished variables in both CQs.

– For a CQ ψ, the function sql(ψ) returns the SQL rewriting of ψ as it is
proposed in [10]. We specifically assume sql(ψ) to refer to a column
timestamp identifying the fact base over which ψ is evaluated.

• A(x1, . . . , xa) ∧ B(y1, . . . , yb)

SELECT
VIEW_A.x1,...,VIEW_A.xa,
// skip variables that appear before
VIEW_B.y1,...,VIEW_B.yb
FROM sql(A) AS VIEW_A JOIN sql(B) AS VIEW_B
USING (commonVariables(A,B));

• A(x1, . . . , xa) ∨ B(y1, . . . , yb)

SELECT
VIEW_A.x1,...,VIEW_A.xa,
// skip variables that appear before
DVIEW_A.y1,...,DVIEW_A.yb
FROM sql(A) AS VIEW_A JOIN top(y1,...,yb) AS DVIEW_A
USING (commonVariables(A,B))
UNION
SELECT

17

VIEW_B.x1,...,VIEW_B.xa,
DVIEW_B.y1,...,DVIEW_B.yb,
FROM sql(B) AS VIEW_B JOIN top(x1,...,xa) AS DVIEW_B
USING (commonVariables(A,B));

18

• #A(x1, . . . , xa)

SELECT
//filter out timestamp variable
VIEW_A.x1,...,VIEW_A.xa,
// to refer to the time point where #A(x1, . . . , xa) holds
TVIEW_A.timestamp
FROM sql(A) AS VIEW_A,
(SELECT DISTINCT timestamp FROM datatable) AS TVIEW_A
WHERE

TVIEW_A.timestamp = prevTimeStamp(VIEW_A.timestamp);

For the #−-operator, the SQL is correspondingly.

• A(x1, . . . , xa)UB(y1, . . . , yb)

SELECT
VIEW_B.y1,...,VIEW_B.yb,
DVIEW_B.x1,...,DVIEW_B.xa,
FROM sql(B) AS VIEW_B JOIN top(x1,...,xa) AS DVIEW_B
USING (commonVariables(A,B))
UNION
SELECT
VIEW_A.x1,...,VIEW_A.xa,
// skip variables that appear before
// esp. timestamp variable is used from A
VIEW_B.y1,...,VIEW_B.yb
FROM sql(A) AS VIEW_A, sql(B) AS VIEW_B
WHERE VIEW_A.timestamp <= VIEW_B.timestamp
AND NOT EXISTS (

// regard time between A & B
SELECT TVIEW_C.timestamp
FROM (SELECT DISTINCT timestamp FROM datatable)

AS TVIEW_C
WHERE TVIEW_C.timestamp >= VIEW_A.timestamp
AND TVIEW_C.timestamp < VIEW_B.timestamp
AND TVIEW_C.timestamp NOT IN (

SELECT VIEW_C.timestamp
FROM sql(A) AS VIEW_C
WHERE VIEW_A.x1 = VIEW_C.x1 AND ...
AND VIEW_A.xa = VIEW_C.xa));

Again, for the S-operator, the SQL is correspondingly. To optimize the execu-
tion, we consider the operators 3 and 3− separately.

19

• 3A(x1, . . . , xa)

SELECT
// filter out timestamp variable
VIEW_A.x1,...,VIEW_A.xa,
// to refer to the time point where 3A(x1, . . . , xa) holds
TVIEW_A.timestamp
FROM sql(A) AS VIEW_A,
(SELECT DISTINCT timestamp FROM datatable) AS TVIEW_A
WHERE TVIEW_A.timestamp <= VIEW_A.timestamp;

Again, for the 3−-operator, the SQL is generated correspondingly (i.e., we use
‘≥’ instead of ‘≤’).

• 2A(x1, . . . , xa)

SELECT
// filter out timestamp variable
VIEW_A.x1,...,VIEW_A.xa,
// to refer to the time point where 2A(x1, . . . , xa) holds
TVIEW_A.timestamp
FROM sql(A) AS VIEW_A,
(SELECT DISTINCT timestamp FROM datatable) AS TVIEW_A
WHERE TVIEW_A.timestamp <= VIEW_A.timestamp
AND NOT EXISTS (

SELECT TVIEW_B.timestamp
FROM (SELECT DISTINCT timestamp FROM datatable)

AS TVIEW_B
WHERE TVIEW_A.timestamp <= TVIEW_B.timestamp
AND TVIEW_B.timestamp NOT IN (

SELECT VIEW_B.timestamp
FROM sql(A) AS VIEW_B
WHERE VIEW_A.x1 = VIEW_B.x1 AND ...
AND VIEW_A.xa = VIEW_B.xa));

Again, for the 2−-operator, the SQL is similar.

20

